
RR

Cray Programming Environment User's Guide

S–2529–116

© 2004–2014 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Inc.

The gnulicinfo(7) man page contains the Open Source Software licenses (the "Licenses"). Your use of this software
release constitutes your acceptance of the License terms and conditions.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: Cray and
design, Sonexion, Urika, and YarcData. The following are trademarks of Cray Inc.: ACE, Apprentice2, Chapel,
Cluster Connect, CrayDoc, CrayPat, CrayPort, ECOPhlex, LibSci, NodeKARE, Threadstorm. The following system
family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark Linux is used pursuant to a sublicense from LMI, the exclusive licensee of Linus
Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of
their respective owners.

AMD, Opteron, and AMD Opteron are trademarks of Advanced Micro Devices, Inc. Apple and OS X are
trademarks of Apple Inc. Intel, Gemini, SeaStar, SeaStar2, SeaStar2+ Aries, and Intel Xeon Phi are trademarks of
Intel Corporation in the United States and/or other countries. Java is a trademark of Oracle and/or its affiliates. LSF
and Platform LSF are trademarks of Platform Computing Corporation. Lustre is a trademark of Xyratex and/or
its affiliates. Moab is a trademark of Adaptive Computing Enterprises, Inc. MySQL is a trademark of Oracle
and/or its affiliates. NVIDIA, CUDA, Kepler, Tesla, and OpenACC are trademarks of NVIDIA Corporation.
OpenMP is a trademark of OpenMP Architecture Review Board. PBS and PBS Professional are trademarks of
Altair Engineering, Inc. and are protected under U.S. and international law and treaties. PETSc is a trademark of
Copyright (C) 1995-2004 University of Chicago. PGI is a trademark of The Portland Group Compiler Technology,
STMicroelectronics, Inc. RSA and SecurID are trademarks of RSA Security Inc. TotalView is a trademark of Rogue
Wave Software, Inc. VM is a trademark of International Business Machines Corporation. Windows is a trademark of
Microsoft Corporation. UNIX, the “X device,” X Window System, and X/Open are trademarks of The Open Group.

RECORD OF REVISION

S–2529–116 Published June 2014 Supports Cray XC series systems running Cray Linux Environment (CLE) release
5.1 or later and Cray XE and Cray XK systems running Cray Linux Environment (CLE) release 4.2 or later.
Supports Intel® Xeon® Phi™ in autonomous and offload modes.

S–2529–114 Published March 2014 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later. Supports Intel® Xeon® Phi™ in autonomous mode only.

S–2529–111 Published December 2013 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later.

S–2529–107 Published July 2013 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later.

S–2529–103 Published March 2013 Supports Cray XC30 and Cray XC30-AC systems running
Cray Linux Environment (CLE) release 5.0 or later and Cray XE and Cray XK systems running
Cray Linux Environment (CLE) release 3.1 or later.

Changes to this Document

Cray Programming Environment User's Guide S–2529–116

This guide replaces the Cray Application Developer's Environment User's Guide and supports version 6.32
(and later) of the Cray Application Development Environment and version 1.16 (and later) of the Cray
Developer Toolkit.

Revised information

• The Intel Xeon Phi targeting instructions have been revised and expanded. See Targeting for Intel Xeon
Phi on page 31.

Contents

Page

Introduction [1] 13

1.1 What You Must Know About Your System 13

1.1.1 Processor Type . 13

1.1.2 Compute Units and CPUs . 14

1.1.3 CPU Numbering . 15

1.1.4 Which Network ASIC? . 15

1.1.5 Which GPU or Coprocessor? 16

1.1.6 Which Operating System? . 16

1.1.7 What Is a Compute Node? . 17

1.1.8 Which File System? . 18

1.1.9 Which Batch System? . 18

1.2 Logging In . 18

1.2.1 UNIX or Linux Users . 18

1.2.2 Windows Users . 19

1.2.3 Apple Users . 22

1.3 Navigating the File Systems . 23

Using Modules [2] 25

2.1 What Is Loaded Now? . 26

2.2 What Is Available? . 26

2.3 Loading and Unloading Modulefiles 28

2.4 Swapping Compiler Modulefiles . 28

2.5 Swapping Other Programming Environment Components 29

2.6 Using Targeting Modules . 30

2.6.1 Targeting for a Cray System . 30

2.6.1.1 Compiling Without the Cray Networking Libraries 31

2.6.2 Targeting for a Standalone Linux workstation, CDL, or Service Node 31

2.6.3 Targeting for an Accelerator 31

2.6.4 Targeting for Intel Xeon Phi . 31

2.6.4.1 Offload Mode . 32

S–2529–116 7

Cray Programming Environment User's Guide

Page

2.6.4.2 Autonomous Mode . 32

2.6.4.3 Known Limitations . 33

2.7 Module Help . 33

2.8 For More Information . 34

Batch Systems and Program Execution [3] 35

3.1 Interactive Mode . 36

3.1.1 Notes . 37

3.2 Batch Mode . 37

3.3 Using aprun . 39

3.3.1 Special Considerations for Intel Xeon Phi 41

Using Compilers [4] 43

4.1 About Compiler Drivers . 43

4.1.1 Bypassing the Compiler Drivers 44

4.2 About C/C++ Data Types . 44

4.3 About the Cray Compiling Environment (CCE) 45

4.3.1 Known Limitations . 45

4.4 About PGI Compilers . 46

4.4.1 Known Limitations . 46

4.5 About Intel Compilers . 47

4.5.1 Known Limitations . 47

4.6 About GNU Compilers . 47

4.6.1 Known Limitations . 48

4.7 About the Chapel Parallel Programming Language 48

4.8 About Cross-compilers . 49

Dynamic Linking [5] 51

5.1 Implementation . 51

5.2 Linking Defaults . 51

5.3 Modify Linking Behavior to Use Non-default Libraries 52

Libraries [6] 55

6.1 Cray Scientific and Math Libraries (CSML) 55

6.1.1 Basic CSML Components . 55

6.1.2 BLAS and LAPACK . 56

6.1.2.1 Notes . 57

6.1.3 BLACS and ScaLAPACK . 58

6.1.3.1 Notes . 59

8 S–2529–116

Contents

Page

6.1.4 Iterative Refinement Toolkit (IRT) 59

6.1.5 Fourier Transformations . 60

6.1.5.1 FFTW . 60

6.1.5.2 ACML . 61

6.1.6 PETSc . 61

6.1.6.1 Notes . 63

6.1.7 Trilinos . 63

6.1.8 Cray LibSci_ACC . 64

6.2 MPT . 65

6.2.1 Using MPI and SHMEM Modules 66

6.2.2 MPI Usage Notes . 67

6.2.3 SHMEM Usage Notes . 67

6.2.4 GPU-to-GPU Communications 69

6.3 Hugepages . 71

6.3.1 When to Use Hugepages . 71

6.3.2 When to Avoid Using Hugepages 71

6.3.3 Cray XC30 Usage . 72

6.3.4 Cray XE and Cray XK Usage 72

6.3.5 Cray XT Usage . 73

6.3.6 Running Independent Software Vendor (ISV) Applications 73

6.3.7 Known Issues . 74

Debugging Code [7] 75

7.1 Cray Debugger Support Tools . 75

7.1.1 Using CCDB . 76

7.1.2 Using LGDB . 76

7.1.3 Using Abnormal Termination Processing (ATP) 78

7.1.4 Using STAT . 79

7.2 Using Cray Fast-track Debugging 80

7.2.1 Supported Compilers and Debuggers 81

7.3 About Core Files . 81

7.4 Using DDT . 81

7.4.1 Known Limitations . 82

7.5 Using TotalView . 83

7.5.1 Known Limitations . 84

Optimizing Code [8] 85

8.1 Improving I/O . 85

S–2529–116 9

Cray Programming Environment User's Guide

Page

8.1.1 Using iobuf . 85

8.1.2 Improving MPI I/O . 87

8.2 Using Compiler Optimizations . 87

8.2.1 Cray Compiling Environment (CCE) 87

8.3 Using the Cray Performance Measurement and Analysis Tools 88

8.3.1 About CrayPat-lite . 90

8.3.2 About CrayPat . 90

8.3.2.1 Instrumenting the Program 91

8.3.2.2 Collecting Data . 91

8.3.2.3 Analyzing Data . 91

8.3.2.4 For More Information . 92

8.3.3 About Cray Apprentice2 . 92

8.3.4 About Reveal . 93

8.3.5 About PAPI . 94

Appendix A glibc Functions 95

Figures
Figure 1. Selecting SSH Protocol . 20

Figure 2. Enabling X11 Forwarding 21

Figure 3. Logging In . 22

Tables
Table 1. AMD, Intel, Cray, and BASIL Terminology 14

Table 2. aprun Versus qsub Options 40

Table 3. C/C++ Data Type Sizes . 44

Table 4. Cray Compiler Basics . 45

Table 5. PGI Compiler Basics . 46

Table 6. Intel Composer Basics . 47

Table 7. GNU Compiler Basics . 47

Table 8. CSML Basics . 55

Table 9. PETSc Basics . 61

Table 10. Trilinos Basics . 63

Table 11. Cray LibSci_ACC Basics 65

Table 12. MPT Basics . 65

Table 13. Hugepages Basics . 71

Table 14. ccdb Basics . 76

Table 15. lgdb Basics . 76

Table 16. atp Basics . 78

10 S–2529–116

Contents

Page

Table 17. STAT Basics . 79

Table 18. DDT Basics . 81

Table 19. TotalView Basics . 83

Table 20. IOBUF Basics . 85

Table 21. MPI I/O Basics . 87

Table 22. Performance Analysis Basics 88

Table 23. Supported glibc Functions 95

S–2529–116 11

Introduction [1]

This guide describes the software environment and tools used to develop, debug, and
run applications on Cray XT, Cray XE, Cray XK, and Cray XC series systems. It is
intended as a general overview and introduction to the Cray system for new users
and application programmers.

