
TMTM

Managing System Software for Cray XE and Cray XT™
Systems

S–2393–31

© 2005, 2006-2010 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray, LibSci, PathScale, and UNICOS are federally registered trademarks and Active Manager, Baker, Cascade,
Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS,
Cray CX1-LC, Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC,
Cray CX1000-SM, Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1,
Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5,
Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, Gemini, Libsci,
NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, Threadstorm, UNICOS/lc, UNICOS/mk, and UNICOS/mp
are trademarks of Cray Inc.

AMD, AMD Opteron, and Opteron are trademarks of Advanced Micro Devices, Inc. Catamount/QK is part of
the copyrighted works of Sandia National Laboratories. DDN is a trademark of DataDirect Networks. Engenio,
LSI, and LSI Logic are trademarks of LSI Logic Corporation. FLEXnet is a trademark of Acresso Software Inc.
GNU is a trademark of The Free Software Foundation. InfiniBand is a trademark of InfiniBand Trade Association.
Intel is a trademark of Intel Corporation or its subsidiaries in the United States and other countries. Kerberos is a
trademark of Massachusetts Institute of Technology. Linux is a trademark of Linus Torvalds. LSF, Platform LSF,
Platform, and Platform Computing are trademarks of Platform Computing Corporation. Mac OS is a trademark of
Apple Computer, Inc. Moab and TORQUE are trademarks of Adaptive Computing Enterprises, Inc. Lustre, MySQL,
MySQL Enterprise, NFS, Solaris, and Sun are trademarks of Oracle and/or its affiliates. QLogic and SANtricity are
trademarks of QLogic Corporation. PBS Professional is a trademark of Altair Engineering, Inc. PGI is a trademark
of The Portland Group Compiler Technology, STMicroelectronics, Inc. RSA is a trademark of RSA Security Inc.
Novell and SUSE are trademarks of Novell, Inc. TotalView is a trademark of TotalView Technology, LLC. UNIX is
a trademark of The Open Group. Windows is a trademark of Microsoft Corporation. All other trademarks are the
property of their respective owners.

Version 1.0 Published February 2005 Draft documentation to support Cray XT3 limited availability (LA) systems.

Version 1.1 Published June 2005 Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.1,
System Management Workstation (SMW) 1.1, and UNICOS/lc 1.1 releases.

Version 1.2 Published September 2005 Supports Cray XT3 systems running the Cray XT3 Programming
Environment 1.2, System Management Workstation (SMW) 1.2, and UNICOS/lc 1.2 releases.

Version 1.3 Published November 2005 Supports Cray XT3 systems running the Cray XT3 Programming
Environment 1.3, System Management Workstation (SMW) 1.3, and UNICOS/lc 1.3 releases.

Version 1.4 Published May 2006 Supports Cray XT3 systems running the Cray XT3 Programming Environment 1.4,
Cray XT3 RAS and Management System (CRMS) 1.4, and UNICOS/lc 1.4 releases.

Version 1.5 Published October 2006 Supports general availability (GA) release of Cray XT series systems running
the Cray XT series Programming Environment 1.5, UNICOS/lc 1.5, and System Management Workstation 1.5
releases.

Version 2.0 Published October 2007 Supports general availability (GA) release of Cray XT series systems running
the Cray XT series Programming Environment 2.0, UNICOS/lc 2.0, and System Management Workstation 3.0.1
releases.

Version 2.1 Published November 2008 Supports the general availability (GA) release of Cray XT systems running
the Cray Linux Environment (CLE) 2.1 release and the System Management Workstation (SMW) 3.1 release as of
the SMW 3.1.09 update.

Version 2.2 Published July 2009 Supports the general availability (GA) release of Cray XT systems running the
Cray Linux Environment (CLE) 2.2 release and the general availability (GA) release of the System Management
Workstation (SMW) 4.0 release.

Version 3.0 Published March 2010 Supports the Cray Linux Environment (CLE) 3.0 release and the System
Management Workstation (SMW) 5.0 release.

Version 3.1 Published June 2010 Supports the Cray Linux Environment (CLE) 3.1 release and the System
Management Workstation (SMW) 5.1 release.

New Features

Managing System Software for Cray XE and Cray XT™ Systems S–2393–31

This manual has been updated extensively; significant changes include:

• Added the following:

– The new SMW software installation feature consists of the SMWinstall, SMWconfig, and
SMWinstallCLE system administrator commands. These SMW installation commands automate
the SMW software installation process significantly. See System Management Workstation (SMW)
on page 35.

– Gemini-specific physical component naming conventions were added; see Table 1.

– Description of Gemini NIDs was added; see Node ID (NID) for Cray XE Systems on page 60.

– The xtcon command is a console interface for service nodes; see Connecting the SMW to the
Console of a Service Node on page 65.

– Use the new xtcli mark_node command to mark nodes in a compute blade as either a service
node or a compute node; these nodes are set as compute nodes by default; see Marking a Compute
Node as a Service Node on page 84.

– Examples of finding node information using the xtnid2str command; see Finding Node
Information Using the xtnid2str Command on page 85.

– You can cat the new /opt/cray/etc/smw-release file to display the installed SMW release
level; see Displaying Installed SMW Release Level on page 93.

– You can cat the new /etc/opt/cray/release/clerelease file to display the installed CLE
release level; see Displaying Installed CLE Release Level on page 93.

– The SMWinstall, SMWconfig, and SMWinstallCLE commands create several detailed log files
in the /var/adm/cray/logs directory; see Examining Log Files on page 96.

– New section: System-wide Default Modulefiles on page 116.

– New section: Maintaining *rc.local Scripts on page 118.

– New section: Configuring Failover for Boot and SDB Nodes on page 172.

– New section: Callout to rc.local During Boot on page 182.

– New section: Creating a Cray System Management Workstation (SMW) Bootable Backup Drive on
page 218.

– New section: Setting Up the Bootable Backup Drive as an Alternate Boot Device on page 225.

– New section: SMW Recovery on page 231.

– New section: Using Persistent SCSI Device Names on page 232.

– New section: Manually Cleaning ALPS and PBS After Downed Login Node on page 252.

– New section: ALPS and Node Health Monitoring Interaction on page 253.

– New section: Disabling Project Accounting on page 271.

– New section: Cleanup Version 1 Actions (apmgrcleanup) on page 257 and Cleanup Version 2
Actions on page 259 to document new ALPS cleanup.

– New chapter: Chapter 11, Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux
Environment on page 281. This chapter contains information previously provided in Configuring and
Using Dynamic Shared Objects and Libraries for the Cray Linux Environment (CLE) and new material
regarding configuration of the Cluster Compatibility Mode feature.

– New chapter: Chapter 12, OpenFabrics Interconnect Drivers for CLE Systems on page 295. This
documentation was previously provided as OpenFabrics Interconnect Drivers for Cray XT Systems.

– New Chapter: Chapter 13, Cray XE Network Resiliency on page 309.

– New procedures:

• Procedure 38 on page 168

• Procedure 56 on page 225

• Procedure 60 on page 231

• Procedure 63 on page 252

• Procedure 67 on page 271

• New example: Example 14

• Revised the following:

– The XTinstall installation program and XTinstall.conf installation configuration file have
been renamed to CLEinstall and CLEinstall.conf. Examples in this guide were updated
to reflect the change.

– The xtdiscover command replaced the Central Data Repository (CDR); see xtdiscover
Command on page 53.

– xtcli comp_hist command replaced the xtcli err_hist command; see Showing the
Component Alert, Warning, and Location History on page 103.

– The synopsis line changed for the following xtcli commands: clr_alert, clr_warn,
disable, enable, set_empty, and status. Examples in this guide were updated to reflect
the change.

– The Node Health Checker (NHC) section was updated to reflect the NHC enhancements for this
release; see Configuring Node Health Checker (NHC) on page 157.

– Several procedures were updated.

– In Configuring ALPS on page 243, added information about the ALPS_NIDORDER -Oy option,

which sets NID ordering for Cray XE systems; and cleanup_version, which indicated which
ALPS clean up routines to use.

– The location of the xtshutdown.conf file is now
/etc/opt/cray/init-service/xtshutdown.conf,
and the location of the xt_shutdown_local file is now
/etc/opt/cray/init-service/xt_shutdown_local; see Shutting Down Service Nodes
Using the xtshutdown Command on page 76.

– The /etc/node_classes file was moved to /etc/opt/cray/sdb/node_classes.

– The /etc/attr.defaults file was moved to /etc/opt/cray/sdb/attr.defaults.

– The /etc/attr.xthwinv file was moved to /etc/opt/cray/sdb/attr.xthwinv.

– The /etc/xt.conf file was moved to /etc/sysconfig/xt.

– The /etc/nids file was moved to /etc/opt/cray/configuration/nids.

– The rsipd.conf file was moved to /etc/opt/cray/rsipd/rsipd.conf.

– The /usr/sbin/rsipd daemon was moved to /opt/cray/rsipd/default/sbin/rsipd.

– The /etc/csa.conf file was moved to /etc/opt/cray/csa/csa.conf.

– References to cray_faillog changed to cray_pam.

– The following commands are deprecated:

• xtkill, xtps, xtuname, and xtwho

– The following appendixes were updated:

• Appendix A, SMW and CLE System Administration Commands on page 327

• Appendix B, System States on page 333

• Appendix C, Error Codes on page 335

• Appendix D, Remote Access to the SMW on page 347

• Appendix E, Updating the Time Zone on page 351

• Appendix G, PBS Professional Licensing for Cray Systems on page 359

• Removed the following:

– The System Environment Data Collections (SEDC) documentation is now contained in Using and
Configuring System Environment Data Collections (SEDC), S–2491, which is provided with Cray
System Management Workstation (SMW) release packages.

– Section titled "apmgrcleanup Actions," which was replaced by new sections Cleanup Version 1
Actions (apmgrcleanup) on page 257 and Cleanup Version 2 Actions on page 259.

– XTGUI documentation; the XTGUI is no longer supported.

– Warning manager documentation; the warning manager and related command, xtwm, are no longer
supported. Using SEDC is the preferred method to get cabinet-level environmental information.

– Removed all documentation about the following deleted SMW commands: mkcrayhosts,
parser_test, smwhotbackup, smwsnapshot, xtcdr_gen_args, xtcdr_generator,
xtibmbist, xtinitmodule, xtlcbdump, xtrcaproxy, xtnodelist, xtnxn,
xtsmwrelswitch, and xtsync.

– Removed the section and related procedure about keeping a hot-spare SMW synchronized with the
production SMW.

– Removed documentation about the following deleted CLE commands: xtappackage,
xtchecklink, and xthostname.

– Removed the ldump xt command-line string name that was previously deprecated ; it is no longer
accepted as an alias for the ldump xt-ssi access method.

– Removed Appendix H, Utilities for Cray Service Personnel Use.

– Removed documentation throughout manual about Cray X2 system settings and options.

Contents

Page

Introduction [1] 29

1.1 Audience for This Guide . 29

1.2 Cray System Administration Publications 30

1.3 Related Publications . 30

Introducing System Components [2] 33

2.1 System Management Workstation (SMW) 35

2.2 CLE . 36

2.3 Boot Root File System . 37

2.4 Shared Root File System . 37

2.5 Service Partition . 37

2.5.1 Service Nodes . 38

2.5.1.1 Boot Node . 38

2.5.1.2 Service Database (SDB) Node 39

2.5.1.3 Syslog Node . 40

2.5.1.4 Login Nodes . 40

2.5.1.5 Network Nodes . 40

2.5.1.6 I/O Nodes . 40

2.5.2 Services on the Service Partition 41

2.5.2.1 Resiliency Communication Agent (RCA) 41

2.5.2.2 Lustre File System . 42

2.5.2.3 Cray Data Virtualization Service (Cray DVS) 42

2.5.2.4 Application Level Placement Scheduler (ALPS) for Compute Nodes 42

2.5.2.5 Cluster Compatibility Mode 43

2.5.2.6 IP Implementation . 43

2.6 Compute Partition . 43

2.6.1 Compute Nodes . 44

2.7 Job Launch Commands . 45

2.8 Node Health Checker (NHC) . 45

2.9 Comprehensive System Accounting (CSA) 46

S–2393–31 9

Managing System Software for Cray XE and Cray XT™ Systems

Page

2.10 Checkpoint/Restart (CPR) . 46

2.11 Portals Message-passing Interface for Cray XT Systems 46

2.12 Optional Workload-management (Batch) System Software Products 47

2.13 Hardware Supervisory System (HSS) 47

2.13.1 HSS Network . 48

2.13.2 HSS Interface . 48

2.13.3 Blade Control Processor (L0 Controller) and Cabinet Control Processors (L1 Controller) . . . 48

2.13.4 NTP Server . 49

2.13.5 Event Router . 49

2.13.6 HSS Managers . 50

2.13.6.1 State Manager . 50

2.13.6.2 Boot Manager . 51

2.13.6.3 System Environmental Data Collections (SEDC) Manager 51

2.13.6.4 Diagnostics Manager for Cray XT Systems (Not Used by Cray XE Systems) 51

2.13.6.5 Power Manager . 52

2.13.6.6 Flash Manager . 52

2.13.6.7 Router Manager . 52

2.13.6.8 NID Manager . 52

2.13.7 xtdiscover Command 53

2.13.8 Event Logs . 54

2.13.9 Boot Logs . 54

2.13.10 Dump Logs . 54

2.14 Cray Management Services (CMS) 54

2.15 Storage . 54

2.16 Other Administrative Information 55

2.16.1 Identifying Components . 55

2.16.1.1 Physical ID . 56

2.16.1.2 Node ID (NID) for Cray XT Systems 59

2.16.1.3 Node ID (NID) for Cray XE Systems 60

2.16.1.4 Class Name . 60

2.16.2 Topology Class . 61

2.16.3 Persistent /var Directory 61

2.16.4 Default Network IP Addresses 61

2.16.5 /etc/hosts Files . 62

2.16.6 Native IP (SSIP) . 63

2.16.7 Realm-Specific IP Addressing (RSIP) for CNL Compute Nodes 63

2.16.8 Security Auditing . 63

10 S–2393–31

Contents

Page

2.16.9 Logging Failed Login Attempts 63

2.16.10 Logical Machines . 63

Managing the System [3] 65

3.1 Connecting the SMW to the Console of a Service Node 65

3.2 Logging On to the Boot Node . 65

3.3 Preparing a Service Node and Compute Node Boot Image 66

3.3.1 Using shell_bootimage_label.sh to Prepare Boot Images 68

3.4 Changing Boot Parameters . 71

3.5 Booting Nodes . 71

3.5.1 Booting the System . 72

3.5.2 Using the xtcli boot Command to Boot a Node or Set of Nodes 74

3.5.3 Rebooting a Single CNL Compute Node 75

3.5.4 Rebooting Login or Network Nodes 75

3.6 Requesting and Displaying System Routing 75

3.7 Shutting Down Service Nodes Using the xtshutdown Command 76

3.8 Shutting Down the System or Part of the System Using the xtcli shutdown Command . . . 77

3.9 Shutting Down the System Using the auto.xtshutdown File 78

3.10 Stopping System Components . 78

3.10.1 Reserving a Component . 78

3.10.2 Powering Down a Node . 78

3.10.3 Powering Down a Component 79

3.10.4 Powering Down a Single Blade 79

3.10.5 Forcing Components to Power Down 80

3.10.6 Halting Selected Nodes . 81

3.10.7 Powering Off L0 Controllers or Slots 81

3.11 Restarting a System Component 81

3.12 Aborting Active Sessions on HSS Managers 82

3.13 Displaying and Changing Software System Status 82

3.13.1 Displaying the Status of Nodes from the Operating System 83

3.13.2 Viewing and Changing the Status of Nodes 83

3.13.3 Marking a Compute Node as a Service Node 84

3.13.4 Finding Node Information 85

3.13.4.1 Finding Node Information Using the xtnid2str Command 85

3.13.4.2 Finding Node Information Using the xtuname Command 85

3.14 Displaying and Changing Hardware System Status 86

3.14.1 Generating HSS Physical IDs 86

3.14.2 Disabling Hardware Components 86

S–2393–31 11

Managing System Software for Cray XE and Cray XT™ Systems

Page

3.14.3 Enabling Hardware Components 87

3.14.4 Setting Components to Empty 88

3.14.5 Locking Components . 89

3.14.6 Unlocking Components . 89

3.14.7 Determining How Service Nodes Are Configured by Looking at Hardware 89

3.15 Performing Parallel Operations on Nodes 90

3.16 Handling Component Failures . 90

3.17 Capturing and Analyzing System-level and Node-level Dumps 91

3.17.1 Dumping Information Using the xtdumpsys Command 91

3.17.2 ldump and lcrash Utilities for Node Memory Dump and Analysis 92

3.18 Using xtnmi Command to Collect Debug Information from Hung Nodes 92

Monitoring System Activity [4] 93

4.1 Monitoring the System with the System Environmental Data Collector (SEDC) 93

4.2 Displaying Installed SMW Release Level 93

4.3 Displaying Installed CLE Release Level 93

4.4 Displaying Boot Configuration Information 93

4.5 Monitoring Multiple Nodes . 94

4.6 Managing Log Files Using CLE and HSS Commands 95

4.6.1 Filtering the Event Log . 96

4.6.2 Adding Entries to Log Files . 96

4.6.3 Examining Log Files . 96

4.6.4 Removing Old Log Files . 97

4.7 Managing Log Files Using the Cray Management Services (CMS) Log Manager 98

4.8 Checking the Status of System Components 98

4.9 Checking the Status of Compute Processors 98

4.10 Checking CNL Compute Node Connection 99

4.11 Checking Link Control Block and Router Errors 100

4.12 Monitoring the Status of Jobs Started Under a Third-party Batch System 101

4.13 Listing Running Jobs . 101

4.14 Using the cray_pam Module to Monitor Failed Login Attempts 101

4.15 Monitoring DDN RAID . 101

4.16 Monitoring LSI Engenio RAID . 101

4.17 Monitoring HSS Managers . 101

4.17.1 Examining Activity on HSS Managers 102

4.17.2 Checking the Health of HSS Managers 102

4.18 Monitoring Events . 102

4.19 Monitoring Node Console Messages 103

12 S–2393–31

Contents

Page

4.20 Showing the Component Alert, Warning, and Location History 103

4.21 Displaying Component Information 104

4.22 Displaying Alerts and Warnings 105

4.23 Clearing Flags . 105

Managing User Access [5] 107

5.1 Load Balancing Across Login Nodes 107

5.2 Passwords . 107

5.2.1 Changing Default SMW Passwords After Completing Installation 108

5.2.2 Changing root and crayadm Passwords on Boot and Service Nodes 108

5.2.3 Changing the root Password on CNL Compute Nodes 109

5.2.4 Changing Default MySQL Passwords on the SDB 109

5.2.5 Assigning and Changing User Passwords 112

5.2.6 Logins That Do Not Require Passwords 113

5.3 Administering Accounts . 113

5.3.1 Managing Boot Node Accounts 113

5.3.2 Managing User Accounts on Service Nodes 114

5.3.2.1 Adding a User or Group 114

5.3.2.2 Removing a User or Group 114

5.3.2.3 Changing User or Group Information 115

5.3.2.4 Assigning Groups of Compute Nodes to a User Group 115

5.3.3 Setting Disk Quotas for a User on the Cray Local, Non-Lustre File System 115

5.3.4 Associating Users with Projects 116

5.4 System-wide Default Modulefiles 116

5.5 User Access to a Compiler Environment Using Modulefiles 117

5.6 Maintaining *rc.local Scripts 118

5.7 Using the pam_listfile Module in the Shared Root Environment 118

5.8 ulimit Stack Size Limit . 119

5.9 Stopping a User's Job . 119

5.9.1 Stopping a CNL Job Running in Interactive Mode 119

5.9.2 Stopping a Job Running Under a Batch System 119

Modifying an Installed System [6] 121

6.1 PBS Professional Licensing Requirements for Cray Systems 121

6.2 Disabling Secure Shell (SSH) on Compute Nodes 121

6.3 Modifying SSH Keys for Compute Nodes 122

6.4 Configuring the System Environmental Data Collector (SEDC) 123

6.5 Configuring the Shared-root File System on Service Nodes 123

S–2393–31 13

Managing System Software for Cray XE and Cray XT™ Systems

Page

6.5.1 Specialization . 124

6.5.2 Visible Shared-root File System Layout 125

6.5.3 How Specialization Is Implemented 127

6.5.4 Working with the Shared-root File System 128

6.5.4.1 Managing System Configuration with the xtopview Tool 129

6.5.4.2 Updating Specialized Files from within the xtopview Shell 131

6.5.4.3 Specializing Files . 132

6.5.4.4 Determining which Files are Specialized 134

6.5.4.5 Checking Shared-root Configuration 136

6.5.4.6 Verifying the Coherency of /etc/init.d Files Across All Shared Root Views . . . 136

6.5.4.7 Cloning a Shared-root Hierarchy 136

6.5.4.8 Changing the Class of a Node 137

6.5.4.9 Removing Specialization 137

6.5.4.10 Displaying RCS Log Information for Shared Root Files 138

6.5.4.11 Checking Out an RCS Version of Shared Root Files 139

6.5.4.12 Listing Shared Root File Specification and Version Information 139

6.5.4.13 Performing Archive Operations on Shared Root Files 140

6.5.5 Logging Shared-root Activity 141

6.6 Configuring Optional RPMs in the CNL Boot Image 141

6.7 Configuring Cray Enhanced Linux Security Features 141

6.7.1 Security Auditing and Cray Audit Extensions 142

6.7.1.1 Lustre File System Requirements for Cray Audit 146

6.7.1.2 System Performance Considerations for Cray Audit 148

6.7.2 Using the cray_pam PAM to Log Failed Login Attempts 148

6.8 Configuring cron Services . 153

6.9 Configuring the Load Balancer . 155

6.10 Configuring Node Health Checker (NHC) 157

6.10.1 /etc/opt/cray/nodehealth/nodehealth.conf Configuration File . . . 157

6.10.2 Configuring Node Health Checker Tests 158

6.10.2.1 Guidance About NHC Tests 160

6.10.2.2 Global Configuration Variables That Affect All NHC Tests 163

6.10.2.3 Standard Variables That Affect Individual NHC Tests 164

6.10.3 Suspect Mode . 165

6.10.4 NHC Messages . 166

6.10.5 What if a Login Node Crashes While xtcheckhealth Binaries are Monitoring Nodes? . . 167

6.10.6 Disabling NHC . 169

6.10.7 nodehealth Modulefile 169

14 S–2393–31

Contents

Page

6.10.8 Configuring the Node Health Checker to Use SSL 169

6.11 Activating Process Accounting for Service Nodes 171

6.12 Configuring Failover for Boot and SDB Nodes 172

6.12.1 Configuring Boot-node Failover 172

6.12.2 Configuring SDB Node Failover 176

6.12.3 Compute Node Failover Manager 177

6.13 Creating Logical Machines . 177

6.13.1 Creating Routable Logical Machines 177

6.13.1.1 Topology Class 0 . 177

6.13.1.2 Topology Class 1 . 178

6.13.1.3 Topology Class 2 . 179

6.13.1.4 Topology Class 3 . 180

6.13.2 Configuring a Logical Machine 180

6.13.3 Booting a Logical Machine 181

6.14 Updating Boot Configuration . 181

6.15 Modifying Boot Automation Files 182

6.16 Callout to rc.local During Boot 182

6.17 Changing the System Software Version to Be Booted 182

6.17.1 Minor Release Switching within a System Set 183

6.17.2 Major Release Switching using Separate System Sets 183

6.18 Changing the Service Database (SDB) 184

6.18.1 Service Database Tables . 184

6.18.2 Database Security . 185

6.18.3 Updating Database Tables . 186

6.18.3.1 Changing Nodes and Classes 188

6.18.3.2 Changing Services . 188

6.19 Viewing the Service Database Contents with MySQL Commands 189

6.20 Configuring the Lustre File System 191

6.21 Configuring Cray Data Virtualization Service (Cray DVS) 191

6.22 Enabling File-locking for Lustre Clients 191

6.23 Setting and Viewing Node Attributes 191

6.23.1 Setting Node Attributes Using the /etc/opt/cray/sdb/attr.xthwinv and
/etc/opt/cray/sdb/attr.defaults Files 192

6.23.1.1 Enabling Node Attributes during Boot Process 192

6.23.1.2 Generating the /etc/opt/cray/sdb/attributes File 192

6.23.2 SDB attributes Table 194

6.23.3 Setting Attributes Using the xtprocadmin Command 195

6.23.4 Viewing Node Attributes . 196

S–2393–31 15

Managing System Software for Cray XE and Cray XT™ Systems

Page

6.24 Using the XTAdmin Database segment Table 196

6.25 Configuring Networking Services 197

6.25.1 Changing the High-speed Network (HSN) 197

6.25.2 Network File System (NFS) 197

6.25.3 Configuring Ethernet Link Aggregation (Bonding, Channel Bonding) 198

6.25.4 Cray Systems with SeaStar System Interconnection Network: Configuring the Virtual Channel
(VC) . 198

6.25.5 Increasing Size of ARP Tables 199

6.25.6 Configuring Native IP (SSIP) 199

6.25.7 Configuring Realm-Specific IP Addressing (RSIP) 200

6.25.7.1 Using the CLEinstall Program to Install and Configure RSIP 201

6.25.8 IP Routes for CNL Nodes in the /etc/routes File 206

6.26 Updating the System Configuration After A Hardware Change 206

6.27 Changing the Location to Log syslog-ng Information 210

Managing Services [7] 213

7.1 Configuring the SMW to Synchronize to a Site NTP Server 213

7.2 Synchronizing Time of Day on Compute Node Clocks with the Clock on the Boot Node 213

7.3 Adding and Starting a Service Using Standard Linux Mechanisms 214

7.4 Adding and Starting a Service Using RCA 214

7.4.1 Adding a Service to List of Services Available under RCA 214

7.4.2 Indicating Nodes on Which the Service Will Be Started 215

7.5 Creating a Snapshot of /var . 215

7.6 Setting Soft and Hard Limits to Prevent Login Node Hangs 216

7.7 Handling Bus Errors . 218

7.8 Creating a Cray System Management Workstation (SMW) Bootable Backup Drive 218

7.9 Setting Up the Bootable Backup Drive as an Alternate Boot Device 225

7.10 Archiving the SDB . 227

7.11 Backing Up Limited Shared-root Configuration Data 227

7.11.1 Using the xtoparchive Utility to Archive the Shared-root File System 227

7.11.2 Using Linux Utilities to Save the Shared-root File System 227

7.12 Backing Up Boot Root and Shared Root 228

7.12.1 Using the xthotbackup Command to Back Up Boot Root and Shared Root 229

7.12.2 Using dump and restore Commands to Back Up Boot Root and Shared Root 229

7.13 Backing Up User Data . 230

7.14 Rebooting a Stopped SMW . 231

7.14.1 SMW Recovery . 231

7.15 Recovering from Service Database Failure 232

16 S–2393–31

Contents

Page

7.15.1 Database Server Failover . 232

7.15.2 Rebuilding Corrupted SDB Tables 232

7.16 Using Persistent SCSI Device Names 232

7.16.1 Using cray-scscidev-emulation Device Naming 233

7.17 Using a Linux iptables Firewall to Limit Services 233

7.18 Handling Single-node Failures . 234

7.19 Increasing the Boot Manager Time-out Value 234

7.20 RAID Failure . 234

Using the Application Level Placement Scheduler (ALPS) [8] 235

8.1 ALPS Functionality . 235

8.2 ALPS Architecture . 236

8.2.1 ALPS Clients . 237

8.2.1.1 The aprun Client . 238

8.2.1.2 The apstat Client . 238

8.2.1.3 The apkill Client . 239

8.2.1.4 The apmgr Client . 239

8.2.1.5 The apbasil Client . 239

8.2.2 ALPS Daemons . 240

8.2.2.1 The apbridge Daemon 240

8.2.2.2 The apsched Daemon 240

8.2.2.3 The apsys Daemon . 240

8.2.2.4 The apwatch Daemon 241

8.2.2.5 The apinit Daemon 241

8.2.2.6 The apres Daemon . 242

8.2.2.7 ALPS Log Files . 242

8.2.2.8 Changing Debug Message Level of apsched and apsys Daemons 242

8.3 Configuring ALPS . 243

8.3.1 /etc/sysconfig/alps Configuration File 243

8.3.2 /etc/alps.conf Configuration File 247

8.4 Resynchronizing ALPS and the SDB Command After Manually Changing the SDB 249

8.5 Identifying Reserved Resources . 249

8.6 Terminating a Batch Job . 250

8.7 Setting a Compute Node to Batch or Interactive Mode 250

8.8 Manually Starting and Stopping ALPS Daemons on Service Nodes 251

8.9 Manually Cleaning ALPS and PBS After Downed Login Node 252

8.10 Verifying that ALPS is Communicating with Cray System Compute Nodes 253

8.11 ALPS and Node Health Monitoring Interaction 253

S–2393–31 17

Managing System Software for Cray XE and Cray XT™ Systems

Page

8.11.1 aprun Actions . 254

8.11.2 apinit Actions . 255

8.11.3 apsys Actions . 256

8.11.4 Cleanup Version 1 Actions (apmgrcleanup) 257

8.11.5 Cleanup Version 2 Actions 259

8.11.6 Node Health Checker Actions 260

8.11.7 Verifying Application Cleanup 260

Using Comprehensive System Accounting [9] 261

9.1 Interacting with Batch Entry Systems or the PAM job Module 262

9.2 CSA Configuration File Values . 262

9.3 Configuring CSA . 264

9.3.1 Obtaining File System and Node Information 264

9.3.2 Editing the csa.conf File 265

9.3.3 Editing Other System Configuration Files 268

9.3.4 Creating a CNL Image with CSA Enabled 268

9.3.5 Setting Up Project Accounting 269

9.3.5.1 Disabling Project Accounting 271

9.3.6 Setting Up Job Accounting . 271

9.4 Creating Accounting cron Jobs 272

9.4.1 csanodeacct cron Job for Login Nodes 272

9.4.2 csarun cron Job . 273

9.4.3 csaperiod cron Job . 273

9.5 Enabling CSA . 273

9.6 Using LDAP with CSA . 274

Using Checkpoint/Restart on Cray Systems [10] 275

10.1 Requirements and/or Limitations for Checkpoint/Restart 275

10.2 Installation and Configuration . 276

10.2.1 Cray Installation and Configuration Options 276

10.2.2 Configuring TORQUE and Moab to Work with CPR 276

10.2.3 Configuring PBS Professional to Work with CPR 277

10.3 Using Checkpoint/Restart . 277

10.3.1 Compiling Applications . 278

10.3.2 Using Checkpoint/Restart with TORQUE and Moab 278

10.3.2.1 Common Checkpoint/Restart Error Messages 279

10.3.3 Using Checkpoint/Restart with PBS Professional 280

18 S–2393–31

Contents

Page

Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux
Environment [11] 281

11.1 Configuring the Compute Node Root Runtime Environment (CNRTE) Using CLEinstall . . 281

11.2 Configuring Cluster Compatibility Mode 288

11.2.1 Preconditions . 289

11.2.2 Configuration Options Relevant to Installation 289

11.2.3 Post-install Options and Configuration 291

OpenFabrics Interconnect Drivers for CLE Systems [12] 295

12.1 OFED Overview . 295

12.2 Using InfiniBand . 296

12.2.1 Storage Area Networking . 296

12.2.2 Lustre Routing . 297

12.2.3 IP Connectivity . 298

12.3 Configuration . 298

12.4 InfiniBand Configuration . 299

12.5 Subnet Manager (OpenSM) Configuration 301

12.5.1 Starting OpenSM at Boot Time 301

12.6 Internet Protocol over InfiniBand (IPoIB) Configuration 302

12.7 Configuring SCSI RDMA Protocol (SRP) on Cray Systems 302

12.8 Lustre Networking (LNET) Router 303

12.8.1 Configuring the LNET Router 304

12.8.2 Configuring the InfiniBand Lustre Server 306

12.8.3 Configuring the Portals Lustre Clients 307

12.9 Sample Lustre Router Control File 307

Cray XE Network Resiliency [13] 309

13.1 Link Resiliency . 309

13.1.1 Automatic Response to Failures 310

13.1.1.1 Failure Of A Single High Speed Network Channel 310

13.1.1.2 Failure Of A High Speed Network Cable 311

13.1.1.3 Power Loss To A Gemini Mezzanine On A Blade 311

13.1.1.4 Power Loss To A Blade 311

13.1.1.5 Power Loss To A Cabinet 311

13.1.2 Using xtwarmswap . 312

13.1.2.1 Reusing One Or More Previously-failed High Speed Network Links 312

13.1.2.2 Reusing One Or More Previously-failed Blades, Mezzanines, or Cabinets 312

13.1.2.3 Planned Removal Of A Compute Blade 313

13.1.2.4 Planned Installation Of A Compute Blade 313

S–2393–31 19

Managing System Software for Cray XE and Cray XT™ Systems

Page

13.2 Unrouteable Cray XE Configurations 314

13.2.1 The Routing Algorithm . 315

13.2.2 Physical Components Versus Logical Components 316

13.2.3 Unrouteable Configurations 318

13.2.3.1 Two Nonadjacent Routers in a Single Z-dimension Loop 318

13.2.3.2 Two Nonadjacent Routers in a Single Dimension Loop with Additional Dimension Blocks . 319

13.2.3.3 Disabled Routers Not Adjacent to a Mesh Edge 320

13.2.3.4 Disabled Nonlinear Complete Z-dimension Loop 321

13.2.3.5 Routing Table Limitations 323

13.2.3.6 Other Unrouteable Scenarios 323

13.2.4 Disabling of Other Components 324

13.2.5 Conclusion . 325

Appendix A SMW and CLE System Administration Commands 327

A.1 HSS Commands . 327

A.2 CLE System Administration Commands 330

Appendix B System States 333

Appendix C Error Codes 335

Appendix D Remote Access to the SMW 347

Appendix E Updating the Time Zone 351

Appendix F Creating Modulefiles 355

F.1 Modulefile Template . 355

F.2 Sharing Your Modulefile . 358

F.3 Modulefile Help . 358

Appendix G PBS Professional Licensing for Cray Systems 359

G.1 Introduction . 359

G.2 Migrating the PBS Professional Server and Scheduler 360

G.3 Configuring RSIP to the SDB Node 362

G.4 Network Address Translation (NAT) IP Forwarding 365

G.5 Installing and Configuring a NIC 367

Glossary 369

Procedures
Procedure 1. Logging on to the boot node 65

Procedure 2. Preparing a boot image for CNL compute nodes and service nodes 68

20 S–2393–31

Contents

Page

Procedure 3. Manually booting the boot node and service nodes 72

Procedure 4. Booting CNL compute nodes 74

Procedure 5. Shutting down service nodes 76

Procedure 6. Reserving a component 78

Procedure 7. Powering down a node directly 78

Procedure 8. Powering down a higher component to power down a node 79

Procedure 9. Powering down selected blades 80

Procedure 10. Forcing a component to power down 80

Procedure 11. Halting a node . 81

Procedure 12. Power up blades in a cabinet 81

Procedure 13. Disabling a Cray ASIC 87

Procedure 14. Enabling a Cray ASIC 87

Procedure 15. Showing boot configuration information for the entire system 94

Procedure 16. Showing boot configuration information for a partition of a system 94

Procedure 17. Showing the status of a component 98

Procedure 18. Displaying the location history for component c0-0c0s0n0 104

Procedure 19. Changing the root and crayadm passwords on boot and service nodes 108

Procedure 20. Changing the root password on CNL compute nodes 109

Procedure 21. Changing default MySQL passwords on the SDB 109

Procedure 22. Stopping a CNL job running in interactive mode 119

Procedure 23. Disabling SSH daemon (sshd) on compute nodes 121

Procedure 24. Using dropbear to generate site-specific SSH keys 122

Procedure 25. Specializing a file by class login 133

Procedure 26. Specializing a file by node 133

Procedure 27. Specializing a file by node without entering xtopview 133

Procedure 28. Finding files in /etc that are specialized by a node 134

Procedure 29. Finding files in /etc that are specialized by class on a node 135

Procedure 30. Finding specialization of a file on a node 135

Procedure 31. Configuring Cray Audit 144

Procedure 32. Configuring cray_pam to log failed login attempts 149

Procedure 33. Configuring cron for the SMW and the boot node 153

Procedure 34. Configuring cron for the shared root with persistent /var 153

Procedure 35. Configuring cron for the shared root without persistent /var 154

Procedure 36. Configuring lbnamed on the SMW 156

Procedure 37. Installing the load balancer on an external "white box" server 157

Procedure 38. Recovering from a login node crash when a login node will not be rebooted 168

Procedure 39. Configuring the Node Health Checker (NHC) to use SSL 170

S–2393–31 21

Managing System Software for Cray XE and Cray XT™ Systems

Page

Procedure 40. Configuring boot-node failover 174

Procedure 41. Disabling boot-node failover 175

Procedure 42. Configuring a logical machine 180

Procedure 43. Booting a system set 184

Procedure 44. Updating the service_config table when services change 189

Procedure 45. Examining the service databases with MySQL commands 189

Procedure 46. Installing, configuring, and starting RSIP clients and servers 202

Procedure 47. Adding isolated service nodes as RSIP clients 205

Procedure 48. Adding or removing cabinets or chassis within cabinets 206

Procedure 49. Adding or removing a service node 209

Procedure 50. Configuring syslog-ng system message logs 211

Procedure 51. Configuring the SMW to synchronize to a site NTP server 213

Procedure 52. Adding a service to list of services available under RCA 215

Procedure 53. Preventing login node hangs by setting soft and hard limits 217

Procedure 54. Power-cycling a component 218

Procedure 55. Creating an SMW bootable backup drive 218

Procedure 56. Setting up the bootable backup drive as an alternate boot device 225

Procedure 57. Backing up limited shared-root configuration data 228

Procedure 58. Backing up the boot root and shared root using the dump and restore commands . 229

Procedure 59. Rebooting a stopped SMW 231

Procedure 60. SMW primary disk failure recovery 231

Procedure 61. Starting and stopping ALPS daemons on a specific service node 251

Procedure 62. Restarting ALPS daemon on a specific service node 252

Procedure 63. Manually cleaning up ALPS and PBS after a login node goes down 252

Procedure 64. Obtaining file system and node information 264

Procedure 65. Editing CSA parameters for the example system 265

Procedure 66. Setting up CSA project accounting 269

Procedure 67. Disabling project accounting 271

Procedure 68. Setting up CSA job accounting 271

Procedure 69. Setting up the compute node root runtime environment using only re-purposed compute
nodes as compute node root servers . 283

Procedure 70. Setting up the compute node runtime environment using a mixture of service nodes and
re-purposed compute nodes . 285

Procedure 71. Setting up the compute node runtime environment using only service nodes 286

Procedure 72. Using DVS to mount home directories on the compute nodes for CCM 291

Procedure 73. Modifying CCM and Platform-MPI system configurations 292

Procedure 74. Setting up files for the cnos class 292

Procedure 75. Linking the CCM prologue/epilogue scripts on login nodes 293

22 S–2393–31

Contents

Page

Procedure 76. Using qmgr to create a general CCM queue and queues for separate ISV applications . 294

Procedure 77. Configuring InfiniBand on service nodes 299

Procedure 78. Starting a single instance of OpenSM on a service node at boot time 301

Procedure 79. Configuring IP Over InfiniBand (IPoIB) on Cray systems 302

Procedure 80. Configuring and enabling SRP on Cray Systems 302

Procedure 81. Configuring the LNET router 304

Procedure 82. Configuring the InfiniBand Lustre Server 306

Procedure 83. Configuring Lustre clients 307

Procedure 84. Starting the VNC server 347

Procedure 85. For workstation or laptop running Linux or Mac OS: Connecting to the VNC server via ssh
tunnel . 348

Procedure 86. For workstation or laptop running Windows: Connecting to the VNC server via ssh
tunnel . 349

Procedure 87. Changing the time zone for the SMW and the L1 and L0 controllers 351

Procedure 88. Changing the time zone on the boot root and shared root 353

Procedure 89. Changing the time zone for compute nodes 354

Procedure 90. Migrating PBS off the SDB node 361

Procedure 91. Creating a simple RSIP configuration with the SDB node as a client 362

Procedure 92. Adding the SDB node as an RSIP client to an existing RSIP configuration 364

Procedure 93. Configuring NAT IP forwarding for the SDB node 365

Procedure 94. Installing and configuring a NIC on the SDB node 367

Examples
Example 1. Sample /etc/opt/cray/sdb/node_classes file 61

Example 2. Establishing a two-way connection between the SMW and console of service node
c0-0c0s0n0 . 65

Example 3. Creating a Cray boot image from existing file system images 67

Example 4. Making a boot image with new parameters for service and CNL compute nodes 71

Example 5. Booting all service nodes with a specific image 74

Example 6. Booting all CNL compute nodes with a specific image 75

Example 7. Booting CNL compute nodes using a load file 75

Example 8. Rebooting a single CNL compute node 75

Example 9. Rebooting login or network nodes 75

Example 10. Routing the entire system 76

Example 11. Shutting down all CNL compute nodes 77

Example 12. Shutting down specified CNL compute nodes 77

Example 13. Shutting down all nodes of a system 77

Example 14. Forcing nodes to shut down 77

Example 15. Resynchronizing the state manager with the true state of components within a cabinet that has
lost power . 80

S–2393–31 23

Managing System Software for Cray XE and Cray XT™ Systems

Page

Example 16. Aborting a session running on the boot manager 82

Example 17. Looking at node characteristics 83

Example 18. Viewing all node attributes 83

Example 19. Viewing selected node attributes of selected nodes 84

Example 20. Disabling a node . 84

Example 21. Disabling all processors 84

Example 22. Finding the physical ID for node 38 85

Example 23. Finding the physical ID for nodes 0, 1, 2, and 3 85

Example 24. Finding the physical IDs for Gemini IDs 0-7 85

Example 25. Finding a node's NID using the xtuname command 86

Example 26. Finding a node's class the xtuname command 86

Example 27. Creating a list of node identifiers that are not in the DISABLE, EMPTY, or OFF state . 86

Example 28. Disabling the Cray SeaStar ASIC c3-2c0s2s3 87

Example 29. Enabling Cray Gemini ASIC c0-0c1s3g0 88

Example 30. Setting a blade to the EMPTY state 88

Example 31. Locking cabinet c0-0 89

Example 32. Show all session (lock) data 89

Example 33. Unlocking cabinet c0-0 89

Example 34. Restarting the NTP service 90

Example 35. Identifying nodes that are down 91

Example 36. Dumping information about a working component 91

Example 37. Displaying installed SMW release level 93

Example 38. Displaying installed CLE release level 93

Example 39. Finding information in the event log 96

Example 40. Adding entries to syslog file 96

Example 41. Identifying nodes in down or admindown state 98

Example 42. Display current allocation and status of each compute processing element and the application
that it is running . 99

Example 43. Verifying that a compute node is connected to the network 100

Example 44. Running xtnetwatch to monitor the system interconnection network 100

Example 45. Looking at a session running on the power manager 102

Example 46. Checking the power manager 102

Example 47. Monitoring for specific events 102

Example 48. Checking events except heartbeat: 102

Example 49. Obtaining node console messages 103

Example 50. Identifying all service nodes 104

Example 51. Showing compute nodes in the DISABLED state 105

Example 52. Adding a group . 114

24 S–2393–31

Contents

Page

Example 53. Adding a user account 114

Example 54. Removing a user account 115

Example 55. Creating a pam_listfile list file 118

Example 56. Adding a line to /etc/pam.d/sshd to enable pam_listfile 118

Example 57. Stopping a job running under PBS Professional 119

Example 58. Shared-root links . 127

Example 59. Starting the xtopview shell for a node 130

Example 60. Starting the xtopview shell for a class of nodes 130

Example 61. Starting the xtopview shell for a directory other than /rr/current 131

Example 62. Sample xtopview session 131

Example 63. Starting xtopview using node_classes for information 131

Example 64. Updating a file within xtopview shell 132

Example 65. Finding nodes on which a file is specialized 135

Example 66. Finding specialization of a file on a node without invoking the xtopview shell . . . 135

Example 67. Finding specialization of files by class without invoking the xtopview shell 135

Example 68. Finding the class of a node 137

Example 69. Adding a node to a class 137

Example 70. Removing node specialization 137

Example 71. Removing class specialization 138

Example 72. Printing the latest version of a file 138

Example 73. Printing the RCS log for /etc/fstab in the node 3 view 138

Example 74. Displaying differences between two versions of the /etc/fstab file 139

Example 75. Checking out a version 1.2 copy of /etc/fstab 139

Example 76. Recreating the file link for /etc/fstab to the current view's /etc/fstab file . . 139

Example 77. Printing specifications for login class specialized files 140

Example 78. Printing specifications for files modified in the default view and include any warning
messages . 140

Example 79. Adding files specified by specifications listed in specfile to an archive file 140

Example 80. Listing specifications for files currently in the archive.042208 archive file . . . 140

Example 81. Default /etc/auditd.conf File 147

Example 82. Modified PAM configuration files configured to report failed login by using an alternate
path . 151

Example 83. Creating a logical machine with a boot node and SDB node specifying the boot image path 180

Example 84. Updating boot configuration 181

Example 85. Identifying services in the service_config table 188

Example 86. Using node attribute labels to assign nodes to user groups 194

Example 87. IMAGEDIR/compute/etc/opt/cray/configuration/nids file defining
NIDs . 200

Example 88. Adding the PBS-MOM service for a specific node 215

S–2393–31 25

Managing System Software for Cray XE and Cray XT™ Systems

Page

Example 89. Force the fomd to update its configuration information about a new or updated service on a
node . 215

Example 90. Effect a change for a new or updated service on a group of nodes 215

Example 91. Using the xtoparchive utility to archive the shared-root file system 227

Example 92. Using the xthotbackup command to create a bootable backup system set 229

Example 93. Using the xthotbackup command to copy selected file systems from source to the backup
system set . 229

Example 94. Recovering from an SDB failure 232

Example 95. Increasing the boot_timeout value 234

Example 96. Sample /etc/sysconfig/alps configuration file 246

Example 97. Sample /etc/alps.conf configuration file 249

Example 98. Retrieving node allocation status 251

Example 99. Verifying that ALPS is communicating with Cray system compute nodes 253

Example 100. Running a csanodeacct cron job on each login node to move local accounting files 272

Example 101. Executing the csarun script 273

Example 102. Running periodic accounting at different intervals than the regular system accounting
interval . 273

Example 103. Submit a job to TORQUE 278

Example 104. Submit a job to TORQUE that checkpoints every 30 minutes 278

Example 105. Checkpoint and terminate a job using TORQUE 278

Example 106. Restart a held job using TORQUE 278

Example 107. Restart a checkpointed job using TORQUE 278

Example 108. Submit a job to PBS Professional 280

Example 109. Submit a job to PBS Professional that checkpoints every 3 minutes of CPU time . . . 280

Example 110. Checkpoint and terminate a job using PBS Professional 280

Example 111. Restart a held job using PBS Professional 280

Example 112. Restart a checkpointed job using PBS Professional 280

Example 113. Rebooting all compute nodes when a subset are repurposed as DVS servers 287

Example 114. Module file example 357

Figures
Figure 1. Administrative Components of a Cray System 33

Figure 2. Types of Specialization . 124

Figure 3. Shared-root Implementation 126

Figure 4. ALPS Process . 237

Figure 5. Cray System Job Distribution Cross-section 288

Figure 6. CCM Job Flow Diagram . 289

Figure 7. The OFED Stack (source: OpenFabrics Alliance) 296

Figure 8. Cray System Connected to Storage Using SRP 297

26 S–2393–31

Contents

Page

Figure 9. Cray Service Node Acting as an Infiniband Lustre Router 297

Figure 10. Cray Service Node in IP over IB Configuration 298

Figure 11. Diagram Key . 318

Figure 12. Two Nonadjacent Routers in a Single Z-dimension Loop 319

Figure 13. Two Nonadjacent Routers in a Single Dimension Loop with Additional Dimension Blocks . 320

Figure 14. Two Nonadjacent Routers Further Separated in a Single Dimension Loop with Additional
Dimension Blocks . 320

Figure 15. Disabled Routers Not Adjacent to a Mesh Edge 321

Figure 16. Disabled Nonlinear Complete Z-dimension Loop 322

Figure 17. Additional Unrouteable Configuration Scenario 324

Tables
Table 1. Physical ID Naming Conventions 56

Table 2. Default Service Node Configuration and Cabling 90

Table 3. CLE Monitor Commands . 95

Table 4. File Specialization by Class 124

Table 5. File Specialization by Node 125

Table 6. Shared-root Commands . 128

Table 7. Topology 0 Chassis Layout 178

Table 8. Service Database Tables . 185

Table 9. Database Privileges . 185

Table 10. Service Database Update Commands 186

Table 11. CSA Parameters That Must Be Specific to Your System 263

Table 12. Project Accounting Parameters That Must Be Specific to Your System 270

Table 13. BLCR Reported Checkpoint Error Messages 279

Table 14. Checkpoint/Restart Error Messages 279

Table 15. Upper Layer InfiniBand I/O Protocols for Cray Systems 299

Table 16. LNET Network Address Configuration for Cray XT 304

Table 17. Physical-to-Logical Mappings Summary by Topology Class 316

Table 18. HSS Commands . 327

Table 19. CLE Commands . 330

Table 20. State Definitions . 333

Table 21. Additional State Definitions 334

Table 22. xtcli Commands and Allowed States 334

Table 23. System Error Codes . 335

S–2393–31 27

Introduction [1]

Note: In this guide, references to Cray systems mean Cray XE and Cray XT
systems, unless a specific series of systems is noted.

A Cray system is a massively parallel processing (MPP) system that has a shared-root
file system available to all service-processing elements nodes). Cray has combined
commodity and open-source components with custom-designed components to create
a system that can operate efficiently at immense scale.

The Cray Linux Environment (CLE) operating system includes Cray's customized
version of the SUSE Linux Enterprise Server (SLES) 11 operating system, with
a Linux 2.6.16.27 kernel. This full-featured operating system runs on the Cray
system's service nodes. Service nodes perform the functions needed to support users,
administrators, and applications running on compute nodes. Above the operating
system level are specialized daemons and applications that perform functions unique
to each service node.

Cray compute nodes run the CNL compute node operating system, which runs a
Linux 2.6.16.27 kernel. The kernel provides support for application execution
without the overhead of a full operating-system image. The kernel interacts with an
application process in very limited ways. It provides virtual memory addressing and
physical memory allocation, memory protection, access to the message-passing layer,
and a scalable job loader. Support for I/O operations is limited inside the compute
node's kernel. For a more complete description, see Compute Partition on page 43.

Note: Functionality marked as deferred in this documentation is planned to be
implemented in a later release.

1.1 Audience for This Guide
The audience for this guide is system administrators and those who manage the
operation of a Cray system. Prerequisites for using this guide include a working
knowledge of Linux to administer the system and a review of the Cray system
administration documentation listed in Cray System Administration Publications and
in Related Publications on page 30, of this guide. This guide assumes that you have a
basic understanding of your Cray system and the software that runs on it.

S–2393–31 29

Managing System Software for Cray XE and Cray XT™ Systems

1.2 Cray System Administration Publications
This publication is one of a set of related manuals that cover information about the
structure and operation of your Cray system. See also:

• Cray System Management Workstation (SMW) Software Release Overview
(S–2482)

• Installing Cray System Management Workstation (SMW) Software (S–2480)

• Cray System Management Workstation (SMW) Software Release Errata

• Cray Linux Environment (CLE) Software Release Overview (S–2425)

• Installing and Configuring Cray Linux Environment (CLE) Software (S–2444)

• Limitations for the CLE Release

• CLE Release Errata

• Using Cray Management Services (CMS) (S–2484)

• Using and Configuring System Environment Data Collections (SEDC) (S–2491)

• Managing Lustre for the Cray Linux Environment (CLE) (S–0010)

• Introduction to Cray Data Virtualization Service (S–0005)

• Cray Application Developer's Environment Installation Guide (S–2465)

• Cray Application Developer's Environment Supplement Installation Guide
(S–2485)

• Workload Management and Application Placement for the Cray Linux
Environment (S–2496)

1.3 Related Publications
Because your Cray system runs a combination of software developed by Cray, other
vendors' software, and open-source software, the following websites may be useful:

• Linux Documentation Project — See http://www.tldp.org

• SLES 11 and Linux documentation — See http://www.novell.com/linux

• Data Direct Networks documentation — See
http://www.ddnsupport.com/manuals.html

• LSI Engenio storage system documentation — See
http://www.lsi.com/storage_home/products_home/external_raid/index.html

• MySQL documentation — See http://www.mysql.com/documentation

30 S–2393–31

http://www.tldp.org
http://www.novell.com/linux
http://www.ddnsupport.com/manuals.html
http://www.lsi.com/storage_home/products_home/external_raid/index.html
http://www.mysql.com/documentation

Introduction [1]

• Lustre File System documentation — See http://www.lustre.org and
http://www.sun.com/software/products/lustre

• Batch system documentation:

PBS
Professional:

Altair Engineering,
Inc.

http://www.altair.com/

Moab and
TORQUE:

Adaptive Computing
Enterprises Inc.

http://www.adaptivecomputing.com/

Platform LSF: Platform Computing
Corporation

http://www.platform.com/

S–2393–31 31

http://www.lustre.org
http://www.sun.com/software/products/lustre
http://www.altair.com
http://www.adaptivecomputing.com/
http://www.platform.com/

Managing System Software for Cray XE and Cray XT™ Systems

32 S–2393–31

Introducing System Components [2]

Cray systems separate calculation and monitoring functions. Figure 1 shows the
components of a Cray system that an administrator manages.

Figure 1. Administrative Components of a Cray System

Parallel Storage

Ethernet

High speed network

10 GigE

1 GigE

Fibre Channel

Boot RAID

Scratch

High speed
network

(data)

Boot

Network
(many)

Login
(many)

Syslog

SDB

I/O
(filesystem)

(many)

Fibre Channel

10 GigE

1 GigE

Compute
nodes

Service
Partition

Compute
Partition

Ethernet (HSS)

SMW

Boot

Users

External
data

System

User

KEY

S–2393–31 33

Managing System Software for Cray XE and Cray XT™ Systems

A Cray system contains operational components plus storage:

• The System Management Workstation (SMW) is the single point of control for
system administration. (For additional information about the SMW, see System
Management Workstation (SMW) on page 35.)

• The Hardware Supervisory System (HSS) monitors the system and handles
component failures. The HSS is an integrated system of hardware and software
that monitors components, manages hardware and software failures, controls
system startup and shutdown, manages the system interconnection network, and
maintains system states. (For additional information about HSS, see Hardware
Supervisory System (HSS) on page 47.)

• Cray Management Services (CMS) provides the infrastructure to the Application
Level Placement Scheduler (ALPS) for a fast cache of node attributes,
reservations, and claims. ALPS reservation and claim information is forwarded
to the CMS log manager on the SMW to enable system administrators to search
the history of jobs, error messages which occurred during a job, and the job
utilization on the system. (For additional information about CMS, see Using Cray
Management Services (CMS), S–2484.)

• The Cray Linux Environment (CLE) operating system is the operating system for
Cray systems. (For additional information about CLE, see CLE on page 36.)

• The service partition performs the management functions that enable the
computations to occur. (For additional information about service partitions, see
Service Partition on page 37.)

• The compute partition is dedicated to computation. (For additional information
about compute partitions, see Compute Partition on page 43.)

• RAID is partitioned for a variety of storage functions such as boot RAID,
database storage, and parallel and user-file system storage. (For additional
information about RAID, see Boot Root File System on page 37 and Storage
on page 54.)

34 S–2393–31

Introducing System Components [2]

A Cray system has six network components:

• The 10-GigE network is a high-speed Ethernet pipe that provides external NFS
access. It connects to the network nodes and is specifically configured to transfer
large amounts of data in and out of the system.

• Users access a 1-GigE network server connection to the login nodes. Logins are
distributed among the login nodes by a load-leveling service through the Domain
Name Service (DNS) that directs them to the least loaded login node.

• Fibre Channel networks connect storage to the system components.

• The RAID controllers connect to the SMW through the HSS network. This
storage sends log messages to the SMW when a failure affects the ability of the
disk farm to reliably store and retrieve data.

• The system interconnection network includes custom Cray components that
provide high-bandwidth, low-latency communication between all the service
processing elements and compute processing elements in the system. The system
interconnection network is often referred to as the high-speed network (HSN).

• The HSS network performs the reliability, accessibility, and serviceability
functions. The HSS consists of an internet protocol (IP) address and associated
control platforms that monitor all nodes.

2.1 System Management Workstation (SMW)
The SMW is the administrator's console for managing a Cray system. The SMW
is a server that includes a tower and a flat-panel monitor; it runs a combination of
the SUSE Linux Enterprise Server (SLES) 11 operating system, Cray developed
software, and third-party software. The SMW is also a single point of control
for the HSS. The HSS data is stored on the internal hard drive of the SMW. For
more information about the HSS, see Hardware Supervisory System (HSS) on
page 47. CMS provides the infrastructure to ALPS for a fast cache of node attributes,
reservations, and claims. For additional information about CMS, see Using Cray
Management Services (CMS) (S–2484).

S–2393–31 35

Managing System Software for Cray XE and Cray XT™ Systems

The SMW software installation feature consists of the SMWinstall, SMWconfig,
and SMWinstallCLE system administrator commands. These SMW installation
commands automate the SMW software installation process significantly. The
SMWinstall, SMWconfig, and SMWinstallCLE commands create several
detailed log files in the /var/adm/cray/logs directory. The log files are named
using the PID of the SMWinstall or the SMWinstallCLE command; the exact
names are displayed when the command is invoked. Using the SMWconfig and
SMWinstall commands, you can specify the SMW configuration file that you
want to use for the installation. The SMWinstall.conf file contains information
about the type of Cray system, the days-to-keep for logging, and the Network Time
Protocol (NTP) server names. This information is required for initial installations
and is otherwise detected or reused for upgrades and updates of the SMW. An
example SMWinstall.conf file is included on the SMW installation media,
but a customized SMWinstall.conf file is expected to be located by default
in /home/crayadm/. For additional information, see the SMWinstall(8),
SMWconfig(8), and SMWinstallCLE(8) man pages.

You log on to an SMW window on the console to perform SMW functions. From the
SMW, you can log on to a disk controller or log on to the boot node. From the SMW,
you cannot log on directly (ssh) to any service node except the boot node.

Most system logs are collected and stored on the SMW. The SMW plays no role
in computation after the system is booted. From the SMW, you can initiate the
boot process, access the database that keeps track of system hardware, and perform
standard administrative tasks.

2.2 CLE
CLE is the operating system for Cray systems. CLE is the Cray customized version
of the SLES 11 operating system with a Linux 2.6.16.27 kernel. This full-featured
operating system runs on the Cray service nodes. Compute nodes run a kernel
developed to provide support for application execution without the overhead of a full
operating-system image.

CLE commands enable administrators to perform administrative functions on the
service nodes to control processing. The majority of CLE commands are launched
from the boot node, making the boot node the focal point for CLE administration.

For a complete list of Cray developed CLE administrator commands, see Appendix
A, SMW and CLE System Administration Commands on page 327.

36 S–2393–31

Introducing System Components [2]

2.3 Boot Root File System
The boot node has its own root file system, bootroot, which is created on the boot
RAID during installation. You install and configure the boot RAID from the SMW
before you boot the boot node. The boot node mounts the bootroot from the boot
RAID.

2.4 Shared Root File System
A Cray system has a root file system that is distributed as a read-only shared file
system among all the service nodes except the boot node. Each service node has
the same directory structure, which is made up of a set of symbolic links to the
shared-root file system. For most files, only one version of the file exists on the
system, so if you modify the single copy, it affects all service nodes. This makes the
administration process similar to that of a single system.

You manage the shared-root file system from the boot node through the xtopview
command (see Managing System Configuration with the xtopview Tool on
page 129).

If you need unique files on a specific node or class of nodes (that is, nodes of a
certain type), you can set up a modified directory structure. This process, called
specialization, creates a new directory hierarchy that overlays the existing root
directory on the specified nodes and contains symbolic links that point to the unique
files. For information about the shared root and file specialization, see Configuring
the Shared-root File System on Service Nodes on page 123.

2.5 Service Partition
The service partition includes the following physical nodes and the services that run
on them:

• Boot node

• SDB node

• Syslog node

• Login nodes

• Network nodes

• I/O nodes

Nodes in the service partition run the CLE operating system. The administrator
commands for these nodes are standard Linux commands and Cray system-specific
commands.

S–2393–31 37

Managing System Software for Cray XE and Cray XT™ Systems

Documentation may use the terms SIO node (Service and I/O node with SeaStar
application-specific integrated circuit (ASICs)), XIO node (Service and I/O node with
Gemini ASICs), or I/O node as a generic reference to the SDB and I/O nodes.

You log on to the boot node through the SMW console, then from the boot node
you can log on to the other service nodes.

2.5.1 Service Nodes

Service nodes perform the functions needed to support users, administrators, and
applications running on compute nodes. As the system administrator, you define
service node classes by the service they perform. Configuration information in the
service database on the SDB node determines the functions of the other nodes and
services, such as where a batch subsystem runs. In small configurations, some
services can be combined on the same node: for example, the SDB and syslog
services can both run on the SDB node.

You can start services system-wide or on specific nodes in the service partition. You
can start services during the boot process or later on specific nodes of a running
system. How you start a service depends on the type of service.

Service nodes, unlike compute nodes, are generally equipped with Peripheral
Component Interconnect (PCI) protocol card slots to support external devices.

A full-featured operating system runs on the service nodes. Service nodes run a
version of Linux. Service node kernels are configured to enable Non-Uniform
Memory Access (NUMA), which minimizes traffic between sockets by using
socket-local memory whenever possible.

System management tools are a combination of Linux commands and Cray system
commands that are analogous to standard Linux commands but operate on more than
one node. For more information about Cray system commands, see Monitoring
Multiple Nodes on page 94, and Appendix A, SMW and CLE System Administration
Commands on page 327. After the system is up, you can access any service node
from any other service node, provided you have the correct permissions.

2.5.1.1 Boot Node

Use the boot node to manage files, add users, and mount and export the shared-root
file system to the rest of the service nodes. These shared-root files are mounted from
the boot node as read-only.

The boot node is the first node to be booted, which is done through the boot node
blade control processor (L0 controller) (see Blade Control Processor (L0 Controller)
and Cabinet Control Processors (L1 Controller) on page 48). You can bring up an
xterm window on the SMW to log on to the boot node.

38 S–2393–31

Introducing System Components [2]

Note: For Cray XE (Gemini) systems, boot blades have only one node with two
PCIe slots (node 1). Of the remaining three nodes on the blade, node 0 has no PCIe
I/O connectivity and nodes 2 and 3 have the typical configuration of one PCIe slot
per node. There can be only one dual-slot node per blade.

You can configure two boot nodes in a service partition, one primary and one for
backup (secondary). The two boot nodes must be located on different blades so
that failure in a single blade does not affect more than one boot node. When the
primary boot node is booted, the backup boot node also begins to boot. But the
backup boot node is suspended until a primary boot-node failure event is detected.
For information about configuring boot-node failover, see Configuring Boot-node
Failover on page 172.

2.5.1.2 Service Database (SDB) Node

The SDB node hosts the service database (SDB), which is a MySQL database that
resides on a separate file system on the boot RAID. The SDB is accessible to every
service node (see Changing the Service Database (SDB) on page 184). The SDB
provides a central location for storing information so that it does not need to be stored
on each node. You can access the SDB from any service node after the system is
booted, provided you have the correct authorizations.

The SDB stores the following information:

• Global state information of compute processors. This information is used by
the Application Level Placement Scheduler (ALPS), which allocates compute
processing elements for compute nodes running CNL. For more information
about ALPS, see Application Level Placement Scheduler (ALPS) for Compute
Nodes on page 42.

• System configuration tables that list and describe processor and service
information.

The SDB node is the second node that is started during the boot process.

You can configure two SDB nodes in a service partition, one primary and one for
backup (secondary). The two SDB nodes must be located on different blades so
that failure in a single blade does not affect more than one SDB node. For more
information, see Configuring SDB Node Failover on page 176.

S–2393–31 39

Managing System Software for Cray XE and Cray XT™ Systems

2.5.1.3 Syslog Node

The syslog node connects to the HSN. A syslog daemon, syslog-ng, runs
on all service nodes and directs log file information to the syslog-ng on the
syslog node. The syslog data from the syslog-ng daemons on the boot node
and the syslog node (commonly the SDB node) is forwarded to the CMS log
manager daemon on the SMW. The CMS log manager aggregates the logs to enable
system-wide searches and association of events and log messages. You can modify
the /etc/syslog-ng/syslog-ng-conf.in file to change where the log
information is saved. For more information, see Changing the Location to Log
syslog-ng Information on page 210.

The syslog services may be run on a dedicated syslog node, on the same node as the
SDB node, or on the boot node.

2.5.1.4 Login Nodes

Users log on to a login node, which is the single point of control for applications that
run on the compute nodes. Users do not log on to the compute nodes.

You can use the Linux lbnamed load balancer software provided to distribute user
logins across login nodes (see Configuring the Load Balancer on page 155). The
number of login nodes depends upon the installation and user requirements. For
typical interactive usage, a single login node handles 20 to 30 batch users or 20 to 40
interactive users with double this number of user processes.

!
Caution: Login nodes, as well as other service nodes, do not have swap space. If
users consume too many resources, Cray service nodes can run out of memory.
When an out of memory condition occurs, the node can become unstable or may
crash. System administrators should take steps to manage system resources
on service nodes. For example, resource limits can be configured using the
pam_limits module and the /etc/security/limits.conf file. For more
information, see the limits.conf(5) man page.

2.5.1.5 Network Nodes

Network nodes connect to the external network with a 10-GigE card. These nodes
are designed for high-speed data transfer.

2.5.1.6 I/O Nodes

I/O nodes host the Lustre file system; see Lustre File System on page 42.

Cray Data Virtualization Service (Cray DVS) servers run on an I/O node; see Cray
Data Virtualization Service (Cray DVS) on page 42. DVS servers cannot run on the
same I/O nodes as Lustre servers.

40 S–2393–31

Introducing System Components [2]

The I/O nodes connect to the RAID subsystems that contain the Lustre file system.
Two I/O nodes connect to each RAID device for resiliency; each I/O node has full
accessibility to all storage on the connected RAID device. Cray provides support for
RAID subsystems from two different vendors, Data Direct Networks (DDN) and
LSI Logic Corporation.

2.5.2 Services on the Service Partition

Service nodes provide the services described in this section.

2.5.2.1 Resiliency Communication Agent (RCA)

The RCA is the message path between the CLE operating system and the HSS. The
RCA runs on all service nodes and compute nodes.

The service_config table of the SDB maintains a list of services that RCA
starts. For the services listed in the service_config table, the RCA daemon
(rcad_svcs) starts and restarts all services that must run on a node. You can
determine or modify services available through the SDB service_config table
by using the xtservconfig command. For additional information about using this
command, see Changing Services on page 188.

Note: Services can also be started manually or automatically by using standard
Linux mechanisms (see Adding and Starting a Service Using Standard Linux
Mechanisms on page 214).

The SDB serv_cmd table stores information about each service, such as, service
type, service instance, heartbeat interval, and restart policy.

The configuration file for service nodes is
/etc/opt/cray/rca/rcad_svcs.service.conf. By default, this
configuration file starts the rca_dispatcher and the failover manager by default.

The RCA consists of a kernel-mode driver and a user-mode daemon on CLE. The
Cray SeaStar chip and the L0 controller on each blade provide the interface from
the RCA to the HSS through application programming interfaces (APIs). The RCA
driver, rca.ko, runs as a kernel-loadable module for the service partition. On
compute nodes, the RCA operates through system calls and communicates with the
HSS to track the heartbeats (see Blade Control Processor (L0 Controller) and Cabinet
Control Processors (L1 Controller) on page 48) of any programs that have registered
with it and to handle event traffic between the HSS and the applications that register
to receive events. The RCA driver starts as part of the kernel boot, and the RCA
daemon starts as part of the initialization scripts.

S–2393–31 41

Managing System Software for Cray XE and Cray XT™ Systems

2.5.2.2 Lustre File System

Cray systems running CLE support the Lustre file system that provides a
high-performance, highly scalable, POSIX-compliant shared file system. You can
configure Lustre file systems to operate in the most efficient manner for the I/O needs
of applications, ranging from a single metadata server (MDS) and object storage
target (OST) to a single MDS with up to 128 OSTs. User directories and files are
shared and are globally visible from all compute and service nodes.

For more information, see Managing Lustre for the Cray Linux Environment (CLE)
(S–0010) and Installing and Configuring Cray Linux Environment (CLE) Software
(S–2444).

2.5.2.3 Cray Data Virtualization Service (Cray DVS)

The Cray Data Virtualization Service (Cray DVS) is a parallel I/O forwarding service
that provides for transparent use of multiple file systems on Cray systems with
close-to-open coherence, much like NFS.

For additional information, see the Installing and Configuring Cray Linux
Environment (CLE) Software (S–2444) and Introduction to Cray Data Virtualization
Service (S–0005).

2.5.2.4 Application Level Placement Scheduler (ALPS) for Compute Nodes

For compute nodes running CNL, the Application Level Placement Scheduler
(ALPS) is provided. ALPS provides application placement, launch, and management
functionality and cooperates with third-party batch systems for application
scheduling. The third-party batch system (such as PBS Professional, Moab,
TORQUE, or Platform LSF) makes the policy and scheduling decisions, and
ALPS provides a mechanism to place and launch the applications contained within
batch jobs. ALPS also supports placement and launch functionality for interactive
applications.

An Extensible Markup Language (XML) interface is provided by ALPS for
communication with third-party batch systems. This interface is available through use
of the apbasil client. ALPS uses application resource reservations to guarantee
resource availability to batch system schedulers.

The ALPS application placement and launch functionality is provided for applications
executing on compute nodes only; ALPS does not provide placement and launch
functionality for service nodes.

Note: Only one application can be placed per node; two different executables
cannot be run on the same node at the same time.

ALPS is automatically loaded as part of the CNL environment when booting CNL.
The RCA starts the ALPS apinit daemon on the compute nodes.

42 S–2393–31

Introducing System Components [2]

When a job is running on CNL compute nodes, the aprun process (see Job Launch
Commands on page 45) interacts with ALPS to keep track of the processors that
the job uses.

For more information about ALPS, see Chapter 8, Using the Application Level
Placement Scheduler (ALPS) on page 235.

2.5.2.5 Cluster Compatibility Mode

Cluster Compatibility Mode (CCM) provides the services needed to run most
cluster-based independent software vendor (ISVs) applications "out of the box." CCM
is tightly coupled to the workload management system. It enables users to execute
cluster applications alongside workload-managed jobs running in a traditional MPP
batch or interactive queue. Support for dynamic shared objects and expanded services
on compute nodes, using the compute node root runtime environment (CNRTE),
provide the services to compute nodes within the cluster queue. Essentially, CCM
uses the batch system to logically designate part of the Cray system as an emulated
cluster for the duration of the job. For more information about CCM, see Chapter
11, Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux
Environment on page 281.

2.5.2.6 IP Implementation

Ethernet interfaces handle IP connectivity to external components. Both IPv4 and
IPv6 are supported; IPv4 is the default.

Note: The IPv6 capability is limited to the Ethernet interfaces and localhost.
Therefore, IPv6 connectivity is limited to service nodes that have Ethernet cards
installed. Routing of IPv6 traffic between service nodes across the HSN is not
supported.

For more information about Native IP (SSIP), see Native IP (SSIP) on page 63, and
Configuring Native IP (SSIP) on page 199.

2.6 Compute Partition
Several libraries and compilers are linked at the user level to support I/O and
communication service. PGI, PathScale, and the GNU Compiler Collection (GCC)
C, C++, and Fortran 90 compilers are supported. Applications statically link to
these libraries. Users can set their desired compiler target architecture environment
by loading the xtpe-target-cnl modulefile. For information about using
modulefiles, see User Access to a Compiler Environment Using Modulefiles on
page 117. For information about the libraries that Cray systems host, see the Cray
Application Developer's Environment User's Guide (S–2396).

S–2393–31 43

Managing System Software for Cray XE and Cray XT™ Systems

2.6.1 Compute Nodes

Compute nodes run the CNL compute node operating system. CNL is a lightweight
compute node operating system. It includes a run-time environment based on
the SLES distribution, with a Linux 2.6.16.27 kernel and with Cray specific
modifications. Device drivers for hardware not supported on Cray systems were
eliminated from the kernel. CNL features scalability; only the features required to
run high-performance computing applications are available on CNL compute nodes.
Other features and services are available from service nodes. Cray has configured and
tuned the kernel to minimize processing delays caused by inefficient synchronization.
CNL compute node kernels are configured to enable Non-Uniform Memory Access
(NUMA), which minimizes traffic between sockets by using socket-local memory
whenever possible. CNL also includes a set of supported system calls and standard
networking.

The Resiliency Communication Agent (RCA) daemon, rcad-svcs, handles node
services (see Services on the Service Partition on page 41).

The Application Level Placement Scheduler (ALPS), handles application launch,
monitoring, and signaling and coordinates batch job processing with third-party batch
systems. If you are running ALPS, use the xtnodestat command to report job
information.

The following user-level BusyBox commands are functional on CNL compute nodes:
ash, BusyBox, cat, chmod, chown, cp, cpio, free, grep, gunzip, kill,
killall, ln, ls, mkdir, mktemp, more, ps, rm, sh, tail, test, vi, and
zcat. For information about supported command options, see the BusyBox(1)
man page.

The following administrator-level Busybox commands and associated options are
functional on CNL compute nodes:

• dmesg -c -n -s

• fuser -m -k -s -4 -6 -SIGNAL

• logger -s -t -p

• mount -a -f -n -o -r -t -w

• ping -c -s -q

• sysctl -n -w -p -a -A

• umount -a -n -r -l -f -D

A compute-node failure affects only the job running on that node; the rest of the
system continues running.

44 S–2393–31

Introducing System Components [2]

The xtclone and xtpackage utilities run on the SMW. Use these commands
to set up CNL compute node images or service node images. You can boot CNL
on compute nodes. For more information, see Preparing a Service Node and
Compute Node Boot Image on page 66, the xtclone(8), xtpackage(8), and
xtnodestat(8) man pages, and the Installing and Configuring Cray Linux
Environment (CLE) Software (S–2444).

2.7 Job Launch Commands
Users run applications from a login node and use the aprun command to launch
CNL applications. The aprun command provides options for automatic and
manual application placement. With automatic job placement, aprun distributes the
application instances on the number of processors requested, using all of the available
nodes.

With manual job placement, users can control the selection of the compute nodes
on which to run their applications. Users select nodes on the basis of desired
characteristics (node attributes), allowing a placement scheduler to schedule jobs
based on the node attributes. To provide the application launcher with a list of
nodes that have a particular set of characteristics (attributes), the user invokes the
cnselect command to specify node-selection criteria. The cnselect script uses
these selection criteria to query the table of node attributes in the SDB; then it returns
a node list to the user based on the results of the query. For an application to be run
on CNL compute nodes, the nodes satisfying the requested node attributes are passed
by the aprun utility to the ALPS placement scheduler as the set of nodes from which
to make an allocation. For detailed information about ALPS, see Chapter 8, Using the
Application Level Placement Scheduler (ALPS) on page 235.

For more information about the aprun and cnselect commands, see the
aprun(1) and cnselect(8) man pages.

2.8 Node Health Checker (NHC)
NHC is automatically invoked by ALPS upon the termination of an application.
ALPS passes a list of compute nodes associated with the terminated application to
NHC. NHC performs specified tests to determine if compute nodes allocated to the
application are healthy enough to support running subsequent applications. If not, it
removes any compute nodes incapable of running an application from the resource
pool. The CLE installation and upgrade processes automatically install and enable
NHC software; there is no need for you to change any installation configuration
parameters or issue any commands. To configure NHC tests and to optionally
configure NHC to use the secure sockets layer (SSL) protocol, see Configuring Node
Health Checker (NHC) on page 157.

S–2393–31 45

Managing System Software for Cray XE and Cray XT™ Systems

2.9 Comprehensive System Accounting (CSA)
Comprehensive System Accounting (CSA) is open-source software that includes
changes to the Linux kernel so that CSA can collect more types of system resource
usage data than under standard Fourth Berkeley Software Distribution (BSD) process
accounting. CSA software also contains interfaces for the Linux process aggregates
(paggs) and jobs software packages. The CSA software package includes
accounting utilities that perform standard types of system accounting processing on
the CSA generated accounting files. CSA, with Cray modifications, is included with
CLE and runs on login nodes and compute nodes only. For more information, see
Chapter 9, Using Comprehensive System Accounting on page 261.

2.10 Checkpoint/Restart (CPR)
Checkpoint/Restart (CPR) provides a way to stop applications at specified points
and later restart them from that point. The CLE CPR feature is built upon the
Berkeley Lab Checkpoint/Restart (BLCR) for Linux. Specific third-party batch
system software releases are required for checkpoint/restart support (see Optional
Workload-management (Batch) System Software Products on page 47). For
detailed information about the CLE implementation of CPR, see Chapter 10, Using
Checkpoint/Restart on Cray Systems on page 275.

2.11 Portals Message-passing Interface for Cray XT Systems
Portals is a message-passing interface (MPI) that connects service nodes and
compute nodes for Cray XT systems, which have SeaStar ASICs. All internode
communication over the high-speed network goes through Portals. The administrator
has no part in this communication.

Both user-level and kernel-level processes use Portals. Application processes
communicate with one another over the system interconnection network by linking
libraries that support the Portals protocol. The microprocessor in SeaStar ASICs
runs Portals firmware.

Portals communication is connectionless; that is, the state is not maintained across
consecutive communications. A single Portals message cannot be longer than 2 GB.

Note: For Cray XE systems, the Gemini ASIC logic does not require the use of
Portals messaging or firmware files. The Gemini ASIC logic handles message
passing.

46 S–2393–31

Introducing System Components [2]

2.12 Optional Workload-management (Batch) System Software
Products

For information about optional batch systems software products for Cray systems, see
the following websites.

PBS
Professional:

Altair Engineering,
Inc.

http://www.altair.com/

Moab and
TORQUE:

Cluster Resources, Inc. http://www.clusterresources.com/

Platform LSF: Platform Computing
Corporation

http://www.platform.com/

Note: Specific third-party batch system software releases are required for
Checkpoint/Restart (CPR) support. For more information, access the 3rd Party
Batch SW link on the CrayPort website at crayport.cray.com.

2.13 Hardware Supervisory System (HSS)
The HSS is an integrated system of hardware and software that monitors the hardware
components of the system and proactively manages the health of the system. The
HSS communicates with nodes and with the management processors over an internal
(private) Ethernet network that operates independently of the system interconnection
network. The HSS data is stored on the internal hard drive of the SMW.

For a complete list of Cray developed HSS commands, see Appendix A, SMW and
CLE System Administration Commands on page 327.

S–2393–31 47

http://www.altair.com
http://www.clusterresources.com/
http://www.platform.com/
http://crayport.cray.com

Managing System Software for Cray XE and Cray XT™ Systems

The HSS includes the following components:

• The HSS network (see HSS Network on page 48).

• The HSS interface (see HSS Interface on page 48).

• Blade and cabinet control processors (L0 and L1 controllers) (see Blade Control
Processor (L0 Controller) and Cabinet Control Processors (L1 Controller) on
page 48).

• Network Time Protocol (NTP) server (see NTP Server on page 49).

• Event router (see Event Router on page 49).

• HSS managers (see HSS Managers on page 50).

• xtdiscover command (see xtdiscover Command on page 53).

• Various logs (see Event Logs on page 54, Boot Logs on page 54, Dump Logs
on page 54).

2.13.1 HSS Network

The SMW, with its HSS Ethernet network, performs reliability, accessibility, and
serviceability tasks. The HSS commands monitor and control the physical aspects
of the system.

The SMW manages the HSS network. A series of Ethernet switches connects the
SMW to all the cabinets in the system.

2.13.2 HSS Interface

The HSS has a command-line interface to manage and monitor your system. You can
use the command-line interface to manage your Cray system from the SMW. For
usage information, see Chapter 3, Managing the System on page 65 and Chapter 4,
Monitoring System Activity on page 93. For a list of all HSS system administration
commands, see Appendix A, SMW and CLE System Administration Commands
on page 327.

2.13.3 Blade Control Processor (L0 Controller) and Cabinet Control
Processors (L1 Controller)

A blade control processor (L0 controller) is hierarchically the lowest component of
the monitoring system. One L0 controller resides on each compute blade and service
blade, monitoring only the nodes and Cray SeaStar chips. It provides access to status
and control registers for the components of the blade. The L0 controller also monitors
the general health of components, including items such as voltages, temperature,
and other failure indicators. A version of Linux optimized for embedded controllers
runs on each L0 controller.

48 S–2393–31

Introducing System Components [2]

Note: In some contexts, the L0 controller is referred to as a slot, as in xtcli
power down_slot. See Powering Down a Single Blade on page 79 for more
information.

Each cabinet has a cabinet control processor (L1 controller) that monitors and
controls the power supplies, the temperature of the blades, and all the L0 controllers
in the cabinet. It sends a periodic heartbeat to the SMW to indicate cabinet health.

The L1 controller connects to the chassis controller and in turn the chassis controller
connects to the L0s (via the backplane) on each blade by Ethernet cable and routes
HSS data to and from the SMW. The L1 controller runs embedded Linux.

The monitoring system operates by periodic heartbeats. Processes send heartbeats
within a time interval. If the interval is exceeded, the system monitor generates a fault
event that is sent to the state manager. The fault is recorded in the event log, and the
state manager (see State Manager on page 50) sets an alert flag for the component (L0
or L1 controller) that spawned it.

The L1 and L0 controllers use ntpclient to keep accurate time with the SMW.