This guide is intended to be used in conjunction with Workload Management and
Application Placement for the Cray Linux Environment (S–2496), which describes
the Application Level Placement Scheduler (ALPS) and aprun command in greater
detail.

The information contained in this guide is of necessity fairly high-level and
generalized, as the Cray platform supports a wide variety of hardware nodes as well
as many different compilers, debuggers, and other software tools. Therefore, system
hardware and software configurations vary considerably from site to site. For specific
information about your site and its installed hardware, software, and usage policies,
contact your site administrator.

1.1 What You Must Know About Your System
Because of processor and network interface differences, you can invoke different
options when compiling and executing your programs. This guide focuses
on compilation differences. Execution differences are discussed in Workload
Management and Application Placement for the Cray Linux Environment (S–2496).

1.1.1 Processor Type

The Cray XT, Cray XE, and Cray XK systems use 64-bit AMD Opteron processors as
the basic computational engines. Cray XC series systems use Intel Xeon processors.
The number of computational units per node varies from system to system and
sometimes from cabinet to cabinet within a system.

• Cray XT6 and Cray XE6 systems use two AMD Magny-Cours, two AMD
Interlagos, or two AMD Abu Dhabi Opteron processors per compute node.

• Cray XK systems combine one AMD Interlagos or Abu Dhabi Opteron processor
and one NVIDIA Tesla or Kepler GPU per compute node.

S–2529–116 13

Cray Programming Environment User's Guide

• Cray XC series systems use two Intel Xeon processors per compute node. Hybrid
systems may combine Intel Xeon CPUs with NVIDIA GPUs or Intel® Xeon®

Phi™ coprocessors on compute nodes.

1.1.2 Compute Units and CPUs

At a high level, AMD and Intel microprocessors differ from each other in the degree
and type of resource sharing used in their diverse architectures. Compute unit affinity
gives Cray users more control over job scheduling and placement to either eliminate
or take advantage of the shared resources in the designs of these microprocessors.

AMD Interlagos and AMD Abu Dhabi processors consist of up to 8 Bulldozer
modules. Each Bulldozer module consists of 2 integer cores and a shared floating
point unit (FPU) and shared L2 cache. Certain applications may see performance
benefit by using only one integer core per compute unit, as opposed to two, thereby
not sharing the FPU or L2 cache located on the same Bulldozer module with other
threads or PEs.

Intel processors contain Hyper-Threading Technology (HTT). Using Intel terms,
each processor consists of multiple cores, each of which contains multiple threads.
Each thread contains a unique set of registers but shares execution resources with
one or more other threads within the same core. A set of threads sharing the same
execution resource are called a core. Again, the sharing of execution resources has
performance implications and some applications may see performance benefit by
not sharing execution resources.

Because AMD and Intel use overlapping terminology to describe distinct entities,
Cray uses a terminology mapping that unifies the common concepts for scheduling
and placement purposes as shown below.

Table 1. AMD, Intel, Cray, and BASIL Terminology

AMD Intel Cray

Bulldozer module core compute unit

core thread CPU

Cray Inc. will use the term CPU to refer to both an AMD core and an Intel thread.
Cray Inc. will use the term Compute Unit (CU) to indicate a grouping of one or more
CPUs that share execution resources, thus CU refers to the AMD Bulldozer module in
the Interlagos/Abu Dhabi context and the Intel core in the Sandy Bridge context.

Current HTT-enabled Intel microprocessors, such as Sandy Bridge, contain 2 CPUs
per CU. Current AMD Interlagos and Abu Dhabi microprocessors contain 2 CPUs
per CU. Earlier architectures (Magny-Cours and prior) contain 1 CPU per CU.

Please see Using Compute Unit Affinity on Cray Systems for more information.

14 S–2529–116

Introduction [1]

1.1.3 CPU Numbering

Though the Intel Sandy Bridge and the AMD Abu Dhabi microprocessors both
contain 2 CPUs per CU, Intel and AMD number the CPUs differently. Users should
be aware that this difference in the CPU numbering scheme affects the order in which
CPUs are reserved and the order in which software threads/PEs are assigned to CPUs.

AMD numbers the CPUs starting with the first CPU on the first CU, then the second
CPU on the first CU, then moves to the first CPU on the second CU, and so on,
incrementally numbering all the CPUs first on one socket, then the other socket on
the node.

Intel first numbers the first CPU in each compute unit, across CUs in all sockets on
the node, then continues with the second CPU in each compute unit, across all sockets
in the node. For example, the first CPU in the first CU is CPU0, then the first CPU
in the second CU is CPU1, and so on though all the CUs on all sockets on the node.
Then the numbering wraps back to the second CPU on the first CU, then the second
CPU on the second CU, and finishing with the second CPU on the last CU on the
last socket of the node.

1.1.4 Which Network ASIC?

The Cray network application-specific integrated circuit (ASIC) provides an interface
between the processors and the interconnection network with support for message
passing, one-sided operations, and global address space programming models.

• Cray XT systems use SeaStar™ or SeaStar2+™ ASICs to manage inter-processor
communications

• Cray XE and Cray XK systems use Gemini™ ASICs to manage inter-processor
communications

• Cray XC30 systems use Aries™ ASICs for inter-processor communications

Because of the differences in the network ASICs and accompanying network APIs,
applications that use inter-process communication, use different versions of the
libraries which implement inter-process communication.

Specifically, SeaStar (Cray XT) systems, Gemini (Cray XE and Cray XK) and Aries
(Cray XC30) systems use different versions of the MPI and SHMEM libraries. Also,
the compilers' inter-process communication functionality depends on network specific
versions of the network APIs.

The differences between the versions of MPI and SHMEM are discussed in more
detail in MPT on page 65.

For more information about the Generic Network Interface (GNI) and Distributed
Shared Memory Application (DMAPP) APIs, see Using the GNI and DMAPP APIs.

S–2529–116 15

Cray Programming Environment User's Guide

1.1.5 Which GPU or Coprocessor?

Systems equipped with hybrid CPU/GPU nodes require different libraries, depending
on which GPU accelerator or coprocessor is installed. At this time Cray systems
support NVIDIA Fermi (K20), Kepler (GK110), and Tesla (K40) GPUs and the
Intel® Xeon® Phi™ coprocessors codenamed Knights Corner. If necessary, use the
cnselect -L subtype command to determine which GPUs or coprocessors are
installed on your system. For example:

$ cnselect -L subtype
nVidia_Kepler

NVIDIA Fermi (K20) GPUs are supported by the craype_accel_nvidia20
module, while NVIDIA Kepler (GK110) and Tesla (K40) GPUs are supported by the
craype_accel_nvidia35 module.

Intel Xeon Phi coprocessors are not accelerators, and therefore do not use a
craype_accel module.

If your system has mixed nodes, you can use the cnselect command to identify
which nodes have which accelerators or coprocessors. For example, to find just the
nodes with Intel Xeon Phi coprocessors, enter this command:

> cnselect -e subtype.eq.Intel_KNC
36-43

This information can be used later to specify placement of applications on nodes
having the desired hardware.

1.1.6 Which Operating System?

All current Cray systems run the Cray Linux Environment (CLE) operating system
on the login nodes and a lightweight kernel, Compute Node Linux (CNL), on
the compute nodes. Some of the options available to application developers vary
depending on which version of CLE is currently running on the system.

• Cray XC30 systems run CLE release 5.0 or later.

• Cray XK systems run CLE release 4.0 or later.

• Cray XE5 and Cray XE6 systems run CLE release 3.1 or later.

• Cray XT6 and Cray XT6m systems run CLE release 3.0 or later.

16 S–2529–116

Introduction [1]

If you are not certain which release your site is using, check the MOTD (message of
the day) when you log in. If the information is not there, there are several other ways
to determine the CLE release number.

• On CLE 3.0 and later systems, cat the contents of the
/etc/opt/cray/release/clerelease file. This returns the
CLE release and update number.

• Cray Development and Login (CDL) nodes do not run CLE and do not have this
file. On those machines, you will need to be on the actual compute node to check
the /etc/opt/cray/release/clerelease file. For example:

qsub -I -lmppwidth=0
cat /etc/opt/cray/release/clerelease

1.1.7 What Is a Compute Node?

From the application developer's point of view, a Cray system is a tightly integrated
network of thousands of nodes. Some are dedicated to administrative or networking
functions and therefore off-limits to application programmers. Programmers typically
use the following node types:

• login nodes — The node you access when you first log in to the system. Login
nodes offer the full Cray Linux Environment (CLE) operating system, are used
for basic development tasks such as editing files and compiling code, generally
have access to the network file system, and are shared resources that may be used
concurrently by multiple users.

Login nodes are also sometimes called service nodes.

• Cray Development and Login (CDL) nodes — External Services system, either
managed or unmanaged. (Formerly esLogin nodes.)

• compute nodes — The nodes on which production jobs are executed. Compute
nodes run CNL, can be accessed only by submitting jobs through a batch
management system (e.g., PBS Professional, Moab HPC Suite, TORQUE
Resource Manager, or Platform LSF), generally have access only to the
high-performance parallel file system and are dedicated resources, exclusively
yours for the duration of the batch reservation.

When new users first begin working on the Cray system, this difference between
login/CDL and compute nodes can be confusing. Remember, when you first log in
to the system, you are placed on a login node. You cannot execute parallel programs
on the login node, nor can you directly access files stored on the high-performance
parallel file system.

S–2529–116 17

Cray Programming Environment User's Guide

Instead, use your site's batch system to place parallel programs on the compute nodes,
either from the login node or from a mount-point on the parallel file system.

Note: You can execute serial (single-process) programs on login nodes, but
executing large or long-running serial programs on login nodes is discouraged, as
login nodes are shared resources.

1.1.8 Which File System?

All Cray systems require the use of a high-performance parallel file system. Most
sites currently use the Lustre File System, although others are also supported. All
examples shown in this guide were developed on a Lustre file system using Lustre
commands. Before copying any examples from this guide verbatim, verify which file
system your site uses and what your site's policies are regarding home directories,
scratch space, disk quotas, backup policies, and so on. If required, adjust the
instructions accordingly.

1.1.9 Which Batch System?

Cray systems typically operate under the control of a batch system such as PBS
Professional, OpenPBS, Moab HPC Suite, TORQUE Resource Manager, or Platform
LSF. All examples shown in this guide were developed using either PBS Pro 11.0,
Moab HPC Suite, or TORQUE Resource Manager. Before copying any examples
from this guide verbatim, verify which batch system your site uses and if required,
adjust the instructions accordingly.

1.2 Logging In
User account setup and authentication policies vary widely from site to site. In
general, you must contact your site administrator to get a login account on the system.
Any site-specific security or authentication policies (for example, the correct use of an
RSA SecurID token) should be explained to you at that time.

Once your user account is created, log in to the Cray system using SSH (Secure
Shell), protocol version 2. SSH is a remote login program that encrypts all
communications between the client and host and replaces the earlier telnet,
rlogin, and rsh programs.

1.2.1 UNIX or Linux Users

If you use a UNIX or Linux workstation, the ssh utility is generally available at
any command line and documented in the ssh(1) man page. To log in to the Cray
system, enter:

% ssh -X hostname

18 S–2529–116

Introduction [1]

The -X option enables X11 display forwarding. Automatic forwarding of X11
windows is highly recommended as many application development tools use GUI
displays.

On some systems, you may be required to enter your user ID as well. This can be
done in several different ways. For example:

% ssh -X -luserID hostname

Or

% ssh -X userID@hostname

In any case, after you SSH to the system, you may have to answer one or more RSA
or password challenges, and then you are logged into the system. A series of system
status and MOTD (message of the day) messages may display, after which you are
placed in your home directory on a login node.

/users/userID>

You are now ready to begin working. Jump to Navigating the File Systems on
page 23.

1.2.2 Windows Users

If you use a Windows personal computer, you first need to obtain and install a client
program for your system that supports SSH protocol 2, such as PuTTY for Windows.
Your system administrator should be able to provide a list of accepted clients.

S–2529–116 19

Cray Programming Environment User's Guide

You may need to configure your client to support SSH protocol 2 and X11
forwarding. For example, if you are using PuTTY, you may need to click SSH in the
left pane to see the preferred SSH protocol version:

Figure 1. Selecting SSH Protocol

Verify that the Preferred SSH protocol version is set to 2.

20 S–2529–116

Introduction [1]

Then click X11 in the left pane to view the SSH X11 forwarding options:

Figure 2. Enabling X11 Forwarding

If necessary, click the Enable X11 forwarding checkbox.

S–2529–116 21

Cray Programming Environment User's Guide

Then click Session in the left pane to return to the Basic options window.

Figure 3. Logging In

Enter the hostname in the Host Name field and click the Open button to begin your
SSH session.

You may need to enter your userID and answer one or more RSA or password
challenges, and then you are logged into the system. A series of system status and
MOTD (message of the day) messages may display, after which you are placed in
your home directory on a login node.

/users/userID>

You are now ready to begin working on the Cray system.

1.2.3 Apple Users

The Apple OS X operating system is based on UNIX. Therefore, to log in to the Cray
system, open the Terminal application, and then use the ssh command to connect
to the Cray system.

% ssh -X hostname

22 S–2529–116

Introduction [1]

The -X option enables X11 display forwarding with X11 security extension
restrictions. Automatic forwarding of X11 windows is highly recommended as many
application development tools use GUI displays.

Note: The version of SSH found in OS X also supports the -Y argument, as well
as the -X argument. The -Y argument enables "trusted" X11 forwarding and may
work better than -X for some users.

On some systems, you may be required to enter your user ID as well. This can be
done in several different ways. For example:

% ssh -X -luserID hostname

Or

% ssh -X userID@hostname

In any case, after you SSH to the system, you may have to answer one or more RSA
or password challenges, and then you are logged into the system. A series of system
status and MOTD (message of the day) messages may display, after which you are
placed in your home directory on a login node.

/users/userID>

You are now ready to begin working on the Cray system.

1.3 Navigating the File Systems
When you first log in to the Cray system, you are placed in your home directory on
a login node.

/users/userID>

At this point you have access to all the features and functions of the full
Cray Linux Environment (CLE) operating system, such as the sftp and scp
commands. Typically you will also have access to your full network file system. On
most systems your home directory on the login node is defined as the environment
variable $HOME, and this variable can be used in any file system command. For
example, to return to your home directory from any other location in the file
system(s), enter this command:

> cd $HOME

Remember, you can edit files, manipulate files, compile code, execute serial
(single-process) programs, and otherwise work in your home directory on the login
node. However, you cannot execute parallel programs on the login node.

Parallel programs must be run on the compute nodes, under the control of the batch
system, and generally while mounted on the high-performance parallel file system. To
do this, you must first identify the nids (node IDs) of the file system mount points. On
the Lustre file system, this can be done in one of two ways.

S–2529–116 23

Cray Programming Environment User's Guide

Either enter the df -t lustre command to find the Lustre nodes and get a
summary report on disk usage:

users/userID> df -t lustre
Filesystem 1K-blocks Used Available Use% Mounted on
8@ptl:/narwhalnid8 8998913280 6946443260 1595348672 82% /lus/nid00008

Or enter the lfs df command to get more detailed information:

users/userID> lfs df
UUID 1K-blocks Used Available Use% Mounted on
nid00008_mds_UUID 179181084 2675664 166265604 1% /lus/nid00008[MDT:0]
ost0_UUID 1124864160 895207088 172517160 79% /lus/nid00008[OST:0]
ost1_UUID 1124864160 838067380 229656540 74% /lus/nid00008[OST:1]
ost2_UUID 1124864160 826599428 241124820 73% /lus/nid00008[OST:2]
ost3_UUID 1124864160 827914052 239801932 73% /lus/nid00008[OST:3]
ost4_UUID 1124864160 964324672 103398548 85% /lus/nid00008[OST:4]
ost5_UUID 1124864160 932986208 134738024 82% /lus/nid00008[OST:5]
ost6_UUID 1124864160 832715148 235009164 74% /lus/nid00008[OST:6]
ost7_UUID 1124864160 828631656 239092572 73% /lus/nid00008[OST:7]

filesystem summary: 8998913280 6946445632 1595338760 77% /lus/nid00008

Note: The above commands are specific to the Lustre high-speed parallel file
system. If your site uses a different file system, adjust the instructions accordingly.

In this example, the Lustre mount point is /lus/nid00008. If you cd to this
mount point:

users/userID> cd /lus/nid00008
Directory: /lus/nid00008
/lus/nid00008>

you are now on the high-performance parallel file system. At this point you can edit
and manipulate files, compile code, and so on; and you can also execute programs on
the compute nodes, typically by using the batch system.

24 S–2529–116

Using Modules [2]

The Cray system uses the Modules environment management package to support
dynamic modification of the user environment via modulefiles. Each modulefile
contains information needed to configure the shell for a particular application. To
make major changes in your user environment, such as switching to a different
compiler, use the appropriate Modules commands to select the desired modulefiles.

The advantage in using Modules is that you are not required to specify explicit paths
for different executable versions or to set the $MANPATH and other environment
variables manually. Instead, all the information required in order to use a given piece
of software is embedded in the modulefile and set automatically when you load the
modulefile.

The simplest way to make certain that the elements of your application development
environment function correctly together is by using the Modules software to keep
track of paths and environment variables, rather than embedding specific directory
paths into your startup files, makefiles, and scripts.