You can dynamically configure the L1 system daemon and the L0 system
daemon with the xtdaemonconfig --daemon_name command (see the
xtdaemonconfig(8) man page for detailed information).

Note: There is no NV write protection feature on the L1 and L0 controllers; you
should not assume the write protection functionality on the L1 front panel display
will protect the NV memory on the L1 and L0 controllers.

2.13.4 NTP Server

The SMW workstation is the primary NTP server for the Cray system. The L0
controllers use the HSS network to update themselves according to the NTP protocol.
To change the NTP server, see Configuring the SMW to Synchronize to a Site NTP
Server on page 213.

2.13.5 Event Router

HSS functions are event-driven. The event router daemon, erd, is the root of the
HSS. It is a system daemon that runs on the SMW, L1 controllers, and L0 controllers.
The SMW runs a separate thread for each L1. The L1 runs a separate thread for each
L0. HSS managers subscribe to events and inject events into the HSS system by using
the services of the erd. (For descriptions of HSS managers, see HSS Managers on
page 50) The event router starts as each of the devices (SMW, L1, L0) are started.

When the event router on the SMW receives an event from either a connected agent
or from another event router in the hierarchy, the event is logged and then processed.
The xtcli commands, which are primary HSS control commands, also access the
event router to pass information to the managers.

S–2393–31 49

Managing System Software for Cray XE and Cray XT™ Systems

The xtconsumer command (see Monitoring Events on page 102) monitors the
erd. The xtconsole command (see Monitoring Node Console Messages on
page 103) operates a shell window that displays all node console messages.

2.13.6 HSS Managers

HSS managers are located in /opt/cray/etc. They report to the event router and
get information from it. HSS has the following managers:

• state manager

• boot manager

• system environmental data collections (SEDC) manager

• diagnostics manager (for Cray XT systems only; not used by Cray XE systems)

• power manager

• flash manager

• router manager

• NID manager

The HSS managers are started by running the /etc/init.d/rsms start
command.

You can configure HSS daemons dynamically by executing the xtdaemonconfig
command. For further information, see the xtdaemonconfig(8) man page.

2.13.6.1 State Manager

Every component has a state at all times. The state manager, state_manager, runs
on the SMW and maintains the state of the components in the HSS database. The
state manager performs the following functions:

• Updates and maintains component state information (see Appendix B, System
States on page 333)

• Monitors events to update component states

• Detects and handles state notification upon failure

• Provides state and configuration information to HSS applications so that they do
not interfere with other applications working on the same component

The state manager listens to the erd, records changes of states, and shares those
states with other daemons.

50 S–2393–31

Introducing System Components [2]

2.13.6.2 Boot Manager

The boot manager, bootmanager, runs on the SMW. It controls the acts of placing
kernel data into node memories and requesting that they begin booting.

During the boot process, the state manager provides state information that allows the
nodes to be locked for booting. After the nodes boot, the state manager removes
the locks and notifies the boot manager. The boot manager logging facility includes
a timestamp on log messages.

2.13.6.3 System Environmental Data Collections (SEDC) Manager

The System Environment Data Collections (SEDC) manager, sedc_manager,
monitors the system's health and records the environmental data and status of
hardware components such as power supplies, processors, temperature, and fans.
SEDC can be set to run at all times or only when a client is listening. The SEDC
configuration file provided by Cray has automatic data collection set as the default
action.

The SEDC configuration file (/opt/cray/etc/sedc_srv.ini by default)
configures the SEDC server. In this file, you can also create sets of different
configurations as groups so that the L0/L1 daemons can scan components at
different frequencies. The sedc_manager sends out the scanning configuration
for specific groups to the L1s and L0s and records the incoming data by group. For
information about configuring the SEDC manager, see Using and Configuring System
Environment Data Collections (SEDC) and the sedc_manager(8) man page.

To view System Environment Data Collections (SEDC) scan data, use the
xtsedcviewer command-line interface. This utility allows you to view the server
configurations (groups) as well as the SEDC scan data from L0 and L1 controllers.
For information about viewing SEDC server configuration and the SEDC scan data,
see Using and Configuring System Environment Data Collections (SEDC) and the
xtsedcviewer(8) man page.

2.13.6.4 Diagnostics Manager for Cray XT Systems (Not Used by Cray XE Systems)

The diagnostics manager is used by Cray XT systems. The diagnostics manager
operates on the SMW. The xtcli diag command runs offline diagnostics for the
HSS. Offline diagnostics run through the use of the xtcli diag command are
intended for use by Cray service personnel for Cray XT systems. For information
about running diagnostics for Cray XT Cray systems, see the xtcli_diag(8) man
page.

Note: Cray XE systems, which use a different set of diagnostic test suites than
Cray XT systems, do not use or require the diagnostics manager or the xtcli
diag command. The diagnostics BMS interface for Cray XE systems handles the
equivalent functionality.

S–2393–31 51

Managing System Software for Cray XE and Cray XT™ Systems

2.13.6.5 Power Manager

The power manager, powermanager, runs on the SMW to control power
sequencing of blades, SeaStar chips, and nodes. It responds to xtcli power
up, xtcli power down, xtcli power up_slot, and xtcli power
down_slot events.

For more information, see the xtcli_power(8) man page.

2.13.6.6 Flash Manager

The flash manager, fm, runs on the SMW. Run the flash manager only as needed. The
fm command is intended for use by Cray Service Personnel only; improper use of this
restricted command can cause serious damage to your computer system. fm is used to
transfer an updated L0 and L1 controller system image to a specified target to update
the firmware in its L0 and L1 controllers and to program processor Programmable
Intelligent Computer (PIC) firmware.

The xtflash command uses the flash manager to flash memory on one or more L0
and L1 controllers. The xtflash command updates only out-of-date L0 and L1
controllers. For more information, see the xtflash(8) man page.

2.13.6.7 Router Manager

The router manager, rtr_manager, runs on the SMW and initializes system
routing for Cray ASICs and nodes that communicate with each other. The
rtr_manager is always running; use the rtr command to perform a variety of
routing-related tasks. The rtr command is also invoked as part of the xtbootsys
process.

For more information, see the rtr(8) man page.

2.13.6.8 NID Manager

The NID (node ID) manager, nid_mgr, runs on the SMW and provides a NID
mapping service for the rest of the HSS environment.

Along with the ability to assign NIDs automatically, the nid_mgr supports a
mechanism that allows an administrator to control the NID assignment; this is useful
for handling unique configurations. Administrator-controlled NID assignment is
accomplished through a NID assignment file. This is specified with the nid_mgr
-f argument and defaults to /etc/opt/cray/nids.ini. If no file is specified
on the command line and the default file does not exist, the nid_mgr runs with
the default NID assignment. No error is issued. The syntax of the nids.ini file
is a list of components and an optional NID value. For a large component, such as a
chassis or cabinet, a single NID value is the starting NID value for all nodes within
that component. If the NID value is not given, the next available NID is used from the
previous component. Therefore, you can provide a list of components, and the NIDs
will be assigned in that order.

52 S–2393–31

Introducing System Components [2]

Typically, after a NID mapping is defined for a system, this mapping is used until
some major event occurs, such as a hardware configuration change (see Updating the
System Configuration After A Hardware Change on page 206). This may require
the NID mapping to change, depending on the nature of the configuration change.
Adding additional cabinets to the ends of rows does not typically result in a new
mapping. Adding additional rows most likely does result in a new mapping. If the
configuration change is such that the topology class of the system is changed, this will
require a new NID mapping. Otherwise, the NID mapping remains static.

For Cray XE (Gemini) systems, the nid_mgr generates a list of mappings between
the physical location and Network Interface Controller ID (NIC ID) and distributes
this information to the L0. The L0s, in turn, forward the mappings to the RCA on
each node. Because the operating system always uses node IDs (NIDs), the HSS
converts these to NIC IDs when sending them onto the HSS network and back to
NIDs when forwarding events from the HSS network to a node.

For more information about node IDs, see Identifying Components on page 55 and
Node ID (NID) for Cray XT Systems on page 59.

2.13.7 xtdiscover Command

The xtdiscover command automatically discovers the hardware components on a
Cray system and creates entries in the system database to reflect the current hardware
configuration. The xtdiscover status command can correctly identify missing
or nonresponsive cabinets, empty or nonfunctioning slots, the blade type (service
or compute) in each slot, and the CPU type and other attributes of each node in
the system. When it has finished, you can use the xtcli command to display the
current configuration. No previous configuration of the system is required; the
hardware is discovered and made available, and you can modify the components after
xtdiscover has finished creating entries in the system database.

The xtdiscover interface steps a system administrator through the discovery
process. The xtdiscover.ini file allows you to predefine values such as
topology class, cabinet layout, and so on. A template xtdiscover.ini
file is installed with the SMW software. The default location of the file is
/opt/cray/etc/xtdiscover.ini.

The xtdiscover command does not use or configure the Cray High Speed
Network (HSN). The HSN configuration is done when booting the system with the
xtbootsys command.

The state manager uses a relational database (also referred to as the HSS database)
to read and write the system state. The state manager keeps the database up to date
with the current state of components and retrieves component information from the
database when needed. In addition, the dynamic system state persists between boots.

S–2393–31 53

Managing System Software for Cray XE and Cray XT™ Systems

If there are changes to the system hardware, such as adding a new cabinet or
removing a blade and replacing it with a blade of a different type (for example, a
service blade that is replaced with a compute blade), then xtdiscover must be
executed again, and it will perform an incremental discovery of the hardware changes
without disturbing the rest of the system.

For more information, see the xtdiscover(8) man page.

2.13.8 Event Logs

The event router records events to the event log in the /opt/craylog/eventlog
file. When the log grows beyond a reasonable size, it turns over and its contents are
stored in a numbered file in the directory.

2.13.9 Boot Logs

The /opt/craylog/bootlogs directory is a repository for files collected by
commands such as xtbootsys, xtconsole, xtconsumer, and xtnetwatch.

For more information about examining log files, see Managing Log Files Using CLE
and HSS Commands on page 95.

2.13.10 Dump Logs

The /opt/craydump directory is a repository for files collected by the
xtdumpsys command. It contains time-stamped dump files.

For more information about examining log files, see Managing Log Files Using CLE
and HSS Commands on page 95.

2.14 Cray Management Services (CMS)
The CMS software provides a hierarchy of control and authority that originates on the
SMW, delegating control to local agents such as Hardware Supervisory System (HSS)
cabinet and blade controllers.

For detailed information, see Using Cray Management Services (CMS), S–2484.

2.15 Storage
The Cray system RAID storage is a disk farm that supports high bandwidth and
shared access to and backup of large volumes of data.

Every independent Fibre Channel host interface in each controller provides full-speed
access to all the disk storage on its RAID device. Each tier is configured with a parity
disk. There are redundant controllers for each RAID.

54 S–2393–31

Introducing System Components [2]

Boot RAID is partitioned for boot and system (database) functions.

Parallel storage contains user partitions and scratch partitions.

Common storage vendors for a Cray system are DDN devices from DataDirect
Networks and LSI devices from LSI Logic Corporation.

CLE supports the capability to configure multiple I/O paths to the controllers on
a disk array. One path is designated as the active primary path and the remaining
paths are considered inactive or alternate paths. When the primary path to the array is
lost due to a failure, disk-specific multi-pathing functionality automatically switches
the data access to an alternate path. For Data Direct Networks (DDN) devices,
multi-pathing functionality is provided using Device Mapper (DM) functionality that
is included in the Linux kernel. With CLE, DM multi-pathing is only supported on
DDN 9900 arrays. For LSI devices, multi-pathing functionality is provided using
the LSI Redundant Disk Array Controller (RDAC). LSI RDAC is a self-contained
module that operates as a device driver. This module has no external interfaces; it
interacts directly with Linux kernel I/O functionality. For Cray systems, the LSI
RDAC driver module must be integrated into the OS boot image so that the RDAC
module is loaded before the Fibre Channel Driver is loaded. You must configure
system boot scripts to recognize service nodes with LSI connections and load the
RDAC and Qlogic driver modules in the correct order. For more information, contact
your Cray service representative.

!
Caution: Because the system RAID disk is accessible from the SMW, the service
database (SDB) node, the boot node, and backup nodes, it is important that you
NEVER mount the same file system in more than one place at the same time. If
you do so, the Linux operating system will corrupt the file system.

For more information about configuring RAID, see the Installing and Configuring
Cray Linux Environment (CLE) Software (S–2444) and Managing Lustre for the Cray
Linux Environment (CLE) (S–0010).

2.16 Other Administrative Information
This section contains additional information that is helpful for the administrator.

2.16.1 Identifying Components

System components (nodes, blades, chassis, cabinets, etc.) are named and located
by node ID, IP address, physical ID, or class number. Some naming conventions
are specific to CLE.

Component naming does not change for single-core, dual-core, or quad-core
processors. Applications start on CPU 0 and are allocated to CPUs either on the same
or different processors.

S–2393–31 55

Managing System Software for Cray XE and Cray XT™ Systems

2.16.1.1 Physical ID

The physical ID identifies the cabinet's location on the floor and the component's
location in the cabinet as seen by the HSS.

Table 1 shows the physical ID naming conventions. Descriptions assume that you are
standing in front of the system cabinets.

Note: You cannot interchange "n" with "s" with Cray XE (Gemini) systems. On
Cray XT (SeaStar) systems, accessing SeaStar memory or SeaStar MMRs can be
done using, for example, c0-1c2s3n0 or c0-1c2s3s0. On Cray XE (Gemini)
systems, Gemini MMR space must use a "g" name, possibly with a NIC identifier;
and processor memory must use an "n" name.

Table 1. Physical ID Naming Conventions

Component Format Description

SMW s0, all All components attached to the SMW.

xtcli power up s0 powers up all
components attached to the SMW.

cabinet cX-Y Position: row (X) and row (Y) of cabinet;
also used as L1 controller host name.

For example: c12-3 is cabinet 12 in row 3.

chassis cX-Yc# Physical unit within cabinet: cX-Y; c# is
chassis and # is 0-2. chassis are numbered
bottom to top.

For example: c0-0c2 is chassis 2 of
cabinet c0-0.

blade or slot or module cX-Yc#s# Physical unit within a slot of a chassis
cX-Yc#; s# is the slot of the blade and # is
0-7; also used as L0 controller host name.
Blades are numbered left to right.

For example: c0-0c2s4 is slot 4 of chassis
2 of cabinet c0-0.

For example: c0-0c2s* is all slots (0...7)
of chassis 2 of cabinet c0-0.

56 S–2393–31

Introducing System Components [2]

Component Format Description

node cX-Yc#s#n# Node on a blade; n# is the location of the
node and # is 0-3 for compute blades and 0
or 3 for service blades.

For example: c0-0c2s4n0 is node 0 on
blade 4 of chassis 2 of cabinet c0-0.

For example: c0-0c2s4n* is all nodes on
blade 4 of chassis 2 of cabinet c0-0.

Gemini ASIC cX-Yc#s#g# Gemini ASIC within a module; g# is the
location of the Gemini ASIC within a
module and # is 0 or 1.

For example: c0-1c2s3g0

LCB within a Gemini
chip

cX-Yc#s#g#lRC LCB within a Gemini chip; these are
numbered according to their tile location.
There are 6 rows and 8 columns in the tile
grid. The row/column numbers are octal.
Valid values are: 0-7 for row (R) and 0-7 for
column (C).

For example: c1-0c2s3g0l57 (row 5,
column 7)

Note: The number of LCBs per Gemini
ASIC is 48. Of these, LCBs (octal) 123,
124, 133, 134, 143, 144 and 153, 154 are
normally used as processor links and not
as network links. For this reason a display
of the status of LCBs will normally show
these LCBs in a different state than the
remaining LCBs.

SeaStar chip cX-Yc#s#s# Cray SeaStar chip on module; s is the chip
and # is 0-3.

For example: c0-0c2s4s3 is Cray SeaStar
chip 3 in slot 4 of chassis 2 of cabinet c0-0.

For example: c0-0c2s4s* is all Cray
SeaStar chips on slot 4 of chassis 2 of
cabinet c0-0.

S–2393–31 57

Managing System Software for Cray XE and Cray XT™ Systems

Component Format Description

SeaStar link cX-Yc#s#s#l# Physical link port of a Cray SeaStar chip; l
is the port and # is 0-5; numbers designate
links to a neighboring Cray SeaStar chip
in X-positive, X-negative, Y-positive,
Y-negative, Z-positive, and Z-negative
directions.

For example: c0-0c2s4s3l4 is port 4 of
Cray SeaStar chip 3 in slot 4 of chassis 2 of
cabinet c0-0.

section tA-B Grouping of cabinets; A is the start cabinet
number and B is the end cabinet number
in the x direction. A section refers to all
cabinets in all columns (y-coordinate) in
the A through B rows. Section names are
defined when the xtdiscover command
is executed (see Installing Cray System
Management Workstation (SMW) Software,
S–2480 and the xtdiscover(8) man
page).

For example: For a site with four rows of
31 cabinets, the section t0-1 refers to c0-0,
c0-1, c0-2, c0-3, c1-0, c1-1, c1-2,
and c1-3.

logical machine
(partition)

p# A partition is a group of components that
make up a logical machine. Logical systems
are numbered from 0 to the maximum
number of logical systems minus one. A
configuration with 32 logical machines
would be numbered p0 through p31 (see
Logical Machines on page 63).

SerDes macro within a
Gemini chip

cX-Yc#s#g#m# SerDes macro within a Gemini chip. Each
macro implements 4 LCBs. Valid values are
0-9.

For example: c0-1c2s3g0m1

Gemini socket cX-Yc#s#n#s# Gemini socket within a physical node. Valid
values are 0-7.

For example: c0-1c2s3n0s1

58 S–2393–31

Introducing System Components [2]

Component Format Description

Die within a Gemini
socket

cX-Yc#s#n#s#d# Die within a Gemini physical socket. Valid
values are 0-3.

For example: c0-1c2s3n0s1d2

For Gemini ASICs: Core
within a die

cX-Yc#s#n#s#d#c# For Gemini ASICs: Core within a die. Valid
values are 0-15.

For example: c0-1c2s3n0s0d1c2

For Gemini ASICs:
Memory controller
within a die

cX-Yc#s#n#s#d#m# For Gemini ASICs: Memory controller
within a die. Valid values are 0-3.

For example: c0-1c2s3n0s0d1m0

For Gemini ASICs:
DIMM associated with a
physical node

cX-Yc#s#n#d# For Gemini ASICs: DIMM associated with a
physical node. Valid values are 0-31.

For example: c0-1c2s3n0d3

Gemini NIC cX-Yc#s#g#n# NIC (Network Interface Controller) within a
Gemini ASIC. Valid values are 0 and 1.

For example: c0-1c2s3g0n1

Gemini VERTY cX-Yc#s#v# VERTY (voltage converter/regulator)
associated with a Gemini module. Valid
values are 0-15.

For example: c0-1c2s3v0

FPGA cX-Yc#s#f# FPGA. 0 is the L0E and 1 is the l0G on
Gemini systems; 0 is the L0FPGA on
SeaStar systems.

For example: c0-1c2s3f1 is the L0G on a
Gemini system.

2.16.1.2 Node ID (NID) for Cray XT Systems

The node ID (NID) is a decimal numbering of all CLE nodes. NIDs are sequential
numberings of the nodes (SeaStar ASICs) starting in cabinet c0-0. Each cabinet starts
on an even 128 boundary; so, cabinet 0 has NIDs 0-95, cabinet 1 has NIDs 128 - 223,
cabinet 3 has 256 - 351, and so on. The empty nodes (1 and 2) on service blades are
included in the count; so the service module in cabinet 0, cage 0, slot 0 has NIDs
0 and 3.

Use the xtnid2str command to convert a NID to a physical ID. For information
about using the xtnid2str command, see the xtnid2str(8) man page.

S–2393–31 59

Managing System Software for Cray XE and Cray XT™ Systems

2.16.1.3 Node ID (NID) for Cray XE Systems

The node ID (NID) is a decimal numbering of all CLE nodes. NIDs are sequential
numberings of the nodes starting in cabinet c0-0. Each additional cabinet continues
from the highest value of the previous cabinet; so, cabinet 0 has NIDs 0-95, and
cabinet 1 has NIDs 96 - 191, and so on.

A single Gemini ASIC connects to two nodes. A cabinet contains three chassis;
chassis 0 is the lower chassis in the cabinet. Each chassis contains eight blades and
each blade contains four nodes. The lowest numbered NID in the cabinet is in chassis
0 slot 0 (lower left corner); slots (blades) are numbered left to right (slot 0 to slot 7; as
you face the front of the cabinet). In cabinet 0 the lower two nodes in chassis 0 slot 0
are numbered NIDs 0 and 1, the numbering continues moving to the right across the
lower two node of each slot; so the lower nodes in slot 1 are NIDs 2 and 3 and so on
to slot 7 where the lower two nodes are NIDs 14 and 15. The numbering continues
with the upper two nodes on each blade, the upper two nodes on slot 7 are 16 and 17
and continues to the left to slot 0; chassis 0 slot 0 then has NIDs numbered 0, 1, 30,
and 31. The numbering continues to chassis 1, so slot 0 in chassis 1 has NIDs 32, 33,
62, and 63. Then chassis 3 slot 0 has NIDs 64, 65, 94, and 95.

When identifying components in the system, remember that a single Gemini ASIC is
connected to two nodes. If node 61 reported a failure and the HyperTransport (HT)
link was the suspected failure, then Gemini 1 on that bladed would be one of the
suspect parts. Node 61 is in cabinet 0, chassis 1, slot 1 or c0-0c1s1n3. Nodes 0 and 1
(c0-0c1s1n0 and c0-0c1s1n1) are connected to Gemini 0 (c0-0c1s1g0) and nodes 2
and 3 (c0-0c1s1n2 and c0-0c0s1n3) are connected to Gemini 1 (c0-0c1s1g1).

Use the xtnid2str command to convert a NID to a physical ID. For information
about using the xtnid2str command, see the xtnid2str(8) man page.

2.16.1.4 Class Name

Class names are a CLE construct. Classes and the service nodes associated
with them are site-defined and are stored in the service_processor table.
The /etc/opt/cray/sdb/node_classes file is created as part of the
system installation; you maintain the file manually thereafter (see the Installing
and Configuring Cray Linux Environment (CLE) Software, S–2444). The
service_processor table is populated from this file during the boot process
and can be changed if you add or remove nodes (see Updating Database Tables on
page 186). There is no restriction on how you name the classes or how many you
specify; however, you must use the same class names when you invoke the xtspec
specialization command (see Specializing Files on page 132).

Change the class of a node (see Changing the Class of a Node on page 137) when you
change its function, for example, when you have added an additional login node.

60 S–2393–31

Introducing System Components [2]

The /etc/opt/cray/sdb/node_classes file describes the nodes associated
with each class.

Example 1. Sample /etc/opt/cray/sdb/node_classes file

node:classes
0:service
3:service
4:login
8:login

2.16.2 Topology Class

Each Cray system is given a topology class based in the number of cabinets and
their cabling. Some commands, such as xtbounce, let you specify topology class
as an option.

You can see the class value of your system in a number of places, such as xtcli
status output, rca-helper -o command output (rca-helper is run from a
Cray node), or by using the xtclass command from the SMW:

smw:~> xtclass
1

2.16.3 Persistent /var Directory

You can set up a persistent, writable /var directory on each service node served with
NFS. The boot node has its own root file system and its own /var directory; the boot
node /var is not part of the NFS exported /snv file system.

Persistent /var retains the contents of /var directories between system boots.
Because the Cray system root file system is read-only, some subdirectories of
/var are mounted on tmpfs (memory) and not on disk. You must take this extra
step to keep your files. Configure the values VAR_SERVER, VAR_PATH, and
VAR_MOUNT_OPTIONS in the /etc/sysconfig/xt file so the service nodes
NFS mount that path at boot time.

Boot scripts and the xtopview utility (see Managing System Configuration with
the xtopview Tool on page 129) respect these configuration values and mount the
correct /var directory.

For more information, see the Installing and Configuring Cray Linux Environment
(CLE) Software (S–2444).

2.16.4 Default Network IP Addresses

The default IP addresses for network components are described in the Installing Cray
System Management Workstation (SMW) Software (S–2480).

S–2393–31 61

Managing System Software for Cray XE and Cray XT™ Systems

2.16.5 /etc/hosts Files

The host file on the boot node is for the system interconnect network. The hosts file
on the SMW is for the HSS network.

The xtcdr2proc utility takes information from the Resiliency Communication
Agent (RCA) to build the /etc/hosts file on the boot node. The /etc/hosts
file on the boot node maps IP addresses to node IDs on the system interconnection
network (see Node ID (NID) for Cray XT Systems on page 59). The file can also
contain aliases for the physical ID location of the system interconnection network
components and class names. The following example shows part of the boot node
/etc/hosts file. The file is updated or created at boot time and contains the
default hostname mappings as well as service and HSS names. The upper two octets
of the IP address are derived from the /etc/sysconfig/xt file, the lower two are
derived by the NID. The NID is a sequential numbering of nodes from cabinet 0 up.
NIDs start on 128-count boundaries per cabinet, so cabinet 0 has NIDs 0-95, cabinet
1 starts at 128, and so on. In this example, NID is node ID and component naming
information is found in Identifying Components on page 55.

Note: For CNL compute nodes, the /etc/hosts file on the boot node is
generated at boot time to include CNL compute nodes. Also, the installation and
upgrade process modifies the /etc/hosts file on the boot root to include CNL
compute nodes if they are not included.

The /etc/hosts file on the SMW contains physIDs (physical IDs that map to
the physical location of HSS network components), such as the L0 and L1 controllers
(see Physical ID on page 56).

The default system IP addresses are shown in the Installing Cray System Management
Workstation (SMW) Software (S–2480).

The xtdb2etchosts command converts service information in the SDB to an
/etc/hosts style file. The resulting /etc/hosts file has lines of the following
form, where the first column is the IP address, the second column is the NID, and the
third column is the service type and class ID of the node:

172.1.2.3 nid12345 boot001
172.4.5.6 nid67890 boot002
172.7.8.9 nid55512 login001

The service configuration table (service_config) in the SDB XTAdmin database
provides a line for each service IP address of the form, where SERV1 and SERV2 are
the service names in the service_config table:

1.2.3.1 SERV1
1.2.3.2 SERV2

The xtdb2etchosts command is documented on the xtdb2etchosts(8) man
page.

62 S–2393–31

Introducing System Components [2]

2.16.6 Native IP (SSIP)

Native IP (ssip) provides IP services through SeaStar hardware. This enables
standard UNIX networking programs and protocols such as telnet, ssh, and ftp
to work between service nodes over the system interconnection network.

To configure Native IP (SSIP), see Configuring Native IP (SSIP) on page 199.

2.16.7 Realm-Specific IP Addressing (RSIP) for CNL Compute Nodes

Realm-Specific IP Addressing (RSIP) allows CNL compute nodes and the service
nodes to share the IP addresses configured on the external Gigabit and 10 Gigabit
Ethernet interfaces of network nodes. By sharing the external addresses, you may rely
on your system's use of private address space and do not need to configure compute
nodes with addresses within your site's IP address space. The external hosts see only
the external IP addresses of the Cray system.

To configure RSIP for CNL compute nodes, see Configuring Realm-Specific IP
Addressing (RSIP) on page 200.

2.16.8 Security Auditing

Cray Audit is a set of Cray specific extensions to standard Linux security auditing.
When the Cray Audit is configured, separate logs are generated for each audited node
on a Cray system. Cray specific utilities simplify administration of auditing options
and log files across a large number of nodes. For more information, see Security
Auditing and Cray Audit Extensions on page 142.

2.16.9 Logging Failed Login Attempts

The cray_pam module is a Pluggable Authentication Module (PAM) that, when
configured, provides information to the user at login time about any failed login
attempts since their last successful login. For more information, see Using the
cray_pam PAM to Log Failed Login Attempts on page 148.

2.16.10 Logical Machines

You can subdivide a single Cray system into two or more logical machines
(partitions), which can then be run as independent systems. An operable logical
machine has its own compute nodes and service nodes, external network connections,
boot node, and SDB node. Each logical machine can be booted and dumped
independently of the other logical machines. Once booted, a logical machine appears
as a normal Cray system to the users, limited to the set of hardware included for
the logical machine.

S–2393–31 63

Managing System Software for Cray XE and Cray XT™ Systems

The HSS is common across all logical machines. Because logical machines apply
from the system interconnection network layer and up, the HSS functions continue
to behave as a single system for power control, diagnostics, low-level monitoring,
and so on.

In addition,

• Each logical machine must be routable for jobs to run.

• Cray recommends that you do not configure more than one logical machine per
cabinet. That way, if you power down a cabinet, you do not affect more than one
logical machine. A logical machine can include more than one cabinet.

• A job is limited to running within a single logical machine.

• Although the theoretical maximum allowable logical machines per physical Cray
system is 32 logical machines, you must consider your hardware requirements to
determine a practical number of logical machines to configure.

• You can run only a single instance of SMW software.

• Boot and routing commands affect only a single logical machine.

To create logical machines, see Creating Logical Machines on page 177.

64 S–2393–31

Managing the System [3]

Important: SCSI device names (/dev/sd*) are not guaranteed to be numbered
the same from boot to boot. This inconsistency can cause serious system problems
following a reboot. When installing CLE, you must switch to persistent device
names for file systems on your Cray system. This does not apply to SMW disks.
For additional information, see Using Persistent SCSI Device Names on page 232.

3.1 Connecting the SMW to the Console of a Service Node
The xtcon command is a console interface for service nodes. When it is running,
the xtcon command provides a two-way connection to the console of any running
service node.

Example 2. Establishing a two-way connection between the SMW and console
of service node c0-0c0s0n0

smw:~> xtcon c0-0c0s0n0
--- Console for node c0-0c0s0n0. Use ^] to quit ---

See the xtcon(8) man page for additional information.

3.2 Logging On to the Boot Node
The standard Cray configuration has a single GigE connection between the SMW and
boot node. You can access other service nodes from the boot node.

Procedure 1. Logging on to the boot node

• From the SMW, log on to the boot node.

crayadm@smw:~> ssh boot
crayadm@boot:~>

Note: You can open an administrator window on the SMW to access the boot
node:

crayadm@smw:~> xterm -ls -vb -sb -sl 2049 6&

After the window opens, use it to ssh to the boot node.

S–2393–31 65

Managing System Software for Cray XE and Cray XT™ Systems

3.3 Preparing a Service Node and Compute Node Boot Image
This section describes how to prepare a Cray service node and compute node boot
image.

A boot image is an archive containing all the components necessary to boot Cray
service nodes and CNL compute nodes. In general, a boot image contains the
operating system kernel, ramdisk, and boot parameters used to bring up a node. A
single boot image can contain multiple sets of these files to support booting service
nodes and compute nodes from the same boot image as well as booting different
versions of compute node operating systems. The operating systems supported by
a particular boot image are described through load files. A load file is simply a
manifest of operating system components to include (represented as files) and load
address information to provide to the boot loader. Load files should not be edited by
the administrator.

The xtclone, xtpackage and xtbootimg utilities run on the SMW. Use these
utilities to set up CNL compute nodes or service node images.

Note: You must have root privileges to invoke the xtclone and xtpackage
commands.

You can create a boot node image on the SMW using a four-step process:

1. Run the xtclone utility to create your work area, copied from the master work
area.

2. In your work area, make necessary changes, for example, install RPMs, edit
configuration files, or add or remove scripts.

3. Run the xtpackage utility to properly package the operating system
components and prepare a load file for use by xtbootimg.

4. Run the xtbootimg utility to create a boot image (an archive or cpio file)
from your work area. The xtbootimg utility collects the components described
by one or more load files into a single archive. The load files themselves are also
included in the archive, along with other components, such as Portals firmware,
BIOS, and sources listed in the load file from xtpackage.

The following is a sample service node load file (SNL0.load):

#Kernel source: /opt/xt-images/p1/service/boot/vmlinuz-2.6.27.42-0.1.1_1.0300.4999-cray_ss_s
SNL0/vmlinuz-2.6.27.42-0.1.1_1.0300.4999-cray_ss_s.bin 0x100000
#Parameters source: /opt/xt-images/p1/service/boot/parameters-snl
SNL0/parameters 0x90800
SNL0/initramfs.gz 0xFA00000
SNL0/size-initramfs 0x9021C

66 S–2393–31

Managing the System [3]

Cray system compute and service nodes use a RAM disk for booting.
Service nodes and CNL compute nodes use the same initramfs
format and work space environment. This space is created in
/opt/xt-images/machine-xtrelease-partition/nodetype, where
machine is the Cray hostname, xtrelease is the CLE release level, partition describes
a system partition or is omitted for a full system, and nodetype is either compute
or service.

Note that in the preceding example, a simpler
/opt/xt-images/partition/nodetype format was followed, that is,
/opt/xt-images/p1/service. The machine-xtrelease-partition is still a
useful convention.

To create load files for supporting, for example, different boot parameters or different
RAM disk contents, use the xtpackage command with the -L option.

Use the xtbootimg -L option to specify the path to the CNL compute node load
file and the path to the service node load file.

Example 3. Creating a Cray boot image from existing file system images

Make copies of the compute-node-side and service-node-side of the master work area.

Note: It is recommended that your work area be in a subdirectory of
/opt/xt-images, as shown in the example.

smw:~ # xtclone /opt/xt-images/test/compute
smw:~ # xtclone -s /opt/xt-images/test/service

Make any changes to your work area that are necessary for your site. For example,
you can install or erase RPMs, change configuration files, or add or remove scripts.
Use the xtpackage -s option to create a "service-node-only" boot image. When
you are finished making changes, wrap up (package) the compute-node-side and
service-node-side of your work area.

smw:~ # xtpackage /opt/xt-images/test/compute
smw:~ # xtpackage -s /opt/xt-images/test/service

Note: The xtpackage utility automatically creates an /etc/xt.snl file in
service node initramfs. This allows compute node hardware to boot service
node images, if necessary.

S–2393–31 67

Managing System Software for Cray XE and Cray XT™ Systems

Finally, make a boot image (a cpio file) from your work area.

smw:~ # xtbootimg -L ./my-image/service/SNL0.load -L ./my-image/compute/CNL0.load \
-c /opt/xt-images/cpio/test/my-test-image.cpio

Another common path for the xtbootimg archive file is
/tmp/boot/my-test-image.cpio.

Note: The directory path for my-test-image.cpio must exist on both the SMW
and the boot node and the my-test-image.cpio file must be identical on both the
SMW and the boot node.

Some configurations export /opt/xt-images/cpio via NFS, so the SMW
and the boot node can see the same files in /opt/xt-images/cpio. Other
configurations use a non-networked file system at /tmp/boot, in which
case, you must put a copy of smw:/tmp/boot/my-test-image.cpio at
boot:/tmp/boot/my-test-image.cpio. This is required for the boot node to
be able to distribute my-test-image.cpio to the other service nodes.

For more information about these utilities, see the xtclone(8), xtpackage(8),
and xtbootimg(8) man pages.

3.3.1 Using shell_bootimage_label.sh to Prepare Boot Images

The CLEinstall installation program creates a
/var/opt/cray/install/shell_bootimage_label.sh script on the
SMW. This script is unique to the system set label you installed, based on settings in
the CLEinstall.conf and /etc/sysset.conf installation configuration files.
You can re-use this script to automate some of the steps for creating boot images.

Procedure 2. Preparing a boot image for CNL compute nodes and service nodes

Invoke the shell_bootimage_label.sh script to prepare boot images for the
system set with the specified label. This script uses xtclone and xtpackage to
prepare the work space in /opt/xt-images.

68 S–2393–31

Managing the System [3]

shell_bootimage_label.sh accepts the following options:

-c Create and set the boot image for the next boot. The default is to
display xtbootimg and xtcli commands that will generate
the boot image. Use the -c option to invoke these commands
automatically.

-b bootimage

Specify bootimage as the boot image disk device or file name. The
default bootimage is determined using values for the system set label
when CLEinstall was run. Use this option to override the default
and manage multiple boot images.

-h Display help message.

-v Run in verbose mode.

This script also includes the following parameters to indicate which optional RPMs to
include in the CNL boot image. To include the RPM for an optional feature, edit the
script and set the associated parameter to y.

CNL_AUDIT=
CNL_CSA=
CNL_DVS=
CNL_RSIP=
CNL_NTPCLIENT=
CNL_CPR

1. Run shell_bootimage_label.sh, where label is the system set label
specified in /etc/sysset.conf for this boot image. For example, if the
system set label is BLUE, log on to the SMW as root and type:

smw:~# /var/opt/cray/install/shell_bootimage_BLUE.sh

Upon completion, the script displays the xtbootimg and xtcli commands
required to build and set the boot image for the next boot. If you specified the -c
option, the script invokes these commands automatically and you should skip
the remaining steps in this procedure.

2. Create a unified boot image for compute and service nodes using the suggested
xtbootimg command.

S–2393–31 69

Managing System Software for Cray XE and Cray XT™ Systems

In the following example, replace bootimage with the mountpoint for
BOOT_IMAGE0 in the system set defined in /etc/sysset.conf. Set
bootimage to either a raw device; for example /raw0 or a file name; for example
/bootimagedir/bootimage.new.

!
Caution: If bootimage is a file, verify that the file exists in the same path on
both the SMW and the boot root.

smw:~# xtbootimg \
-p /opt/cray-xt-firmware/default/lib/firmware/accel_driver.ppcb \
-L /opt/xt-images/xthostname-CLE_version/compute/CNL0.load \
-L /opt/xt-images/xthostname-CLE_version/service/SNL0.load \
-c bootimage

3. At the prompt 'Do you want to overwrite', type y to overwrite the existing boot
image file.

4. If bootimage is a file, mount the boot node root file system to /bootroot0,
copy the boot image file from the SMW to the same directory on the
boot root, and then unmount the boot node root file system. If bootimage
is a raw device, skip this step. For example, if the bootimage file is
/bootimagedir/bootimage.new and bootroot_dir is set to
/bootroot0, type these commands.

smw:~ # mount /dev/bootrootdevice /bootroot0
smw:~ # cp -p /bootimagedir/bootimage.new /bootroot0/bootimagedir/bootimage.new
smw:~ # umount /bootroot0

5. Set the boot image for the next system boot using the suggested xtcli
command.

The shell_bootimage_label.sh program suggests an xtcli command
to set the boot image based on the value of BOOT_IMAGE0 for the system set
that is being used. The -i bootimage option specifies the path to the boot image
and is either a raw device, for example, /raw0 or /raw1, or a file such as
/bootimagedir/bootimage.new.

!
Caution: The next boot, anywhere on the system, uses the boot image you
set here.

a. Display the boot image currently in use. Record the output of this command.

If the partition variable in CLEinstall.conf is s0, type:

smw:~# xtcli boot_cfg show

Or

If the partition variable in CLEinstall.conf is a partition value such
as p0, p1, and so on, type:

smw:~# xtcli part_cfg show pN

70 S–2393–31

Managing the System [3]

b. Invoke xtcli with the update option to set the default boot configuration
used by the boot manager.

If the partition variable in CLEinstall.conf is s0, type this command to
select the boot image to be used for the entire system.

smw:~# xtcli boot_cfg update -i bootimage

Or

If the partition variable in CLEinstall.conf is a partition value such as
p0, p1, and so on, type this command to select the boot image to be used
for the designated partition.

smw:~# xtcli part_cfg update pN -i bootimage

3.4 Changing Boot Parameters

!
Caution: Some of the default boot parameters are mandatory. The system may
not boot if they are removed.

Updating the parameters passed to the Linux kernel requires recreating the boot
image with the xtpackage and xtbootimg commands. You can either edit the
files in the file system image or specify a path to a file containing parameters. If
editing the files, the default service and compute node parameters can be found in
boot/parameters-snl and boot/parameters-cnl, respectively.

Example 4. Making a boot image with new parameters for service and CNL
compute nodes

smw:~ # xtpackage -s -p /tmp/parameters-service.new /opt/xt-images/test/service
smw:~ # xtpackage -p /tmp/parameters-compute.new /opt/xt-images/test/compute

smw:~ # xtbootimg -L /opt/xt-images/test/service/SNL0.load \
-L /opt/xt-images/test/compute/CNL0.load -c /raw0

3.5 Booting Nodes
This section describes how to manually boot your boot node and service nodes and
the CNL compute nodes. It also describes how to reboot a single compute node, and
reboot login or network nodes.

For information about modifying boot automation files, see Modifying Boot
Automation Files on page 182.

S–2393–31 71

Managing System Software for Cray XE and Cray XT™ Systems

3.5.1 Booting the System

Use the xtbootsys command to manually boot your boot node, service nodes,
and CNL compute nodes.

Note: You can also boot the system using both user-defined and built-in procedures
in automation files, for example, auto.generic.cnl. Before you modify the
auto.generic.cnl file, Cray recommends copying it first because it will be
replaced by an SMW software upgrade. For related procedures, see Installing and
Configuring Cray Linux Environment (CLE) Software.

Procedure 3. Manually booting the boot node and service nodes

Warning: If you are installing a new CLE release on one system set and have the
Cray booted from another system set for the same Cray partition, the Cray partition
must be shut down before booting the new boot image.

Note: The Lustre file system should start up before the compute nodes, and
compute nodes should be shut down before shutting down the Lustre file system.

Note: If you run more than one boot image, execute the xtcli update or
xtcli show command to display the cpio image you are booting.

1. As crayadm, use the xtbootsys command to boot the boot node.

crayadm@smw:~> xtbootsys

Note: If you have a partitioned system, invoke xtbootsys with the
--partition pn option.

The xtbootsys command prompts you with a series of questions. Cray
recommends that you answer yes by typing Y to each question.

The session pauses at:

Enter your boot choice:
0) boot bootnode ...
1) boot sdb ...
2) boot compute ...
3) boot service ...
4) boot all (not supported) ...
5) boot all_comp ...
10) boot bootnode and wait ...
11) boot sdb and wait ...
12) boot compute and wait ...
13) boot service and wait ...
14) boot all and wait (not supported) ...
15) boot all_comp and wait ...
17) boot using a loadfile ...
18) turn console flood control off ...
19) turn console flood control on ...
20) spawn off the network link recovery daemon (xtnlrd)...(for Cray XE systems only)
q) quit.

Choose option 10 to boot the boot node and wait.

72 S–2393–31

Managing the System [3]

You are prompted to confirm your selection. Press the Enter key or type Y to
each question to confirm your selection.

Do you want to boot the boot node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

2. After the boot node has finished booting, the process returns to the boot choice
menu. Choose option 11 to boot the SDB node and wait.

You are prompted to confirm your selection. Press the Enter key or type Y to
each question to confirm your selection.

Do you want to boot the sdb node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

3. Next, select option 13 to boot the service nodes and wait.

You are prompted to enter a list of the service nodes to be booted. To display
service node information, type one of the following commands. Use the s0
option for the entire system or the pn option for a partition; for example:

smw:~# xtcli status s0 | grep service
smw:~# xtcli status p2 | grep service

4. Type a list of service nodes to be booted; for example:

c0-0c0s1n0 c0-0c0s1n3 c0-0c0s2n0 c0-0c0s2n3

You can also use this format for specifying the same service nodes:

c0-0c0s1 c0-0c0s2

Alternatively, type all_serv to boot all remaining service nodes.

5. You are prompted to confirm your selection. Press the Enter key or type Y to
each question to confirm your selection.

Do you want to boot service c0-0c0s1n0,c0-0c0s1n3,c0-0c0s2n0,c0-0c0s2n3 ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

After the specified service nodes are booted, you are prompted to Enter your
boot choice again. Do not close the xtbootsys window. You will use this
terminal session to boot the compute nodes.

6. Log on to any service nodes for which there are local configuration or startup
scripts (such as starting Lustre) and run the scripts.

S–2393–31 73

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 4. Booting CNL compute nodes

1. After all service and login nodes are booted and Lustre has started (if configured
at this time), return to the xtbootsys menu.

2. Select 17 from the xtbootsys menu. A series of prompts are displayed.
Type the responses indicated in the following example. For the component
list prompt, type p0 to boot the entire system, or pN (where N is the partition
number) to boot a partition. At the final three prompts, press the Enter key.

Enter your boot choice: 17
Enter a boot type string (or nothing to do nothing): CNL0
Enter a boot type option (or nothing to do nothing): compute
Enter a component list (or nothing to do nothing): p0
Enter 'any' to wait for any console output,

or 'linux' to wait for a linux style boot,
or 'mtk', 'threadstorm', 'ts', or 'xmt' to wait for a MTK style boot,
or anything else (or nothing) to not wait at all: Enter

Enter an alternative CPIO archive name (or nothing): Enter
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Enter

3. After all the compute nodes are booted, return to the xtbootsys menu. Type
q to exit the xtbootsys program.

Note: If the system was shut down using xtshutdown or xtbootsys -s
last -a auto.xtshutdown, remove the /etc/nologin file from all
service nodes to permit a non-root account to log on.

smw:~# ssh root@boot
boot:~# xtunspec -r /rr/current -d /etc/nologin

3.5.2 Using the xtcli boot Command to Boot a Node or Set of Nodes

To boot a specific image or load file on a given node or set of nodes, you can execute
the HSS xtcli boot boot_type command, as shown in the following examples.

Note: When using a file for the boot image, the same file must be on both the
SMW and the bootroot at the same path.

Example 5. Booting all service nodes with a specific image

The following example boots all service nodes with the specific image located at
/raw0:

crayadm@smw:~> xtcli boot all_serv_img -i /raw0

74 S–2393–31

Managing the System [3]

Example 6. Booting all CNL compute nodes with a specific image

The following example boots all CNL compute nodes with the specific image located
at /bootimagedir/bootimage:

crayadm@smw:~> xtcli boot all_comp_img -i /bootimagedir/bootimage

Example 7. Booting CNL compute nodes using a load file

The following example boots all compute nodes in the system with CNL using a
load file name CNL0:

crayadm@smw:~> xtcli boot CNL0 -o compute s0

3.5.3 Rebooting a Single CNL Compute Node

You can initiate a warm boot with the xtbootsys command's --reboot option.
This operation performs minimal initialization followed by a boot of only the selected
compute nodes. Unlike the sequence that is used by the xtbounce command,
there is no power cycling of the Cray ASICs or of the node itself, so the high-speed
network (HSN) routing information is preserved. Do not specify a session identifier
(-s or --session option) because --reboot continues the last session and adds
the selected components to it.

Example 8. Rebooting a single CNL compute node

crayadm@smw:~> xtbootsys --reboot c1-0c2s1n2

3.5.4 Rebooting Login or Network Nodes

Login or network nodes cannot be rebooted via a shutdown or reboot command
issued on the node; they must be restarted through the HSS system using the
xtbootsys --reboot idlist SMW command. The HSS must be used so that
the proper kernel is pushed to the node.

Note: Do not attempt to warm boot nodes running other services in this manner.

Example 9. Rebooting login or network nodes

crayadm@smw:~> xtbootsys --reboot idlist

For additional information, see the xtbootsys man page.

3.6 Requesting and Displaying System Routing
Use the HSS rtr command to request routing for the system interconnection
network, to verify your current route configuration, or to display route information
between nodes. Upon startup, rtr determines whether it is making a routing request
or an information request.

S–2393–31 75

Managing System Software for Cray XE and Cray XT™ Systems

Example 10. Routing the entire system

The rtr -R|--route-system command sends a request to the router manager to
perform system routing. If no components are specified, the entire configuration is
routed as a single routing domain based on the configuration information provided
by the state manager to the router manager. If a component list (idlist) is provided,
routing is limited to the listed components. The state manager configuration further
limits the routing domain to omit disabled blades, nodes, and links and empty blade
slots.

crayadm@smw:~> rtr --route-system

For more information about displaying system routing information, see the rtr(8)
man page.

3.7 Shutting Down Service Nodes Using the xtshutdown
Command

The xtshutdown command runs from the boot node to shut down the services on
service nodes and then shut down the service nodes of the Cray system. It executes a
series of commands locally on the boot node and on the service nodes to shut down
the system in an orderly fashion.

Procedure 5. Shutting down service nodes

• Modify the /etc/opt/cray/init-service/xtshutdown.conf file
or in the file specified by the XTSHUTDOWN_CONF environment variable to
define the sequence of shutdown steps and the nodes on which to execute them.
(The /etc/opt/cray/init-service/xtshutdown.conf file resides
on the boot node.)

!
Caution: The xtshutdown command does not shut down compute nodes.
To shut down CNL compute nodes and service nodes, see Shutting Down
the System or Part of the System Using the xtcli shutdown Command
on page 77.

The xtshutdown command uses pdsh to invoke commands on
the service nodes you select. You can choose the boot node, SDB
node, a class of nodes, or a single host. You can define functions to
execute when the system is shut down. Place these functions in the
/etc/opt/cray/init-service/xt_shutdown_local file or the file
defined by the XTSHUTDOWN_LOCAL environment variable.

Note: You must be root user to use the xtshutdown command. Passwordless
ssh must be enabled for the root user from the boot node to all service nodes.

76 S–2393–31

Managing the System [3]

After you have shut down the software on the nodes, you can halt the hardware,
reboot, or power down.

For information about shutting down service nodes, see the xtshutdown(8)
man page.

3.8 Shutting Down the System or Part of the System Using the
xtcli shutdown Command

The HSS xtcli shutdown command allows you to shut down the system or a part
of the system. To shut down CNL compute nodes, execute the xtcli shutdown
command. Under normal circumstances, for example to successfully disconnect from
Lustre, invoking the xtcli shutdown command attempts to gracefully shut down
the specified CNL nodes.

Example 11. Shutting down all CNL compute nodes

To gracefully shut down all CNL nodes, execute the following command:

crayadm@smw:~> xtcli shutdown compute

Example 12. Shutting down specified CNL compute nodes

To gracefully shut down only CNL compute nodes in cabinet c13-2:

crayadm@smw:~> xtcli shutdown c13-2

Example 13. Shutting down all nodes of a system

The xtcli shutdown command allows you to shut down the system; to shut down
a partition, use the pn command, where n is the partition you want to shut down.

crayadm@smw:~> xtcli shutdown s0

Example 14. Forcing nodes to shut down

To force nodes to shut down, for example when all nodes of a system must be halted
immediately, use the -f argument; you can force a shutdown by using the -f
argument, even if the nodes have an alert status present. For example:

crayadm@smw:~> xtcli shutdown -f s0

After you have shut down the software on the nodes, you can halt the hardware,
reboot, or power down.

For information about shutting down nodes using the xtcli shutdown command,
see the xtcli(8) man page.

S–2393–31 77

Managing System Software for Cray XE and Cray XT™ Systems

3.9 Shutting Down the System Using the auto.xtshutdown File
You can shut down the system using both user-defined and built-in procedures in the
auto.xtshutdown file, which is located on the SMW in the /opt/cray/etc
directory. For related procedures, see Installing and Configuring Cray Linux
Environment (CLE) Software. For more information about using automation files, see
the xtbootsys(8) man page.

3.10 Stopping System Components
When you remove, stop, or power down components, any applications and compute
processes that are running on those components are lost.

3.10.1 Reserving a Component

If you want the applications and compute processes to complete before you stop
components, use the HSS xtcli set_reserve idlist command to select the
nodes you want to remove. This prevents them from accepting new jobs.

Note: If you are running CNL and using ALPS, after a node is reserved it is
considered to be down by ALPS. The output from apstat will show the node as
down (DN), even though there may be an application running on that node. This
DN designation indicates that no other work will be placed on the node after the
currently running application has terminated.

Procedure 6. Reserving a component

• Type:

crayadm@smw:~> xtcli set_reserve idlist

3.10.2 Powering Down a Node

Warning: Power down the cabinets with software commands. Tripping the circuit
breakers may result in damage to system components.

Warning: Ensure the operating system is not running before you power down a
node.

Power commands are hierarchical; that is, there are a number of ways to power down
a lower-level component. For example, to power down a node, power it down directly
or power down a component of which it is a part.

Procedure 7. Powering down a node directly

• Type:

crayadm@smw:~> xtcli power down node

78 S–2393–31

Managing the System [3]

3.10.3 Powering Down a Component

If you power down a higher-level component, you also power down the nodes within
it. For example, powering down the slot powers down all Cray ASICs and all nodes
on the blade.

Warning: Power down the cabinets with software commands. Tripping the circuit
breakers may result in damage to system components.

Procedure 8. Powering down a higher component to power down a node

Note: You cannot power down a link independently.

• Type:

crayadm@smw:~> xtcli power down component

Warning: Although a component such as a blade is powered off, the HSS in
the cabinet is live and has power.

It is good practice to plan the order in which you power down the components. Do
not turn off components in a way that isolates parts of the system and prevents
processes from completing. Use the xtnodestat command to observe which nodes
have jobs running on them (see Displaying the Status of Nodes from the Operating
System on page 83).

For information about disabling and enabling components, see Disabling
Hardware Components on page 86, and Enabling Hardware Components on
page 87, respectively. For information about powering down a component, see the
xtcli_power(8) man page.

3.10.4 Powering Down a Single Blade

Use the HSS xtcli power down_slot command in the SMW window to
power down selected blades and their subcomponents. The cabinets containing the
blades must be in the READY state (see Appendix B, System States on page 333).

Warning: This command is intended for emergency shutdown or for service
personnel use.

Warning: Power down the cabinets with software commands. Tripping the circuit
breakers may result in damage to system components.

S–2393–31 79

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 9. Powering down selected blades

The xtcli power down_slot command has the form:

xtcli power down_slot physIDlist

where physIDlist is a comma-separated list of components you want to power down.

• Type:

crayadm@smw:~> xtcli power down_slot blade

For example, to power down blades 1 and 2 in chassis 0 of cabinet c3-0,
including the L0s, type the following command:

crayadm@smw:~> xtcli power down_slot c3-0c0s1,c3-0c0s2

If the cabinet containing the blades is not in the READY state (see Appendix B,
System States on page 333), the command fails. For more information, see the
xtcli(8) and xtcli_power(8) man pages.

3.10.5 Forcing Components to Power Down

You can force chosen components to power down regardless of their current state
with the HSS xtcli power force_down command.

Warning: Power down the cabinets with software commands. Tripping the circuit
breakers may result in damage to system components.

Procedure 10. Forcing a component to power down

• Type:

crayadm@smw:~> xtcli power force_down component

You can also use the -f (force) flag on other xtcli power commands to force
immediate powerdown; for example, to force the state manager to re-synchronize
with the true state of components within a cabinet that has lost power. If you choose
this option, the power manager ignores the operational state of the components (see
Appendix B, System States on page 333) that are acted upon. This could result in
data loss.

Example 15. Resynchronizing the state manager with the true state of
components within a cabinet that has lost power

smw:~> xtcli power -f down c2-0
smw:~> xtcli power up c2-0

For more information about powering down components, see the xtcli_power(8)
man page.

80 S–2393–31

Managing the System [3]

3.10.6 Halting Selected Nodes

You can halt selected nodes with the HSS xtcli halt command.

Procedure 11. Halting a node

The command has the form:

xtcli halt node

• Type:

crayadm@smw:~> xtcli halt node

For more information about halting a node, see the xtcli(8) man page.

3.10.7 Powering Off L0 Controllers or Slots

If you use the HSS xtcli power down command to power down a node and its
Cray ASICs, the L0 controller remains running.

If you use the xtcli power down_slot command, the L0 controller is powered
off as well.

All the L0 controllers in the cabinet are powered down only when the cabinet is
powered down. For more information about powering down components, see the
xtcli_power(8) man page.

3.11 Restarting a System Component
Change the state of the hardware only when the operating system is not running or is
shut down. Use the HSS xtcli power up command to restart a component.

Procedure 12. Power up blades in a cabinet

You can start components through the command line with the HSS xtcli power
up command. The command has the form:

xtcli power up physIDlist

where physIDlist is a comma-separated list of components present on the system (see
Physical ID on page 56). All components in the cabinet are powered up.

S–2393–31 81

Managing System Software for Cray XE and Cray XT™ Systems

If a blade is powered off (see Powering Down a Single Blade on page 79) and the
cabinet is up, you can start selected blades, their Cray ASICs, and nodes with the
HSS xtcli power up_slot command.

• Power up the selected component:

crayadm@smw:~> xtcli power up_slot blade

This powers up the slot and the L0 controller.

For more information about restarting components, see the xtcli_power(8) man
page.

3.12 Aborting Active Sessions on HSS Managers
Use the HSS xtcli session abort command to abort sessions in the boot,
diagnostic, or power manager. A session corresponds to running a specific command
such as xtcli power up, xtcli boot, or xtcli diag.

Example 16. Aborting a session running on the boot manager

To display all running sessions in the boot manager, execute the following command.

crayadm@smw:~> session show BM all

Execute the following HSS xtcli session abort command to abort session 1
running on the boot manager:

crayadm@smw:~> xtcli session abort BM 1

Use this command if you have started an xtcli power, xtcli diag, or xtcli
boot command but want to stop it before the command has completed.

Note: Only the boot manager supports multiple simultaneous sessions. The
diagnostic and power managers execute only one session at a time, so you do not
need to include a session ID in the xtcli session abort DM or the xtcli
session abort PM command.

For more information about manager sessions, see the xtcli(8) and man page.

3.13 Displaying and Changing Software System Status
There are a number of tools that enable you to inspect and change the status of
compute nodes on a running system.

82 S–2393–31

Managing the System [3]

3.13.1 Displaying the Status of Nodes from the Operating System

The user command xtnodestat provides a display of the status of nodes: how
they are allocated and to what jobs. The xtnodestat command provides current
job and node status summary information, and it provides an interface to ALPS
and jobs running on CNL compute nodes. You must be running ALPS in order for
xtnodestat to report job information.

For more information, see the xtnodestat(1) man page.

3.13.2 Viewing and Changing the Status of Nodes

Use the xtprocadmin command on a service node to view the status of
components of a booted system in the processor table of the SDB. The command
enables you to retrieve or set the processing mode (interactive or batch)
of specified nodes. You can display the state (up, down, admindown, route,
or unavailable) of the selected components, if needed. You can also allocate
processor slots or set nodes to become unavailable at a particular time. The node is
scheduled only if the status is up.

Example 17. Looking at node characteristics

$ xtprocadmin
Connected

NID (HEX) NODENAME TYPE STATUS MODE
0 0x0 c0-0c0s0n0 service up batch
3 0x3 c0-0c0s0n3 service down batch
4 0x4 c0-0c0s1n0 service up batch
7 0x7 c0-0c0s1n3 service up batch
8 0x8 c0-0c0s2n0 service up batch

11 0xb c0-0c0s2n3 service up batch
12 0xc c0-0c0s3n0 compute up batch
13 0xd c0-0c0s3n1 compute up batch
14 0xe c0-0c0s3n2 compute up batch
15 0xf c0-0c0s3n3 compute up batch

.

.

.

Example 18. Viewing all node attributes

Use the xtprocadmin command to view current node attributes. The
xtprocadmin -A option lists all attributes of selected nodes. For example:

$ xtprocadmin -A
Connected

NID (HEX) NODENAME TYPE ARCH OS CORES AVAILMEM PAGESZ CLOCKMHZ LABEL0 LABEL1 LABEL2 LABEL3
0 0x0 c0-0c0s0n0 service xt (service) 2 8000 4096 2600
3 0x3 c0-0c0s0n3 service xt (service) 2 8000 4096 2600
4 0x4 c0-0c0s1n0 service xt (service) 2 8000 4096 2600

<snip>
20 0x14 c0-0c0s5n0 compute xt CNL 12 12000 4096 2400
21 0x15 c0-0c0s5n1 compute xt CNL 12 12000 4096 2400
22 0x16 c0-0c0s5n2 compute xt CNL 12 12000 4096 2400
23 0x17 c0-0c0s5n3 compute xt CNL 12 12000 4096 2400

<snip>
988 0x3dc c7-0c2s7n0 compute xt CNL 12 32000 4096 2400

S–2393–31 83

Managing System Software for Cray XE and Cray XT™ Systems

989 0x3dd c7-0c2s7n1 compute xt CNL 12 32000 4096 2400
990 0x3de c7-0c2s7n2 compute xt CNL 12 32000 4096 2400
991 0x3df c7-0c2s7n3 compute xt CNL 12 32000 4096 2400

Example 19. Viewing selected node attributes of selected nodes

The xtprocadmin -a attr1,attr2 option lists selected attributes of selected nodes.
For example:

$ xtprocadmin -n 7 -a arch,clockmhz,os,cores
Connected
NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CORES
7 0x7 c0-0c0s1n3 service xt 2000 CNL 1

Example 20. Disabling a node

To mark a node as admindown and not allow it to be allocated, type the following
command:

crayadm@nid00004:~> xtprocadmin -n c0-0c0s3n1 -k s admindown

Example 21. Disabling all processors

To mark all processors as admindown and to disable the system's ability to change
their state, type the following command:

crayadm@nid00004:~> xtprocadmin -k s admindown

Note: When the xtprocadmin -ks option is used, then the option can either
a normal argument (up, down, etc.), or it can have a colon in it to represent a
conditional option; for example, the option of the form up:down means "if state
was up, mark down".

For more information, see the xtprocadmin(8) man page.

3.13.3 Marking a Compute Node as a Service Node

Use the xtcli mark_node command to mark a node in a compute blade to have
a role of service or compute; compute is the default. It is not permitted to
change the role of a node on a service blade, which always has the service role.

Marking a node on a compute blade as service or compute allows you to load
the desired boot image at boot time. Compute nodes marked as service can run
software-based services. A request to change the role of a running node (that is, the
node is in the ready state and the operating system is running) will be denied.

For more information, see the xtcli(8) man page.

84 S–2393–31

Managing the System [3]

3.13.4 Finding Node Information

3.13.4.1 Finding Node Information Using the xtnid2str Command

The xtnid2str command converts numeric node identification values to their
physical names. This allows conversion of Node ID values, Cray Gemini ASIC NIC
address values, or Cray Gemini ID values.

Example 22. Finding the physical ID for node 38

smw:~> xtnid2str 38
node id 0x26 = 'c0-0c1s1n2'

Example 23. Finding the physical ID for nodes 0, 1, 2, and 3

smw:~> xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s0n2'
node id 0x3 = 'c0-0c0s0n3'

Or:

smw:~> echo 0 1 2 3 | xtnid2str
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s0n2'
node id 0x3 = 'c0-0c0s0n3'

Example 24. Finding the physical IDs for Gemini IDs 0-7

smw:~> xtnid2str -g 0-7
gem id 0x0 = 'c0-0c0s0g0'
gem id 0x1 = 'c0-0c0s1g0'
gem id 0x2 = 'c0-0c0s2g0'
gem id 0x3 = 'c0-0c0s3g0'
gem id 0x4 = 'c0-0c0s4g0'
gem id 0x5 = 'c0-0c0s5g0'
gem id 0x6 = 'c0-0c0s6g0'
gem id 0x7 = 'c0-0c0s7g0'

For additional information, see the xtnid2str(8) man page.

3.13.4.2 Finding Node Information Using the xtuname Command

Use the xtuname command on a service node to view information about the service
node you are on. You can identify the node's class, its NID, and the boot string
provided to the node.

Deprecated: The xtuname command is deprecated; will be removed in a future
release.

The command has the form:

xtuname [options]

Use the xtuname command without options to print an aggregate of the
node-specific options.

S–2393–31 85

Managing System Software for Cray XE and Cray XT™ Systems

Example 25. Finding a node's NID using the xtuname command

To print the NID of the node on which the command has been run:

$ xtuname -N
132

Example 26. Finding a node's class the xtuname command

To print the class of the node on which the command has been run:

$ xtuname -C
login

For more information, see the xtuname(1) man page.

3.14 Displaying and Changing Hardware System Status
You can run commands that look at and change the status of the hardware.

!
Caution: Run commands that change the status of hardware only when the
operating system is shut down.

3.14.1 Generating HSS Physical IDs

Run the HSS xtgenid command to generate HSS physical IDs, for example, to
create a list of L0 identifiers for input to the flash manager. You can restrict your
selections to components that are of a particular type.

Note: Only user root can execute the xtgenid command.

Example 27. Creating a list of node identifiers that are not in the DISABLE,
EMPTY, or OFF state

smw:~ # xtgenid -t node --strict

For more information, see the xtgenid(8) man page.

3.14.2 Disabling Hardware Components

If links, nodes, or Cray ASICs have hardware problems, you can direct the system to
ignore the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the
hierarchy of components, performs the action upon the identified component(s) and
cascades that action to any subcomponent of the identified component(s), unless the
-n option is specified.

Note: The -n option with the disable command must be used carefully because
this may create invalid system state configurations.

86 S–2393–31

Managing the System [3]

For detailed information about using the xtcli disable command, see the
xtcli(8) man page.

Procedure 13. Disabling a Cray ASIC

• The xtcli disable command has the form:

xtcli disable -a -t type

where physIDlist is a comma-separated list of components you want the system to
ignore. The system disregards these links or nodes.

Example 28. Disabling the Cray SeaStar ASIC c3-2c0s2s3

1. Determine that the Cray SeaStar ASIC is in the OFF state.

crayadm@smw:~> xtcli status -t sicproc c3-2c0s2s3

2. If the Cray SeaStar ASIC is not in OFF state, power down the nodes and Cray
ASICs.

crayadm@smw:~> xtcli power down c3-2c0s1

3. Disable the Cray SeaStar ASIC.

crayadm@smw:~> xtcli disable c3-2c0s1s3

4. Power up the slot containing the disabled Cray SeaStar ASIC.

crayadm@smw:~> xtcli power up c3-2c0s1

For more information, see the xtcli(8) man page.

3.14.3 Enabling Hardware Components

If links, nodes, or Cray ASICs that have been disabled are later fixed, you can add
them back to the system with the xtcli enable command.

By default, when enabling a component, this command takes into consideration the
hierarchy of components, performs the action upon the identified component(s) and
cascades that action to any subcomponent of the identified component(s), unless the
-n option is specified.

Note: The -n option with the disable command must be used carefully because
this may create invalid system state configurations.

Procedure 14. Enabling a Cray ASIC

• The xtcli enable command has the form:

xtcli enable -a -t type

where physIDlist is a comma-separated list of components you want the system
to recognize.

S–2393–31 87

Managing System Software for Cray XE and Cray XT™ Systems

The state of off means that a component is present on the system. If the
component is an L0, node, or ASIC, then this will also mean that the component
is powered off. If you disable a component, the state shown becomes disabled.
When you use the xtcli enable command to enable that component for use
once again, its state switches from disabled to off. In the same manner,
enabling an empty component means that its state switches from empty to off.

Example 29. Enabling Cray Gemini ASIC c0-0c1s3g0

crayadm@smw:~> xtshow_disabled s0 | grep c0-0c1s3
c0-0c1s3g0: - OP| disabled [noflags|]

c0-0c1s3g0l00: - OP| disabled [noflags|]
c0-0c1s3g0l01: - OP| disabled [noflags|]
c0-0c1s3g0l02: - OP| disabled [noflags|]
c0-0c1s3g0l03: - OP| disabled [noflags|]
c0-0c1s3g0l04: - OP| disabled [noflags|]
.
.
.

smw:~> xtcli enable c0-0c1s3g0
Network topology: class 0

All components returned success.

For more information about stopping components, see Stopping System Components
on page 78 and the xtcli(8) man page.

3.14.4 Setting Components to Empty

Use the xtcli set_empty command to set a selected component to the
empty state. HSS managers and the xtcli command ignore empty or disabled
components.

Setting a selected component to the empty state is typically done when a component,
usually a blade, is physically removed. By setting it to empty, the system ignores
it and routes around it.

By default, when enabling a component, this command takes into consideration the
hierarchy of components, performs the action upon the identified component(s) and
cascades that action to any subcomponent of the identified component(s), unless the
-n option is specified.

Note: The -n option with the disable command must be used carefully because
this may create invalid system state configurations.

Example 30. Setting a blade to the EMPTY state

Set the blade and all its components to EMPTY:

crayadm@smw:~> xtcli set_empty -a c0-0c1s7

For more information, see the xtcli(8) man page.

88 S–2393–31

Managing the System [3]

3.14.5 Locking Components

Components are automatically locked when a command that can change their state
is running. As the command is started, the state manager locks these components so
that nothing else can affect their state while the command runs. When the manager is
finished with the command, it unlocks the components.

Use the HSS xtcli lock command to lock components.

Example 31. Locking cabinet c0-0

The lock command identifies the session ID. Locking a component prints out the
state manager session ID.

crayadm@smw:~> xtcli lock -l c0-0

Example 32. Show all session (lock) data

You can use the xtcli lock show command to show session (lock) information.

crayadm@smw:~> xtcli lock show

3.14.6 Unlocking Components

Use the HSS xtcli lock command to unlock components.

Example 33. Unlocking cabinet c0-0

The xtcli lock command is useful when a manager fails to unlock some set of
components. You can manually check for locks with the xtcli status command
and unlock them. Unlocking a component does not print out the state manager
session ID. The -u option must be used to unlock a component.

crayadm@smw:~> xtcli lock -u c0-0

Unlocking does nothing to the state of the component other than to release locks
associated with it. HSS managers cannot affect components that are locked by a
different session.

3.14.7 Determining How Service Nodes Are Configured by Looking at
Hardware

Nodes are sometimes defined by the interfaces installed in them. For example, an I/O
node only has a Fibre Channel card. A login node only has an Ethernet GigE card.
Table 2 shows node types and typical default configurations.

S–2393–31 89

Managing System Software for Cray XE and Cray XT™ Systems

Table 2. Default Service Node Configuration and Cabling

Node Class
Number of
Nodes Slot 0 Slot 1

Boot 1 GigE Fibre Channel – 1 Fibre cable
connected

Backup boot 1 GigE Fibre Channel – 1 Fibre cable
connected

Service database 1 Empty Fibre Channel – 1 Fibre cable
connected

Syslog 1 Empty Fibre Channel – 1 Fibre cable
connected

I/O 1 or more
site-specific

Empty Fibre Channel – 2 Fibre cables
connected

Login 1 or more
site-specific,
one or more

Empty GigE

Network Site-specific Empty 10-GigE

3.15 Performing Parallel Operations on Nodes
Use the pdsh command, which is the CLE parallel remote shell utility, on a service
node to issue commands to groups of nodes in parallel. You can select the nodes on
which to use the command, exclude nodes from the command, and limit the time
the command is allowed to execute. You must be user root to execute the pdsh
command. The command has the form:

pdsh [options] command

Example 34. Restarting the NTP service

To restart the network time protocol (NTP) service on the first 9 login nodes, type:

boot:~ # pdsh -w 'login[001-009]' /etc/init.d/ntp restart

For more information, see the pdsh(1) man page.

3.16 Handling Component Failures
Components that fail are replaced as field replaceable units (FRUs). FRUs include
compute blade components, service blade components, and power and cooling
components.

When a field replaceable unit (FRU) problem arises, contact your Customer Service
Representative to schedule a repair.

90 S–2393–31

Managing the System [3]

Check the nodes running jobs with the xtnodestat command. If there appears to
be few active nodes, use the xtprocadmin command to identify the nodes that
are down, for example:

Example 35. Identifying nodes that are down

$ xtprocadmin | grep down

For more information, see the xtprocadmin(8) man page.

3.17 Capturing and Analyzing System-level and Node-level
Dumps

3.17.1 Dumping Information Using the xtdumpsys Command

The xtdumpsys command collects and analyzes information from a Cray system
that is failing or has failed, has crashed, or is hung. Analysis is performed on, for
example, event log data, active heartbeat probing, voltages, temperatures, health
faults, in-memory console buffers, and high-speed interconnection network errors.
When failed components are found, detailed information is gathered from them.

To collect similar information for components that have not failed, invoke the
xtdumpsys command with the --add option and name the components from
which to collect data. The HSS xtdumpsys command saves dump information in
/opt/craydump/timestamp by default.

Choose the --snapshot option to perform a quick analysis of the running system
or the --summary option to perform an analysis of a previous dump. Neither option
creates new files.

Example 36. Dumping information about a working component

To dump the entire system and collect detailed information from all L0s in chassis 0
of cabinet 0, type:

crayadm@smw:~> xtdumpsys --add c0-0c0s0

Note: An example file, example.xtdumpsys-plugin, is included in the
/opt/cray/etc directory and provides techniques to help you customize your
own xtdumpsys plugin so it can collect additional data during an xtdumpsys
session.

For more information, see the xtdumpsys(8) man page.

S–2393–31 91

Managing System Software for Cray XE and Cray XT™ Systems

3.17.2 ldump and lcrash Utilities for Node Memory Dump and Analysis

The ldump and lcrash utilities may be used to analyze the memory on any Cray
service node or CNL compute node. The ldump command is used to dump node
memory to a file. After ldump completes, you may then use the lcrash utility
on the dump file generated by ldump.

Cray recommends running the ldump utility only if a node has panicked or is hung,
or if a dump is requested by Cray.

To select the desired access method for reading node memory, use the ldump -r
access option. Valid access methods are:

• For Cray XE systems (Cray Gemini based system interconnection network)
xt-bhs: The xt-bhs method uses a basic hardware system server that runs on
the SMW to access and read node memory. xt-bhs is the default access method
for these systems.

• For Cray XT systems (Cray SeaStar based system interconnection network)
xt-ssi: The xt-ssi method uses the SeaStar SSI channel to the Cray system's
network application-specific integrated circuit (ASIC) chip to read node memory.
xt-ssi is the default access method for these systems.

• xt-hsn: The xt-hsn method utilizes a proxy that reads node memory via the
High-speed Network (HSN). The xt-hsn method is faster than the xt-ssi
method and the xt-bhs method, but there are situations where it will not work
(for example, if the Cray network ASIC chip is not functional). However, the
xt-hsn method is preferable because the dump completes in a short amount of
time and the node can be returned to service sooner.

To dump Cray node memory, access takes the following form:

method[@host]

For additional information, see the ldump(8) and lcrash(8) man pages.

3.18 Using xtnmi Command to Collect Debug Information from
Hung Nodes

!
Caution: This is not a harmless tool to use to repeatedly get information from a
node at various times; only use this command when you need debugging data from
nodes that are in trouble. The xtnmi command output may be used to determine
problems such as a core hang.

The sole purpose of the xtnmi command is to collect debug information from
unresponsive nodes. As soon as that debug information is displayed to the console,
the node panics.

For additional information, see the xtnmi(8) man page.

92 S–2393–31

Monitoring System Activity [4]

4.1 Monitoring the System with the System Environmental Data
Collector (SEDC)

To use the System Environmental Data Collector (SEDC) to collect data about
internal cabinet temperatures, cooling system air pressures, critical voltages, etc., see
Using and Configuring System Environment Data Collections (SEDC).

4.2 Displaying Installed SMW Release Level
Following a successful installation, the file /opt/cray/etc/smw-release is
populated with the installed SMW release level.

Example 37. Displaying installed SMW release level

% cat /opt/cray/etc/smw-release
5.0.UP00

4.3 Displaying Installed CLE Release Level
Following a successful installation, the file
/etc/opt/cray/release/clerelrease is populated with the installed
CLE release level.

Example 38. Displaying installed CLE release level

% cat /etc/opt/cray/release/clerelease
3.0.UP00

4.4 Displaying Boot Configuration Information
Use the xtcli command to display the configuration information for the primary
and backup boot nodes, the primary and backup SDB nodes (backup SDB is Deferred
implementation), and the cpio path.

S–2393–31 93

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 15. Showing boot configuration information for the entire system

• To display boot configuration information for the entire system, execute the
xtcli boot_cfg show command:

crayadm@smw:~> xtcli boot_cfg show
Network topology: class 0
=== xtcli_boot_cfg ===
[boot]: c0-0c0s0n1:ready,c0-0c0s1n1:ready
[sdb]: c0-0c0s0n3:ready,c0-0c0s1n3:ready
[cpio_path]: /tmp/boot/cray_system-3.1.19blue.cpio
crayadm@smw:~>

Procedure 16. Showing boot configuration information for a partition of a
system

• To display boot configuration information for a partition of a system, execute the
xtcli part_cfg show command:

crayadm@smw:~> xtcli part_cfg show

4.5 Monitoring Multiple Nodes
Deprecated: The utilities described in this section are deprecated and will be
removed in a future release; they were developed for Catamount systems, which
are no longer supported. Comparable functionality is available using pdsh and
the equivalent Linux command. For more information, see Performing Parallel
Operations on Nodes on page 90 and the pdsh(1) man page.

Linux supports several commands that monitor nodes, but these commands
operate only on the node where they are executed. Cray supplies system-specific
Cray Linux Environment (CLE) commands with similar functions that let you
monitor the entire system. These commands are also referred to as single image view
utilities because they present results for all service nodes together. Table 3 shows the
CLE system commands and equivalent Linux commands.

94 S–2393–31

Monitoring System Activity [4]

Table 3. CLE Monitor Commands

CLE
Command

Equivalent
Linux
Command Function on Cray System

xtps

Deprecated:
Will be
removed in a
future release.

ps Lists running processes

xtuname

Deprecated:
Will be
removed in a
future release.

uname Prints Cray system information

xtwho

Deprecated:
Will be
removed in a
future release.

who Shows logged-in users by node ID (NID) or
hostname

xtkill

Deprecated:
Will be
removed in a
future release.

kill Kills processes running on service nodes

For more information, see the xtkill(1), xtps(1), xtuname(1), and xtwho(1)
man pages.

4.6 Managing Log Files Using CLE and HSS Commands
Boot, diagnostic, and other Hardware Supervisory System (HSS) events are logged on
the SMW in the /opt/craylog directory, which is created during the installation
process.

CLE log files are saved on the syslog node in the message file located by
default in the /syslog/var/log directory. (The directory path is set in the
sysset.conf and CLEinstall.conf files.)

Linux system event log files are stored on the service partition.

S–2393–31 95

Managing System Software for Cray XE and Cray XT™ Systems

4.6.1 Filtering the Event Log

The xtlogfilter command enables you to filter the event log for information
such as the time a particular event occurred or messages from a particular cabinet.

Example 39. Finding information in the event log

To search for all console messages from node c9-2c0s3n2, type:

crayadm@smw:~> xtlogfilter -f /opt/craylog/eventlog c9-2c0s3n2

For more information, see the xtlogfilter(8) command.

4.6.2 Adding Entries to Log Files

You can add entries to the syslog with the logger command. For example, to
identify the start or finish of system activities, use the /bin/logger command to
log events into the system log, /syslog/var/log/messages. The message is
then available to anyone who reads the log.

Example 40. Adding entries to syslog file

To mark the start of a new system test, type:

node/4/:/ # logger -is "Start of test 4A $(date) "
Start of test 4A Thu Jul 14 16:20:43 CDT 2005

The system log shows:

Jul 14 16:20:43 nid00004 xx[21332]:
Start of test 4A Thu Jul 13 16:20:43 CDT 2005

For more information, see the logger(1) command.

4.6.3 Examining Log Files

Time-stamped log files of boot, diagnostic and other HSS events are
located on the SMW in the /opt/craylog directory. The time-stamped
bootinfo, console, consumer, and netwatch log files are located in the
/opt/craylog/bootlogs directory by default.

For example, the HSS xtbootsys command starts the xtconsole
command, which redirects the output to a time-stamped log file, such as
/opt/craylog/bootlogs/console.0708250731.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several
detailed log files in the /var/adm/cray/logs directory. The log files are named
using the PID of the SMWinstall or the SMWinstallCLE command; the exact
names are displayed when the command is invoked.

96 S–2393–31

Monitoring System Activity [4]

4.6.4 Removing Old Log Files

The HSS command /opt/cray/bin/xtclean_logs removes outdated HSS
log files based on a user-specified cutoff date. This command is a bash script that
checks the SMW directories /opt/craylog, /opt/craylog/bootlogs,
/opt/craylog/diaglogs, and /opt/craydump.

Attach the xtclean_logs script to the desired cron job by copying it into the
appropriate cron directory. The owner and group must be root, and permissions
must be 755. The script is triggered by /usr/lib/cron/run-crons.

To choose the log files to delete, modify the parameters to specify the number of days
(age) that files are to be kept in the log directories. To turn off file deletion, set the
parameter value(s) to 0. Parameters include:

BOOT_DAYS_TO_KEEP

Number of days after which files in /opt/craylog/bootlogs
are deleted. Boot log file names indicate the start of the boot session,
and this value is used to determine age. The default parameter setting
provided by Cray is 30 days.

Note: Boot session files for the current boot session are not
deleted, regardless of age.

EVENT_DAYS_TO_KEEP

Number of days after which files in /opt/craylog/eventlog
are deleted. The age of each eventlog file is determined by its last
modification time. The default parameter setting provided by Cray
is 30 days.

DIAG_DAYS_TO_KEEP

Number of days after which diagnostic directories in
/opt/craylog/diaglogs are deleted. Diagnostic subdirectory
names include last modification time, and this value is used to
determine age. The default parameter setting provided by Cray is
60 days.

DUMP_DAYS_TO_KEEP

Number of days after which dump directories in /opt/craydump
are deleted. Dump subdirectory names include the last modification
time, and this value is used to determine age. The default parameter
setting provided by Cray is 30 days.

For more information, see the xtclean_logs(8) man page.

S–2393–31 97

Managing System Software for Cray XE and Cray XT™ Systems

4.7 Managing Log Files Using the Cray Management Services
(CMS) Log Manager

The CMS log manager provides the capability to collect, analyze, and display
messages from the system. The data is collected from a variety of sources and loaded
into the CMS database on the SMW. You can view and search the database for events
of interest. Notification of events on the event router uses the mzlogmanagerd
daemon; notification of events in the syslog uses the mzsyslogd.

For additional information, see Using Cray Management Services (CMS).

4.8 Checking the Status of System Components
To check the status of the system or a component, use the xtcli status command
on the SMW. By default, the xtcli status command returns the status of nodes.

Procedure 17. Showing the status of a component

• The xtcli status command has the form:

xtcli status [-n] [{-t type] [-a]} node_list

Note: The list should have component IDs only (no wild cards).

For Cray systems with the Cray Gemini based system interconnection network
(Cray XE series), type may be: node, l0, cage, l1, xdp, verty, dimm, socket,
die, core, memctrl, gemini, nic, lcb, serdes_macro, or fpga.

For Cray systems with the Cray SeaStar based system interconnection network
(Cray XT series), type may be: node, l0, cage, l1, xdp, sicproc and link.
sicproc is the same as ss; ss is still accepted.

For more information, see the xtcli(8) man page.

4.9 Checking the Status of Compute Processors
To check that compute nodes are available after the system is booted, use the
xtprocadmin command on a service node.

Example 41. Identifying nodes in down or admindown state

To identify if there are any nodes that are in a down or admindown state, execute
the following command from a node:

nid00007:~> xtprocadmin | grep down

98 S–2393–31

Monitoring System Activity [4]

Example 42. Display current allocation and status of each compute processing
element and the application that it is running

Use the user xtnodestat command to display the current allocation and status of
each compute processing element and the application that it is running. A simplified
text display shows each processing element on the Cray system interconnection
network. For example:

nid00007:~> xtnodestat
Current Allocation Status at Tue Feb 16 22:48:20 2010

C0-0 C1-0 C2-0 C3-0
n3 fff----- ff------ ff------ ff------
n2 ffffffff ffffffff ffffffff ffffffff
n1 ffffffff ffffffff ffffffff ffffffff

c2n0 --ffffff -fffffff -fffffff -fffffff
n3 -------- -------- -------- --------
n2 -------- -------- -------- --------
n1 -------- -------- -------- -X------

c1n0 ddd----- dd------ ddd----- ddd-----
n3 SSSSSddd dddddddd SSSSdddd dddddddd
n2 ced bgggcehd gced bggggchd
n1 bbb aaaabbbb abbb aaaabbbb

c0n0 SSSSSaaa aaaaaaaa SSSSaaaa aaaaaaaa
s01234567 01234567 01234567 01234567

Legend:
nonexistent node S service node

; free interactive compute node - free batch compute node
A allocated, but idle compute node ? suspect compute node
X down compute node Y down or admindown service node
Z admindown compute node
* system dedicated node (DVS)

Available compute nodes: 0 interactive, 144 batch

Job ID User Size Age command line
--- ------ -------- ----- --------- ----------------------------------
a 1196955 lynda 32 0h03m slv2
b 1196957 marie 16 0h03m slv2
c 1196961 johns 4 0h03m slv2
d 1196967 jason 38 0h02m gsam_TL959L10
e 1196963 tankr 3 0h02m slv2
f 1196881 tankr 100 3h40m jnova.mxx
g 1196959 tankr 8 0h03m slv2
h 1196965 tankr 2 0h02m slv2

For more information, see the xtprocadmin(8) and xtnodestat(1) man pages.

4.10 Checking CNL Compute Node Connection
Use the Linux ping command to verify that a compute node is connected to the
network. The Linux ping command must be run from a node, not run on the SMW.

S–2393–31 99

Managing System Software for Cray XE and Cray XT™ Systems

Example 43. Verifying that a compute node is connected to the network

nid00007:~> ping nid00004
PING nid00004 (192.168.0.5) 56(84) bytes of data.
64 bytes from nid00004 (192.168.0.5): icmp_seq=1 ttl=64 time=0.032 ms
64 bytes from nid00004 (192.168.0.5): icmp_seq=2 ttl=64 time=0.010 ms

For more information, see the Linux ping(8) man page.

4.11 Checking Link Control Block and Router Errors
The HSS xtnetwatch command monitors the Cray system interconnection
network. It requests link control block (LCB) and router error information from the
L0-based router daemons and specifies how often to sample for errors. It then detects
events that contain the error information sent by these daemons and displays the
information as formatted output in a log file.

You can specify which system components to sample and control the level of
verbosity of the output, select the sampling interval, and log results to an output file.

Although the command can be invoked standalone from the SMW prompt, Cray
recommends that you run xtnetwatch each time you boot the system with the
xtbootsys command (the default). The output is a time-stamped log file such as:

/opt/craylog/bootlogs/netwatch.0708270830

Check the log file for fatal link errors and router errors. Fatal link errors signal faulty
hardware. Fatal router errors can be generated either by hardware or software; they
do not cause the network or individual links to become inoperable but imply that a
single transfer was discarded.

Note: To turn off L0 high-speed interconnect link monitoring, use the
xtnetwatch -d option.

Example 44. Running xtnetwatch to monitor the system interconnection
network

Sample the network once every 10 seconds using the least verbose display format:

crayadm@smw:~> xtnetwatch -i 10
090604 10:50:31 ############ #### ############ ###### ########### ########### ###########
090604 10:50:31 Port Remote Remote Recoverable Send or Rcv
090604 10:50:31 Node ID Num Node ID Port Rcv Errs Fatal Errs Router Errs
090604 10:50:31 ############ #### ############ ###### ########### ########### ###########
090604 10:50:31 c4-0c2s4s3 5 c4-0c2s4s2 0 1 0 0
090604 10:51:31 c4-0c2s4s3 5 c4-0c2s4s2 0 1 0 0
090604 10:51:41 c4-0c2s4s3 5 c4-0c2s4s2 0 2 0 0
090604 10:51:51 c4-0c2s4s3 5 c4-0c2s4s2 0 1 0 0
090604 10:52:11 c4-0c2s4s3 5 c4-0c2s4s2 0 1 0 0
090604 10:52:21 c4-0c2s4s3 5 c4-0c2s4s2 0 2 0 0
090604 10:52:31 c4-0c2s4s3 5 c4-0c2s4s2 0 1 0 0
...

For more information, see the xtnetwatch(8) man page.

100 S–2393–31

Monitoring System Activity [4]

4.12 Monitoring the Status of Jobs Started Under a Third-party
Batch System

To monitor the status of jobs that were started under a third-party batch system,
use the command appropriate to your batch system. For more information, see the
documentation provided by your batch system vendor.

4.13 Listing Running Jobs
Deprecated: The xtps command is deprecated and will be removed in a future
release.

The xtps command enables you to list the jobs running on a class of service
nodes. You must have login without a password enabled between nodes. For more
information, see the xtps(1) man page.

4.14 Using the cray_pam Module to Monitor Failed Login
Attempts

The cray_pam module is a Pluggable Authentication Module (PAM). When
configured, the cray_pam module provides information to the user at login time
about any failed login attempts since their last successful login. See Using the
cray_pam PAM to Log Failed Login Attempts on page 148 and the procedure to
configure the cray_pam module, Procedure 32 on page 149.

4.15 Monitoring DDN RAID
Use Data Direct Networks tools to monitor DDN RAID. These can be accessed
by telnetting to the RAID device from the SMW. To configure remote logging of
DDN messages, see the Cray System Management Workstation (SMW) Software
Installation Guide. For additional information, see your DDN documentation.

4.16 Monitoring LSI Engenio RAID
Use Engenio tools to monitor Engenio RAID. The LSI Engenio storage system uses
SNMP to provide boot RAID messages. For additional information, see your LSI
Engenio Storage System documentation.

4.17 Monitoring HSS Managers
This section provides procedures to view active sessions and to check whether the
diagnostic manager, the power manager, or the L0 or L1 controller daemons are
running.

S–2393–31 101

Managing System Software for Cray XE and Cray XT™ Systems

4.17.1 Examining Activity on HSS Managers

Use the HSS xtcli session show command to examine sessions in the boot,
diagnostic, or power manager. A session corresponds to running a specific command
such as xtcli power up or xtcli boot. This command reports on sessions,
not daemons.

Example 45. Looking at a session running on the power manager

Execute the HSS xtcli session show command to view the session running
on the power manager:

crayadm@smw:~> xtcli session show PM

For more information about manager sessions, see the xtcli(8) man page.

4.17.2 Checking the Health of HSS Managers

Use the HSS xtalive command to check whether the diagnostic manager, the
power manager, or the L0 or L1 controller daemons are running.

Example 46. Checking the power manager

crayadm@smw:~> xtalive -l smw -a pm s0

For more information, see the xtalive(8) man page.

4.18 Monitoring Events
The HSS xtconsumer command enables you to monitor events mediated by the
event router daemon erd, which runs passively.

Example 47. Monitoring for specific events

This command shows watching two events: ec_heartbeat_stop, which will
be sent if either the node stops sending heartbeats or if the system interconnection
network ASIC stops sending heartbeats, and ec_l0_health, which will be sent if
any of the subcomponents of a L0 report a bad health indication.

crayadm@smw:~> xtconsumer -b ec_heartbeat_stop ec_l0_health

Example 48. Checking events except heartbeat:

To display all events except heartbeats:

crayadm@smw:~> xtconsumer -x ec_l1_heartbeat

For Cray systems with the Cray SeaStar based system interconnection network
(Cray XT systems): If xtconsumer indicates a stopped heartbeat, use the
xtfwstat and xtfwlog commands to investigate what has occurred.

102 S–2393–31

Monitoring System Activity [4]

Use the xthb command to confirm the stopped heartbeat. Use the xthb command
only when you are actively looking into a known problem because it is intrusive and
degrades system performance.

For more information, see the xtconsumer(8), xtfwlog(8), xtfwstat(8) and
xthb(8) man pages.

4.19 Monitoring Node Console Messages
Use the HSS xtconsole command to monitor and display console messages of a
specific node. The command can monitor a single node or multiple nodes.

Example 49. Obtaining node console messages

To view the console output of node c30-0c0s0n0, type:

crayadm@smw:~> xtconsole c30-0c0s0n0

To view the console output from all nodes, use the xtconsole -a command. Using
the xtconsole -at command adds a timestamp as a prefix to the line (use -t to
show the current time as the prefix. Use -t -t to show the current date and current
time as the prefix):

crayadm@smw:~> xtconsole -at
[11:25:47][c0-0c0s2n0]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:47][c0-0c0s2n3]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:47][c0-0c0s2n3]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:47][c0-0c0s2n0]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:47][c0-0c0s2n0]LDISKFS-fs: file extents enabled
[11:25:47][c0-0c0s2n0]LDISKFS-fs: mballoc enabled
[11:25:47][c0-0c0s2n3]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:47][c0-0c0s2n3]LDISKFS-fs: file extents enabled
[11:25:47][c0-0c0s2n3]LDISKFS-fs: mballoc enabled
[11:25:47][c0-0c0s2n3]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:47][c0-0c0s2n3]LDISKFS-fs: file extents enabled
[11:25:47][c0-0c0s2n3]LDISKFS-fs: mballoc enabled
[11:25:47][c0-0c0s2n0]LDISKFS-fs: file extents enabled
[11:25:48][c0-0c0s2n0]LDISKFS-fs: mballoc enabled
[11:25:48][c0-0c0s2n0]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:48][c0-0c0s2n0]LDISKFS-fs warning: maximal mount count reached, running e2fsck is recommended
[11:25:48][c0-0c0s2n0]LDISKFS-fs: file extents enabled
...

For more information, see the xtconsole(8) man page.

4.20 Showing the Component Alert, Warning, and Location
History

Use the xtcli comp_hist command to display the component alert, warning,
and location history. Either an error history, which displays alerts or warnings found
on designated components, or a location history may be displayed.

S–2393–31 103

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 18. Displaying the location history for component c0-0c0s0n0

• Type:

crayadm@smw:~> xtcli comp_hist -o loc c0-0c0s0n0

For more information, see the xtcli(8) man page.

4.21 Displaying Component Information
Use the HSS xtshow command to identify compute and service components.
Commands are typed as xtshow --option_name. You can also combine the
--service or --compute option with other xtshow options to limit your
selection to the specified type of node.

Example 50. Identifying all service nodes

crayadm@smw:~> xtshow --service
L1s ...
L0s ...

c0-0c0s0: service OP| enable: ready [noflags|]
c0-0c0s1: service OP| enable: ready [noflags|]
c0-0c0s2: service OP| enable: ready [noflags|]

Nodes ...
c0-0c0s0n0: service OP| enable: ready [noflags|]
c0-0c0s0n1: service OP| empty: off [noflags|]
c0-0c0s0n2: service OP| empty: off [noflags|]
c0-0c0s0n3: service OP| enable: ready [noflags|]
c0-0c0s1n0: service OP| enable: ready [noflags|]
c0-0c0s1n1: service OP| empty: off [noflags|]
c0-0c0s1n2: service OP| empty: off [noflags|]
c0-0c0s1n3: service OP| enable: ready [noflags|]
c0-0c0s2n0: service OP| enable: ready [noflags|]
c0-0c0s2n1: service OP| empty: off [noflags|]
c0-0c0s2n2: service OP| empty: off [noflags|]
c0-0c0s2n3: service OP| enable: ready [noflags|]

SeaStars ...
c0-0c0s0s0: service OP| enable: ready [noflags|]
c0-0c0s0s1: service OP| enable: ready [noflags|]
c0-0c0s0s2: service OP| enable: ready [noflags|]
c0-0c0s0s3: service OP| enable: ready [noflags|]
c0-0c0s1s0: service OP| enable: ready [noflags|]
c0-0c0s1s1: service OP| enable: ready [noflags|]
c0-0c0s1s2: service OP| enable: ready [noflags|]
c0-0c0s1s3: service OP| enable: ready [noflags|]
c0-0c0s2s0: service OP| enable: ready [noflags|]
c0-0c0s2s1: service OP| enable: ready [noflags|]
c0-0c0s2s2: service OP| enable: ready [noflags|]
c0-0c0s2s3: service OP| enable: ready [noflags|]

Links ...
crayadm@smw:~>

104 S–2393–31

Monitoring System Activity [4]

Example 51. Showing compute nodes in the DISABLED state

crayadm@smw:~> xtshow --compute --disabled
L1s ...
L0s ...
Nodes ...

c0-0c0s7n0: -| disabled [noflags|]
SeaStars ...
Links ...

c1-0c2s1s1l1: -| disabled [noflags|]

4.22 Displaying Alerts and Warnings
Use the xtshow command to display alerts and warnings. Type commands as
xtshow --option_name, where option_name is alert, warn, or noflags.

Note: Alerts are not propagated through the system hierarchy, so you only receive
information for the component you are examining. A node can have an alert, but
you would not see it if you ran the xtshow --alert command for a cabinet.
In a similar fashion, you would not detect an alert on a cabinet if you checked the
status of a node.

Alerts and warnings typically occur while the HSS xtcli command operates; these
alerts and warnings are listed in the command output with an error message. After
they are generated, alerts and warnings become part of the state for the component
and remain set until you manually clear them. For example, the temporary loss of a
heartbeat by the L0 controller may set a warning state on a chip.

4.23 Clearing Flags
Use the xtclear command to clear system information for components you select.
Type commands as xtclear --option_name, where option_name is alert,
reserve, or warn.

You must clear alerts, reserves, and warnings before a component can operate.
Clearing an alert on a component frees its state so that subsequent commands can
execute (see Appendix B, System States on page 333).

For more information, see the xtclear(8) man page.

S–2393–31 105

Managing System Software for Cray XE and Cray XT™ Systems

106 S–2393–31

Managing User Access [5]

For a description of administrator accounts that enable you to access the functions
described in this chapter, see Administering Accounts on page 113.

5.1 Load Balancing Across Login Nodes
Having all users log on to the same login node may overload the node. (Also see
Caution in Login Nodes on page 40.) For typical interactive usage, a single login
node is expected to handle 20 to 30 batch users or 20 to 40 interactive users with
double this number of user processes. You can use the lbnamed load-balancing
software to distribute logins to different login nodes. The lbnamed daemon is a
name server that gathers the output of lbcd client daemons to select the least loaded
node, provides DNS-like responses, interacts with the corporate DNS server, and
directs the user login request to the least busy login node.

Because lbnamed runs on the SMW, eth0 on the SMW must be connected to the
same network from which users log on the login nodes.

Note: If security considerations do not allow you to put the SMW on the public
network, lbnamed may be installed on an external server. This can be any type
of computer running the SUSE Linux Enterprise Server (SLES) operating system
(not a 32-bit system). However, this option is not a tested or supported Cray
configuration.

The behavior of the lbnamed daemon is site-configurable and determined by
the contents of the /etc/opt/cray-xt-lbnamed/lbnamed.conf and
/etc/opt/cray-xt-lbnamed/poller.conf configuration files. For details
about configuring the load balancer, see Configuring the Load Balancer on page 155,
and the lbcd(8), lbnamed(8), and lbnamed.conf(5) man pages.

5.2 Passwords
The default passwords for the root and crayadm accounts are the same for the
System Management Workstation (SMW), the boot node, and the shared root.

S–2393–31 107

Managing System Software for Cray XE and Cray XT™ Systems

Default passwords for the root and crayadm accounts are provided in the
Installing and Configuring Cray Linux Environment (CLE) Software. Also,
default MySQL passwords and an example of how to change them are provided
in the Installing and Configuring Cray Linux Environment (CLE) Software. Cray
recommends changing these default passwords as part of the software installation
process.

5.2.1 Changing Default SMW Passwords After Completing Installation

After completing the installation, change the default SMW passwords. The SMW
contains its own /etc/passwd file that is separate from the password file for the
rest of the system. To change the passwords on the SMW:

smw:~# passwd root
smw:~# passwd crayadm
smw:~# passwd cray-vnc
smw:~# passwd mysql

5.2.2 Changing root and crayadm Passwords on Boot and Service
Nodes

For security purposes, it is desirable to change the passwords for the root and
crayadm accounts on a regular basis.

Use the Linux passwd command to change the /etc/passwd file. For
information about using the passwd command, see the passwd(1) man page.

Procedure 19. Changing the root and crayadm passwords on boot and service
nodes

1. The boot node contains its own /etc/passwd file that is separate from the
password file for the rest of the system. To change the passwords on the boot
node, use these commands. You will be prompted to type and confirm new root
and administrative passwords.

boot:~ # passwd root
boot:~ # passwd crayadm

2. To change the passwords on the other service nodes, you must run these
commands on the shared root. Again, you will be prompted to type and confirm
new passwords for the root and crayadm accounts.

Note: If the SDB node is not started, you must use the xtopview -x
/etc/opt/cray/sdb/node_classes command when using the
xtopview command in this procedure.

boot:~ # xtopview
default/:/ # passwd root
default/:/ # passwd crayadm
default/:/ # exit

108 S–2393–31

Managing User Access [5]

For more information about using the xtopview command, see Managing System
Configuration with the xtopview Tool on page 129, and the xtopview(8) man
page.

5.2.3 Changing the root Password on CNL Compute Nodes

Procedure 20. Changing the root password on CNL compute nodes

For CNL compute nodes, update the root account password in the
/opt/xt-images/templates/default/etc/shadow file on the SMW.

Note: To make these changes for a system partition, rather than for
the entire system, replace /opt/xt-images/templates with
/opt/xt-images/templates-pN, where N is the partition number.

1. Copy the master password file to the template directory.

smw:~ # cp /opt/xt-images/master/default/etc/shadow \
/opt/xt-images/templates/default/etc/shadow

2. Edit the password file to include a new encrypted password for the root account.

smw:~ # vi /opt/xt-images/templates/default/etc/shadow

3. After making these changes, update the boot image by following the steps in
Procedure 2 on page 68.

5.2.4 Changing Default MySQL Passwords on the SDB

Procedure 21. Changing default MySQL passwords on the SDB

For security, you should change the default passwords for MySQL database accounts.

1. If you have not set a site-specific MySQL password for root, type the following
commands. Press the Enter key when prompted for a password.

boot:~ # ssh root@sdb
sdb:~ # mysql -h sdb -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.0.64-enterprise MySQL Enterprise Server (Commercial)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql> set password for 'root'@'localhost' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)
mysql> set password for 'root'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)
mysql> set password for 'root'@'sdb' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

S–2393–31 109

Managing System Software for Cray XE and Cray XT™ Systems

2. (Optional) Set a site-specific password for other MySQL database accounts.

a. To change the password for the sys_mgmt account, type the following
MySQL command. You must also update .my.cnf in step 4.

mysql> set password for 'sys_mgmt'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

b. To change the password for the basic account, type the following MySQL
command. You must also update /etc/opt/cray/MySQL/my.cnf in
step 5.

mysql> set password for 'basic'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

c. To change the password for the mazama account, type the following MySQL
commands. You must also update /etc/sysconfig/mazama in step 6.

mysql> set password for 'mazama'@'%' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)
mysql> set password for 'mazama'@'localhost' = password('newpassword');
Query OK, 0 rows affected (0.00 sec)

Note: When making changes to the MySQL database, your connection may
time out; however, it will be automatically reconnected. If this happens, you
will see messages similar to the following. These messages may be ignored.

ERROR 2006 (HY000): MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 21127
Current database: *** NONE ***

Query OK, 0 rows affected (0.00 sec)

3. Exit from MySQL and the SDB.

mysql> exit
Bye
sdb:~ # exit
boot:~ #

110 S–2393–31

Managing User Access [5]

4. (Optional) If you set a site-specific password for sys_mgmt in step 2, update
the .my.cnf file for root with the new password.

a. Edit .my.cnf for root on the boot node.

boot:~ # cd ~root
boot:~ # vi .my.cnf
[client]
user=sys_mgmt
password=newpassword

b. Edit .my.cnf for root in the shared root.

boot:~ # xtopview
default/:/ # vi /root/.my.cnf
[client]
user=sys_mgmt
password=newpassword
default/:/ # exit
boot:~ #

5. (Optional) If you set a site-specific password for basic in step 2, update the
/etc/opt/cray/MySQL/my.cnf file with the new password.

a. Edit /etc/opt/cray/MySQL/my.cnf on the boot node.

boot:~ # vi /etc/opt/cray/MySQL/my.cnf
The following options will be passed to all MySQL clients
[client]
user=basic
password=newpassword

b. Edit /etc/opt/cray/MySQL/my.cnf in the shared root.

boot:~ # xtopview
default/:/ # vi /etc/opt/cray/MySQL/my.cnf
The following options will be passed to all MySQL clients
[client]
user=basic
password=newpassword
default/:/ # exit
boot:~ #

6. (Optional) If you set a site-specific password for mazama in step 2, update the
/etc/sysconfig/mazama file with the new password. In addition, update
the mazama MySQL account on the SMW to match.

a. Edit /etc/sysconfig/mazama on the boot node.

boot:~ # vi /etc/sysconfig/mazama
Type: string
Default: mazama
Config: ""
#
Default password for mazama user in the mazama database
#
passwd=newpassword

S–2393–31 111

Managing System Software for Cray XE and Cray XT™ Systems

b. Edit /etc/sysconfig/mazama in the shared root.

boot:~ # xtopview
default/:/ # vi /etc/sysconfig/mazama
Type: string
Default: mazama
Config: ""
#
Default password for mazama user in the mazama database
#
passwd=newpassword
default/:/ # exit
boot:~ #

c. To change the password for the MySQL accounts on the SMW, type the
following MySQL commands.

boot:~ # exit
smw:~# mysql -u root -p
mysql> set password for 'mazama'@'%' = password('newpassword');
mysql> set password for 'mazama'@'localhost' = password('newpassword');
mysql> set password for 'mazama'@'smw' = password('newpassword');
mysql> exit

d. Update /etc/sysconfig/mazama on the SMW.

smw:~# vi /etc/sysconfig/mazama
Type: string
Default: mazama
Config: ""
#
Default password for mazama user in the mazama database
#
passwd=newpassword

Make the following additional change, unless you are using a remote MySQL
server for CMS logs.

Type: string
Default: mazama
Default password for mazama user in the mazama Log database
#
log_passwd=newpassword

5.2.5 Assigning and Changing User Passwords

Because a Cray system has a read-only shared-root configuration, users cannot
execute the passwd command on a Cray system to change their password. If your
site has an external authentication service such as Kerberos or LDAP, users should
follow your site instructions to update their passwords. If your site does not have
external authentication set up, you can implement a manual mechanism, such as
having users change their password on an external system and you periodically
copying their entries in the external /etc/passwd, /etc/shadow, and
/etc/group files to the equivalent Cray system files in the default xtopview.

112 S–2393–31

Managing User Access [5]

Warning: Be careful to not overwrite Cray system accounts (crayadm,
cray_vnc and standard Linux accounts such as root) in the /etc/passwd,
/etc/shadow, and /etc/group files.

5.2.6 Logins That Do Not Require Passwords

All logins must have passwords; however, you can set up passwordless ssh by
creating an ssh key with a null passphrase and distributing that ssh key to another
computer.

While the key-based authentication systems such as OpenSSH are relatively secure,
convenience and security are often mutually exclusive. Setting up passphrase-less
ssh is convenient, but the security ramifications can be dire; if the local host is
compromised, access to the remote host will be compromised as well.

If you wish to use passphrase-less authentication, Cray encourages you to consider
using ssh-agent if available, or take other steps to mitigate risk.

5.3 Administering Accounts
Your Cray system supports several types of accounts:

• Boot node accounts allow only system administrator (crayadm) and superuser
(root) access.

• Service accounts are present on all service nodes.

• User accounts are available on all service nodes.

• Accounts on the SMW are managed by SMW local files. Only system
administrators (crayadm) and superuser (root) can access these accounts.

• Cray provides a Virtual Network Computing (VNC) account on the SMW (for
details, see Appendix D, Remote Access to the SMW on page 347).

5.3.1 Managing Boot Node Accounts

The only accounts that are supported on the boot node are root (superuser),
crayadm (administrator), and those for various services such as network time
protocol (NTP). The boot node does not support user accounts.

The boot node has an /etc/passwd file that is separate from the password file for
the rest of the system. For a list of default passwords, see Installing and Configuring
Cray Linux Environment (CLE) Software.

To modify configuration files, the administrator must become superuser by supplying
the root account password. It is recommended that sites configure and use sudo
rather than routinely use root direct login to administrate systems.

S–2393–31 113

Managing System Software for Cray XE and Cray XT™ Systems

5.3.2 Managing User Accounts on Service Nodes

User accounts are set up on the shared-root file system by using the xtopview
command. Your Cray system supports 16-bit and 32-bit user IDs (UIDs). The 16-bit
user IDs run 0-65535; that is 0-(216-1). The 32-bit user IDs run 0-(232-1), although
Cray systems are limited to a maximum of 65,536 user accounts, including those that
are predefined, such as root, crayadm, and mysql.

For more information about using the xtopview command, see Managing System
Configuration with the xtopview Tool on page 129, and the xtopview(8) man
page. For more information about mysql accounts, see Database Security on
page 185.

5.3.2.1 Adding a User or Group

To add additional accounts to the shared root for login nodes, use the groupadd and
useradd commands using the xtopview login class.

Example 52. Adding a group

To add the group xtusers with a gid of 5605, type:

boot:~ # xtopview -c login
class/login/:/ # groupadd -g 5605 xtusers
class/login/:/ # exit

The above groupadd command adds group xtusers to /etc/group.

Example 53. Adding a user account

This example adds a new user bobp to the group xtusers. The new user account,
bobp, has a user ID of 12645, a home directory bobp, and runs a /bin/bash login
shell. Then, as root, create the user's home directory and chown the directory to
the new user.

boot:~ # xtopview -c login
class/login/:/ # useradd -d /home/users/bobp -g 5605 -s /bin/bash -u 12645 bobp
class/login/:/ # exit
boot:~ # ssh root@login
login:~ # mkdir -p /home/bobp
login:~ # chown -R bobp:xtusers /home/bobp

After the account is created, use the passwd command to set a password in either
/etc/passwd or /etc/shadow.

For more information, see the useradd(8), passwd(1), and groupadd(8) man
pages.

5.3.2.2 Removing a User or Group

To remove a user account, first remove all files, jobs, and other references to the user.
You remove users and groups by using Linux commands /usr/sbin/userdel
and /usr/sbin/groupdel, respectively.

114 S–2393–31

Managing User Access [5]

Example 54. Removing a user account

To remove the user bobp and the user's home directory, type:

boot:~ # xtopview -c login
class/login:/ # userdel -r bobp
class/login:/ # exit
boot:~ # ssh root@login
login:~ # rm -rf /home/bobp
login:~ # exit

For more information, see the userdel(8) and groupdel(8) man pages.

5.3.2.3 Changing User or Group Information

To change user and group information, use Linux commands. For more information,
see the usermod(8) and groupmod(8) man pages.

5.3.2.4 Assigning Groups of Compute Nodes to a User Group

Use the /etc/opt/cray/sdb/attr.defaults file label attribute
to assign groups of compute nodes to specific user groups without the
need to partition the system. For more information, see Setting Node
Attributes Using the /etc/opt/cray/sdb/attr.xthwinv and
/etc/opt/cray/sdb/attr.defaults Files on page 192.

5.3.3 Setting Disk Quotas for a User on the Cray Local, Non-Lustre File
System

The quota RPM is installed by default. You can activate disk quotas for a
user on service nodes on the Cray local, non-Lustre file system. You must
activate two boot scripts, as discussed in the SLES README file located in
/usr/share/doc/packages/quota.

Note: When following the procedure in the SLES README file, use the
chkconfig command instead of the Yast2 run level editor to turn on quota and
quotad services; execute these chkconfig commands from xtopview in
the default view:

boot:~ # xtopview
default/:/ # chkconfig boot.quota on
default/:/ # chkconfig quotad on
default/:/ # exit

After the quota tools have been installed, for each user you can use standard Linux
quota commands to do the following:

• Enable quotas (quotaon command)

• Check quotas (quotacheck command)

• Set quotas (edquota command)

S–2393–31 115

Managing System Software for Cray XE and Cray XT™ Systems

When a quota is exceeded, the quotas subsystem warns users when they exceed their
allotted limit, but it allows some extra space for current work (that is, there is a hard
limit and a soft limit).

For more information, see the quotaon(8), quotacheck(8), and edquota(8)
Linux commands.

5.3.4 Associating Users with Projects

You can assign project names for users to submit jobs in order to determine project
charges. Project names can be up to 80 characters long.

To associate users with project names, add the following line to their individual login
scripts in their home directories:

set_account a_project_name

After accounts are set, users do not have to manually run the set_account
command at each login.

If your users run batch jobs, they can set a project code; for example, when using
PBS Professional, a user can set a project code with the ENVIRONMENT variable.
This associates the project code with the job in the accounting database. For more
information, see the documentation provided by your batch system vendor.

5.4 System-wide Default Modulefiles
The Base-opts modulefile loads two lists of module files: a default list and a
site-specified local list.

The default list differs between the SMW and the Cray system. On the SMW,
the file /etc/opt/cray/modules/Base-opts.default.SMW contains
the list of the CLE module files to load by default. On the Cray system, the file
/etc/opt/cray/modules/Base-opts.default contains the list of CLE
module files to load by default.

Additionally, all the module files listed in the file
/etc/opt/cray/modules/Base-opts.default.local are loaded. Edit
this file to make your site-specific changes.

The /etc/opt/cray/modules/Base-opts.default.local file initially
includes the admin-modules module file, which loads a full set of module files.
You do not need to manually load the admin-modules module file, unless the
you have removed it from the default list. The CLE installation process removes
admin-modules module file from the default list on login nodes.

116 S–2393–31

Managing User Access [5]

An example file,
/etc/opt/cray/modules/Base-opts.default.local.example,
is also provided. The example file is a copy of the
/etc/opt/cray/modules/Base-opts.default.local
file provided for an initial installation.

5.5 User Access to a Compiler Environment Using Modulefiles
The Modules software utility enables your users to modify their environment
dynamically by using modulefiles; modulefiles are metafiles containing Tool
Command Language (Tcl) code that is interpreted by the Modules software utility.

Each modulefile contains the information needed to configure the shell for an
application. After the Modules software utility is initialized, users can modify the
environment on a per-module basis using the module command, which interprets
modulefiles. Typically, modulefiles instruct the module command to alter or set
shell environment variables such as PATH, MANPATH, and others. The modulefile
can be shared by many users on a system, and users can have their own collection to
supplement or replace the shared modulefiles.

The Cray, PGI, GCC, PathScale, and Intel compilers are available to users through
the PrgEnv-cray, PrgEnv-pgi, PrgEnv-gnu, PrgEnv-pathscale, and
PrgEnv-intel modulefiles, respectively.

The modulefile, Base-opts loads the OS modules in a versioned set that is
provided with the CLE release. A user can have only one environment loaded
at a time; however, users can add and remove modulefiles from their current
environments.

Before beginning to compile programs, the user must verify that the target
architecture is set correctly. The target architecture is used by the compilers and
linker in creating executables to run on compute nodes. (The target architecture
is not necessarily the kernel currently running on compute nodes; as the system
administrator, at boot time, you determine the compute node kernel that will run.)

The CNL target is defined automatically at login. If any compute node is
running CNL, the target module xtpe-target-cnl is loaded and the
XTPE_COMPILE_TARGET environment is set to linux.

To support customer-specific needs, you can create your own modulefiles for a
product set for your users; for details, see Appendix F, Creating Modulefiles on
page 355.

For more information about the Modules software package, see the module(1) and
modulefile(4) man pages.

S–2393–31 117

Managing System Software for Cray XE and Cray XT™ Systems

5.6 Maintaining *rc.local Scripts
The prgenv RPM adds a section to the /etc/bash.bashrc.local and
/etc/csh.cshrc.local scripts, which set default modulefiles to be loaded.
##BEGIN and ##END tags delimit the contents of this section. These scripts have
clearly delimited sections for operating system changes. A CLE upgrade modifies
these sections in place, maintaining any local changes you have made outside of the
delimited block and, more importantly, the order of the blocks within the file.

5.7 Using the pam_listfile Module in the Shared Root
Environment

The Linux pam_listfile Pluggable Authentication Module (PAM) may be used
to maintain a list of authorized users. Using the pam_listfile PAM may also
help to reduce impacts on service nodes if users consume too many resources (see
Caution in Login Nodes on page 40).

The pam_listfile PAM requires that the file specified with the file= parameter
be a regular file. The usual approach of storing the file in the /etc directory does not
work in the shared-root environment of Cray systems: files in the /etc directory are
symbolic links, so the required file must be created in a directory other than the /etc
directory. For example, you can place it in persistent /var or another directory that
is not controlled by the shared root.

Example 55. Creating a pam_listfile list file

This example assumes you have created an empty pam_listfile called
/var/../pam_listfile_authorized_users_list. It adds authorized
users to it.

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -c login
class/login/:# vi /var/../pam_listfile_authorized_users_list

user1
user2
...

Example 56. Adding a line to /etc/pam.d/sshd to enable pam_listfile

Edit the pam.d/sshd file to include an alternative path for file=.

class/login/:# vi /etc/pam.d/sshd

auth required pam_listfile.so \
file=/var/.../pam_listfile_authorized_users_list

If you need nodes to have different pam_listfile list files, create the list files and
specialize the PAM configuration files (such as pam.d/sshd) to point to them.

118 S–2393–31

Managing User Access [5]

5.8 ulimit Stack Size Limit
The login environment defaults to the kernel default stack size limit. To set up the
default user environment to have an unlimited stack size resource limit, add the
following to /etc/profile.local in the shared root:

ulimit -Ss unlimited

5.9 Stopping a User's Job
This section describes how to stop a user's job.

5.9.1 Stopping a CNL Job Running in Interactive Mode

If the job is running on a CNL compute node in interactive mode (through aprun),
perform the following procedure.

Procedure 22. Stopping a CNL job running in interactive mode

• Use the apkill -signal apid command to send a signal to all processes that are
part of the specified application (apid); signal 15 (SIGTERM) is sent by default.

The signaled application must belong to the current user unless the user is a
privileged user. For more information, see the aprun(1) and apkill(1) man pages.

5.9.2 Stopping a Job Running Under a Batch System

To stop a job that is running under a batch system, see the documentation provided
by your batch system vendor.

Example 57. Stopping a job running under PBS Professional

If the job is running under PBS Professional, use the qdel command and name the
job.

To terminate job 104, type:

% qdel 104

S–2393–31 119

Managing System Software for Cray XE and Cray XT™ Systems

120 S–2393–31

Modifying an Installed System [6]

6.1 PBS Professional Licensing Requirements for Cray Systems
The licensing scheme for PBS Professional is based on FLEXnet and uses a central
license server to allow licenses to float between servers. The PBS server and
scheduler are run on the service database (SDB) node, therefore, network connectivity
must exist between the FLEXnet license server and the SDB node. For information
about network configuration options for PBS, see Appendix G, PBS Professional
Licensing for Cray Systems on page 359.

6.2 Disabling Secure Shell (SSH) on Compute Nodes
By default, the SSH daemon, sshd, is enabled on compute nodes. To disable sshd
follow this procedure.

Procedure 23. Disabling SSH daemon (sshd) on compute nodes

1. Edit the shell_bootimage_label.sh script used to prepare boot
images for the system set with the specified label; label the system set in
/etc/sysset.conf where your CLE release is installed.

smw:~ # vi /var/opt/cray/install/shell_bootimage_label.sh

2. Locate this section:

install rpms into service clone

Add these lines immediately before the above comment line:

if [[-f /opt/xt-images/${BOOTIMAGE}/compute/etc/init.d/rc3.d/S12sshd]]; then
rm /opt/xt-images/${BOOTIMAGE}/compute/etc/init.d/rc3.d/S12sshd
STATUS=$?
test ${STATUS} != 0 && abort "Removing link for SSH on compute node"

fi
install rpms into service clone

3. Run the shell_bootimage_label.sh script.

smw:~ # /var/opt/cray/install/shell_bootimage_label.sh

4. Execute the xtbootimg and xtcli boot_cfg commands that are suggested
by the script.

smw:~ # xtbootimg -L /opt/xt-images/xthostname-xtversion/compute/CNL0.load
-L /opt/xt-images/xthostname-xtversion/service/SNL0.load -c /raw1
smw:~ # xtcli boot_cfg update -i /raw1

S–2393–31 121

Managing System Software for Cray XE and Cray XT™ Systems

6.3 Modifying SSH Keys for Compute Nodes
The dropbear RPM is provided with the CLE release. Using dropbear SSH
software, you can supply and generate site-specific SSH keys for compute nodes
in place of the keys provided by Cray.

Procedure 24. Using dropbear to generate site-specific SSH keys

Follow these steps to replace the RSA and DSA/DSS keys provided by the
CLEinstall program.

1. Load the dropbear module.

crayadm@smw:~> module load dropbear

2. Create a directory for the new keys on the SMW.

crayadm@smw:~> mkdir dropbear_ssh_keys
crayadm@smw:~> cd dropbear_ssh_keys

3. To generate a dropbear-compatible RSA Key, type:

crayadm@smw:~/dropbear_ssh_keys> dropbearkey -t rsa -f ssh_host_rsa_key.db
Will output 1024 bit rsa secret key to 'ssh_host_rsa_key.db'
Generating key, this may take a while...
Public key portion is:
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgwCQ9ohUgsrrBw5GNk7w2H5RcaBGajmUv8XN6fxg/YqrsL4t5
CIkNghI3DQDxoiuC/ZVIJCtdwZLQJe708eiZee/tg5y2g8JIb3stg+ol/9BLPDLMeX24FBhCweUpfGCO6Jfm4
Xg4wjKJIGrcmtDJAYoCRj0h9IrdDXXjpS7eI4M9XYZ
Fingerprint: md5 00:9f:8e:65:43:6d:7c:c3:f9:16:48:7d:d0:dd:40:b7
crayadm@smw:~/dropbear_ssh_keys>

To generate a dropbear-compatible DSS Key, type:

crayadm@smw:~/dropbear_ssh_keys> dropbearkey -t dss -f ssh_host_dss_key.db
Will output 1024 bit dss secret key to 'ssh_host_dss_key.db'
Generating key, this may take a while...
Public key portion is:
ssh-dss AAAAB3NzaC1kc3MAAACBAMEkThlE9N8iczLpfg0wUtuPtPcpIs7Y4KbG3Wg1T4CAEXDnfMCKSyuCy
21TMAvVGCvYd80zPtL04yc1eUtD5RqEKy0h8jSBs0huEvhaJGHx9FzKfGhWi1ZOVX5vG3R+UCOXG+71wZp3LU
yOcv/U+GWhalTWpUDaRU81MPRLW7rnAAAAFQCEqnqW61bouSORQ52d+MRiwp27MwAAAIEAho69yAfGrNzxEI/
kjyDE5IaxjJpIBF262N9UsxleTX6F65OjNoL84fcKqlSL6NV5XJ5O00SKgTuVZjpXO913q9SEhkcI0Zy0vRQ8
H5x3osZZ+Bq20QWof+CtWTqCoWN2xvne0NtET4lg81qCt/KGRq1tY6WG+a01yrvunzQuafQAAACASXvs8h8AA
EK+3TEDj57rBRV4pz5JqWSlUaZStSQ2wJ3Oy1pIJIhKfqGWytv/nSoWnr8YbQbvH9k1BsyQU8sOc5IJyCFu7+
Exom1yrxq/oirfeSgg6xC2rodcs+jH/K8EKoVtTak3/jHQeZWijRok4xDxwHdZ7e3l2HgYbZLmA5Y=
Fingerprint: md5 cd:a0:0b:41:40:79:f9:4a:dd:f9:9b:71:3f:59:54:8b
crayadm@smw:~/dropbear_ssh_keys>

4. As root, copy the SSH keys to the boot image template.

Note: To make these changes for a system partition, rather than for
the entire system, replace /opt/xt-images/templates with
/opt/xt-images/templates-pN, where N is the partition number.

crayadm@smw:~/dropbear_ssh_keys> su root

122 S–2393–31

Modifying an Installed System [6]

For the RSA Key:

smw:/home/crayadm/dropbear_ssh_keys # cp -p ssh_host_rsa_key.db \
/opt/xt-images/templates/default/etc/ssh/ssh_host_rsa_key

For the DSA/DSS Key:

smw:/home/crayadm/dropbear_ssh_keys # cp -p ssh_host_dss_key.db \
/opt/xt-images/templates/default/etc/ssh/ssh_host_dss_key

5. Update the boot image to include these changes; follow the steps in Procedure
2 on page 68.

6.4 Configuring the System Environmental Data Collector
(SEDC)

To configure the System Environmental Data Collector (SEDC), which collects data
about internal cabinet temperatures, cooling system air pressures, critical voltages,
etc., see Using and Configuring System Environment Data Collections (SEDC).

6.5 Configuring the Shared-root File System on Service Nodes
CLE implements a shared-root file system where / is exported from the boot node
and is mounted as read-only on all service nodes. To overcome the restriction that all
nodes must have the same shared-root file system, /etc directories can be symbolic
links to unique directories that have the same structure as the default /etc directory
but contain modified files. These node-specific files reside in subdirectories in the
/.shared/base directory.

Specialization is the process of changing the link to a file in the /etc directory to
point to a unique file for one, a few, or all nodes. You can specialize one or more files
for an individual node or for a class (type) of nodes, such as login. You must be root
user to configure the shared-root file system in this manner. You can specialize files
when you install the system or at a later time.

The hierarchical structure of the specialized files is shown in Figure 2. Node
specialization is more specific than class specialization. Class specialization is more
specific than default specialization. Generally, about 98% of the service nodes use the
default version of the shared root.

S–2393–31 123

Managing System Software for Cray XE and Cray XT™ Systems

Figure 2. Types of Specialization

default
root directory

/rr

class
root directory

override /rr
default files

node
 root directory

override class
default files

 /etc
and other files

specific to
class

 /etc
and other files

/etc
and other files

specific to
node

 Default
Specialization

 Class
Specialization

 Node
Specialization

6.5.1 Specialization

You specialize files when you need to point to a unique version of a file in the /etc
directory rather than to the standard version of the file that is shared on all nodes.
For example, you might specialize files when differences exist in hardware, network
configuration, or boot scripts or when there are services that run on a single node.
You can also specialize files for a class of nodes that have a particular function, such
as login.

Generally, files are specialized as part of the installation process, but the process can
be done at any time. It is good practice to enter the xtopview shell (see Managing
System Configuration with the xtopview Tool on page 129) and then specialize
your files (see Specializing Files on page 132).

Table 4 lists files and directories that you can specialize by class and the reasons
to do so. Table 5 lists files and directories that you can specialize by node and the
reasons to do so. In these tables, * refers to "wildcard" characters that represent no
characters or any number of characters.

Table 4. File Specialization by Class

File or Directory Reason for Specialization

/etc/auditd.conf Cray Audit configured on login nodes.

/etc/audit.rules Cray Audit configured on login nodes.

/etc/cron* Different classes need custom crontabs.

/etc/fstab I/O nodes need to mount other file systems.

/etc/hosts.{allow,deny} Must restrict logins on login nodes.

124 S–2393–31

Modifying an Installed System [6]

File or Directory Reason for Specialization

/etc/init.d/boot.d/* Different classes have different start-up scripts enabled.

/etc/init.d/rc*/ Different classes have different start-up scripts enabled.

/etc/issue Different classes have different messages.

/etc/modprobe.conf I/O and login nodes have different hardware.

/etc/motd Different classes have different messages.

/etc/pam* Authentication is class-specific.

/etc/profile.d/* Login nodes have custom environments.

/etc/resolv.conf Hosts that interact with external servers need special
resolver configurations.

/etc/security/* Authorization and system limits are class-specific.

/etc/sysconfig/network/* I/O and login nodes need custom network configuration.

Table 5. File Specialization by Node

File or Directory Reason for Specialization

/etc/cron* Certain service nodes, such as sdb and syslog,
need custom crontabs.

/etc/ntp.conf A node that runs an NTP server needs a different
configuration than NTP clients.

/etc/sysconfig/network/* Each network node should have a different IP
address.

/etc/syslog-ng/syslog-ng.conf.in A node that runs a syslog server needs a different
configuration than syslog clients.

/etc/ssh/*key* Use when sharing keys across systems is
unacceptable.

6.5.2 Visible Shared-root File System Layout

Figure 3 is a detailed illustration of shared-root directory structure. The directory
current is a subdirectory of /rr. The current directory links to a time-stamped
directory (in this example 20090815). The timestamp indicates the date of the
software installation, not the date of the release.

S–2393–31 125

Managing System Software for Cray XE and Cray XT™ Systems

Figure 3. Shared-root Implementation

.sharedetc

class default
node

128

base

sbin usrlibbinroot

136

/rr

20090801 20090808 20040915 20090814 current20090815

mounts to /
.shared/node/

xxxx/etc

default

class

node

11

etcetc etc

Links Links Links

etc

Files

login io

Files

Files Files Files

Files

etc

etcetc

etcetc

11 128 136

126 S–2393–31

Modifying an Installed System [6]

Service nodes mount the /rr/current directory from the boot node as read-only
for use as their root file system. The visible file layout, that is, how it appears from
the node you are viewing it from, contains the following files:

/ Root file system

/root Equivalent to directory of the same name in /rr/current

/bin Equivalent to directory of the same name in /rr/current

/lib Equivalent to directory of the same name in /rr/current

/sbin Equivalent to directory of the same name in /rr/current

/usr Equivalent to directory of the same name in /rr/current

/etc Contains links to the shared-root files

/home Link to /ufs/home, a customer-specific location

/tmp Implemented through the tmpfs (in RAM)

/var Directory in the tmpfs and RAMFS but populated with skeleton
files if you do not have persistent /var

/proc Per-node pseudo-file system

/dev Per-node pseudo-file system implemented through the DEVFS

/ufs Mount point for the /ufs file system to be mounted from the ufs
node

6.5.3 How Specialization Is Implemented

The shared-root file system is implemented in the /.shared directory. Only the
/etc directory has been set up for specialization. Files in /etc are symbolic links
to files in /.shared/base. A specialized file is a unique version of the file in the
/.shared/base directory.

The /.shared directory contains four subdirectories: base, node, class, and
default. The node, class, and default directories are also known as view
directories, because you can look at the file system (with the xtopview command)
as if the view directory were /.

The base subdirectory also contains subdirectories called node, class, and
default. These are referred to as base directories. They contain files that are
specific to a certain node, specific to a class of nodes, or shared as the default among
all nodes. Under each of the base directories is a rooted directory hierarchy where
files are stored.

Example 58. Shared-root links

The path of the link shows the type of specialization for the file.

S–2393–31 127

Managing System Software for Cray XE and Cray XT™ Systems

Default specialization:

default/: # ls -la /etc/hosts
lrwxrwxrwx 1 root root 31 Dec 8 17:12 /etc/hosts -> /.shared/base/default/etc/hosts

Class specialization:

class/login/: # ls -la /etc/security/access.conf
lrwxrwxrwx 1 root root 46 Dec 8 17:14 /etc/security/access.conf -> \
/.shared/base/class/login/etc/security/access.conf

Node specialization:

node/128/: # ls -la /etc/resolv.conf
lrwxrwxrwx 1 root root 36 Dec 8 17:15 /etc/resolv.conf -> \
/.shared/base/node/128/etc/resolv.conf

6.5.4 Working with the Shared-root File System

CLE commands shown in Table 6 control and monitor the shared-root file system.
For more information, refer to the sections noted and the related man pages.

Table 6. Shared-root Commands

Command Function

xtopview View file layout from the specified node (see
Managing System Configuration with the
xtopview Tool on page 129).

xtopcommit Record file specialization before leaving
xtopview shell (see Updating Specialized Files
from within the xtopview Shell on page 131).

xtspec Specialize; create a directory structure that links
files to non-default files (see Specializing Files on
page 132).

xthowspec Determine the type of specialization (see
Determining which Files are Specialized on
page 134).

xtverifyshroot Verify that node-specialized and class-specialized
files are linked correctly (see Checking Shared-root
Configuration on page 136).

128 S–2393–31

Modifying an Installed System [6]

Command Function

xtverifyconfig Verify that start/stop links generated by tools such
as chkconfig are consistent across all views of
the shared root. You can configure xtopview to
invoke xtverifyconfig automatically; this
is the preferred usage. xtverifyconfig is
not intended for direct use. (See Verifying the
Coherency of /etc/init.d Files Across All
Shared Root Views on page 136.)

xtcloneshared Create a directory structure for a new node or class
based on an existing node or class (see Cloning a
Shared-root Hierarchy on page 136).

xtnce Modify the class of a node or display the current
class of a node (see Changing the Class of a Node
on page 137).

xtunspec Remove specialization (see Removing
Specialization on page 137).

xtoprlog Display RCS log information for shared root files
(see Displaying RCS Log Information for Shared
Root Files on page 138).

xtopco Check out (restore) RCS versioned shared root files
(see Checking Out an RCS Version of Shared Root
Files on page 139).

xtoprdump Print a list of file specifications that can be used as
the list of files to operate on an archive of shared
root file system files (see Listing Shared Root File
Specification and Version Information on page 139).

xtoparchive Perform operations on an archive of shared
root configuration files (see Performing Archive
Operations on Shared Root Files on page 140).

6.5.4.1 Managing System Configuration with the xtopview Tool

The xtopview tool manages the files in the shared-root file system. The command
runs on the boot node. You specify the view of the system you want, such as from a
particular node, when you invoke the command. The system appears as if you were
logged in directly to the location you specify; that is, the files that are specialized
for that node appear in the /etc directory. You can specify location by node ID
or hostname.

S–2393–31 129

Managing System Software for Cray XE and Cray XT™ Systems

Changes you make within xtopview are logged to a revision control system
(RCS) file. When you exit the shell, you are prompted to type a message about each
change you have made. Use the c command to comment the work you have done in
xtopview. This information is saved in the Revision Control System (RCS) files.

Tip: Use the -m msg option when starting an xtopview session to make similar
changes to multiple files.

The changed files and messages are then logged to create a history that is stored in
the /.shared/base directory by its specialization (node, class, or default) and
file name. For example, changes and messages relating to default-specialized file
/etc/spk are stored in /.shared/base/default/etc/RCS. Use standard
RCS tools, such as rlog, for retrieving information.

Warning: If you do not want the changes you have made in your xtopview
session, you must invoke any necessary commands to undo them. There is no
automatic way to back out.

Cray recommends that you configure the shared root from within the xtopview
shell. Only operations that take place within the xtopview shell are logged. If you
choose to use specialization commands outside of xtopview, they are not logged.
Logs reside in the /rr/current/.shared/log path relative to the boot node.

New files that are created from within the xtopview shell automatically have the
specialization that is associated with the view under which you are operating. You
do not have to specialize them. If you want a file to be used by all service nodes,
create the file in the default view.

Example 59. Starting the xtopview shell for a node

To start the xtopview shell for node 131, type:

boot:~ # xtopview -n 131
node/131/: #

Example 60. Starting the xtopview shell for a class of nodes

To start the xtopview shell for the login nodes, type:

boot:~ # xtopview -c login
class/login/: #

Note: If you are using the Emacs editor within the xtopview shell, you may see
the following message:

Symbolic link to RCS-controlled source file; follow link [yes or no]?

The symbolic link points to a real file in the /.shared directory. If you choose
yes, you edit the file directly. If you choose no, you replace the symbolic link
with a real file, but when you exit the xtopview shell, the file is moved to the
correct location and the link is recreated. The difference is that if you are editing
the real file, modifications appear immediately in other views.

130 S–2393–31

Modifying an Installed System [6]

Example 61. Starting the xtopview shell for a directory other than
/rr/current

To start the xtopview shell in a directory other than /rr/current, which is a
link to the most current directory, type:

boot:~ # xtopview -r /rr/20050901
default/:/ #

Example 62. Sample xtopview session

boot:~ # xtopview -n 3
node/3:/ # vi etc/fstab
. . . (edited the file)
node/3:/ # exit
exit
***File /etc/fstab was MODIFIED
operation on file /etc/fstab? (h for help):c
enter description, terminated with single '.' or end of file:
>changed the fstab file to add support for xyz.
boot:~ #

Generally, the xtopview command obtains node and class information from
the SDB. If the SDB is not running, you can direct xtopview to access the
/etc/opt/cray/sdb/node_classes file by selecting the -x option.

Example 63. Starting xtopview using node_classes for information

For nodes:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 4

For classes:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -c login

For more information, see the xtopview(8) man page.

6.5.4.2 Updating Specialized Files from within the xtopview Shell

When you exit the xtopview shell (see Managing System Configuration with the
xtopview Tool on page 129), changes you make are propagated to the shared-root
file system. Use the xtopcommit command to immediately update the shared root
with modifications you have made. You do not need to leave the xtopview shell.

S–2393–31 131

Managing System Software for Cray XE and Cray XT™ Systems

Example 64. Updating a file within xtopview shell

boot:~ # xtopview -n 3
node/3:/ # vi /etc/fstab
node/3:/ # xtopcommit
***File /etc/fstab was MODIFIED
operation on file /etc/fstab? (h for help):h
c:check-in - record changes in RCS file
d:diff - diff between file and backup RCS file
h:help - print this help message
m:message - set message for later checkins
M:nomsg - clear previously set message
l:list - list file info (ls -l)
s:skip - check-in file with empty log message
q:quit - check-in ALL files without querying

6.5.4.3 Specializing Files

Specifying a view with the xtopview command does not automatically specialize
existing files. To specialize existing files, you must use the specialization command
xtspec. The command runs on the boot node and creates a copy of a file that is
unique to a node or class. The xtspec command has the form:

xtspec [options] file

The command specializes the file at the location file and updates each node or class of
nodes that contains the newly specialized file if the new file is the most specialized
file in its view. For example, if a file is specialized by class io, for all nodes with
class io the symbolic links associated with this file are updated to point to the new
file unless they are already specialized by node (see Figure 2), which is a more
restrictive class.

If you are not within xtopview (see Managing System Configuration with the
xtopview Tool on page 129) when you specialize a file, you must specify the path
of the shared root with the -r option. In addition, the RCS log of changes has a
generic entry for each file.

Note: The xtspec command can be used only to specify files or directories
residing in or under the /etc directory. If you attempt to specify a file or
directory outside of the /etc directory, the command fails and an error message
is generated.

The -V option of the xtspec command specifies the location from which the file
that is to be the specialized file is copied. If the -V option is specified, the newly
specialized file is a duplicate of the file from the target's view. If the -V option is not
specified, the newly specialized file is a duplicate of the file from the administrator's
view.

132 S–2393–31

Modifying an Installed System [6]

If you do not specialize a file, the default specialization level is based on the current
view if you are running in the xtopview shell (see Managing System Configuration
with the xtopview Tool on page 129) or on the default view if you are operating
outside the xtopview shell.

Classes are defined in the node_classes file (see Class Name on page 60).

Procedure 25. Specializing a file by class login

1. To specialize the file /etc/dhcpd.conf by the class of login nodes, enter
the login shell.

boot:~ # xtopview -c login

2. Specialize the selected file.

class/login:~ # xtspec /etc/dhcpd.conf

3. Edit /etc/dhcpd.conf if it is the default copy of the file. If you have pointed
to a unique copy of the file in the xtspec command, omit this step.

As a result of this procedure, each node in the class login links to the "new"
/etc/dhcpd.conf file unless the node is already specialized by node.
For example, node 23 might already be specialized and link to a different
/etc/dhcpd.conf file.

Procedure 26. Specializing a file by node

1. To specialize the file /etc/motd for node 11, enter the login shell.

boot:~ # xtopview -n 11

2. Specialize the selected file.

node/11/: # xtspec /etc/motd
specializing motd from default to node/11

This procedure creates a node-specific copy of /etc/motd. That is, the directory
entry in the /etc file associated with node 11 is updated to point to the new
version of /etc/motd and the activity is logged.

Procedure 27. Specializing a file by node without entering xtopview

• Specify the root path and view mode.

boot:~ # xtspec -r /rr/current -V -n 11 /etc/motd

As a result of this procedure, the directory entry in the /etc file associated with
node 11 is updated to point to the new version of /etc/motd but the activity
is not logged.

S–2393–31 133

Managing System Software for Cray XE and Cray XT™ Systems

After you have specialized nodes, you can unspecialize them (see xtunspec
command, Removing Specialization on page 137) or determine how they are
specialized (see xthowspec command Determining which Files are Specialized
on page 134). You can also view or change the class type of a particular node (see
xtnce command, Changing the Class of a Node on page 137).

You can use specialization commands only from the boot node. You must be root
user to use them. For more information, see the shared_root(5) and xtspec(8)
man pages.

6.5.4.4 Determining which Files are Specialized

The CLE xthowspec command displays how the files in a specified path are
specialized. For example, you might use this command to examine restrictions on
login nodes.

The xthowspec command has the form:

xthowspec [options] path

You can display file specialization for all nodes or all classes, for a particular node
or class, for the default view, or for a selection of parameters. Inside the xtopview
shell, the xthowspec command acts on files in the current view by default.

Output has the form TYPE:ITEM:FILE:SPEC, where the fields are as follows:

TYPE Node, class or default.

ITEM The specific node or class type; this field is empty for the default
view.

FILE The file upon which the command is acting.

SPEC The specialization level of the file in the view; for example, for
default view this is default; for class view options are class or default.

Procedure 28. Finding files in /etc that are specialized by a node

Find all files specialized by node 11.

1. Enter the xtopview shell for the node.

boot:~ # xtopview -n 11

2. Use the xthowspec command for the node.

node/11/: # xthowspec -t node /etc
node:11:/etc/fstab.h:node
node:11:/etc/hostname:node

134 S–2393–31

Modifying an Installed System [6]

Procedure 29. Finding files in /etc that are specialized by class on a node

Find all files specialized by class.

1. Enter the xtopview shell for class.

boot:~ # xtopview -c login

2. Use the xthowspec command for the class and locate the node you are
interested in.

class/login:~ # xthowspec -t class /etc
node:1:/etc/crontab:class
node:11:/etc/crontab:class
...

Procedure 30. Finding specialization of a file on a node

Find the specialization of /etc/dhcpd.conf on node 11.

1. Enter the xtopview shell for the node.

boot:~ # xtopview -n 11

2. Use the xthowspec command for the file.

node/11/: # xthowspec /etc/dhcpd.conf
node:11:/etc/dhcpd.conf:default

Example 65. Finding nodes on which a file is specialized

To find the nodes that the /etc/fstab is specialized on, type:

boot:~ # xthowspec -H /etc/fstab
node:1/etc/fstab:default
node:33:/etc/fstab:node:

To examine specialization outside the xtopview shell, you must type the full path
name.

Example 66. Finding specialization of a file on a node without invoking the
xtopview shell

To find the specialization of /etc/fstab on node 102, type:

boot:~ # xthowspec -r /rr/current -n 102 /etc/fstab
node:102:/etc/fstab:node

Example 67. Finding specialization of files by class without invoking the
xtopview shell

To find all files that are specialized by class in /etc for all nodes, type:

boot:~ # xthowspec -r /rr/current -N -t class /etc
node:11:/etc/crontab:class
node:1:/etc/crontab:class

For more information, see the xthowspec(8) man page.

S–2393–31 135

Managing System Software for Cray XE and Cray XT™ Systems

6.5.4.5 Checking Shared-root Configuration

You can check the configuration of the shared-root file system with the
xtverifyshroot command:

xtverifyshroot [options] path

If there are node-specialized or class-specialized files, the command verifies that
they are linked correctly. If a problem is detected with a file, it is reported but not
corrected.

Note: You must be in the xtopview shell to use the xtverifyshroot
command.

For more information, see the xtverifyshroot(8) man page.

6.5.4.6 Verifying the Coherency of /etc/init.d Files Across All Shared Root Views

The xtopview command can be configured to invoke the xtverifyconfig
utility automatically to resolve potential inconsistencies in the mechanism used to
configure various CLE software services on or off.

Note: This is the preferred usage; the xtverifyconfig utility is not intended
for direct use.

When you use the chkconfig utility to configure services on or off, a collection
of encoded symbolic links are generated to determine which system services are
started or shut down and in what order. The chkconfig utility does not account
for the multiple levels of specialization within the shared root when xtopview is
used. As a result, chkconfig occasionally produces a startup or shutdown order
that violates dependencies between services when all levels of specialization are taken
into account. To resolve this problem, you can configure xtopview to invoke the
xtverifyconfig verification utility upon exit. The xtverifyconfig utility
will detect inconsistencies and may rename startup and shutdown links to maintain
the proper dependency ordering. The /.shared/log log file in the shared root
contains a log of modifications xtverifyconfig makes to the shared root.

The xtopview command will run xtverifyconfig upon exit if the
XTOPVIEW_VERIFY_INITD environment variable is non-zero when xtopview
is invoked, or if the XTOPVIEW_VERIFY_INITD variable is set to non-zero in the
/etc/sysconfig/xt file on the boot node. By default, this parameter is not
included in the configuration file and this feature is not enabled.

For more information, see the xtverifyconfig(8) man page.

6.5.4.7 Cloning a Shared-root Hierarchy

You can create a directory structure for a new node or class name in the shared-root
hierarchy based on an existing node or class with the xtcloneshared command.
For more information, see the xtcloneshared(8) man page.

136 S–2393–31

Modifying an Installed System [6]

6.5.4.8 Changing the Class of a Node

If you remove nodes, for example, you may need to change the class of the remaining
nodes. If you add a login node, you must add it to class login. The xtnce
command displays the current class of a node or modifies its class. The command
has the form:

xtnce [options] nodename

Example 68. Finding the class of a node

To identify the class of node 132, type:

crayadm@boot:~> xtnce 132
132:login

Example 69. Adding a node to a class

Use the xtnce command for the node and specify the class it should be:

crayadm@boot:~> xtnce -c login 104

You also need to change /etc/opt/cray/sdb/node_classes on the boot
node so the data is preserved across a boot; this is because the node_classes file
is used to initialize the SDB data on the next boot, and the boot node file cannot be
updated from within xtopview.

For more information, see the xtnce(8) man page.

Note: The xtnodeclasses2db command inserts the node-class list into the
database, but it does not make any changes to the shared root.

6.5.4.9 Removing Specialization

If you specialized a node or class of nodes and, for example, you want to remove
unique start-up scripts from them, you can remove this specialization with the
xtunspec command:

xtunspec [options] path

You can unspecialize files for all nodes and classes (default), for a specified class of
nodes or for a particular node. Cray strongly recommends that you unspecialize files
from within the xtopview shell; if you do not unspecialize your files from within
the xtopview shell (see Managing System Configuration with the xtopview Tool
on page 129), you must also specify the path for the shared root.

Note: You can only use xtunspec on the boot node.

Example 70. Removing node specialization

To remove all versions of /etc/fstab specialized by node, type:

boot:~ # xtopview
default/:/ # xtunspec -N /etc/fstab

S–2393–31 137

Managing System Software for Cray XE and Cray XT™ Systems

Each node is updated so that it uses a version of /etc/fstab based on its class, or
if that is not available, based on the default version of /etc/fstab.

Example 71. Removing class specialization

To remove all versions of /etc/fstab that are specialized by, for example, class
I/O (io), type:

boot:~ # xtopview
default/:/ # xtunspec -c io /etc/fstab

I/O nodes that link to the class-specialized version of the file are changed to link
to the default version of /etc/fstab. However, I/O nodes that already link
to node-specialized versions of /etc/fstab are unchanged. To remove a file
specialized by node, you must use the xtunspec command on the node (see
Example 70).

For more information, see the xtunspec(8) man page.

6.5.4.10 Displaying RCS Log Information for Shared Root Files

The xtoprlog command displays Revision Control System (RCS) log information
for shared root files. Specify the file name using the required filename command-line
argument. Execute the xtoprlog command from any service node.

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

For more information, see the xtoprlog(8) man page.

Example 72. Printing the latest version of a file

Use the xtoprlog --version option to print the latest version (revision) number
of a specified file:

crayadm@nid00004:~ xtoprlog --version /etc/fstab
1.7

Example 73. Printing the RCS log for /etc/fstab in the node 3 view

Use the xtoprlog -n option to specify the /etc/fstab node view RCS log
to print:

crayadm@nid00004:~ xtoprlog -n 3 /etc/fstab
RCS file: /.shared/base/node/3/etc/RCS/fstab,v
Working file: /.shared/base/node/3/etc/fstab
head: 1.6
...

138 S–2393–31

Modifying an Installed System [6]

Example 74. Displaying differences between two versions of the /etc/fstab
file

Use the xtoprlog -x option with the xtoprlog -r option to display the
differences between the current version of /etc/fstab and version 1.3:

crayadm@nid00004:~ xtoprlog --x -r 1.3 /etc/fstab
===
RCS file: /.shared/base/default/etc/RCS/fstab,v
retrieving revision 1.3
diff -r1.3 /.shared/base/default/etc/fstab
1,3c1,4
< # Default view fstab file 1.3
---> # Default view fstab file 1.7

6.5.4.11 Checking Out an RCS Version of Shared Root Files

Use the xtopco command to check out a version of shared root files. The xtopco
command should be run on the boot node using the xtopview utility in the default
view.

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

Example 75. Checking out a version 1.2 copy of /etc/fstab

Use the xtopco -r option to specify the version of the file to check out:

boot:~ # xtopview
default/:/ # xtopco -r 1.2 /etc/fstab

Example 76. Recreating the file link for /etc/fstab to the current view's
/etc/fstab file

To recreate the file link only, use the xtopco --link option:

boot:~ # xtopview
default/:/ # xtopco --link /etc/fstab

For more information, see the xtopco(8) man page.

6.5.4.12 Listing Shared Root File Specification and Version Information

Using RCS information, combined with the xtopview specialization information,
xtoprdump prints a list of file specifications that can be used as the list of files to
operate on an archive of shared root file system files. The xtoprdump command
should be invoked using the xtopview utility unless the --root option is
specified.

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

S–2393–31 139

Managing System Software for Cray XE and Cray XT™ Systems

Example 77. Printing specifications for login class specialized files

Use the xtoprdump -n option to specify the node view; set to all for all nodes:

boot:~ # xtopview
default/:/ # xtoprdump -n all

Example 78. Printing specifications for files modified in the default view and
include any warning messages

The following xtoprdump command prints specifications for modified files
(-m option) in the default view (-d option), including warning messages (-w option):

boot:~ # xtopview
default/:/ # xtoprdump -m -d -w

For more information, see the xtoprdump(8) man page.

6.5.4.13 Performing Archive Operations on Shared Root Files

Use the xtoparchive command to perform operations on an archive of shared root
configuration files. Run the xtoparchive command on the boot node using the
xtopview utility in the default view. The archive is a text-based file similar to a tar
file and is specified using the required archivefile command-line argument. The
xtoparchive command is intended for configuration files only. Binary files will
not be archived. If a binary file is contained within a specification file list, it will be
skipped and a warning will be issued.

The scope of this tool is limited to identification and manipulation of /etc
configuration data within the shared root. Configuration files on the boot root file
system or on the SMW are not managed by this utility.

Example 79. Adding files specified by specifications listed in specfile to an
archive file

Use the following xtoparchive command to add files specified by the
specifications listed in specfile to the archive file archive.042208; create the
archive file if it does not already exist:

boot:~ # xtopview
default/:/ # xtoparchive -a -f specfile archive.042208

Example 80. Listing specifications for files currently in the archive.042208
archive file

Use the xtoparchive -l command to list specifications for files currently in the
archive file archive.042208:

boot:~ # xtopview
default/:/ # xtoparchive -l archive.042208

For more information, see the xtoparchive(8) man page.

140 S–2393–31

Modifying an Installed System [6]

6.5.5 Logging Shared-root Activity

All specialization activity is logged in the log file /.shared/log, which tracks
additions, deletions, and modifications of files. To view the details of your changes,
you must access the RCS logs that were created during the xtopview session.

Note: If you have exited xtopview with Ctrl-c, you do not log the operations
you performed within the shell, The changes to the system are present nonetheless.
This means that if you want to back out of changes, it is not sufficient to exit
xtopview. You must submit the commands to undo what you have done.

6.6 Configuring Optional RPMs in the CNL Boot Image
You can configure which optional RPMs are installed into the CNL boot image
for your system in one of two ways. First, several parameters are available in
the CLEinstall.conf file to control whether specific RPMs are included
during installation or upgrade of your system software. When you edit
CLEinstall.conf prior to running CLEintall, set the CNL_ parameters to
either yes or no to indicate which optional RPMs should be included in your CNL
compute node boot images. For example, to include all optional RPMs, change the
following lines.

CNL_audit=yes
CNL_csa=yes
CNL_dvs=yes
CNL_ntpclient=yes
CNL_rsip=yes
CNL_cpr=yes

The second method is to add or remove specific RPMs by editing the
/var/opt/cray/install/shell_bootimage_label.sh command used
when preparing boot images for CNL compute nodes. Change the settings for these
parameters to y or n to indicate which optional RPMs should be included. For
example, to include the optional Cray Audit, CSA, DVS, and RSIP RPMs, change
the following lines.

CNL_AUDIT=y
CNL_CSA=y
CNL_DVS=y
CNL_RSIP=y

6.7 Configuring Cray Enhanced Linux Security Features
This section describes Cray extensions to Linux security auditing utilities and the
cray_pam PAM module for logging failed login attempts.

S–2393–31 141

Managing System Software for Cray XE and Cray XT™ Systems

6.7.1 Security Auditing and Cray Audit Extensions

Cray Audit is a set of Cray specific extensions to standard Linux security auditing.
When the Cray Audit is configured, separate logs are generated for each audited node
on the Cray system. Cray specific utilities simplify administration of auditing options
and log files across a large number of nodes. For more information about standard
Linux security auditing, see the following website: http://www.novell.com/linux.

Cray Audit includes the following components:

• Cluster option to enable Cray Audit. The /etc/auditd.conf includes a
Cray specific option called cluster which, when configured on, will enable
Cray Audit extensions. The standard Linux auditd daemon has been enhanced
to implement this configuration option. The clustered configuration provides a
mechanism to collect audit data on many nodes and store the data in a central
location. The configuration script creates a separate directory for each node and
names and manages the auditing log file in the same way as on a single-node
system. This includes tracking log size, responding to size-related events, and
rotating log files.

!
Caution: If you run Linux security auditing on a Cray system without Cray
Audit extensions, auditing data from the various nodes collide and generate a
corrupt audit log. Because of this, Cray Audit extensions are enabled by default
when Linux auditing is configured on.

Note: The cluster option should not be used when auditing a boot node.

• xtauditctl command. The xtauditctl command distributes auditctl
administrative commands to compute nodes on the system. This command
traverses a list of all running compute nodes and invokes commands that deliver a
signal to the audit daemons on each node. This utility allows an administrator to
apply configuration changes without having to restart every node in the system.
For more information see the xtauditctl(8) and auditctl(8) man pages.

• xtaumerge command. The xtaumerge command merges clustered audit
logs into a single log file. When you use this tool to generate a single audit file,
you can also use Linux audit tools to report on and analyze system-wide audit
data. An additional benefit is that xtaumerge maintains compatibility with the
Linux audit tools; you can move audit data to another Linux platform for analysis.
For more information see the xtaumerge(8) man page.

Note: When you run xtaumerge, the resulting merged data stream loses one
potentially useful piece of information: the node name of the node on which
the event originated. In order to maintain compatibility with standard Linux
utilities, the merged audit log does not include this information. Use Linux
audit utilities directly on the per-node log files to find a specific record if you
require that level of information.

142 S–2393–31

http://www.novell.com/linux

Modifying an Installed System [6]

• ALPS interface to security auditing. For Cray systems with CNL compute
nodes, the Application Level Placement Scheduler (ALPS) supports security
auditing functionality. ALPS instantiates an application on behalf of the user on
specific compute nodes. After instantiating the application, the ALPS interface
calls the auditing system to begin auditing the application. At job start and end,
auditing system utilities write the audit record to the audit log.

By default, Cray Audit extensions are enabled but will have no impact until Linux
security auditing is configured on. Linux security auditing is configured off by
default. Follow Procedure 31 on page 144 to configure Cray Audit and Linux
security auditing to audit boot, login and compute nodes. This procedure will
direct you to edit the /etc/auditd.conf and /etc/audit.rules files
and define your audit configuration based on site-specific requirements. The file
/usr/share/doc/packages/audit/sample.rules describes a sample
rule set. Once you have established these configuration files, you can make temporary
changes to your audit configuration using xtauditctl and standard Linux
auditctl command options. For more information see the xtauditctl(8) and
auditctl(8) man pages.

Cray recommends that you configure auditing to use a Lustre file system to hold the
audit log files. Follow Procedure 31 on page 144, to specify the Lustre file system
by setting log_file = lustre_pathname. For more information on specific Lustre
file system requirements to run Cray Audit, see Lustre File System Requirements for
Cray Audit on page 146.

S–2393–31 143

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 31. Configuring Cray Audit

By default, Linux security auditing is disabled and Cray Audit extensions are enabled.
Follow these steps to define your site-specific auditing rules and enable standard
Linux auditing.

Note: To make these changes for a system partition, rather than for
the entire system, replace /opt/xt-images/templates with
/opt/xt-images/templates-pN, where N is the partition
number. Also, replace /opt/xt-images/xthostname-XT_version with
/opt/xt-images/xthostname-XT_version-pN.

1. Follow these steps to edit the auditing configuration files in the compute node
image and enable auditing on CNL compute nodes.

a. Copy the auditd.conf and audit.rules configuration files to the
template directory so that modifications are retained when new boot images
are created in the future.

smw:~# cp /opt/xt-images/xthostname-XT_version/compute/etc/auditd.conf \
/opt/xt-images/templates/default/etc/auditd.conf
smw:~# cp /opt/xt-images/xthostname-XT_version/compute/etc/audit.rules \
/opt/xt-images/templates/default/etc/audit.rules

b. Edit /opt/xt-images/templates/default/etc/auditd.conf
on the SMW and set the log_file parameter. For example, if the mount
point for your Lustre file system is mylusmnt and you want to place audit
logs in a directory called auditdir, type the following commands.

smw:~# vi /opt/xt-images/templates/default/etc/auditd.conf
log_file = /mylusmnt/auditdir/audit.log

Warning: If you run auditing on compute nodes without configuring the
audit directory, audit records that are written to the local ram-disk could
cause the ram-disk to fill.

c. Edit /opt/xt-images/templates/default/etc/audit.rules
on the SMW. Change this file to set site-specific auditing rules for the
compute nodes. At a minimum, you should set the -e option to 1.

smw:~# vi /opt/xt-images/templates/default/etc/audit.rules

Make your changes after the following line; for example:

Feel free to add below this line. See auditctl man page
-e 1

d. Create the following symbolic link.

smw:~# mkdir -p -m 755 /opt/xt-images/templates/default/etc/init.d/rc3.d
smw:~# cd /opt/xt-images/templates/default/etc/init.d/rc3.d
smw:/opt/xt-images/templates/default/etc/init.d/rc3.d # ln -s ../auditd S12auditd

144 S–2393–31

Modifying an Installed System [6]

e. If you set CNL_audit=yes in CLEinstall.conf before you ran the
CLEinstall program, update the boot image by following the steps in
Procedure 2 on page 68.

Otherwise, you must first edit the
/var/opt/cray/install/shell_bootimage_label.sh script
and set CNL_AUDIT=y and then update the boot image following the
steps in Procedure 2 on page 68.

2. Follow these steps to enable and configure auditing on login nodes.

a. Log on to the boot node and use the xtopview command to access all
login nodes by class.

smw:~# ssh root@boot
boot:~ # xtopview -c login -m "configuring audit files"

b. Edit /etc/auditd.conf and set the log_file parameter. For example,
if your Lustre file system is called mylustrefs and you want to place audit
logs in a directory called auditdir, type the following commands.

class/login/:# vi /etc/auditd.conf
log_file = /mylustrefs/auditdir/audit.log

c. Edit the /etc/audit.rules file to set site-specific auditing rules for the
login nodes. At a minimum, you should set the -e option to 1.

class/login/:# vi /etc/audit.rules

Make your changes after the following line; for example:

Feel free to add below this line. See auditctl man page
-e 1

d. Specialize these files to the login class.

class/login/:# xtspec -c login /etc/auditd.conf
class/login/:# xtspec -c login /etc/audit.rules

e. Exit xtopview.

class/login/:# exit

3. You must configure auditing on the boot node to use standard Linux auditing.
Follow these steps to turn off Cray audit extensions for the boot node. Configure
the boot node to use the default log_file parameter in the auditd.conf
file and set the cluster entry to no.

a. While logged on to the boot node, edit the /etc/auditd.conf file.

boot:~ # vi /etc/auditd.conf
log_file = /var/log/audit/audit.log
cluster = no

S–2393–31 145

Managing System Software for Cray XE and Cray XT™ Systems

b. Edit the /etc/audit.rules file to set site-specific auditing rules for the
boot node. At a minimum, you should set the -e option to 1.

boot:~ # vi /etc/audit.rules

Make your changes after the following line; for example:

Feel free to add below this line. See auditctl man page
-e 1

c. Configure the audit daemon to start on the boot node.

boot:~ # chkconfig --force auditd on

4. Create the log file directory. Log into a node that has the Lustre file system
mounted and type the following commands:

login:~# mkdir -p /mylustrefs/auditdir
login:~# chmod 700 /mylustrefs/auditdir

5. Edit the boot automation file to configure your system to start the Cray audit
daemon on login nodes by invoking /etc/init.d/auditd start on each
login node.

6.7.1.1 Lustre File System Requirements for Cray Audit

The audit system stores audit data in a directory tree structure that uses a naming
scheme based on the directory name provided by the log_file parameter. For
example, if you set log_file to /lus/audit/audit.log, the auditing system stores
audit data in files named /lus/audit/node_specific_path/audit.log, where
node_specific_path is a directory structure generated by Cray Audit.

Warning: If you run auditing on compute nodes without configuring the audit
directory, audit records are written to the local ram-disk which may consume all
your resources and cause data loss.

With the exception of the boot node, each audited node in the system must have
access to the Lustre file system that contains the audit directory. Because each node
has its own audit log file, sufficient space must be made available to store audit data.
You configure the log size in the /etc/auditd.conf file. The file system should
be large enough to hold at least twice the maximum configured log size, multiplied by
the number of log files retained and the number of audited nodes, plus enough space
to avoid triggering out of space recovery actions. The following formula can be used
to estimate a reasonable file system size:

(2 * num_logs * max_log_file * nnodes) + space_left

146 S–2393–31

Modifying an Installed System [6]

Where:

num_logs is the number of log files kept in rotation.

max_log_file is the maximum size of a log file in megabytes.

nnodes is the number of audited nodes

space_left is the amount of space in megabytes required to avoid out of space
recovery actions.

The num_logs, max_log_file, and space_left parameters are set in the
/etc/auditd.conf file. The default /etc/auditd.conf file is shown in
Example 81.

Note: This formula assumes that you use the default destination for the output of
xtaumerge, placing the merged log file and the per-node log files on the same
file system. This roughly doubles the size of the disk space needed to hold the
audit trail.

Example 81. Default /etc/auditd.conf File

#
This file controls the configuration of the audit daemon
#

log_file = /var/log/audit/audit.log
cluster = yes
log_format = RAW
priority_boost = 3
flush = INCREMENTAL
freq = 20
num_logs = 4
#dispatcher = /usr/sbin/audispd
disp_qos = lossy
max_log_file = 5
max_log_file_action = ROTATE
space_left = 75
space_left_action = SYSLOG
action_mail_acct = root
admin_space_left = 50
admin_space_left_action = SUSPEND
disk_full_action = SUSPEND
disk_error_action = SUSPEND

S–2393–31 147

Managing System Software for Cray XE and Cray XT™ Systems

6.7.1.2 System Performance Considerations for Cray Audit

With auditing turned off there is no performance impact from this feature. With
auditing turned on, system performance is impacted. The performance costs for
running Linux audit and the associated Cray extensions vary greatly, depending
on the site-defined audit event selection criteria. Auditing of judiciously chosen
events, for example login or su attempts, do not impact overall system performance.
However, auditing of frequently used system calls has a negative impact on system
performance because each occurrence of an audited system call triggers a file system
write operation to the audit log.

It is the responsibility of the administrator or auditor to design the site security policy
and configure auditing to minimize this impact.

6.7.2 Using the cray_pam PAM to Log Failed Login Attempts

The cray_pam module is a Pluggable Authentication Module (PAM) that, when
configured, provides information to the user at login time about any failed login
attempts since their last successful login. The module provides:

• Date and time of last successful login

• Date and time of last unsuccessful login

• Total number of unsuccessful logins since the user's last successful login

Cray recommends that you configure login failure logging on all service nodes. The
RPMs are installed by default on the boot root and shared root file systems.

To use this feature, you must configure the pam_tally and cray_pam PAM
modules. The PAM configuration files provided with the CLE software allow you to
manipulate a common set of configuration files that will be active for all services.