S–2529–116 25

Cray Programming Environment User's Guide

2.1 What Is Loaded Now?
When you first log in to the Cray system, a set of site-specific default modules is
loaded. This set varies depending on system hardware, operating system release level,
site policies, and installed software. To see which modules are currently loaded on
your system, use the module list command.

users/yourname> module list
Currently Loaded Modulefiles:

1) modules/3.2.6.7
2) nodestat/2.2-1.0501.47138.1.78.ari
3) sdb/1.0-1.0501.48084.4.48.ari
4) alps/5.1.1-2.0501.8507.1.1.ari
5) MySQL/5.0.64-1.0000.7096.23.2
6) lustre-cray_ari_s/2.4_3.0.80_0.5.1_1.0501.7664.13.1-1.0501.14774.17.1
7) udreg/2.3.2-1.0501.7914.1.13.ari
8) ugni/5.0-1.0501.8253.10.22.ari
9) gni-headers/3.0-1.0501.8317.12.1.ari

10) dmapp/7.0.1-1.0501.8315.8.4.ari
11) xpmem/0.1-2.0501.48424.3.3.ari
12) hss-llm/7.1.0
13) Base-opts/1.0.2-1.0501.47945.4.2.ari
14) craype-network-aries
15) craype/2.1.0.4
16) cce/8.2.4
17) totalview-support/1.1.5
18) totalview/8.12.0.1
19) cray-libsci/12.2.0.2
20) pmi/5.0.2-1.0000.9906.117.2.ari
21) rca/1.0.0-2.0501.48090.7.46.ari
22) atp/1.7.1
23) PrgEnv-cray/5.1.29
24) cray-mpich/6.2.2
25) craype-sandybridge
26) moab/7.2.6-r12-b152-SUSE11
27) torque/4.2.6

This list breaks down into three groups: operating system modules,
programming environment modules, and support modules. For example, the
craype-sandybridge module indicates that this development environment is set
up to develop code for use on Sandy Bridge processors, while the PrgEnv-cray
module indicates that the Cray Programming Environment, which includes the Cray
Compiling Environment (CCE), is currently loaded.

2.2 What Is Available?
To see what modulefiles are available on your system, enter the command:

% module avail [string] [-subsetflag]

26 S–2529–116

Using Modules [2]

The module avail command produces an alphabetical listing of every modulefile
in your module use path and has no option for "grepping." Therefore, it is usually
more useful to use the command with an string argument. For example, if you are
looking for a list of the available programming environments, you would enter this
command:

users/yourname> module avail PrgEnv

-- /opt/cray/modulefiles ---------------------------------------
PrgEnv-cray/5.1.08 PrgEnv-gnu/5.1.18 PrgEnv-intel/5.1.29
PrgEnv-cray/5.1.10 PrgEnv-gnu/5.1.21 PrgEnv-intel/5.2.07
PrgEnv-cray/5.1.11 PrgEnv-gnu/5.1.22 PrgEnv-intel/5.2.08
PrgEnv-cray/5.1.12b PrgEnv-gnu/5.1.23a PrgEnv-intel/5.2.09
PrgEnv-cray/5.1.14 PrgEnv-gnu/5.1.24 PrgEnv-intel/5.2.10
PrgEnv-cray/5.1.15 PrgEnv-gnu/5.1.25 PrgEnv-intel/5.2.12
PrgEnv-cray/5.1.16 PrgEnv-gnu/5.1.26 PrgEnv-intel/5.2.13(default)
PrgEnv-cray/5.1.17 PrgEnv-gnu/5.1.28 PrgEnv-pgi/5.1.08
PrgEnv-cray/5.1.18 PrgEnv-gnu/5.1.29 PrgEnv-pgi/5.1.10
PrgEnv-cray/5.1.21 PrgEnv-gnu/5.2.07 PrgEnv-pgi/5.1.11
PrgEnv-cray/5.1.22 PrgEnv-gnu/5.2.08 PrgEnv-pgi/5.1.12b
PrgEnv-cray/5.1.23a PrgEnv-gnu/5.2.09 PrgEnv-pgi/5.1.14
PrgEnv-cray/5.1.24 PrgEnv-gnu/5.2.10 PrgEnv-pgi/5.1.15
PrgEnv-cray/5.1.25 PrgEnv-gnu/5.2.12 PrgEnv-pgi/5.1.16
PrgEnv-cray/5.1.26 PrgEnv-gnu/5.2.13(default) PrgEnv-pgi/5.1.17
PrgEnv-cray/5.1.28 PrgEnv-intel/5.1.08 PrgEnv-pgi/5.1.18
PrgEnv-cray/5.1.29 PrgEnv-intel/5.1.10 PrgEnv-pgi/5.1.21
PrgEnv-cray/5.2.07 PrgEnv-intel/5.1.11 PrgEnv-pgi/5.1.22
PrgEnv-cray/5.2.08 PrgEnv-intel/5.1.12b PrgEnv-pgi/5.1.23a
PrgEnv-cray/5.2.09 PrgEnv-intel/5.1.14 PrgEnv-pgi/5.1.24
PrgEnv-cray/5.2.10 PrgEnv-intel/5.1.15 PrgEnv-pgi/5.1.25
PrgEnv-cray/5.2.12 PrgEnv-intel/5.1.16 PrgEnv-pgi/5.1.26
PrgEnv-cray/5.2.13(default) PrgEnv-intel/5.1.17 PrgEnv-pgi/5.1.28
PrgEnv-gnu/5.1.08 PrgEnv-intel/5.1.18 PrgEnv-pgi/5.1.29
PrgEnv-gnu/5.1.10 PrgEnv-intel/5.1.21 PrgEnv-pgi/5.2.07
PrgEnv-gnu/5.1.11 PrgEnv-intel/5.1.22 PrgEnv-pgi/5.2.08
PrgEnv-gnu/5.1.12b PrgEnv-intel/5.1.23a PrgEnv-pgi/5.2.09
PrgEnv-gnu/5.1.14 PrgEnv-intel/5.1.24 PrgEnv-pgi/5.2.10
PrgEnv-gnu/5.1.15 PrgEnv-intel/5.1.25 PrgEnv-pgi/5.2.12
PrgEnv-gnu/5.1.16 PrgEnv-intel/5.1.26 PrgEnv-pgi/5.2.13(default)
PrgEnv-gnu/5.1.17 PrgEnv-intel/5.1.28

One module is usually designated as the default version. Whether this is the most
recent version of this module depends on your site's policies. Some sites always make
the newest version the default, while others wait until after the new version has been
tested and proven bug- and dependency-free.

Whenever a newer version of a module is installed, the older versions continue to
remain available, unless the site administrator has explicitly chosen to delete them.

S–2529–116 27

Cray Programming Environment User's Guide

The [-subsetflag] option lets you list a subset of available modules. The following
flags may be used alone or in combinations:

-U List user modules

-D List the current default modules

-T List tool modules (debuggers, performance analysis utilities, and the
like)

-L List library modules (see Chapter 6, Libraries on page 55)

-P List Programming Environment (compiler) modules

-X List CPU and network targeting modules (Barcelona, Magny-Cours,
Interlagos, and the like)

2.3 Loading and Unloading Modulefiles
If a PrgEnv module is already loaded in your module environment, then you must first
unload the currently loaded PrgEnv module before loading a different version. For
example, to change from the default version of the CCE compiler suite to another
version, use the module unload command to remove the version currently loaded.

users/yourname> module unload PrgEnv-cray

Use the module load command to load a specific version.

users/yourname> module load PrgEnv-cray/version

If a PrgEnv module is not already loaded, this command loads the currently defined
default version of the PrgEnv-intel module:

users/yourname> module load PrgEnv-intel

This command loads PrgEnv-intel/version(default) module:

users/yourname> module load PrgEnv-intel/version

Modules may be linked and related. If you enter the module list command
after changing the programming environment, you may see that in addition to the
programming environment version change, the supporting product versions may also
have changed.

2.4 Swapping Compiler Modulefiles
Alternatively, you can use the module swap or module switch command to
unload one module and load the comparable module. For example, to switch from the
PGI to the Cray Programming Environment, enter this command:

users/yourname> module swap PrgEnv-pgi PrgEnv-cray

28 S–2529–116

Using Modules [2]

The module list command will show that a different set of supporting modules
have been also been loaded automatically.

To swap to a non-default version of the CCE compiler:

users/yourname> module swap cce cce/8.2.2

2.5 Swapping Other Programming Environment Components
Be aware that for products that contain dynamically linked libraries, such as MPI,
switching the MPI module environment does not completely change the run time
environment because the dynamic libraries are located in the cache used by the run
time linker, as specified by /etc/ld.so.conf. To use a non-default version of a
dynamic library at run time the user should prepend CRAY_LD_LIBRARY_PATH
to LD_LIBRARY_PATH. For more detail, see Modify Linking Behavior to Use
Non-default Libraries on page 52.

The following commands revert the environment to an earlier version of 6.2
cray-mpich:

module swap cray-mpich/6.2.5 cray-mpich/6.2.0 module unload
LD_LIBRARY_PATH=${CRAY_LD_LIBRARY_PATH}:${LD_LIBRARY_PATH}

If the module switch has reverted to an older major version of MPI (6.X->5.X),
there may be other dependent libraries which need to be switched also. Refer to
the release notes to find the compatible libsci and other dependent libraries. As
shown below, you will also need to run craype-pkgconfig to reset environment
variables used by the PE drivers (cc, CC, ftn).

6.X -> 5.X mpi
module swap cray-mpich/6.2.0.2 cray-mpich2/5.6.4 module unload
Reset environment variables needed by the cray pe drivers (cc, CC, ftn)
source craype-pkgconfig disable export
LD_LIBRARY_PATH=${CRAY_LD_LIBRARY_PATH}:${LD_LIBRARY_PATH}

Also see Modify Linking Behavior to Use Non-default Libraries on page 52.

S–2529–116 29

Cray Programming Environment User's Guide

2.6 Using Targeting Modules
The targeting modules deserve special mention. To see which targeting modules are
available on your system, use the module avail -X command. It returns a list
like this, which shows the CPU, network-type, and accelerator modules currently
available.

------------------------------ /opt/cray/craype/default/modulefiles ---------------
craype-abudhabi craype-hugepages512M craype-network-aries
craype-abudhabi-cu craype-hugepages64M craype-network-gemini
craype-accel-nvidia20 craype-hugepages8M craype-sandybridge
craype-accel-nvidia35 craype-interlagos craype-shanghai
craype-barcelona craype-interlagos-cu craype-target-compute_node
craype-hugepages128M craype-istanbul craype-target-local_host
craype-hugepages16M craype-ivybridge craype-target-native
craype-hugepages256M craype-mc12 craype-target-petest
craype-hugepages2M craype-mc8 craype-xeon

2.6.1 Targeting for a Cray System

If you are working on a Cray system, your default environment should load the CPU-,
network-, and accelerator-type modules that are correspond to your run time CPU,
network, and accelerator platform. For example, if you have a Cray XC30 system
with Sandy Bridge compute nodes, your default environment should include the
craype-network-aries and craype-sandybridge modules.

To change the default CPU target, the system administrator must configure
/etc/*rc.local to load the appropriate craype-* target module. On systems
that have heterogeneous CPU types available, the user may wish to unload/load
appropriate targeting modules. Otherwise, the user need not modify the default
targeting environment.

If there are no default targeting modules loaded in the user's environment, the
compiler driver scripts (cc, CC, ftn) set the CPU target to x86.

If you are working on a standalone Linux workstation or CDL node and developing
executable code that will then be moved to and run on a Cray system, always make
certain that your local development environment contains the correct targeting
modules for the Cray system on which you plan to run your code. For example, code
compiled with the wrong CPU module loaded, or with the wrong network module
loaded, will not run correctly on the host system. For more information see About
Cross-compilers on page 49.

Note: Alternatively, if your site has a heterogeneous system with more than one
type of compute node (for example, a Cray XE6 system with both Magny-Cours
and Interlagos compute nodes), load the targeting module for the type of compute
node on which you intend to execute your code, and then make certain your job is
placed only on the specified type of compute node. For more information about job
placement, see Workload Management and Application Placement for the Cray
Linux Environment.

30 S–2529–116

Using Modules [2]

2.6.1.1 Compiling Without the Cray Networking Libraries

If you are compiling an application to run on the Cray compute nodes, but do not
wish to use any of the networking libraries such as MPI, or the PGAS languages, load
craype-network-none instead of the other craype-network-* modules.
Applications compiled without networking libraries can be run without aprun.

2.6.2 Targeting for a Standalone Linux workstation, CDL, or Service Node

If you are working on a standalone Linux workstation or CDL node and compiling
code that will be run on a standalone Linux workstation, CDL, or Service Node,
load the craype-network-none module instead of either of the other network
modules, craype-network-gemini or craype-network-aries.

craype-network-none causes no network libraries, to be loaded and network
library dependencies are ignored.

2.6.3 Targeting for an Accelerator

Use the accelerator targeting modules to compile an application that uses CUDA
directly, or one of the APIs which enable the use of the accelerator, such as
OpenACC (supported by CCE). Either load the craype-accel-nvidia20
module to generate code for Fermi, equivalent to compute capability 2.0, or
the craype-accel-nvidia35 module to generate code for Kepler or
Atlas, equivalent to compute capability 3.5. More information about compute
capability levels for CUDA-enabled devices is available from NVIDIA. See
https://developer.nvidia.com/cuda-gpus.

Load craype-accel-nvidia* only if you are developing code that will be
executed on GPU nodes. Loading the accelerator module enables dynamic linking by
default and loads the libsci_acc module, which causes increased overhead if the
resulting code is executed on non-GPU nodes.

Note: The user should be aware that they will need to ensure that buffers are
properly synchronized to the GPU device before a transfer from a device buffer is
initiated. See http://docs.nvidia.com/cuda/cuda-driver-api/index.html#r_main.

2.6.4 Targeting for Intel Xeon Phi

Cray XC30 systems equipped with first generation Intel Xeon Phi coprocessors
codenamed Knights Corner have special requirements, and applications that use the
Xeon Phi coprocessors can run in one of two modes on Cray XC30 systems: offload
mode and autonomous mode.

Symmetric mode—that is, using the Xeon and KNC on the same node to run different
programs—is not supported on Cray XC30 systems.

S–2529–116 31

https://developer.nvidia.com/cuda-gpus
http://docs.nvidia.com/cuda/cuda-driver-api/index.html#r_main

Cray Programming Environment User's Guide

2.6.4.1 Offload Mode

In offload mode, the main part of the code runs on the X86 (host part of the node)
while sections of the code may be "offloaded" to the KNC by the use of special Intel
compiler directives. This mode is similar to the accelerator mode used for GPUs,
although offload mode does not use OpenACC directives.

To use offload mode, load the PrgEnv-intel module, and configure your
environment as shown below to access the Intel compiler directives.

> module load PrgEnv-intel
> source ${INTEL_PATH}/bin/compilervars.sh intel64

(or for CSH) source ${INTEL_PATH}/bin/compilervars.csh intel64

Then compile and run the code as usual. For example:

> cc mycode.c
> aprun -n2 -d4 ./a.out

Note: Do not load the craype-intel-knc module, as this will cause the entire
application to be targeted to the KNC. Also, note that in offload mode, dynamic
linking is not enabled by default.

2.6.4.2 Autonomous Mode

In autonomous mode, the X86 does not execute any parts of the application; the entire
application runs on the KNC. In order to use this mode, the user must have their
environment set up for autonomous mode at build time.

To do so, you first must load the PrgEnv-intel module, then unload any PE
products that might already be loaded and in conflict with KNC, and then load the
KNC module. For example:

> module swap PrgEnv-cray PrgEnv-intel
> module unload cray-libsci atp craype-sandybridge craype-ivybridge
> module load craype-intel-knc

At runtime, simply add the -k option to aprun: for example,

> aprun -k -d4 ./a.out

Note: In autonomous mode, dynamic linking is enabled by default. Codes that
use OpenMP must be linked dynamically because Intel supports only a dynamic
version of the OpenMP library.

32 S–2529–116

Using Modules [2]

2.6.4.3 Known Limitations

Use of Intel Xeon Phi coprocessors is subject to these limitations.

• Developers must use the Intel Composer compiler suite. Other compilers do not
support KNC at this time.

• Developers must use the Intel Math Kernel Library (MKL). Cray Scientific and
Math Libraries (CSML) are not supported on KNC at this time.

• Cray Performance Measurement and Analysis Tools (CPMAT, a.k.a., "CrayPat")
release 6.2 or later is supported on KNC, but subject to limitations as described
in Using Cray Performance Measurement and Analysis Tools. CrayPat-lite is not
supported on KNC at this time. Hardware performance counters (PAPI included)
are not supported on KNC at this time. Reveal, being dependent on CCE (Cray
Compiling Environment), is not supported on KNC at this time.

• Cray Debugging Support Tools (CDST) are not supported on KNC at this time.

2.7 Module Help
Most modules on the Cray system include module help that is specific to the module.
The exact content of the module help varies from vendor to vendor and release to
release, but generally includes release notes and late-breaking news, such as lists of
bugs fixed in the release, known dependencies and limitations, and product usage
information.

You can view the module help at any time for any module currently installed on the
system. The module does not need to be loaded in order for you to view the module
help.

To access the module help, use the module help command. For example, to see
the module help associated with the default CCE module, enter this command:

users/yourname> module help cce

Note: Make certain you specify the exact module name (and if not the default, the
module version) that you want. For example, module help PrgEnv-cray
and module help cce display different information.

S–2529–116 33

Cray Programming Environment User's Guide

2.8 For More Information
The Modules subcommands are documented in the module(1) and
modulefiles(4) man pages. A summary of Modules subcommands can be
displayed by entering the module help command.

users/yourname> module help

Modules Release 3.2.6.6 2007-02-14 (Copyright GNU GPL v2 1991):

Usage: module [switches] [subcommand] [subcommand-args]

Switches:
-H|--help this usage info
-V|--version modules version & configuration options
-f|--force force active dependency resolution
-t|--terse terse format avail and list format
-l|--long long format avail and list format
-h|--human readable format avail and list format
-v|--verbose enable verbose messages
-s|--silent disable verbose messages
-c|--create create caches for avail and apropos
-i|--icase case insensitive
-u|--userlvl <lvl> set user level to (nov[ice],exp[ert],adv[anced])

Available SubCommands and Args:
+ add|load modulefile [modulefile ...]
+ rm|unload modulefile [modulefile ...]
+ switch|swap [modulefile1] modulefile2
+ display|show modulefile [modulefile ...]
+ avail [modulefile [modulefile ...]]
+ use [-a|--append] dir [dir ...]
+ unuse dir [dir ...]
+ update
+ refresh
+ purge
+ list
+ clear
+ help [modulefile [modulefile ...]]
+ whatis [modulefile [modulefile ...]]
+ apropos|keyword string
+ initadd modulefile [modulefile ...]
+ initprepend modulefile [modulefile ...]
+ initrm modulefile [modulefile ...]
+ initswitch modulefile1 modulefile2
+ initlist
+ initclear

Different versions of the Modules software are in use at different sites. Accordingly,
the module command arguments and options available on your site may vary from
those shown here.