The cray_pam module requires an entry in the PAM common-auth and
common-session files or an entry in the PAM auth section and an entry in
the PAM session section of any PAM application configuration file. Use of the
common files is typically preferable so that other applications such as su also report
failed login information; for example:

crayadm@boot:~> su -
2 failed login attempts since last login.
Last failure Thu May 8 11:41:20 2008 from smw.
boot:~ #

148 S–2393–31

Modifying an Installed System [6]

For each log in attempt, a per-user counter is updated. When a successful log
in occurs, the statistics are displayed and the counter is cleared. The default
location of the pam_tally counter file is /var/log/faillog. Additionally,
cray_pam uses a temporary directory, by default, /var/opt/cray/faillog,
to store information about the users. Change these defaults by editing
/etc/opt/cray/pam/faillog.conf and by using the file= option for each
pam_tally and cray_pam entry. You can find an example faillog.conf file
in /opt/cray/pam/xtrelease-xtversion/etc.

You can configure a number of nodes to share information by modifying the default
location for these directories to use a common set of directories, writable to all nodes.
Edit /etc/opt/cray/pam/faillog.conf to reflect an alternate, root-writable
directory. Configure pam_tally to save tally information in an alternate location
using the file= option; each entry for cray_pam must also include the file=
option to specify the alternate location.

Limitations:

• If a login attempt fails, cray_pam in the auth section creates a temporary file;
but because the login attempt failed, the session section is not called and, as a
result, the temporary file is not removed. This is harmless because the file will be
overwritten at the next login attempt and removed at the next successful login.

• Logins that occur outside of the PAM infrastructure will not be noted.

• Host names are truncated after 12 characters. This is a limitation in the underlying
faillog recording.

• The cray_pam module requires pam_tally to be configured.

Note: For additional information on using the cray_pam PAM module, see the
pam(8) and pam_tally(8) man pages.

Procedure 32. Configuring cray_pam to log failed login attempts

1. Edit the /etc/pam.d/common-auth, /etc/pam.d/common-account,
and /etc/pam.d/common-session files on the boot node.

Note: In these examples, the pam_faillog.so and pam.tally.so
entries can include an optional file=/path/to/pam_tally/counter/file argument
to specify an alternate location for the tally file.

Example 82 shows these files after they have been modified to report failed
login using an alternate location for the tally file.

a. Edit the /etc/pam.d/common-auth file and add the following lines
as the first and last entries:

boot:~ # vi /etc/pam.d/common-auth
auth required pam_faillog.so [file=alternatepath] (as the FIRST entry)
auth required pam_tally.so [file=alternatepath] (as the LAST entry)

S–2393–31 149

Managing System Software for Cray XE and Cray XT™ Systems

Your modified /etc/pam.d/common-auth file should look like this:

#%PAM-1.0
#
This file is autogenerated by pam-config. All changes
will be overwritten.
#
Authentication-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authentication modules that define
the central authentication scheme for use on the system
(e.g., /etc/shadow, LDAP, Kerberos, etc.). The default is to use the
traditional Unix authentication mechanisms.
#
auth required pam_faillog.so
auth required pam_env.so
auth required pam_unix2.so
auth required pam_tally.so

b. Edit the /etc/pam.d/common-account file and add the following line
as the last entry:

boot:~ # vi /etc/pam.d/common-account
account required pam_tally.so [file=alternatepath]

Your modified /etc/pam.d/common-account file should look like this:

#%PAM-1.0
#
This file is autogenerated by pam-config. All changes
will be overwritten.
#
Account-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authorization modules that define
the central access policy for use on the system. The default is to
only deny service to users whose accounts are expired.
#
account required pam_unix2.so
account required pam_tally.so

c. Edit the /etc/pam.d/common-session file and add the following line
as the last entry:

boot:~ # vi /etc/pam.d/common-session
session optional pam_faillog.so [file=alternatepath]

150 S–2393–31

Modifying an Installed System [6]

Your modified /etc/pam.d/common-session file should look like this:

#%PAM-1.0
#
This file is autogenerated by pam-config. All changes
will be overwritten.
#
Session-related modules common to all services

#
This file is included from other service-specific PAM config files,
and should contain a list of modules that define tasks to be performed
at the start and end of sessions of *any* kind (both interactive and
non-interactive). The default is pam_unix2.
#
session required pam_limits.so
session required pam_unix2.so
session optional pam_umask.so
session optional pam_faillog.so

2. Copy the edited files to the shared root by using xtopview in the default view.

boot:~ # cp -p /etc/pam.d/common-auth /rr/current/software
boot:~ # cp -p /etc/pam.d/common-account /rr/current/software
boot:~ # cp -p /etc/pam.d/common-session /rr/current/software
boot:~ # xtopview -m "configure login failure logging PAM"
default/:/ # cp -p /software/common-auth /etc/pam.d/common-auth
default/:/ # cp -p /software/common-account /etc/pam.d/common-account
default/:/ # cp -p /software/common-session /etc/pam.d/common-session

3. Exit xtopview.

default/:/ # exit
boot:~ #

Example 82. Modified PAM configuration files configured to report failed login
by using an alternate path

If you configure pam_tally to save tally information in an alternate location by
using the file= option, each entry for cray_pam must also include the file=
option to specify the alternate location.

Your modified /etc/pam.d/common-auth file should look like this:

#
/etc/pam.d/common-auth - authentication settings common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authentication modules that define
the central authentication scheme for use on the system
(e.g., /etc/shadow, LDAP, Kerberos, etc.). The default is to use the
traditional Unix authentication mechanisms.
#
auth required pam_faillog.so file=/ufs/logs/tally.log
auth required pam_env.so
auth required pam_unix2.so
auth required pam_tally.so file=/ufs/logs/tally.log

S–2393–31 151

Managing System Software for Cray XE and Cray XT™ Systems

Your modified /etc/pam.d/common-account file should look like this:

#
/etc/pam.d/common-account - authorization settings common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authorization modules that define
the central access policy for use on the system. The default is to
only deny service to users whose accounts are expired.
#
account required pam_unix2.so
account required pam_tally.so file=/ufs/logs/tally.log

Your modified /etc/pam.d/common-session file should look like this:

#
/etc/pam.d/common-session - session-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of modules that define tasks to be performed
at the start and end of sessions of *any* kind (both interactive and
non-interactive). The default is pam_unix2.
#
session required pam_limits.so
session required pam_unix2.so
session optional pam_faillog.so file=/ufs/logs/tally.log

152 S–2393–31

Modifying an Installed System [6]

6.8 Configuring cron Services
Optional: Configuring cron services is optional on CLE systems.

The cron daemon is disabled, by default, on the shared root file system and the boot
root. It is enabled, by default, on the SMW. Use standard Linux procedures to enable
cron on the boot root, following Procedure 33 on page 153.

On the shared root, how you configure cron for CLE depends on whether you
have set up persistent /var. If you have persistent /var follow Procedure 34 on
page 153; if you have not set up persistent /var, follow Procedure 35 on page 154.

The /etc/cron.* directories include a large number of cron scripts. On a
new CLE system, the CLEinstall program disables these scripts and you must
manually enable any scripts you want to use.

Procedure 33. Configuring cron for the SMW and the boot node

Note: By default, the cron daemon on the SMW is enabled and this procedure is
required only on the boot node.

1. Log on to the target node as root and determine the current configuration status
for cron.

On the on the SMW:

smw:~# chkconfig cron
cron on

On the boot node:

boot:~ # chkconfig cron
cron off

2. Use the chkconfig command to configure the cron daemon to start. For
example, to enable cron on the boot node, type the following command:

boot:~ # chkconfig --force cron on

The cron scripts shipped with the Cray customized version of SLES are located
under /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly, and
/etc/cron.monthly. The system administrator can enable these scripts by using
the chkconfig command. However, if you do not have a persistent /var, Cray
recommends that you follow Procedure 35.

Procedure 34. Configuring cron for the shared root with persistent /var

Use this procedure for service nodes by using the shared root on systems that are set
up with a persistent /var file system.

1. Invoke the command in the default view to enable the cron daemon.

boot:~ # xtopview -m "configuring cron"
default/:/ # chkconfig --force cron on

S–2393–31 153

Managing System Software for Cray XE and Cray XT™ Systems

2. Examine the /etc/cron.hourly, /etc/cron.daily,
/etc/cron.weekly, and /etc/cron.monthly directories and change the
file access permissions to enable or disable distributed cron scripts to meet your
needs. To enable a script, invoke chmod ug+x to make the script executable.
By default, CLEinstall removes the execute permission bit to disable all
distributed cron scripts.

!
Caution: Some distributed scripts impact performance negatively on a CLE
system. To ensure that all scripts are disabled, type the following:

default/:/ # find /etc/cron.hourly /etc/cron.daily \
/etc/cron.weekly /etc/cron.monthly \
-type f -follow -exec chmod ugo-x {} \;

3. Exit xtopview.

default/:/ # exit
boot:~ #

Procedure 35. Configuring cron for the shared root without persistent /var

Because CLE has a shared root, the standard cron initialization script
/etc/init.d/cron activates the cron daemon on all service nodes. Therefore,
the cron daemon is disabled by default and you must turn it on with the
xtservconfig command to specify which nodes you want the daemon to run on.

1. Edit the /etc/group file in the default view to add users who do not have root
permission to the "trusted" group. The operating system requires that all cron
users who do not have root permission be in the "trusted" group.

boot:~ # xtopview
default/:/ # vi /etc/group
default/:/ # exit

2. Create a /var/spool/cron directory in the /ufs file system on the ufs
node which is shared among all the nodes of class login.

boot:~ # ssh root@ufs
ufs:~# mkdir /ufs/cron
ufs:~# cp -a /var/spool/cron /ufs
ufs:~# exit

3. Designate a single login node on which to run the scripts in this directory.
Configure this node to start cron with the xtservconfig command rather
than the /etc/init.d/cron script. This enables users, including root, to
submit cron jobs from any node of class login. These jobs are executed only
on the specified login node.

a. Create or edit the following entry in the /etc/sysconfig/xt file in the
shared root file system in the default view.

boot:~ # xtopview
default/:/ # vi /etc/sysconfig/xt
CRON_SPOOL_BASE_DIR=/ufs/cron
default/:/ # exit

154 S–2393–31

Modifying an Installed System [6]

b. Start an xtopview shell to access all login nodes by class and configure the
spool directory to be shared among all nodes of class login.

boot:~ # xtopview -c login
class/login/:/ #

c. Edit the /etc/init.d/boot.xt-local file to add the following lines.

class/login/:/ # vi /etc/init.d/boot.xt-local
MYCLASS= x` tuname -C | tr -d [:space:]
C

`
RONSPOOL= x` tgetconfig CRON_SPOOL_BASE_DIR

i
`

f ["$MYCLASS" = "login" -a -n "$CRONSPOOL"];then
mv /var/spool/cron /var/spool/cron.$$
ln -sf $CRONSPOOL /var/spool/cron

fi

d. Examine the /etc/cron.hourly, /etc/cron.daily,
/etc/cron.weekly, and /etc/cron.monthly directories and
change the file access permissions to enable or disable distributed cron scripts
to meet your needs. To enable a script, invoke chmod ug+x to make the file
executable. By default, CLEinstall removes the execute permission bit to
disable all distributed cron scripts.

!
Caution: Some distributed scripts impact performance negatively on a
CLE system. To ensure that all scripts are disabled, type the following:

class/login/:/ # find /etc/cron.hourly /etc/cron.daily \
/etc/cron.weekly /etc/cron.monthly \
-type f -follow -exec chmod ugo-x {} \;

e. Exit from the login class view.

class/login/:/ # exit
boot:~ #

f. Use the xtservconfig command to enable the cron service on a single
login node; in this example, node 4.

boot:~ # xtopview -n 4
node/4/:/ # xtservconfig -n 4 add CRON
node/4/:/ # exit

The cron configuration becomes active on the next reboot. For more
information, see the xtservconfig(8) man page.

6.9 Configuring the Load Balancer
Optional: The load balancer service is optional on systems that run CLE.

The load balancer can distribute user logins to multiple login nodes, allowing users to
connect by using the same Cray host name, for example xthostname.

S–2393–31 155

Managing System Software for Cray XE and Cray XT™ Systems

Two main components are required to implement the load balancer, the lbnamed
service (on the SMW and Cray login nodes) and the site-specific domain name
service (DNS).

When an external system tries to resolve xthostname, a query is sent to the
site-specific DNS. The DNS server recognizes xthostname as being part of the Cray
domain and shuttles the request to lbnamed on the SMW. The lbnamed service
returns the IP address of the least-loaded login node to the requesting client. The
client connects to the Cray system login node by using that IP address.

The CLE software installation process installs lbnamed in
/opt/cray-xt-lbnamed on the SMW and in /opt/cray/lbcd
on all service nodes. Configure lbnamed by using the lbnamed.conf and
poller.conf configuration files on the SMW. For more information about
configuring lbnamed, see the lbnamed.conf(5) man page.

Procedure 36. Configuring lbnamed on the SMW

1. Edit the lbnamed.conf file on the SMW to define the lbnamed host name,
domain name, and polling frequency.

smw:~# vi /etc/opt/cray-xt-lbnamed/lbnamed.conf

For example, if lbnamed is running on the host name smw.mysite.com,
set the login node domain to the same domain specified for the $hostname.
The Cray system xthostname is resolved within the domain specified as
$login_node_domain.

$poller_sleep = 30;
$hostname = "mycray-rsms.mysite.com";
$lbnamed_domain = "mycray-lb.mysite.com";
$login_node_domain = "mysite.com";
$hostmaster = "rootmail.mysite.com";

2. Edit the poller.conf file on the SMW to configure the login node names.

smw:~# vi /etc/opt/cray-xt-lbnamed/poller.conf
#
groups

login mycray1-mycray3

mycray1 1 login
mycray2 1 login
mycray3 1 login

Note: Because lbnamed runs on the SMW, eth0 on the SMW must be
connected to the same network from which users log on to the login nodes. Do
not put the SMW on the public network.

156 S–2393–31

Modifying an Installed System [6]

Procedure 37. Installing the load balancer on an external "white box" server

Optional: Install lbnamed on an external "white box" server as an alternative to
installing it on the SMW. Cray does not test or support this configuration.

A "white box" server is any workstation or server that supports the lbnamed service.

1. Shut down and disable lbnamed.

smw:~# /etc/init.d/lbnamed stop
smw:~# chkconfig lbnamed off

2. Locate the cray-xt-lbnamed RPM on the Cray CLE 3.1.UPnn
Software media and install this RPM on the "white box." Do not install the
lbcd RPM.

3. Follow the instructions in the lbnamed.conf(5) man page to configure
lbnamed, taking care to substitute the name of the external server wherever SMW
is indicated, then enable the service.

6.10 Configuring Node Health Checker (NHC)
For an overview of NHC (sometimes referred to as NodeKARE), see the
intro_NHC(8) man page. For additional information about ALPS and how ALPS
cooperates with NHC to perform application cleanup, see Chapter 8, Using the
Application Level Placement Scheduler (ALPS) on page 235.

6.10.1 /etc/opt/cray/nodehealth/nodehealth.conf Configuration
File

The NHC configuration file,
/etc/opt/cray/nodehealth/nodehealth.conf, is located in the
shared root. The CLE installation and upgrade processes automatically install
and enable NHC software; there is no need for you to change any installation
configuration parameters or issue any commands. However, you may edit the
/etc/opt/cray/nodehealth/nodehealth.conf file to specify which
NHC tests are to be run and to alter the behavior of NHC tests (including time-out
values and actions for tests when they fail); configure time-out values for Suspect
Mode and disable/enable Suspect Mode; or disable or enable NHC.

Note: After you modify the
/etc/opt/cray/nodehealth/nodehealth.conf file, the changes are
reflected immediately the next time NHC runs.

Each CLE release package also includes an example NHC configuration file,
/opt/cray/nodehealth/default/etc/nodehealth.conf.example.
The nodehealth.conf.example file is a copy of the
/etc/opt/cray/nodehealth/nodehealth.conf file provided
for an initial installation.

S–2393–31 157

Managing System Software for Cray XE and Cray XT™ Systems

Important: The /etc/opt/cray/nodehealth/nodehealth.conf file
is not overwritten during a CLE upgrade if the file already exists.
This preserves your site-specific modifications previously
made to the file. However, you should compare your
/etc/opt/cray/nodehealth/nodehealth.conf file content with the
/opt/cray/nodehealth/default/etc/nodehealth.conf.example
file provided with each release to identify any changes, and then update your
/etc/opt/cray/nodehealth/nodehealth.conf file accordingly.
If the /etc/opt/cray/nodehealth/nodehealth.conf
file does not exist, then the
/opt/cray/nodehealth/default/etc/nodehealth.conf.example
file is copied to the /etc/opt/cray/nodehealth/nodehealth.conf
file.

To use an alternate NHC configuration file, use the xtcleanup_after -f
alt_NHCconfigurationfile option to specify which NHC configuration file to
use with the xtcleanup_after script. For additional information, see the
xtcleanup_after(8) man page.

6.10.2 Configuring Node Health Checker Tests

Edit the /etc/opt/cray/nodehealth/nodehealth.conf file to configure
the NHC tests that will test compute node functionality. All tests that are enabled will
run when NHC is in either Normal Mode or in Suspect Mode. Tests run in parallel,
independently of each other, except for the Free Memory Check test, which
requires that the Application Exited Check test passes before the Free
Memory Check test begins.

The xtcheckhealth binary runs the NHC tests; for information about the
xtcheckhealth binary, see the intro_NHC(8) and xtcheckhealth(8) man
pages.

The NHC tests are listed below. In the default NHC configuration file, each test that
is enabled starts with an action of admindown, except for the Free Memory
Check, which starts with an action of log.

Important: Also read important test usage information in Guidance About NHC
Tests on page 160.

• Application Exited Check, which verifies that any remaining processes
from the most recent application have terminated.

The Application Exited Check test checks locally on the compute node
to see if there are processes running under the ID of the application (APID).
If there are processes running, then NHC waits a period of time (set in the
configuration file) to determine if the application processes exit properly. If the
process does not exit within that time, then this test fails.

158 S–2393–31

Modifying an Installed System [6]

The Application Exited Check test is enabled in the default NHC
configuration file.

• Apinit Ping, which verifies that the ALPS daemon is running on the compute
node and is responsive.

The Apinit Ping test queries the status of the apinit daemon locally on
each compute node; if the apinit daemon does not respond to the query, then
this test fails.

The Apinit Ping test is enabled in the default NHC configuration file.

• Free Memory Check, which examines how much memory is consumed on a
compute node while applications are not running. The Application Exited
Check test must complete before the Free Memory Check test begins,
ensuring that the application has exited the compute node and is not inflating
the memory usage.

The Free Memory Check test is enabled in the default NHC configuration
file; however, its action is log only.

• Filesystem, which ensures that the compute node is able to perform simple
I/O to the specified file system. For a file system that is mounted read-write, the
test performs a series of operations on the file system to verify the I/O. A file is
created, written, flushed, synced, and deleted. If a mount point is not explicitly
specified, the mount point(s) from the compute node /etc/fstabs file will
be used and a Filesystem test will be created for each mount point found in
the file. If a mount point is explicitly specified, then only that file system will
be checked. You can specify multiple FileSystem tests by placing multiple
Filesystem lines in the configuration file. One line could specify the implicit
Filesystem test. The next line could specify a specific file system that does
not appear in /etc/fstab. This could continue for any and all file systems.

If you enable the Filesystem test, you can place an
optional line (such as, Excluding: FileSystem-foo) in the
/etc/opt/cray/nodehealth/nodehealth.conf configuration file that
allows you to list mount points that should not be tested by the Filesystem
test. This allows you to intentionally exclude specific mount points even though
they appear in the fstab file. This action prevents NHC from setting nodes
to admindown because of errors on relatively benign file systems. Explicitly
specified mount points cannot be excluded in this fashion; if they should not be
checked, then they should simply not be specified.

The Filesystem test is enabled in the default NHC configuration file.

• Plugin, which allows scripts and executables not built into NHC to be run,
provided they are accessible on the compute node. No plugins are configured by
default and the Plugin test is disabled in the default NHC configuration file so
that local configuration settings may be used.

S–2393–31 159

Managing System Software for Cray XE and Cray XT™ Systems

For information about writing a plugin test, see Writing a Node Health Checker
(NHC) Plugin Test.

Individual tests may appear multiple times in the
/etc/opt/cray/nodehealth/nodehealth.conf file,
with different variable values. Every time a test is specified in the
/etc/opt/cray/nodehealth/nodehealth.conf file, NHC will run that
test. This means if the same line is specified five times, NHC will try to run that
same test five times. This functionality is mainly used in the case of the Plugin
test, allowing you to specify as many additional tests as you want to write, or the
Filesystem test, allowing you to specify as many additional file systems as you
want. However, any test can be specified to run any number of times. Different
parameters and test actions can be set for each test. For example, this could be used
so that you can set up hard limits and soft limits for the Free Memory Check test.
Two Free Memory Check tests could be specified in the configuration file; the
first test configured to only warn about small amounts of non-free memory, and the
second test configured to admindown a node that has large amounts of non-free
memory. See the /etc/opt/cray/nodehealth/nodehealth.conf file
for configuration information.

6.10.2.1 Guidance About NHC Tests

Guidance about the Application Exited Check and Apinit Ping
tests: These two tests must be enabled and both tests must have their action set
as admindown or die; otherwise, NHC runs the risk of allowing ALPS to enter
a live-lock. ALPS must guarantee the following two things about the nodes in a
reservation before releasing that reservation: 1) ALPS must guarantee that ALPS is
functioning on the nodes, and 2) ALPS must guarantee that the previous application
has exited from the nodes. Either those two things are guaranteed or the nodes must
be set to some state other than up. When either ALPS has guaranteed the two things
about the nodes or the nodes have been set to some state other than up, then ALPS
can release the reservation. These two NHC tests guarantee those two things: 1) the
Apinit_ping test guarantees that ALPS is functioning on the nodes, and 2) the
Application_Exited_Check test guarantees that the previous application has
exited from the nodes. If either test fails, then NHC sets the nodes to suspect state
(if Suspect Mode is enabled; otherwise, NHC sets the nodes to admindown). In
the end, either the nodes pass those tests, or the nodes are no longer in the up state.
In either case, ALPS is free to release the reservation and the live-lock is avoided.
However, this only happens if the two tests are enabled and their action is set as
admindown or die. The log action does not suffice because it does not change the
state of the nodes. If either test is disabled or has an action of log, then ALPS may
live-lock. In this live-lock, ALPS will call NHC endlessly.

160 S–2393–31

Modifying an Installed System [6]

Guidance about the Filesystem test: The NHC Filesystem test can take
an explicit argument – the mount point of the file system – or no argument. If
an argument is provided, then the Filesystem test is referred to as an explicit
Filesystem test. If no argument is given, the Filesystem test is referred to as
an implicit Filesystem test.

The explicit Filesystem test will test the file system located at the specified mount
point.

The implicit Filesystem test will test each file system listed in the /etc/fstab
file on each compute node. The implicit Filesystem test is enabled by default
in the NHC configuration file.

The Filesystem test will determine whether a file system is mounted read-only or
read-write. If the file system is mounted read-write, then NHC will attempt to write to
it. If it is mounted read-only, then NHC will attempt to read the directory entities "."
and ".." in the file system to guarantee, at a minimum, that the file system is readable.

Some file systems are mounted on the compute nodes as read-write file systems,
while their underlying permissions are read-only. As an example, for an
auto-mounted file system, the base mount-point may have read-only permissions;
however, it could be mounted as read-write. It would be mounted as read-write,
so that the auto-mounted sub-mount-points could be mounted as read-write. The
read-only permissions prevent tampering with the base mount-point. In a case such as
this, the Filesystem test would see that the base mount-point had been mounted
as a read-write file system. The Filesystem test would try to write to this file
system, but the write would fail due to the read-only permissions. Because the write
fails, then the Filesystem test would fail, and NHC would incorrectly decide
that the compute node is unhealthy because it could not write to this file system.
For this reason, file systems that are mounted on compute nodes as read-write file
systems, but are in reality read-only file systems, should be excluded from the implicit
Filesystem test.

You can exclude tests by adding an "Excluding: file system mount point" line in the
NHC configuration file. See the NHC configuration file for further details and an
example.

A file system is deemed a critical file system if it is needed to run applications. All
systems will likely need at least one shared file system for reading and writing input
and output data. Such a file system would be a critical file system. File systems
that are not needed to run applications or read and write data would be deemed as
noncritical file systems. You need to determine the criticality of each file system.

S–2393–31 161

Managing System Software for Cray XE and Cray XT™ Systems

Cray recommends the following:

• Excluding noncritical file systems from the implicit Filesystem test. See the
NHC configuration file for further details and an example.

• If there are critical file systems that do not appear in the /etc/fstab file
on the compute nodes (such file systems would not be tested by the implicit
Filesystem test), these critical file systems should be checked via explicit
Filesystem tests. You can add explicit Filesystem tests to the NHC
configuration file by providing the mount point of the file system as the final
argument to the Filesystem test. See the NHC configuration file for further
details and an example.

• If you have a file system that is mounted as read-write but it has read-only
permissions, you should exclude it from the implicit Filesystem test. NHC
does not support such file systems.

Guidance about the NHC Lustre file system test: The Lustre file system has its
own hard time-out value that determines the maximum time that a Lustre recovery
will last. This time-out value is called RECOVERY_TIME_HARD, and it is located in
the file system's fs_defs file. The default value for the RECOVERY_TIME_HARD
is fifteen minutes.

Important: The time-out value for the NHC Lustre file system test should be
twice the RECOVERY_TIME_HARD value.
The default in the NHC configuration file is thirty minutes, which is
twice the default RECOVERY_TIME_HARD. If you change the value of
RECOVERY_TIME_HARD, you must also correspondingly change the time-out
value of the NHC Lustre file system test.

The NHC time-out value is specified on this line in the NHC configuration file:

Lustre: <warning time-out> <test time-out> <restart delay>
Lustre: 900 1800 60

If you change the RECOVERY_TIME_HARD value, you must change the 1800
seconds (thirty minutes) to reflect your new RECOVERY_TIME_HARD multiplied by
two.

162 S–2393–31

Modifying an Installed System [6]

Further, the overall time-out value of NHC's Suspect Mode is based on the maximum
time-out value for all of the NHC tests. Invariably, the NHC Lustre file system test
has the longest time-out value of all the NHC tests.

Important: If you change the NHC Lustre file system test time-out value, then
you must also change the time-out value for Suspect Mode. The time-out value
for Suspect Mode is set by the suspectend variable in the NHC configuration
file. The guidance for setting the value of suspectend is that it should be
the maximum time-out value, plus an additional buffer. In the default case,
suspectend was set to thirty-five minutes – thirty minutes for the Lustre
test, plus an additional five-minute buffer. For more information about the
suspectend variable, see Suspect Mode on page 165.

6.10.2.2 Global Configuration Variables That Affect All NHC Tests

The following global configuration variables may be set in the
/etc/opt/cray/nodehealth/nodehealth.conf file to alter
the behavior of all NHC tests. The global configuration variables are case-insensitive.

Runtests: Frequency

Determines how frequently NHC tests are run on the compute nodes.
Frequency may be either errors or always. When the value
errors is specified, the NHC tests are run only when an application
terminates with a non-zero error code or terminates abnormally.
When the value always is specified, the NHC tests are run after
every application termination. If you do not specify the Runtests
global variable, the implicit default is errors.

Connecttime: TimeoutSeconds

Specifies the amount of time, in seconds, that NHC waits for a node
to respond to requests for the TCP connection to be established. If
Suspect Mode is disabled and a particular node does not respond
after connecttime has elapsed, then the node is marked
admindown. If Suspect Mode is enabled and a particular node
does not respond after connecttime has elapsed, then the node
is marked suspect. Then, NHC will attempt to contact the node
with a frequency established by the recheckfreq variable. (For
information about Suspect Mode and the recheckfreq variable,
see Suspect Mode on page 165.)

If you do not specify the Connecttime global variable, then
the implicit default TCP time-out value is used. NHC will not
enforce time-out on the connections if none is specified. The
Connecttime: TimeoutSeconds value provided in the default NHC
configuration file is 60 seconds.

S–2393–31 163

Managing System Software for Cray XE and Cray XT™ Systems

6.10.2.3 Standard Variables That Affect Individual NHC Tests

The following four variables are used with each NHC test; set each variable for each
test. All variables are case-insensitive. Each NHC test has values supplied for these
variables in the default NHC configuration file.

Note: Specific NHC tests require additional variables, which are defined in the
nodehealth configuration file.

action Specifies the action to perform if the compute node fails the given
NHC test. action may have one of the following values:

• log — Logs the failure to the system console log; the log
action will not cause a compute node's state to be set to
admindown.

Important: Tests that have an action of Log do not run in
Suspect Mode. If you use plugin scripts with an action of Log,
the script will only be run once, in Normal Mode; this makes
log collecting and various other maintenance tasks easier to
code.

• admindown — Sets the compute node's state to admindown
(no more applications will be scheduled on that node) and logs
the failure to the system console log.

If Suspect Mode is enabled, the node will first be set to
suspect state, and if the test continues to fail, the node will be
set to admindown at the end of Suspect Mode.

• die — Halts the compute node so that no processes can run
on it, sets the compute node's state to admindown, and logs
the failure to the system console log. (The die action is the
equivalent of a kernel panic.)

Note: This action is good for catching bugs because the state
of the processes is preserved and can be dumped at a later time.

Each subsequent action includes the actions that preceded it; for
example, the die action encompasses the admindown and log
actions.

Note: If NHC is running in Normal Mode and cannot contact a
compute node, and if Suspect Mode is not enabled, NHC will set
the compute node's state to admindown.

warntime Specifies the amount of test time, in seconds, that should elapse
before xtcheckhealth logs a warning message to the console
file. This allows an administrator to take corrective action, if
necessary, before the testtime is reached.

164 S–2393–31

Modifying an Installed System [6]

testtime Specifies the total time, in seconds, that a test should run before an
error is returned by xtcheckhealth and the specified action is
taken.

restart_delay

Valid only when NHC is running in Suspect Mode. Specifies how
long NHC will wait, in seconds, to restart the test after the test fails.

6.10.3 Suspect Mode

Upon entry into Suspect Mode, NHC immediately allows healthy nodes to be
returned to the resource pool. Suspect Mode allows the remaining nodes, which
are all in suspect state, an opportunity to return to healthiness. If the nodes
do not return to healthiness by the end of the Suspect Mode (determined by the
suspectend global variable; see below), their states are set to admindown. For
more information about how Suspect Mode functions, see the intro_NHC(8) man
page.

Important: Suspect Mode is enabled in the default
/etc/opt/cray/nodehealth/nodehealth.conf configuration file.
Cray Inc. recommends that you run NHC with Suspect Mode enabled.

If enabled, the default NHC configuration file provided from Cray Inc. uses the
following Suspect Mode variables:

suspectenable:

Enables Suspect Mode; valid values are y and n. The
/etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
suspectenable: y.

suspectbegin:

Sets the Suspect Mode timer. Suspect Mode starts after the
number of seconds indicated by suspectbegin have expired.
The /etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
suspectbegin: 180.

suspectend:

Suspect Mode ends after the number of seconds indicated
by suspectend have expired. This timer only
starts after NHC has entered Suspect Mode. The
/etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
suspectend: 2100.

S–2393–31 165

Managing System Software for Cray XE and Cray XT™ Systems

Considerations when evaluating shortening the length of Suspect
Mode:

• You can shorten the length of Suspect Mode if you do not
have external file systems, such as Lustre, that NHC would be
checking.

• The length of Suspect Mode should be at least a few seconds
longer than the longest time-out value for any of the NHC tests.
For example, if the Filesystem test had the longest time-out
value at 900 seconds, then the length of Suspect Mode should
be at least 905 seconds.

• The longer Suspect Mode is, the longer nodes have to recover
from any unhealthy situations. Setting the length of Suspect
Mode too short reduces this recovery time and increases the
likelihood of the nodes being marked admindown prematurely.

recheckfreq:

Suspect Mode rechecks the health of the nodes in suspect state at
a frequency specified by recheckfreq. This value is in seconds.
The /etc/opt/cray/nodehealth/nodehealth.conf
configuration file provided from Cray Inc. has this variable set as
recheckfreq: 300. (For a detailed description about NHC
actions during the recheck process, see the intro_NHC(8) man
page.)

6.10.4 NHC Messages

NHC messages are sent though the ec_console_log event with
'<node_health:M.m>' in the message, where M is the major and m is the
minor NHC revision number. All NHC messages are visible in the console file.

NHC prints a summary message per node at the end of Normal Mode and Suspect
Mode when at least one test has failed on a node. For example:

<node_health:3.1> APID:100 (xtnhc) FAILURES: The following tests have failed in normal mode:
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Apinit_Ping
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Plugin /example/plugin
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Log Only) Filesystem_Test on /mydir
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Free_Memory_Check
<node_health:3.1> APID:100 (xtnhc) FAILURES: End of list of 5 failed test(s)

166 S–2393–31

Modifying an Installed System [6]

The xtcheckhealth error and warning messages include node IDs and
application IDs and are written to the console file on the SMW; for example:

[2010-04-05 23:07:09][c1-0c2s0n0]<node_health:3.0> APID:2773749
(check_apid) WARNING: Failure: File /dev/cpuset/2773749/tasks exists and is not empty. \
The following processes are running under expired APID
2773749:
[2010-04-05 23:07:09][c1-0c2s0n1]<node_health:3.0> APID:2773749
(check_apid) WARNING: Pid: 300 Name: (marys_program) State: D

The xtcleanup_after script writes its normal launch information to
the /var/log/xtcheckhealth_log file, which resides on the login
nodes. The xtcleanup_after launch information includes the time that
xtcleanup_after was launched and the xtcleanup_after's call to
xtcheckhealth.

The xtcleanup_after script writes error output (launch failure information) to
the /var/log/xtcheckhealth_log file, to the console file on the SMW, and
to the syslog.

Example xtcleanup_after output follows:

Thu Apr 22 17:48:18 CDT 2010 <node_health> (xtcleanup_after) \
/opt/cray/nodehealth/3.0-1.0000.20840.30.8.ss/bin/xtcheckhealth -a 10515 \
-e 1 /tmp/apsysLVNqO9 /etc/opt/cray/nodehealth/nodehealth.conf

6.10.5 What if a Login Node Crashes While xtcheckhealth Binaries are
Monitoring Nodes?

If a login node crashes while some xtcheckhealth binaries on that login node
are monitoring compute nodes that are in suspect state, those xtcheckhealth
binaries will die when the login node crashes. When the login node that crashed
is rebooted, a recovery action takes place. When the login node boots, the
node_health_recovery binary starts up. This script checks for all compute
nodes that are in suspect state and were last set to suspect state by this login
node. The script then determines the APID of the application that was running on
each of these compute nodes at the time of the crash. The script then launches
an xtcheckhealth binary to monitor each of these compute nodes. One
xtcheckhealth binary is launched per compute node monitored.

xtcheckhealth will be launched with this APID, so it can test for any processes
that may have been left behind by that application. This testing only takes place if
the Application_Exited_Check test is enabled in the configuration file. (The
Application_Exited_Check test is enabled in the default NHC configuration
file.) If the Application_Exited_Check test is not enabled, when the recovery
action takes place, NHC does not run the Application_Exited_Check test
and will not check for leftover processes. However, it will run any other NHC tests
that are enabled in the configuration file.

S–2393–31 167

Managing System Software for Cray XE and Cray XT™ Systems

Nodes will be changed from suspect state to up or admindown, depending upon
whether they fail any health checks. No system administrator intervention should
be necessary.

NHC automatically recovers the nodes in suspect state when the crashed login
node is rebooted because the recovery feature runs on the rebooted login node. If the
crashed login node is not rebooted, then manual intervention is required to rescue the
nodes from suspect state. This manual recovery can commence as soon as the
login node has crashed. To recover from a login node crash during the case in which
a login node will not be rebooted, the nhc_recovery binary is provided to help
you release the compute nodes owned by the crashed login node; see Procedure 38
on page 168. Also, see the nhc_recovery(8) man page for a description of the
nhc_recovery binary usage.

Procedure 38. Recovering from a login node crash when a login node will not
be rebooted

1. Create a nodelistfile that contains a list of the nodes in the system that are
currently in Suspect Mode. The file must be a list of NIDs, one per line; do not
include a blank line at the end of the file.

2. To list all of the suspect nodes in the system and which login nodes own those
nodes, execute the following command; use the nodelistfile you created in step 1.

nhc_recovery -d nodelistfile

3. Parse the nhc_recovery output for the NID of the login node that crashed.
The file (for example, name it nodelistfile_computenodes) of this
parsed list should contain all of the compute nodes owned by the crashed login
node.

4. If you plan to recover the suspect nodes by using option 6 a below, then
complete this step; otherwise, skip this step.

Note: This recovery method is recommended.

From the list you created in step 3, create nodelistfiles containing nodes that
share the same APID to determine the nodes from the crashed login node.
For example, your nodelistfiles can be named nodelistfile-APID1,
nodelistfile-APID2, nodelistfile-APID3, and so on.

5. Using the file you created in step 3, release all of the suspect compute nodes
owned by the crashed login node. Execute the following command:

nhc_recovery -r nodelistfile_computenodes

168 S–2393–31

Modifying an Installed System [6]

6. All of these compute nodes have been released in the database. However, they
are all still in suspect state. Determine what to do with these suspect nodes
from the following three options:

a. (Cray recommends this option) Rerun NHC on a non-crashed login node to
recover the nodes listed in step 4. Invoke NHC for each nodelistfile. Supply
as the APID argument the APID that corresponds to the nodelistfile; an
iteration count of 0 (zero), which is the value normally supplied to NHC by
ALPS; and an application exit code of 1 (one). An exit code of 1 ensures that
NHC will run regardless of the value of the runtests variable (always or
errors) in the NHC configuration file. For example:

xtcleanup_after -s nodelistfile-APID1 APID1 0 1
xtcleanup_after -s nodelistfile-APID2 APID2 0 1
xtcleanup_after -s nodelistfile-APID3 APID3 0 1
.
.
.

b. These suspect nodes can be set to admindown and their fate determined
by further analysis.

c. These suspect nodes can be set back to up, but they were in Suspect Mode
for a reason.

6.10.6 Disabling NHC

To disable NHC entirely, set the value of the nhcon global variable in the
/etc/opt/cray/nodehealth/nodehealth.conf file to off (the default
value in the file provided from Cray Inc. is on).

6.10.7 nodehealth Modulefile

To gain access to the NHC functions, the nodehealth module must be loaded. The
admin-modules module file loads the nodehealth module, or you can load the
nodehealth module by executing the following command:

module load nodehealth

The Base-opts.default.local file includes the admin-modules module
file. For additional information about the Base-opts.default.local file, see
System-wide Default Modulefiles on page 116.

6.10.8 Configuring the Node Health Checker to Use SSL

If your site requires authentication and authorization to protect access to compute
nodes, you can configure compute nodes to perform node health checking by using
the openssl utility and secure sockets layer (SSL) protocol. SSL provides optional
security functionality for NHC.

S–2393–31 169

Managing System Software for Cray XE and Cray XT™ Systems

To enable the use of SSL the following files must be setup in the .nodehealth
directory within the home directory of the root user on both the login node(s) and
compute nodes:

• rsa_key

• servercsr

• rsa_cert

The files and the .nodehealth directory must have their permissions set to 0700
for maximum security. The same files must be used on both the login and compute
nodes. If the files are not identical on both the login and compute nodes, the node
health infrastructure will not run and a message similar to the following will be
displayed:

server authentication failed
node health configuration error

Procedure 39. Configuring the Node Health Checker (NHC) to use SSL

Follow these steps to configure NHC to use SSL.

!
Caution: This process should be performed with all compute nodes down.

Note: The shared root and compute image changes must both be made to ensure
they both assume SSL is being used.

1. Create the SSL configuration in the shared root.

2. As user root, create SSL key information in the shared root and modify the
correct permissions and ownership groups.

boot:~ # xtopview
boot:~ # mkdir /root/.nodehealth
boot:~ # chmod 700 /root/.nodehealth
boot:~ # openssl genrsa -out /root/.nodehealth/rsa_key 1024
boot:~ # openssl req -new -key /root/.nodehealth/rsa_key \
-out /root/.nodehealth/servercsr

(answer the questions as appropriate - defaults work fine)
boot:~ # openssl x509 -req -days 365 -in /root/.nodehealth/servercsr \
-signkey /root/.nodehealth/rsa_key -out /root/.nodehealth/rsa_cert

(the certificate expiration time is not used)
boot:~ # chown 700 /root/.nodehealth/*
boot:~ # exit

170 S–2393–31

Modifying an Installed System [6]

3. As root and on the SMW, update the compute node image with the
required libraries. These libraries are /usr/lib64/libssl.so and
/usr/lib64/libcrypto.so. Link and file name structures must be
maintained exactly as they exist (note the version number (e.g. 0.9.8) may
be different).

lrwxrwxrwx 1 root root 15 Feb 14 2008 /usr/lib64/libssl.so -> libssl.so.0.9.8
-r-xr-xr-x 1 root root 290728 Oct 17 2007 /usr/lib64/libssl.so.0.9.8

lrwxrwxrwx 1 root root 18 Feb 14 2008 /usr/lib64/libcrypto.so -> libcrypto.so.0.9.8
-r-xr-xr-x 1 root root 1464704 Oct 17 2007 /usr/lib64/libcrypto.so.0.9.8

For example, if the compute node image was located in the directory compute,
on the SMW you would do:

smw:~ # cd compute/lib64
smw:~ # cp /usr/lib64/libssl.so.0.9.8 .
smw:~ # ln -s libssl.so.0.9.8 libssl.so
smw:~ # cp /usr/lib64/libcrypto.so.0.9.8 .
smw:~ # ln -s libcrypto.so.0.9.8 libcrypto.so

4. As root and on the SMW, move the SSL key data to the compute node
image by copying the files /root/.nodehealth/rsa_key and
/root/.nodehealth/rsa_cert that you created in step 2 to the
/opt/xtimages/templates/default/root/.nodehealth directory.

For example, if the compute node image was located in the directory compute,
you would do:

smw:~ # cd compute/root
smw:~ # mkdir .nodehealth
smw:~ # chmod 700 .nodehealth
smw:~ # scp root@boot: /rr/current/root/.nodehealth/rsa_key .nodehealth
smw:~ # scp root@boot: /rr/current/root/.nodehealth/rsa_cert .nodehealth

5. Create a new cpio file of the compute node image.

6. Reboot the compute nodes.

6.11 Activating Process Accounting for Service Nodes
The GNU 6.4 accounting package uses Berkeley Software Design (BSD) type process
accounting. The GNU 6.4 process accounting is enabled for the Cray system's service
nodes. The package name is acct; it can be activated using the acct boot script.
To enable the acct boot script, execute the following command on the boot node
root and/or shared root:

boot:~ # chkconfig acct on

S–2393–31 171

Managing System Software for Cray XE and Cray XT™ Systems

The GNU 6.4 process accounting utilities process V2 and V3 format records
seamlessly, even if the data is written to the same file. Output goes to an accounting
file, which by default is /var/account/pacct. The accounting utilities provided
for administration use are: ac, lastcomm, accton, and sa. The related man pages
are accessible by using the man command.

6.12 Configuring Failover for Boot and SDB Nodes
The boot node is integral to the operation of a Cray system. Critical services like the
Application Level Placement Scheduler (ALPS) and Lustre rely on the SDB and
will fail if the SDB node is unavailable. The CLE release provides functionality to
create standby boot and SDB nodes that automatically act as a backup in the event of
primary node failure. Failover allows the system to keep running without an interrupt
to the system or system services.

Note: The boot-node and SDB node failover features do not provide a failback
capability.

A virtual network is configured for the boot and SDB nodes to support failover for
these nodes. The virtual network is configured by default, regardless of the boot or
SDB node failover configuration on your system.

The CLEinstall program provides the capability to change the default virtual
network configuration, however, the default values are acceptable is most cases. For
more information, see Installing and Configuring Cray Linux Environment (CLE)
Software or the CLEinstall.conf(5) man page.

6.12.1 Configuring Boot-node Failover

When you configure a secondary (backup) boot node, boot-node failover occurs
automatically when the primary boot node fails.

The following services run on the boot node:

• NFS shared root (read-only)

• NFS persistent /var (read-write)

• Boot node daemon, bnd

• Hardware supervisory system (HSS) and system database (SDB) synchronization
daemon, xtdbsyncd

• ALPS daemons apbridge, apres, and apwatch (for information about
configuring ALPS, see Chapter 8, Using the Application Level Placement
Scheduler (ALPS) on page 235)

172 S–2393–31

Modifying an Installed System [6]

When the primary boot node is booted, the backup boot node also begins to boot.
However, the backup boot node makes a call to the rca-helper utility before it
mounts its root file system, causing the backup boot node to be suspended until a
primary boot-node failure event is detected.

The rca-helper daemon running on the backup boot node waits for a primary
boot-node failure event, ec_node_failed. When the heartbeat of the primary
boot node stops, the L0 begins the heartbeat checking algorithm to determine if
the primary boot node has failed. When the L0 determines that the primary boot
node has failed, it sends an ec_heartbeat_stop event to set the alert flag for
the primary node. The primary boot node is halted through STONITH. Setting the
alert flag on the node triggers the HSS state manager on the SMW to send out the
ec_node_failed event.

When the rca-helper daemon running on the backup boot node receives an
ec_node_failed event alerting it that the primary boot node has failed, it allows
the boot process of the backup boot node to continue. Any remaining boot actions
occur on the backup boot node. Booting of the backup boot node takes approximately
two minutes.

Each service node runs a failover manager daemon (fomd). When each service
node's fomd receives the ec_node_failed event, it takes appropriate action. The
fomd process updates the arp cache entry for the boot node virtual IP address to
reference the backup boot node.

The purpose of this implementation of boot-node failover is to ensure that the system
continues running, not to guarantee that every job will continue running. Therefore,
note the following:

• During the time the primary boot node has failed, any service node that tries to
access its root file system will be I/O blocked until the backup boot node is online,
at which time the request will be satisfied and the operation will resume. In
general, this means if an application is running on a service node, it can continue
to run if the application is in memory and does not need to access disk. If it
attempts to access disk for any reason, it will be blocked until the backup boot
node is online.

• Applications running on compute nodes are affected only if they cause a service
node to access its root file system, in which case the service node function would
be blocked until the backup boot node is online.

S–2393–31 173

Managing System Software for Cray XE and Cray XT™ Systems

The following is a list of requirements for configuring your system for boot-node
failover:

• The backup boot node must have a Fibre Channel card connected to the boot
RAID.

Note: You must configure the backup boot node in the same zone as the
primary boot node.

• You must ensure that the boot RAID host port can see the desired LUNs; for
DDN, use the host port mapping; for LSI (Engenio), use SANshare in the
SANtricity Storage Manager.

• The backup boot node also requires a Gigabit Ethernet card connected via a
Gigabit Ethernet switch to the same port on the SMW as the primary boot node
(typically port 4 of the SMW quad Ethernet card).

• You must enable the STONITH capability on the blade or module of the primary
boot node in order to use the boot node failover feature. STONITH is a per blade
setting and not a per node setting. Ensure that your primary boot node is located
on a separate blade from services with conflicting STONITH requirements, such
as Lustre.

Procedure 40. Configuring boot-node failover

Note: If you configured boot-node failover during your CLE software installation
or upgrade (as documented in the Installing and Configuring Cray Linux
Environment (CLE) Software), this procedure is not needed.

1. Halt the primary and alternate boot nodes.

Warning: Verify that your system is shut down before you invoke the xtcli
halt command.

smw:~# xtcli halt primary_id, backup_id

2. Update the default boot configuration used by the boot manager to boot nodes by
using the xtcli command:

crayadm@smw:~> xtcli boot_cfg update -b primary_id, backup_id -i /tmp/boot/kernel.cpio

OR

If you are using /raw0, use the following command:

crayadm@smw:~> xtcli boot_cfg update -i /raw0

If you are using partitions, use the following command to designate the primary
boot node and the backup boot node:

crayadm@smw:~> xtcli part_cfg update pN -b primary_id,backup_id -i /tmp/boot/kernel.cpio

OR

174 S–2393–31

Modifying an Installed System [6]

If you are using /raw0, use the following command:

crayadm@smw:~> xtcli part_cfg update pN -i /raw0

3. Update the CLEinstall.conf file to designate the primary and backup boot
nodes so the file has the correct settings when you do your next upgrade.

4. Boot the boot node.

5. The STONITH capability must be enabled on the blade of the primary boot node
in order to use the boot-node failover feature.

!
Caution: STONITH is a per blade setting, not a per node setting. You must
ensure that your primary boot node is not assigned to a blade that hosts
services with conflicting STONITH requirements, such as Lustre.

a. Use the xtdaemonconfig command to determine the current STONITH
setting on your primary boot node. For example, if the primary boot node is
c0-0c0s0n1 located on blade c0-0c0s0, type this command:

Note: If you have a partitioned system, invoke these commands with the
--partition pn option.

crayadm@smw:~> xtdaemonconfig c0-0c0s0 | grep stonith
c0-0c0s0: stonith=false

b. To enable STONITH on your primary boot node, execute the following
command:

crayadm@smw:~> xtdaemonconfig c0-0c0s0 stonith=true
c0-0c0s0: stonith=true
The expected response was received.

c. The STONITH setting does not survive a power cycle. You can maintain the
STONITH setting for the primary boot node by adding the following line
to your boot automation file:

boot bootnode:
lappend actions {crms_exec "xtdaemonconfig c0-0c0s0 stonith=true"}

6. Boot the system.

Procedure 41. Disabling boot-node failover

• To disable boot-node failover, type these commands; in this example procedure,
the primary boot node is c0-0c0s0n1 and the backup boot node is
c0-0c0s3n1.

crayadm@smw:~> xtcli halt c0-0c0s0n1,c0-0c0s3n1
crayadm@smw:~> xtcli boot_cfg update -b c0-0c0s0n1,c0-0c0s0n1
crayadm@smw:~> xtdaemonconfig c0-0c0s0 stonith=false

S–2393–31 175

Managing System Software for Cray XE and Cray XT™ Systems

6.12.2 Configuring SDB Node Failover

When you configure a secondary (backup) SDB node, SDB node failover occurs
automatically when the primary SDB node fails.

The CLE implementation of SDB node failover includes installation configuration
parameters that facilitate automatic configuration, a chkconfig service called
sdbfailover, and a sdbfailover.conf configuration file for defining
site-specific commands to invoke on the backup SDB node.

The backup SDB node uses /etc files that are class or node specialized for the
primary SDB node and not for the backup node itself; the /etc files for the backup
node will be identical to those that existed on the primary SDB node.

The following list summarizes requirements to implement SDB node failover on
your Cray system.

• Designate a service node to be the alternate or backup SDB node. The backup
SDB node requires a QLogic Host Bus Adapter (HBA) card to communicate with
the RAID. This backup node is dedicated and cannot be used for other service
I/O functions.

• Enable the STONITH capability on the blade or module of the primary SDB node
in order to use the SDB node failover feature. STONITH is a per blade setting
and not a per node setting. Ensure that your primary SDB node is located on
a separate blade from services with conflicting STONITH requirements, such
as Lustre.

• Enable SDB node failover by setting the sdbnode_failover parameter
to yes in the CLEinstall.conf file prior to running the CLEinstall
program.

When this parameter is used to configure SDB node failover, the CLEinstall
program will verify and turn on chkconfig services and associated
configuration files for sdbfailover.

• Specify the primary and backup SDB nodes in the boot configuration by using
the xtcli command with the boot_cfg update -d options. For more
information, see the xtcli(8) man page.

• (Optional) Populate /etc/opt/cray/sdb/sdbfailover.conf with
site-specific commands.

When a failover occurs, the backup SDB node invokes all commands listed in the
/etc/opt/cray/sdb/sdbfailover.conf file. Include commands in this
file that are normally invoked during system start-up via boot automation scripts.
In a SDB node failover situation, these commands must be invoked on the new
(backup) SDB node. For example, you may include commands to start batch
system software (if not started via chkconfig) or commands to add a route
to an external license server.

176 S–2393–31

Modifying an Installed System [6]

If at any time you reconfigure your system to use a different primary SDB node,
you must enable STONITH for the new SDB node and disable STONITH for the
previous node.

For procedures to configure SDB node failover during a CLE software installation,
see Installing and Configuring Cray Linux Environment (CLE) Software.

6.12.3 Compute Node Failover Manager

The compute node failover manager daemon (cnfomd) facilitates communication
from the compute nodes to the backup boot or SDB node in the event of a primary
boot or SDB node failure. When a node failed event from the primary boot or SDB
node is detected, cnfomd updates the ARP cache entries for the boot or SDB node
virtual IP address to point to the backup node. The daemon runs on the compute
nodes and is similar to the failover manager daemon (fomd) on the service nodes. If
both boot and SDB node failover are disabled, the cnfomd process exits immediately
after start up.

This functionality is included in the cray-rca-compute RPM and is installed
by default.

6.13 Creating Logical Machines
Logical Machines on page 63, introduces logical machines. Configure a logical
machine (sometimes known as a system partition) with the xtcli part_cfg
command.

Partition IDs are predefined as p0 to p31. The default partition p0 is reserved for the
complete system.

6.13.1 Creating Routable Logical Machines

A routable logical machine is generally one that is logically a cube. The topology
class of the system indicates how the system is physically cabled together, which
in turn, determines the logical structure of the system. It is easiest to describe the
routing based on physical location. Because it is impossible to route around some
types of failures without a torus in the z-dimension, do not divide the system in a
way that breaks the z-dimension torus.

6.13.1.1 Topology Class 0

These are the smallest systems. A topology class 0 system can contain one to nine
chassis in up to three cabinets. Each chassis has its y- and z-dimensions looped back
on itself. The chassis are connected in the x-dimension.

S–2393–31 177

Managing System Software for Cray XE and Cray XT™ Systems

To partition the system, you break up the configuration in the x-dimension by
grouping a number of chassis together. Thus, you need to know the order in which
the chassis are cabled together to define your partitions. Table 7 shows the order of
the chassis. The last chassis in the list is cabled back to the first chassis in the list to
complete the torus.

Table 7. Topology 0 Chassis Layout

Number of
Chassis Order of Chassis in x-Dimension

1 c0-0c0

2 c0-0c0,c0-0c1

3 c0-0c0,c0-0c1,c0-0c2

4 c0-0c0,c0-0c1,c0-0c2,c1-0c1

5 c0-0c0,c0-0c1,c0-0c2,c1-0c1,c1-0c0

6 c0-0c0,c0-0c1,c0-0c2,c1-0c2,c1-0c1,c1-0c0

7 c0-0c0,c0-0c1,c0-0c2,c1-0c2,c1-0c1,c2-0c0,c1-0c0

8 c0-0c0,c0-0c1,c0-0c2,c1-0c2,c1-0c1,c2-0c1,c2-0c0,c1-0c0

9 c0-0c0,c0-0c1,c0-0c2,c1-0c2,c1-0c1,c2-0c2,c2-0c1,c2-0c0,c1-0c0

To partition the system on a cabinet basis, you must take your particular configuration
and the logical chassis ordering shown in Table 7 into account. For example, if you
have a three-cabinet (nine-chassis) topology class 0 system, you can partition your
system on a cabinet basis as follows:

c0-0,c1-0 and c2-0

OR

c0-0 and c1-0,c2-0

Cabinet c1-0 cannot be a partition on its own because the three chassis are not all
directly connected together. Cabinets c0-0 and c2-0 can each be independent
partitions because all three chassis for each of these cabinets are directly connected
together.

6.13.1.2 Topology Class 1

Class 1 topology systems contain a single row of cabinets. Generally, systems
have 4 to 15 cabinets. The three chassis in each cabinet are cabled together in the
y-dimension. The z-dimension is looped back on itself within the chassis. The
cabinets are then cabled together in the x-dimension.

178 S–2393–31

Modifying an Installed System [6]

To create a torus in the x-dimension, the cabinets are cabled in an interleaved fashion.
This means that cabinet 0 in the row is cabled to cabinet 2, which is cabled to 4, and
so on to the end of the row. At this point, the highest-numbered even cabinet is cabled
to the highest-numbered odd cabinet. Then the odd cabinets are cabled together,
coming back down the row to cabinet 1. To complete the torus, cabinet 1 is cabled
to cabinet 0.

To partition this system, you can:

• Group together a consecutive number of even (or odd) cabinets. For example,
you can create two logical machines, one with all the even cabinets and another
with the odd cabinets.

• Group together consecutive cabinets on each end of the row. For example, you
can partition a 12-cabinet system with cabinets 0-5 in one partition and cabinets
6-11 in another.

• Group a combination of cabinets, For example, for a 12-cabinet system, you
can define three logical machines containing cabinets 0-5; 6,8,10; and 7,9,11,
respectively.

6.13.1.3 Topology Class 2

Topology class 2 systems are configured with two equal-sized rows of cabinets. The
chassis within the cabinet are cabled together in the y-dimension. Corresponding
cabinets in each row are cabled together in the z-dimension. That is, they are cabled
together by pairing up chassis within the cabinets, and then cabling them together.
The chassis are paired chassis0-chassis2, chassis1-chassis1, and chassis2-chassis0.
The x-dimension within each row is cabled the same interleaved fashion as is
topology class 1.

To partition a topology class 2 system, keep pairs of corresponding cabinets together
so you do not break the z-dimension. Thus, topology class 2 can be partitioned in
the same way as topology class 1. The logical machine includes the cabinets from
both rows.

S–2393–31 179

Managing System Software for Cray XE and Cray XT™ Systems

6.13.1.4 Topology Class 3

Topology class 3 systems contain multiple equal-sized rows of cabinets. These can
be cabled in two ways:

• The y-dimension is a torus.

There must be an even number of rows in this configuration.

• The y-dimension is a mesh.

This configuration can have any number of rows, typically three or more. The
y-dimension is cabled between the rows. The z-dimension cables the three chassis
within a cabinet together. The x-dimension is cabled down each row, in the same
configuration as topology classes 1 and 2.

There are many ways to create a logical machine for a topology class 3 system. Make
sure that all partitions are rectangular with respect to the cabinets. You must also
account for x-dimension cabinet interleaving. Rows are more complicated to divide
when the y-dimension is a torus, especially for systems with row counts greater
than four. You can take a subset of the number of rows to make a partition. Taking
corresponding cabinets from all rows leaves the y-dimension torus intact, which in
general helps performance.

6.13.2 Configuring a Logical Machine

The logical machine can have one of three states:

• Empty — not configured

• Disabled — configured but not activated

• Enabled — configured and activated

When a partition is defined, its state changes to DISABLED. Undefined partitions
are EMPTY by default.

Procedure 42. Configuring a logical machine

• Use the xtcli part_cfg command with the part_cmd option (add in the
following example) to identify the operation to be performed and the part_option
(-m, -b, -d and -i) to specify the characteristics of the logical machine. The
boot image may be a raw device, such as /raw0, or a file.

Example 83. Creating a logical machine with a boot node and SDB node
specifying the boot image path

crayadm@smw:~> xtcli part_cfg add p2 -m c0-0,c0-1,c0-2,c0-3 \
-b c0-0c0s0n0 -d c0-0c1s0n0 -i /bootimagedir/bootimage

Note: When using a file for the boot image, the same file must be on both the
SMW and the bootroot at the same path.

180 S–2393–31

Modifying an Installed System [6]

For the logical machine to be bootable, you must specify boot node and SDB node
IDs.

For instructions on booting a logical machine, see Booting a Logical Machine on
page 181.

For information about configuring boot-node failover, see Configuring Boot-node
Failover on page 172.

To watch HSS events on the specified partition, execute the xtconsumer -p
partition_name command.

To display the console text of the specified partition, execute the xtconsole -p
partition_name command.

For more information, see the xtcli_part(8), xtconsole(8), and
xtconsumer(8) man pages.

6.13.3 Booting a Logical Machine

The xtbootsys --part partition_name option enables you to indicate which
logical machine (partition) to boot. If you do not specify a partition name, the default
partition p0 (component name for the entire system) is booted. Alternatively, if you
do not specify a partition name and you use the CRMS_PARTITION environment
variable, this variable is used as the default partition name. Valid values are in the
form p#, where # ranges from 0 to 31.

Each file in /opt/craylog/bootlogs has a partition name suffix.

To boot a partition, see Booting the System on page 72.

6.14 Updating Boot Configuration
The HSS xtcli boot_cfg command allow you to specify the primary and
backup boot nodes and the primary and backup SDB nodes.

Example 84. Updating boot configuration

Update the boot configuration using the boot image
/bootimagedir/bootimage, primary boot node c0-0c1s0n0, backup boot
node c0-1c0s0n0, primary SDB node c0-0c0s0n0, and the backup SDB node
c0-1c1s0n0:

crayadm@smw:~> xtcli boot_cfg update -b c0-0c1s0n0,c0-1c0s0n0 \
-d c0-0c0s0n0,c0-1c1s0n0 -i /bootimagedir/bootimage

For more information, see the xtcli_boot(8) man page.

For information about configuring failover, see Configuring Failover for Boot and
SDB Nodes on page 172.

S–2393–31 181

Managing System Software for Cray XE and Cray XT™ Systems

6.15 Modifying Boot Automation Files
Your boot automation files should be located in /opt/cray/etc. There are several
automation files; for example, auto.generic.cnl and auto.min.cnl.

For boot automation scripts, when running CNL on compute nodes, the Lustre file
system should start up before the compute nodes.

Note: You can also boot the system or shut down the system using both
user-defined and built-in procedures in the auto.xtshutdown file. For related
procedures, see Installing and Configuring Cray Linux Environment (CLE)
Software.

If you use boot automation files, see the xtbootsys(8) man page, which
provides detailed information about boot automation files, including descriptions
of using the xtbootsys crms_boot_loadfile and xtbootsys
crms_boot_sdb_loadfile automation file procedures.

6.16 Callout to rc.local During Boot
The file /etc/init.d/rc.local is available for local customization of the boot
process. If this file/script is present, it is executed during the compute node boot. This
script is executed after /init, before any of the scripts in /etc/init.d/rc3.d
and before /etc/fstab is processed.

6.17 Changing the System Software Version to Be Booted
Release switching enables you to change between versions and releases of the CLE
software that are installed concurrently on the system.

You must boot the operating system to switch CLE releases on your Cray system.
You cannot change a release while the mainframe is running. You must reboot each
time you change versions; however, you do not need to reboot the SMW.

Minor release switching allows you to select one of the CLE software versions that
are installed within a single system set and have the same base operating system
release (for example, switching from 2.2.45, back to 2.2.44). Switching is achieved
by modifying sets of symbolic links in the file system to refer to the requested release.

Major release switching requires that you have a separate set of disk partitions for
each major operating system (for example, switching from 3.0.17, to 3.1.25). Each
system set provides a complete set of all file system and boot images, thus making
it possible to switch easily between two or more different versions of your CLE
system software. Each system set can be an alternative location for an installation or
upgrade of your Cray system. System sets are defined in the /etc/sysset.conf
file on the SMW.

182 S–2393–31

Modifying an Installed System [6]

If multiple versions of the software are installed and no version is chosen, the most
recently installed is used.

6.17.1 Minor Release Switching within a System Set

The xtrelswitch command performs release switching by manipulating symbolic
links in the file system and by setting the default version of module files that are
loaded at login. xtrelswitch uses a release version that is provided either in the
/etc/opt/cray/release/xtrelease file or by the xtrel= boot parameter.
If the latter is not provided, the former is used. The xtrelswitch command is not
intended to be invoked interactively; rather it is called by other scripts as part of the
boot sequence. Specifically, when the boot node is booted, this command is invoked
to switch the components in the boot node and shared root file systems.

To accomplish minor release switching, you must set the bootimage_xtrel
parameter to yes in your CLEinstall.conf installation configuration file. This
will include the release version in your boot image parameters file. If you routinely
switch between minor levels, you may find it more convenient to use a cpio_path in
/tmp (the boot image must be in the same path for both the SMW and the boot root),
instead of the updating the BOOT_IMAGE partition.

Note: The xtrelswitch command does not support switching between major
release levels, for example from CLE 3.0 to CLE 2.2.

For additional information, see the xtrelswitch(8) man page.

6.17.2 Major Release Switching using Separate System Sets

When you use system sets to change the Cray software booted on your Cray system,
you boot an entirely different file system. The switched components include:

• The boot node root file system
• The shared-root file system
• The disk partition containing the SDB
• The syslog, ufs, and persistent /var file systems

Booting a system set requires:

• The /etc/sysset.conf file that describes the available system sets.

• Choosing which boot image will be used for the next boot. Each system set label
has at least one BOOT_IMAGE.

• Activating a boot image for the chosen system set label.

The CLEinstall program installs or upgrades a system set to a set of disk
partitions on the Boot RAID. For more information about the CLEinstall program
and the /etc/sysset.conf file, see the Installing and Configuring Cray Linux
Environment (CLE) Software and the sysset.conf(5) man page.

S–2393–31 183

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 43. Booting a system set

1. Choose which system set in the /etc/sysset.conf file should be used for
the boot. For example:

LABEL:BLUE
DESCRIPTION:BLUE system with production

2. For the chosen system set, there is at least one BOOT_IMAGE in the
/etc/sysset.conf file. Look at the /etc/sysset.conf file to
determine which boot image is associated with which raw device. For example, to
get the SMWdevice entry for BOOT_IMAGE0 for the chosen system set:

function SMWdevice host hostdevice mountpoint shared
BOOT_IMAGE0 /dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2 boot \

/dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2 /raw0 no

3. Set the next boot to use the boot image BOOT_IMAGE0
from the BLUE system set, which is the
/dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2

disk partition. There will be a link from /raw0 to
/dev/disk/by-id/scsi-3600a0b800026e1400000192c4b66eb70-part2.

smw:~ # xtcli boot_cfg update -i /raw0

6.18 Changing the Service Database (SDB)
The SDB, which is a MySQL database, contains the XTAdmin system database.
The XTAdmin database contains both persistent and nonpersistent tables. The
processor and service_processor tables are nonpersistent and are created
from the HSS data at boot time. The XTAdmin database tables track system
configuration information. The SDB makes the system configuration information
available to the Application Level Placement Scheduler (ALPS), which interacts with
individual compute nodes running CNL.

Cray provides commands (see Updating Database Tables on page 186) that enable
you to examine values in the SDB tables and update them when your system
configuration changes.

!
Caution: Do not use MySQL commands to change table values directly. Doing so
can leave the database in an inconsistent state.

Accounts that access MySQL by default contain a .my.cnf file in their home
directories.

6.18.1 Service Database Tables

Table 8 describes the SDB tables, which belong to the XTAdmin database.

184 S–2393–31

Modifying an Installed System [6]

Table 8. Service Database Tables

Table Name Function

attributes Stores compute node attribute information

lustre_failover Updates the database when a node's Lustre failover configuration
changes

lustre_service Updates the database when a node's Lustre service configuration
changes

filesystem Updates the database when a Lustre file system's configuration
changes

processor Stores master list of processing elements and their status

segment For nodes with multiple NUMA nodes, stores attribute information
about the compute node and its associated NUMA nodes

service_cmd Stores characteristics of a service

service_config Stores processing element services that the resiliency
communication agent (RCA) starts

service_processor Stores nodes and classes (boot, login, server, I/O, or network)

textfiles Stores text

version Stores the database schema version

6.18.2 Database Security

Access to MySQL databases requires a user name and password. The MySQL
accounts and privileges are shown in Table 9. For security purposes, Cray
recommends changing the account passwords on a regular basis. Default MySQL
account passwords and an example of how to change them are documented in
Installing and Configuring Cray Linux Environment (CLE) Software. To change the
default MySQL passwords, also see Changing Default MySQL Passwords on the
SDB on page 109.

Table 9. Database Privileges

Account Privilege

MySQL basic Read access to most tables; most applications
use this account.

MySQL sys_mgmt Most privileged; access to all information and
commands.

S–2393–31 185

Managing System Software for Cray XE and Cray XT™ Systems

6.18.3 Updating Database Tables

The CLE command pairs shown in Table 10 enable you to update tables in the SDB.
One command converts the data into an ASCII text file that you can edit; the other
writes the data back into the database file.

Table 10. Service Database Update Commands

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2proc xtproc2db processor Updates the
database when a
node is taken out
of service

./processor

xtdb2attr xtattr2db attributes Updates the
database when
node attributes
change (see
Setting and
Viewing Node
Attributes on
page 191)

./attribute

xtdb2nodeclasses xtnodeclasses2db service_processor Updates the
database when
a node's class
changes (see
Changing Nodes
and Classes on
page 188)

./node_classes

xtdb2segment xtsegment2db segment For nodes with
multiple NUMA
nodes, updates
the database
when attribute
information about
node changes
(see Using
the XTAdmin
Database
segment Table
on page 196)

./segment

xtdb2servcmd xtservcmd2db service_cmd Updates the
database when
characteristics of a
service changes

./serv_cmd

186 S–2393–31

Modifying an Installed System [6]

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2servconfig xtservconfig2db service_config Updates the
database when
services change
(see Changing
Services on
page 188)

./serv_config

xtdb2etchosts none processor Manages IP
mapping for
service nodes

none

xtdb2lustrefailover xtlustrefailover2db lustre_failover Updates the
database when
a node's Lustre
failover state
changes

./lustre_failover

xtdb2lustreserv xtlustreserv2db lustre_service Updates the
database when
a file system's
failover process is
changed

./lustre_serv

xtdb2filesys xtfilesys2db filesystem Updates the
database when a
file system's status
changes

./filesys

xtprocadmin none processor Displays or sets
the current value
of processor
flags and node
attributes in the
service database
(SDB). The
batch scheduler
and ALPS are
impacted by
changes to
these flags and
attributes.

none

S–2393–31 187

Managing System Software for Cray XE and Cray XT™ Systems

Get Command Put Command Table Accessed Reason to Use Default File

xtservconfig none service_config Adds, removes, or
modifies service
configuration
in the SDB
service_config

table see Changing
Services on
page 188)

none

6.18.3.1 Changing Nodes and Classes

The service_processor table tracks node IDs (NIDs) and their
classes (see Class Name on page 60). The table is populated from the
/etc/opt/cray/sdb/node_classes file on the boot node every time the
system boots. Change this file to update the database when the classes of nodes
change, for example, when you are adding login nodes.

Note: The xtnodeclasses2db command inserts the node-class list into the
database. It does not make any changes to the shared root. To change the shared
root, invoke the xtnce command (see Changing the Class of a Node on page 137).

For more information, see the xtdb2nodeclasses(8) and
xtnodeclasses2db(8) man pages.

6.18.3.2 Changing Services

The service_config table of the SDB maintains a list of the services to be
configured on service nodes. Update this table when services are changed, for
example, when you are adding the PBS-MOM service.

Use the xtservconfig command to determine the services that are available in the
service_config table. The xtservconfig command can be executed from
any service node but is normally run from the boot node.

Example 85. Identifying services in the service_config table

boot:~ # xtservconfig avail
SERVICE-COMMAND START STOP
SERVICE-COMMAND START STOP

NTP /opt/cray/rca/default/etc/fom+ /opt/cray/rca/default/etc/fom+
PBS-MOM /opt/cray/rca/default/etc/fom+ /opt/cray/rca/default/etc/fom+
PBS-SCHED /opt/cray/rca/default/etc/fom+ /opt/cray/rca/default/etc/fom+
PBS-SERV /opt/cray/rca/default/etc/fom+ /opt/cray/rca/default/etc/fom+

188 S–2393–31

Modifying an Installed System [6]

Procedure 44. Updating the service_config table when services change

1. Use the xtservconfig command to modify the services that run on each
node. The xtservconfig command can be executed from any service node
but is normally run from the boot node. You must be user root to make a
change using the xtservconfig command. For example, to add the PBS-MOM
service, type the following command:

boot:~ # xtservconfig -n 012 add PBS-MOM

2. Reboot the node or send a SIGHUP signal on the affected node to activate the
change:

a. Log on to the affected node as root user.

boot:~ # ssh root@nid00012

b. Type:

nid00012:~ # killall -HUP fomd

This causes the failover manager to read the database.

For example, to effect the change for node 012, type:

nid00012:~ # pdsh -w 012 "killall -HUP fomd"

For more information, see the xtservconfig(8) man page.

For information about providing SSH keys for computes nodes, see Modifying SSH
Keys for Compute Nodes on page 122.

6.19 Viewing the Service Database Contents with MySQL
Commands

The service database is configured as part of the system installation (see the Installing
and Configuring Cray Linux Environment (CLE) Software).

!
Caution: Use MySQL commands to examine tables, but do not use them to change
table values directly. Doing so can leave the database in an inconsistent state.

Procedure 45. Examining the service databases with MySQL commands

1. As user crayadm, on the SDB node, enter the MySQL shell.

crayadm@sdb:~> mysql -u basic -p
Enter password: ***********
mysql> show databases;
+-----------+
| Database |
+-----------+
| XTAdmin |
1-----------+
1 row in set (0.04 sec)

S–2393–31 189

Managing System Software for Cray XE and Cray XT™ Systems

2. Select the XTAdmin database.

mysql> use XTAdmin;
Database changed

3. Display the tables in the XTAdmin database.

mysql> show tables;
+-------------------+
| Tables_in_XTAdmin |
+-------------------+
| attributes |
| filesystem |
| lustre_failover |
| lustre_service |
| processor |
| segment |
| service_cmd |
| service_config |
| service_processor |
| version |
+-------------------+
10 rows in set (0.00 sec)

4. Display the format of the service_processor table.

mysql> describe service_processor;
+------------+------------------+------+-----+--------+
Field | Type |Null|Key|Default| Extra|

+--------------+------------------+------+-----+------+
|processor_id|int(10) unsigned| |PRI|0 | |
|service_type|varchar(64) |YES | |NULL | |
+--------------+------------------+------+-----+------+
2 rows in set (0.00 sec)

5. Display the contents of all fields in the service_processor table.

mysql> select * from XTAdmin.service_processor;
+--------------+--------------+
| processor_id | service_type |
+--------------+--------------+
0	service
3	service
4	service
7	service
8	service
11	service
12	service
15	service
16	service
19	service
20	service
23	service
24	service
27	service
+--------------+--------------+
14 rows in set (0.00 sec)

190 S–2393–31

Modifying an Installed System [6]

6. Display processor_id values from the processor table.

mysql> select processor_id from processor;
+--------------+
| processor_id |
+--------------+
| 0 |
| 3 |
| 4 |
| 7 |
| 8 |
| 103 |
| 104 |
| 107 |

...

| 192 |
| 195 |
+--------------+
162 rows in set (0.00 sec)

6.20 Configuring the Lustre File System
For a description of the Lustre file system and how to configure it, see Managing
Lustre for the Cray Linux Environment (CLE).

6.21 Configuring Cray Data Virtualization Service (Cray DVS)
For a description of the Cray DVS parallel I/O forwarding service and how to
configure it, see Introduction to Cray Data Virtualization Service.

6.22 Enabling File-locking for Lustre Clients
To enable file-locking for all Linux clients when mounting the Lustre file system
on service nodes or on CNL compute nodes, you must use the flock option for
mount.

6.23 Setting and Viewing Node Attributes
Users can control the selection of the compute nodes on which to run their
applications and can select nodes on the basis of desired characteristics (node
attributes). This allows a placement scheduler to schedule jobs based on the node
attributes.

A user invokes the cnselect command to specify node-selection criteria. The
cnselect script uses these selection criteria to query the table of node attributes in
the SDB and returns a node list to the user based on the results of the query.

S–2393–31 191

Managing System Software for Cray XE and Cray XT™ Systems

When launching the application, the user includes the node list using the aprun -L
node_list option as described on the aprun(1) man page. The ALPS placement
scheduler allocates nodes based on this list.

Note: To meet specific user needs, you can modify the cnselect script. For
additional information about the cnselect script, see the cnselect(1) man
page.

6.23.1 Setting Node Attributes Using the
/etc/opt/cray/sdb/attr.xthwinv and
/etc/opt/cray/sdb/attr.defaults Files

In order for users to select desired node attributes, you must first set the
characteristics of individual compute nodes. Node attribute information is written
to the /etc/opt/cray/sdb/attributes data file and loaded into the
attributes table in the SDB when the SDB is booted.

6.23.1.1 Enabling Node Attributes during Boot Process

Enable node attributes by instructing the boot process to generate the
/etc/opt/cray/sdb/attributes data file when the boot node is booted and
to load it into the SDB when the SDB node is booted.

On the boot node, to instruct the boot process to generate the
/etc/opt/cray/sdb/attributes file, modify the /etc/sysconfig/xt
file to include the line:

boot:~ # vi /etc/sysconfig/xt
SDBATTR=/etc/opt/cray/sdb/attributes

If you do not include the SDBATTR=/etc/opt/cray/sdb/attributes
line and you instruct the boot process to generate the
/etc/opt/cray/sdb/attributes file, you get a nonfatal warning message
to alert you to the fact that there is no SDBATTR value defined in the installed
/etc/sysconfig/xt file and no node attribute data is being generated.

On the shared root in the default view, to instruct the boot process to load the
/etc/opt/cray/sdb/attributes file into the SDB, enter the xtopview
shell and add the following line to the /etc/sysconfig/xt shared root file:

boot:~ # xtopview
default/:/ # vi /etc/sysconfig/xt
SDBATTR=/etc/opt/cray/sdb/attributes

6.23.1.2 Generating the /etc/opt/cray/sdb/attributes File

Data for the /etc/opt/cray/sdb/attributes file comes from two
other files: the /etc/opt/cray/sdb/attr.xthwinv file, which
contains information to generate the hardware attributes for each node, and the
/etc/opt/cray/sdb/attr.defaults file, which contains default values

192 S–2393–31

Modifying an Installed System [6]

for additional attributes not generated from the attr.xthwinv file. The
xtprocadmin(8) man page includes a description of the attributes fields used by
these two files.

• The /etc/opt/cray/sdb/attr.xthwinv file contains information to
generate the hardware attributes for each node. The hardware attributes listed in
the attr.xthwinv file apply to all nodes and include:

clockmhz The processor clock speed in megahertz.

availmem The amount of physical memory on the node.

coremask A bit mask that shows which cores are available on a node. For a
single-core processor, the value is 1. For a dual-core processor
where both cores are available, the value is 3. For a quad-core
processor where all cores are available, the value is 15.

To generate the /etc/opt/cray/sdb/attr.xthwinv file, invoke
the xthwinv command on the System Management Workstation (SMW),
redirecting the output to the /etc/opt/cray/sdb/attr.xthwinv file on
the boot node, which is run from the boot node; for example:

boot:~ # ssh smw 'xthwinv s0' > /etc/opt/cray/sdb/attr.xthwinv

For additional information about the xthwinv command, see the xthwinv(8)
man page.

Note: If you have blades powered down when you want to upgrade your
software, see the CLEinstall(8) man page for which xthwinv file to use
during your upgrade process.

• The /etc/opt/cray/sdb/attr.defaults file contains default values for
additional attributes not generated from the attr.xthwinv file.

In addition to hardware characteristics, you can specify additional attributes in the
/etc/opt/cray/sdb/attr.defaults file. This file can contain attribute
settings for attributes in the following list. The attributes can be applied to all
nodes or to a given set of nodes.

Note: Do not set hardware attributes (memory size, clock speed, and cores) in
the attr.defaults file because the values will be overwritten by those
already specified in the /etc/opt/cray/sdb/attr.xthwinv file.

archtype The architecture type: Cray XE and Cray XT=2; default=2.

osclass The compute node's operating system: CNL=2; default=2. This
setting does not impact the booting process; the compute node
operating system to boot must still be specified at boot time.

pageszl2 The log base 2 of the page size. For example, if pageszl2 is
12, the page size is 4K (212 = 4096, or 4K). Default=12

S–2393–31 193

Managing System Software for Cray XE and Cray XT™ Systems

label0
label1
label2
label3 Each label is a string of up to 32 characters; the string cannot

contain any spaces or shell-sensitive characters.

To create the attr.defaults file, copy the example file provided in
/opt/xt-boot/default/etc/opt/cray/sdb/attr.defaults.example
and then edit the file to modify the existing attribute settings and to
create site-specific attributes as needed.

In addition to the attributes in the /etc/opt/cray/sdb/attr.defaults
file, there are two keywords that allow you to describe the node or set of nodes to
which attributes are assigned. For global default-attribute values that apply to the
entire system, the line that specifies an attribute must begin with the DEFAULT:
keyword. For example:

DEFAULT: osclass=2

The nodeid keyword assigns attributes to a specific node or set of nodes and
overrides a default setting. For values that apply only to certain nodes, the line
that specifies the attributes must begin with nodeid=[RANGE], where RANGE
is a comma-separated list of nodes and ranges that have the form m-n.

Note: Spaces are not allowed between the comma-separated list of nodes
and ranges. When listing multiple attributes for a set of nodes, separate
the attributes by a single space, for example, nodeid=234,245-248
archtype=2 osclass=2.

Example 86. Using node attribute labels to assign nodes to user groups

The following example uses labels to assign groups of compute nodes to specific
user groups without the need to partition the system:

nodeid=101-500 label0=physicsdept
nodeid=501-1000 label1=csdept
nodeid=50-100,1001 label2=biologydept

6.23.2 SDB attributes Table

When the SDB boots, it reads the /etc/opt/cray/sdb/attributes file and
loads it into the SDB attributes table.

194 S–2393–31

Modifying an Installed System [6]

To display the format of the attributes SDB table, use the mysql describe
command:

mysql> describe attributes;
+----------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+------------------+------+-----+---------+-------+
nodeid	int(32) unsigned		PRI	0	
archtype	int(4) unsigned			2	
osclass	int(4) unsigned			2	
coremask	int(4) unsigned			1	
availmem	int(32) unsigned			0	
pageszl2	int(32) unsigned			12	
clockmhz	int(32) unsigned	YES		NULL	
label0	varchar(32)	YES		NULL	
label1	varchar(32)	YES		NULL	
label2	varchar(32)	YES		NULL	
label3	varchar(32)	YES		NULL	
+----------+------------------+------+-----+---------+-------+

The service database command pair xtdb2attr and xtattr2db enables you
to update the attributes table in the SDB. For additional information about
updating SDB tables using command pairs, see Updating Database Tables on
page 186.

6.23.3 Setting Attributes Using the xtprocadmin Command

You can use the xtprocadmin -a attr=value command to temporarily set
certain site-specific attributes. Using the xtprocadmin -a attr=value command
to set certain site-specific attributes is not persistent across reboots. Attribute
settings that are intended to be persistent across reboots must be specified in the
attr.defaults file.

Note: For CNL nodes, xtprocadmin changes to attributes requires that you
restart the apbridge daemon on the boot node in order for ALPS to detect
changes that the xtprocadmin command has made to the SDB. Restarting the
other ALPS components (for example, on the SDB node or on the login node if
they are separate nodes) is not necessary. To restart apbridge, log into the boot
node as root and execute the following command:

boot:~ # /etc/init.d/alps restart

For example, the following command creates a new label1 attribute value for
the compute node whose NID is 350; you must be user root and execute the
xtprocadmin command from a service node, and the SDB must be running:

boot:~ # xtprocadmin -n 350 -a label1=eedept

The output is:

Connected
NID (HEX) NODENAME TYPE LABEL1
350 0x15e c2-0c2s7n2 compute eedept

S–2393–31 195

Managing System Software for Cray XE and Cray XT™ Systems

Then restart the apbridge daemon on the boot node in order for ALPS to detect
changes that the xtprocadmin command has made to the SDB.

boot:~ # /etc/init.d/alps restart

6.23.4 Viewing Node Attributes

Use the xtprocadmin command to view current node attributes. The
xtprocadmin -A option lists all attributes of selected nodes. The xtprocadmin
-a attr1,attr2 option lists selected attributes of selected nodes.

6.24 Using the XTAdmin Database segment Table
The XTAdmin database contains a segment table that supports the memory affinity
optimization tools for Cray XT5 applications and CPU affinity options for all Cray
compute nodes with two or more NUMA nodes. The CPU affinity options apply to
all Cray multicore compute nodes. The segment table is only supported by Cray
systems running CNL.

The segment table is similar to the attributes table but differs in that a node
may have multiple segments associated with it; the attributes table provides
summary information for each node.

In order to address the application launch and placement requirements for compute
nodes with two or more NUMA nodes, the Application Level Placement Scheduler
(ALPS) requires additional information that characterizes the intranode topology of
the system. This data is stored in the segment table of the XTAdmin database and
acquired by apbridge when ALPS is started, in much the same way that node
attribute data is acquired. (For more information about XTAdmin database tables, see
Changing the Service Database (SDB) on page 184.)

The segment table contains the following fields:

• node_id is the node identifier that maps to the nodeid field of the
attributes table and processor_id field of the processor table.

• socket_id contains a unique ordinal for each processor socket.

• die_id contains a unique ordinal for each processor die; with this release,
die_id is 0 in the segment table and is otherwise unused (reserved for future
use).

• coremask is the processor core mask. The coremask has a bit set for each core
of a CPU. Quad core CPUs will have a value of 15 (binary 01111, hex 0xF).

• mempgs represents the amount of memory available, in Megabytes, to a single
segment.

196 S–2393–31

Modifying an Installed System [6]

The /etc/sysconfig/xt file contains SDBSEG field, which
specifies the location of the segment table file; by default,
SDBSEG=/etc/opt/cray/sdb/segment.

When you change the hardware on the machine, at the next system boot, you must
invoke the SMW xthwinv utility to populate the attribute and segment
tables. The /etc/opt/cray/sdb/attr.xthwinv file, which contains
information to generate the hardware attributes for each node, populates the
segment table. Like the attributes table, you must reinitialize the segment
table at boot. Any changes that you make manually to the table do not persist
at reboot. For additional information about using the xthwinv command, see
Generating the /etc/opt/cray/sdb/attributes File on page 192 and the
xthwinv(8) man page.

To update the segment table, use the following service database commands:

• xtdb2segment, which converts the data into an ASCII text file that can be
edited

• xtsegment2db, which writes the data back into the database file

For more information, see the xtdb2segment(8) and xtsegment2db(8) man
pages.

After manually updating the segment table, you can log on to any login node or the
SDB node as root and execute the apmgr resync command to request ALPS to
reevaluate the configuration node segment information and update its information.

Note: If ALPS or any portion of the feature fails in relation to segment scheduling,
ALPS reverts to the standard scheduling procedure.

6.25 Configuring Networking Services

6.25.1 Changing the High-speed Network (HSN)

To change your system interconnection network (HSN) address ranges, see Installing
and Configuring Cray Linux Environment (CLE) Software.

6.25.2 Network File System (NFS)

The Network File System (NFS) version 4 distributed file system protocol is
supported. NFS is enabled on service nodes but is not enabled on compute nodes.
Support for NFSv4 is included as part of the SLES software.

S–2393–31 197

Managing System Software for Cray XE and Cray XT™ Systems

The CLE installation tool supports NFS tuning via /etc/sysconfig/nfs
and /etc/init.d/nfsserver on the boot node. The
nfs_mountd_num_threads parameter in the CLEinstall.conf
installation configuration file controls an NFS mountd tuning parameter that is
added to /etc/sysconfig/nfs and used by /etc/init.d/nfsserver
to configure the number of mountd threads on the boot node. By default, NFS
mountd behavior is a single thread. If you have a larger Cray system (greater than 50
service I/O nodes), contact your Cray service representative for assistance changing
the default setting.

6.25.3 Configuring Ethernet Link Aggregation (Bonding, Channel
Bonding)

Linux Ethernet link aggregation is generally used to increase aggregate bandwidth by
combining multiple Ethernet channels into a single virtual channel. Bonding can also
be used to increase the availability of a link by utilizing other interfaces in the bond
when one of the links in that bond fails.

Instructions for setting up Ethernet link aggregation
are provided in the Linux documentation file
/usr/src/linux/Documentation/networking/bonding.txt,
installed on your system.

6.25.4 Cray Systems with SeaStar System Interconnection Network:
Configuring the Virtual Channel (VC)

Note: This section applies only to Cray systems with the Cray SeaStar based
system interconnection network (Cray XT series).

There are two virtual channel classes present within the SeaStar network, virtual
channel 0 (VC0) and virtual channel 2 (VC2).

The SMW xtbounce portals_algorithm initialization file variable is a
numeric value used to indicate which algorithm the Portals firmware is to use.
Algorithm 0 indicates that the Portals firmware should use virtual channel 0 (VC0)
exclusively. Algorithm 1 indicates that the Portals firmware should utilize virtual
channel 0 (VC0) and virtual channel 2 (VC2).

Because Cray XT systems with multi-core processors that are operating under a
heavy communication load have seen improved performance when using both
VC0 and VC2, the default virtual channel setting is algorithm 1 (xtbounce
portals_algorithm=1).

Important: The xtspider and xtnxn2 tests should be run before starting to
use VC2.

198 S–2393–31

Modifying an Installed System [6]

On the SMW, the output from running the xtfwstat command indicates the state of
virtual channel 2 (VC2) usage within the firmware. This information is displayed as a
diagnostic and a site-administration aid to confirm that VC2 is configured correctly.

For additional information, see the xtbounce(8) and xtfwstat(8) man pages.

6.25.5 Increasing Size of ARP Tables

To increase the size of ARP tables, change the ARP_OVERHEAD parameter in the
/etc/sysconfig/xt file. ARP_OVERHEAD should be set to a value greater
than the number of hosts in all locally attached external networks. The default is
1024 entries.

6.25.6 Configuring Native IP (SSIP)

Service nodes on the system interconnection network have IP addresses. The
address is of the standard form aaa.bbb.ccc.ddd, where aaa.bbb is defined in the
/etc/sysconfig/xt file and ccc.ddd is a function of the node's 15-bit NID.

Native IP (ssip) is a network driver that provides IP services through SeaStar
hardware, which enables standard UNIX networking programs and protocols, such as
ssh, to work between service nodes over the system interconnection network.

SSIP is implemented as a Linux loadable kernel module and is enabled on the service
and compute nodes during the boot process; the ssip driver is part of the portals
module that is already loaded, and it configures the ss IP interface with a default
IP address derived from the node ID. (Node IDs are described in Node ID (NID)
for Cray XT Systems on page 59 and in Node ID (NID) for Cray XE Systems on
page 60.)

Cray defaults for aaa.bbb are 192 and 168. You can modify the settings by changing
the parameters IPPO_BYTE1 and IPPO_BYTE2 in /etc/sysconfig/xt. For
example, you must change these parameters if the IPPO_BYTE1 and IPPO_BYTE2
IP addresses are already in use at your site.

The low-order bytes are set with the following algorithm:

ccc=NID div 254
ddd=(NID mod 254) + 1

The internal IMAGEDIR/compute/etc/opt/cray/configuration/nids
file maps the IP address to the NID. Only the lowest-order bits are used by the Cray
system. (The IMAGEDIR/compute/etc/opt/cray/configuration/nids
file is created at boot time by the xtcdr2proc utility.)

S–2393–31 199

Managing System Software for Cray XE and Cray XT™ Systems

ARP is not supported under SSIP. Each node's ARP cache is populated
with the IP to NID mapping of any node it needs to communicate with
through SSIP. CNL nodes use the /init script and /sbin/rca-helper
-s to populate the ARP cache on CNL nodes. Service nodes use the
/etc/init.d/ippo script to create ARP cache entries by reading the
IMAGEDIR/compute/etc/opt/cray/configuration/nids file that was
created at boot time.

The following example illustrates an
IMAGEDIR/compute/etc/opt/cray/configuration/nids file
defining NIDs 0, 3, 4, and 7.

Example 87. IMAGEDIR/compute/etc/opt/cray/configuration/nids file
defining NIDs

#IP address Hardware address
192.168.0.1 00:00:00:00
192.168.0.4 00:00:00:03
192.168.0.5 00:00:00:04
192.168.0.8 00:00:00:07

Note: If you enable IP forwarding on a service node and want ICMP error returns,
you must remove the IFF_NOARP parameter on the high-speed network interface.
This can be done by issuing the ifconfig ss arp command in a start-up script,
such as /etc/rc.local.

6.25.7 Configuring Realm-Specific IP Addressing (RSIP)

Realm-Specific Internet Protocol (RSIP) enables internal client nodes, such as
compute nodes, to reach external IP networking resources. Support for RSIP is
available with CLE on systems with CNL compute nodes.

Note: RSIP for IPv4 TCP and User Datagram Protocol (UDP) transport protocols
are supported. Internet Protocol Security (IPSec) and IPv6 protocols are not
supported.

RSIP is composed of two main components: RSIP clients and RSIP servers
or gateways. You configure RSIP and select servers using RSIP parameters in
CLEinstall.conf. By default, when RSIP is enabled, all CNL compute nodes
are configured to be RSIP clients.

On your Cray system, RSIP servers must be service nodes with an external IP
interface such as a 10-GbE network interface card (NIC). You can configure multiple
RSIP servers using multiple service nodes, however only one RSIP daemon (rsipd)
and one external interface is allowed per service node. Cray requires that you
configure RSIP servers as dedicated network nodes.

Warning: Do not configure login nodes or service nodes that provide Lustre or
batch services as RSIP servers. Failure to set up an RSIP server as a dedicated
network node will disrupt network functionality.

200 S–2393–31

Modifying an Installed System [6]

The performance impact of configuring RSIP is negligible; very little noise is
generated by the RSIP client. RSIP clients will issue a lease refresh message
request/response pair once an hour, staggered by the startup window of 120 seconds,
but otherwise are largely silent.

To configure RSIP for your Cray system, first determine which service nodes and
associated Ethernet devices will be used to provide RSIP services. Optionally,
determine if you will configure service nodes with no external IP interfaces (isolated
service nodes) to act as RSIP clients. After selecting RSIP servers based on your
machine-specific networking hardware configuration, follow Procedure 46 on
page 202 to complete a default RSIP configuration and setup.

Enhancements to the default RSIP configuration require a detailed analysis of specific
site configuration and requirements. Contact your Cray representative for assistance
in changing the default RSIP configuration.

6.25.7.1 Using the CLEinstall Program to Install and Configure RSIP

The CLEinstall program can be configured to automatically install RSIP either
during a system software upgrade or as a separate event. In either case, you will
need to update the CNL boot image and restart your Cray system before RSIP is
functional.

When you set the following RSIP-specific parameters in the CLEinstall.conf
file, CLEinstall will load the RSIP RPM, modify rsipd.conf and invoke the
appropriate xtrsipcfg commands to configure RSIP for your system.

CNL_rsip=yes

Enables the RSIP client on CNL compute
nodes. Optionally, you can edit the
/var/opt/cray/install/shell_bootimage_label.sh
script and set CNL_RSIP=y.

rsip_nodes=

Specifies the RSIP servers. Populate with the node IDs of the nodes
you have identified as RSIP servers.

rsip_interfaces=

Specifies the IP interface for each RSIP server node. List the
interfaces in the same order specified by the rsip_nodes
parameter.

S–2393–31 201

Managing System Software for Cray XE and Cray XT™ Systems

If you are configuring RSIP for the first time during an installation or upgrade of
your CLE system software, follow RSIP-specific instructions in the Installing and
Configuring Cray Linux Environment (CLE) Software. If you are configuring RSIP
as a separate event, follow Procedure 46 on page 202. If you already configured
RSIP and want to add isolated service nodes as RSIP clients, follow Procedure 47
on page 205.

Note: You cannot configure service nodes to be RSIP clients using the
CLEinstall command and the steps described in Installing and Configuring
Cray Linux Environment (CLE) Software.

For additional information about configuring RSIP, see the xtrsipcfg(8) and
rsipd.conf(5) man pages.

Procedure 46. Installing, configuring, and starting RSIP clients and servers

1. Edit CLEinstall.conf for your RSIP configuration. For example, to
configure nodes 16 and 20 as RSIP servers with an external interface named
eth0 and node 64 as an RSIP server with an external interface named eth1,
make these changes.

smw:~ # vi /home/crayadm/install.xtrelease/CLEinstall.conf
CNL_rsip=yes
rsip_nodes=16 20 64
rsip_interfaces=eth0 eth0 eth1

2. Invoke the CLEinstall program on the SMW; you must specify the xtrelease
that is currently installed on the system set you are using.

Warning: If --XTrelease does not match the release version that is
currently installed, this command will perform an upgrade and will modify
other CLE system software for the specified system set. Do not use this
procedure to perform an upgrade. Follow Installing and Configuring Cray
Linux Environment (CLE) Software to upgrade to a different xtrelease.

smw:~ # /home/crayadm/install.xtrelease/CLEinstall --upgrade --debug \
--label=system_set_label --XTrelease=xtrelease \
--configfile=/home/crayadm/install.xtrelease/CLEinstall.conf \
--CLEmedia=/home/crayadm/install.xtrelease

3. Type y and press the Enter key to proceed when prompted to update the boot
root and again for the shared root.

*** Do you wish to continue? (y/n) --> y

Upon completion, CLEinstall lists suggested commands to finish the
installation. Those commands are also described here. For more information
about running the CLEinstall program, see Installing and Configuring Cray
Linux Environment (CLE) Software.

202 S–2393–31

Modifying an Installed System [6]

4. Rebuild the boot image using
/var/opt/cray/install/shell_bootimage_label.sh, xtbootimg
and xtcli commands. Suggested commands are included in output from
CLEinstall and shell_bootimage_label.sh. For more information
about creating boot images, follow Procedure 2 on page 68.

5. (Optional) Follow these steps to configure an isolated service node as an RSIP
client. Otherwise, skip to step 6.

!
Caution: Only service nodes without external network connections should be
configured as RSIP clients. Configuring a network node as an RSIP client will
disrupt network functionality; Service nodes with external network connections
will route all non-local traffic into the RSIP tunnel and IP may not function as
desired.

a. Select one of your RSIP servers to provide access for the isolated service
node. In this example, we have chosen the RSIP server node00016, with
the physical ID c0-0c0s4n0.

b. Log on to the boot node and invoke xtopview in the node view for the
RSIP server you have selected; for example:

boot:~ # xtopview -n c0-0c0s4n0
node/c0-0c0s4n0:/ #

c. Modify max_clients in the rsipd.conf file to add an additional client
for each isolated service node you are configuring. For example, if you
configured 300 RSIP clients (compute nodes), change 300 to 301.

node/c0-0c0s4n0:/ # vi /etc/opt/cray/rsipd/rsipd.conf
max_clients 301

6. Unmount the boot root and shared root file systems. For example, if you use the
default settings, type these commands.

smw:~ # umount /bootroot0/rr
smw:~ # umount /bootroot0

7. Shut down the system using your site-specific procedures; for example:

crayadm@smw:~> xtbootsys -s last -a auto.xtshutdown

8. Edit the boot automation file to configure your system to start the
RSIP daemon on RSIP servers. For example, if you have defined
nid00016 and nid00020 as RSIP servers, add the following lines to the
/opt/cray/etc/auto.xthostname file on the SMW.

yadm@smw:~> vi /opt/cray/etc/auto.xthostname
RSIP server startup
lappend actions { crms_exec_via_bootnode "nid00016" \
"root" "/etc/init.d/rsipd start" }
lappend actions { crms_exec_via_bootnode "nid00020" \
"root" "/etc/init.d/rsipd start" }

S–2393–31 203

Managing System Software for Cray XE and Cray XT™ Systems

Note: As part of system boot, the RSIP clients on the compute nodes make
connections to the RSIP server(s). Initiation of these connections is staggered
over a two minute window; during that time, connectivity over RSIP tunnels
will be unreliable. Avoid using RSIP services for three to four minutes
following a system boot.

For information about options available when starting the rsipd server, see the
rsipd(8) man page.

9. If you completed step 5 to configure one or more service nodes as an RSIP client,
edit the boot automation file to start the RSIP client. On the isolated service node,
invoke a modprobe of the krsip module with an IP argument pointing to the
HSN IP address of the RSIP server node you selected in step 5. For example, if
the IP address of the RSIP server is 192.168.0.29 and the isolated service
node is nid00023, make these changes.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
After the line or lines that start the RSIP servers add:
RSIP client startup
lappend actions { crms_exec_via_bootnode "nid00023" "root" "modprobe krsip ip=192.168.0.29" }

10. Boot your Cray system; for example:

crayadm@smw:~> xtbootsys -a auto.xthostname

Note: RSIP clients on the compute nodes make connections to the RSIP
server(s) during system boot. Initiation of these connections is staggered over a
two minute window; during that time, connectivity over RSIP tunnels will be
unreliable. Avoid using RSIP services for three to four minutes following a
system boot.

11. Test RSIP functionality. From a login node, log on to an RSIP client node
(compute node) and ping the IP address of the SMW or other host external to
your Cray system. For example, if nid00024 is a compute node and 172.30.14.55
is a valid external IP address, type these commands.

crayadm@login:~> ssh root@nid00024
root@nid00024's password:
Welcome to the initramfs
ping 172.30.14.55
172.30.14.55 is alive!
#

204 S–2393–31

Modifying an Installed System [6]

Procedure 47. Adding isolated service nodes as RSIP clients

You can configure service nodes that are isolated from the network as RSIP clients.
This procedure assumes that RSIP is already configured and functional on your
Cray system. If you have not installed and configured RSIP on your system, follow
Procedure 46 on page 202, which includes an optional step to configure isolated
service nodes as RSIP clients.

Warning: Do not configure service nodes with external network connections as
RSIP clients. Configuring a network node as an RSIP client will disrupt network
functionality; Service nodes with external network connections will route all
non-local traffic into the RSIP tunnel and IP may not function as desired.

1. Select one of your RSIP servers to provide access for the isolated service node. In
this example, we have chosen the RSIP server node00016, with the physical
ID c0-0c0s4n0.

2. Log on to the boot node and invoke xtopview in the node view for the RSIP
server you have selected; for example:

boot:~ # xtopview -n c0-0c0s4n0
node/c0-0c0s4n0:/ #

Modify max_clients in the rsipd.conf file to add an additional client for
each isolated service node you are configuring. For example, if you configured
300 RSIP clients (compute nodes), change 300 to 301.

node/c0-0c0s4n0:/ # vi /etc/opt/cray/rsipd/rsipd.conf
max_clients 301

3. Load the RSIP client on the node. On the isolated service node, invoke a
modprobe of the krsip module with an IP argument pointing to the HSN IP
address of the RSIP server node you selected in step 1. For example, if the IP
address of the RSIP server is 192.168.0.29 and the isolated service node
is nid00023, type these commands.

boot:~ # ssh nid00023
nid00023:~ # modprobe krsip ip=192.168.0.29

4. Edit the boot automation file to start the RSIP client. Using the example from the
previous steps, make these changes.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
After the line or lines that start the RSIP servers add:
RSIP client startup
lappend actions { crms_exec_via_bootnode "nid00023" "root" "modprobe
krsip ip=192.168.0.29" }

S–2393–31 205

Managing System Software for Cray XE and Cray XT™ Systems

6.25.8 IP Routes for CNL Nodes in the /etc/routes File

You can edit the /etc/routes file in the CNL template image on the SMW to
provide route entries for CNL nodes. This provides a simple mechanism for you to
configure routing access from CNL compute nodes to login and network nodes using
external IP destinations without having to traverse RSIP tunnels. This mechanism is
not intended to be used for general-purpose routing of internal HSN IP traffic. It
is intended only to provide IP routes for CNL nodes that need to reach external IP
addresses or external networks. A new /etc/routes file is created in the CNL
images and is examined during startup. Non-comment, non-blank lines are passed to
the route add command. The empty template file provided contains comments
describing the syntax.

6.26 Updating the System Configuration After A Hardware
Change

When hardware is added to or removed from a Cray system, there are several steps
that need to be done to update the configuration of the system. Possible scenarios are:

• Adding new cabinets
• Removing old cabinets
• Adding a blade
• Removing a blade
• Changing the routing topology

Note: If you have blades powered down when you want to upgrade your software,
see the CLEinstall(8) man page for which xthwinv file to use during your
upgrade process.

Procedure 48. Adding or removing cabinets or chassis within cabinets

1. Run the xtdiscover command to update the system configuration to reflect
the changed hardware configuration. This example shows the display when you
add two cabinets.

smw:~ # xtdiscover
Using ini file '/opt/cray/etc/xtdiscover.ini'

xtdiscover is about to discover new hardware.
This operation may significantly modify the system database.

Please enter 'c' to continue, or 'a' or 'q' to abort [c]: c

Please enter network type (s=SeaStar, g=Gemini, q=quit): g

Is this system a Single-Slot Tester? y/n, q=quit [n]: n

Setting system type to Gemini
Discovering Gemini-based system...

Enter maximum X cabinet size [1-64], q=quit: 5
Enter maximum Y cabinet size [1-16], q=quit:

206 S–2393–31

Modifying an Installed System [6]

discover_hosts: ERROR: Y value must be in the range [1-16]
Enter maximum Y cabinet size [1-16], q=quit: 1
Adding hosts and routes for 5 cabinets...done.

Enter your system's network topology class [0]: 0
Setting topology class to 0

Suspending State Manager for discovery phase 1...
Suspend successful.
Saving current configuration...done.

Discovering cabinets:
[2 out of 5]
Finished waiting for cabinet heartbeats; found 2 out of 5
The following cabinets were not detected by heartbeat:

c2-0 c3-0 c4-0

Found 2 cabinets.

xtdiscover will create a single system partition (p0)
containing all discovered cabinets. If you need to create
additional partitions, use 'xtcli part_cfg add'.

Enter the boot node name [c0-0c0s0n1]:
Enter the SDB node name [c0-0c0s0n3]:
Enter the absolute pathname to the default boot image [/raw0]: /tmp/boot/crayA-3.1.18blue.cpio

Gathering base cabinet attributes:
[2 out of 2]
Finished gathering cabinet attributes.

Clearing database...done.
Verifying phase 1 configuration...done.
Storing base cabinet data...done.
Resuming State Manager for power-up and bounce...Resume successful.

Discovery Phase 1 of 3 complete.

xtdiscover is about to power on the cabinets.
*** IF YOU NEED TO DISABLE BLADES TO AVOID THEM
*** BEING POWERED ON, PLEASE DO SO NOW USING 'xtcli disable'

Please enter 'c' to continue, or 'a' or 'q' to abort [c]:

Suspending State Manager for discovery phase 2...
Suspend successful.

Loading base component data for discovery phase 2...done.

Powering on cabinets...
2 cabinets will be powered on:
[2 out of 2]
Cabinets powered on.

Discovering component phase 2 (blade) state:
[32 out of 32]
Finished discovering component phase 2 (blade) state.

Discovering component phase 2 (blade) attributes:
[32 out of 32]
Finished discovering component phase 2 (blade) attributes.
Verifying phase 2 configuration...done.

S–2393–31 207

Managing System Software for Cray XE and Cray XT™ Systems

Summary of blades discovered:
Total: 48 Service: 6 Empty: 16 Disabled: 0

Storing attribute data...done.

Discovery Phase 2 of 3 complete.

Resuming State Manager for bounce...Resume successful.

3 blades should be bounced using the command
in file /opt/cray/etc/xtdiscover-bounce-cmd

In a separate window, please bounce the system now to continue discovery.

After bounce completes, enter 'c' to complete discovery
or 'q' or 'a' to abort [c]:

Suspending State Manager for discovery phase 3...
Suspend successful.

Discovering component phase 3 (blade/node) attributes:
[32 out of 32]
Finished discovering component phase 3 attributes.
Verifying configuration...
INFO: 4 newly discovered components were added.
INFO: 836 components in previous configuration were deleted.
INFO: Added the following hardware:

1 cabinet
3 slots

INFO: Removed the following hardware:
1 cabinet

3 slots
832 cores

INFO: Configuration change details are in /opt/cray/etc/xtdiscover-config-changes.diff
done.
Storing component attribute data...done.
Updating component location history...done.

Restarting RSMS daemons for normal operation:
Stopping RSMS services: cm sedc_manager bm dm rm pm nm sm erd done
Starting RSMS services: erd sm nm pm rm dm bm sedc_manager cm
Flushing and installing cabinet routes...done.

done
Done.

Discovery complete
*********** xtdiscover finished ***********

2. Update the SDB database to provide ALPS with the new configuration at the
next boot.

a. Mount the boot root file system on the SMW. Although sdc1 is used in this
step, it may be different for your system.

Note: Ensure the boot root is not also mounted on the boot node.

smw:~ # fsck /dev/sdc1
smw:~ # mkdir -p /bootroot0
smw:~ # mount /dev/sdc1 /bootroot0

208 S–2393–31

Modifying an Installed System [6]

b. Save the old copy of the /etc/opt/cray/sdb/attr.xthwinv file
on the boot root.

smw:~ # cp -p /bootroot0/etc/opt/cray/sdb/attr.xthwinv \
/bootroot0/etc/opt/cray/sdb/attr.xthwinv.date

c. Capture system configuration into the
/etc/opt/cray/sdb/attr.xthwinv file on the boot root.

For the entire system, s0:

smw:~ # xthwinv s0 > /bootroot0/etc/opt/cray/sdb/attr.xthwinv

If the system set is used to boot a partition and not the entire machine then
xthwinv s0 should be xthwinv pN for the partition pN.

smw:~ # xthwinv pN > /bootroot0/etc/opt/cray/sdb/attr.xthwinv

Procedure 49. Adding or removing a service node

Some actions need to be done regardless of the function of the service node. At a
minimum, the boot node and the SDB node should be booted when doing these steps.
If reconfiguring RSIP servers, then all service nodes should be up.

1. Update the /etc/opt/cray/sdb/node_classes file on the boot root to
add entries for new service nodes and classes or remove old service nodes and
classes.

2. Update SMW boot automation files if new service nodes have been added or
removed that are providing services (such as ALPS on login nodes) that are
explicitly started by hostname in the boot automation file.

3. After adding a new service node, prepare the node view for it:

a. Run the xtcloneshared command on the boot node in the shared root
default view to copy an existing service node that is of similar type.

default/:/ # xtcloneshared -n from_node to_node

b. If the new service node will be in a new class, copy an existing service class.
Run the xtcloneshared command on the boot node in the shared root
default view to copy an existing service class.

default/:/ # xtcloneshared -c from_class to_class

4. After removing a service node from a certain class, run the xtcloneshared
command on the boot node in the shared root default view to reset to generic
default:

default/:/ # xtcloneshared -n to_node

5. If Lustre service nodes are added or removed, the Lustre configuration will need
to be modified. For more information about Lustre configuration, see Managing
Lustre for the Cray Linux Environment (CLE).

S–2393–31 209

Managing System Software for Cray XE and Cray XT™ Systems

6. If using RSIP and the new service node will be an RSIP server, then run
CLEinstall to reconfigure RSIP. For more information, see Configuring
Realm-Specific IP Addressing (RSIP) on page 200.

The boot image will need to be rebuilt in step 8.

7. Update the /etc/hosts file on the boot root, the shared root default view, and
the CNL image. When the boot node is booted, the bnd daemon will update the
boot root /etc/hosts file and copy it to the shared root default view. This
file should be copied from the boot root to the templates directory on the SMW
and the boot image should be rebuilt. If using partitions, the template directory
will be /opt/xt-images/templates/default-pN, where pN is the
partition number.

smw:~ # cp -p /opt/xt-images/templates/default/etc/hosts /opt/xt-images/templates \
/default/etc/hosts.save
smw:~ # scp -p boot:/etc/hosts /opt/xt-images/templates/default/etc/hosts

The boot image will need to be rebuilt in step 8.

8. Rebuild the boot image and reboot. Make sure you rerun the
shell_bootimage_BLUE.sh script to re-clone the boot image and to pick
up a change to the templates.

9. Update the CLEinstall.conf file with the service node changes before
the next CLE software update so that it matches the new configuration of the
machine.

a. Update the node_class[X] variables. These variables are only used during
an installation, not an update, but the CLEinstall.conf file should be
kept current with the system configuration.

b. If using RSIP, update rsip_nodes and rsip_interfaces variables if
the new service node will be an RSIP server.

c. If any of the new service nodes will be the primary or backup boot node,
primary login node, ufs node, or syslog node, then update those variables.
These variables are only used during an installation, not an update, but
the CLEinstall.conf file should be kept current with the system
configuration.

6.27 Changing the Location to Log syslog-ng Information
CLE uses the Linux syslog-ng daemon and associated syslog-ng.conf
configuration file to log system messages. For more information see the
syslog-ng(8) and syslog-ng.conf(5) man pages. You can modify the
/etc/syslog-ng/syslog-ng-conf file to change where the log information
is saved.

210 S–2393–31

Modifying an Installed System [6]

Procedure 50. Configuring syslog-ng system message logs

Follow these steps to modify the default syslog-ng configuration.

1. Log on to the boot node and edit the syslog-ng.conf configuration file.

smw:~# ssh root@boot
boot:~ # vi /etc/syslog-ng/syslog-ng.conf

2. Restart the syslog-ng daemon on the boot node.

boot:~ # /etc/init.d/syslog restart

3. Edit the configuration file on the syslog node and make the desired changes.

boot:~ # xtopview -n syslog
node/syslog:/ # vi /etc/syslog-ng/syslog-ng.conf
node/syslog:/ # exit

4. Restart the syslog-ng daemon on the syslog node.

boot:~ # ssh syslog /etc/init.d/syslog restart

5. Edit the configuration file on other service nodes by using xtopview in the
default view and make the desired changes.

boot:~ # xtopview
default/:/ # vi /etc/syslog-ng/syslog-ng.conf
default/:/ # exit

6. Restart the syslog-ng daemon on the remaining service nodes. For each
service node, type the following command.

boot:~ # ssh nodename /etc/init.d/syslog restart

S–2393–31 211

Managing System Software for Cray XE and Cray XT™ Systems

212 S–2393–31

Managing Services [7]

This chapter describes how to manage Cray system services to best use the system
or to modify a service.

For a list of administrator accounts that enable you to access these functions, see
Administering Accounts on page 113.

7.1 Configuring the SMW to Synchronize to a Site NTP Server
The components of the Cray system synchronize time with the System Management
Workstation (SMW) via Network Time Protocol (NTP). By default, the NTP
configuration of the SMW is configured to stand alone; however, the SMW can
optionally be configured to synchronize with a site NTP server. Use the following
procedure to configure the SMW to synchronize to a site NTP server.

Procedure 51. Configuring the SMW to synchronize to a site NTP server

1. Stop the NTP server by issuing the /etc/init.d/ntp stop command; this
command must be executed as user root:

smw:~ # /etc/init.d/ntp stop

2. Edit the /etc/ntp.conf file on the SMW to point to the new server.

3. Restart the NTP server by issuing the /etc/init.d/ntp restart
command:

smw:~ # /etc/init.d/ntp start

The SMW can continue to update the rest of the system by proxy. By default, the
SMW qualifies as a stratum 3 (local) NTP server. For more information about NTP,
refer to the Linux documentation.

7.2 Synchronizing Time of Day on Compute Node Clocks with
the Clock on the Boot Node

A network time protocol (NTP) client, ntpclient, is available to install on
compute nodes. By default, ntpclient is not installed. When installed, the time of
day on compute node clocks is synchronized with the clock on the boot node.

S–2393–31 213

Managing System Software for Cray XE and Cray XT™ Systems

Without this feature, compute node clocks will drift apart over time, as much as 18
seconds a day. When ntpclient is installed on the compute nodes, the clocks drift
apart for a four-hour calibration period and then slowly converge on the time reported
by the boot node.

Note: The standard Cray system configuration includes an NTP daemon (ntpd)
on the boot node that synchronizes with the clock on the SMW. Additionally, the
service nodes run ntpd to synchronize with the boot node.

To install the ntpclient RPM in the compute node boot image, edit the
shell_bootimage_label.sh script and specify CNL_NTPCLIENT=y, and then
update the CNL boot image. Optionally, you can enable this feature as part of a CLE
software upgrade by setting CNL_ntpclient=yes in the CLEinstall.conf
file before the CLEinstall program is run.

On compute nodes, the computational overhead for ntpclient is negligible and a
small increase (800K) to the memory footprint will be incurred. Minimal network
overhead for the boot node is required to process NTP requests. For each compute
node on the system, the boot node will send and receive one packet every 15
minutes. Even on very large Cray systems, the boot node will process fewer than 25
transactions a second to support ntpclient requests.

7.3 Adding and Starting a Service Using Standard Linux
Mechanisms

Services can be added to the service nodes by using standard Linux mechanisms,
such as executing the chkconfig command while in the xtopview utility on the
boot node or executing /etc/init.d/servicename start|stop|restart
(which starts, stops, or restarts a service immediately on the service node). This is the
recommended approach for most services.

7.4 Adding and Starting a Service Using RCA
Services may also be added by using the Resiliency Communication Agent (RCA).
Configuration with RCA is indicated if a service requires extra resiliency. The RCA
monitors the service and restarts it in case of failure.

7.4.1 Adding a Service to List of Services Available under RCA

Before a service can be attributed to a node or nodes, it must first be made available in
the SDB database.

214 S–2393–31

Managing Services [7]

Procedure 52. Adding a service to list of services available under RCA

1. Modify the service_cmd table of the Service database (SDB) to include new
service information (see Changing Services on page 188).

2. Send a SIGHUP signal to the failover manager to reread the database.

7.4.2 Indicating Nodes on Which the Service Will Be Started

Use the xtservconfig command to indicate the node or nodes on which the
service will be started. The xtservconfig command can be executed from any
service node but is normally run from the boot node. You must be user root to make
a change using the xtservconfig command.

Example 88. Adding the PBS-MOM service for a specific node

To add the PBS-MOM service for node 5, type:

boot:~ # xtservconfig -n 5 add PBS-MOM

After you configure a new service, reboot the node or send a SIGHUP signal to the
service (in this example, PBS-MOM) on the affected node.

Example 89. Force the fomd to update its configuration information about a new
or updated service on a node

Log on to the affected node as user root and type:

killall -HUP fomd

The killall -HUP fomd command causes the failover manager to read the
database.

Example 90. Effect a change for a new or updated service on a group of nodes

To effect a change for login nodes 001 through 009, type:

boot:~ # pdsh -w login[001-009] "killall -HUP fomd"

7.5 Creating a Snapshot of /var
The /var directory on a Cray system can be configured either as persistent
(see Installing and Configuring Cray Linux Environment (CLE) Software) or
nonpersistent. In the latter case, the /var directory is volatile, and its initial contents
are rebuilt at boot time from a skeleton archive, /.shared/var-skel.tgz.

S–2393–31 215

Managing System Software for Cray XE and Cray XT™ Systems

The advantage of using a nonpersistent /var directory is ease of management. Each
time the system is rebooted, the /var directory is freshly re-created from the central
skeleton file, so accumulation of files and potential corruption of files with the /var
directory is much less of a concern. However, because the contents of /var are
not saved, if there is a need to update the initial contents of the /var directory (for
example, when a new package requires a directory), the skeleton archive must be
updated.

The xtpkgvar command creates a compressed tar file with a skeleton snapshot of
the /var directory. To add files to the directory, make changes in the xtopview
shell to the /var directory and take a snapshot of it with the xtpkgvar command.

!
Caution: Use the xtpkgvar command only when you are configuring the
shared-root file system. The xtpkgvar command is used by the CLEinstall
utility.

For more information, see the xtpkgvar(8) man page.

7.6 Setting Soft and Hard Limits to Prevent Login Node Hangs
A login node can be caused to hang or become nearly unresponsive by having all
available processes on the node in use. A hang of this type can be identified primarily
by the presence of cannot fork error messages, but it is also associated with
an unusually large number of processes running concurrently, the machine taking
several minutes to make a prompt available, or never making a prompt available. In
the case of an overwhelming number of total processes, it is often a large number of
the same process overwhelming the system, which indicates a fork() system call
error in that particular program.

This problem can be prevented by making a few changes to configuration files in
/etc on the shared root of the login node. These configurations set up the ulimit
built-in and the Linux Pluggable Authentication Module (PAM) to enforce limits on
resources as specified in the configuration files. There are two types of limits that can
be specified, a soft limit and a hard limit. Users receive a warning when they reach
the soft limit specified for a resource, but they can temporarily increase this limit up
to the hard limit using the ulimit command. The hard limit can never be exceeded
by a normal user. Because of the shared root location of the configuration files, the
changes must be made from the boot node using the xtopview tool.

216 S–2393–31

Managing Services [7]

Procedure 53. Preventing login node hangs by setting soft and hard limits

1. On the boot node type the following in order to make changes to the shared root,
where login is the class name for login nodes.

boot:~ # xtopview -c login

This presents a new prompt class/login:/ #. You now have access to files
of the shared root as if they are local.

2. Next, add the following lines to the /etc/security/limits.conf file,
where soft_lim_num and hard_lim_num are the number of processes at which
you would like the hard and soft limits enforced. The * represents "apply to all
users" but can also be configured to apply specific limits by user or group (see the
limits.conf file's comments for further options).

class/login:/ # vi /etc/security/limits.conf
* soft nproc soft_lim_num
* hard nproc hard_lim_num

Save the file.

3. Verify that the following line is included in the appropriate PAM configuration
files for any authentication methods for which you want limits enforced; the PAM
configuration files are located in the /etc/pam.d/ directory. For example,
to enforce limits for users connecting via ssh, add the pam_limits.so
line to the file /etc/pam.d/sshd. Other applicable authentication methods
to include also are su in the file /etc/pam.d/su and local logins in
/etc/pam.d/login.

session required pam_limits.so

For more information about the Pluggable Authentication Module (PAM), see
the PAM(8) man page.

4. Type exit to return to the normal prompt on the boot node; the changes you
made should be effective immediately on login nodes.

class/login:/ # exit
boot:~ #

5. To test that the limits are in place, from a login node type the following
command, which should return the number specified as the soft limit for the
number of processes available to a user, for example:

boot:~ # ssh login
nid00004:~ # ulimit -u

For more information about using the ulimit command, see the ulimit(P)
man page.

S–2393–31 217

Managing System Software for Cray XE and Cray XT™ Systems

7.7 Handling Bus Errors
Bus errors are caused by machine-check exceptions. If you have received a bus error,
try the following procedure:

Procedure 54. Power-cycling a component

Power down then power up components. The physIDlist is a comma-separated list of
components present on the system (see Physical ID on page 56).

1. Power down the components.

crayadm@smw:~> xtcli power down PhysID

2. Power up the components.

crayadm@smw:~> xtcli power up PhysID

7.8 Creating a Cray System Management Workstation (SMW)
Bootable Backup Drive

The following procedure creates a System Management Workstation (SMW) bootable
backup drive whose purpose is to replace the primary drive if the primary drive fails.

When this procedure is completed, the backup drive on the SMW will be a bootable
replacement for the primary drive when the backup drive is plugged in as or cabled as
the primary drive.

Note: In the following procedure, /dev/sdX2 is the SMW disk (either
/dev/sdb2 or /dev/sdc2).

Procedure 55. Creating an SMW bootable backup drive

!
Caution: The disk device names shown in this procedure are only examples. You
should substitute the actual disk device names for your system. For example, on an
SMW with three SMW disks, the boot disk is /dev/sda and the bootable backup
disk is /dev/sdc; on an SMW with two SMW disks, the boot disk is /dev/sda
and the bootable backup disk is /dev/sdb.

1. Log on to the SMW as crayadm and su to root.

crayadm@smw:~> su - root
smw:~ #

2. If the backup drive disk partition table already exists and the partition table on the
backup drive matches the partition table that is on the primary boot drive, skip
this step; otherwise, create the backup drive disk partition table.

Note: For optimal performance, the source and destination disks should be
on different buses; drive slots 0 and 1 are on a different bus than drive slots
2 and 3.

218 S–2393–31

Managing Services [7]

In this example, the partition table consists of the following:

• Slice 1: 4 GB Linux swap partition

• Slice 2: Balance of disk space used for the root file system

a. Use the fdisk command to display the boot disk partition layout.

smw:~ # fdisk -lu /dev/sda
Disk /dev/sda: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 63 8401994 4200966 82 Linux swap / Solaris
/dev/sda2 * 8401995 625137344 308367675 83 Linux

b. Use the fdisk command to configure the bootable backup disk partition
layout. Set the bootable backup disk partition layout to match the boot disk
partition layout. First, clear all of the old partitions using the d command
within fdisk; next create a Linux swap and a Linux partition; and then
write your changes to the disk. For help, type m within fdisk (see the
following sample output).

smw:~ # fdisk -u /dev/sdb

The number of cylinders for this disk is set to 38913.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK).

Command (m for help): p
Disk /dev/sdb: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/sdb1 63 8401994 4200966 82 Linux swap
/dev/sdb2 8401995 625105214 308351610 83 Linux

Command (m for help): d
Partition number (1-5): 2
Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First sector (63-625105215, default 63): (Press the Enter key)
Using default value 63
Last sector or +size or +sizeM or +sizeK (63-625105215, default 625105215): 8401994

Command (m for help): t

S–2393–31 219

Managing System Software for Cray XE and Cray XT™ Systems

Selected partition 1
Hex code (type L to list codes): 82
Changed system type of partition 1 to 82 (Linux swap / Solaris)

Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 2
First sector (8401995-625105215, default 8401995): (Press the Enter key)
Using default value 8401995
Last sector or +size or +sizeM or +sizeK (8401995-625105215, default 625105215): \

(Press the Enter key)
Using default value 625105215

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

c. Display the boot backup disk partition layout.

smw:~ # fdisk -lu /dev/sdb
Disk /dev/sdb: 320.0 GB, 320072933376 bytes
255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System

/dev/sdc1 63 8401994 4200966 82 Linux swap / Solaris
/dev/sdc2 * 8401995 625137344 308367675 83 Linux

3. Initialize the swap device.

smw:~ # mkswap /dev/sdb1

4. Standardize the grub disk device names.

The device names that the installation process writes into the
/boot/grub/menu.lst file are UDEV-based names (for example,
/dev/disk/by-id/scsi-SATA_ST3320620AS_922J3-part2 or
/dev/disk/by-id/ata-ST3320620A_9QFA85PV-part2) instead
of the more commonly used device names (for example, /dev/sda2 or
/dev/hda2). In the following procedures, edit the /boot/grub/menu.lst
file to change ONLY the long UDEV-based name to the shorter, commonly used
device name reflected in the output of the df command on your system.

If the device names have already been standardized, skip to step 5.

!
Caution: Mistakes in the /boot/grub/menu.lst file will affect your
ability to boot the SMW.

220 S–2393–31

Managing Services [7]

a. SLES 11 sets up /boot/grub/menu.lst with UDEV-based names for
the root device. For example:

smw:~ # more /boot/grub/menu.lst
###Don't change this comment - YaST2 identifier: Original name: linux###
title SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84-part2 \
resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M
showopts vga=0x31a initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: failsafe###
title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84-part2 showopts \
ide=nodma apm=off noresume edd=off powersaved=off nohz=off highres=off
processor.max_cstate=1 x11failsafe vga=0x31a
initrd /boot/initrd-2.6.27.19-5-default

b. Execute the df command to get the name of the device to use in the
/boot/grub/menu.lst file to replace the long UDEV-based device
name. Then edit your /boot/grub/menu.lst file appropriately.

1) Execute the df command to get the name of the device to use in the
/boot/grub/menu.lst file to replace the long UDEV-based device
name. For example:

smw:# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 303528624 40652904 247457340 15% /
udev 1030780 460 1030320 1% /dev

2) Save a copy of your /boot/grub/menu.lst file.

smw:# cp -p /boot/grub/menu.lst /boot/grub/menu.lst.save

3) Edit your /boot/grub/menu.lst file appropriately; use the device
name (dev) you got from the df command output. Change the long name
disk/by-id/scsi-SATA_ST3320620AS_9QF922J3-part2 to
sda2. Change the following lines:

title SUSE Linux Enterprise Server 11 - 2.6.27.19-5
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84-part2 \
resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M showopts vga=0x31a

to:

title SUSE Linux Enterprise Server 11 - 2.6.27.19-5
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/sda2 resume=/dev/sda1 splash=silent \
crashkernel=256M-:128M@16M showopts vga=0x31a

and change the following lines:

title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5

S–2393–31 221

Managing System Software for Cray XE and Cray XT™ Systems

kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/disk/by-id/ata-ST3320620AS_5QF00F84part2 \
showopts ide=nodma apm=off noresume edd=off powersaved=off nohz=off \
highres=off processor.max_cstate=1 x11failsafe vga=0x31a

to:

title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/sda2 showopts ide=nodma apm=off noresume edd=off \
powersaved=off nohz=off highres=off processor.max_cstate=1 x11failsafe vga=0x31a

4) Verify that the edited file is correct and matches the output of the df
command.

smw:~ # more /boot/grub/menu.lst
###Don't change this comment - YaST2 identifier: Original name: linux###
title SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sda2 \
resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M showopts
initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: failsafe###
title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default \
root=/dev/sda2 showopts ide=nodma apm=off noresume edd=off
powersaved=off nohz=off highres=off initrd /boot/initrd-2.6.27.19-5-default

c. Update the grub device table to utilize the standardized drive names and
recognize any new drives added since the initial operating system installation.

smw:~ # grub-install.unsupported --recheck /dev/sda

The file /boot/grub/device.map is now updated to reflect all
drives, utilizing the standardized drive naming. This file can be viewed for
verification; for example:

smw:~ # cat /boot/grub/device.map
(fd0) /dev/fd0
(hd0) /dev/sda
(hd1) /dev/sdc

5. Create a new file system on the backup drive root partition by executing the
mkfs command.

smw:~ # mkfs -t ext3 /dev/sdb2
mke2fs 1.41.1 (01-Sep-2008)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
19275776 inodes, 77091918 blocks
3854595 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
2353 block groups

222 S–2393–31

Managing Services [7]

32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616

Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 33 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
smw:~ #

6. Mount the new backup root file system on /mnt.

smw:~ # mount /dev/sdb2 /mnt

7. Confirm the running root file system device.

smw:~ # df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 303528624 6438700 281671544 3% /
udev 1030332 116 1030216 1% /dev
/dev/sdb2 306128812 195568 290505224 1% /mnt

The running root file system device is the one mounted on /.

8. Dump the running root file system to the backup drive.

smw:~ # cd /mnt
smw:~ # dump 0f - /dev/sda2 | restore rf -
DUMP: WARNING: no file /` etc/dumpdates'
DUMP: Date of this level 0 dump: Thu Dec 10 06:55:29 2009
DUMP: Dumping /dev/sda2 (/) to standard output
DUMP: Label: none
DUMP: Writing 10 Kilobyte records
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 4003398 blocks.
DUMP: Volume 1 started with block 1 at: Thu Dec 10 06:57:38 2009
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]
restore: ./lost+found: File exists
DUMP: 81.99% done at 10941 kB/s, finished in 0:01
DUMP: Volume 1 completed at: Thu Dec 10 07:04:01 2009
DUMP: Volume 1 4008910 blocks (3914.95MB)
DUMP: Volume 1 took 0:06:23
DUMP: Volume 1 transfer rate: 10467 kB/s
DUMP: 4008910 blocks (3914.95MB)
DUMP: finished in 383 seconds, throughput 10467 kBytes/sec
DUMP: Date of this level 0 dump: Thu Dec 10 06:55:29 2009
DUMP: Date this dump completed: Thu Dec 10 07:04:01 2009
DUMP: Average transfer rate: 10467 kB/s
DUMP: DUMP IS DONE

9. Install the GRUB boot loader.

To make the backup drive bootable, reinstall the grub boot facility on that drive.

S–2393–31 223

Managing System Software for Cray XE and Cray XT™ Systems

a. Create a unique file on the backup drive to be used to identify that drive to
grub boot facility.

smw:~ # cd /
smw:~ # touch /mnt/THIS_IS_SDX

b. Invoke the grub boot utility. Within the grub boot utility:

1) Execute the find command to locate the drive designation that grub
uses.

2) Select the drive to which the boot blocks will be installed with the root
command.

3) Use the setup command to set up and install the grub boot blocks
on that drive.

Note: The Linux grub utility and boot system ALWAYS refer to drives as
hd, regardless of the actual type of drives.

For example:

smw:~ # grub
GNU GRUB version 0.97 (640K lower / 3072K upper memory)
[Minimal BASH-like line editing is supported. For the first word, TAB^[
lists possible command completions. Anywhere else TAB lists the possible
completions of a device/filename.]
grub> find /THIS_IS_SDX
find /THIS_IS_SDX
(hd1,1)
grub> root (hd1,1)
root (hd1,1)
Filesystem type is ext2fs, partition type 0x83
grub> setup (hd1)
setup (hd1)
Checking if "/boot/grub/stage1" exists... yes
Checking if "/boot/grub/stage2" exists... yes
Checking if "/boot/grub/e2fs_stage1_5" exists... yes
Running "embed /boot/grub/e2fs_stage1_5 (hd1)"... 17 sectors are embedded.
succeeded
Running "install /boot/grub/stage1 (hd1) (hd1)1+17 p
(hd1,1)/boot/grub/stage2 /boot/grub/menu.lst"... succeeded
Done.
grub> quit

10. Unmount the backup root partition.

smw:~ # umount /dev/sdb2

The drive is now bootable once plugged in or cabled as the primary drive.

224 S–2393–31

Managing Services [7]

7.9 Setting Up the Bootable Backup Drive as an Alternate Boot
Device

The following procedure modifies a bootable backup drive, generated in Procedure
55 on page 218, in order to boot from and run the SMW from the backup root
partition. To find out information about how to recover the SMW, see Procedure 60
on page 231.

Important: To boot from this backup drive, the primary boot drive must still be
operable and able to boot the grub boot blocks installed. If the backup drive is
modified to boot as an alternate boot device, it will no longer function as a bootable
backup if the primary drive fails.

Procedure 56. Setting up the bootable backup drive as an alternate boot device

!
Caution: The disk device names shown in this procedure are provided as examples
only. Substitute the correct disk devices for your system. For example, on an SMW
with three SMW disks, the boot disk is /dev/sda and the bootable backup disk is
/dev/sdc; on an SMW with two SMW disks, the boot disk is /dev/sda and
the bootable backup disk is /dev/sdb.

1. Mount the backup drive's root partition.

smw:~ # mount /dev/sdX2 /mnt

2. Create a new boot entry in the /boot/grub/menu.lst file. This entry should
be a duplicate of the primary boot entry with the following changes:

• Modify the title to uniquely identify the backup boot entry.

• Modify the root (hd0,1) directive to reflect the Grub name of the backup
drive. If you do not know the Grub name of the backup drive, it is provided in
the /boot/grub/device.map file on the primary drive.

• Modify the root= and resume= specifications to reference the backup
drive device.

An example /boot/grub/menu.lst file follows. Note the new entry at the
end of the file. This example references /dev/sda as the primary drive and
/dev/sdc as the backup drive.

smw:~ # cat /boot/grub/menu.lst
Modified by YaST2. Last modification on Wed Dec 9 15:09:52 UTC 2009
default 0
timeout 8
##YaST - generic_mbr
gfxmenu (hd0,1)/boot/message
##YaST - activate

###Don't change this comment - YaST2 identifier: Original name: linux###
title SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sda2 \

S–2393–31 225

Managing System Software for Cray XE and Cray XT™ Systems

resume=/dev/sda1 splash=silent crashkernel=256M-:128M@16M showopts vga=0x31a \
initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: failsafe###
title Failsafe -- SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sda2 showopts \
ide=nodma apm=off noresume edd=off powersaved=off nohz=off highres=off \
processor.max_cstate=1 x11failsafe vga=0x31a \
initrd /boot/initrd-2.6.27.19-5-default

###Don't change this comment - YaST2 identifier: Original name: floppy###
title Floppy

rootnoverify (fd0)
chainloader +1

New entry allowing a boot of the back-up drive when the primary drive
is still present.
title BACK-UP DRIVE - SUSE Linux Enterprise Server 11 - 2.6.27.19-5

root (hd0,1)
kernel /boot/vmlinuz-2.6.27.19-5-default root=/dev/sdc2 \
resume=/dev/sdc1 splash=silent crashkernel=256M-:128M@16M showopts vga=0x31a \
initrd /boot/initrd-2.6.27.19-5-default

3. Modify the backup drive's /etc/fstab file to reference the secondary drive
slot rather than the first drive slot.

a. Examine the backup drive's fstab file.

smw:~ # cat /mnt/etc/fstab
/dev/sda1 swap swap defaults 0 0
/dev/sda2 / ext3 acl,user_xattr 1 1
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

b. Edit the /mnt/etc/fstab file, changing /dev/sda1 and /dev/sda2
to reference the backup drive. In the following example, the backup drive is
/dev/sdc.

smw:~ # vi /mnt/etc/fstab
/dev/sdc1 swap swap defaults 0 0
/dev/sdc2 / ext3 acl,user_xattr 1 1
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0

4. Unmount the backup drive.

smw:~ # umount /dev/sdX2

The SMW can now be shut down and rebooted. Upon display of the Please select
boot device prompt, select the BACK-UP DRIVE - SLES 11 entry to boot the
backup root partition.

226 S–2393–31

Managing Services [7]

7.10 Archiving the SDB
The service database (SDB) can be archived by using the mysqldump command.
For more information, see http://dev.mysql.com/doc.

7.11 Backing Up Limited Shared-root Configuration Data
Cray recommends that if you cannot make a full copy, make a backup copy of the
.shared root structure before making significant changes to the shared root. You
can use the xtoparchive utility or the Linux utilities (cp, tar, cpio) to save the
shared-root file system. Run these procedures from the boot node.

7.11.1 Using the xtoparchive Utility to Archive the Shared-root File
System

Use the xtoparchive command to perform operations on an archive of shared root
configuration files. Run the xtoparchive command on the boot node using the
xtopview utility in the default view. The archive is a text-based file similar to a tar
file and is specified using the required archivefile command-line argument. The
xtoparchive command is intended for configuration files only. Binary files will
not be archived. If a binary file is contained within a specification file list, it will be
skipped and a warning will be issued.

Example 91. Using the xtoparchive utility to archive the shared-root file
system

Use the following xtoparchive command to add files specified by the
specifications listed in specfile to the archive file archive.042208; create the
archive file if it does not already exist:

% xtoparchive -a -f specfile archive.042208

Note: To archive any specialized files that have changed, invoke the
archive_etc.sh script. You can do this while your system is booted or
from the boot root and shared root in a system set that is not booted. The
archive_etc.sh script uses the xtoprdump and xtoparchive commands
to generate an archive of specialized files on the shared root. For more information
about archiving and upgrading specialized files, see the shared_root(5),
xtoparchive(8), xtopco(8), xtoprdump(8), and xtoprlog(8) man pages.

7.11.2 Using Linux Utilities to Save the Shared-root File System

Use the Linux utilities (cp, tar, cpio) to save the shared-root file system.

S–2393–31 227

http://dev.mysql.com/doc

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 57. Backing up limited shared-root configuration data

Cray recommends that if you cannot make a full copy, make a backup copy of the
.shared root structure before making significant changes to the shared root. Run
this procedure from the boot node.

1. Change to the shared root directory that you are backing up.

boot:/rr # cd /rr/current

2. Create a tar file for the directory.

boot:/rr/current # tar czf /rr/dot_shared-20050929.tgz .shared

3. Change to the /rr directory.

boot:/rr/current # cd /rr

4. Verify that the file exists.

boot:/rr # ls -al dot_shared-20050929.tgz
-rw-r--r-- 1 root root 7049675 Sep 29 14:21
dot_shared-20050929.tgz
boot:/rr #

For more information, see the cp(1), tar(1), and cpio(1) man pages.

7.12 Backing Up Boot Root and Shared Root
Before you back up your boot root and shared root, consider the following issues.

• You must be root to do this procedure.

• Do not have file systems mounted on the SMW and the Cray system at the same
time.

• File system device names may be different at your site.

• If the backup file systems have not been used yet, you may need to run mkfs first.

• File systems should be quiescent and clean (fsck) to get an optimal dump and
restore.

You can back up the boot root and the shared root by using the xthotbackup
command or by using the Linux dump and restore commands.

228 S–2393–31

Managing Services [7]

7.12.1 Using the xthotbackup Command to Back Up Boot Root and
Shared Root

Execute the xthotbackup command to create a bootable backup. The
xthotbackup command must be executed with root privileges. The system
set labels in /etc/sysset.conf define disk partitions for backup and source
system sets which are used by xthotbackup to generate the appropriate dump
and restore commands. The entire contents of the disk partitions defined in a
source system set are copied to the corresponding disk partitions in the backup system
set. The backup and source system sets must be configured with identical partitions.
(Follow the steps provided on the xthotbackup(8) man page in the Initial Setup
section to set up identical system sets.) The disk partitions in the backup system set
are formatted prior to the dump and restore commands.

The xthotbackup command must be executed with root privileges. Load the
cray-install-tools module to access the xthotbackup utility and the
xthotbackup(8) man page.

Example 92. Using the xthotbackup command to create a bootable backup
system set

Enter the following to dump all of the partitions from the source label, BLUE, to the
backup label, GREEN, and then make them bootable.

smw:~ # xthotbackup -a -b BLUE GREEN

The xthotbackup command can also be used to copy selected file systems from
source to the backup system set.

Example 93. Using the xthotbackup command to copy selected file systems
from source to the backup system set

The following example dumps only the SDB and SYSLOG partitions in the system set
labelled BLUE to the system set labelled GREEN.

smw:~ # xthotbackup -f SDB,SYSLOG BLUE GREEN

7.12.2 Using dump and restore Commands to Back Up Boot Root and
Shared Root

Procedure 58. Backing up the boot root and shared root using the dump and
restore commands

1. Verify that the Cray system is halted.

2. Open a root session.

crayadm@smw:~> su -

3. Mount the boot root to the SMW.

smw:~ # mount /dev/sda1 /bootroot0

S–2393–31 229

Managing System Software for Cray XE and Cray XT™ Systems

4. Mount the backup boot root to the SMW.

smw:~ # mount /dev/sdb1 /bootroot1

5. Change directories to the backup boot root.

smw:~ # cd /bootroot1

6. Dump and restore boot root to the backup boot root.

smw:~/bootroot1 # dump -0 -f - /bootroot0 | restore -rf -

7. When the dump is complete, unmount both boot-root file systems.

smw:~/bootroot1 # cd /
smw:~ # umount /bootroot0 /bootroot1

8. Mount the shared root to the SMW.

smw:~ # mount /dev/sdc6 /sharedroot0

9. Mount the backup shared root to the SMW.

smw:~ # mount /dev/sdg6 /sharedroot1

10. Change directories to the backup shared root.

smw:~ # cd /sharedroot1

11. Dump and restore shared root to the backup shared root.

smw:~/sharedroot1 # dump -0 -f - /sharedroot0 | restore -rf -

12. When the dump is complete, unmount both shared root file systems.

smw:~/sharedroot1 # cd /
smw:~ # umount /sharedroot0 sharedroot1

13. Exit the root session.

smw:~ # exit

7.13 Backing Up User Data
Backing up user data is a site-specific activity. You can use Linux utilities to back up
user files and directories.

230 S–2393–31

Managing Services [7]

7.14 Rebooting a Stopped SMW
Shutting down the SMW in a scheduled or unscheduled situation does not affect the
operation of the mainframe, other than affecting the SMW-supplied functions of event
logging, state management, and node-failure notifications to the mainframe. (No
attempt is made to prevent loss of data or to carry out operations that occur when the
SMW is offline.) When the SMW comes up, it restarts, establishes communications
with all external interfaces, restores the proper state in the state manager, and
continues normal operation without user intervention.

For a scheduled or unscheduled shutdown and reboot of the SMW, it is necessary to
have uncorrupted configuration files on a local SMW disk.

Procedure 59. Rebooting a stopped SMW

1. Verify that your configuration files contain the most recent system configuration.

2. Boot the SMW.

7.14.1 SMW Recovery

Procedure 60. SMW primary disk failure recovery

The following procedure describes how to recover an SMW primary disk failure. To
find out how to create a System Management Workstation (SMW) bootable backup
drive, see Procedure 55 on page 218. To find out how to modify a bootable backup
drive, in order to boot from and run the SMW from the backup root partition, see
Procedure 56 on page 225.

!
Caution: Booting off the bootable backup disk is intended only for emergency use
in the event of failure or loss of data on the primary disk.

To recover an SMW, you must reorder the drives at the front of the SMW. No BIOS
or software configuration changes are required.

1. Shutdown the OS on the SMW, if possible.

2. Power the SMW off.

3. Unplug the power cord.

4. Open the disk drive access door, which is on the front of the SMW.

5. Remove the primary disk from its slot. The primary disk is located at the bottom
of the column of disk drives at the front of the SMW.

6. Remove the bootable backup disk and place it in the primary disk slot.

7. Press the reset button (front), if required.

8. Boot the SMW.

S–2393–31 231

Managing System Software for Cray XE and Cray XT™ Systems

7.15 Recovering from Service Database Failure
If you notice problems with the SDB, for example, if commands like xtprocadmin
do not work, restart the service-node daemons.

Example 94. Recovering from an SDB failure

Type the following command on the SDB node:

sdb:~ # /etc/init.d/sdb restart

Entries in this file stop and restart MySQL.

7.15.1 Database Server Failover

The SDB uses dual-ported local RAID to store files.

If you have SDB node failover configured, one service processor acts as the primary
SDB server. If the primary server daemon dies, or the node on which it is running
dies, the secondary (backup) SDB server that connects to the same RAID storage
starts automatically. IP failover directs all new TCP/IP connections to the server,
which now becomes the primary SDB server. Connections to the failed server are
ended, and an error is reported to the client.

7.15.2 Rebuilding Corrupted SDB Tables

The boot process creates all SDB tables except the accounting and boot tables. If you
notice a small corruption and you do not want to reboot, you can change the content
of a database table manually by using the tools in Table 10. If you cannot recover a
database table in any other way, as a last resort reboot the system.

7.16 Using Persistent SCSI Device Names
Important: The information provided in this section does not apply to SMW
disks.

SCSI device names (/dev/sd*) are not guaranteed to be numbered the same from
boot to boot. This inconsistency can cause serious system problems following a
reboot. When installing CLE, you must switch to persistent device names for file
systems on your Cray system.

Cray recommends that you use the /dev/disk/by-id/ persistent device
names. Use /dev/disk/by-id/ for the root file system in the initramfs
image and in the /etc/sysset.conf installation configuration file as well
as for other file systems, including Lustre (as specified in /etc/fstab and
/etc/sysset.conf). For more information, see Installing and Configuring Cray
Linux Environment (CLE) Software.

232 S–2393–31

Managing Services [7]

Alternatively, you can define persistent names using a site-specific udev rule or
cray-scsidev-emulation. However, only the /dev/disk/by-id method
has been verified and tested.

!
Caution: You must use /dev/disk/by-id when specifying
the root file system. There is no support in the initramfs for
cray-scsidev-emulation or custom udev rules.

7.16.1 Using cray-scscidev-emulation Device Naming

Cray provides a utility (cray-scscidev-emulation) that emulates the basic
functionality of the obsolete scsidev method for SCSI device naming.

The device alias is created in /dev/scsi for any devices that match entries in the
alias file, /etc/scsi.alias. Format the alias file as follows, where SN is the
serial number of the hard disk, PN is the partition number of the disk, and devname is
the desired alias name.

serial_number="SN", devtype=disk, [partition=PN,] alias=devname

For example, the following entry creates a device entry
/dev/scsi/cab2-3-c1-shroot for partition 2 on the disk with the serial
number 030B9ED30300.

serial_number="030B9ED30300", devtype=disk, partition=2, alias=cab2-3-c1-shroot

Note: The following limitations apply when using
cray-scsidev-emulation:

• This capability is not implemented in the initramfs; it cannot be used to
specify the boot root.

• Only the format shown is supported; scsidev supported a number of
additional formats.

• Only one alias per disk is supported.

• Only symbolic links are supported.

7.17 Using a Linux iptables Firewall to Limit Services
You can set up a firewall to limit services that are running on your system. Cray has
enabled the Linux kernel to provide this capability. Use the iptables command to
set up, maintain, and inspect tables that contain rules to filter IP packets.

For more information about iptables and firewall scripts, see the iptables(8)
man page, http://iptables-tutorial.frozentux.net/iptables-tutorial.html, and
http://www.linuxguruz.com/iptables/.

S–2393–31 233

http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://www.linuxguruz.com/iptables/

Managing System Software for Cray XE and Cray XT™ Systems

7.18 Handling Single-node Failures
A single-node failure is visible when you use the xtnodestat command.

You can parse the syslog to look for failures.

You can use the Cray Management Services (CMS) log manager to collect, analyze,
and display messages from the system. For additional information, see Using Cray
Management Services (CMS).

If you suspect problems with a node, invoke the xtcli status command. Nodes
that have failed show an alert status. Jobs are not scheduled on the node as long as
the alert is set. If problems persist, consult your service representative.

To see cabinet status, use the System Environmental Data Collections (SEDC); see
Using and Configuring System Environment Data Collections (SEDC).

For more information, see the xtnodestat(1), xtcli(8), and
xtsedcviewer(8) man pages.

7.19 Increasing the Boot Manager Time-out Value
On systems of 4,000 nodes or larger, the time that elapses until the boot manager
receives all responses to the boot requests can be greater than the default 60-second
time-out value. This is due, in large part, to the amount of other event traffic that
occurs as each compute node generates its console output. To avoid this problem,
change the boot_timeout value in the /opt/cray/etc/bm.ini file on the
SMW to increase the default time-out value, as shown in Example 95.

Example 95. Increasing the boot_timeout value

For systems of 4,000 to 7,000 nodes, change the boot_timeout line to

boot_timeout 120

For systems larger than 7,000 nodes, change the boot_timeout line to

boot_timeout 180

7.20 RAID Failure
System RAID has its own recovery system that the manufacturer supplies. For more
information, refer to the manufacturer documentation.

234 S–2393–31

Using the Application Level Placement
Scheduler (ALPS) [8]

ALPS (Application Level Placement Scheduler) is the Cray supported mechanism
for placing and launching applications on CNL compute nodes. ALPS provides
application placement, launch, and management functionality and cooperates closely
with third-party batch systems for application scheduling across Cray systems.
The third-party batch systems make policy and scheduling decisions, while ALPS
provides a mechanism to place and launch the applications contained within batch
jobs. ALPS also supports interactive application placement and launch.

Note: ALPS application placement and launch functionality is only for
applications executing on compute nodes. ALPS does not provide placement or
launch functionality on service nodes.

8.1 ALPS Functionality
ALPS performs the following functions:

• Assigns application IDs.

• Manages compute node resources.

• Provides a configurable node selection algorithm for placing applications. (See
the ALPS_NIDORDER configuration parameter in /etc/sysconfig/alps
Configuration File on page 243 for more information.)

• Launches applications.

• Delivers signals to applications.

• Returns Supports and stderr from applications.

• Provides application placement and reservation information.

• Supports batch and interactive workloads.

• Supports huge pages functionality for CNL applications.

• Provides an XML interface for third-party batch-system communication.

• Provides launch assistance to debuggers, such as TotalView.

S–2393–31 235

Managing System Software for Cray XE and Cray XT™ Systems

• Supports application placement of nonuniform numbers of processing elements
(PEs) per node, allowing full use of all compute node resources on mixed-node
machines.

• Works with the CLE Node Health software to perform application cleanup
following the non-orderly exit of an application (see ALPS and Node Health
Monitoring Interaction on page 253). For additional information about the CLE
Node Health software, see Configuring Node Health Checker (NHC) on page 157.

• If running Cray Checkpoint Restart (Cray CPR), assists in application checkpoint
and restart; for information about using Cray CPR, see Chapter 10, Using
Checkpoint/Restart on Cray Systems on page 275.

8.2 ALPS Architecture
The ALPS architecture includes the following clients and daemons, each intended
to fulfill a specific set of responsibilities as they relate to application and system
resource management. The ALPS components use TCP/IP sockets and User
Datagram Protocol (UDP) datagrams to communicate with each other. The apinit
daemon executes on compute nodes. All other ALPS components execute on service
nodes (login, SDB, and boot nodes).

ALPS clients (for detailed descriptions, see ALPS Clients on page 237 and the man
page for each ALPS client):

• aprun: Application submission

• apstat: Application placement and reservation status

• apkill: Application signaling

• apmgr: Collection of functions usually used by the system administrator in
exceptional circumstances to manage ALPS

• apbasil: Workload manager interface

ALPS daemons (for detailed descriptions, see ALPS Daemons on page 240 and the
man page for each ALPS daemon):

• apsys: Client local privileged contact

• apinit: Application management on compute nodes

• apsched: Reservations and placement decisions

• apbridge: System data collection

• apwatch: Event monitoring

• apres: ALPS database event watcher restart daemon

236 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

ALPS uses memory-mapped files to consolidate and distribute data efficiently,
reducing the demand on the daemons that maintain these files by allowing clients
and other daemons direct access to data they require. Figure 4, illustrates the ALPS
process.

Figure 4. ALPS Process

Login Node

aprun

Application
Process

Parent/Child

Network

Key:

PE0

SDB Node

Compute Nodes

apsys apsched

Boot Node

apbridge

apwatch

apres

apinit

apinitApplication
Shepherd

Application
Process

Application
Process

Application
Process

Application
Shepherd

Application
Process

Application
Process

Application
Process

Application
Process

8.2.1 ALPS Clients

The ALPS clients provide the user interface to ALPS and application management.
They are separated into the following distinct areas of functionality: application
submission, application and reservation status, application signaling, administrator
interface to ALPS, and batch system integration.

S–2393–31 237

Managing System Software for Cray XE and Cray XT™ Systems

8.2.1.1 The aprun Client

The aprun client is used for application submission. Specifically, a user executes
the aprun command to run a compiled program across one or more compute nodes.
The aprun client serves as the local representative of the application and is the
primary interface between the user and an application running on compute nodes. The
aprun client parses command-line arguments to determine the application resource
requirements. These requirements are submitted locally to apsys, which forwards
them to apsched for application placement.

After the application has an assigned placement list of compute nodes, aprun
provides application-launch information to the apinit daemon on the first compute
node in the placement list. The aprun client also provides user identity and
environment information to apinit so that the user's login node session can be
replicated for the application on the assigned set of compute nodes. This information
includes the aprun current working directory, which must be accessible from the
compute nodes.

The aprun client forwards stdin data to apinit, which is delivered to the first
processing element (PE) of the application. Application stdout and stderr data
is sent from apinit to aprun on the login node.

The aprun client catches certain signals (see the aprun(8) man page) and forwards
the signal information to apinit for delivery to the application. Any signal that
cannot be caught and that terminates aprun causes apinit to terminate the
application.

Note: Do not suspend aprun. It is the local representative of the application that
is running on compute nodes. If aprun is suspended, the application cannot
communicate with ALPS, such as sending exit notification to aprun that the
application has completed.

For more information about using the aprun command, see the aprun(8) man page.

8.2.1.2 The apstat Client

The apstat client reports on application placement and reservation information. It
reflects the state of apsched placement decisions. The apstat client does not have
dynamic run-time information about an application, so the apstat display does
not imply anything about the running state of an application. The apstat display
indicates statically that an application was placed and that the aprun claim against
the reserved resources has not yet been released.

If no application ID (apid) is specified when executing the apstat command, the
apstat command displays a brief overview of all applications.

For detailed information about this status information, see the apstat(1) man page.

238 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

8.2.1.3 The apkill Client

The apkill client is used for application signaling. It parses the command-line
arguments and sends signal information to its local apsys daemon. The apkill
command can be invoked on any login or service node and does not need to be on the
same node as the aprun client for that application. Based upon the application ID,
apsys finds the aprun client for that application and sends the signal to aprun,
which sends signal information to apinit for delivery to the application.

The apkill client can send a signal only to a placed application, not a pending
application.

For more information about the actions of this client, see the apkill(1) man page
and the Linux signal(7) man page.

8.2.1.4 The apmgr Client

The apmgr command is a collection of ALPS-related functions for use by system
administrators. These functions (subcommands) often require root permission
and are usually used in exceptional circumstances to manage ALPS. The apmgr
command is not typically installed on the boot node's file system; it is available on
and is run from service nodes other than the boot node.

For information about using the apmgr subcommands, see the apmgr(8) man page.

8.2.1.5 The apbasil Client

The apbasil client is used for batch system integration. It is the interface between
ALPS and the batch scheduling system. The apbasil client implements the Batch
and Application Scheduler Interface Layer (BASIL). When a job is submitted to
the batch system, the batch scheduler uses apbasil to obtain ALPS information
about available and assigned compute node resources to determine whether sufficient
compute node resources exist to run the batch job.

After the batch scheduler selects a batch job to run, the batch scheduler uses
apbasil to submit a resource reservation request to the local apsys daemon.
The apsys daemon forwards this reservation request to apsched. If the
reservation-request resources are available, specific compute node resources are
reserved at that time for the batch scheduler use only.

When the batch job is initiated, the prior confirmed reservation is bound to this
particular batch job. Any aprun client invoked from within this batch job can claim
compute node resources only from this confirmed reservation.

The batch system uses apbasil to cancel the confirmed reservation after the batch
job terminates. The apbasil client again contacts the local apsys daemon to
forward the cancel-reservation request to apsched. The compute node resources
from that reservation are available for other use after the application has been
released.

S–2393–31 239

Managing System Software for Cray XE and Cray XT™ Systems

For additional information, see the apbasil(1) and basil(7) man pages.

8.2.2 ALPS Daemons

ALPS daemons provide support for application submission, placement, execution,
and cleanup on the system.

8.2.2.1 The apbridge Daemon

The apbridge daemon collects data about the hardware configuration from the
service database (SDB) and sends it to the apsched daemon. It also works with the
apwatch daemon to supply ongoing compute node status information to apsched.
The apbridge daemon is the bridge from the architecture-independent ALPS
software to the architecture-dependent specifics of the underlying system.

The apbridge daemon is not intended for direct use; it is only installed in the boot
root and is invoked from within /etc/init.d/alps.

For more information, see the apbridge(8) man page.

8.2.2.2 The apsched Daemon

The apsched daemon manages memory and processor resources of applications
running on compute nodes.

Note: Only one instance of the ALPS scheduler can run across the entire system
at a time.

When apsched receives a request for application placement from aprun, it either
returns a message regarding placement or a message indicating why placement is
not possible (errors in the request or temporarily unavailable resources). When an
application terminates, an exit message is sent to apsched, and it releases the
resources reserved for the application.

The apsched daemon writes a log file on the node on which apsched is executing.
By default, this is the SDB node.

For more information, see the apsched(8) man page.

8.2.2.3 The apsys Daemon

The apsys daemon provides a central privileged point of contact and coordination
between ALPS components running on login and other service nodes. The apsys
daemon receives incoming requests and forks child agent processes to delegate
responsibilities and improve scalability and responsiveness. An apsys daemon
executes on each login node and writes a log file on each login node.

240 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

Each aprun client has an apsys agent associated with it. Those two programs are
on the same login node and communicate with each other over a persistent TCP/IP
socket connection that lasts for the lifetime of the aprun client. The apsys daemon
passes aprun messages to apsched over a transitory TCP/IP socket connection and
returns the response to aprun.

An apsys agent is created to service apbasil and apkill messages. These
programs communicate over transitory TCP/IP socket connections. The apsys agent
handles the apkill message itself and forwards apbasil messages to apsched.

Each apsys agent maintains a separate agents file that is located in the
ALPS shared directory. The file name format is agents.nid, for example,
/ufs/alps_shared/agents.40. For information about defining the ALPS
shared directory, see /etc/sysconfig/alps Configuration File on page 243.

For more information, see the apsys(8) man page.

8.2.2.4 The apwatch Daemon

The apwatch daemon waits for events and sends compute node status changes to
apbridge, which sends it to apsched. The apwatch daemon is not intended
for direct use; it is only installed in the boot root and is invoked from within
/etc/init.d/alps.

For more information, see the apwatch(8) man page.

8.2.2.5 The apinit Daemon

The apinit daemon launches and manages new applications. A master apinit
daemon resides on every compute node, initiates all new activity on that node, and
writes a log file on the compute node. The aprun client connects to the apinit
daemon on the first node of an application's allocated node set and sends a launch
message containing all of the information the compute nodes need to launch and
manage the new application.

The apinit daemon then forks a child process (referred to as the apshepherd
or just shepherd) and transfers responsibility for managing the application on that
node to that child. If the application requires more compute nodes, the shepherd
process communicates to the apinit daemon on the next compute node, which
forks another shepherd child process.

If the application is placed on more than one compute node, ALPS uses a TCP
fan-out control tree network for application management messages to do binary
transfer of the application when requested, and to handle application stdin,
stdout, and stderr data. The root of the fan-out control tree is aprun. The
width of the fan out is configured within the /etc/alps.conf file and is 32,
by default.

S–2393–31 241

Managing System Software for Cray XE and Cray XT™ Systems

The apinit daemon is under the control of RCA. If the apinit daemon fails,
RCA restarts apinit. If RCA is unable to restart apinit after several attempts,
ALPS is notified and the node is made unavailable (DOWN) for applications.

For more information, see the apinit(8) man page.

8.2.2.6 The apres Daemon

The ALPS apres event watcher restart daemon registers with the event router
daemon to receive ec_service_started events. When the service type is the
SDB (RCA_SVCTYPE_SDBD), ALPS updates its data to reflect the current values
in the SDB. The apres daemon is invoked as part of the ALPS startup process on
the boot node.

The apres daemon is not intended for direct use; it is only installed in the boot root
and is invoked from within /etc/init.d/alps.

For more information, see the apres(8) man page.

8.2.2.7 ALPS Log Files

Each of the ALPS daemons writes information to its log file in /var/log/alps on
whichever node that runs the daemon. The name of the log file consists of the daemon
name appended with the month and day, such as apsched0302.

The apinit log file is in the /var/log/alps directory on each compute node
and also has a node ID appended to it, such as apinit0302.00206. Because this
directory is in memory, the apinit log file is lost when a compute node is rebooted.

Each system has one apbridge daemon, one apwatch daemon, and one apres
daemon, all of which must execute on the same node. By default, this is the boot
node. These three daemons write to one log file on that node. The log file name
format is apbridgemmdd, for example, apbridge1027.

8.2.2.8 Changing Debug Message Level of apsched and apsys Daemons

The level of debug messages written by the apsched and apsys daemons is
defined in the /etc/alps.conf configuration file. You can change the debug level
dynamically by modifying the alps.conf file and sending a SIGHUP signal to
apsched or apsys, as applicable, to read the alps.conf file.

242 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

8.3 Configuring ALPS
ALPS uses the following three files:

• /etc/sysconfig/alps configuration file

• /etc/alps.conf configuration file

• /etc/init.d/alps file, which is used to start and stop ALPS components
and does not require customization

Note: When configuring the RAID LUNs (logical units), verify that write
caching is enabled on the LUN that contains the ALPS shared file system. For
more information about RAID configuration, see the Installing Cray System
Management Workstation (SMW) Software and the Installing and Configuring Cray
Linux Environment (CLE) Software.

8.3.1 /etc/sysconfig/alps Configuration File

The /etc/sysconfig/alps file is in both the boot root and in the shared
root. If you defined the ALPS-related parameters in your CLEinstall.conf
file, after installation the parameters and settings are placed into your
/etc/sysconfig/alps file.

If you do not define the ALPS-related parameters in your CLEinstall.conf file,
to use ALPS you must define the parameters in your /etc/sysconfig/alps file
(required parameters are indicated) and then start the ALPS daemons.

Note: When changing parameter settings, update the /etc/sysconfig/alps
file in both the boot root and in the shared root and restart the ALPS daemons on
all service nodes.