34 S–2529–116

Batch Systems and Program Execution [3]

At most sites, access to the compute node resources is managed by a batch control
system, typically PBS Pro, Moab HPC Suite, TORQUE Resource Manager, or
Platform LSF. Users run jobs either by using the qsub command to submit a job
script (or the equivalent command for their batch control system), or else by using the
qsub command (or its equivalent) to request an interactive session within the context
of the batch system, and then using the aprun command to run the application
within the interactive session.

User applications are always launched on compute nodes using the application
launcher, aprun, which submits applications to the Application Level Placement
Scheduler (ALPS) for placement and execution. The ALPS service is both very
powerful and highly flexible, and a thorough discussion of it is beyond the scope
of this manual. For more detailed information about ALPS and aprun, see the
intro_alps(1) and aprun(1) man pages, and Workload Management and
Application Placement for the Cray Linux Environment.

Running an application typically involves these steps.

1. Determine what system resources you will need. Generally, this means deciding
how many cores and/or compute nodes you need for your job.

2. Use the apstat command to determine whether the resources you need are
available. This is very important when you are planning to run in an interactive
session. This is not as important if you are submitting a job script, as the batch
system will keep your job script in the queue until the resources become available
to run it.

3. Translate your resource request into the appropriate batch system and aprun
command options, which are not necessarily the same. If running a batch job,
modify your script accordingly.

4. For batch job submission, use the batch command (e.g., qsub) to submit your job
script which contains launches your job.

S–2529–116 35

Cray Programming Environment User's Guide

5. For interactive job submission, there are two ways to reserve the needed resources
and launch an application:

• First, use the appropriate batch command with interactive option (e.g., qsub
-I) to explicitly reserve resources. Then, enter the aprun command to
launch your application.

• Omit explicit reservation through qsub -I. Using aprun assumes
interactive session and resources are implicitly reserved based on aprun
options.

3.1 Interactive Mode
Interactive mode is typically used for debugging or optimizing code, but not for
running production code. For example, to begin an interactive session on a system
using PBS Pro, use the qsub -I command.

users/yourname> qsub -I

Useful qsub options include:

-I Start an interactive session.

-A account Charge the time to account.

-q debug Run in the debug queue.

-V Import any environment variables that were set in the user's shell.

-l resource_list

Allows user to request resources and specify job placement.

The -l resource_list argument supports a large number of options
that are described in the qsub(1B) man page and expanded upon in
the pbs_resources(7B) man page, and described in greater detail
with examples in Workload Management and Application Placement
for the Cray Linux Environment.

After you have launched an interactive session, use the aprun command to launch
your application.

36 S–2529–116

Batch Systems and Program Execution [3]

When you are finished, enter logout to exit the batch system and return to the
command line.

3.1.1 Notes

• Pay attention to your file system mount points. You must be on the
high-performance parallel file system (for example, if you are using the Lustre file
system, /lus/nidnumber/yourname) in order to launch jobs on the compute
nodes. However, when you launch an interactive batch session, you are by
default placed in your home directory, typically on a login node. For example,
/ufs/home/users/yourname. You may need to cd back to the parallel file
system after launching an interactive session.

• After you launch an interactive batch session, a number of environment variables
are automatically defined and exported to the job, as described on the qsub(1B)
man page. For example, the environment variable $PBS_O_WORKDIR is set to
the directory from which the batch job was submitted. This can be a handy way to
return to your mount point if you cd to the parallel file system before invoking
the interactive batch session.

• The qsub and aprun commands use different options to perform similar
functions. These differences are touched on lightly in Using aprun on page 39
and described in detail in Workload Management and Application Placement for
the Cray Linux Environment.

• When you launch an interactive batch session, you must request the maximum
number of resources you expect to use. Once a batch session begins, you can
only use fewer resources than initially requested. You cannot use the aprun
command to use more resources than you reserved using the qsub command.

3.2 Batch Mode
Production jobs are typically run in batch mode. Batch scripts are shell scripts
containing flags and commands to be interpreted by a shell and are used to run a
set of commands in sequence.

To use PBS, load the pbs module:

users/yourname> module load pbs

To use Torque/MOAB, load the moab module:

users/yourname> module load moab

For example, to run a batch script using PBS Pro, use the qsub command.

users/yourname> qsub [-l resource_list] jobscript

The [-l resource_list] arguments are described in the pbs_resources(7B) man
page.

S–2529–116 37

Cray Programming Environment User's Guide

A typical PBS Pro 11.0 batch script might look like this:

1: #!/bin/sh
2: #PBS -A account
3: #PBS -N job_name
4: #PBS -j oe
5: #PBS -l walltime=1:00:00,mppwidth=192
6:
7: cd $PBS_O_WORKDIR
8: date
9: aprun -n 192 ./a.out > my_output_file 2>&1

Parsing this script line-by-line, it would be interpreted as follows:

1. Invoke the shell to use to interpret the script.

2. Specify the account to which this time is billed.

3. Assign the job a name to use on messages and output.

4. Join the job's STDOUT and STDERR into STDOUT.

Note: While your job is running, STDOUT and STDERR are written to a file or
files in a system directory and the output is copied to your submission directory
only after the job completes. Specifying the -j oe option here and redirecting
the output to a file in line 9 makes it possible for you to view STDOUT and
STDERR while the job is running. For more information about the -j option,
see the qsub(1B) man page.

5. Reserve 192 processing elements for one hour.

6. This line is blank and is ignored.

7. cd to the submission directory, which presumably is a mount point on the Lustre
file system.

8. Run the date command.

9. Execute the executable file a.out on 192 processing elements and redirect any
output to my_output_file.

After the job is submitted using the qsub command, it goes into the queue, where
it waits until the requested resources become available. When they do, the job is
launched on the head node of the allocated resources, and it runs until either it reaches
its planned completion or until the wall clock time (if specified) is up.

38 S–2529–116

Batch Systems and Program Execution [3]

While the job is in the queue, a number of optional commands are available.

qstat Show the status of the job queue. This command is available at any
time, whether or not you have a job in the queue.

qdel job_id

Delete job job_id regardless of its current state and remove it from
the queue.

qhold job_id

Place a non-running job on hold. The job remains in the queue but
will not execute. This command cannot be used once the job begins
running.

qrls job_id

Release a job that is on hold.

qalter job_id

Alter the characteristics—name, account, number of requested cores,
and so on—of a job in the queue. This command cannot be used once
the job begins running.

showq (Moab only) Similar to qstat but providing more detail.

checkjob job_id

(Moab only) Check the status of a job currently in the queue.

showstart job_id

(Moab only) Show the estimated start time for a job in the queue.

showbf (Moab only) Show the current backfill. This can help you to build
small jobs that can be backfilled immediately while you are waiting
for the resources to become available for your larger jobs.

For more information about batch scripts, see your batch system's user
documentation.

3.3 Using aprun

The aprun utility launches applications on compute nodes. The utility submits
applications to the Application Level Placement Scheduler (ALPS) for placement
and execution, forwards the login node environment to the assigned compute nodes,
forwards signals, and manages the stdin, stdout, and stderr streams.

Verify that you are in a directory mounted on the high-speed parallel file system
before using the aprun command.

S–2529–116 39

Cray Programming Environment User's Guide

In simplest form, the aprun command looks like this:

/lus/nid00008> aprun -n x ./program_name

The aprun command supports a large number of options that provide you with a
high degree of control over just exactly how your job is placed and executed on the
compute nodes. At a minimum, you must use the -n option to specify the number of
cores on which to run the job.

Note: Remember, you use aprun within the context of a batch session and the
maximum size of the job is determined by the resources you requested when you
launched the batch session. You cannot use the aprun command to use more
resources than you reserved using the qsub command.

The aprun and qsub commands support comparable but differently named options.
This table lists some of the more commonly used aprun options and their qsub
(PBS Pro 11.0) equivalents.

Table 2. aprun Versus qsub Options

aprun Option qsub -l Option Description

-n 4 -l mppwidth=4 Width (number of PEs)

-d 2 -l mppdepth=2 Depth (number of CPUs hosting
OpenMP threads)

-N 1 -l mppnppn=1 Number of PEs per node

-L 5,6,7 -l mppnodes=\"5,6,7\" Candidate node List

-m 1000m -l mppmem=1000mb Memory per PE

Note: The -B option forces aprun to inherit the values associated with the -n,
-d, -N, and -m options from the batch session. The aprun command exits with
an error if you specify any of these options and the -B option at the same time.

A full discussion of aprun options is beyond the scope of this manual. For
more information see the aprun(1) man page, and for detailed explanations and
examples, see Workload Management and Application Placement for the Cray Linux
Environment. Also, note that the behavior of aprun and the aprun command
options supported may vary depending on which version of the CLE operating system
is installed on your system.