ALPS_MASTER_NODE

(Required) Specifies the node name (uname -n) of the service
node that runs apsched. Cray recommends that the SDB
node be used as the ALPS_MASTER_NODE. For example:
ALPS_MASTER_NODE="nid00003"

ALPS_BRIDGE_NODE

(Required) Specifies the node name (uname -n) of the
service node that runs apbridge. This is usually the boot
node. Network connectivity between the SMW and the
ALPS_BRIDGE_NODE parameter is required. (Such connectivity
is guaranteed to exist from the boot node.) This default value
is enforced in the /etc/init.d/alps file. For example:
ALPS_BRIDGE_NODE="boot001"

S–2393–31 243

Managing System Software for Cray XE and Cray XT™ Systems

ALPS_MOUNT_SHARED_FS

Specifies if a separate file system is to be mounted at ALPS startup
to hold control data; default is no. For configurations using multiple
login nodes, a shared file system is required, and the shared file
system must be mounted before ALPS is started. For example:
ALPS_MOUNT_SHARED_FS="no"

ALPS_SHARED_DIR_PATH

(Required) Specifies the directory path to the file that contains ALPS
control data. If ALPS_MOUNT_SHARED_FS is set to yes, this is
assumed to be a mount point. Default is /ufs/alps_shared. For
example: ALPS_SHARED_DIR_PATH="/ufs/alps_shared"

ALPS_SHARED_DEV_NAME

Specifies the device to mount at ALPS start-up. If it is null and
ALPS_MOUNT_SHARED_FS is yes, the device is determined
by /etc/fstab. This parameter is not used unless yes
is specified for ALPS_MOUNT_SHARED_FS. For example:
ALPS_SHARED_DEV_NAME="ufs:/ufs/alps_shared"

ALPS_SHARED_MOUNT_OPTIONS

Specifies the shared mount options. Set this parameter
only if ALPS_MOUNT_SHARED_FS is yes and
ALPS_SHARED_DEV_NAME is not null. For example:
ALPS_SHARED_MOUNT_OPTIONS="-t nfs -o tcp,rw"

ALPS_IP_PREFIX

(Deferred implementation) Use of this parameter has no effect.
Specifies the first two octets for IP addresses on the high-speed
network (HSN). These are internal addresses within the HSN. For
example: ALPS_IP_PREFIX="192.168"

ALPS_NIDORDER

-On Assigns order of nodes based solely on ascending
numerical Node ID (NID) order.

244 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

-Ox Assigns order of nodes by maximum dimension
as the outer dimension; the smallest dimension
will change most quickly. For example, a system
whose topology is described as a 6x12x8 system
would have the y dimension varied last and the x
dimension varied most rapidly, ordering them as
(0,0,0), (1,0,0), (2,0,0), (3,0,0), (4,0,0), (5,0,0),
(0,0,1), (1,0,1), (2,0,1) and so on. This option often
improves application performance over using the
-On option. Applications that use a small percentage
of the machine, especially on machines that are
largely cubic in their dimensions, may not benefit
from this configuration.

-Oy Assigns order of nodes by y-axis last, which may be
better suited for Gemini-based torus networks.

-Or Assigns order of nodes by minimum dimension,
a reverse of -Ox; in the example above, the y
dimension would vary most quickly, the x least.

If ALPS_NIDORDER is not specified, the default action is -On.

For example: ALPS_NIDORDER="-Ox"

Note: Because this is a system-wide setting, Cray recommends
that you change this option only when you reboot your system
to ensure apbridge and apsched are restarted in the correct
sequence.

APWATCH_LIBRARY_PATH

The LD_LIBRARY_PATH "add-on" needed for apwatch; it
includes the path to the gnet and glib libraries and the rsms and
erd libraries.

For example:

APWATCH_LIBRARY_PATH="/opt/gnet/lib:/opt/glib/lib:/opt/cray/librsmsevent.so: \
/opt/cray/libcray_event_router.so:/opt/gnome/lib64"

APWATCH_ERD

(Required) The host that has the event router daemon (erd) running;
typically, this is the host name of the SMW.

For example: APWATCH_ERD="smw"

S–2393–31 245

Managing System Software for Cray XE and Cray XT™ Systems

A separate file system for control data is mounted at ALPS startup. This is assumed
to be a mount point. Specify the path to the ALPS control data directory using
the parameter ALPS_SHARED_DIR_PATH. Specify the device to mount at
ALPS start-up using the parameter ALPS_SHARED_DEV_NAME. If it is null and
ALPS_MOUNT_SHARED_FS is yes, the device is determined by /etc/fstab.

The following example shows a sample /etc/sysconfig/alps configuration
file.

Example 96. Sample /etc/sysconfig/alps configuration file

#ALPS Configuration File

ALPS_MASTER_NODE="sdb"

ALPS_BRIDGE_NODE="boot"

ALPS_NIDORDER="-Ox"

ALPS_MOUNT_SHARED_FS="no"

ALPS_SHARED_DIR_PATH="/ufs/alps_shared"

Type: string
Default: ""
Example: "ufs:/ufs/alps_shared"
#
Device to mount at ALPS start-up. If it is null
but ALPS_MOUNT_SHARED_FS is "yes", then the device
will be determined by /etc/fstab. This parameter
is not used unless ALPS_MOUNT_SHARED_FS is "yes".
#

ALPS_SHARED_DEV_NAME=""

Type: string
Default: ""
Example: "-t nfs -o tcp,rw"
#
This parameter is not used unless ALPS_MOUNT_SHARED_FS
is "yes" and ALPS_SHARED_DEV_NAME is not null.
#

ALPS_SHARED_MOUNT_OPTIONS=""

APWATCH_LIBRARY_PATH=
"/opt/gnet/2.0.5/64/lib:/opt/glib/2.4.2/64/lib:/opt/cray/lib64:/opt/gnome/lib64"

APWATCH_ERD="smw"

246 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

8.3.2 /etc/alps.conf Configuration File

The /etc/alps.conf file is in the shared root and contains ALPS static
configuration information used by the apsched and apsys daemons. The
configuration parameters are described in this section.

Note: You can change the parameter settings dynamically by modifying the
alps.conf file and sending a SIGHUP signal to apsched or apsys, as
applicable, to re-read the alps.conf file.

bridge Enables the apbridge daemon to provide dynamic rather than
static information about the system node configuration to apsched.
Cray strongly recommends setting the bridge parameter to use the
apbridge daemon. By default, it is set to 1 (enabled).

alloc If this field is set to 0 or is not specified, the distinction between
batch and interactive nodes is enforced. If this field is set as nonzero,
no distinction is made by ALPS; job schedulers will likely still limit
their placement only to nodes marked as batch. By default, it is set
to 0.

fanout This field is set to a default level of 32. This value controls the width
of the ALPS TCP/IP network fan-out tree used by apinit on the
compute nodes for ALPS application launch, transfer, and control
messages.

debug This field is set to a default level of 1 for both apsched and
apsys. For information about valid values, see the apsched(8)
and apsys(8) man pages.

cpuAffinity

Supports switchable default CPU affinity in apsched. Valid values
are cpu, none, and numa; the default value is cpu. aprun checks
for and uses the default cpuAaffinity string from apsched. If
the user has not explicitly set the aprun -cc option, aprun will
use the default supplied by apsched. If there is not a default from
apsched, aprun sets a default of cpu. For more information, see
the aprun(1) man page.

lustreFlush

Supports switchable default Lustre cache flushing as part of
application exit processing on the compute nodes. Enabling this
Lustre cache flushing provides more consistent application run
times. When Lustre cache flushing is enabled, all of the Lustre cache
flushing completes as part of the application exit processing. The
next application executing on the same set or subset of compute
nodes no longer inherits a variable amount of run time due to Lustre
cache flushing from a previous application.

S–2393–31 247

Managing System Software for Cray XE and Cray XT™ Systems

Valid values are 0 (disabled) and 1 (enabled); the default value is 1
(enabled). Apsched provides this default lustreFlush value to
the apinit daemon to enable or disable Lustre cache flushing as
part of application exit processing.

Note: This value cannot be set on an individual application basis;
it is a system-wide setting.

nodeShare Controls which compute node cores and memory are put into an
application cpuset on the compute node. The valid values are
exclusive and share. The default value is exclusive.

The exclusive setting puts all of a compute node's cores
and memory resources into an application-specific cpuset on the
compute node. This allows the application access to any and all
of the compute node cores and memory. This can be useful when
specifying a particular CPU affinity binding string through the
aprun -cc option.

The share setting restricts the application specific cpuset contents
to only the application reserved cores and memory on NUMA node
boundaries. That is, if an application requests and is assigned cores
and memory on NUMA node 0, then only NUMA node 0 cores
and memory will be contained within the application cpuset. The
application will not have access to the cores and memory on other
NUMA nodes on that compute node.

To override the default system-wide setting in /etc/alps.conf
on an individual basis, use the aprun -F option. For more
information, see the aprun(1) man page.

cleanup_version

Specifies which cleanup routines are used. Valid values are 1 or
2. Value 1 indicates using existing cleanup (scalar, limited parallel
actions); 2 indicates cleanup that is scaled for larger systems (highly
parallel.) Default for systems installed before SMW 5.1 is 1; default
for systems installed with SMW 5.1 or later is 2.

cleanup_cto

Specifies the maximum amount of time, in milliseconds, allowed for
the connect system call to respond before assuming the target node is
down. Default value is 1000 milliseconds.

Note: The cleanup_cto value applies only when you have also
specified cleanup_version=2.

248 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

cms (Deferred implementation) Indicates whether or not ALPS will use
CMS to store reservation and claim information. Valid settings are
no and yes; the default setting is no.

The following example shows a sample /etc/alps.conf configuration file.

Example 97. Sample /etc/alps.conf configuration file

Sample apsched configuration file
apsched

alloc 0
bridge 1
fanout 32
debug 1

Default CPU affinity: values cpu (default), none, numa
cpuAffinity cpu
Default lustre cache flushing at app exit: values 0, 1
lustreFlush 1
Default app node share mode for cores and memory: values exclusive, share
nodeShare exclusive
(Deferred implementation) Default CMS support: values no (default), yes

cms no
/apsched

apsys
debug 1

/apsys

8.4 Resynchronizing ALPS and the SDB Command After
Manually Changing the SDB

Manual changes to node attributes and status can be reflected in ALPS by using the
apmgr resync command. The apmgr resync command requests ALPS to
reevaluate the configuration and attribute information and update its information. For
example, after making manual changes to the SDB using the xtprocadmin -e or
xtprocadmin --noevent command, use the apmgr resync command so that
ALPS becomes aware of the changes.

8.5 Identifying Reserved Resources
The apstat -r command displays the batch job ID in the From field; for
executables launched interactively, apstat displays aprun in the From field:

% apstat -r
ResId ApId From Arch PEs N d Memory State
141 156559 batch:542687 XT 17 1 1 4000 conf,claim

A 141 156560 batch:542687 XT 17 - - 4000 conf,claim
143 156562 aprun XT 1 0 1 4000 atomic,conf,claim

S–2393–31 249

Managing System Software for Cray XE and Cray XT™ Systems

The apstat -A apid command filters information by application IDs. You can
include multiple application IDs, but it must be a space-separated list of IDs. For
example:

% apstat -avv -A 1280947
Total (filtered) placed applications: 1
Placed Apid ResId User PEs Nodes Age State Command

1280947 619 shep 1024 86 0h28m run castep_for_sh

Application detail
Ap[2]: apid 1280947, pagg 15376, resId 619, user shep,

gid 1037, account 0, time 0, normal
Batch System ID =

1971375
Created at Wed Feb 24 11:24:59 2010
Number of commands 1, control network fanout 32
Cmd[0]: castep_for_sh -n 1024 -d 1 -N 12 -r 0 -S 3 -sn 0 -sl 0, 1333MB, XT, nodes 86
Placement list entries: 1024
Placement list: 20-31,129-158,272-286,385-387,389-414

The apstat -R resid command filters information about reservation IDs. You can
include multiple reservation IDs, but it must be a space-separated list of IDs. For
example:

% apstat -rvv -R 619
ResId ApId From Arch PEs N d Memory State

619 1280945 batch:1971375 XT 2100 24 1 1333 conf,claim
A 619 1280947 batch:1971375 XT 1024 - - 1333 conf,claim

Reservation detail for resid 619
Res[1]: apid 1280945, pagg 0, resId 619, user shep,

gid 1037, account 8944, time 0, normal
Batch System ID = 1971375
Created at Wed Feb 24 11:24:59 2010
Number of commands 1, control network fanout 32
Cmd[0]: BASIL -n 2100 -d 1 -N 24 -r 0 -S 0 -sn 0 -sl 0, 1333MB, XT, nodes 88
Reservation list entries: 88
Reservation list: 20-31,129-158,272-287,385-387,389-415

8.6 Terminating a Batch Job
To terminate a batch job, use the job ID from the apstat -r display.

8.7 Setting a Compute Node to Batch or Interactive Mode
To set a node to be either batch or interactive mode, use the xtprocadmin
command to set the alloc_mode column of the SDB processor table. Then
execute the apmgr resync command so that ALPS becomes aware of the changes.

250 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

Example 98. Retrieving node allocation status

The apstat -n command displays the application placement status of the nodes
that are UP and their allocation mode (B for batch or I for interactive) in the State
column.

Note: The apstat utility does not have dynamic run-time information about an
application, so an apstat display does not imply anything about the running state
of an application. An apstat display indicates statically that an application was
placed and that the aprun claim against the reserved resources has not yet been
released.

% apstat -n
NID Arch State HW Rv Pl PgSz Avl Conf Placed PEs Apids
20 XT UP B 12 - - 4K 3072000 0 0 0
21 XT UP B 12 - - 4K 3072000 0 0 0
22 XT UP B 12 - - 4K 3072000 0 0 0
23 XT UP B 12 - - 4K 3072000 0 0 0

<snip>
63 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221180
64 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221180
65 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221180
66 XT UP B 12 12 12 4K 3072000 3072000 1572864 12 221182

<snip>
Compute node summary

arch config up use held avail down
XT 744 744 46 12 686 0

8.8 Manually Starting and Stopping ALPS Daemons on Service
Nodes

ALPS is automatically loaded and started when CNL is booted on compute nodes.

You can manually start and stop the ALPS daemons on the service nodes as shown in
the following procedures.

Procedure 61. Starting and stopping ALPS daemons on a specific service node

1. To start the ALPS daemons on a specific service node, log on to that service node
as root and type the /etc/init.d/alps start command; for example,
to start the ALPS daemons on the boot node:

boot:~ # /etc/init.d/alps start

2. To stop the ALPS daemons on a specific service node, log on to that service node
as root and type the /etc/init.d/alps stop command; for example, to
stop the ALPS daemons on the boot node:

boot:~ # /etc/init.d/alps stop

S–2393–31 251

Managing System Software for Cray XE and Cray XT™ Systems

Procedure 62. Restarting ALPS daemon on a specific service node

• To restart the ALPS daemon on a specific service node, log on to the service
node as root and type the /etc/init.d/alps restart command; for
example, to restart the ALPS daemons on the boot node:

boot:~ # /etc/init.d/alps restart

The /etc/init.d/alps restart command stops and then starts the ALPS
daemons on the node.

8.9 Manually Cleaning ALPS and PBS After Downed Login Node
If a login node goes down and will not be rebooted, job reservations associated with
jobs deleted with qdel may not be released by ALPS. In this case, the apstat -r
command lists the reservations as state pendCancel and leaves the jobs orphaned.
Use the following procedure to manually clean up ALPS and PBS.

Procedure 63. Manually cleaning up ALPS and PBS after a login node goes
down

1. Verify that the batch job still appears in the qstat output.

crayadm@smw:~> qstat -as 106728.sdb

sdb:
Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- -

106728.sdb root workq qsub.scrip 6231 1 1 -- -- R
00:00

Job run at Thu Dec 03 at 14:31 on (login1:ncpus=1)

2. Purge job from PBS and verify that it was purged. On the SDB node, type:

sdb:~ # qdel -W force 106728.sdb

3. Verify that the job no longer exists.

sdb:~ # qstat -as 106728.sdb
qstat: Unknown Job Id 106728.sdb
sdb:~ #

4. Restart apsched on the SDB node:

sdb:~# /etc/init.d/alps restart

5. Use apmgr to cancel the reservation that still exists in ALPS.

sdb:~ # apstat -r | grep 106728
ResId ApId From Arch PEs N d Memory State

5 2949806 batch:106728 XT 1 0 1 500 conf

sdb:~ # apmgr cancel 5

252 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

6. Use apstat to verify that the reservation no longer exists.

sdb:~ # apstat -r | grep 106728
sdb:~ #

8.10 Verifying that ALPS is Communicating with Cray System
Compute Nodes

Executing the following aprun command on a login node will return a list of host
names of the Cray system compute nodes used to execute the last program.

Example 99. Verifying that ALPS is communicating with Cray system compute
nodes

crayadm@login:~> cd /tmp
crayadm@login:/tmp> aprun -b -n 16 -N 1 /bin/cat /proc/sys/kernel/hostname

8.11 ALPS and Node Health Monitoring Interaction
ALPS and node health monitoring cooperate in performing application cleanup
following an application exit. The Node Health Checker (NHC) is automatically
invoked by ALPS upon the termination of an application.

During normal operations, applications are run on a set of nodes, complete
successfully, then those node resources are freed up to be reallocated for other
applications. When an application exit is considered orderly, a set of up to four
unique application process exit codes and exit signals is gathered and consolidated by
ALPS on each compute node within the application placement list. Once all of the
application processes on a compute node have exited, that compute node adds its
local exit information to this consolidated list of exit data.

The exit information is sent to aprun over the ALPS application specific TCP
fan-out tree control network. All of the application processes must have completely
exited before this exit information is received by aprun. aprun forwards the
compiled exit information to apsys just before aprun itself exits.

Once all exit information has been received from the compute nodes, the application
exit is considered orderly. An orderly exit does not necessarily mean that the
application completed successfully. An orderly exit means that exit information about
the application was received by aprun and forwarded to apsys. apsys sends
an exit message to apsched, which releases the reserved resources for another
application.

An unorderly exit means that exit information has not been received by apsys prior
to an aprun exit. A typical occurrence of an unorderly exit consists of a SIGKILL
signal being sent to aprun by the batch system after the application's wall time
limit is exceeded.

S–2393–31 253

Managing System Software for Cray XE and Cray XT™ Systems

Since there is no exit information available to apsys during an unorderly exit,
apsys does not know the true state of the application processes on the compute
nodes. Therefore, ALPS must perform application cleanup on each of the assigned
compute nodes before it is safe to free those application resources for another
application.

Application cleanup begins with ALPS contacting each assigned compute node and
sending a SIGKILL signal to any remaining application processes. Node health
monitoring checks compute node conditions and marks a compute node admindown
if it detects a problem.

ALPS cannot free the application resources for reallocation until all of the application
processes have exited or node health monitoring has marked applicable compute
nodes admindown or suspect. Until that time, the application will continue to
be shown in apstat displays.

8.11.1 aprun Actions

The aprun command is the ALPS application launch command on login nodes and
the SDB node. aprun has a persistent TCP connection to a local apsys. aprun
also has a persistent TCP connection to an apinit daemon child on the first
compute node with in the assigned placement list, but not to an apinit on each
assigned compute node.

After receiving a placement list from apsched, aprun writes information into
the syslog as in the example below.

May 18 10:38:16 nid00256 aprun[22477]: apid=1985825, Starting, user=10320,
batch_id=2325008, cmd_line="aprun -n 1 -b /tmp/hostname.xx ",
num_nodes=1, node_list=384

May 18 10:38:16 nid00256 aprun[22477]: apid=1985825, Error, user=10320,
batch_id=2325008, [NID 00384] 2010-05-18 10:38:15 Apid 1985825: cannot
execute: exit(107) exec failed

May 18 10:38:17 nid00256 apsys[22480]: apid=1985825, Finishing, user=10320,
batch_id=2325008

In a typical case of an orderly exit, aprun receives application exit information over
the connection from that apinit. aprun then forwards the exit information over
the connection to apsys. The ordering of application exit signals and exit codes is
arbitrary. aprun displays any nonzero application exit information and uses the
application exit information to determine its own exit code:

Application 284004 exit signals: Terminated

In the case of an unorderly exit, aprun exits without receiving application exit
information. When aprun exits, its TCP connections are closed. The socket closes
trigger application cleanup activity by both apinit and apsys as described in
following sections.

254 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

An unorderly exit may occur for various reasons. The usual causes of an unorderly
exit include the following cases:

• The batch system sends a SIGKILL signal to aprun due to the application wall
time expiring

• apkill or kill are used to send a SIGKILL signal to aprun

• aprun receives a fatal message from apinit due to some fatal error during
launch or at other points during the application lifetime, causing aprun to write
the message to stderr and exit

• aprun receives a fatal read, write or unexpected close error on the TCP socket
it uses to communicate with apinit

8.11.2 apinit Actions

apinit is the ALPS privileged daemon that launches and manages applications
on compute nodes. For each application, the apinit daemon forks a child
apshepherd process. Within ps displays, the child apshepherd processes retain
the name "apinit".

The per-application TCP fan-out control tree has aprun as the root. Each compute
node apshepherd within this control tree has a parent controller and may have a
set of controlling nodes. Whenever a parent controller socket connection closes, the
local apshepherd attempts to kill any application processes still executing and then
will exit. This socket closing process results in a ripple effect through the fan-out
control tree, resulting in automatic application tear down.

Whenever the aprun TCP connection to the apshepherd on the first compute
node within the placement list closes, the tear down process begins. During an
application orderly exit, the exit information is sent to aprun, followed by the
aprun closure of the socket connection, resulting in the exit of the apshepherd.
The apshepherd exit causes its controlling socket connections to close as well.
Each of those apshepherds will exit, and the application specific fan-out tree
shuts down.

When the aprun TCP socket closure is not expected and the application processes
are still executing, the apshepherd will send a SIGKILL signal to each local
application process and then exit. There can be local delays in kernel delivery of the
SIGKILL signal to the application processes due to application I/O activity. The
application process will process the SIGKILL signal after the I/O completes. The
apinit daemon is then responsible to monitor any remaining application processes.

S–2393–31 255

Managing System Software for Cray XE and Cray XT™ Systems

This kill and exit process ripples throughout the control tree. However, if any
compute node within the control tree is unresponsive, the ripple effect will stop
for any compute nodes beyond that branch portion of the tree. In response to this
situation, ALPS must take action independent of the shutdown of the control tree to
ensure all of the application processes have exited or that compute nodes are marked
either admindown or suspect by node health monitoring. The apsys daemon is
involved in invoking the independent action.

8.11.3 apsys Actions

apsys is a local privileged ALPS daemon that runs on each login node and
the SDB node. When contacted by aprun, the apsys daemon forks a child
agent process to handle that specific local aprun. The apsys agent provides a
privileged communication path between aprun and apsched for placement and
exit information exchanges. The apsys agent name remains "apsys" within ps
displays.

During an orderly application exit, the apsys agent receives exit information from
aprun and forwards that information to apsched. However, during an unorderly
exit, when the aprun socket connection closes prior to receipt of exit information,
the apsys agent is responsible to start application cleanup on the assigned compute
nodes.

To begin application cleanup, the apsys agent invokes cleanup version 1
(apmgrcleanup) or cleanup version 2, and the apsys agent blocks until cleanup
completes. (Which cleanup version is controlled by the cleanup_version
configuration parameter in alps.conf file; see /etc/alps.conf Configuration
File on page 247 for more information.)

At the start of application cleanup, the /var/log/alps/apsysMMDD log file
displays data similar to the following messages.

Cleanup version 1 messages:

14:00:20: [32606] Agent unexpected close of peer connection 6, apid 227061
14:00:20: [32606] Agent invoking cleanup v1 for apid 227061
14:00:22: /usr/bin/apmgrcleanup [32824] invoking
/opt/cray/nodehealth/default/bin/xtcleanup_after /tmp/apsysiY08fc 227061 0 with 1 entries

256 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

Cleanup version 2 messages:

14:00:20: [32606] Agent unexpected close of peer connection 6, apid 227061
14:00:20: [32606] Agent invoking cleanup v2 for apid 227061
14:00:20: Beginning cleanup of apid 227061, iteration 1
14:00:21: Post-cleanup: apid 227061 definitely resident on 1/1 nodes, maybe on 0
others
14:00:21: Beginning cleanup of apid 227061, iteration 2
14:00:21: Target Nodes: Match list portion for apid 227061 (1/1): 20
14:00:21: Target Nodes: Unreached list portion for apid 227061 (0/0):
14:00:21: Post-cleanup: apid 227061 definitely resident on 0/1 nodes, maybe on 0
others
14:00:21: Invoking health check: /opt/cray/nodehealth/default/bin/xtcleanup_after
/tmp/apsysWRPpna 227061 0
14:00:30: Successfully cleaned up apid 227061 on 1 nodes

After apmgrcleanup returns, the apsys log file contains something similar to the
sample message below:

14:02:30: [32606] Agent sending ALPSMSG_EXIT message to apsched fd 7, apid 227061
14:02:30: [32606] Agent received ALPSMSG_EXITCONFIRM from apsched fd 7, apid 227061

In the above example, apsched has been told that the resources assigned to that
aprun can now be reallocated to another application. The apstat display will no
longer show information about this application.

8.11.4 Cleanup Version 1 Actions (apmgrcleanup)

Note: Which cleanup version used is controlled by the cleanup_version
configuration parameter in alps.conf file; see /etc/alps.conf
Configuration File on page 247 for more information.

When configured to use cleanup version 1, apsys invokes apmgrcleanup for
each application unorderly exit. apmgrcleanup is a shell script that is invoked to
do application cleanup for a specific application. As part of this cleanup activity,
apmgrcleanup calls another script, which may invoke node health monitoring.
apmgrcleanup executes with the permissions of the apsys caller, which runs as
root. You must be root to edit the apmgrcleanup file.

apmgrcleanup works with a placement list of assigned compute nodes for a
specific application. This application cleanup activity will guarantee that a new
application is not placed on this set of compute nodes prematurely. A new application
placed on these compute nodes prematurely would result in application failure due
to compute node core and/or memory resources still being assigned to the current
application.

apmgrcleanup contacts every node in the placement list supplied to it.
apmgrcleanup first uses apmgr to send a kill request message for a specific
application to each node on the placement list, then requests status information about
an application on that compute node.

S–2393–31 257

Managing System Software for Cray XE and Cray XT™ Systems

apmgrcleanup uses apmgr to send status request messages to the apinit on
that set of compute nodes to find out when all of the local application processes have
exited. The kernel may not immediately deliver a SIGKILL signal to application
processes if those processes are involved in I/O activity.

apmgrcleanup begins by calling apmgr to send a ping kill message to the
apinit daemon on each compute node in the placement list for the given
application. If there are more than 500 nodes in the list, apmgrcleanup uses
nway to perform eight apmgr invocations at a time, in a sliding window fashion, for
parallelization. apmgrcleanup continues to loop until the list of nodes reaches
zero.

apmgr writes messages to the syslog after each successfully sent ping kill
message. These messages mean only that a message was received by the compute
node apinit daemon. The application processes may still exist if the SIGKILL
delivery to an application process remains pending due to I/O activity. Below is a
sample of ping kill messages written to the syslog:

Apr 13 06:55:31 nid00016 apmgr[20277]: apid=821502, killed on nid=587
Apr 13 06:55:31 nid00016 apmgr[20279]: apid=821502, killed on nid=591
Apr 13 06:55:31 nid00016 apmgr[20281]: apid=821502, killed on nid=772
Apr 13 06:55:31 nid00016 apmgr[20283]: apid=821502, killed on nid=776

Inside its main loop, apmgrcleanup calls the xtcleanup_after script with
the initial (full) placement list of compute nodes for the application. Each invocation
includes a randomly generated file name (/tmp/apsysXXXX) that holds the node
list and an invocation count.

Apr 13 06:55:31 nid00016 06:55:31: /usr/bin/apmgrcleanup [18964] invoking
/opt/xt-service/default/bin/snos64/xtcleanup_after /tmp/apsysdbajiE 821502
0 with 5 entries

Then invocation count tells xtcleanup_after if this is the first or subsequent call
of the script. The xtcleanup_after script typically calls node health monitoring.
The script is site configurable to modify its behavior as desired; however, modifying
this script is not recommended.

On return from xtcleanup_after, apmgrcleanup will wait one or more
seconds, depending on machine size, to avoid looping too quickly, then it rechecks
the list of nodes. First, apmgrcleanup invokes apstat and checks for compute
nodes that are not marked up, removing them from the /tmp/apsysXXXX file.
Then, it calls apmgr to send a ping status request to the apinit daemon on the
remaining compute nodes.

A compute node is removed from the /tmp/apsysXXXX file whenever the
apinit on that compute node responds to the ping status request stating that no
application processes remain on that compute node, or when the node is no longer
marked up. The ping status request has a five-second time limit. Any nodes
remaining, (i.e. not heard from, still marked up) will stay in the file of nodes for the
next iteration of the apmgrcleanup loop.

258 S–2393–31

Using the Application Level Placement Scheduler (ALPS) [8]

When the /tmp/apsysXXXX file is empty, apmgrcleanup will exit. Then,
apsys writes a message into the syslog and can tell apsched to release the
aprun claim for that set of compute nodes. The syslog message includes both the
batch job ID and the aprun exit code, making it easier to track.

May 19 08:26:52 nid00029 apsys[27933]: apid=200075, Finishing, user=10320,
exit_code=0, exitcode_array=0, exitsignal_array=0

May 19 08:34:48 nid00029 apsys[2376]: apid=200175, Finishing, user=10320,
exit_code=139, exitcode_array=130:0, exitsignal_array=11:9:0

After the initial apmgr ping, kill messages are sent to the apinit daemon on the
set of compute nodes within the /tmp/apsysXXXX file, apmgrcleanup calls
the xtcleanup_after script to invoke node health monitoring. If node health
monitoring is enabled, compute nodes may be marked admindown or suspect by
node health monitoring as described in Node Health Checker Actions on page 260.

8.11.5 Cleanup Version 2 Actions

Note: Which cleanup version used is controlled by the cleanup_version
configuration parameter in alps.conf file; see /etc/alps.conf
Configuration File on page 247 for more information.

When configured to use cleanup version 2, apsys uses an internal library to perform
cleanup for each application unorderly exit. The apmgrcleanup and apmgr
commands, used in cleanup version 1 are not used. Cleanup version 2 interacts with
the /tmp/apsys/XXXX file and the xtcleanup_after script in the same
way as in cleanup version 1, and makes the same guarantee that new applications
will not be placed on compute nodes prematurely (See Cleanup Version 1 Actions
(apmgrcleanup) on page 257 for details). The principle differences between
Cleanup version 1 and Cleanup version 2 are the signal delivery and application query
mechanism, and the scalability characteristics.

Cleanup version 2 uses a tree-based overlay network formed using the apinit
daemons on compute nodes associated with an unorderly exit to deliver a SIGKILL
signal to application processes and to query for application presence. The overlay
network is separate from the ALPS launch fan-out tree. All compute nodes that have
a lingering application presence and all compute nodes with an unknown application
presence status are gathered and used to inform the cleanup algorithm when to
complete.

In the apsys log file, compute nodes that have a lingering application presence are
reported in a Match list. Compute nodes with an unknown application presence
status are reported in an Unreached list. The following example indicates that
apid 227061 remains resident on only one compute node (node 20), and that
application presence status information has been received from all compute nodes:

14:00:21: Target Nodes: Match list portion for apid 227061 (1/1): 20
14:00:21: Target Nodes: Unreached list portion for apid 227061 (0/0):

S–2393–31 259

Managing System Software for Cray XE and Cray XT™ Systems

After cleanup version 2 completes, or after every iteration of cleanup starting with the
third iteration, the xtcleanup_after script is invoked in an identical fashion to
cleanup version 1.

8.11.6 Node Health Checker Actions

The Node Health Checker (NHC) is automatically invoked by ALPS upon the
termination of an application. ALPS passes a list of nodes associated with the
terminated application to NHC. NHC performs specified tests, which are specified in
the NHC configuration file, to determine if compute nodes allocated to the application
are healthy enough to support running subsequent applications. If not, it removes any
nodes incapable of running an application from the resource pool.

NHC verifies that the Application Level Placement Scheduler (ALPS) acknowledges
a change that NHC has made to a node's state. If ALPS does not acknowledge a
change, then NHC recognizes this disagreement between itself and ALPS. NHC then
changes the node's state to admindown state and exits.

For an overview of NHC, see the intro_NHC(8) man page. For additional
information about configuring node health checker, see Configuring Node Health
Checker (NHC) on page 157.

8.11.7 Verifying Application Cleanup

There are a number of circumstances that can delay completion of application cleanup
after an unorderly exit. This delay is often detected through apstat displays that
still show the application and the resource reservation for that application.

As described in previous sections, check the various log files to understand what
activity has taken place for a specific application.

• Check the /var/log/alps/apsysMMDD log files for that apid; verify
cleanup version 1 (apmgrcleanup) or cleanup version 2 has been invoked.

• If using cleanup version 1 on that same login node, use ps to check if
apmgrcleanup is still executing.

• Check the applicable node health monitoring log file
(/var/log/xtcheckhealth_log) for that apid.

• Check the SMW /opt/craylog/bootlogs/console.YYMMDDHHMM
log file for that apid.

260 S–2393–31

Using Comprehensive System Accounting [9]

Comprehensive System Accounting (CSA) is open-source software that includes
changes to the Linux kernel so that the CSA can collect more types of system
resource usage data than under standard Fourth Berkeley Software Distribution
(BSD) process accounting. CSA software also contains interfaces for the Linux
process aggregates (paggs) and jobs software packages. The CSA software package
includes accounting utilities that perform standard types of system accounting
processing on the CSA generated accounting files. CSA, with Cray modifications,
provides:

• Project accounting capabilities, which provide a way to charge computer system
resources to specific projects

• An interface with various other job management systems in use at Cray sites

• A data management system for collecting and reporting accounting data

• An interface that you use to create the project account and user account databases,
and to later modify them, as needed

• An interface that allows the project database to use customer–supplied user,
account, and project information that resides on a separate Lightweight Directory
Access Protocol (LDAP) server

• An interface with the ALPS application management systems so that application
accounting records that include application start, termination, and placement
information can be entered into the system accounting database

Specific third-party software releases are required for batch system compatibility with
CSA on Cray systems. For more information, access the 3rd Party Batch SW link
on the CrayPort website at http://crayport.cray.com.

Complete features and capabilities of CSA are described in the csa(8) and
intro_csa(8) man pages. The accounting utilities provided for administrative
use are: csanodeacct, csaperiod, and csarun. The related man pages are
accessible by using the man command.

Note: CSA runs only on login nodes and compute nodes. The SMW, boot node,
SDB node, Lustre MDS nodes, and Lustre OST nodes do not support CSA.

S–2393–31 261

http://crayport.cray.com

Managing System Software for Cray XE and Cray XT™ Systems

9.1 Interacting with Batch Entry Systems or the PAM job
Module

Jobs are created on the system using either a batch job entry system (when such a
system is used to launch jobs) or by the PAM job module for interactive sessions.

Note: You must be running TORQUE snapshot (release)
2.4.0-snap.20080925140 or later to take advantage of CSA
support for the Cray platform.

You must run PBS Professional 9.2 or later to take advantage of CSA support for
the Cray platform.

Compute node project accounting for applications submitted through workload
managers (for example, PBS Professional) depends on the ability of the workload
manager to obtain and propagate the project ID to ALPS at job submission time. If
the workload manager does not support the ability to obtain and propagate the project
ID to ALPS at job submission, the project ID must be set by using the account(1)
command prior to issuing an ALPS aprun(1) command. Otherwise, project ID
information will not be included in any CSA accounting records for the job.

9.2 CSA Configuration File Values
The CSA configuration file, csa.conf, is included with the
Cray Linux Environment (CLE) software release package. By default, on
Cray systems, this file is located at /etc/opt/cray/csa/csa.conf for login
and compute nodes.

This file contains default settings for several configuration parameters you must
change to tailor CSA to your individual site configuration.

Note: The csa.conf file exists on the shared root and also on the CNL image
for compute nodes; the two copies of this file must be identical (except for the
NODE_PROCESS_ACCOUNT parameter, which may be different). You must create
a new version of the CNL compute node image after editing the csa.conf file.

Each Cray system that runs CNL has its own unique hardware configuration. This
includes the number of nodes on the system and the physical location of the nodes. In
addition, each installation contains its own unique file system configuration.

Since the file system and node configurations for each Cray system is unique, the
default /etc/opt/cray/csa/csa.conf file can only be used as a template.
The parameters shown in the following table are used to define the accounting file
system configuration and the node configuration for your system. You must change
the settings of these parameters so that they conform to your system configuration.

262 S–2393–31

Using Comprehensive System Accounting [9]

Table 11. CSA Parameters That Must Be Specific to Your System

Parameter Description

ACCT_SIO_NODES Declares the number of account file system mount points. There
must be at least one account file system mount point. The maximum
number of mount points is 100. Multiple mount points are allowed
so that the individual node accounting files can be distributed across
more than one file system in order to provide better scaling for
large system configurations. Use the df command to display the
possible file system mount points. The actual maximum number of
ACCT_SIO_NODES that may be specified is limited by the number
of file systems available on your system.

ACCT_FILE_SYSTEM_00

...

ACCT_FILE_SYSTEM_nn

Must be one entry for each declared file system mount point.
Numbering must begin with 00, and numbers must be consecutive.
For example, if you have specified ACCT_SIO_NODES 1,
you will only define ACCT_FILE_SYSTEM_00. If you have
specified ACCT_SIO_NODES 2, you will also need to define
ACCT_FILE_SYSTEM_01.

_lus_nid00007_csa_XT The default file system mount point. It must be changed to
correspond to a file system that exists on your system. There is one
of these entries for each ACCT_FILE_SYSTEM declared.

Note: The program that parses the configuration file does not
allow any special characters, other than the underscore character
(_) in configuration names. Therefore, in the file system paths
used in the mount point description, each forward slash character
(/) character must be represented by an underscore (_) character.
This also means that an account file system mount point cannot
have a _ character in the pathname.

SYSTEM_CSA_PATH Defines the pathname on the common file system where CSA
establishes its working directories for generating accounting reports.
This parameter is only used on the service node image. It is not used
on the compute nodes.

NODE_PROCESS_ACCOUNT Defines whether all process account records written on a node
will be written to the common file system, or whether the process
account records for each application will be combined into a single
application summary record that represents the total execution of the
application on a node. This parameter may be set differently on the
shared root and compute node images.

For other parameters in csa.conf, default settings should be acceptable.

S–2393–31 263

Managing System Software for Cray XE and Cray XT™ Systems

9.3 Configuring CSA
When CSA is enabled, all system accounting, including service node accounting, is
performed by CSA. Therefore, there is no need to have BSD process accounting
enabled on service nodes.

Note: You must include the CSA RPM in your CNL boot image. To do this
either set CNL_csa=yes in the CLEinstall.conf before the CLEinstall
program is run or edit the shell_bootimage_label.sh script and specify
CNL_CSA=y prior to updating your CNL boot image.

Perform the procedures in this section, in order, to correctly set up CSA.

9.3.1 Obtaining File System and Node Information

Procedure 64. Obtaining file system and node information

1. From a login node, enter the df command to determine which file systems are
available for writing CSA accounting data.

login:~ > df

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 173055264 66220448 98044064 41% /
initramdevs 4021372 84 4021288 1% /dev
192.168.0.1:/rr/current

173055264 66220448 98044064 41% /
192.168.0.1:/rr/current/.shared/node/8/etc

173055264 66220448 98044064 41% /etc
192.168.0.1:/snv 48133952 34803200 10885696 77% /var
192.168.0.1:/snv 48133952 34803200 10885696 77% /var
none 4021372 4 4021368 1% /var/lock
none 4021372 36 4021336 1% /var/run
none 4021372 20 4021352 1% /var/tmp
tmpfs 4021372 116 4021256 1% /tmp
sdb:/ufs 42061728 37362432 2562656 94% /ufs
sdb:/scratch 173055264 118125600 46138912 72% /scratch
sdb:/ostest 100759712 90996064 4645344 96% /ostest
11@ptl:/examplefs1 11864248176 2012019088 9249128752 18% /lus/nid00011
64@ptl:/examplefs2 11864248176 3714038044 8150210132 31% /lus/nid00064

2. Determine and record the file system information you want to use for CSA.

The files systems of interest for saving accounting data are those two systems
whose mount points are /lus/nid00011 and /lus/nid00064, respectively.
Record this information for later use.

3. Determine the hardware node configuration on your system.

Run the xtprocadmin command to get a complete list of nodes.

login:~ > xtprocadmin

NID (HEX) NODENAME TYPE STATUS MODE PSLOTS FREE
0 0x0 c0-0c0s0n0 service up batch 4 0

264 S–2393–31

Using Comprehensive System Accounting [9]

3 0x3 c0-0c0s0n3 service up batch 4 0
4 0x4 c0-0c0s1n0 service up batch 4 4
7 0x7 c0-0c0s1n3 service up batch 4 4

...
475 0x1db c3-0c2s6n3 compute up batch 4 4
476 0x1dc c3-0c2s7n0 compute up batch 4 4
477 0x1dd c3-0c2s7n1 compute up batch 4 4
478 0x1de c3-0c2s7n2 compute up batch 4 4
479 0x1df c3-0c2s7n3 compute up batch 4 4

For this example system, you want to choose a set of nodes that will have their
accounting files written to /lus/nid00011 and another set of nodes that will
have their accounting files written to /lus/nid00064. You also need to make
sure there is no overlap between the two sets of nodes.

9.3.2 Editing the csa.conf File

After you have the file system mount point and node configuration information for
your system, you are ready to edit the csa.conf file. By default, on Cray systems,
this file is located at /etc/opt/cray/csa/csa.conf for login and compute
nodes.

Note: You must use xtopview to edit the shared root image of csa.conf file
on the boot node. You can use any text editor to edit the compute node image of
csa.conf file on the SMW.

Procedure 65. Editing CSA parameters for the example system

1. Set the number for the ACCT_SIO_NODES parameter.

From Procedure 64 on page 264, you know that both /lus/nid00011 and
/lus/nid000064 will be used to host individual node accounting files. The
number of file systems (in this case two) to be used to contain accounting files
is the value for the ACCT_SIO_NODES parameter. Since this example shows
using /lus/nid00011 and /lus/nid00064 to contain accounting files,
set ACCT_SIO_NODES to 2:

ACCT_SIO_NODES 2

2. Declare a file system mount point for each SIO node specified.

Note: The program that parses the configuration file does not allow any special
characters, other than the underscore character (_) in configuration names.
Therefore, in the file system paths used in the mount point description, each
forward slash character (/) character must be represented by an underscore
(_) character. This also means that an account file system mount point cannot
have a _ character in the pathname.

S–2393–31 265

Managing System Software for Cray XE and Cray XT™ Systems

The df command from the previous procedure showed a mount point on
/lus/nid00011 and another one on /lus/nid00064, these are the two
mount points that need to be declared. Just because there are multiple mount
points, however, does not mean that you need to use them. You may choose to
have all accounting files written to a single file system. Since in this example you
are configuring two mount points, you must specify ACCT_FILE_SYSTEM_00
and ACCT_FILE_SYSTEM_01 parameters:

ACCT_FILE_SYSTEM_00 _lus_nid00011
ACCT_FILE_SYSTEM_01 _lus_nid00064

3. Determine the node range values for the account system mount point parameters.

All accounting file directories have csa as the first element of the path name,
following the mount point. The next element in the path name after csa
describes the node type. For Cray node types, the next element of the path name
is XT.

For Cray systems, the CSA software uses the node name, otherwise known as the
cname, when creating pathnames for accounting files. For example, node name
c1-0c2s7n3 has a pathname of cab0/row0/chassis2/slot7/mcomp3.
This path name is appended to applicable accounting system mount point name in
order to create a full path name for the accounting file.

The xtprocadmin command output from the previous procedure shows that
the system has 4 cabinets, c0-c3. One simple way to configure the accounting
file systems so that the files are divided fairly evenly between the two file systems
in this example would be to specify that cabinet 0 and cabinet 1 have their data
written to /lus/nid00011, and cabinet 2 and cabinet 3 have their data written
to /lus/nid00064.

Using the pathname conventions described above, and the node name data from
Procedure 64 on page 264, you can define the file system mount point parameters:

_lus_nid00011_csa_XT c0-0c0s0n0--c1-0c2s7n3
_lus_nid00064_csa_XT c2-0c0s0n0--c3-0c2s7n3

4. Define the SYSTEM_CSA_PATH parameter.

The SYSTEM_CSA_PATH parameter describes the file pathname for the system
wide csa directories that are used for CSA work areas, and for containing the
system-wide pacct file. The system-wide pacct file contains the merged
contents of the individual node pacct files. Since the file pathname for the
SYSTEM_CSA_PATH is not used as an input to the configuration file parser, the
file path name is allowed to contain the / character.

266 S–2393–31

Using Comprehensive System Accounting [9]

Usually the SYSTEM_CSA_PATH parameter uses an account file system
mount point as its base directory, however, this is not required. The
SYSTEM_CSA_PATH parameter is only used on the login node where CSA file
processing is performed. It is not necessary to set this parameter in the compute
node image of /etc/opt/cray/csa/csa.conf, but setting it there does
not cause any problems.

For this example, use the /lus/nid00011 mount point for the CSA work
areas:

SYSTEM_CSA_PATH /lus/nid00011/csa

5. Define the NODE_PROCESS_ACCOUNT parameter.

The NODE_PROCESS_ACCOUNT parameter defines if all process accounting
records from nodes are to be collected. This parameter may be set differently
for /etc/opt/cray/csa/csa.conf in the compute node image than
in /etc/opt/cray/csa/csa.conf in the shared root file system. The
NODE_PROCESS_ACCOUNT parameter allows your site to determine how much
detailed accounting data is to be collected, processed, and saved from the nodes
on the system.

To understand the usefulness of this parameter, it may be helpful to know how
CSA accounting records are handled on Cray systems. When ALPS launches an
application to the compute nodes on a Cray system, CSA process accounting
occurs on each compute node. All CSA job and process accounting records for
each compute node are written to an in-memory file system on the node, and
the records remain there until the application terminates. When the application
terminates, ALPS notifies the CSA software on each compute node to process
the accounting data for that node. The NODE_PROCESS_ACCOUNT parameter
allows CSA to make a decision whether to write all of the individual process
accounting records for each compute node to the common file system, or to
read the individual process accounting records and combine them into a single
application summary record that represents the total resources used by the
application on the compute node. By choosing to have application summary
records, the amount of data transferred from each compute node to the common
file system may be substantially reduced. In doing so, the amount of internal
system network traffic and the amount of data moved from compute nodes to
disk can be decreased. Also, the total amount of CSA accounting data that must
be processed later for creating usage reports, and the amount of CSA data to
be permanently stored can be reduced.

You may want to set NODE_PROCESS_ACCOUNT off for compute nodes, and to
set it on for service nodes. This provides more accounting process detail on the
login nodes where such information may be more useful. Therefore, this single
parameter may be set differently on the shared root image than it is set on the
compute node image of /etc/opt/cray/csa/csa.conf.

S–2393–31 267

Managing System Software for Cray XE and Cray XT™ Systems

To use this split configuration, specify the following:

Shared root version of /etc/opt/cray/csa/csa.conf:
NODE_PROCESS_ACCOUNT ON

Compute node image of /etc/opt/cray/csa/csa.conf:
NODE_PROCESS_ACCOUNT OFF

6. Change the parameter that defines the group name used for setting the ownership
and group on accounting files. This parameter is named CHGRP and defaults to:

CHGRP csaacct

If you use a different group name, change the parameter to match your system
configuration.

9.3.3 Editing Other System Configuration Files

You also must make configuration changes to other system files. Use the xtopview
command on the boot node to make the changes. For detailed information about
using xtopview, see Managing System Configuration with the xtopview Tool on
page 129 or the xtopview(8) man page.

• Add the csaacct user name to /etc/passwd on the shared root.

csaacct:*:391:391:CSA:/var/lib/csa:/sbin/nologin

• Add the csaacct group name to /etc/group on the shared root.

csaacct:!:391:

• Update the shadow password file to reflect the changes you've made:

/usr/sbin/pwconv

• Add the csaacct group name to /etc/group on the CNL image.

Note: The csaacct group and gid must be the same on the shared root and
CNL image.

• Create additional PAM entries in /etc/pam.d/common-session to enable
CSA. For more information about creating PAM entries, see Setting Up Job
Accounting on page 271.

9.3.4 Creating a CNL Image with CSA Enabled

After you have modified the compute node copy of csa.conf, you must rebuild the
compute node image. For more information about how to rebuild the compute node
image, see Preparing a Service Node and Compute Node Boot Image on page 66.

268 S–2393–31

Using Comprehensive System Accounting [9]

You can edit the shared root version of csa.conf and install the new version using
the xtopview command. For more information about editing the shared root image
of csa.conf using the xtopview utility, see Managing System Configuration
with the xtopview Tool on page 129 or the xtopview(8) man page.

9.3.5 Setting Up Project Accounting

The project database allows your site to define project names and assign an account
number to each project. Users can have a list of account numbers that they can use
for charging computing resources. Each user has a default account number that is
assigned at login time.

Procedure 66. Setting up CSA project accounting

The project database resides on the system SDB node as a MySQL database. To set
up a CSA project accounting for your system, perform the following procedure.

1. Establish the project database, UserProject, and define the project database
tables on the System Data Base (SDB) server:

sdb:~ # mysql -u root -h sdb -p < /opt/cray/projdb/default/sql/create_UserProject.sql

2. Grant administrative access privileges to the project database:

sdb:~ # mysql -u root -h sdb -p < /opt/cray/projdb/default/sql/create_accounts.sql

3. Create and edit the /etc/opt/cray/projdb/projects file so that it
contains a list of valid account numbers and the associated project names.

The /etc/opt/cray/projdb/projects file consists of a list of entries
where each entry contains a project number followed by a project name. A colon
character separates the project number from the project name. A project number
and an account number are the same thing. The following example shows a
simple project file:

0:root
100:sysadm
101:ProjectA
102:ProjectB
103:Big_Name_Project_that_is_insignificant_and_unimportant
1234567890:Big Name Project with Blanks in the Name

4. Create and edit the /etc/opt/cray/projdb/useracct file so that it
contains a list of authorized users and the valid account numbers for each user.

Each line of the user accounts file contains the login name of a user and list of
accounts that are valid for that user. The first account number in the list is the
user's default account. The default account number is assigned to the user at login
time by the pam_job module. The user name is separated from the first account
ID by a colon (:). Additional account numbers are separated by a comma (,).

S–2393–31 269

Managing System Software for Cray XE and Cray XT™ Systems

The following shows a simple user account file:

root:0
u1000:100
u1001:101,103
u1002:100,101
u1003:100,103,1234567890

5. Edit the ~crayadm/.my.cnf file in the home directory of the project database
administrator so that it contains the following lines:

[client]
user=sys_mgmt
password=sys_mgmt
host=sdb

6. Change the permissions and owner on the ~crayadm/.my.cnf file, as
follows:

chmod 600 ~crayadm/.my.cnf
chown crayadm:crayadm ~crayadm/.my.cnf

7. If you are using customer–supplied user, account, and project
information that resides on a separate LDAP server, edit the
/etc/opt/cray/projdb/projdb.conf project accounting configuration
file so that it contains site-specific values for the parameters listed in Table 12.

Table 12. Project Accounting Parameters That Must Be Specific to Your
System

Parameter Description

PROJDBTYPE If you are using customer–supplied user, account, and project
information that resides on a separate LDAP server, change from
MYSQL (default) to CUSTOM.

CUSTOM_VALIDATE If you are using customer–supplied user, account, and
project information that resides on a separate LDAP
server, specify the full path name to the customer–supplied
function that performs the necessary validation, for example
/usr/local/sbin/validate_account.

Input parameters to the validation function are position order
dependent, as follows:
user_name account_number

270 S–2393–31

Using Comprehensive System Accounting [9]

8. On a login node, run the projdb command with the -c option to create the
project database. After the project database has been established, any users
gaining access to the system via the job PAM module are assigned a default
account ID at the time of system access.

login:/home/crayadm:~> projdb -c -p /etc/opt/cray/projdb/projects -u
/etc/opt/cray/projdb/useracct -v

Note: The project database package commands are installed in
/opt/cray/projdb/default/bin, which must be in your PATH
variable to access the commands.

9.3.5.1 Disabling Project Accounting

If you do not want to use project accounting on your site, either as provided by the
MySQL database, or by a separate customer-supplied LDAP server, use the following
procedure to disable project accounting.

Procedure 67. Disabling project accounting

1. In the /etc/opt/cray/projdb/projdb.conf file, set the PROJDBTYPE
parameter to CUSTOM.

2. In the /etc/opt/cray/projdb/projdb.conf file,
declare a CUSTOM_VALIDATE parameter and define it as
/usr/local/sbin/validate_account.

3. As root, create the /usr/local/sbin/validate_account file with file
permissions set to 755 and the following contents:

#!/bin/sh
echo 0

9.3.6 Setting Up Job Accounting

Note: You must include the csa RPM in your CNL boot image. To do this
either set CNL_csa=yes in the CLEinstall.conf before the CLEinstall
program is run or edit the shell_bootimage_label.sh script and specify
CNL_CSA=y prior to updating your CNL boot image.

Procedure 68. Setting up CSA job accounting

• Use the xtopview(8) command to edit the /etc/pam.d/common-session
file on the shared root image to make sure that jobs are created
whenever a login occurs via ssh. Add the following entry to the
/etc/pam.d/common-session file:

session optional /opt/cray/job/default/lib64/security/pam_job.so

S–2393–31 271

Managing System Software for Cray XE and Cray XT™ Systems

After you make sure this is working for all sshd session logins, you may want
to change the entry to:

session required /opt/cray/job/default/lib64/security/pam_job.so

For additional information about setting up job accounting on your system, read the
INSTALL file that is included in the job RPM.

For more information about editing the shared root image of the pam configuration
files using the xtopview utility, see Managing System Configuration with the
xtopview Tool on page 129 or the xtopview(8) man page.

9.4 Creating Accounting cron Jobs
CSA depends on your system having a persistent /var file system for the shared
root. For CSA to run successfully, you must establish the following cron jobs.

The normal order for the cron jobs is: csanodeacct, csarun, and then
csaperiod (if necessary).

9.4.1 csanodeacct cron Job for Login Nodes

On CNL system compute nodes, when an application terminates, the Application
Launch and Placement Scheduler (ALPS) initiates the CSA software that moves
the local node accounting file records to a node-specific directory on the common
file system (Lustre). On login nodes, this does not happen, and accounting records
continue to accumulate indefinitely until the csanodeacct script is invoked to
move the data to the common file system. Therefore, you need to periodically run a
cron job on each login node to make sure that the local accounting files are moved
as needed. This cron job must be owned by root.

Example 100. Running a csanodeacct cron job on each login node to move
local accounting files

The following example shows moving accounting files from the local file system
to the common file system on an hourly basis at 10 minutes before the hour. This
crontab must be executed for each login node:

50 * * * * /opt/cray/csa/default/sbin/csanodeacct

272 S–2393–31

Using Comprehensive System Accounting [9]

9.4.2 csarun cron Job

You normally execute the csarun script at defined intervals to generate a set of
system accounting reports.

Example 101. Executing the csarun script

To run csarun once per day at one minute before midnight, use a crontab entry
of the following form:

59 23 * * * /opt/cray/csa/default/sbin/csarun

Note: This crontab must be executed from only one login node since it executes
the csanodemerg script that merges all of the local node accounting files into
a single system wide accounting file.

9.4.3 csaperiod cron Job

You can invoke the csaperiod script to run periodic accounting at different
intervals than the regular system accounting interval.

Example 102. Running periodic accounting at different intervals than the regular
system accounting interval

To run csaperiod every four hours at 5 minutes before the hour, use a crontab
entry of the following form:

55 3,7,11,15,19,23 * * * /opt/cray/csa/default/sbin/csaperiod

Note: This crontab must be executed from only one login node since it executes
the csanodemerg script that merges all of the local node accounting files into
a single system-wide accounting file.

9.5 Enabling CSA
Using the xtopview command on the boot node is the only method to configure,
enable, or disable services on the shared-root file system. You cannot configure,
enable, or disable services on the login node itself. If your site has configured a
login class for your system, invoke the following command sequence from the
boot node as root:

boot# xtopview -x /etc/opt/cray/sdb/node_classes -c login
class/login:/# chkconfig job on
class/login:/# chkconfig csa on
class/login:/# exit

On the subsequent system boot, this starts up the specified services on all nodes of
the login class.

S–2393–31 273

Managing System Software for Cray XE and Cray XT™ Systems

Note: If your site has not configured a login class, you must enable CSA for the
individual login nodes using the xtopview -n [nid#] syntax rather than the
xtopview -c login syntax shown. You must repeat the process for each login
node. See the xtopview(8) man page for complete command option information.

9.6 Using LDAP with CSA
The projdb command and the -l option on the account command are not
supported with customer-provided account validation.

The following Cray supplied library functions do not support this feature:
db_add_project(3), db_add_user(3), db_get_proj_acct(3),
db_get_proj_name(3), db_get_user_accts(3), db_has_table(3),
db_print_table(3), db_truncate_table(3), and
db_validate_acct(3).

For a description of the /etc/opt/cray/projdb/projdb.conf file and
additional information on using a customer-supplied database, see the projdb(8)
and intro_csa(8) man pages.

274 S–2393–31

Using Checkpoint/Restart on Cray
Systems [10]

Checkpoint/Restart (CPR) provides a way to suspend and snapshot the state of a
running application. This snapshot can then be used to restart the application at a later
time for use in application recovery (after a failure) or coarse grained scheduling.
This is useful in case of failure or in case you need to suspend a long-running
application for some other reason.

This chapter provides Cray CPR details. For complete information about BLCR,
see the Berkeley Lab Checkpoint/Restart documentation available on the web at
http://upc-bugs.lbl.gov/blcr/doc/html/index.html.

Note: In the Berkeley Lab Checkpoint/Restart documentation, pay special attention
to the caveats: in particular, that files open for writing are truncated to the file
position at the time of checkpoint. Because each process accessing a shared file
will most likely have a different file position, the file will be truncated to the
smallest file position at the time of checkpoint.

10.1 Requirements and/or Limitations for Checkpoint/Restart
The Cray systems CPR feature is built upon the Berkeley Lab Checkpoint/Restart
(BLCR) for Linux. CPR jobs on Cray systems also require a library which has
integrated BLCR support; for that reason, applications must be linked with the
currently supported Cray MPT libraries. For performance monitoring of applications
that may be checkpointed and restarted, CrayPat (Cray performance analysis tool)
5.0.2 release is also required.

Note: Only applications using the MPI and SHMEM programming models are
checkpointable.

Specific third-party batch system software releases are required for checkpoint/restart
support. For current information, access the 3rd Party Batch SW link on the
CrayPort website at http://crayport.cray.com.

In addition, because of the known file-per-node I/O access of checkpoint/restart, the
checkpoint directory's file system setting should be optimized for this access pattern.
For Lustre, it is optimal to set the checkpoint directory stripe count to one.

lfs setstripe checkpoint_dir -s 0 -i -1 -c 1

S–2393–31 275

http://upc-bugs.lbl.gov/blcr/doc/html/index.html
http://upc-bugs.lbl.gov/blcr/doc/html/index.html
http://crayport.cray.com

Managing System Software for Cray XE and Cray XT™ Systems

10.2 Installation and Configuration
Several entities need to be installed and configured before CPR can be used with
Cray applications.

10.2.1 Cray Installation and Configuration Options

The Cray Linux Environment (CLE) installation tool handles most of the details of
installing the software necessary for checkpoint/restart support.

To enable checkpoint/restart set cpr=yes in the CLEinstall.conf before the
CLEinstall program is run. To include the RPM for the CPR client in your CNL
boot image, either set CNL_cpr=yes in the CLEinstall.conf before the
CLEinstall program is run or edit the shell_bootimage_label.sh script and
specify CNL_cpr=y prior to updating your CNL boot image. For more specific
installation instructions, see Installing and Configuring Cray Linux Environment
(CLE) Software.

Your batch system must also recognize and interpret CPR directives.

If you have not done so, invoke the following command sequence from the boot
node as root:

boot# xtopview -x /etc/opt/cray/sdb/node_classes -c login
login> chkconfig blcr on
login> exit

On the subsequent system boot, this starts up CPR services on all nodes of that class.

If you did not add the configuration option CNL_cpr=yes to the
CLEinstall.conf configuration file before the CLEinstall
program was run, edit the shell_bootimage_label.sh script. In the
shell_bootimage_label.sh script, specify CNL_cpr=y prior to updating your
CNL boot image.

10.2.2 Configuring TORQUE and Moab to Work with CPR

Recent TORQUE releases have support for checkpoint/restart on the Cray platform.

Cray support is compiled in by default, so no additional configuration options are
necessary. (TORQUE includes configuration option --enable-blcr.)

To enable the TORQUE's CPR support, certain variables must be set in the MOM
configuration file, mom_priv/config in the TORQUE server home directory.

$checkpoint_script /opt/cray/cprbatchutils/default/libexec/checkpoint.torque
$restart_script /opt/cray/cprbatchutils/default/libexec/restart.torque
$checkpoint_run_exe /usr/bin/cr_run

Files checkpoint.torque and restart.torque are part of the
cray-cprbatchutils package; file cr_run is a part of the blcr package.

276 S–2393–31

Using Checkpoint/Restart on Cray Systems [10]

Note: In typical Cray systems with TORQUE, TORQUE's server home directory
is /var/spool/torque, which resides in a persistent /var file system.
Therefore, you must make the configuration changes for each persistent /var
directory associated with each node that runs a TORQUE MOM.

In addition, the destination location for checkpoint files must be on a file system
accessible from the compute nodes (like Lustre). Because the TORQUE server
default checkpoint directory is not on such a file system, you should override this
value on a per queue basis using the following command:

qmgr -c "set queue queuename checkpoint_dir=checkpoint_dir"

Due to the known file-per-node I/O access of checkpoint/restart, the checkpoint
directory's file system setting should be optimized for this access pattern. For Lustre,
it is optimal to set the stripe count to one.

lfs setstripe checkpoint_dir 0 -1 1

10.2.3 Configuring PBS Professional to Work with CPR

Deferred Implementation: The PBS Pro integration with CPR on Cray systems
will be available in a future release.

To enable CPR support in PBS Professional, you must set variables as shown below
in the MOM configuration file, mom_priv/config in the PBS home directory:

$action checkpoint 300
!/opt/cray/cprbatchutils/default/libexec/checkpoint.pbspro %sid %jobid %uid %gid %path 0
$action checkpoint_abort 300
!/opt/cray/cprbatchutils/default/libexec/checkpoint.pbspro %sid %jobid %uid %gid %path 9
$action restart 300
!/opt/cray/cprbatchutils/default/libexec/restart.pbspro %sid %jobid %uid %gid %path
$restart_transmogrify true
$checkpoint_path checkpoint_dir

Files checkpoint.pbspro and restart.pbspro are part of the
cray-cprbatchutils package; file cr_run is a part of the BLCR package.

Note: In typical Cray systems with PBS Professional, the PBS Professional home
directory is /var/spool/PBS, which resides in a persistent /var file system.
Therefore, you must make the configuration changes for each persistent /var
directory associated with each node that runs a PBS Professional MOM.

10.3 Using Checkpoint/Restart
To use CPR, an application must be linked with the currently supported Cray MPT
libraries and with BLCR. In addition, the batch system must recognize and interpret
CPR directives.

S–2393–31 277

Managing System Software for Cray XE and Cray XT™ Systems

10.3.1 Compiling Applications

Applications must be linked with the currently supported Cray MPT libraries to
have the code necessary to support checkpointing. Thus, only applications using the
MPI and SHMEM programming models are checkpointable. To enable the MPT
checkpoint support, the application must also be linked with BLCR. Loading the
BLCR module automatically adds the necessary options to Cray compiler scripts
to link this library:

module load blcr

Because the Cray checkpoint/restart solution uses Berkeley Lab's Checkpoint/Restart
(BLCR) software, it inherits its caveats and limitations in addition to the Cray
MPT requirement. For more information, refer to the BLCR documentation:
http://upc-bugs.lbl.gov/blcr/doc/html/index.html.

10.3.2 Using Checkpoint/Restart with TORQUE and Moab

For complete details about checkpointing and restarting with
TORQUE and Moab, see the TORQUE documentation at
http://www.clusterresources.com/torquedocs21/2.6jobcheckpoint.shtml.

The following examples show typical user tasks.

Example 103. Submit a job to TORQUE

To submit a job and tell TORQUE it is checkpointable:

qsub -c enabled jobscript

Example 104. Submit a job to TORQUE that checkpoints every 30 minutes

To submit a job that checkpoints every 30 minutes:

qsub -c periodic,interval=30 jobscript

Example 105. Checkpoint and terminate a job using TORQUE

To checkpoint and terminate a job that is checkpointable:

qhold jobid

Example 106. Restart a held job using TORQUE

To restart a held job:

qrls jobid

Example 107. Restart a checkpointed job using TORQUE

To restart a checkpointed job in the completed state:

qrerun jobid

278 S–2393–31

http://upc-bugs.lbl.gov/blcr/doc/html/index.html
http://www.clusterresources.com/torquedocs21/2.6jobcheckpoint.shtml

Using Checkpoint/Restart on Cray Systems [10]

10.3.2.1 Common Checkpoint/Restart Error Messages

For TORQUE and Moab batch system checkpoint failures, error messages are
reported in the "comment" field of job status command (qstat -f $JOBID).

Table 13. BLCR Reported Checkpoint Error Messages

Message Explanation

Checkpoint failed: Checkpoint of
application nodes failed

A problem was encountered checkpointing
application nodes. See application stderr and
Table 2.

Checkpoint failed: Checkpoint tool
helper launch failed

The batch system checkpoint directory has
permissions that prevent checkpointing. The user
application needs write access to this directory,
as this is required for application checkpoints.
If connectivity between nodes isn't functioning
properly, this may also cause this error.

Any of the error messages shown in Table 14 also can be printed by aprun to
stderr of the job/application.

Table 14. Checkpoint/Restart Error Messages

Message Explanation

Checkpoint of application 3136
failed: Support missing from
kernel

The checkpoint failed because BLCR is not installed
or loaded on compute nodes.

Checkpoint of application 3139
failed: Checkpoint support not
linked into one or more processes

The checkpoint failed because the libcr BLCR
library was not linked into the user application.
Users must specify module load blcr before
compiling code. Loading the BLCR module
automatically adds the necessary options to Cray
compiler scripts to link this library.

Checkpoint of application 463346
failed: No such file or directory
or Checkpoint of application 890274
failed: Permission denied

The checkpoint failed because a Lustre directory
was not specified for the checkpoint data or was not
writable by the application user ID.

Checkpoint of application 1474693
action: Unsupported programming
model

The checkpoint failed because the target application
was not linked with the currently supported MPT
libraries.

S–2393–31 279

Managing System Software for Cray XE and Cray XT™ Systems

In addition, a checkpoint request sends a signal to the user application; the following
functions (and others) can return early or with EINTR due to interruption from
signals: poll(2), select(2), sleep(3), read(2), and write(2). Applications
may have unexpected results if the usage of the these functions is not POSIX
compliant and does not account for signal interruption.

10.3.3 Using Checkpoint/Restart with PBS Professional

Deferred Implementation: The PBS Pro integration with CPR on Cray systems
will be available in a future release.

For complete details about using checkpoint/restart with PBS Professional, see the
PBS Professional documentation.

The following examples show typical user tasks.

Example 108. Submit a job to PBS Professional

To submit a job and tell PBS Professional it is checkpointable:

qsub -c s jobscript

Example 109. Submit a job to PBS Professional that checkpoints every 3
minutes of CPU time

To submit a job to PBS Professional that checkpoints every 3 minutes of CPU time:

qsub -c c=3 jobscript

Example 110. Checkpoint and terminate a job using PBS Professional

To checkpoint and terminate a job that is checkpointable using PBS Professional:

qhold jobid

Example 111. Restart a held job using PBS Professional

To restart a held job using PBS Professional:

qrls jobid

Example 112. Restart a checkpointed job using PBS Professional

To restart a checkpointed job in the completed state using PBS Professional:

qrerun jobid

280 S–2393–31

Dynamic Shared Objects and Cluster
Compatibility Mode in the Cray Linux

Environment [11]

11.1 Configuring the Compute Node Root Runtime Environment
(CNRTE) Using CLEinstall

Users can link and load dynamic shared objects in their applications by using the
compute node root runtime environment (CNRTE) in the Cray Linux Environment
(CLE). CLE includes software that enables compiling with dynamic libraries, using
an alternate to the initramfs file system on the compute nodes, called the compute
node root. The compute node root is essentially the read-only DVS-projected shared
root file system. This supports the ability to run a limited set of dynamic executables
on compute nodes.

The main benefit of this feature is expanded use of programs and libraries that require
shared objects on Linux systems. If an independent software vendor (ISV) program
ships with compiled binaries and dynamic libraries, you can also take advantage of
this feature. Users are able to effectively reduce memory and executable footprint
when shared objects, called multiple times, use the same segment of memory address
space. Users can create applications that no longer need recompiling when libraries
change.

Administrators enable this option at install time by modifying parameters in
CLEinstall.conf.

For additional information, see Installing and Configuring Cray Linux Environment
(CLE) Software and Workload Management and Application Placement for the Cray
Linux Environment.

CNRTE is the framework used to allow compute node access to dynamic shared
objects and libraries. Configuring and installing the compute node root runtime
environment involves setting up the shared root as a DVS-projected file system. This
process entails configuring DVS server nodes and updating the compute node boot
images to enable them as clients.

To configure the compute node root runtime environment for CLE, do the following:

1. Determine which service or compute nodes will be the compute node root
servers.

There are essentially two classes of nodes in a Cray system: service or compute.

S–2393–31 281

Managing System Software for Cray XE and Cray XT™ Systems

Service nodes have connectivity to external file systems and networks, access to
the shared root of the boot node, and a full set of Linux services. Compute nodes
have reduced services and a lightweight kernel to allow a maximized utilization
of computational resources. Some services don't require external connectivity
but are still desirable. There is also a practical limit to the number of available
service nodes for each site. CLE allows you to run the service node image on a
node otherwise considered a compute node to act as an internal DVS server of
the Cray system shared root.

Note: Any compute nodes you choose here will no longer be a part of the
available compute node pool. An allocation mode of other will be assigned
to these compute nodes in the service database (SDB). These nodes will no
longer belong to the group of batch and interactive nodes in the SDB and they
will be unavailable to ALPS.

!
Caution: Do not place DVS servers on the same node as a Lustre (Object
Storage, Metadata or Management) server. Doing so can cause load
oversubscription on the node and reduce performance.

If the /etc files are specialized with a cnos class, the cnos class /etc files
will be mounted on top of the projected shared root content on the compute
nodes. This class specialization allows the compute nodes to have access to
a different set of /etc files that exist on the DVS servers. Otherwise, the
compute nodes will use the set of /etc files that are specific to their DVS
server and that are contained in the shared root of the DVS server projects.

2. When editing the CLEinstall.conf file and running the CLEinstall
program , modify the parameters specific to shared object support according to
your site-specific configuration.

When you set the following parameters in the CLEinstall.conf file,
the CLEinstall program will automatically configure your system for the
compute node root runtime environment.

DSL=yes This variable enables dynamic shared objects and libraries for
CLE. The default is no.

Note: Setting this option to yes will automatically enable
DVS.

DSL_nodes=17 20

The decimal NIDs of the nodes that will act as compute node
root servers. These nodes can be a combination of service or
compute nodes. Each NID is separated by a space.

DSL_mountpoint=/dsl

This path is the DVS mount point on the compute nodes; it is the
projection of the shared root file system.

282 S–2393–31

Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux Environment [11]

DSL_attrcache_timeout=14400

This value is the attribute cache time out for compute node root
servers. The value represents the number of seconds before DVS
attributes are considered invalid and they are retrieved from the
server again.

3. Follow the appropriate procedures in to complete the installation. You can either
start your system manually or edit your boot automation scripts to add commands
that will start the new compute node root servers.

The /etc/opt/cray/cnrte/roots.conf file contains site-specific values for
custom root file systems. To specify a different pathname for roots.conf edit the
configuration file /etc/sysconfig/xt and change the value for the variable,
CRAY_ROOTFS_CONF. In the roots.conf file, the system default compute
node root used is specified by the symbolic name DEFAULT. If no default value is
specified, / will be assumed. In the following example segment of roots.conf,
the default case uses /dsl as the reference root file system:

DEFAULT=/dsl
INITRAMFS=/
DSL=/dsl

Users can override the system default compute node root value by setting the
CRAY_ROOTFS environment variable to a value from the roots.conf file. This
changes the compute node root used for launching jobs. For example, to override the
use of /dsl set CRAY_ROOTFS to INITRAMFS.

An administrator can modify the contents of this file to restrict user access. For
example, if the administrator only wants to allow applications to launch using the
compute node root, the roots.conf file would read like the following:

% cat /etc/opt/cray/cnrte/roots.conf
DEFAULT=/dsl

Procedure 69. Setting up the compute node root runtime environment using
only re-purposed compute nodes as compute node root servers

In this example, To configure compute nodes 17 (c0-0c0s4n1) and 20 (c0-0c0s5n0) as
DVS compute node root servers with a mount point, /dsl:

1. Edit the following fields in CLEinstall.conf:

DSL=yes
DSL_nodes=17 20
DSL_mountpoint=/dsl
DSL_attrcache_timeout=14400
CNL_dvs=yes

2. Run CLEinstall.

Once CLEinstall is completed, create the appropriate boot images using the
shell script generated by CLEinstall.

S–2393–31 283

Managing System Software for Cray XE and Cray XT™ Systems

Note: When re-purposing compute nodes as DVS servers, you must use the
SNL0 boot type string instead of the traditional CNL0 boot type string. You
should do this after you have booted all the service nodes but before you have
booted the compute nodes. You must also boot the re-purposed compute nodes
before you run the shell_ssh.sh script.

3. If you are using xtbootsys interactively you can start the re-purposed compute
nodes with a service node image (SNL0) using option 17:

Enter your boot choice: 17
Enter a boot type string (or nothing to do nothing): SNL0
Enter a boot type option (or nothing to do nothing): compute
Enter a component list (or nothing to do nothing): c0-0c0s4n1,c0-0c0s5n0
Enter 'any' to wait for any console output,

or 'linux' to wait for a linux style boot,
or 'mtk', 'threadstorm', 'ts', or 'xmt' to wait for a MTK style boot,
or anything else (or nothing) to not wait at all: linux

Enter an alternative CPIO archive name (or nothing):
Do you want to send the ec_boot event ('no' means to
only load memory) ? [Yn]

Alternatively, you can use the xtcli command in another session as in the
following:

crayadm@smw:~> xtcli -s boot SNL0 compute c0-0c0s4n1,c0-0c0s5n0

4. Run /tmp/shell_ssh.sh as indicated in

5. To manually start DVS, issue the following commands:

boot001:~ # ssh c0-0c0s4n1 /etc/init.d/dvs start
boot001:~ # ssh c0-0c0s5n0 /etc/init.d/dvs start

You can also edit your boot automation scripts to start the compute node root
servers. Edit the boot automation file using your favorite editor to add a comma
separated list of compute node root servers to the boot_loadfile and to start
these DVS servers:

boot001:~# vi /opt/cray/etc/auto.mybootfile

After the commands starting the SDB node and all service nodes input the
following:

lappend actions [list crms_boot_loadfile SNL0 compute "c0-0c0s4n1,c0-0c0s5n0" linux]
lappend actions { crms_sleep 5 }

6. Start the DVS servers by editing the boot automation scripts with the following
lines after the service nodes have been booted:

lappend actions {crms_exec_via_bootnode "c0-0c0s4n1" "root" "/etc/init.d/dvs start"}
lappend actions {crms_exec_via_bootnode "c0-0c0s5n0" "root" "/etc/init.d/dvs start"}

7. Shutdown your system:

boot001:~# xtbootsys -s last -a auto.xtshutdown

284 S–2393–31

Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux Environment [11]

8. Start the system using your newly-edited boot automation file:

crayadm@smw: -> xtbootsys -a auto.mybootfile

Procedure 70. Setting up the compute node runtime environment using a
mixture of service nodes and re-purposed compute nodes

!
Caution: Do not place DVS servers on the same node as a Lustre (Object Storage,
Metadata or Management) server. Doing so can cause load oversubscription on the
node and reduce performance.

In this example, service nodes 12 (c0-0c0s3n0) and 15 (c0-0c0s3n3) are free
but system constraints require you to use an additional node, compute node 20
(c0-0c0s5n0), as a DVS compute node root server.

1. Edit the following fields in CLEinstall.conf:

DSL=yes
DSL_nodes=12 15 20
DSL_mountpoint=/dsl
DSL_attrcache_timeout=14400
CNL_dvs=yes

2. Run CLEinstall.

3. Once CLEinstall is completed, create the appropriate boot images using the
shell script generated by CLEinstall.

4.

Note: When re-purposing compute nodes as DVS servers, you must use the
SNL0 boot type string instead of the traditional CNL0 boot type string. You
should do this after you have booted all the service nodes but before you have
booted the compute nodes. In this example, starting all service nodes will start
the compute node root servers that were already service nodes. In this case
only the re-purposed compute nodes still need to be booted.

If you are using xtbootsys interactively you can start the re-purposed compute
node using option 17:

Enter your boot choice: 17
Enter a boot type string (or nothing to do nothing): SNL0
Enter a boot type option (or nothing to do nothing): compute
Enter a component list (or nothing to do nothing): c0-0c0s5n0
Enter 'any' to wait for any console output,

or 'linux' to wait for a linux style boot,
or 'mtk', 'threadstorm', 'ts', or 'xmt' to wait for a MTK style boot,
or anything else (or nothing) to not wait at all: linux

Enter an alternative CPIO archive name (or nothing):
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn]

Alternatively, you can use the xtcli command in another session as in the
following:

crayadm@smw:~> xtcli -s boot SNL0 compute c0-0c0s5n0

S–2393–31 285

Managing System Software for Cray XE and Cray XT™ Systems

5. Start DVS by issuing the following commands:

boot001:~ # ssh c0-0c0s3n0 /etc/init.d/dvs start
boot001:~ # ssh c0-0c0s3n3 /etc/init.d/dvs start
boot001:~ # ssh c0-0c0s5n0 /etc/init.d/dvs start

You can also edit your boot automation scripts to start the compute node root
servers. Edit the boot automation file using your favorite editor to add a comma
separated list of compute node root servers to the boot_loadfile and to start
these DVS servers:

boot001:~# vi /opt/cray/etc/auto.mybootfile

After the commands starting the SDB node and all service nodes input the
following:

lappend actions [list crms_boot_loadfile SNL0 compute "c0-0c0s5n0" linux]
lappend actions { crms_sleep 5 }

Start the DVS servers by editing the boot automation scripts with the following
lines after the service nodes have been booted:

lappend actions {crms_exec_via_bootnode "c0-0c0s3n0" "root" "/etc/init.d/dvs start"}
lappend actions {crms_exec_via_bootnode "c0-0c0s3n3" "root" "/etc/init.d/dvs start"}
lappend actions {crms_exec_via_bootnode "c0-0c0s5n0" "root" "/etc/init.d/dvs start"}

6. Shutdown your system:

boot001:~# xtbootsys -s last -a auto.xtshutdown

7. Start the system using your newly-edited boot automation file:

crayadm@smw: -> xtbootsys -a auto.mybootfile

Procedure 71. Setting up the compute node runtime environment using only
service nodes

!
Caution: Do not place DVS servers on the same node as a Lustre (Object Storage,
Metadata or Management) server. Doing so can cause load oversubscription on the
node and reduce performance.

In this example, you are using service nodes 12 (c0-0c0s3n0) and 15 (c0-0c0s3n3) as
DVS compute node root servers.

1. Edit the following fields in CLEinstall.conf:

DSL=yes
DSL_nodes=12 15
DSL_mountpoint=/dsl
DSL_attrcache_timeout=14400
CNL_dvs=yes

2. Once CLEinstall is completed, create the appropriate boot images using the
shell script generated by CLEinstall and start all service nodes.

286 S–2393–31

Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux Environment [11]

3. Start DVS by issuing the following commands:

boot001:~ # ssh c0-0c0s3n0 /etc/init.d/dvs start
boot001:~ # ssh c0-0c0s3n3 /etc/init.d/dvs start

You can also edit your boot automation scripts to start DVS on the compute node
root servers. Edit the boot automation file using your favorite editor:

boot001:~# vi /opt/cray/etc/auto.mybootfile

Enter the following lines after the service nodes have been booted in the script:

lappend actions {crms_exec_via_bootnode "c0-0c0s3n0" "root" "/etc/init.d/dvs start"}
lappend actions {crms_exec_via_bootnode "c0-0c0s3n3" "root" "/etc/init.d/dvs start"}

4. Shutdown your system:

boot001:~# xtbootsys -s last -a auto.xtshutdown

5. Start the system using your newly-edited boot automation file:

crayadm@smw: -> xtbootsys -a auto.mybootfile

Example 113. Rebooting all compute nodes when a subset are repurposed as
DVS servers

Note: Rebooting compute nodes using the xtbounce or xtcli commands and
all_comp option will reboot any compute nodes re-purposed as DVS servers.

If you are re-purposing compute nodes as DVS servers, you will need to modify the
order in the system boot automation scripts so that when you reboot the compute
nodes you will have access to compute node root servers. These servers must be
booted right after the service nodes and before all compute nodes are started. If
you are a site that uses many of these service nodes, Cray recommends splitting
nodes into batches of 80 or less and booting them separately in the automation script.
The following is a sample of a boot script, reboot_computes, that bounces the
compute nodes, restarts the compute node root server (node 20), starts DVS, and
boots all remaining compute nodes:

set data(password,root) "root_password"

Shutdown all computes.
lappend actions { crms_exec "xtbounce -s all_comp" }
reboot DVS server node
lappend actions [list crms_boot_loadfile SNL0 compute "c0-0c0s5n0" linux]
Start DVS
lappend actions {crms_exec_via_bootnode "c0-0c0s5n0" "root" "/etc/init.d/dvs start"}
reboot compute nodes:
lappend actions [list crms_boot_loadfile CNL0 compute p0 nowait]

S–2393–31 287

Managing System Software for Cray XE and Cray XT™ Systems

11.2 Configuring Cluster Compatibility Mode
A Cray XT or Cray XE series system is not a cluster but a massive parallel processing
(MPP) computer. An MPP is simply one computer with many networked processors
used for distributed computation, and, in the case of Cray XT and Cray XE
architectures, a high-speed communications processor that facilitates optimal
bandwidth and memory operations between those processors. When operating as an
MPP machine, the Cray compute node kernel (Cray CNL) typically does not have a
full set of the Linux services available that are used in cluster ISV applications.