40 S–2529–116

Batch Systems and Program Execution [3]

3.3.1 Special Considerations for Intel Xeon Phi

The aprun command supports the -k argument, which is used to specify that the
application should be placed for execution on an Intel Xeon Phi coprocessor. Note
that executable programs must be built specially for execution on a Xeon Phi. If you
attempt to run a program not built specially, you will see the following message:

aprun: Binary not built for Xeon Phi. Cross-compile your application or use -b to run a command.

Commands that are already present on the Xeon Phi may be run by adding the -b
switch to bypass copying the binary to the compute node.

If you attempt Xeon Phi application placement on a node which does not have a Xeon
Phi coprocessor, the execution will fail and exit with an error message.

The default aprun -cc cpu option will cause all OpenMP threads
to bind to a single KNC thread. Using the -cc none argument and
KMP_AFFINITY=disabled will disable this binding, but may negatively impact
code performance. If -cc none is specified, the -d and -j arguments are ignored.

At this time Cray recommends that for best performance, Xeon Phi code be executed
with aprun arguments -cc depth and -k, and that KMP_AFFINITY be set to
balanced. The KMP_AFFINITY values scatter or compact may yield better
performance with some code, and the aprun -d and/or -j arguments may be used
to fine-tune performance. For more information, see the aprun(1) man page.

S–2529–116 41

Cray Programming Environment User's Guide

42 S–2529–116

Using Compilers [4]

The Cray system supports a variety of compilers from a variety of vendors and
support for new compilers and languages is being added on an ongoing basis. The
GNU Fortran, C, and C++ compilers are supplied with all systems, while all other
compilers are available as optional and separately licensed add-ons. At present, the
following compilers from the following vendors are supported on Cray systems.

• Cray Inc., Cray Compiling Environment (CCE) (Fortran, C, and C++)
• The Portland Group, Parallel Fortran, C, and C++
• Intel Inc., Intel Composer (Fortran and C++)
• Chapel Parallel Programming Language

The compilers available on your system depend on which products your site
administration has chosen to license and install.

Note: At this time, in order to use the first generation Intel Xeon Phi coprocessors
codenamed Knights Corner, the Intel Composer compiler suite must be used.

4.1 About Compiler Drivers
Because of the multiplicity of possible compilers, Cray supplies compiler drivers,
wrapper scripts, and disambiguation man pages. No matter which vendor's compiler
module is loaded, always use one of the following commands to invoke the compiler.

ftn Invokes the Fortran compiler, regardless of which compiler module is
currently loaded. This command links in the fundamental libraries
required in order to produce code that can be executed on the Cray
compute nodes. For more information, see the ftn(1) man page.

cc Invokes the C compiler, regardless of which compiler module is
currently loaded. This command links in the fundamental header files
and libraries required in order to produce code that can be executed
on the Cray compute nodes. For more information, see the cc(1)
man page.

CC Invokes the C++ compiler, regardless of which compiler module is
currently loaded. This command links in the fundamental header files
and libraries required in order to produce code that can be executed
on the Cray compute nodes. For more information, see the CC(1)
man page.

S–2529–116 43

Cray Programming Environment User's Guide

Note that while you always use one of the above commands (either on the command
line or in your make files) to invoke the compiler, the arguments used with the
commands vary according to which compiler module is loaded. For example, the
arguments and options supported by the PGI Fortran compiler are different from those
supported by the Cray Fortran (CCE) compiler.

Important: Regardless of which compiler module you have loaded, do not use the
native compiler commands. For example, if you are using the PGI compiler suite,
do not use the pgf95 command to invoke the Fortran compiler. If you do so, your
code may appear to compile and link successfully, but it will be linked to the wrong
libraries and the resulting program can be executed on login nodes only; it cannot
be executed on compute nodes.

4.1.1 Bypassing the Compiler Drivers

In special cases you may want to bypass the compiler drivers and use the native
compiler commands. Do not do so. Instead, load the special targeting module,
craype-target-native, and then continue to use the ftn, cc, and CC
commands as before. The craype-target-native module enables the compiler
driver commands to function as native compiler commands—for example, if the PGI
programming environment is loaded, the ftn command works as if it is pgf95,
but eliminates all default library links while also preventing any linking to incorrect
libraries.

To restore normal compiler driver behavior, unload the craype-target-native
module.

4.2 About C/C++ Data Types
The C/C++ compilers differ on the size of the long double data type. The PGI and
CCE compilers define long double as being 8 bytes. All other compilers define the
long double as being 16 bytes.

Table 3. C/C++ Data Type Sizes

Data Type Size in Bytes

unsigned char 1

signed char 1

unsigned short 2

signed short 2

unsigned int 4

signed int 4

unsigned long 8

44 S–2529–116

Using Compilers [4]

Data Type Size in Bytes

signed long 8

unsigned long long 8

signed long long 8

float 4

_float128 16

_float128 complex 32

double 8

long double 8 or 16, depending on compiler

char * 8

enum 4

4.3 About the Cray Compiling Environment (CCE)

Table 4. Cray Compiler Basics

Module: PrgEnv-cray

Command: ftn, cc, CC

Compiler-specific man
pages:

crayftn(1), craycc(1), crayCC(1)

Note: Compiler-specific man pages are available only
when the compiler module is loaded.

Online help: None provided

Documentation: Cray Fortran Reference Manual, Cray C and C++
Reference Manual

4.3.1 Known Limitations

• If you use the Cray Fortran compiler with the PETSc (Portable, Extensible
Toolkit for Scientific Computation) library, either add the directive !dir$
PREPROCESS EXPAND_MACROS to the source code or add the -F option to
the ftn command line.

• At this time, CCE does not support the first generation Intel Xeon Phi
coprocessors codenamed Knights Corner.

S–2529–116 45

Cray Programming Environment User's Guide

4.4 About PGI Compilers

Table 5. PGI Compiler Basics

Module: PrgEnv-pgi

Command: ftn, cc, CC

Compiler-specific man
pages:

pgf95(1), pgcc(1), pgCC(1)

Note: Compiler-specific man pages are available only
when the compiler module is loaded.

Online help: pgf95 -help, pgcc -help, pgCC -help,

Documentation: /opt/pgi/version/linux86-64/version/doc

4.4.1 Known Limitations

• At this time, PGI compilers do not support the first generation Intel Xeon Phi
coprocessors codenamed Knights Corner.

• The PGI compilers are not able to handle template-based libraries such as Tpetra.

• When linking in ACML routines, you must compile and link all program
units with -Mcache_align or an aggregate option that incorporates
-Mcache_align such as fastsse.

• The -Mconcur (auto-concurrentization of loops) option is not supported on
Cray systems.

• The -mprof=mpi, -Mmpi, and -Mscalapack options are not supported.

• The PGI debugger, PGDBG, is not supported on Cray systems.

• The PGI profiling tools, pgprof and pgcollect, are not supported on Cray
systems.

• The PGI Compiler Suite does not support the UPC or Coarray Fortran parallel
programming models.

46 S–2529–116

Using Compilers [4]

4.5 About Intel Compilers

Table 6. Intel Composer Basics

Module: PrgEnv-intel

Command: ftn, cc, CC

Compiler-specific man pages: ifort(1), fpp(1), icc(1), icpc(1)

Note: Compiler-specific man pages are available only when the
compiler module is loaded.

Online help: ifort --help, icc --help

Documentation: /opt/intel/Compiler/version/Documentation/language

4.5.1 Known Limitations

• The Intel Compiler Suite (Intel Composer) must be installed in the default
location. The optional Intel C/C++ only installation is not supported because the
Intel Fortran run time libraries are required by Cray libraries such as libsci
when using the Intel compiler.

• The Intel Composer does not support the UPC or Coarray Fortran parallel
programming models.

• The Intel Composer is the only compiler suite that supports first generation Intel
Xeon Phi coprocessors codenamed Knights Corner.

4.6 About GNU Compilers

Table 7. GNU Compiler Basics

Module: PrgEnv-gnu

Command: ftn, cc, CC

Compiler-specific man
pages:

gfortran(1), gcc(1), g++(1)

Note: Compiler-specific man pages are available
only when the compiler module is loaded.

Online help: gfortran --help, gcc --help, g++ --help

S–2529–116 47

Cray Programming Environment User's Guide

4.6.1 Known Limitations

• The GNU compilers do not support the UPC or Coarray Fortran parallel
programming models.

• At this time, the GNU compilers do not support the first generation Intel Xeon Phi
coprocessors codenamed Knights Corner.

4.7 About the Chapel Parallel Programming Language
Chapel is an emerging parallel programming language whose design and
development is being led by Cray Inc. Chapel is being developed as an open-source
effort with contributions from academia, industry, and scientific computing centers.
Chapel emerged from Cray's entry in the DARPA-led High Productivity Computing
Systems program (HPCS).

Chapel is designed to improve the productivity of high-end computer users
while also serving as a portable parallel programming model that can be used on
commodity clusters or desktop multicore systems. Chapel strives to vastly improve
the programmability of large-scale parallel computers while matching or beating the
performance and portability of current programming models like MPI.