Cluster Compatibility Mode (CCM) is a software solution that provides the services
needed to run most cluster-based independent software vendor (ISV) applications
out-of-the-box with some configuration adjustments. CCM supports ISV applications
running in four simultaneous cluster jobs on up to 256 compute nodes per job
instance. It is built on top of the Compute Node Root Runtime Environment
(CNRTE), the infrastructure used to provide dynamic library support in Cray systems.

CCM is tightly coupled to the workload management system. It enables users to
execute cluster applications alongside workload-managed jobs running in a traditional
MPP batch or interactive queue. Essentially, CCM uses the batch system to logically
designate part of the Cray system as an emulated cluster for the duration of the job as
shown in Figure 5 and Figure 6.

Figure 5. Cray System Job Distribution Cross-section

ccm_queue workq

Service Nodes
Free Compute Nodes
Traditional Batch Job
Cluster Compatibility Mode
Application

Cluster Compatibility Mode
batch queue

MPP job batch queue

288 S–2393–31

Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux Environment [11]

Figure 6. CCM Job Flow Diagram

MPP/workq

qsub -V –I -q ccm_queue -lmppwidth=xxx Imppnppn=x

ccmrun–n1 app1

ccmlogin nidXXXXX

MPP/workq

"Application 1190032
resources: utime ~985s,
stime ~13s"

Free MPP compute nodesFree MPP compute nodes

Nodes are provisioned and placed
in ccm_queue using qsub

User runs application using ccmrun with a batch
script or interactively

Application terminates and CCM processes
cleanup

Cluster job nodes are returned as free MPP
compute nodes
Cluster job nodes are returned as free MPP
compute nodes

While the application runs, ccmlogin provides an
interactive “window” to job

11.2.1 Preconditions

• CNRTE (dynamic library support) is installed.

• (Optional) RSIP must be installed if you have applications that need access to a
license server; see Installing and Configuring Cray Linux Environment (CLE)
Software.

• PBS 10.2RC2 (Emerald) or Torque-2.4.1b1-snap.200908271407 or later versions
are installed.

11.2.2 Configuration Options Relevant to Installation

The following variables in are used for installation of CCM. Variables such
as CCM_ENABLERSH, CCM_QUEUES, and CCM_WLM can be changed in
/etc/opt/cray/ccm/ccm.conf after installation. For more information on
how to install CCM, please see Installing and Configuring Cray Linux Environment
(CLE) Software.

CCM=yes Set this parameter to yes to enable Cluster Compatibility Mode and
install the appropriate RPMs.

S–2393–31 289

Managing System Software for Cray XE and Cray XT™ Systems

CCM_ENABLERSH=yes

Optional: Enables services or daemons that most ISV applications
need to run. Examples of these services are xinetd, portmap,
rsh, and rlogin. If you set CCM_ENABLERSH to no some ISV
applications will not work. If you don't specify this parameter,
rsh is enabled by default.

CCM_QUEUES=ccm_queue1, ccm_queue2

Specifies one or more batch queues used in the workload
management system. The default value is ccm_queue.

Important: The syntax in the configuration file, ccm.conf,
and the installer variable CCM_QUEUES differ. In the installer,
the queues are listed as comma-separated values. In the
configuration file they are space-separated.

After your batch system software is installed, you must manually
create the queues you specify here. For steps required to create
CCM batch queues, see Procedure 75 on page 293.

CCM_WLM=pbs

Set the value to either pbs or torque to choose your preferred
workload management software.

CCM_ENABLENIS=no

Optional: This option can be set to yes to start ypservices on
the compute node. If NIS is not properly configured, calls will
time out to the network, significantly slowing down CCM startup,
so this option is disabled by default.

290 S–2393–31

Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux Environment [11]

11.2.3 Post-install Options and Configuration

The following are exclusively post-install options included in
/etc/opt/cray/ccm/ccm.conf:

CCM_DEBUG=no

Setting this option to yes enable debug logging for
CCM. These logs will be stored on the PBS MOM node
in/var/log/crayccm. Cray recommends the site setting this
option to yes.

CCM_INADDRANYBIND=yes

This option tells RSIP to bind INADDR_ANY requests to the
local network interface rather than using the RSIP address space.
Changing this to no will cause INADDR_ANY bind requests to
consume RSIP ports and may prevent application scaling.

To configure yp, /etc/defaultdomain and /etc/yp.conf must be properly
configured on the compute node specialized view. Cray recommends that you use the
cnos class within xtopview to set up this specialized view.

Procedure 72. Using DVS to mount home directories on the compute nodes
for CCM

For each DVS server node you have configured, follow these steps to mount /ufs
from the NFS server ufs.

1. Create the /ufs mount point on the DVS server by using xtopview in the
node view. For example, if your DVS server is c0-0c0s2n3 (node 27 on a
Cray XE system), type the following:

boot:~ # xtopview -m "mounting home dirs" -n 27
node/27:~ # mkdir -p /ufs

2. Add a line to /etc/fstab and specialize the file for the node class.

node/27:~ # vi /etc/fstab
ufs:/ufs /ufs nfs tcp,rw 0 0
node/27:~ # xtspec -n 27 /etc/fstab
node/27:~ # exit

3. To allow the compute nodes to mount their DVS partitions, add an entry in the
/etc/fstab file in the compute image for each DVS file system. For example:

smw:~ # /opt/xt-images/templates/default/etc/fstab
/ufs /ufs dvs path=/ufs,nodename=c0-0c0s2n3,loadbalance

4. For each DVS mount in the /etc/fstab file, create a mount point in the
compute image.

smw:~ # mkdir -p /opt/xt-images/templates/default/ufs

S–2393–31 291

Managing System Software for Cray XE and Cray XT™ Systems

5. Update the boot image to include these changes; follow the steps in Procedure
2 on page 68.

Procedure 73. Modifying CCM and Platform-MPI system configurations

Follow these steps to set up network, debugging, and Platform-MPI settings for CCM.

1. Edit the CCM configuration file by using xtopview in the default view and
make changes for your configuration.

boot:~ # xtopview -m "configuring ccm.conf"
default/:/ # vi /etc/opt/cray/ccm/ccm.conf

If you have configured CCM with CLEinstall, these options have already
been set:

CCM_QUEUES="ccm_queue"
CCM_DEBUG=no
CCM_ENABLERSH=yes
CCM_ENABLENIS=no
CCM_WLM="pbs"
CCM_INADDRANYBIND=yes

Change the default values to enable NIS or additional debugging, or to modify
any of the values you defined in the CLEinstall.conf file.

2. (Optional) If your applications will use Platform-MPI (also known as HP-MPI),
Cray recommends you create the /etc/hpmpi.conf file with these values.

default/:/ # vi /etc/hpmpi.conf
MPI_IC_ORDER="TCP"
MPI_REMSH=ssh
MPIRUN_OPTIONS="-cpu_bind=MAP_CPU:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23"

3. Exit xtopview.

default/:/ # exit
boot:~ #

Procedure 74. Setting up files for the cnos class

The cnos compute nodes that have access to the shared root through CNRTE will
have a specialized class of its own /etc files. Login files and all /etc files should
be migrated to the cnos class in order for CCM to work.

1. Use xtopview to access the cnos class specialized files:

boot:~# xtopview -m "CCM cnos setup" -c cnos

Note: If the SDB has not been started, use the -x
/etc/opt/cray/sdb/node_classes option to specify node/class
relationships.

292 S–2393–31

Dynamic Shared Objects and Cluster Compatibility Mode in the Cray Linux Environment [11]

2. To add a file or modify a file, edit the file and then specialize it for the cnos class

class/cnos:/# vi /etc/file
class/cnos:/# xtspec -c cnos /etc/file

Repeat the above steps for each new file that you want to add or modify for the
compute nodes.

3. Exit xtopview.

class/cnos:/# exit

Note: You are prompted to type c and enter a brief comment describing the
changes you made. To complete your comment, type Ctrl-d or a period
on a line by itself. Do this each time you exit xtopview to log a record of
revisions into a version control system.

Procedure 75. Linking the CCM prologue/epilogue scripts on login nodes

Prerequisites: This procedure requires that you have already installed a workload
management system such as PBS or Moab TORQUE.

Add a line to reference to append the CCM prologue and epilogue scripts to the end
of the existing batch prologue and epilogue. The PBS batch prologue is configured
on all PBS MOM nodes in /var/spool/PBS/mom_priv/prologue.
The Moab TORQUE batch prologue is configured on all Torque MOM nodes in
/var/spool/torque/mom_priv/prologue.

Note: This procedure assumes that you are using /bin/bash as your shell, but
this can be modified appropriately for others.

1. Add the following lines to prologue:

#!/bin/bash
ccm_dir=/opt/cray/ccm/default/etc

if [-f $ccm_dir/cray-ccm-prologue] ; then
. $ccm_dir/cray-ccm-prologue $1 $2 $3

fi

2. Add the following lines to epilogue:

#!/bin/bash
ccm_dir=/opt/cray/ccm/default/etc

if [-f $ccm_dir/cray-ccm-epilogue] ; then
. $ccm_dir/cray-ccm-epilogue $1 $2 $3 $4 $5 $6 $7 $8 $9

fi

3. Set the executable bit for prologue and epilogue if not set:

system :/var/spool/PBS/mom_priv # chmod a+x prologue epilogue

S–2393–31 293

Managing System Software for Cray XE and Cray XT™ Systems

4. Change the default batch timeout value. Cray recommends changing
this to 120 seconds. This allows the system enough time to
startup and shutdown all infrastructure on the nodes associated
with the CCM job. To change the batch timeout, append the
following line to /var/spool/PBS/mom_priv/config or
/var/spool/torque/mom_priv/config:

$prologalarm 120

Procedure 76. Using qmgr to create a general CCM queue and queues for
separate ISV applications

1. Set up a general CCM queue by issuing the following qmgr commands on the
PBS server node:

module load pbs
qmgr
Qmgr: create queue ccm_queue
Qmgr: set queue ccm_queue queue_type = Execution
Qmgr: set queue ccm_queue resources_max.mpparch = XT
Qmgr: set queue ccm_queue resources_min.mpparch = XT
Qmgr: set queue ccm_queue resources_min.mppwidth = 1
Qmgr: set queue ccm_queue resources_default.mpparch = XT
Qmgr: set queue ccm_queue resources_default.mppwidth = 1
Qmgr: set queue ccm_queue enabled = True
Qmgr: set queue ccm_queue started = True
Qmgr: exit

2. Repeat step 1 for additional application-specific queues, if desired.

294 S–2393–31

OpenFabrics Interconnect Drivers for CLE
Systems [12]

InfiniBand (IB) and OpenFabrics remote direct memory access (RDMA) is supported
on service nodes for Cray systems running the Cray Linux Environment (CLE)
operating system.

No separate installation is required. The kernel-space libraries and drivers are built
against Cray's kernel. OFED and InfiniBand RPMs are included in the CLE release
and installed by default. However, OFED will not run on your Cray system until
you configure the I/O nodes to use IB.

To configure IB and OFED, see the procedures provided in this chapter; to configure
IB and OFED during installation or upgrade of your CLE software, see Installing and
Configuring Cray Linux Environment (CLE) Software.

12.1 OFED Overview
Cray has adopted InfiniBand as an I/O interconnect. Double data rate (DDR) IB
host channel adapters (HCAs) accommodate user data transfers at up to 1.5 GB/s
bidirectionally. IB also enables efficient zero-copy, low-latency RDMA transfers
between network peers. As a result, IB gives Cray the most efficient transfer
mechanism from Cray's high speed network (HSN) to external I/O devices.

CLE includes a subset of the OpenFabrics Enterprise Distribution (OFED) to support
the use of InfiniBand on the Cray I/O nodes. OFED is the software stack on the host
that coordinates user-space and kernel-space access to the IB hardware. IB support is
restricted to service I/O (X/SIO) nodes that are equipped with the PCI Express (PCIe)
card for network connectivity.

IB can be used on Lustre OSS nodes as a storage interconnect between the Cray
system and direct-attach IB storage, or it can be used on Lustre router nodes as a
network interconnect between the Cray system and external Lustre servers.

The OFED software stack consists of many different components. These components
can be categorized as kernel modules (drivers) and user/system libraries and
utilities, commands and daemons for InfiniBand administration, configuration, and
diagnostics. Cray maintains the kernel modules so that they are compatible with
CLE on the service nodes.

S–2393–31 295

Managing System Software for Cray XE and Cray XT™ Systems

Figure 7. The OFED Stack (source: OpenFabrics Alliance)

InfiniBand

iWARP

Key Apps &
Access
Methods
for using
OF Stack

Common

RDMA NICR-NIC

Host Channel
Adapter

HCA

User Direct Access
Programming Lib

UDAPL

Reliable Datagram
Service

RDS

iSCSI RDMA
Protocol (Initiator)

iSER

SCSI RDMA
Protocol (Initiator)

SRP

Sockets Direct
Protocol

SDP

IP over InfiniBandIPoIB

Performance
Manager Agent

PMA

Subnet Manager
Agent

SMA

Management
Datagram

MAD

Subnet
Administrator

SA

InfiniBand HCAInfiniBand HCA iW ARP RiW ARP R--NICNIC

Hardware
Specific Driver

Hardware Specific
Driver

Connection
ManagerMAD

InfiniBand Verbs / API

SA
Client

Connection
Manager

Connection Manager
Abstraction (CMA)

User Level
Verbs / API

SDPIPoIB SRP iSER RDS

UDAPL

SDP
Library

User Level
MAD API

Open
SM

Diag
Tools

Hardware

Provider

Mid-Layer

Upper
Layer
Protocol

User
APIs

Kernel Space

User Space

NFS-RDMA
RPC

Cluster
File Sys

Application
Level

SMA

R-NIC Driver API

Clustered
DB Access

(Oracle
10g RAC)

Sockets
Based
Access

(IBM DB2)

Various
MPIs

Access to
File

Systems

Block
Storage
Access

IP Based
App

Access

InfiniBand HCA iWARP R-NIC R-NIC

Hardware
Specific Driver

Hardware Specific
Driver

Connection
ManagerMAD

InfiniBand Verbs / API

SA
Client

Connection
Manager

Connection Manager
Abstraction (CMA)

User Level
Verbs / API

SDPIPoIB SRP iSER RDS

UDAPL

SDP
Library

User Level
MAD API

Open
SM

Diag
Tools

-

NFS-RDMA
RPC

Cluster
File Sys

SMA

R-NIC Driver API

Clustered
DB Access

(Oracle
10g RAC)

Sockets
Based
Access

(IBM DB2)

Various
MPIs

Access to
File

Systems

Block
Storage
Access

IP Based
App

Access

12.2 Using InfiniBand
InfiniBand is a payload-agnostic transport. It can move small messages or large
blocks efficiently between network endpoints. The following examples demonstrate
how Cray uses InfiniBand and the OFED stack to support block I/O, file I/O, and
standard network inter-process communication.

12.2.1 Storage Area Networking

InfiniBand can transport block I/O requests to external storage targets. ANSI T10's
SCSI RDMA Protocol (SRP) is currently the only SCSI-transporting protocol
supported on Cray systems with InfiniBand. Figure 8 shows SRP on InfiniBand
connecting the Cray to an external RAID array. The OFED stack is shown in the
storage array for clarity; it is provided by your site-specific third party storage vendor.

296 S–2393–31

OpenFabrics Interconnect Drivers for CLE Systems [12]

Figure 8. Cray System Connected to Storage Using SRP

RAID StorageCompute Node

User Application

VFS

Lustre Client

GNI/Portals LND

Gemini/SeaStar

Gemini/SeaStar Driver

Lustre Server ldiskfs

GNI/Portals LND

Gemini/SeaStar
 Driver

Block I/O
SRP

OFED RDMA
IB Driver

Gemini/SeaStar IB HCA

X/SIO NodeX/SIO Node

Cray XT and Cray XE Systems

Cray HSN

IB Driver

SRP

RAID

OFED RDMA
IB Driver

IB HCA

Linux Lustre Cray OFED Vendor

InfiniBand

12.2.2 Lustre Routing

Cray uses InfiniBand on the service nodes to connect Cray compute nodes to external
Lustre (eLustre) servers Figure 9. In this configuration, the service node is no longer
a Lustre server. Instead, it runs a Lustre router provided by the LNET layer. The
router moves LNET messages between the Cray HSN and the external IB network,
which transports file-level I/O requests between the clients on the Cray HSN and the
servers on the IB fabric. Please speak with your Cray service representative regarding
an eLustre solution for your Cray system.

Figure 9. Cray Service Node Acting as an Infiniband Lustre Router

External Lustre ServerCompute Node

User Application

VFS

Lustre Client

GNI/Portals LND

Gemini/SeaStar

Gemini/SeaStar Driver

Gemini/SeaStar IB HCA

X/SIO NodeX/SIO Node

Cray XT and Cray XE Systems

Cray HSN

Linux Lustre Cray OFED

InfiniBand

Lustre Server

IB HCA HBA

GNI/Portals LND

Gemini/SeaStar
 Driver

OFED RDMA

IB Driver

Lustre Router

OFED LND Block I/O

HBA Driver
OFED RDMA

IB Driver

OFED LND

ldiskfs

SAN

S–2393–31 297

Managing System Software for Cray XE and Cray XT™ Systems

12.2.3 IP Connectivity

InfiniBand can also carry socket-based inter-process traffic typical of commodity
clusters and TCP/IP networking. InfiniBand supports the IP over IB (IPoIB). Since
IB plugs-in below the socket interface, neither the application nor the service needs
to be recompiled to communicate over an InfiniBand network. Both protocols are
diagrammed on a service node in Figure 10.

Figure 10. Cray Service Node in IP over IB Configuration

TCP Host

Gemini/SeaStar IB HCA

X/SIO NodeX/SIO Node

Cray XT and Cray XE Systems

Cray HSN

Linux Cray OFED

InfiniBand

IB HCA

IB Driver
OFED RDMA

Application

IPoIB

sockets

TCP/IP

IB Driver
OFED RDMA

IPoIB

sockets

TCP/IP

Service

12.3 Configuration
In addition to the OFED RDMA stack, Cray supports three upper layer protocols
(ULPs) on its service nodes as shown in Table 15. Because all ULPs use the OFED
stack, the InfiniBand Configuration (3.1) must be followed for all IB service nodes.

Note: It is only necessary to configure the specific ULPs that you intend to use on
the service node.

For example, a Lustre server with a direct-attached storage array uses the SCSI
RDMA Protocol (SRP), not the LNET Router. On the other hand, if the Lustre
servers are external to the Cray system, the service node uses the LNET router
instead of SRP. IP over InfiniBand (IPoIB) is used to connect non-RDMA, socket
applications across the IB network.

298 S–2393–31

OpenFabrics Interconnect Drivers for CLE Systems [12]

Table 15. Upper Layer InfiniBand I/O Protocols for Cray Systems

Upper Layer Protocol Purpose

IP over IB (IPoIB) Provides IP connectivity between hosts over
IB.

Lustre (OFED LND) Base driver for Lustre over IB. On service
nodes, enables efficient routing of Lustre
clients on HSN to external IB-connected
Lustre servers. The name of the LND is
o2iblnd.

SCSI RDMA Protocol (SRP) T10 standard for mapping SCSI over IB and
other RDMA fabrics. Supported by DDN and
LSI for their IB-based storage controllers.

12.4 InfiniBand Configuration
Procedure 77. Configuring InfiniBand on service nodes

InfiniBand includes the core OpenFabrics stack and a number of upper layer
protocols (ULPs) that use this stack. Configure InfiniBand by modifying
/etc/modprobe.conf.local and /etc/sysconfig/infiniband for
each IB service node.

1. Use the xtopview command to access service nodes with IB HCAs.

For example, if the service nodes with IB HCAs are part of a node class called
lnet, type the following command:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -c lnet

Or

Access each IB service node by specifying either a node ID or physical ID. For
example, access node 8 by typing the following:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 8

2. Specialize the /etc/modprobe.conf.local and
/etc/sysconfig/infiniband files:

node/8:/ # xtspec -n 8 /etc/modprobe.conf.local
node/8:/ # xtspec -n 8 /etc/sysconfig/infiniband

S–2393–31 299

Managing System Software for Cray XE and Cray XT™ Systems

3. On Cray systems, the IB HCA is a PCI Express (PCIe) card. Cray systems with a
PCIe riser support only message signaled interrupts (MSI). The driver used for
this HCA does not, by default, support MSI. You must enable MSI support by
editing /etc/modprobe.conf.local and adding the following lines:

node/8:/ # vi /etc/modprobe.conf.local
Enable MSI for Mellanox ConnectX HCAs
options mlx4_core msi_x=1

4. Add IB services to the service nodes by using standard Linux mechanisms, such
as executing the chkconfig command while in the xtopview utility or
executing /etc/init.d/openibd start | stop | restart (which
starts or stops the InfiniBand services immediately). Use the chkconfig
command to ensure that IB services are started at system boot.

node/8:/ # chkconfig --force openibd on

5. While in the xtopview session, edit /etc/sysconfig/infiniband and
make these changes.

node/8:/ # vi /etc/sysconfig/infiniband

a. By default, IB services do not start at system boot. Change the ONBOOT
parameter to yes to enable IB services at boot.

ONBOOT=yes

b. By default at boot time, the Internet Protocol over InfiniBand (IPoIB) driver
loads on all nodes where IB services are configured. Change the value for
IPOIB_LOAD to no to disable IPoIB services.

IPOIB_LOAD=no

c. The SCSI RDMA Protocol (SRP) driver loads by default on all nodes where
IB services are configured to load at boot time. If a node does not need SRP
services, change the value for SRP_LOAD to no to disable SRP.

SRP_LOAD=no

6. Exit xtopview.

node/8:/ # exit
boot:~ #

Note: You are prompted to type c and enter a brief comment describing the
changes you made. To complete your comment, type Ctrl-d or a period
on a line by itself. Do this each time you exit xtopview to log a record of
revisions into an RCS system.

7. Proper IPoIB operation requires additional configuration. See Procedure 79 on
page 302.

300 S–2393–31

OpenFabrics Interconnect Drivers for CLE Systems [12]

12.5 Subnet Manager (OpenSM) Configuration
InfiniBand fabrics require at least one Subnet Manager (SM) operating on each IB
subnet in order to activate its respective IB port connected to the fabric. This is one
critical difference between IB fabrics and Ethernet, where simply connecting a cable
to an Ethernet port is sufficient to get an active link. Managed IB switches typically
include an SM and, therefore, do not require any additional configuration of any of
the hosts. Unmanaged IB switches, which are considerably less expensive, do not
include a SM and, thus, at least one host connected to the switch must act as a subnet
manager. InfiniBand standards also support switchless (point-to-point) connections
as long as an SM is installed. An example of this case is when a service blade is
connected to direct-attached storage through InfiniBand.

The OpenFabrics distribution includes OpenSM, an open-source IB subnet
management and subnet administration utility. Either one of the following
configuration steps is necessary if no other subnet manager is available on the
IB fabric. The subnet manager RPMs are installed in the shared root by running
CLEinstall. OpenSM can be started from the service node on a single port at boot
time or manually from the command line to load multiple instances per host.

12.5.1 Starting OpenSM at Boot Time

Procedure 78. Starting a single instance of OpenSM on a service node at boot
time

This procedure assumes that the IB HCA is in node 8.

1. Use xtopview to access service nodes with IB HCAs.

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 8

2. Specialize /etc/sysconfig/opensm for the IB node.

node/8:/ # xtspec -n 8 /etc/sysconfig/opensm

3. Edit /etc/sysconfig/opensm.conf to have OpenSM start at boot time

To start OpenSM automatically set ONBOOT=yes
ONBOOT=yes

4. Add IB services to the service nodes by using standard Linux mechanisms, such
as executing the chkconfig command while in the xtopview utility or
executing /etc/init.d/opensmd start|stop|restart|status
(which starts or stops the OpenSM service immediately). The chkconfig
command can be used to ensure that the OpenSM service is started at system
boot.

default:~ # /sbin/chkconfig --force opensmd on

S–2393–31 301

Managing System Software for Cray XE and Cray XT™ Systems

12.6 Internet Protocol over InfiniBand (IPoIB) Configuration
Procedure 79. Configuring IP Over InfiniBand (IPoIB) on Cray systems

1. Use xtopview to access each service node with an IB HCA by specifying either
a node ID or physical ID. For example, to access node 8, type the following:

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes -n 8

2. Specialize the /etc/sysconfig/network/ifcfg-ib0 file.

node/8:/ # xtspec -n 8 /etc/sysconfig/network/ifcfg-ib0

3. Modify the site-specific /etc/sysconfig/network/ifcfg-ib0 file on
each service node with an IB HCA.

node/8:/ # vi /etc/sysconfig/network/ifcfg-ib0

For example, to use static IP address, 172.16.0.1, change the BOOTPROTO line in
the file.

BOOTPROTO='static'

Add the following lines to the file.

IPADDR='172.16.0.1'
NETMASK='255.255.0.0'

To configure the interface at system boot, change the STARTMODE line in the file.

STARTMODE='onboot'

4. Repeat steps 2 and 3 to configure IPoIB on both ports on a two port IB HCA for
/etc/sysconfig/network/ifcfg-ib1. Use a unique IP address from
separate networks for each port.

12.7 Configuring SCSI RDMA Protocol (SRP) on Cray Systems
Procedure 80. Configuring and enabling SRP on Cray Systems

While in xtopview on the boot node, perform the following steps:

1. Edit /etc/sysconfig/infiniband

default/:/ # vi /etc/sysconfig/infiniband

and enter the following text:

Path: System/Infiniband
Description: Infiniband configuration
Type: yesno
Default: no
ServiceRestart: openibd
#
Enable SRP daemon
#
SRP_DAEMON_ENABLE=yes

302 S–2393–31

OpenFabrics Interconnect Drivers for CLE Systems [12]

2. Edit srp_daemon.conf to increase the maximum sector size for SRP.

default/:/ # vi /etc/srp_daemon.conf

a max_sect=8192

3. Edit /etc/modprobe.conf.local to increase the maximum number of
gather-scatter entries per SRP I/O transaction.

default/:/ # vi /etc/modprobe.conf.local

options ib_srp srp_sg_tablesize=255

4. Exit from xtopview.

default/:/ # exit
boot:~ #

12.8 Lustre Networking (LNET) Router
Oracle provides the LNET layer as a separate transport for communication between
the Lustre client and server. LNET isolates the file system code from the Lustre
Networking Drivers (LNDs), which provide an interface to the underlying network
transport. For more information on Lustre networking please see Lustre Operations
Manual.

Although LNET is automatically loaded with the Lustre servers and clients, it can be
launched by itself to create a standalone router between networks instantiated by a
LND. LNET routing is most efficient when the underlying transports are capable
of remote direct memory access (RDMA). Lustre currently supports LNDs for a
number of RDMA transports, including GNILND used for Cray XE (Cray Gemini)
and Portals, which is used on Cray XT (SeaStar) systems, and the OpenFabrics'
InfiniBand stack. Cray builds and distributes the OFED LNDm, Portals LND, and
GNI LND as part of its Lustre distribution.

Routing Lustre requires that three types of nodes be configured: the router, the Portals
client, and the InfiniBand server. LNET uses IP addresses to identify LND ports.
While the Portals LND uses node IDs to enumerate its ports, the OFED LND uses
IP addresses. As a result, IPoIB must be configured on each IB port. See Subnet
Manager (OpenSM) Configuration on page 301 for more information. For the rest
of this discussion, assume that LNET routers are being created on two Cray service
nodes, both of which have a single IB port connected to a switched InfiniBand fabric.
The network configuration is shown in Internet Protocol over InfiniBand (IPoIB)
Configuration on page 302.

S–2393–31 303

Managing System Software for Cray XE and Cray XT™ Systems

Table 16. LNET Network Address Configuration for Cray XT

Portals Address Network Component InfiniBand Address

16 Router 1 10.10.10.17

19 Router 2 10.10.10.20

192.168.0.255 IP Subnet 10.10.10.255

255.255.255.0 Subnet Mask 255.255.255.0

12.8.1 Configuring the LNET Router

Procedure 81. Configuring the LNET router

The following description covers the configuration of the router on node 19. These
steps must be repeated on the other router node as well.

1. Use xtopview to access service nodes with IB HCAs.

boot:~ # xtopview -x /etc/opt/cray/sdb/node_classes

2. Copy the /etc/init.d/lnet script. A router controller (RC) script is
necessary to start LNET in the absence of any Lustre file services. A sample
RC script is available in Sample Lustre Router Control File on page 307. Copy
the script to the shared root within xtopview (this example assumes the script
was copied to the boot node).

cp -p /software/lnet.rc /etc/init.d/lnet

Note: Cray does not provide an RC script with its release packages. You must
verify that this script will work for your configuration or contact your Cray
service representative for more information.

3. Use chkconfig to enable LNET since there are no mounts or Lustre server
activity to load the LNET module implicitly.

default:~ # /sbin/chkconfig lnet on

304 S–2393–31

OpenFabrics Interconnect Drivers for CLE Systems [12]

4. Add LNET directives to the Cray shared root in
/etc/modprobe.conf.local.

options lnet ip2nets="ptl0 192.168.*.*; o2ib 10.10.10.*"
options lnet routes="ptl0 10.10.10.[20,17]@o2ib; o2ib [19,16]@ptl0"

For Cray XE systems, ptl is replaced by gni. Here ip2nets is used instead
of networks because it provides for an identical modprobe.conf across
all Lustre clients in the Cray system.

o2ib is the LNET name for the OFED LND. ptl is the LNET name for the
Portals LND. The ip2nets directive tells LNET to load both LNDs and
associates each LND with an IP subnet. It replaces any previous networks
directive (for example, lnet networks=ptl). On service nodes without an
IB adapter, the o2ib LND does not load because there are no ports with the
IP subnet used defined in ip2nets.

Note: Each Cray system sharing the external Lustre file system must have a
unique gniptl identifier for the LNET options. In this case, the Cray XT is
using ptl0. Other systems would use other numbers to identify their Portals
or Gemini networks (such as ptl1, ptl2, and so on).

5. Cray recommends enabling these options to improve network resiliency. Edit
/etc/modprobe.conf.local on the Cray shared root to include:

options lnet check_routers_before_use=1
options lnet router_ping_timeout=5
options lnet dead_router_check_interval=60
options lnet live_router_check_interval=60

6. Exit from xtopview.

You are prompted to add a comment about the operations you have performed.
Enter c, and then enter a brief comment about the changes you made to the file.

7. If /etc/init.d/lnet is not provided, type the following commands to
control the router manually on the Cray service node.

• Startup:

modprobe lnet
lctl net up

• Shutdown:

lctl net down
lustre_rmmod

S–2393–31 305

Managing System Software for Cray XE and Cray XT™ Systems

12.8.2 Configuring the InfiniBand Lustre Server

Procedure 82. Configuring the InfiniBand Lustre Server

The host on the other edge of the IB fabric must be configured to use the router
nodes. Add an lnet routes directive for each Cray system sharing the external
file system. Ensure that the portal identifier is unique for each system (for example,
gni0, gni1 or ptl0, ptl1) and maps to the correct IP address for the router.
Perform these steps on the remote host:

1. Edit /etc/modprobe.conf on the remote host to include the route to the
Portals network.

options lnet networks=o2ib(ib0)
options lnet routes="gni0 10.10.10.[20,17]@o2ib"

(Optional) If there are two Cray systems accessing the file system exported by
these hosts, then both Cray systems must be included in the lnet routes
directive.

options lnet routes="gni0 10.10.10.[20,17]@o2ib;
gni1 10.10.10.[71,72,73,74]@o2ib"

In this example, there are two Cray systems: gni0 with two router nodes and
gni1 with four.

2. Make /etc/modprobe.conf consistent with the changes made in Procedure
81 on page 304 by adding the following LNET directives:

options lnet check_routers_before_use=1
options lnet router_ping_timeout=5
options lnet dead_router_check_interval=60
options lnet live_router_check_interval=60

Because Lustre is running on the external host, there is no need to start LNET
explicitly.

306 S–2393–31

OpenFabrics Interconnect Drivers for CLE Systems [12]

12.8.3 Configuring the Portals Lustre Clients

Procedure 83. Configuring Lustre clients

Since compute nodes are running the Lustre client, they do not need explicit
commands to start LNET. There is, however, additional configuration required to get
LNET to use the routers on the service nodes to reach the external servers. These
changes are made to /etc/modprobe.conf for the compute node image used
in booting the system.

1. Edit /etc/modprobe.conf for the compute node boot image. The lnet
networks directive identifies the LND. If there is more than one Cray system
sharing the file system, then this identifier (gni or ptl) must be unique for
each Cray system.

options lnet networks=ptl0
options lnet routes="o2ib [19,16]@ptl0"

2. Modify /etc/fstab in the compute node boot image to identify the external
server. The format indicates the IP address of the external server and the LNET
network used to reach it.

10.10.10.1@o2ib:/boss1 /mnt/boss1 lustre rw,flock

Here, the fstab mount option rw gives read/write access to the client node.
The additional flock option is to allow Lustre's client node to have exclusive
access to the file lock.

In this example, the Lustre file system with the fsname "boss1" is exported
by the Lustre metadata server on the InfiniBand fabric at IP address 10.10.10.1.
Because both routers have access to this subnet, the Lustre client performs a
round-robin with its requests to the routers.

Accessing any externally supplied Lustre file system requires that both the file server
hosts and the LNET routers be up and available before the clients attempt to mount
the file system. Boot time scripts in the compute node image take care of reading
fstab and running the necessary mount commands. In production, this is the only
opportunity to do Lustre mount because kernel modules get deleted at the end of
the boot process.

12.9 Sample Lustre Router Control File
#Lnet.rc
#!/bin/bash
#
$Id: lnet.rc bogl Exp $
#
BEGIN INIT INFO
Provides: lnet
Required-Start: $network openibd
X-UnitedLinux-Should-Start:
Default-Start: 3

S–2393–31 307

Managing System Software for Cray XE and Cray XT™ Systems

Default-Stop: 0 1 2 5 6
Description: Enable lnet routers
END INIT INFO
#set -x
PATH=/bin:/usr/bin:/usr/sbin:/sbin:/opt/xt-lustre-ss/default/usr/
sbin:/opt/xt-lustre-ss/default/usr/bin
. /etc/rc.status
rc_reset
case "$1" in

start) echo -n "Starting lnet "
modprobe lnet

lctl net up > /dev/null
rc_status -v
;;

stop)
echo -n "Stopping lnet "
lctl net down > /dev/nul

l lustre_rmmod || true
rc_status -v
;;

restart)
$0 stop
$0 start
rc_status
;;

*)
echo "Usage: $0 {start|stop|restart}"
exit 1
;;

esac
rc_exit

308 S–2393–31

Cray XE Network Resiliency [13]

The Gemini application-specific integrated circuit (ASIC) allows Cray XE systems to
take advantage of two high speed network reliability features:

• Link resiliency, which handles link failures and adds the capability to warm swap
a compute blade

• Recovery, in some instances, to a routeable configuration from an unrouteable
configuration where multiple Gemini router chips are disabled

13.1 Link Resiliency
Cray XE systems using Gemini interconnect technology have hardware and software
support that allows the system to handle certain types of hardware failures without
requiring a system reboot. In addition, the same technology allows for the removal
and replacement of compute blades without a system reboot. These features
contribute to a reduction in both planned and unplanned system downtime.

In the case of loss of power to a Gemini mezzanine, blade, or set of blades, or the
warm swap out of a blade, applications running on the affected blades will either be
killed, or in the case of a warm swap out, be allowed to complete.

Note: Warm swap of service blades is not supported. However, recovery from link
failure is handled identically for both types of blade.

There are several components to Gemini link resiliency:

• Hardware design that permits failed link detection and corrective action

• Software on the L0 (gmnwd) on each blade that detects failed links and power
loss to Gemini mezzanine cards

• A daemon on the SMW (xtnlrd(8)) that coordinates the system response to
failures

• Another daemon on the SMW (xthwerrlogd(8)) that logs hardware errors

• An administrative command on the SMW (xtwarmswap(8)) to facilitate warm
swap of blades

S–2393–31 309

Managing System Software for Cray XE and Cray XT™ Systems

When a Cray XE system is booted using xtbootsys, the xtnlrd and
xthwerrlogd daemons are started on the SMW. Link monitoring on each L0
is also enabled at this time, and link failures are logged by xthwerrlogd and
responded to by xtnlrd by rerouting the High Speed Network around the failures.

13.1.1 Automatic Response to Failures

13.1.1.1 Failure Of A Single High Speed Network Channel

When a single Gemini channel fails, 2 link endpoints (LCBs) are reported as failed by
gmnwd on the L0s at each end of the channel. The failures appear in the xtnlrd
log file as follows:

2010-05-21 19:45:37 pandora-smw cb_link_failed: failed_component c0-0c0s7g0l42, type 23, \
error_code 0x1207, error_category 0x2

[...]
2010-05-21 19:45:37 pandora-smw cb_link_failed: failed_component c0-0c0s7g1l57, type 23, \
error_code 0x1207, error_category 0x2

These failures are followed by a series of steps as the recovery actions are performed.
For each link endpoint with a fatal error, that link endpoint has an alert flag set, which
tells routing that the link is not available and should be routed around.

Recovery steps are visible in the log file, but in summary are:

1. initial: wait for failures

2. aggregate_failures: wait 10 seconds by default for any more links to fail

3. link_failed: begins to process the failed links

4. alive/check_alive: determines which blades are alive

5. route_compute/check_route_compute: computes and stages new
routes to the L0s

6. quiesce/check_quiesce: stops all High Speed Network traffic temporarily

7. route_install/check_route_install: asserts new routes in the
Gemini chips

8. unquiesce/check_unquiesce: resumes all High Speed Network traffic

9. add_remove: for future use

10. finish: performs final cleanup

11. initial: waits for failures (process restarts)

The total time to perform these various steps is typically around 30 seconds.

310 S–2393–31

Cray XE Network Resiliency [13]

13.1.1.2 Failure Of A High Speed Network Cable

Loss of a Gemini cable results in 32 link endpoints (LCBs) failing, which appears in
the xtnlrd log file as 32 entries similar to those in Failure Of A Single High Speed
Network Channel on page 310. The same series of steps is performed to recover from
the failure, and the same time consideration applies.

In this case, all 32 link endpoints have an alert flag set.

13.1.1.3 Power Loss To A Gemini Mezzanine On A Blade

Loss of power to a Gemini mezzanine results in 32 link endpoint (LCB) failures being
reported to xtnlrd, since the endpoints on the blade whose mezzanine lost power
is not reported as failed. Both Gemini chips on that blade are, however, reported as
failed, and an alert flag is set on the Gemini and link endpoint components, resulting
in the entire blade being routed around.

The steps to perform the reroute are the same as in Failure Of A Single High Speed
Network Channel on page 310. One difference in the log file is that, in this case, an
ec_l0_voltage event will appear, signifying that the mezzanine lost power.

Total time to recover from this situation is comparable to Section 13.1.1.1.

13.1.1.4 Power Loss To A Blade

Blade power loss appears very similar to mezzanine power loss, except that in this
case, no ec_l0_voltage event is received by xtnlrd. In addition, in the alive
stage of the recovery process shows a time-out for the blade that lost power, such as:

2010-05-08 15:36:50 castor-smw generic_rsp_timeout: ERROR: Did not receive responses \
from the following L0s: c0-0c1s0

As in Section 13.1.1.3, loss of power to a blade results in 32 link endpoints outside of
the failed blade having an alert flag set on them, together with both Gemini chips on
the failed blade. As a result of this, the system reroutes around the failed blade.

Due to the time-out, which is 30 seconds by default, recovery from a failed blade
typically takes around 60 seconds.

13.1.1.5 Power Loss To A Cabinet

Cabinet power loss is the most widespread single High Speed Network event that
is handled by xtnlrd. This case is, in general, very similar to Section 13.1.1.4,
although rather than a single blade, cabinet power loss results in 24 blades, and 48
Gemini chips, losing power.

In a fully-configured and operational Cray XE system, loss of power to a cabinet
results in 960 link endpoints being reported to xtnlrd as having failed. All of these
link endpoints are marked with an alert flag as part of the recovery process, along
with the 48 Gemini chips in the cabinet which failed (2 per blade).

S–2393–31 311

Managing System Software for Cray XE and Cray XT™ Systems

During the recovery process, the same set of steps will be taken, but this time, 24
blades will time out and be removed from routing.

Due to the time out, which is 30 seconds by default, recovery from a failed cabinet
typically takes around 60 seconds.

13.1.2 Using xtwarmswap

The administrative interface to the Gemini resiliency feature is through the
xtwarmswap command on the SMW, which coordinates with the xtnlrd daemon
to perform the various steps that are necessary to perform warm swap operations.

13.1.2.1 Reusing One Or More Previously-failed High Speed Network Links

Before previously-failed links can be reintegrated into the High Speed Network
configuration, an administrator must clear the alerts, and use a warm swap command
to tell the system to reroute using all available links.

The necessary steps are:

1. Use a xtcli clr_alert LCB names command to clear the alerts

2. Use a xtwarmswap -s partition name to tell the system to reroute using all
available links

The xtwarmswap command results in xtnlrd performing the same link recovery
steps as for a failed link, with two differences: no alert flags are set, and an
init_new_links step is performed in order to initialize both ends of any links
that should be used, and which are not currently up, before new routes are asserted
into the Gemini routing tables.

The elapsed time for the warm swap and synchronization operation is typically
around 60 seconds.

13.1.2.2 Reusing One Or More Previously-failed Blades, Mezzanines, or Cabinets

A previously-failed blade (or blades) has alert flags set on Geminis and on link
endpoints (LCBs); these alert flags must be cleared before the blades, mezzanines, or
cabinets can be reused.

Because it may not be obvious which link endpoints are relevant to a
particular blade, a script called xtclear_link_alerts is provided. The
xtclear_link_alerts script takes a single comma-separated list of blades
and/or cabinets, and clears all alerts on those components, and on all Gemini
components on the blade(s), and on all LCBs at both ends of the links to the blade(s).

Once the alert flags have been cleared appropriately, a warm swap and add should be
done, to bring the blades back into the High Speed Network configuration. Doing so
runs cold start on the blades and re-initializes the links to the blades, as in Section
13.1.2.1.

312 S–2393–31

Cray XE Network Resiliency [13]

Specifically, the steps are:

1. Ensure that blades/mezzanines/cabinets have power

2. Ensure that the xtalive command to all required blades succeeds

3. Run the xtclear_link_alerts blade,... command

4. Run the xtwarmswap --add blade,... command

5. Run the xtcli boot args blade,... command

Because the xtwarmswap --add command cold starts the added blades, the time
to bring the blades back into service includes around 10 minutes for cold start, in
addition to around 60 seconds for the link recovery handling, as in Section 13.1.2.1.

13.1.2.3 Planned Removal Of A Compute Blade

A compute blade can be removed (for example, for maintenance or replacement)
while the system is running. However, applications using the nodes on the blade to be
removed must be killed, or allowed to drain, before the removal process can proceed.

On the boot node, as root, perform the following steps:

1. Use the xtprocadmin -s slot -k s admindown command to down the
compute blade

2. Wait for applications using the nodes on blade to finish or use the apkill apid
command to kill the application

Next, on the SMW, as crayadm, perform the following steps:

1. Use the Use the xtcli halt blade command to halt the blade

2. Use the xtwarmswap --remove blade command to remove the compute
blade from service

3. Physically remove the blade, if desired

The warm swap remove stage of the process uses the Gemini resiliency infrastructure,
and takes around 60 seconds to complete.

13.1.2.4 Planned Installation Of A Compute Blade

Once a blade has been repaired or replaced, you can use a warm swap to use the
nodes on the blade once more.

S–2393–31 313

Managing System Software for Cray XE and Cray XT™ Systems

The steps are essentially the same as in Section 13.1.2.2:

1. Physically insert the blade into the slot

2. Ensure that the blade has power

3. Ensure that the xtalive command to the blade succeeds

4. Run the xtclear_link_alerts blade command

5. Run the xtwarmswap --add blade command

6. Run the xtcli boot CNL0 args blade command

Because the xtwarmswap --add command cold starts the added blade, the time it
takes to being the blade back into service includes around 10 minutes for cold start, in
addition to about 60 seconds for the link recovery handling, as in Section 13.1.2.1.

13.2 Unrouteable Cray XE Configurations
Cray XE systems contain a high-speed network (HSN) connected via a 3D
mesh/torus. The algorithm that computes the routing tables for this system at times
fails, resulting in an unrouteable configuration. This occurs when the configuration
has multiple Gemini router chips disabled. This section describes the conditions that
result in an unrouteable configuration and, in some cases, provides suggestions for
additional configuration modifications that will result in a routeable configuration.

With a normal Cray XE system configuration, all three dimensions of the HSN are
complete tori. There are no holes in the network. The routing table computation
is always successful in this situation. During normal operation, however, the
need arises to disable different components due to hardware failure and possible
subsequent repair action. When this occurs, the routing table computation needs
to take these missing components into account to route around these holes in the
network. Sometimes, the given holes in the network are such that some routes are no
longer possible. Since the network must allow all nodes to talk to all other nodes, this
results in an unrouteable configuration. The algorithm used to compute the routing
tables detects these situations and issues the error messages to indicate the failure.
This section discusses the different scenarios which result in such an unrouteable
configuration. In some cases, there are only a few nodes for which routes cannot be
computed. In these cases, it may be possible to disable a small number of additional
components that will then allow the resulting configuration to again be routeable.

Note: Every time a Gemini router chip is disabled, this results in lost access to two
nodes. So the loss of a Gemini router results not only in lower network capacity,
but also in lost computational capability. When possible, it is preferable to disable
individual links. Doing so results in less impact to the overall system capacity.

314 S–2393–31

Cray XE Network Resiliency [13]

13.2.1 The Routing Algorithm

In order to understand why a configuration becomes unrouteable, an understanding of
how the routing algorithm works is helpful. The routing algorithm itself is designed
to compute routes that contain no dependency cycles. If dependency cycles exist in
the routes, the network can deadlock under moderate to heavy loads. This would
result in a complete system failure.

There are three types of dependency cycles that can be created in a multidimensional
torus network; these are:

• Dimensional turn dependency cycles

• Torus dependency cycles

• Request/response dependency cycles

Dimensional turn dependency cycles are avoided by disallowing certain turns in the
routes. This makes such cycles impossible. The algorithm accomplishes this by using
direction ordered routing. Specifically, computed routes follow these rules:

1. Route the packet in X+/-, Y+, or Z+, until the X dimension is resolved.

2. Route the packet in Y+/- or Z+, until the Y dimension is resolved.

3. Route the packet in Z+/- until the Z dimension is resolved. At this point, the
packet must have arrived at its destination.

These steps avoid turns from Y- into the X dimension, and Z- into the X or Y
dimensions. Note that once a packet resolves a given dimension, it is no longer
allowed to travel in that dimension.

Both torus and request/response dependency cycles are normally resolved by the use
of virtual channels included in the network design. The Gemini router chip, however,
only includes two virtual channels in its design. The two virtual channels are used
to prevent request/response dependency cycles. Torus dependency cycles, however,
cannot be addressed using virtual channels.

Although there are no virtual channels available to prevent torus dependency cycles,
there are multiple physical channels between Gemini router chips. So in order to
avoid dependency cycles, the physical channels between the Gemini router chips are
divided into two groups, and those two groups of physical channels are used in the
same fashion as two virtual channels. The first step for using two groups to prevent
dependency cycles is to designate a particular location on the torus as a dateline. With
that defined, the basic rules for processing packets passing through the dateline are
quite simple. If a packet comes into the dateline in group 0 and is continuing in the
same direction, it needs to move to group 1. If a packet comes into the dateline on
group 1 and wants to continue in the same direction, we have an error condition, and
the packet gets dropped. If a packet does get dropped, this indicates either an error in
the computed routing tables, or some hardware error.

S–2393–31 315

Managing System Software for Cray XE and Cray XT™ Systems

With an understanding of the dateline mechanism, there is one additional rule to
follow when computing routes:

4. A packet cannot cross a dateline unless it is going to reach its final destination in
the current dimension with no additional turns.

13.2.2 Physical Components Versus Logical Components

When considering unrouteable configurations, the relationship between different
disabled Gemini router chips is what results in a configuration being unrouteable. The
relationship between the routers, however, needs to be considered via the logical
components. Since Cray supports a number of topologies, the physical-to-logical
mapping varies. Here is a quick review of the topology classes:

Table 17. Physical-to-Logical Mappings Summary by Topology Class

Topology Class
Physical
Configuration X Dimension Y Dimension Z Dimension

0 1 row of up to 3
cabinets. Can be 1-9
chassis.

Chassis are cabled
together in the X
dimension torus
sized at the number
of chassis.

Each chassis is
looped back on
itself in the Y
dimension. This
results in a Y
dimension of size
2.

1 1 row of cabinets. The three chassis
in a cabinet are
cabled together.
The corresponding
blades in each
chassis are connect
together to form a
torus of size 6.

Each chassis is
looped back on
itself to form a torus
of size 8.

2 2 rows of cabinets. Chassis are cabled
together across rows
to form a torus sized
at 2 * nbr-rows.

The Z dimension
cables a single
chassis from each
row together to form
a torus of size 16.

3 even Even number of
rows.

Chassis are cabled
together across rows
to form a torus sized
at 2 * nbr-rows.

Cabinets in each
row are cabled
together such that
corresponding
Gemini chips
connect together
to form a torus.

The Z dimension
cables the three
chassis of a cabinet
together to form a

316 S–2393–31

Cray XE Network Resiliency [13]

Topology Class
Physical
Configuration X Dimension Y Dimension Z Dimension

3 odd Odd number of
rows.

Chassis are cabled
together across
rows to form a
mesh sized at 2 *
nbr-rows.

torus of size 24.

The best way to check physical-to-logical coordinate information is to use the rtr
--system-map command. A sample of the output for this command is:

smw:~> rtr --system-map
NID NIC-Addr Node Gemini X Y Z
---- -------- ------------ ------------ -- -- --
0 0 c0-0c0s0n0 c0-0c0s0g0 0 0 0
1 1 c0-0c0s0n1 c0-0c0s0g0 0 0 0
2 4 c0-0c0s1n0 c0-0c0s1g0 0 0 1
3 5 c0-0c0s1n1 c0-0c0s1g0 0 0 1
4 8 c0-0c0s2n0 c0-0c0s2g0 0 0 2
5 9 c0-0c0s2n1 c0-0c0s2g0 0 0 2
6 12 c0-0c0s3n0 c0-0c0s3g0 0 0 3
7 13 c0-0c0s3n1 c0-0c0s3g0 0 0 3
8 16 c0-0c0s4n0 c0-0c0s4g0 0 0 4
9 17 c0-0c0s4n1 c0-0c0s4g0 0 0 4
10 20 c0-0c0s5n0 c0-0c0s5g0 0 0 5
11 21 c0-0c0s5n1 c0-0c0s5g0 0 0 5
12 24 c0-0c0s6n0 c0-0c0s6g0 0 0 6
13 25 c0-0c0s6n1 c0-0c0s6g0 0 0 6
14 28 c0-0c0s7n0 c0-0c0s7g0 0 0 7
15 29 c0-0c0s7n1 c0-0c0s7g0 0 0 7
30 32 c0-0c0s0n2 c0-0c0s0g1 0 1 0
31 33 c0-0c0s0n3 c0-0c0s0g1 0 1 0
28 36 c0-0c0s1n2 c0-0c0s1g1 0 1 1
29 37 c0-0c0s1n3 c0-0c0s1g1 0 1 1
26 40 c0-0c0s2n2 c0-0c0s2g1 0 1 2
27 41 c0-0c0s2n3 c0-0c0s2g1 0 1 2
24 44 c0-0c0s3n2 c0-0c0s3g1 0 1 3
25 45 c0-0c0s3n3 c0-0c0s3g1 0 1 3
22 48 c0-0c0s4n2 c0-0c0s4g1 0 1 4
23 49 c0-0c0s4n3 c0-0c0s4g1 0 1 4
20 52 c0-0c0s5n2 c0-0c0s5g1 0 1 5
21 53 c0-0c0s5n3 c0-0c0s5g1 0 1 5
18 56 c0-0c0s6n2 c0-0c0s6g1 0 1 6
19 57 c0-0c0s6n3 c0-0c0s6g1 0 1 6
16 60 c0-0c0s7n2 c0-0c0s7g1 0 1 7
17 61 c0-0c0s7n3 c0-0c0s7g1 0 1 7
smw:~>

S–2393–31 317

Managing System Software for Cray XE and Cray XT™ Systems

The last three columns are the logical XYZ coordinates. This is useful for correlating
Gemini routers and nodes with logical coordinates. Another useful option is the rtr
--system-summary option, which shows the size and type (torus or mesh) of
each dimension. A sample of the output for this command is:

smw:~> rtr --system-summary
Dim Size Type
--- ---- ----
X 1 mesh
Y 2 mesh
Z 8 torus
smw:~>

13.2.3 Unrouteable Configurations

The reason why a configuration becomes unrouteable is because gaps in the network
cannot be routed around based on the rules used to compute the routes. The
simplest such configuration is two nonadjacent routers in a single Z-dimension loop.
Additional unrouteable configurations include two nonadjacent routers in a dimension
loop with additional dimension blocks, disabled routers not adjacent to a mesh edge,
and a disabled nonlinear complete Z-dimension loop.

In the subsequent sections, the various types of unrouteable configurations are
discussed. The references to different router chips are made via X,Y,Z coordinates.
By using the rtr command with the --system-map and --system-summary
options, the logical coordinates can be translated into physical nodes.

This legend applies to the diagrams included in the following subsections:

Figure 11. Diagram Key

Key:

Enabled routers

Disabled routers

Routers to disable to make
configuration routeable

13.2.3.1 Two Nonadjacent Routers in a Single Z-dimension Loop

In the unrouteable configuration shown in Figure 12, there are two routers in a
single Z-dimension loop that are disabled. This fails because it breaks the loop into
two unconnected sections. Once the X and Y dimensions are resolved, routing is
then restricted to a single Z-dimension loop. Routers in one of the sections of the
Z-dimension loop cannot reach the other section because it is blocked by the disabled
routers in both the Z+ and Z- directions.

318 S–2393–31

Cray XE Network Resiliency [13]

When mapping this onto a physical system, suppose 0,0,2 and 0,0,4 are disabled. This
will result in an unrouteable configuration. The problem is when a router like 0,0,3
tries to compute routes to 0,0,1. It fails because the X and Y dimensions are already
resolved. Because of this, it is only allowed to route in the Z dimension, either Z+
or Z-. Neither of these work, however, because in the Z+ direction, 0,0,4 is disabled,
and in the Z- direction 0,0,2 is disabled.

Figure 12. Two Nonadjacent Routers in a Single Z-dimension Loop

Z
Y

In order to make this configuration routeable again, the additional router in between
the two disabled routers needs to be disabled. In the example above, by disabling
0,0,3, the resulting configuration routes properly.

13.2.3.2 Two Nonadjacent Routers in a Single Dimension Loop with Additional
Dimension Blocks

This unrouteable configuration, which is shown in Figure 13, is similar to the
previous one. The difference is that if you have the same scenario for the X or Y
dimension, there are still routing options, unless the additional routing options are
blocked. So, for example, the following would result in an unrouteable configuration:
0,1,1 0,3,1 0,2,2. Consider the router 0,2,1. It cannot route in the X dimension
because it is already resolved. It cannot route in either direction in the Y dimension
because it is blocked by 0,1,1, and 0,3,1. It cannot route in the Z+ direction because
of 0,2,2. Finally, it cannot route in the Z- direction because that would violate the
routing rules. A similar example with the X dimension could also be formulated. In
that case, however, both the Y+ and Z+ directions would have to be blocked.

S–2393–31 319

Managing System Software for Cray XE and Cray XT™ Systems

Figure 13. Two Nonadjacent Routers in a Single Dimension Loop with Additional
Dimension Blocks

Z
Y

In order to make this configuration routeable again, disable the node in the middle. In
the above example, 0,2,1.

This same situation can occur with the two routers separated by a larger amount, for
example, 0,1,1 0,4,1, and blocked by the two routers, 0,2,2 and 0,3,2 (see Figure 14).
Again, routing is blocked in the same way as the first example. In this case, adding
the additional disables of 0,2,1 and 0,3,1 will allow the configuration to then route
properly.

Figure 14. Two Nonadjacent Routers Further Separated in a Single Dimension
Loop with Additional Dimension Blocks

Z
Y

13.2.3.3 Disabled Routers Not Adjacent to a Mesh Edge

This unrouteable configuration, which is shown in Figure 15, occurs when a router is
disabled in a mesh dimension that is not adjacent to the edge of the mesh dimension.

320 S–2393–31

Cray XE Network Resiliency [13]

While dimensions are normally a torus, a mesh dimension can occur in a number
of situations. The most common one is for class 0 topologies. In this case, the
Y dimension is of size 2. This gets treated as a mesh because routing in the Y
dimension will always be a single hop. So a packet is either in the right place in the
Y dimension, or else it takes a single hop in the Y dimension, and then it is in the
right place. So whether it is called a mesh or a torus, from a routing perspective it is
a mesh. Other situations that could result in a mesh dimension include disabling
of larger components or groups of components that result in a complete break in a
normal torus dimension. Finally, a class 3 topology with an odd number of rows also
results in a mesh in the Y dimension due to cabling restrictions.

For the X and Y dimensions, the subsequent dimensions (Y and Z) will be blocked
in the plus directions. This can occur at either mesh edge. Since the Z dimension is
typically not a mesh, this is not expected in the Z dimension. The diagram shows two
different instances, one on each mesh edge.

Figure 15. Disabled Routers Not Adjacent to a Mesh Edge

Z
Y

13.2.3.4 Disabled Nonlinear Complete Z-dimension Loop

This particular unrouteable configuration, which is shown in Figure 16, is perhaps the
most difficult to understand. There appears to be no set pattern to it. It is also not
obvious at first glance why routing fails. There appears to be plenty of room around
the disabled routers.

The routing failure occurs at the dateline, when trying to route in the Y dimension.
At some point when routing in the Y dimension, a disabled router is encountered.
The normal solution is to route in the Z-plus direction. This is disallowed, however,
if routing in the Z-plus direction results in the Z-dimension dateline to be crossed.
No matter where the dateline is placed, at some point in this configuration, routing
around a disabled router runs into this restriction. Hence, routing fails. In this case,
the best solution is to fix the hardware.

S–2393–31 321

Managing System Software for Cray XE and Cray XT™ Systems

This failure scenario is unlikely to occur, and as the Z dimension gets larger, it is
even less likely to occur.

Figure 16. Disabled Nonlinear Complete Z-dimension Loop

Z
Y

322 S–2393–31

Cray XE Network Resiliency [13]

13.2.3.5 Routing Table Limitations

Another possible scenario that results in an unrouteable configuration is when the
routing tables themselves cannot be made to fit into the 32 entries available. When
computing routes, all the Gemini IDs must be made to fit into a 32-entry table, using
the mask and match values to account for every ID used in the entire configuration.
Normally, a lot few entries are actually needed. Even large configurations can be
made to fit into the 32-entry table limit. Depending on the size of the configuration
and the location of disabled Gemini routers, the routing tables can grow to the point
where they do not fit into the 32-entry limit. If this happens, it is most likely limited
to a particular Gemini router. If this happens, the routing software issues an error
indicating which Gemini had the error. In this scenario, the router that had the error
can be disabled, and the remainder of the configuration may be routeable. In some
situations, multiple Geminis may need to be disabled before the configuration is
routeable.

13.2.3.6 Other Unrouteable Scenarios

There are other configurations that cannot be routed. Some of these appear to be
routeable, but the routing software still fails. In some cases, this is a limitation of the
routing software. The diagram in Figure 17 shows one such scenario.

This particular configuration is unrouteable under the assumption that the Y
dimension is of size 6 and is a torus. The thing that appears to be really unusual about
this is the additional router required to allow this to route. This configuration fails
routing 0,2,1 to 0,3,3 (actually, anything with Y-dimension ordinate of 3). When
it attempts to route, it finds Y-plus and Z-plus to be blocked. So it must route to
Y-minus. Once it reaches 0,0,1, it could route in Z-plus. However, it computes that
from this point, and it can continue in the Y-minus direction. Routing prefers this
as it is attempting to resolve the Y dimension. So it wraps around the torus until it
reaches 0,4,1. At this point, it finds the it can turn the corner into Z-plus. It then hits a
block in Z-plus. This is where it declares the configuration unrouteable. Interestingly,
if it routed in Z-plus when it reached 0,0,1, it would have routed successfully. By
additionally disabling 0,1,1 and 0,2,1, the routes that failed are no longer an issue.

S–2393–31 323

Managing System Software for Cray XE and Cray XT™ Systems

Figure 17. Additional Unrouteable Configuration Scenario

Z
Y

This example is one situation that fails to route. There may be others that have not
been discovered; however, the routing software has been tested and should detect
unrouteable situations.

13.2.4 Disabling of Other Components

This section has focused on Gemini router chips that are disabled. It is possible to
get similar unrouteable configurations by disabling other components. Namely, the
disabling of links and/or blades can also result in unrouteable configurations. The
disabling of individual links typically is not a problem. There are enough redundant
links to allow for successful routing. If all links between two routers are disabled, this
creates a situation very similar to when the connected router is disabled, and thus all
the routing failure scenarios could still occur.

For blades, the situation described in Two Nonadjacent Routers in a Single
Z-dimension Loop on page 318 could occur for multiple blade swaps. Suppose two
nonadjacent blades in a single chassis were to be removed. This would result in an
unrouteable configuration. The solution would be to disable the additional blades in
between the two suspect blades. Of course, this assumes the blades are not required
service blades that cannot be disabled.

324 S–2393–31

Cray XE Network Resiliency [13]

13.2.5 Conclusion

A Cray XE system is a flexible system in that it can accommodate many downed
components. While most combinations of multiple components being disabled are
allowed, there are some combinations that are not allowed. In most cases, this can
be worked around by disabling a couple of additional components. While this can
usually be done in a rectangular structure, in 3 dimensions, or perhaps in a box
structure, quite often it is not necessary to disable the full rectangle or box. The best
approach is to use the routing software to determine if a particular configuration is
usable.

S–2393–31 325

Managing System Software for Cray XE and Cray XT™ Systems

326 S–2393–31

SMW and CLE System Administration
Commands [A]

In addition to the SUSE Linux Enterprise Server (SLES) commands available to
you, this appendix lists the Cray developed commands for administering CLE on
your Cray system.

The system provides the following types of commands for the system administrator:

• Hardware Supervisory System (HSS) commands invoked from the System
Management Workstation (SMW) to control HSS operations; HSS commands are
provided with SMW release packages.

Cray Management Services (CMS) commands invoked from the SMW for CMS
administration. CMS commands are provided with SMW release packages. For
more information about CMS commands, see Using Cray Management Services
(CMS) provided with SMW release packages.

• Cray Linux Environment (CLE) commands invoked from a node to control the
service and compute partitions; CLE commands are provided with CLE release
packages.

A.1 HSS Commands
Table 18 shows the HSS commands and their functions.

Table 18. HSS Commands

Command Description

dbMonitor Controls the monitor process script that starts during system boot to
watch mysqld and restart mysqld if it should crash

getSedcLogValues Displays specified sedc_manager log file records

rtr Routes the Cray network

sedc_manager Invokes the System Environment Data Collections (SEDC) SMW
manager

SMWconfig Automatically configures software on SMW

SMWinstall Automatically installs and configures software on SMW

S–2393–31 327

Managing System Software for Cray XE and Cray XT™ Systems

Command Description

SMWinstallCLE Updates the CMS software on bootroot and sharedroot for
system sets with CLE software installed

xtalive Gets a response from an HSS daemon

xtbootdump Parses a bootinfo-file to determine if xtdumpsys needs to be invoked

xtbootimg Creates, extracts, or updates a Cray bootable image file

xtbootsys Boots specified components in a Cray system

xtbounce Powers components of the Cray system down then up

xtcheckmac Checks for duplicate MAC addresses among L1 and L0 controllers

xtclass Displays the network topology class for this system

xtclean_logs Removes HSS log files based on age

xtclear Clears component flags in the state manager

xtcli Runs the HSS command line

xtcli boot Specifies the types of components to boot

xtcli clear Clears flag status in component state

xtcli part Updates partition configurations

xtcli power Powers a component up or down

xtcon Provides a two-way connection to the console of any running service
node

xtconsole Displays console text from a node

xtconsumer Displays HSS events

xtdaemonconfig Configures HSS daemons dynamically

xtdimminfo Collects and displays summaries from hardware errors reported in the
console file

xtdiscover Discovers and configures the Cray system hardware

xtdumpsys Gathers information when a system stops responding or fails

xterrorcode Displays event error codes

xtfileio Reads or writes a file on an L1 or L0 controller

xtflash Performs automated reflashing and rebooting of L1s and L0s on a Cray
system

xtfwlog For Cray XT systems: Prints out Cray SeaStar chip firmware log

xtfwstat For Cray XT systems: Prints generally useful information from a Cray
SeaStar chip

xtgenid Generates HSS physical IDs

xtgetsyslog Retrieves the /var/log/messages file from L1 or L0 controllers

328 S–2393–31

SMW and CLE System Administration Commands [A]

Command Description

xthb Reports on-chip heartbeats

xthwinv Retrieves hardware component information for selected modules

xtlogfilter Filters information from event router log files

xtlogin Logs on to cabinet and blade control processors

xtmcinfo Gets microcontroller information from cabinet and blade control
processors

xtmem2file Reads CPU or Cray SeaStar chip memory and saves it in a file

xtmemio Reads or writes 32-bit or 64-bit words from CPU or Cray SeaStar chip
memory

xtmemwatch Watches a memory location change

xtnetwatch Watches the Cray system interconnection network for link control
block (LCB) and router errors

xtnid2str Converts node identification numbers to physical names

xtnlrd For Cray XE systems: Responds to fatal link errors by rerouting the
system

xtnmi Collects debug information from unresponsive nodes

xtptltrace For Cray XT systems: Dumps the Portals message trace buffer

xtrsh Invokes a diagnostic utility that concurrently executes programs
on batches of cabinet control processors (L1) and/or blade control
processors (L0)

xtsedcviewer Command-line interface for SEDC

xtshow Shows components with selected characteristics

xtwarmswap For Cray XE systems: Allows Cray XE modules to be warm swapped

xtwatchsyslog Shows all log messages for cabinet control processors (L1 controllers)
and blade control processors (L0 controllers)

S–2393–31 329

Managing System Software for Cray XE and Cray XT™ Systems

A.2 CLE System Administration Commands
Table 19 shows CLE commands and their functions.

Table 19. CLE Commands

Command Description

apmgr Provides interface for ALPS to cancel pending reservations.

csacon Condenses records from the sorted pacct file.

csanodeacct Initiates the end of application accounting on a node.

csanodemerg Initiates collection of individual compute node accounting files.

csanodesum Reads and consolidates application node accounting records.

generate_config.sh Generates the Lustre file system configuration file.

lastlogin Records last date on which each user logged in

lbcd Invokes the load balancer client daemon.

lcrash Used to analyze a dump file generated by the ldump command.

lbnamed Invokes the load balancer service daemon.

ldump Dumps node memory to a file. This is later analyzed with the
lcrash command. ldump may be used to dump service nodes and
compute nodes running CNL. The ldump command is run on the
SMW.

lustre_control.sh Manages Lustre file systems using standard Lustre commands and a
site specific Lustre file system definition file.

nhc_recovery Releases compute nodes on a crashed login node that will not be
rebooted.

projdb Creates and updates system project database for CSA.

rca-helper Used in various administrative scripts to retrieve information from the
Resiliency Communication Agent (RCA).

rsipd Invokes the Realm-Specific IP Gateway Server.

xt-lustre-proxy Invokes the Lustre startup/shutdown, health monitor, and automatic
failover utility.

xtalloc2db Converts a text file to the alloc_mode table in the Service Database
(SDB).

xtattr2db Converts a text file to the attributes table in the Service Database
(SDB).

xtauditctl Distributes auditctl requests to nodes on a Cray system.

xtaumerge Merges audit logs from multiple nodes into a single audit log file.

xtcdr2proc Gets information from the RCA.

330 S–2393–31

SMW and CLE System Administration Commands [A]

Command Description

xtcheckhealth Executes the Node Health Checker.

xtcleanup_after Called by ALPS to check node health.

xtclone Clones the master image directory and overlays a site-specific
template.

xtcloneshared Clones node or class directory in shared root hierarchy.

xtdb2alloc Converts the alloc_mode table in the Service Database (SDB) to a
text file.

xtdb2attr Converts the attributes table in the Service Database (SDB) to a
text file.

xtdb2etchosts Converts service information in the SDB to a text file.

xtdb2filesys Converts the filesystem table of the SDB to a text file.

xtdb2lustrefailover Converts the lustre_failover table in the SDB to a text file.

xtdb2lustreserv Converts the lustre_serv table of the SDB to a text file.

xtdb2nodeclasses Converts the service_processor table of the SDB to a text file.

xtdb2proc Converts the processor table of the SDB to a text file.

xtdb2segment Converts segment table in the Service Database (SDB) to a text file.

xtdb2servcmd Converts the service_cmd table of the SDB to a text file.

xtdb2servconfig Converts the service_config table of the SDB to a text file.

xtdbsyncd Invokes the HSS/SDB synchronization daemon.

xtfilesys2db Converts a text file to the SDB filesystem table.

xtgetconfig Gets configuration information from /etc/sysconfig/xt file.

xthotbackup Creates a backup copy of a system set on the boot RAID.

xthowspec Displays file specialization in the shared root directory.

xtlusfoevntsndr Sends failover events to clients for Lustre imperative recovery.

xtlusfoadmin Displays Lustre automatic failover database tables and
enables/disables Lustre server failover.

xtlustrefailover2db Converts a text file to the SDB lustre_failover table.

xtlustreserv2db Converts a text file to the SDB lustre_service table.

xtnce Displays or changes the class of a node.

xtnodeclasses2db Converts a text file to the service_processor table in the SDB.

xtnodestat Provides current job and node status summary information on a CNL
compute node.

xtoparchive Performs archive operations on shared root files from a given
specification list.

S–2393–31 331

Managing System Software for Cray XE and Cray XT™ Systems

Command Description

xtopco Checks out RCS versioned shared root specialized files.

xtopcommit Commits changes made inside an xtopview session.

xtoprdump Lists shared root file specification and version information.

xtoprlog Provides RCS log information about shared root specialized files.

xtopview Views file system as it would appear on any node, class of nodes, or
all service nodes.

xtpackage Facilitates creation of boot images.

xtpkgvar Creates a skeleton structure of /var.

xtproc2db Converts a text file to the processor table of the SDB.

xtprocadmin Gets/sets the processor flag in the SDB.

xtrelswitch Performs release switching by manipulating symbolic links in the
file system and by setting the default version of module files that are
loaded at login.

xtrsipcfg Generates and optionally installs the necessary RSIP client and server
configuration files.

xtsegment2db Converts a text file to segment table in the Service Database (SDB).

xtservcmd2db Converts a text file to the service_cmd table of the SDB.

xtservconfig Adds, removes, or modifies the service_config table of the
SDB.

xtservconfig2db Converts a text file to the service_config table of the SDB.

xtshutdown Shuts down the Cray XT series service nodes in an orderly fashion.

xtspec Specializes files for nodes or classes.

xtunspec Unspecializes files for nodes or classes.

xtverifyconfig Verifies the coherency of /etc/init.d files across all shared root
views.

xtverifyshroot Checks the configuration of the shared-root file system.

332 S–2393–31

System States [B]

Table 20 defines state definitions for system components. States are designated by
uppercase letters. Table 21 shows states that are common to all components.

Note: The state of off means that a component is present on the system. If the
component is an L0, node, or ASIC, then this will also mean that the component is
powered off. If you disable a component, the state shown becomes disabled.
When you use the xtcli enable command to enable that component for use
once again, its state switches from disabled to off. In the same manner,
enabling an empty component means that its state switches from empty to off.

Table 20. State Definitions

State L1 L0 Cray ASIC CPU Link

OFF Powered
off

Powered
off

Powered
off

Powered
off

Link is
down

ON Powered up
and booted

Powered up
and booted

Powered up Powered up Link is up

HALT – – – OS halted –

STANDBY – – – Booted; for
systems
with
SeaStar
ASICs,
Portals is
quiesced

–

READY Operational;
running
without
problems
and sending
heartbeats

Operational;
running
without
problems
and sending
heartbeats

Routing
table is
loaded

Booted; for
systems
with
SeaStar
ASICs,
Portals
is not
quiesced

–

S–2393–31 333

Managing System Software for Cray XE and Cray XT™ Systems

Table 21. Additional State Definitions

State Description

DISABLED Operator disabled this component.

EMPTY Component does not exist.

N/A Component cannot be accessed by the system.

RESVD Reserved; new jobs are not allocated to this component.

There are two error flags. These can occur with any state.

• WARNING

A condition was detected that is outside the normal operating range but is not
yet dangerous.

• ALERT

A dangerous condition was detected, and the unit that it affected has shut itself
down.

Table 22 shows the states by component for which the xtcli commands run.

Table 22. xtcli Commands and Allowed States

xtcli
Command Subcommand

L1
Controller

L0
Controller Cray ASIC Node Link

power up ON OFF OFF OFF N/A

down READY ON ON, READY,
DIAG

ON, HALT,
DIAG

N/A

up_slot – OFF OFF OFF N/A

down_slot – ON any any N/A

force_down any any any any N/A

halt N/A N/A N/A STANDBY,
READY

N/A

boot N/A N/A N/A ON OFF

334 S–2393–31

Error Codes [C]

Table 23 shows the Cray system error codes. When a Cray system error occurs, the
related message is displayed on the SMW.

You can also use the xterrorcode command on the SMW to display a single error
code or the entire list of error codes. A system error code entered in a log file is a bit
mask; invoking the xterrorcode bitmask_code_number command on the SMW
displays the associated error code noted in the following table for example:

smw:~> xterrorcode 131279
Maximum error code (RS_NUM_ERR_CODE) is 297
code = 207, string = 'node voltage fault'

Table 23. System Error Codes

Code Meaning

0 Success

1 L1 event aborted

2 Cabinet Power Up Fault

3 Cabinet Power Down Fault

4 Cabinet Emergency Power Off Fault

5 Cabinet Systems Daemon Aborted

6 Cabinet MicroController Communications Fault

7 Cabinet Uplink Fault

8 L1 to Event Router Communications Fault

9 Cabinet Cage Communications Fault

10 Cabinet Fan VFD Communications Fault

11 Cabinet Exhaust Pod Communications Fault

12 Cabinet Fan Pod Communications Fault

13 Cabinet Valere Communications Fault

14 Cabinet Received Invalid L0 ID

15 Cabinet Received Unexpected Event

16 Cabinet Blocked Inlet Fault

17 Cabinet Fan Overload Fault

S–2393–31 335

Managing System Software for Cray XE and Cray XT™ Systems

Code Meaning

18 Cabinet L1 Micro Initial Test Fault

19 Cabinet Set Thermal Mode Fault

20 Cabinet Calibration Valve Fault

21 Cabinet Fan RPM Fault

22 Cabinet (L1) Controller Core Temp Fault

23 Cabinet Exhaust Air Over Temp Fault

24 Cabinet Inlet Air Over Temp Fault

25 Fan Pod Temperature Fault

26 Cabinet 5V Fault

27 Cabinet 3.3V Fault

28 Cabinet 2.5V Fault

29 Cabinet Sensor Check Fault

30 Cabinet Low Air Pressure Fault

31 L0 Heartbeat Fault

32 Cabinet Received Unexpected L0 Heartbeat

33 Cabinet Slot Up Fault

34 Cabinet Slot Down Fault

35 Invalid Fan Pod ID

36 Cabinet Power Up Warning

37 Cabinet Power Down Warning

38 Cabinet Slot Up Warning

39 Cabinet Slot Down Warning

40 Cabinet Power Transition Time-out

41 Cabinet Power Down Time-out

42 Cabinet Slot Up Time-out

43 Cabinet Slot Down Time-out

44 Cabinet Fan Speed Warning

45 Cabinet Controller Temp Warning

46 Cabinet Exhaust Temp Warning

47 Cabinet Inlet Temp Warning

48 Fan Pod Temperature Warning

49 Cabinet 5V Warning

50 Cabinet 3.3V Warning

336 S–2393–31

Error Codes [C]

Code Meaning

51 Cabinet 2.5V Warning

52 Cabinet Sensor Check Warning

53 Cabinet Calibration Valve Warning

54 Cabinet Low Air Pressure Warning

55 L0 Not Responding Warning

56 L1 Received Invalid State Response

57 Too Many Faults to Route

58 l0rtrd: Out of Memory

59 l0rtrd: Software Error

60 l0rtrd: SSI Access Failed

61 Routing Configuration Error

62 LCB PLL Lock Timeout

63 LCB Write Failed

64 LCB Initialization Failed

65 LCB/routing Phase 1 Timeout

66 LCB/routing Phase 2 Timeout

67 LCB/routing Phase 3 Timeout

68 Router Initialization Timeout

69 LCB link inactive

70 LCB Read Failed

71 L1 Heartbeat Failed

72 Request format error, or invalid flash partition

73 System call on target L0 or L1 failed

74 Image file was inaccessible or bad checksum

75 An operation has timed out

76 No space on L0/L1 ramdisk for images

77 Burn-to-flash I/OCtl failed; corrupt flash chip

78 Internal inconsistency

79 ev_len is not big enough

80 There are no svc ids

81 There are duplicate svc ids

82 Only L0 svc ids are allowed

83 Only one bulk transfer context is allowed

S–2393–31 337

Managing System Software for Cray XE and Cray XT™ Systems

Code Meaning

84 Badly formed bulk transfer context

85 No filename in the bulk transfer context

86 No valid databuf pointer in the bulk transfer context

87 Datalen is zero in the bulk transfer context

88 BULK_FLAG_WRITE must be set in the bulk transfer context

89 bulk_data_compute_bytes_needed() failed

90 For L0 svc id, file transfers only

91 For node svc id, memory transfers only

92 Invalid characters found in filename

93 Unable to setup L0 <-> RCA config area

94 Unable to un-setup L0 <-> RCA config area

95 SSI write failed

96 SSI read failed

97 SSI HT map failed

98 SSI HT unmap failed

99 ioctl() to /dev/l0sys failed

100 Unable to load program into processor memory

101 Unable to load dram config info

102 Heartbeat check failed

103 Coldstart failed to complete

104 Shell parsing routine failed

105 Unable to create file

106 Unable to open file

107 Unable to write file

108 Unable to read file

109 fstat() failed

110 Unable to spawn process

111 i2c write failed

112 i2c read failed

113 Invalid L0 board type

114 Unable to reset jtag

115 Unable to initialize SeaStar

116 vsel init failed

338 S–2393–31

Error Codes [C]

Code Meaning

117 RCA channel not open

118 Write to RCA channel failed

119 Event is too big to go across RCA channel

120 Bulk transfer request is too big

121 Unsupported ui event

122 Internal power manager failure

123 Power sequence is already in progress

124 Power sequence aborted

125 Power sequence timeout

126 Bulk transfer address must be aligned on a 32-bit boundary

127 bulk transfer datalen must be a multiple of 4

128 Unable to start the SIC processor

129 Unable to halt the SIC processor

130 Diag generic error

131 Software error

132 Diag hw error

133 Diag init error

134 Diag system call failure

135 Failed to allocate memory

136 Invalid diag option or argument

137 Invalid NULL pointer

138 Diag linked function error

139 Unable to remove file

140 Unable to close file

141 seacheck generic error

142 seacheck init error

143 seacheck sw error

144 seacheck hw error

145 memtest init error

146 memtest sw error

147 memtest hw error

148 cpuburn init error

149 cpuburn sw error

S–2393–31 339

Managing System Software for Cray XE and Cray XT™ Systems

Code Meaning

150 cpuburn hw error

151 Invalid state for requested power command

152 Item removed from power sequence due to upstream fault or
state

153 SM failed clear flag request by UI

154 SM failed set flag request by UI

155 SM failed set enable state request by UI

156 SM failed set empty state request by UI

157 SM failed set disable state request by UI

158 Cray SeaStar invalid state for routing

159 System interconnection network link invalid state for routing

160 No matching ID found in State or Trans request

161 CDR Tree Node contained null id

162 Portals code not found

163 Portals code failed to run

164 Request list id has invalid type

165 Power sequence does not apply to this item

166 System interconnection network boot failed

167 Boot manager timeout

168 Node is not in bootable state

169 Node is not in haltable state

170 Boot manager internal error

171 Unable to seek to specified file position

172 Boot manager memory error

173 Boot manager CPI/O package error

174 Boot node daemon initialization error

175 Boot node daemon unknown error

176 Item state 'error' is invalid for requested command

177 Item state 'off' is invalid for requested command

178 Item state 'on' is invalid for requested command

179 Item state 'standby' is invalid for requested command

180 Item state 'disable' is invalid for requested command

181 Item state 'ready' is invalid for requested command

340 S–2393–31

Error Codes [C]

Code Meaning

182 Item state 'diag' is invalid for requested command

183 Item state 'halt' is invalid for requested command

184 Item state 'NA' is invalid for requested command

185 Item state 'empty' is invalid for requested command

186 Item state 'unknown' is invalid for requested command

187 Alert flag set for one or more Cray SeaStar chips, cannot route

188 Invalid request

189 Alert flag is set

190 Cabinet Inlet Air Under Temp Fault

191 The Event has too many ids

192 Unable to scrub SeaStar memory

193 Diagmanager is running another diagnostic session

194 Diagmanager did not start this diagnostic

195 No diag scheduled

196 Diagnostic was running when session terminated

197 Diagmanager timeout triggered before diag exited

198 Diagnostic exited with warning

199 Diagnostic exited with fail

200 Diagnostic exited without sending termination event

201 Diagmanager could not parse ui request event

202 Diagmanager failed to get the lock for the components requested
for this session

203 Memory comparison failed

204 Node heartbeat fault

205 Cray SeaStar chip heartbeat fault

206 SM was not the target of the event

207 Node voltage fault

208 Node temperature fault

209 Node health check fault

210 Cray SeaStar chip voltage fault

211 Cray SeaStar chip temperature fault

212 Cray SeaStar chip health check fault

213 Previous diagnostic failed on this or parent component

S–2393–31 341

Managing System Software for Cray XE and Cray XT™ Systems

Code Meaning

214 Excessive SeaStar memory SBE count

215 SeaStar Memory MBE fault

216 VERTY health check fault

217 Invalid partition id in id list

218 Invalid state for this operation

219 Id lookup failed

220 Invalid parameter or id found

221 Generating SM data failed

222 Id is not in the partition

223 SM partition config update failed

224 Unable to obtain state report from this target

225 Received state report from a previously failed target

226 Mismatch in the target state report and our state information

227 Generating partition data failed

228 Locking components failed

229 Failed to process received event

230 SS Powered OFF while CPU still running

231 Alert set on component from UI

232 Alert on component as SS is in alert

233 Alert received from Valere module

234 Cabinet door security breach

235 Cabinet doors secure

236 Item state 'enable' is invalid for requested command

237 Power manager failed to get the lock for the components
requested for this session

238 Session aborted by user request

239 Opteron Built-In Self Test failed

240 Boot/SDB node lookup failed

241 Boot/SDB node has invalid state

242 Boot/SDB node is not a member of this partition

243 One of the partition member id is already in other partition

244 Invalid partition state

245 Partition is not configured

342 S–2393–31

Error Codes [C]

Code Meaning

246 Invalid id found in Boot/SDB list

247 Partition member lookup failed

248 Invalid partition member state found

249 Invalid id found in partition request id list

250 Invalid partition state: partition is not active

251 Requested ids spanning multiple partitions

252 L1 cage VRM fault

253 PIC Flash operation already in progress

254 PIC Flash attempted with write protect enabled

255 L0 hotswap lever activated

256 Loadable library not found

257 Symbol not found

258 Requested diagnostic is incompatible with this hardware

259 Invalid command in attribute event

260 Invalid module type

261 Failed to set an attribute

262 i2c open failed

263 Sending ec_ssdc_req to L0 failed

264 Parsing ssdc config file failed

265 Parsing ec_ui_ssdc_req failed

266 Invalid ssdc config in L0 request

267 No register config found in SSDC conf

268 Sending ec_sedc_req to L0 failed

269 Parsing SEDC config file failed

270 Parsing ec_ui_sedc_req failed

271 Invalid SEDC config in L0/L1 request

272 No register config found in SEDC conf

273 Generating SEDC data event failed

274 SEDC UI registration failed

275 Error in pthread_create()

276 Error in pthread_join()

277 Error in component name

278 hss_sysd executed not on the controller

S–2393–31 343

Managing System Software for Cray XE and Cray XT™ Systems

Code Meaning

279 Error in allocation of memory

280 Boot pthread canceled due to timeout

281 Cabinet power up pthread canceled due to timeout

282 Cabinet power down pthread canceled due to timeout

283 Slot power up pthread canceled due to timeout

284 Slot power down pthread canceled due to timeout

285 Module power up pthread canceled due to timeout

286 Module power down pthread canceled due to timeout

287 Module power up failed on blades

288 Module power down failed on blades

289 hwinit pthread canceled due to timeout (bbinit on
ct_sgBlade)

290 hwinit pthread canceled due to timeout (hwinit on
ct_bwBlade)

291 bbinit failed on ct_sgBlade

292 hwinit failed on ct_bwBlade

293 MMR/MEMORY transfer failure in do_hss_rw_work()

294 MMR/MEMORY transfer failed due to invalid command in the
event

295 ec_route_phase3 failed

296 Invalid configuration specification

297 JTAG write failed

298 JTAG read failed

299 JTAG lock failed

300 JTAG failed

301 LCB Link active, is this a live system?

302 Portals firmware did not respond to a mailbox command

303 Portals firmware ignored a mailbox command

304 Portals firmware responded unexpectedly to a mailbox
command

305 Invalid subcommand

306 Lock operation failed

307 Operation not permitted, lock in effect

308 PCIX voltage fault

344 S–2393–31

Error Codes [C]

Code Meaning

309 PCIX health check fault

310 L1 micro flash read failed

311 L1 micro flash write failed

312 L1 micro flash erase failed

313 L1 micro flash verification failed

314 L1 micro in a bad state for flash operation

315 L1 micro in unknown state

316 L1 micro cannot be flashed, no bootloader present

317 Cabinet fan VFD failure

318 Cabinet fan underload

319 Cabinet over-current condition

320 Cabinet under-voltage condition

321 Node does not accept shutdown events

322 L0 quiesce is already active

323 L0 quiesce is not active

324 Node does not accept quiesce events

325 Node not running for quiesce/unquiesce

326 Node timed out waiting for quiesce

327 Node timed out waiting for unquiesce

328 Cabinet power controller communication fault

329 Gemini BIST failure

330 Gemini CCLK/LCLK PLL lock timeout

331 Gemini SerDes PLL lock timeout

332 Gemini SMS timeout

333 Gemini SMS failure

334 CPU Model Mismatch

335 CPU Speed Mismatch

336 Memory Speed Mismatch

337 Memory Configuration Mismatch

338 Mezzanine Configuration Mismatch

339 Role not changed: node on service blade (HW)

340 Role not changed: invalid node state

341 Role not changed: DB node not updated

S–2393–31 345

Managing System Software for Cray XE and Cray XT™ Systems

Code Meaning

342 Database update failed

343 Database open failed

344 Memory G34 DIMM Mismatch

345 Memory G34 DIMM SPD Data Mismatch

346 SM failed set enable. Parent(s) not enabled.

347 Warning: SM state change successful, but forced (-f).

348 Component state not disabled

349 Component state not enabled

350 Component state not empty

351 Gemini: state not enabled

352 SeaStar: state not enabled

346 S–2393–31

Remote Access to the SMW [D]

Virtual Network Computing (VNC) software enables you to view and interact
with the SMW from another computer. The Cray system provides a VNC
server, Xvnc; you must download a VNC client to connect to it. See RealVNC
(http://www.realvnc.com/) or TightVNC (http://www.tightvnc.com/) for more
information.

Note: The VNC software requires a TCP/IP connection between the server and the
viewer. Some firewalls and site security do not allow this connection.

Cray supplies a VNC account cray-vnc.

Procedure 84. Starting the VNC server

1. Log on to the SMW as root user.

2. Use the chkconfig command to check the current status of the server:

smw:~ # chkconfig vnc
vnc off

3. Disable xinetd startup of Xvnc.

If the chkconfig command you executed in step 2 reports that Xvnc was
started by INET services (xinetd):

smw:~ # chkconfig vnc
vnc xinetd

execute the following commands to disable xinetd startup of Xvnc
(xinetd startup of Xvnc is the SLES 11 default, but it usually is disabled by
chkconfig):

smw:~ # chkconfig vnc off
smw:~ # /etc/init.d/xinetd reload
Reload INET services (xinetd). done

If no other xinetd services have been enabled, the reload command will
return failed instead of done. If the reload command returns failed, this
is normal and you can ignore the failed notification.

4. Use the chkconfig command to start Xvnc at boot time:

smw:~ # chkconfig vnc on

5. Start the Xvnc server immediately:

smw:~ # /etc/init.d/vnc start

S–2393–31 347

http://www.realvnc.com/
http://www.tightvnc.com/

Managing System Software for Cray XE and Cray XT™ Systems

If the password for cray-vnc has not already been established, the system
prompts you for one. You must enter a password to access the server.

Password: ********
Verify:
Would you like to enter a view-only password (y/n)? n
xauth: creating new authority file /home/cray-vnc/.Xauthority

New 'X' desktop is smw-xt:1

Creating default startup script /home/cray-vnc/.vnc/xstartup
Starting applications specified in /home/cray-vnc/.vnc/xstartup
Log file is /home/cray-vnc/.vnc/smw-xt:1.log

smw:~ # ps -eda | grep vnc
1839 pts/0 00:00:00 Xvnc

Note: The startup script starts the Xvnc server for display :1.

To access the Xvnc server, use a VNC client, such as vncviewer,
tight_VNC, vnc4, or a web browser. Direct it to the SMW that is running
Xvnc. Many clients allow you to specify whether you want to connect in
view-only or in an active mode. If you choose active participation, every mouse
movement and keystroke made in your client is sent to the server. If more than
one client is active at the same time, your typing and mouse movements are
intermixed.

Note: Commands entered through the VNC client affect the system as if they
were entered from the SMW. However, the main SMW window and the VNC
clients cannot detect each other. It is a good idea for the administrator who is
sitting at the SMW to access the system through a VNC client.

Procedure 85. For workstation or laptop running Linux or Mac OS: Connecting
to the VNC server via ssh tunnel

• If you are connecting from a workstation or laptop running Linux or Mac OS,
enter the vncviewer command shown below.

The first password you enter is for crayadm on the SMW. The second password
you enter is for the VNC server on the SMW chosen when /etc/init.d/vnc
is run for the first time on the SMW.

/home/mary> vncviewer -via crayadm@smw localhost:1
Password: ********
VNC server supports protocol version 3.130 (viewer 3.3)
Password: ********
VNC authentication succeeded
Desktop name "cray-vnc's X desktop (smw:1)"
Connected to VNC server, using protocol version 3.3

348 S–2393–31

Remote Access to the SMW [D]

Procedure 86. For workstation or laptop running Windows: Connecting to the
VNC server via ssh tunnel

• If you are connecting from a computer running Windows, then both a VNC client
program such as TightVNC and an SSH program, such as PuTTY, SecureCRT, or
OpenSSH are recommended.

Although TightVNC encrypts VNC passwords sent over the network, the rest
of the traffic is sent unencrypted. To avoid a security risk, install and configure
an SSH program that creates an SSH tunnel between TightVNC on the local
computer and the remote VNC server.

After installing TightVNC, double-click on the TightVNC icon, enter the
hostname and VNC screen number, smw:1, and then click on the Connect
button.

S–2393–31 349

Managing System Software for Cray XE and Cray XT™ Systems

350 S–2393–31

Updating the Time Zone [E]

When you install the Cray Linux Environment (CLE) operating system, the Cray
system time is set at US/Central Standard Time (CST), which is six hours behind
Greenwich Mean Time (GMT). You can change this time.

Note: When a Cray system is initially installed, the time zone set on the SMW is
copied to the boot root, shared root and CNL boot images.

To change the time zone on the SMW, L0 controller, L1 controller, boot root, shared
root or for a CNL image, follow the appropriate procedure below.

Procedure 87. Changing the time zone for the SMW and the L1 and L0
controllers

Warning: Perform this procedure while the Cray system is shut down; do not flash
L0 and L1 controllers while the Cray system is booted.

You must be logged on as root. In this example, the time zone is changed from
"America/Chicago" to "America/New_York".

1. Ensure the L0 and L1 controllers are responding.

smw:~ # xtalive -a l0sysd s0

2. Check the current time zone setting for the SMW and controllers.

smw:~ # date
Wed May 26 21:30:06 CDT 2010

smw:~ # xtrsh -l root -s /bin/date s0
c0-0c0s2 : Wed May 26 21:30:51 CDT 2010
c0-0c0s5 : Wed May 26 21:30:51 CDT 2010
c0-0c0s7 : Wed May 26 21:30:51 CDT 2010
c0-0c1s1 : Wed May 26 21:30:51 CDT 2010
.
.
.
c0-0 : Wed May 26 21:30:52 CDT 2010

3. Verify that the zone.tab file in the /usr/share/zoneinfo directory
contains the time zone you want to set.

smw:~ # grep America/New_York /usr/share/zoneinfo/zone.tab
US +404251-0740023 America/New_York Eastern Time

S–2393–31 351

Managing System Software for Cray XE and Cray XT™ Systems

4. Create the time conversion information files.

smw:~ # date
Wed May 26 21:32:52 CDT 2010
smw:~ # /usr/sbin/zic -l America/New_York
smw:~ # date
Wed May 26 22:33:05 EDT 2010

5. Modify the clock file in the /etc/sysconfig directory to set the
DEFAULT_TIMEZONE and the TIMEZONE variables to the new time zone.

smw:/etc/sysconfig # grep TIMEZONE /etc/sysconfig/clock
TIMEZONE="America/Chicago"
DEFAULT_TIMEZONE="US/Eastern"
smw:~ # vi /etc/sysconfig/clock
make changes
smw:~ # grep TIMEZONE /etc/sysconfig/clock
TIMEZONE="America/New_York"
DEFAULT_TIMEZONE="US/Eastern"

6. Copy the /etc/localtime directory to /opt/tfptboot and restart rsms.

smw:~ # cp /etc/localtime /opt/tftpboot
smw:~ # /etc/init.d/rsms restart

7. Exit from the root login.

smw:~ # exit

8. Erase the flash memory of the L1s and flash the updated time zone.

crayadm@smw:~> fm -w -t l1
crayadm@smw:~> xtflash -t l1

9. Erase the flash memory of the L0s and flash the updated time zone.

crayadm@smw:~> fm -w -t l0
crayadm@smw:~> xtflash -t l0

10. Check the current time zone setting for the SMW and controllers.

crayadm@smw:~> date
Wed May 26 23:07:07 EDT 2010
crayadm@smw:~> xtrsh -l root -s /bin/date s0
c0-0c1s1 : Wed May 26 23:07:16 EDT 2010
c0-0c0s7 : Wed May 26 23:07:16 EDT 2010
c0-0c1s3 : Wed May 26 23:07:16 EDT 2010
.
.
.
c0-0 : Wed May 26 23:07:15 EDT 2010

11. Bounce the system.

crayadm@smw:~> xtbounce s0

352 S–2393–31

Updating the Time Zone [E]

Procedure 88. Changing the time zone on the boot root and shared root

Perform the following steps to change the time zone. You must be logged on as
root. In this example, the time zone is changed from "America/Chicago" to
"Europe/London".

1. Confirm the time zone setting on the SMW.

smw:~ # cd /etc/sysconfig
smw:~ # grep TIMEZONE clock
TIMEZONE="Europe/London"
DEFAULT_TIMEZONE="Europe/London"

2. Log on to the boot node.

smw:~ # ssh root@boot
boot:~ #

3. Verify that the zone.tab file in the /user/share/zoneinfo directory
contains the time zone you want to set.

boot:~ # cd /usr/share/zoneinfo
boot:~ # grep Europe/London zone.tab
GB +512830-0001845 Europe/London Great Britain

4. Create the time conversion information files.

boot:~ # date
Fri Mar 10 05:19:38 CST 2007
boot:~ # /usr/sbin/zic -l Europe/London
boot:~ # date
Fri Mar 10 11:21:31 GMT 2007

5. Modify the clock file in the /etc/sysconfig directory to set the
DEFAULT_TIMEZONE and the TIMEZONE variables to the new time zone.

boot:~ # cd /etc/sysconfig
boot:~ # grep TIMEZONE clock
TIMEZONE="America/Chicago"
DEFAULT_TIMEZONE="America/Chicago"
boot:~ # vi clock
make changes
boot:~ # grep TIMEZONE clock
TIMEZONE="Europe/London"
DEFAULT_TIMEZONE="Europe/London"

6. Switch to the default view by using xtopview.

Note: If the SDB node has not been started, you must include the -x
/etc/opt/cray/sdb/node_classes option when you invoke the
xtopview command.

boot:~ # xtopview
default/:/ #

S–2393–31 353

Managing System Software for Cray XE and Cray XT™ Systems

7. Verify that the zone.tab file in the /user/share/zoneinfo directory
contains the time zone you want to set.

default/:/ # cd /usr/share/zoneinfo
default/:/ # grep Europe/London zone.tab
GB +512830-0001845 Europe/London Great Britain

8. Create the time conversion information files.

default/:/ # date
Fri Mar 10 05:22:38 CST 2007
default/:/ # /usr/sbin/zic -l Europe/London
default/:/ # date
Fri Mar 10 11:24:31 GMT 2007

9. Modify the clock file in the /etc/sysconfig directory to set the
DEFAULT_TIMEZONE and the TIMEZONE variables to the new time zone.

default/:/ # cd /etc/sysconfig
default/:/ # grep TIMEZONE clock
TIMEZONE="America/Chicago"
DEFAULT_TIMEZONE="America/Chicago"
default/:/ # vi clock
make changes
default/:/ # grep TIMEZONE clock
TIMEZONE="Europe/London"
DEFAULT_TIMEZONE="Europe/London"

10. Exit xtopview.

default/:/ # exit
boot:~ #

Procedure 89. Changing the time zone for compute nodes

The time zone for a CNL compute node can be changed by running the xtpackage
command to copy the /etc/localtime file from the SMW to the CNL load file
which is used to create a new boot image with xtbootimg. For example, with a
source of /opt/xt-images/hostname-3.1.20.

1. Confirm the time zone setting on the SMW.

smw:~ # cd /etc/sysconfig
smw:~ # grep TIMEZONE clock
TIMEZONE="America/Chicago"
DEFAULT_TIMEZONE="America/Chicago"

2. Update the boot image to include these changes; follow the steps in Procedure
2 on page 68.

The time zone is not changed until you boot the compute nodes with the updated
boot image.

354 S–2393–31

Creating Modulefiles [F]

This appendix provides a template and an example of a modulefile that you can use as
you construct modulefiles for your site.

F.1 Modulefile Template
The following listing provides a template of the elements required in a modulefile.
Use this as your guide when creating your own modulefiles.

#%Module##
#
Generic modulefile template
#

###
Add your verbiage into ModulesHelp area. This information
will be seen by those invoking
module help [my_product]
###

proc ModulesHelp { } {
puts stderr "This modulefile defines the library paths and"
puts stderr "include paths needed to use "
puts stderr "[my_product]."
puts stderr ""
}

###
[my_product] is the name consistently used in the modulefile
to set environment variables. It may be the same name as
the modulefile and the rpm, however the modulefile and rpm
will be named in a lower case name while [my_product] should
be upper case, i.e. "module load acml" and ACML_DIR.
###

set is_module_rm [module-info mode remove]

###
If [my_product] will not be versioned, then set
[my_product]_CURPATH to the location of [my_product].
If you use versions, then you only need to change one
number as you create a module for another product version.
###

set [my_product]_LEVEL [product-version]
set [my_product]_CURPATH /opt/[installed-product-name]/$[my_product]_LEVEL

S–2393–31 355

Managing System Software for Cray XE and Cray XT™ Systems

setenv [my_product]_DIR $[my_product]_CURPATH

###
Add your executable to PATH.
###
#prepend-path PATH $[my_product]_CURPATH/bin

###
Add your dynamic library path. This is *NOT* for statically built
libraries. For those use [my_product]_POST_LINK_OPTS below.
###
#prepend-path LD_LIBRARY_PATH $[my_product]_CURPATH/lib

###
Add MANPATH and INFOPATH
###
if { [file isdirectory $[my_product]_CURPATH/info] == 1} {
prepend-path INFOPATH $[my_product]_CURPATH/info

}

if { [file isdirectory $[my_product]_CURPATH/man] == 1} {
prepend-path MANPATH $[my_product]_CURPATH/man]

}

###
To make our product work in commandline generation, you must
add [my_product] to the PE_PRODUCT_LIST.
###
append-path PE_PRODUCT_LIST [my_product]

###
The following 5 *_OPTS environment variables allow placement of compiler
commandline options. The PRE and POST in the names refers to
the location before or after the user-specified arguments.
Remember that, in general, the linker evaluates its commandline from left
to right, but the compiler generally uses the last argument in the list.
The commandline is created for you in this order:
cc [PRE_COMPILE_OPTS] [PRE_LINK_OPTS] user_args [POST_COMPILE_OPTS] \
[POST_LINK_OPTS] [INCLUDE_OPTS]
###

###
Compiler options. The first character in this list must be a
space and the list must be double quoted.
#
You can define a fortran modules path for pgi-compiled files by adding it
as a "-I' options to [my_product]_PRE_COMPILE_OPTS.

#setenv [my_product]_PRE_COMPILE_OPTS
#setenv [my_product]_POST_LINK_OPTS

###
Options passed to the linker, including
-L paths and -l library names. The -L and -l are used for statically built
libraries. The first character in the list must be a space and the list
must be double quoted. The -L and -l arguments should be added to
[my_product]_POST_LINK_OPTS.

356 S–2393–31

Creating Modulefiles [F]

#setenv [my_product]_PRE_LINK_OPTS
#setenv [my_product]_POST_COMPILE_OPTS

#
Include search path
#

#setenv [my_product]_INCLUDE_OPTS

Example 114. Module file example

This example shows a product, kate, with library files libkate.a and
libkit.a, which were built with 64-bit PGI. Naming directories pgi64 helps keep
track of library formats. You can create whatever directory structure works for you.
Likewise, naming the modulefile kate-pgi tells a potential user that this would
be loaded when compiling using PGI.

#%Module##
#
kate-pgi modulefile
#

proc ModulesHelp { } {
puts stderr "This modulefile defines the library paths and"
puts stderr "include paths needed to use the pgi-compiled kate."
puts stderr "Libraries -libkate.a, libkit.a, libkate.so and compiler"
puts stderr "option, -Mprof=mpi, are added. The utility run-kate"
puts stderr "is added to PATH."
}

###
The modulefile kate-gnu could load gnu-built kate libraries,
which are defined at $KATE_CURPATH/gnu64/lib
###

set is_module_rm [module-info mode remove]

set KATE_LEVEL 2.0
set KATE_CURPATH /opt/kate/$KATE_LEVEL

prepend-path PATH $KATE_CURPATH/bin
prepend-path LD_LIBRARY_PATH $KATE_CURPATH/pgi64/lib
prepend-path MANPATH $KATE_CURPATH/man

append-path PE_PRODUCT_LIST KATE

###
Definitions for these must begin with a space.
Remember that in general the linker evaluates its command-line
options left to right, while the compiler takes the last one
it detects. You can define a Fortran modules path for pgi compiler
by adding it as a "-I" option to *_POST_COMPILE_OPTS.
###
setenv KATE_PRE_COMPILE_OPTS " -Mprof=mpi"
setenv KATE_POST_LINK_OPTS " -L $KATE_CURPATH/lib -lkate -lkit"
setenv KATE_POST_COMPILE_OPTS " -I $KATE_CURPATH/fortran_modules_dir"
setenv KATE_INCLUDE_OPTS " -I $KATE_CURPATH/include"

S–2393–31 357

Managing System Software for Cray XE and Cray XT™ Systems

F.2 Sharing Your Modulefile
Add your modulefile to /opt/modulefiles or to another directory. If you
use another directory, you must add the path to your environment by using a
module use command; for example, module use /my/module/path.
To make the new modulefile path available to all users, edit the file
/opt/modules/init/.modulespath.

F.3 Modulefile Help
Using the module command, you can get online help about any module in your
system:

module help modulefile

358 S–2393–31

PBS Professional Licensing for Cray
Systems [G]

G.1 Introduction
PBS Professional uses a licensing scheme based on FLEXnet with a central license
server that allows licenses to float between servers. This reduces the complexity of
managing environments with multiple, independent PBS installations and simplifies
configuration when you run other software packages that use FLEXnet licensing.

The PBS server and scheduler run on the Cray service database (SDB) node. By
default, the SDB node is only connected to the Cray system high-speed network
(HSN) and cannot access an external FLEXnet license server. Various options to set
up network connectivity between the FLEXnet server and the SDB node are detailed
below. Determine which option is best suited to your needs and implement that
solution prior to installing the PBS Professional software from Altair.

Note: Regardless of the option chosen, you must run a PBS Professional MOM
daemon on each login node where users may launch jobs.

PBS Professional configuration options on a Cray system include:

• Running the PBS Professional server and scheduler on a Cray system service
node. If you choose to run the PBS Professional scheduler and server on a login
node, you should be aware that these daemons consume processor and memory
resources and have the potential to impact other processes running on the login
node. In addition, any service running on a node where users are allowed to run
processes increases the potential for interruption of that service. While these
risks are generally low, it is important that you consider them before selecting
this option. Refer to Migrating the PBS Professional Server and Scheduler on
page 360 to configure PBS Professional using this strategy.

• Moving the PBS Professional server and scheduler external to the Cray
system. The PBS Professional scheduler requests MPP data from one of the
MOM daemons running on the Cray system login nodes. The volume of this
data is dependent upon the size and utilization of the Cray system. If you run
the PBS Professional scheduler outside of the Cray system, the scheduler
cycle time could increase due to decreased bandwidth and increased latency in
network communication. In most cases, the difference in cycle time is negligible.
However, if your system has larger node counts (> 8192), you may want to avoid
this option. To configure PBS Professional for this strategy, refer to Migrating the
PBS Professional Server and Scheduler on page 360.

S–2393–31 359

Managing System Software for Cray XE and Cray XT™ Systems

• Configuring the SDB node as an RSIP client. This options allows you to leave
the PBS Professional scheduler and server on the SDB node. If you are already
running RSIP, this may be an attractive option. Cray recommends a dedicated
network node for the RSIP server, which may not be desirable if you are not
already running RSIP. Follow the appropriate procedure in Configuring RSIP to
the SDB Node on page 362 to configure the SDB node as an RSIP client.

• Configuring Network Address Translation (NAT) to forward IP packets to
and from the SDB node. This may be the best choice if you intend to use packet
forwarding exclusively for PBS Professional licensing and do not mind running
NAT services on a login node. The steps to configure NAT IP forwarding to the
SDB node are described in Network Address Translation (NAT) IP Forwarding
on page 365.

• Installing a network card in the SDB node to connect it to the external
network. With this option you do not need to configure RSIP or NAT, but you
must purchase a PCIe network interface card (NIC) for a modest cost. This is an
attractive option if you want to access the SDB node directly from your external
network. This procedure does not require connection via another node on the
Cray system. The steps to configure this option are covered in Installing and
Configuring a NIC on page 367.

Cray recommends that system administrators consult their local networking and
security staff prior to selecting one of these options. Once you have chosen
and configured a method for accessing the FLEXnet server, complete the PBS
Professional FLEXnet configuration as described in the Altair License Manager
Installation Guide. For additional information about using the qmgr command to
set up the pbs_license_file_location resource, see the PBS Professional
Installation and Upgrade Guide from Altair Engineering, Inc. For more information,
see: http://www.altair.com/.

G.2 Migrating the PBS Professional Server and Scheduler
Before migrating the PBS Professional server and scheduler off of the SDB node
you must first select the target host. PBS Professional versions 9.2 and beyond are
MPP aware, meaning they are capable of scheduling jobs to Cray systems. If you
already have a central PBS Professional server and scheduler, simply add the Cray
system to the list of nodes.

The first step is to install PBS Professional on the Cray system as described in the
PBS Professional Installation and Upgrade Guide. The install procedure configures
the SDB node as the PBS Professional server and scheduler host. You must modify
the default configuration to ensure that the PBS Professional scheduler and server do
not start automatically on the SDB node.

360 S–2393–31

http://www.altair.com

PBS Professional Licensing for Cray Systems [G]

Procedure 90. Migrating PBS off the SDB node

1. If the PBS scheduler and server are running on the SDB node, log on to the SDB
and stop the services.

sdb:~ # /etc/init.d/pbs stop

2. Log on to the Cray system boot node as root and unspecialize the PBS
Professional configuration file for the SDB node. For example, your SDB is node
3, type the following commands:

boot:~ # xtopview -m "Unspecialize pbs.conf on the SDB" -n 3
node/3:/ # xtunspec /etc/pbs.conf
node/3:/ # exit
boot:~ #

3. Edit the PBS Professional configuration file for the login nodes to point to the
new server. The new server may be one of the login nodes or a host external
to the Cray system. Set PBS_SERVER in /etc/pbs.conf to the new PBS
Professional server host. For example, if your server is named myserver, type the
following commands:

boot:~ # xtopview -m "Update pbs.conf for new server" -c login
class/login/: # vi /etc/pbs.conf
PBS_SERVER=myserver.domain.com
class/login/: exit
boot:~#

4. To migrate the server and scheduler to a login node and start PBS Professional
automatically at boot time, specialize the /etc/pbs.conf file for that node. If
the services are being moved to an external host, skip this step. For example, if
the node ID of the login node is 4, type the following commands:

boot:~ # xtopview -m "Specialize pbs.conf for new server" -n 4
node/4:/ # xtspec /etc/pbs.conf

5. Modify the /etc/pbs.conf file to start all of the PBS Professional services;
for example:

node/4:/ # vi /etc/pbs.conf
PBS_START_SERVER=1
PBS_START_SCHED=1
PBS_START_MOM=1

node/4:/ # exit
boot:~ #

6. Log on to each of the login nodes as root and modify the PBS Professional
MOM configuration file /var/spool/PBS/mom_priv/config. Change
the $clienthost value to the name of the new PBS Professional server. For
example, if your server is named myserver, type the following commands:

login2:~ # vi /var/spool/PBS/mom_priv/config
$clienthost myserver.domain.com

S–2393–31 361

Managing System Software for Cray XE and Cray XT™ Systems

7. After the configuration file has been updated, restart PBS Professional on each
login node.

login2:~ # /etc/init.d/pbs restart

Note: This command starts the PBS Professional scheduler and server if you
have migrated them to a login node.

8. Log on to the new PBS Professional server host and add a host entry for each
of the login nodes.

myserver:~ # qmgr
Qmgr: create node mycrayxt1
Qmgr: set node mycrayxt1 resources_available.mpphost=xthostname
Qmgr: create node mycrayxt2
Qmgr: set node mycrayxt2 resources_available.mpphost=xthostname
Qmgr: exit
myserver:~

At this point, the login nodes should be visible to the PBS Professional server.

G.3 Configuring RSIP to the SDB Node
Follow the instructions in this section to configure the SDB node as an RSIP client.
Once the SDB node is configured as an RSIP client, refer to the Altair License
Manager Installation Guide for detailed instructions about obtaining and installing
the appropriate license manager components.

If you have not configured RSIP on your system, follow Procedure 91 on page 362 to
generate a simple RSIP configuration with a single server and only the SDB node as
a client.

Cray XT System Software Installation and Configuration Guide includes procedures
to configure RSIP on a Cray system using the CLEinstall installation
program. If you have already configured RSIP using these procedures during your
Cray Linux Environment (CLE) installation or upgrade, follow Procedure 92 on
page 364 to add the SDB node as an RSIP client for one of your existing RSIP
servers.

For additional information on configuring RSIP services, see Configuring
Realm-Specific IP Addressing (RSIP) on page 200.

Procedure 91. Creating a simple RSIP configuration with the SDB node as a
client

1. Boot the system as normal. Ensure all the service nodes are available, and ensure
that the system is setup to allow password-less ssh access for the root user.

2. Select a service node to run the RSIP server. The RSIP server node must have
external Ethernet connectivity and must not be a login node. In this example the
physical ID for the RSIP server is c0-0c0s7n0.

362 S–2393–31

PBS Professional Licensing for Cray Systems [G]

3. Specialize the rsipd.conf file by node ID and install the rsip.conf file to
the shared root. Additionally, tune the RSIP servers by updating the associated
sysctl.conf file. Invoke the following steps for the RSIP server node.

a. Log on to the boot node and invoke xtopview in the node view.

boot:~ # xtopview -n c0-0c0s7n0
node/c0-0c0s7n0:/ #

b. Specialize /etc/opt/cray/rsipd/rsipd.conf for the specified
node.

node/c0-0c0s7n0:/ # xtspec /etc/opt/cray/rsipd/rsipd.conf

c. Copy the rsip.conf template file from the SMW to the shared root.

node/c0-0c0s7n0:/ # scp crayadm@smw:/opt/cray-xt-rsipd/default/etc/rsipd.conf.example \
/etc/opt/cray/rsipd/rsipd.conf

d. Modify the port_range, ext_if and max_clients parameters in the
rsipd.conf file as follows:

node/c0-0c0s7n0:/ # vi /etc/opt/cray/rsipd/rsipd.conf
port_range 8192-60000
max_clients 2
Uncomment:
ext_if eth0

Note: If your external Ethernet interface is not eth0, modify ext_if
accordingly. For example,

ext_if eth1

e. Specialize the /etc/sysctl.conf file and modify the OS port range so
that it does not conflict with the RSIP server.

node/c0-0c0s7n0:/ # xtspec /etc/sysctl.conf
node/c0-0c0s7n0:/ # vi /etc/sysctl.conf
net.ipv4.ip_local_port_range = 60001 61000

f. If the specified RSIP server is using a 10GbE interface, update the
default socket buffer settings by modifying the following lines in the
sysctl.conf file.

net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_sack = 0
net.core.rmem_max = 524287
net.core.wmem_max = 524287
net.core.rmem_default = 131072
net.core.wmem_default = 131072
net.ipv4.tcp_rmem = 131072 1000880 9291456
net.ipv4.tcp_wmem = 131072 1000880 9291456
net.ipv4.tcp_mem = 131072 1000880 9291456

S–2393–31 363

Managing System Software for Cray XE and Cray XT™ Systems

g. Update the udev rules to skip the ifup of the rsip interfaces
as they are created. Add rsip* to the list of interface names for
GOTO="skip_ifup".

node/c0-0c0s7n0:/ # xtspec /etc/udev/rules.d/31-network.rules
node/c0-0c0s7n0:/ # vi /etc/udev/rules.d/31-network.rules
SUBSYSTEM=="net", ENV{INTERFACE}=="rsip*|ppp*|ippp*|isdn*|plip*|lo*|irda*| \
dummy*|ipsec*|tun*|tap*|bond*|vlan*|modem*|dsl*", GOTO="skip_ifup"

h. Exit the xtopview session.

node/c0-0c0s7n0:/ # exit

4. Update the auto boot script to start the RSIP server. This is done from the SMW.
Place the new lines towards the end of the file, immediately before any 'motd'
or 'ip route add' lines. Ensure that rsipd is started prior to starting
ALPS and PBS. In our example, the RSIP server is nid00016.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
RSIP server node startup
lappend actions { crms_exec_via_bootnode
"nid00016" "root" "/opt/cray/rsipd/default/sbin/rsipd" }

5. Update the auto boot script to start the RSIP client on the SDB node. Do this after
the above line that started the RSIP server. This line is simply a modprobe of
the krsip module with the IP argument pointing to the HSN IP address of the
RSIP server node. For example, if the SeaStar IP address of the RSIP server is
192.168.0.29, type the following commands.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
RSIP client startup
lappend actions { crms_exec_via_bootnode "sdb" "root" "modprobe krsip ip=192.168.0.29" }

Procedure 92. Adding the SDB node as an RSIP client to an existing RSIP
configuration

1. Select one of your RSIP servers to provide RSIP access for the SDB node. In this
example, we have chosen the RSIP server with the physical ID c0-0c0s7n0.

2. Log on to the boot node and invoke xtopview in the node view for the RSIP
server you have selected.

boot:~ # xtopview -n c0-0c0s7n0
node/c0-0c0s7n0:/ #

3. Modify the max_clients parameters in the rsipd.conf file; Add 2 more
clients to make room for the new SDB node. For example, if you configured 300
RSIP clients (compute nodes), type the following:

node/c0-0c0s7n0:/ # vi /etc/opt/cray/rsipd/rsipd.conf
max_clients 302

4. Update the auto boot script to start the RSIP client on the SDB node. Do this
after the line that starts the RSIP server. This line is simply a modprobe of
the krsip module with the IP argument pointing to the HSN IP address of the

364 S–2393–31

PBS Professional Licensing for Cray Systems [G]

RSIP server node. For example, if the SeaStar IP address of the RSIP server is
192.168.0.29, type the following commands.

crayadm@smw:~> vi /opt/cray/etc/auto.xthostname
RSIP client startup
lappend actions { crms_exec_via_bootnode "sdb" "root" "modprobe krsip ip=192.168.0.29" }

G.4 Network Address Translation (NAT) IP Forwarding
Follow Procedure 93 on page 365 to configure NAT IP forwarding to the SDB node.

Procedure 93. Configuring NAT IP forwarding for the SDB node

1. Select a login node to act as the NAT router. Cray recommends that you select the
node with the lowest load or network latency. For this example the login node is
named login2.

2. Login to the node you have selected and invoke the ifconfig command to
obtain the SeaStar network interface data for the node. For example:

login2:/ # ifconfig ss
ss Link encap:Ethernet HWaddr 00:00:00:07:00:00

inet addr:192.168.0.8 Mask:255.255.0.0
inet6 addr: fe80::200:ff:fe07:0/64 Scope:Link
UP RUNNING NOARP MTU:16000 Metric:1
RX packets:2960668 errors:0 dropped:0 overruns:0 frame:0
TX packets:2860775 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:8088280748 (7713.5Mb) TX

bytes:2732093573 (2605.5Mb)

Note the value of the interface IP address (192.168.0.8 in this case). This is the IP
address of the routing node.

3. Record the Ethernet interface used on this login node. For example:

login2:/ # netstat -r | grep default
default cfgw-12-hsrp.us 0.0.0.0 UG 0 0 0 eth0

Following this example, the Ethernet interface eth0 should be used in the NAT
startup script created in the next step.

4. Edit /etc/hosts on the shared root to include the external FLEXnet license
server(s). Add these entries prior to the first local Cray IP addresses; that is,
before the 192.168.x.y entries. For example:

boot:~# xtopview
default/:/ # vi /etc/hosts
10.0.0.55 tic tic.domain.com
10.0.0.56 tac tac.domain.com
10.0.0.57 toe toe.domain.com

default/:/ # exit
boot:~#

S–2393–31 365

Managing System Software for Cray XE and Cray XT™ Systems

5. In the same manner, edit /etc/hosts on the boot root to include entries for
the external FLEXnet license server(s).

boot:~# vi /etc/hosts
10.0.0.55 tic tic.domain.com
10.0.0.56 tac tac.domain.com
10.0.0.57 toe toe.domain.com

6. Create a /etc/init.d/local.start-nat file on the shared root.

boot:~# xtopview
default/:/ # cd /etc/init.d
default/:/ # vi local.start-nat

Add the following content to the new file:

echo "Setting up NAT IP forwarding."
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -F
iptables -A FORWARD -i eth0 -o ss -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -i ss -o eth0 -j ACCEPT
iptables -A FORWARD -j LOG
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

7. Specialize the file and exit xtopview.

default/:/ # xtspec local.start-nat
default/:/ # exit
boot:~#

8. Log on as root to the selected router node and start the NAT service. Use the
iptables command to verify that forwarding is active.

login2:~ # /etc/init.d/local.start-nat
login2:~ # iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
login2:~ #

9. Log on to the SDB node and add a new default route. Note that this route should
not currently exist. Use the selected login node SeaStar interface IP identified
in step 2.

nid00003:~ # /sbin/route add default gw 192.168.0.8

10. Test the new route by invoking the ping command and ensuring the SDB node
can access external servers by name.

11. Edit the auto boot script to Configure NAT services.

smw:~# vi /opt/cray/etc/auto.xthostname
Add the following lines just prior to the ALPS/PBS startup:
lappend actions { crms_exec_via_bootnode "login2" "root" \

366 S–2393–31

PBS Professional Licensing for Cray Systems [G]

"/etc/init.d/local.start-nat" }
lappend actions { crms_exec_via_bootnode "sdb" "root" \
"/sbin/route add default gw 192.168.0.8" }

NAT services should now restart automatically upon the next reboot of the Cray
system.

G.5 Installing and Configuring a NIC
Obtain a PCIe compliant NIC. Intel 82546 based cards have been verified with Cray
system SDB nodes. Follow Procedure 94 on page 367 to install the network card in
the SDB node and connect it to the external network. Note that you are required to
reboot your system as part of this procedure.

Procedure 94. Installing and configuring a NIC on the SDB node

1. Prior to shutting the system down, perform the following steps on the boot node
to ensure the new NIC is configured upon the ensuing reboot. Invoke xtopview
in the node view for the SDB node. For example, if your SDB is node 3, the
IP address to assign on the external network is 172.30.10.100, the appropriate
netmask is 255.255.0.0, and the default gateway IP is 172.30.10.1, type these
commands.

boot:~# xtopview -m "add eth0 interface" -n 3
node/3:/ # cd /etc/sysconfig/network
node/3:/ # vi ifcfg-eth0
Add the following content to the ifcfg-eth0 file:
DEVICE="eth0"
BOOTPROTO="static"
STARTMODE="onboot"
IPADDR=172.30.10.100
NETMASK=255.255.0.0

node/3:/ # xtspec ifcfg-eth0
node/3:/ # echo 'default 172.30.10.1 - -' >routes
node/3:/ # xtspec routes
node/3:/ # exit
boot:~ #

2. Edit the /etc/hosts file on the shared root and add entries for the external
FLEXnet license server(s). For example:

boot:~# xtopview
default/:/ # vi /etc/hosts
Add these entries prior to the first local Cray system IP addresses; that is, before the 192.168.x.y entries.
10.0.0.55 tic tic.domain.com
10.0.0.56 tac tac.domain.com
10.0.0.57 toe toe.domain.com

default/:/ # exit
boot:~# exit

S–2393–31 367

Managing System Software for Cray XE and Cray XT™ Systems

3. Shut down the system.

smw:~# xtshutdown

4. Power down the slot where the SDB node is installed. For example:

smw:~# xtcli power down_slot -f c0-0c0s0

5. Pull the blade, physically insert the new NIC into the PCIe slot of the SDB node
and reinsert the blade into the slot.

6. Power up the slot where the SDB node is installed. For example:

smw:~# xtcli power up_slot -f c0-0c0s0

7. Connect the NIC to the Ethernet network on which the FLEXnet server is
accessible.

8. Boot the Cray system.

9. Log on to the SDB node and invoke the ifconfig command to confirm that the
SDB shows the new eth0 interface.

nid00003:~ # /sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:04:23:DF:4C:56

inet addr:172.30.10.100 Bcast:172.30.10.1 Mask:255.255.0.0
inet6 addr: 2001:408:4000:40c:204:23ff:fedf:4c56/64 Scope:Global
inet6 addr: 2600:805:100:40c:204:23ff:fedf:4c56/64 Scope:Global
inet6 addr: fe80::204:23ff:fedf:4c56/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:428807 errors:0 dropped:0 overruns:0 frame:0
TX packets:10400 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:34426088 (32.8 Mb) TX bytes:1292332 (1.2 Mb)
Base address:0x2fc0 Memory:fece0000-fed00000

10. Confirm that you can ping the license server from the SDB node.

nid00003:~ # ping tic.domain.com

368 S–2393–31

Glossary

blade

1) A field-replaceable physical entity. A service blade consists of AMD Opteron
sockets, memory, Cray network application-specific integrated circuit (ASIC) chips,
PCI cards, and a blade control processor. A compute blade consists of AMD Opteron
sockets, memory, Cray network application-specific integrated circuit (ASIC) chips,
and a blade control processor. 2) From a system management perspective, a logical
grouping of nodes and blade control processor that monitors the nodes on that blade.

blade control processor

A microprocessor on a blade that communicates with a cabinet control processor
through the HSS network to monitor and control the nodes on the blade. See also
blade, L0 controller, Hardware Supervisory System (HSS).

cabinet control processor

A microprocessor in the cabinet that communicates with the HSS via the HSS
network to monitor and control the devices in a system cabinet. See also Hardware
Supervisory System (HSS).

cage

A chassis in a cabinet of a Cray system. See chassis.

chassis

The hardware component of a Cray cabinet that houses blades. Each cabinet contains
three vertically stacked chassis, and each chassis contains eight vertically mounted
blades. See also cage.

class

A group of service nodes of a particular type, such as login or I/O. See also
specialization.

CLE

The operating system for Cray XE and Cray XT systems.

S–2393–31 369

Managing System Software for Cray XE and Cray XT™ Systems

CNL

The CLE compute node kernel. CNL provides a set of supported system calls. CNL
provides many of the operating system functions available through the service nodes,
although some functionality has been removed to improve performance and reduce
memory usage by the system.

compute blade

See blade.

compute node

A node that runs application programs. A compute node performs only computation;
system services cannot run on compute nodes. Compute nodes run a specified kernel
to support either scalar or vector applications. See also node; service node.

compute node root

The runtime environment available to compute nodes for use in dynamic compiling,
linking and execution of programs.

compute node root server

A Data Virtualization Services (DVS) server that projects the shared root to compute
nodes for use with dynamic shared objects.

compute processing element

See processing element.

Cray DVS

The Cray Data Virtualization Service (Cray DVS) is a distributed network service
that provides compute nodes with transparent access to file systems on the service
partition using the Cray high-speed network.

deferred implementation

The label used to introduce information about a feature that will not be implemented
until a later release.

Hardware Supervisory System (HSS)

Hardware and software that monitors the hardware components of the system and
proactively manages the health of the system. It communicates with nodes and with
the management processors over the private Ethernet network. See also system
interconnection network.

370 S–2393–31

Glossary

heartbeat

A signal sent at regular intervals by software to show that it is still active.

L0 controller

See blade control processor.

L1 controller

See cabinet control processor.

logical machine

An administrator-defined portion of a physical Cray system, operating as an
independent computing resource.

login node

The service node that provides a user interface and services for compiling and
running applications.

metadata server (MDS)

The component of the Lustre file system that manages Metadata Targets (MDT) and
handles requests for access to file system metadata residing on those targets.

module

See blade.

module file

A metafile that defines information specific to an application, a collection of
applications, or a library. This term is not related to the Fortran language MODULE
statement, but is related to setting up the Cray programming environment. The
Modules utility uses module files to define the paths, command names, and other
environment variables used by the application or library, including the version to
be used.

multicore

A processor that combines multiple independent execution engines ("cores"), each
with its own cache and cache controller.

S–2393–31 371

Managing System Software for Cray XE and Cray XT™ Systems

node

For CLE systems, the logical group of processor(s), memory, and network
components acting as a network end point on the system interconnection network.

node ID

A decimal number used to reference each individual node. The node ID (NID) can be
mapped to a physical location.

NUMA node

A multicore processor and its local memory. Multisocket compute nodes have two
or more NUMA nodes.

object storage target (OST)

The Lustre system component that represents an I/O device containing file data as file
system objects. This can be any LUN, RAID array, disk, disk partition, etc.

parallel processing

Processing in which multiple processors work on a single application simultaneously.

processing element

A processing element is one instance of an executable propagated by the Application
Level Placement Scheduler (ALPS).

resiliency communication agent (RCA)

A communications interface between the operating environment and the HSS. Each
RCA provides an interface between the HSS and the processes running on a node and
supports event notification, informational messages, information requests, and probes.
See also Hardware Supervisory System (HSS).

service blade

See blade.

service database (SDB)

The database that maintains the global system state.

372 S–2393–31

Glossary

service node

A node that performs support functions for applications and system services. Service
nodes run a version of SLES and perform specialized functions. There are six types
of predefined service nodes: login, IO, network, boot, database, and syslog.

specialization

The process of setting files on the shared-root file system so that unique files can
exist for a node or for a class of nodes.

system interconnection network

The high-speed network that handles all node-to-node data transfers.

System Management Workstation (SMW)

The workstation that is the single point of control for system administration. See
also Hardware Supervisory System (HSS).

system set

A group of partitions on the BootRAID (boot root, boot node swap, shared root, boot
image, SDB, syslog, UFS, etc.) that make a complete, bootable system.

S–2393–31 373

	Managing System Software for Cray XE and Cray XT Systems
	New Features
	Introduction [1]
	1.1 Audience for This Guide
	1.2 Cray System Administration Publications
	1.3 Related Publications

	Introducing System Components [2]
	2.1 System Management Workstation (SMW)
	2.2 CLE
	2.3 Boot Root File System
	2.4 Shared Root File System
	2.5 Service Partition
	2.5.1 Service Nodes
	2.5.1.1 Boot Node
	2.5.1.2 Service Database (SDB) Node
	2.5.1.3 Syslog Node
	2.5.1.4 Login Nodes
	2.5.1.5 Network Nodes
	2.5.1.6 I/O Nodes

	2.5.2 Services on the Service Partition
	2.5.2.1 Resiliency Communication Agent (RCA)
	2.5.2.2 Lustre File System
	2.5.2.3 Cray Data Virtualization Service (Cray DVS)
	2.5.2.4 Application Level Placement Scheduler (ALPS) for Compute
	2.5.2.5 Cluster Compatibility Mode
	2.5.2.6 IP Implementation

	2.6 Compute Partition
	2.6.1 Compute Nodes

	2.7 Job Launch Commands
	2.8 Node Health Checker (NHC)
	2.9 Comprehensive System Accounting (CSA)
	2.10 Checkpoint/Restart (CPR)
	2.11 Portals Message-passing Interface for Cray XT Systems
	2.12 Optional Workload-management (Batch) System Software Product
	2.13 Hardware Supervisory System (HSS)
	2.13.1 HSS Network
	2.13.2 HSS Interface
	2.13.3 Blade Control Processor (L0 Controller) and Cabinet Contro
	2.13.4 NTP Server
	2.13.5 Event Router
	2.13.6 HSS Managers
	2.13.6.1 State Manager
	2.13.6.2 Boot Manager
	2.13.6.3 System Environmental Data Collections (SEDC) Manager
	2.13.6.4 Diagnostics Manager for Cray XT Systems (Not Used by Cr
	2.13.6.5 Power Manager
	2.13.6.6 Flash Manager
	2.13.6.7 Router Manager
	2.13.6.8 NID Manager

	2.13.7 xtdiscover Command
	2.13.8 Event Logs
	2.13.9 Boot Logs
	2.13.10 Dump Logs

	2.14 Cray Management Services (CMS)
	2.15 Storage
	2.16 Other Administrative Information
	2.16.1 Identifying Components
	2.16.1.1 Physical ID
	2.16.1.2 Node ID (NID) for Cray XT Systems
	2.16.1.3 Node ID (NID) for Cray XE Systems
	2.16.1.4 Class Name

	2.16.2 Topology Class
	2.16.3 Persistent /var Directory
	2.16.4 Default Network IP Addresses
	2.16.5 /etc/hosts Files
	2.16.6 Native IP (SSIP)
	2.16.7 Realm-Specific IP Addressing (RSIP) for CNL Compute Nodes
	2.16.8 Security Auditing
	2.16.9 Logging Failed Login Attempts
	2.16.10 Logical Machines

	Managing the System [3]
	3.1 Connecting the SMW to the Console of a Service Node
	3.2 Logging On to the Boot Node
	3.3 Preparing a Service Node and Compute Node Boot Image
	3.3.1 Using shell_bootimage_label.sh to Prepare Boot Images

	3.4 Changing Boot Parameters
	3.5 Booting Nodes
	3.5.1 Booting the System
	3.5.2 Using the xtcli boot Command to Boot a Node or Set of Node
	3.5.3 Rebooting a Single CNL Compute Node
	3.5.4 Rebooting Login or Network Nodes

	3.6 Requesting and Displaying System Routing
	3.7 Shutting Down Service Nodes Using the xtshutdown Command
	3.8 Shutting Down the System or Part of the System Using the xtcl
	3.9 Shutting Down the System Using the auto.xtshutdown File
	3.10 Stopping System Components
	3.10.1 Reserving a Component
	3.10.2 Powering Down a Node
	3.10.3 Powering Down a Component
	3.10.4 Powering Down a Single Blade
	3.10.5 Forcing Components to Power Down
	3.10.6 Halting Selected Nodes
	3.10.7 Powering Off L0 Controllers or Slots

	3.11 Restarting a System Component
	3.12 Aborting Active Sessions on HSS Managers
	3.13 Displaying and Changing Software System Status
	3.13.1 Displaying the Status of Nodes from the Operating System
	3.13.2 Viewing and Changing the Status of Nodes
	3.13.3 Marking a Compute Node as a Service Node
	3.13.4 Finding Node Information
	3.13.4.1 Finding Node Information Using the xtnid2str Command
	3.13.4.2 Finding Node Information Using the xtuname Command

	3.14 Displaying and Changing Hardware System Status
	3.14.1 Generating HSS Physical IDs
	3.14.2 Disabling Hardware Components
	3.14.3 Enabling Hardware Components
	3.14.4 Setting Components to Empty
	3.14.5 Locking Components
	3.14.6 Unlocking Components
	3.14.7 Determining How Service Nodes Are Configured by Looking at

	3.15 Performing Parallel Operations on Nodes
	3.16 Handling Component Failures
	3.17 Capturing and Analyzing System-level and Node-level Dumps
	3.17.1 Dumping Information Using the xtdumpsys Command
	3.17.2 ldump and lcrash Utilities for Node Memory Dump and Analys

	3.18 Using xtnmi Command to Collect Debug Information from Hung N

	Monitoring System Activity [4]
	4.1 Monitoring the System with the System Environmental Data Coll
	4.2 Displaying Installed SMW Release Level
	4.3 Displaying Installed CLE Release Level
	4.4 Displaying Boot Configuration Information
	4.5 Monitoring Multiple Nodes
	4.6 Managing Log Files Using CLE and HSS Commands
	4.6.1 Filtering the Event Log
	4.6.2 Adding Entries to Log Files
	4.6.3 Examining Log Files
	4.6.4 Removing Old Log Files

	4.7 Managing Log Files Using the Cray Management Services (CMS) L
	4.8 Checking the Status of System Components
	4.9 Checking the Status of Compute Processors
	4.10 Checking CNL Compute Node Connection
	4.11 Checking Link Control Block and Router Errors
	4.12 Monitoring the Status of Jobs Started Under a Third-party Ba
	4.13 Listing Running Jobs
	4.14 Using the cray_pam Module to Monitor Failed Login Attempts
	4.15 Monitoring DDN RAID
	4.16 Monitoring LSI Engenio RAID
	4.17 Monitoring HSS Managers
	4.17.1 Examining Activity on HSS Managers
	4.17.2 Checking the Health of HSS Managers

	4.18 Monitoring Events
	4.19 Monitoring Node Console Messages
	4.20 Showing the Component Alert, Warning, and Location History
	4.21 Displaying Component Information
	4.22 Displaying Alerts and Warnings
	4.23 Clearing Flags

	Managing User Access [5]
	5.1 Load Balancing Across Login Nodes
	5.2 Passwords
	5.2.1 Changing Default SMW Passwords After Completing Installatio
	5.2.2 Changing root and crayadm Passwords on Boot and Service Nod
	5.2.3 Changing the root Password on CNL Compute Nodes
	5.2.4 Changing Default MySQL Passwords on the SDB
	5.2.5 Assigning and Changing User Passwords
	5.2.6 Logins That Do Not Require Passwords

	5.3 Administering Accounts
	5.3.1 Managing Boot Node Accounts
	5.3.2 Managing User Accounts on Service Nodes
	5.3.2.1 Adding a User or Group
	5.3.2.2 Removing a User or Group
	5.3.2.3 Changing User or Group Information
	5.3.2.4 Assigning Groups of Compute Nodes to a User Group

	5.3.3 Setting Disk Quotas for a User on the Cray Local, Non-Lustr
	5.3.4 Associating Users with Projects

	5.4 System-wide Default Modulefiles
	5.5 User Access to a Compiler Environment Using Modulefiles
	5.6 Maintaining *rc.local Scripts
	5.7 Using the pam_listfile Module in the Shared Root Environment
	5.8 ulimit Stack Size Limit
	5.9 Stopping a User's Job
	5.9.1 Stopping a CNL Job Running in Interactive Mode
	5.9.2 Stopping a Job Running Under a Batch System

	Modifying an Installed System [6]
	6.1 PBS Professional Licensing Requirements for Cray Systems
	6.2 Disabling Secure Shell (SSH) on Compute Nodes
	6.3 Modifying SSH Keys for Compute Nodes
	6.4 Configuring the System Environmental Data Collector (SEDC)
	6.5 Configuring the Shared-root File System on Service Nodes
	6.5.1 Specialization
	6.5.2 Visible Shared-root File System Layout
	6.5.3 How Specialization Is Implemented
	6.5.4 Working with the Shared-root File System
	6.5.4.1 Managing System Configuration with the xtopview Tool
	6.5.4.2 Updating Specialized Files from within the xtopview Shell
	6.5.4.3 Specializing Files
	6.5.4.4 Determining which Files are Specialized
	6.5.4.5 Checking Shared-root Configuration
	6.5.4.6 Verifying the Coherency of /etc/init.d Files Across All S
	6.5.4.7 Cloning a Shared-root Hierarchy
	6.5.4.8 Changing the Class of a Node
	6.5.4.9 Removing Specialization
	6.5.4.10 Displaying RCS Log Information for Shared Root Files
	6.5.4.11 Checking Out an RCS Version of Shared Root Files
	6.5.4.12 Listing Shared Root File Specification and Version Infor
	6.5.4.13 Performing Archive Operations on Shared Root Files

	6.5.5 Logging Shared-root Activity

	6.6 Configuring Optional RPMs in the CNL Boot Image
	6.7 Configuring Cray Enhanced Linux Security Features
	6.7.1 Security Auditing and Cray Audit Extensions
	6.7.1.1 Lustre File System Requirements for Cray Audit
	6.7.1.2 System Performance Considerations for Cray Audit

	6.7.2 Using the cray_pam PAM to Log Failed Login Attempts

	6.8 Configuring cron Services
	6.9 Configuring the Load Balancer
	6.10 Configuring Node Health Checker (NHC)
	6.10.1 /etc/opt/cray/nodehealth/nodehealth.conf Configuration Fil
	6.10.2 Configuring Node Health Checker Tests
	6.10.2.1 Guidance About NHC Tests
	6.10.2.2 Global Configuration Variables That Affect All NHC Tests
	6.10.2.3 Standard Variables That Affect Individual NHC Tests

	6.10.3 Suspect Mode
	6.10.4 NHC Messages
	6.10.5 What if a Login Node Crashes While xtcheckhealth Binaries
	6.10.6 Disabling NHC
	6.10.7 nodehealth Modulefile
	6.10.8 Configuring the Node Health Checker to Use SSL

	6.11 Activating Process Accounting for Service Nodes
	6.12 Configuring Failover for Boot and SDB Nodes
	6.12.1 Configuring Boot-node Failover
	6.12.2 Configuring SDB Node Failover
	6.12.3 Compute Node Failover Manager

	6.13 Creating Logical Machines
	6.13.1 Creating Routable Logical Machines
	6.13.1.1 Topology Class 0
	6.13.1.2 Topology Class 1
	6.13.1.3 Topology Class 2
	6.13.1.4 Topology Class 3

	6.13.2 Configuring a Logical Machine
	6.13.3 Booting a Logical Machine

	6.14 Updating Boot Configuration
	6.15 Modifying Boot Automation Files
	6.16 Callout to rc.local During Boot
	6.17 Changing the System Software Version to Be Booted
	6.17.1 Minor Release Switching within a System Set
	6.17.2 Major Release Switching using Separate System Sets

	6.18 Changing the Service Database (SDB)
	6.18.1 Service Database Tables
	6.18.2 Database Security
	6.18.3 Updating Database Tables
	6.18.3.1 Changing Nodes and Classes
	6.18.3.2 Changing Services

	6.19 Viewing the Service Database Contents with MySQL Commands
	6.20 Configuring the Lustre File System
	6.21 Configuring Cray Data Virtualization Service (Cray DVS)
	6.22 Enabling File-locking for Lustre Clients
	6.23 Setting and Viewing Node Attributes
	6.23.1 Setting Node Attributes Using the /etc/opt/cray/sdb/attr.x
	6.23.1.1 Enabling Node Attributes during Boot Process
	6.23.1.2 Generating the /etc/opt/cray/sdb/attributes File

	6.23.2 SDB attributes Table
	6.23.3 Setting Attributes Using the xtprocadmin Command
	6.23.4 Viewing Node Attributes

	6.24 Using the XTAdmin Database segment Table
	6.25 Configuring Networking Services
	6.25.1 Changing the High-speed Network (HSN)
	6.25.2 Network File System (NFS)
	6.25.3 Configuring Ethernet Link Aggregation (Bonding, Channel Bo
	6.25.4 Cray Systems with SeaStar System Interconnection Network:
	6.25.5 Increasing Size of ARP Tables
	6.25.6 Configuring Native IP (SSIP)
	6.25.7 Configuring Realm-Specific IP Addressing (RSIP)
	6.25.7.1 Using the CLEinstall Program to Install and Configure RS

	6.25.8 IP Routes for CNL Nodes in the /etc/routes File

	6.26 Updating the System Configuration After A Hardware Change
	6.27 Changing the Location to Log syslog-ng Information

	Managing Services [7]
	7.1 Configuring the SMW to Synchronize to a Site NTP Server
	7.2 Synchronizing Time of Day on Compute Node Clocks with the Clo
	7.3 Adding and Starting a Service Using Standard Linux Mechanisms
	7.4 Adding and Starting a Service Using RCA
	7.4.1 Adding a Service to List of Services Available under RCA
	7.4.2 Indicating Nodes on Which the Service Will Be Started

	7.5 Creating a Snapshot of /var
	7.6 Setting Soft and Hard Limits to Prevent Login Node Hangs
	7.7 Handling Bus Errors
	7.8 Creating a Cray System Management Workstation (SMW) Bootable
	7.9 Setting Up the Bootable Backup Drive as an Alternate Boot Dev
	7.10 Archiving the SDB
	7.11 Backing Up Limited Shared-root Configuration Data
	7.11.1 Using the xtoparchive Utility to Archive the Shared-root F
	7.11.2 Using Linux Utilities to Save the Shared-root File System

	7.12 Backing Up Boot Root and Shared Root
	7.12.1 Using the xthotbackup Command to Back Up Boot Root and Sha
	7.12.2 Using dump and restore Commands to Back Up Boot Root and S

	7.13 Backing Up User Data
	7.14 Rebooting a Stopped SMW
	7.14.1 SMW Recovery

	7.15 Recovering from Service Database Failure
	7.15.1 Database Server Failover
	7.15.2 Rebuilding Corrupted SDB Tables

	7.16 Using Persistent SCSI Device Names
	7.16.1 Using cray-scscidev-emulation Device Naming

	7.17 Using a Linux iptables Firewall to Limit Services
	7.18 Handling Single-node Failures
	7.19 Increasing the Boot Manager Time-out Value
	7.20 RAID Failure

	Using the Application Level Placement Scheduler (ALPS) [8]
	8.1 ALPS Functionality
	8.2 ALPS Architecture
	8.2.1 ALPS Clients
	8.2.1.1 The aprun Client
	8.2.1.2 The apstat Client
	8.2.1.3 The apkill Client
	8.2.1.4 The apmgr Client
	8.2.1.5 The apbasil Client

	8.2.2 ALPS Daemons
	8.2.2.1 The apbridge Daemon
	8.2.2.2 The apsched Daemon
	8.2.2.3 The apsys Daemon
	8.2.2.4 The apwatch Daemon
	8.2.2.5 The apinit Daemon
	8.2.2.6 The apres Daemon
	8.2.2.7 ALPS Log Files
	8.2.2.8 Changing Debug Message Level of apsched and apsys Daemons

	8.3 Configuring ALPS
	8.3.1 /etc/sysconfig/alps Configuration File
	8.3.2 /etc/alps.conf Configuration File

	8.4 Resynchronizing ALPS and the SDB Command After Manually Chang
	8.5 Identifying Reserved Resources
	8.6 Terminating a Batch Job
	8.7 Setting a Compute Node to Batch or Interactive Mode
	8.8 Manually Starting and Stopping ALPS Daemons on Service Nodes
	8.9 Manually Cleaning ALPS and PBS After Downed Login Node
	8.10 Verifying that ALPS is Communicating with Cray System Comput
	8.11 ALPS and Node Health Monitoring Interaction
	8.11.1 aprun Actions
	8.11.2 apinit Actions
	8.11.3 apsys Actions
	8.11.4 Cleanup Version 1 Actions (apmgrcleanup)
	8.11.5 Cleanup Version 2 Actions
	8.11.6 Node Health Checker Actions
	8.11.7 Verifying Application Cleanup

	Using Comprehensive System Accounting [9]
	9.1 Interacting with Batch Entry Systems or the PAM job Module
	9.2 CSA Configuration File Values
	9.3 Configuring CSA
	9.3.1 Obtaining File System and Node Information
	9.3.2 Editing the csa.conf File
	9.3.3 Editing Other System Configuration Files
	9.3.4 Creating a CNL Image with CSA Enabled
	9.3.5 Setting Up Project Accounting
	9.3.5.1 Disabling Project Accounting

	9.3.6 Setting Up Job Accounting

	9.4 Creating Accounting cron Jobs
	9.4.1 csanodeacct cron Job for Login Nodes
	9.4.2 csarun cron Job
	9.4.3 csaperiod cron Job

	9.5 Enabling CSA
	9.6 Using LDAP with CSA

	Using Checkpoint/Restart on Cray Systems [10]
	10.1 Requirements and/or Limitations for Checkpoint/Restart
	10.2 Installation and Configuration
	10.2.1 Cray Installation and Configuration Options
	10.2.2 Configuring TORQUE and Moab to Work with CPR
	10.2.3 Configuring PBS Professional to Work with CPR

	10.3 Using Checkpoint/Restart
	10.3.1 Compiling Applications
	10.3.2 Using Checkpoint/Restart with TORQUE and Moab
	10.3.2.1 Common Checkpoint/Restart Error Messages

	10.3.3 Using Checkpoint/Restart with PBS Professional

	Dynamic Shared Objects and Cluster Compatibility Mode in the Cra
	11.1 Configuring the Compute Node Root Runtime Environment (CNRTE
	11.2 Configuring Cluster Compatibility Mode
	11.2.1 Preconditions
	11.2.2 Configuration Options Relevant to Installation
	11.2.3 Post-install Options and Configuration

	OpenFabrics Interconnect Drivers for CLE Systems [12]
	12.1 OFED Overview
	12.2 Using InfiniBand
	12.2.1 Storage Area Networking
	12.2.2 Lustre Routing
	12.2.3 IP Connectivity

	12.3 Configuration
	12.4 InfiniBand Configuration
	12.5 Subnet Manager (OpenSM) Configuration
	12.5.1 Starting OpenSM at Boot Time

	12.6 Internet Protocol over InfiniBand (IPoIB) Configuration
	12.7 Configuring SCSI RDMA Protocol (SRP) on Cray Systems
	12.8 Lustre Networking (LNET) Router
	12.8.1 Configuring the LNET Router
	12.8.2 Configuring the InfiniBand Lustre Server
	12.8.3 Configuring the Portals Lustre Clients

	12.9 Sample Lustre Router Control File

	Cray XE Network Resiliency [13]
	13.1 Link Resiliency
	13.1.1 Automatic Response to Failures
	13.1.1.1 Failure Of A Single High Speed Network Channel
	13.1.1.2 Failure Of A High Speed Network Cable
	13.1.1.3 Power Loss To A Gemini Mezzanine On A Blade
	13.1.1.4 Power Loss To A Blade
	13.1.1.5 Power Loss To A Cabinet

	13.1.2 Using xtwarmswap
	13.1.2.1 Reusing One Or More Previously-failed High Speed Network
	13.1.2.2 Reusing One Or More Previously-failed Blades, Mezzanines
	13.1.2.3 Planned Removal Of A Compute Blade
	13.1.2.4 Planned Installation Of A Compute Blade

	13.2 Unrouteable Cray XE Configurations
	13.2.1 The Routing Algorithm
	13.2.2 Physical Components Versus Logical Components
	13.2.3 Unrouteable Configurations
	13.2.3.1 Two Nonadjacent Routers in a Single Z-dimension Loop
	13.2.3.2 Two Nonadjacent Routers in a Single Dimension Loop with
	13.2.3.3 Disabled Routers Not Adjacent to a Mesh Edge
	13.2.3.4 Disabled Nonlinear Complete Z-dimension Loop
	13.2.3.5 Routing Table Limitations
	13.2.3.6 Other Unrouteable Scenarios

	13.2.4 Disabling of Other Components
	13.2.5 Conclusion

	SMW and CLE System Administration Commands [A]
	A.1 HSS Commands
	A.2 CLE System Administration Commands

	System States [B]
	Error Codes [C]
	Remote Access to the SMW [D]
	Updating the Time Zone [E]
	Creating Modulefiles [F]
	F.1 Modulefile Template
	F.2 Sharing Your Modulefile
	F.3 Modulefile Help

	PBS Professional Licensing for Cray Systems [G]
	G.1 Introduction
	G.2 Migrating the PBS Professional Server and Scheduler
	G.3 Configuring RSIP to the SDB Node
	G.4 Network Address Translation (NAT) IP Forwarding
	G.5 Installing and Configuring a NIC

	Glossary
	List of Figures
	Figure 1. Administrative Components of a Cray System
	Figure 2. Types of Specialization
	Figure 3. Shared-root Implementation
	Figure 4. ALPS Process
	Figure 5. Cray System Job Distribution Cross-section
	Figure 6. CCM Job Flow Diagram
	Figure 7. The OFED Stack (source: OpenFabrics Alliance)
	Figure 8. Cray System Connected to Storage Using SRP
	Figure 9. Cray Service Node Acting as an Infiniband Lustre Route
	Figure 10. Cray Service Node in IP over IB Configuration
	Figure 11. Diagram Key
	Figure 12. Two Nonadjacent Routers in a Single Z-dimension Loop
	Figure 13. Two Nonadjacent Routers in a Single Dimension Loop wi
	Figure 14. Two Nonadjacent Routers Further Separated in a Single
	Figure 15. Disabled Routers Not Adjacent to a Mesh Edge
	Figure 16. Disabled Nonlinear Complete Z-dimension Loop
	Figure 17. Additional Unrouteable Configuration Scenario

	List of Procedures
	Procedure 1. Logging on to the boot node
	Procedure 2. Preparing a boot image for CNL compute nodes and se
	Procedure 3. Manually booting the boot node and service nodes
	Procedure 4. Booting CNL compute nodes
	Procedure 5. Shutting down service nodes
	Procedure 6. Reserving a component
	Procedure 7. Powering down a node directly
	Procedure 8. Powering down a higher component to power down a no
	Procedure 9. Powering down selected blades
	Procedure 10. Forcing a component to power down
	Procedure 11. Halting a node
	Procedure 12. Power up blades in a cabinet
	Procedure 13. Disabling a Cray ASIC
	Procedure 14. Enabling a Cray ASIC
	Procedure 15. Showing boot configuration information for the ent
	Procedure 16. Showing boot configuration information for a parti
	Procedure 17. Showing the status of a component
	Procedure 18. Displaying the location history for component c0-0
	Procedure 19. Changing the root and crayadm passwords on boot an
	Procedure 20. Changing the root password on CNL compute nodes
	Procedure 21. Changing default MySQL passwords on the SDB
	Procedure 22. Stopping a CNL job running in interactive mode
	Procedure 23. Disabling SSH daemon (sshd) on compute nodes
	Procedure 24. Using dropbear to generate site-specific SSH keys
	Procedure 25. Specializing a file by class login
	Procedure 26. Specializing a file by node
	Procedure 27. Specializing a file by node without entering xtopv
	Procedure 28. Finding files in /etc that are specialized by a no
	Procedure 29. Finding files in /etc that are specialized by clas
	Procedure 30. Finding specialization of a file on a node
	Procedure 31. Configuring Cray Audit
	Procedure 32. Configuring cray_pam to log failed login attempts
	Procedure 33. Configuring cron for the SMW and the boot node
	Procedure 34. Configuring cron for the shared root with persiste
	Procedure 35. Configuring cron for the shared root without persi
	Procedure 36. Configuring lbnamed on the SMW
	Procedure 37. Installing the load balancer on an external "white
	Procedure 38. Recovering from a login node crash when a login no
	Procedure 39. Configuring the Node Health Checker (NHC) to use S
	Procedure 40. Configuring boot-node failover
	Procedure 41. Disabling boot-node failover
	Procedure 42. Configuring a logical machine
	Procedure 43. Booting a system set
	Procedure 44. Updating the service_config table when services ch
	Procedure 45. Examining the service databases with MySQL command
	Procedure 46. Installing, configuring, and starting RSIP clients
	Procedure 47. Adding isolated service nodes as RSIP clients
	Procedure 48. Adding or removing cabinets or chassis within cabi
	Procedure 49. Adding or removing a service node
	Procedure 50. Configuring syslog-ng system message logs
	Procedure 51. Configuring the SMW to synchronize to a site NTP s
	Procedure 52. Adding a service to list of services available und
	Procedure 53. Preventing login node hangs by setting soft and ha
	Procedure 54. Power-cycling a component
	Procedure 55. Creating an SMW bootable backup drive
	Procedure 56. Setting up the bootable backup drive as an alterna
	Procedure 57. Backing up limited shared-root configuration data
	Procedure 58. Backing up the boot root and shared root using the
	Procedure 59. Rebooting a stopped SMW
	Procedure 60. SMW primary disk failure recovery
	Procedure 61. Starting and stopping ALPS daemons on a specific s
	Procedure 62. Restarting ALPS daemon on a specific service node
	Procedure 63. Manually cleaning up ALPS and PBS after a login no
	Procedure 64. Obtaining file system and node information
	Procedure 65. Editing CSA parameters for the example system
	Procedure 66. Setting up CSA project accounting
	Procedure 67. Disabling project accounting
	Procedure 68. Setting up CSA job accounting
	Procedure 69. Setting up the compute node root runtime environme
	Procedure 70. Setting up the compute node runtime environment u
	Procedure 71. Setting up the compute node runtime environment us
	Procedure 72. Using DVS to mount home directories on the compute
	Procedure 73. Modifying CCM and Platform-MPI system configuratio
	Procedure 74. Setting up files for the cnos class
	Procedure 75. Linking the CCM prologue/epilogue scripts on login
	Procedure 76. Using qmgr to create a general CCM queue and queue
	Procedure 77. Configuring InfiniBand on service nodes
	Procedure 78. Starting a single instance of OpenSM on a service
	Procedure 79. Configuring IP Over InfiniBand (IPoIB) on Cray sys
	Procedure 80. Configuring and enabling SRP on Cray Systems
	Procedure 81. Configuring the LNET router
	Procedure 82. Configuring the InfiniBand Lustre Server
	Procedure 83. Configuring Lustre clients
	Procedure 84. Starting the VNC server
	Procedure 85. For workstation or laptop running Linux or Mac OS:
	Procedure 86. For workstation or laptop running Windows: Connect
	Procedure 87. Changing the time zone for the SMW and the L1 and
	Procedure 88. Changing the time zone on the boot root and shared
	Procedure 89. Changing the time zone for compute nodes
	Procedure 90. Migrating PBS off the SDB node
	Procedure 91. Creating a simple RSIP configuration with the SDB
	Procedure 92. Adding the SDB node as an RSIP client to an existi
	Procedure 93. Configuring NAT IP forwarding for the SDB node
	Procedure 94. Installing and configuring a NIC on the SDB node

	List of Examples
	Example 1. Sample /etc/opt/cray/sdb/node_classes file
	Example 2. Establishing a two-way connection between the SMW and
	Example 3. Creating a Cray boot image from existing file system
	Example 4. Making a boot image with new parameters for service a
	Example 5. Booting all service nodes with a specific image
	Example 6. Booting all CNL compute nodes with a specific image
	Example 7. Booting CNL compute nodes using a load file
	Example 8. Rebooting a single CNL compute node
	Example 9. Rebooting login or network nodes
	Example 10. Routing the entire system
	Example 11. Shutting down all CNL compute nodes
	Example 12. Shutting down specified CNL compute nodes
	Example 13. Shutting down all nodes of a system
	Example 14. Forcing nodes to shut down
	Example 15. Resynchronizing the state manager with the true stat
	Example 16. Aborting a session running on the boot manager
	Example 17. Looking at node characteristics
	Example 18. Viewing all node attributes
	Example 19. Viewing selected node attributes of selected nodes
	Example 20. Disabling a node
	Example 21. Disabling all processors
	Example 22. Finding the physical ID for node 38
	Example 23. Finding the physical ID for nodes 0, 1, 2, and 3
	Example 24. Finding the physical IDs for Gemini IDs 0-7
	Example 25. Finding a node's NID using the xtuname command
	Example 26. Finding a node's class the xtuname command
	Example 27. Creating a list of node identifiers that are not in
	Example 28. Disabling the Cray SeaStar ASIC c3-2c0s2s3
	Example 29. Enabling Cray Gemini ASIC c0-0c1s3g0
	Example 30. Setting a blade to the EMPTY state
	Example 31. Locking cabinet c0-0
	Example 32. Show all session (lock) data
	Example 33. Unlocking cabinet c0-0
	Example 34. Restarting the NTP service
	Example 35. Identifying nodes that are down
	Example 36. Dumping information about a working component
	Example 37. Displaying installed SMW release level
	Example 38. Displaying installed CLE release level
	Example 39. Finding information in the event log
	Example 40. Adding entries to syslog file
	Example 41. Identifying nodes in down or admindown state
	Example 42. Display current allocation and status of each comput
	Example 43. Verifying that a compute node is connected to the ne
	Example 44. Running xtnetwatch to monitor the system interconnec
	Example 45. Looking at a session running on the power manager
	Example 46. Checking the power manager
	Example 47. Monitoring for specific events
	Example 48. Checking events except heartbeat:
	Example 49. Obtaining node console messages
	Example 50. Identifying all service nodes
	Example 51. Showing compute nodes in the DISABLED state
	Example 52. Adding a group
	Example 53. Adding a user account
	Example 54. Removing a user account
	Example 55. Creating a pam_listfile list file
	Example 56. Adding a line to /etc/pam.d/sshd to enable pam_listf
	Example 57. Stopping a job running under PBS Professional
	Example 58. Shared-root links
	Example 59. Starting the xtopview shell for a node
	Example 60. Starting the xtopview shell for a class of nodes
	Example 61. Starting the xtopview shell for a directory other th
	Example 62. Sample xtopview session
	Example 63. Starting xtopview using node_classes for information
	Example 64. Updating a file within xtopview shell
	Example 65. Finding nodes on which a file is specialized
	Example 66. Finding specialization of a file on a node without i
	Example 67. Finding specialization of files by class without inv
	Example 68. Finding the class of a node
	Example 69. Adding a node to a class
	Example 70. Removing node specialization
	Example 71. Removing class specialization
	Example 72. Printing the latest version of a file
	Example 73. Printing the RCS log for /etc/fstab in the node 3 vi
	Example 74. Displaying differences between two versions of the /
	Example 75. Checking out a version 1.2 copy of /etc/fstab
	Example 76. Recreating the file link for /etc/fstab to the curre
	Example 77. Printing specifications for login class specialized
	Example 78. Printing specifications for files modified in the de
	Example 79. Adding files specified by specifications listed in s
	Example 80. Listing specifications for files currently in the ar
	Example 81. Default /etc/auditd.conf File
	Example 82. Modified PAM configuration files configured to repor
	Example 83. Creating a logical machine with a boot node and SDB
	Example 84. Updating boot configuration
	Example 85. Identifying services in the service_config table
	Example 86. Using node attribute labels to assign nodes to user
	Example 87. IMAGEDIR/compute/etc/opt/cray/configuration/nids fil
	Example 88. Adding the PBS-MOM service for a specific node
	Example 89. Force the fomd to update its configuration informati
	Example 90. Effect a change for a new or updated service on a gr
	Example 91. Using the xtoparchive utility to archive the shared-
	Example 92. Using the xthotbackup command to create a bootable b
	Example 93. Using the xthotbackup command to copy selected file
	Example 94. Recovering from an SDB failure
	Example 95. Increasing the boot_timeout value
	Example 96. Sample /etc/sysconfig/alps configuration file
	Example 97. Sample /etc/alps.conf configuration file
	Example 98. Retrieving node allocation status
	Example 99. Verifying that ALPS is communicating with Cray syste
	Example 100. Running a csanodeacct cron job on each login node t
	Example 101. Executing the csarun script
	Example 102. Running periodic accounting at different intervals
	Example 103. Submit a job to TORQUE
	Example 104. Submit a job to TORQUE that checkpoints every 30 mi
	Example 105. Checkpoint and terminate a job using TORQUE
	Example 106. Restart a held job using TORQUE
	Example 107. Restart a checkpointed job using TORQUE
	Example 108. Submit a job to PBS Professional
	Example 109. Submit a job to PBS Professional that checkpoints e
	Example 110. Checkpoint and terminate a job using PBS Profession
	Example 111. Restart a held job using PBS Professional
	Example 112. Restart a checkpointed job using PBS Professional
	Example 113. Rebooting all compute nodes when a subset are repur
	Example 114. Module file example

	List of Tables
	Table 1. Physical ID Naming Conventions
	Table 2. Default Service Node Configuration and Cabling
	Table 3. CLE Monitor Commands
	Table 4. File Specialization by Class
	Table 5. File Specialization by Node
	Table 6. Shared-root Commands
	Table 7. Topology 0 Chassis Layout
	Table 8. Service Database Tables
	Table 9. Database Privileges
	Table 10. Service Database Update Commands
	Table 11. CSA Parameters That Must Be Specific to Your System
	Table 12. Project Accounting Parameters That Must Be Specific to
	Table 13. BLCR Reported Checkpoint Error Messages
	Table 14. Checkpoint/Restart Error Messages
	Table 15. Upper Layer InfiniBand I/O Protocols for Cray Systems
	Table 16. LNET Network Address Configuration for Cray XT
	Table 17. Physical-to-Logical Mappings Summary by Topology Class
	Table 18. HSS Commands
	Table 19. CLE Commands
	Table 20. State Definitions
	Table 21. Additional State Definitions
	Table 22. xtcli Commands and Allowed States
	Table 23. System Error Codes