Chapel supports a multithreaded execution model via high-level abstractions for
data parallelism, task parallelism, concurrency, and nested parallelism. Chapel's
locale type enables users to specify and reason about the placement of data
and tasks on a target architecture in order to tune for locality. Chapel supports
global-view data aggregates with user-defined implementations, permitting operations
on distributed data structures to be expressed in a natural manner. In contrast
to many previous higher-level parallel languages, Chapel is designed around a
multiresolution philosophy, permitting users to initially write very abstract code and
then incrementally add more detail until they are as close to the machine as their
needs require. Chapel supports code reuse and rapid prototyping via object-oriented
design, type inference, and features for generic programming.

Chapel was designed from first principles rather than by extending an existing
language. It is an imperative block-structured language, designed to be easy to learn
for users of C, C++, Fortran, Java, Perl, Matlab, and other popular languages. While
Chapel builds on concepts and syntax from many previous languages, its parallel
features are most directly influenced by ZPL, High-Performance Fortran (HPF), and
the Cray MTA/Cray XMT extensions to C and Fortran.

For more information about Chapel, see: http://chapel.cray.com.

48 S–2529–116

http://chapel.cray.com

Using Compilers [4]

4.8 About Cross-compilers
The Cray system supports using standalone Linux workstations as code development
platforms for CLE 4.X systems. Install the Cray Application Developer's
Environment (CADE), release 6.17 or later, on Cray XE or Cray XK systems running
CLE release 4.0, 4.1, or 4.2.

The Cray system supports using Cray Development and Login (CDL) hosts as
development platforms for CLE 5.X systems. Install the Cray Developer Toolkit
(CDT), release 1.16 or later, on Cray XC30 systems running Cray Linux Environment
(CLE) release 5.1 or later.

When the Cray Application Developer's Environment (CADE) is installed on a
suitable Linux or CDL system, programs can be written and compiled on that system
and then exported to the Cray system for subsequent execution, debugging, and
optimization.

For instructions on installing CADE and CDT, please see Cray Programming
Environments Installation Guide. After CADE or CDT is installed and your
compilers are installed and configured on your Linux system, follow these steps to
begin developing code.

Procedure 1. Setting Up the Programming Environment

1. Load the cray-network module corresponding to the Cray system
for which you intend to develop code. If you are developing for
a Gemini system (Cray XE5, Cray XE6, or Cray XK6), load the
cray-network-gemini module. If you are developing for a XC30 system,
load the cray-network-aries module.

Note: On the actual Cray system, the network type is typically set by default
and transparent to the user. When working on a standalone Linux system, you
must set this manually. If the correct cray-network module is not selected,
your code may appear to compile successfully on the Linux system but will
not run on the Cray system.

2. Load the cray-processor module corresponding to the compute nodes on the
Cray system for which you intend to develop code. Your choices are:

• craype-abudhabi
• craype-abudhabi-cu
• craype-mc8
• craype-mc12
• craype-interlagos

S–2529–116 49

Cray Programming Environment User's Guide

• craype-interlagos-cu
• craype-sandybridge
• craype-ivybridge
• craype-intel-knc

Note: On the actual Cray system, the processor type is typically set by default
and transparent to the user. When working on a standalone Linux system, you
must set this manually. If you select a processor type with fewer cores than
are actually present on the Cray compute nodes, your code will not make full
use of the Cray system resources and may either run slowly or cause conflicts
with aprun options and placement. If you select a processor type with more
cores than are actually present on the Cray compute nodes, your application
may appear to compile successfully but will not run.

3. (Cray XK, XC30 system users only and CCE 8.0 or later only) Load the
accelerator module that is appropriate for the compute nodes on the Cray system
for which you intend to develop code. Currently, the only supported options are
craype-accel-nvidia20, craype-accel-nvidia35 and the only
compiler that supports the accelerator module is CCE.

The accelerator target is not set by default on either the standalone Linux system
or the Cray system. You must set this manually. This module sets compiler
options required to compile applications for the accelerator target.

Load the accelerator module only if you are developing code that will be
executed on GPU nodes. Loading the accelerator module enables dynamic
linking and loads the libsci_acc module, which causes increased overhead
if the resulting code is executed on non-GPU nodes.

The first generation Intel Xeon Phi coprocessors codenamed Knights Corner
are not accelerators, and therefore do not require loading accelerator support
modules.

4. Load the PrgEnv-vendor module containing your compiler of choice.

You are now ready to begin writing, editing, and compiling code. Remember,
however, that you must move your code to mount point on the Cray system (for
example, /lus/nid00008) before you can run, debug, or optimize it.

50 S–2529–116

Dynamic Linking [5]

Dynamic linking, or run time linking, potentially reduces memory allocated for a
program on a compute node. Dynamically linked applications contain references to
dynamic libraries, also known as dynamic shared objects. It allows the user to benefit
from library upgrades, without having to recompile.

The module environment, in combination with the Cray compiler drivers (CC, cc,
ftn), define the default link-type, cpu-target, network-target, accelerator-target,
compiler and other information required to create an executable.

5.1 Implementation
There have been changes to the implementation of dynamic linking within the drivers
and PE product installation, beginning with the 5.0 release of CLE, which includes
a new craype package (formerly named xt-asyncpe). To the user, changes to
the implementation of dynamic linking should be transparent but it is helpful to be
aware of default behavior.

If a user wishes to modify the default run time programming environment for a
dynamically linked application, they will need to modify the default search path for
dynamically linked libraries.

5.2 Linking Defaults
By default, the compiler driver scripts, CC, cc, ftn, set the -static option.
If one of the GPU targeting modules is loaded (craype-accel-nvidia20,
craype-accel-nvidia35), or if the Intel Xeon Phi module is loaded
(craype-intel-knc), the default linking behavior changes to dynamic because
the required libraries are dynamic. To modify the linking behavior, use the
-dynamic or -static option on the compiler driver script. Alternatively, a user
may wish to set the shell environment variable CRAYPE_LINK_TYPE to dynamic
or static to change the default link type.

Generally, when a new, non-compiler Cray product containing dynamic libraries is
set as the default by the administrator, the installation process adds run time links
to the /opt/cray/lib64 directory and executes /sbin/ldconfig to add
/opt/cray/lib64 to the ld cache making these dynamic libraries accessible to
the run time environment.

S–2529–116 51

Cray Programming Environment User's Guide

Runtime linking is against the list of links in /opt/cray/lib64. This set
of run time links reflects the set of products installed as "default" by the system
administrator. The non-compiler Cray product installation configures the run time
linker's cache, not RPATH, nor LD_LIBRARY_PATH to define the run time link
path for dynamically linked applications.

The compilers (pgi, cce, gcc, and intel) as well stat may control the run time
link path and set the RPATH stored in the executable. For example, the CCE compiler
script, craycc, passes the -Wl,-rpath= option to the compiler driver to specify
the associated set of Craylibs to use during run time.

When a dynamically linked executable runs in the Cray environment, it finds
dynamically linked libraries according to the following search order:

• LD_LIBRARY_PATH environment variable

• RPATH embedded in the header of the executable.

• Directories in /etc/ld.so.cache, the dynamic linker's cache, created
by the ldconfig command which is run during the installation process.
Cray programming environment products' dynamic libraries are installed in
/opt/cray/lib64.

When there are entries in LD_LIBRARY_PATH, and RPATH those directory paths
are searched first for each library that is referenced by the run time application,
affecting the run time for applications, particularly at higher node counts. For this
reason, the default programming environment does not use LD_LIBRARY_PATH.

5.3 Modify Linking Behavior to Use Non-default Libraries
The environment variable CRAY_LD_LIBRARY_PATH, is set to a colon-separated
list of every product library path in the current environment, and is automatically
generated by the module environment. When modules are unloaded and loaded, its
value changes accordingly. It is not recognized by the loader, nor consumed by the
programming environment, but it is provided to facilitate the modification of the
user's LD_LIBRARY_PATH, if needed.

If a non-default product is loaded or if a user suspects an issue with the default
version of a library, the user may wish to prepend the CRAY_LD_LIBRARY_PATH
to LD_LIBRARY_PATH. For example, a user who wishes to run an application
against a product set that contains some non-default product, can prepend
CRAY_LD_LIBRARY_PATH to LD_LIBRARY_PATH as follows:

module load PrgEnv-cray
module swap cray-libsci cray-libsci/version
module swap cray-mpich cray-mpich/version
setenv LD_LIBRARY_PATH $CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
aprun ./a.out

52 S–2529–116

Dynamic Linking [5]

The use of LD_LIBRARY_PATH does have a performance impact and should be
reserved for special cases. Programs that needed to be locked to a specific version of
a Programming Environment library should use the link option -Wl,-rpath=, or
static linking, if possible.

S–2529–116 53

Cray Programming Environment User's Guide

54 S–2529–116

Libraries [6]

Cray provides a large variety of libraries to support application development and
interprocess communications on Cray systems. New libraries are being ported to the
Cray system on an ongoing basis.

The following libraries can be used with all compilers currently supported on the
Cray system, except where noted in Chapter 4, Using Compilers on page 43.

6.1 Cray Scientific and Math Libraries (CSML)
The Cray Scientific and Math Libraries (CSML, also known as LibSci) are a
collection of numerical routines optimized for best performance on Cray systems. All
programming environment modules load cray-libsci by default, except where
noted. When possible, you should use calls to the CSML routines in your code in
place of calls to public-domain or user-written versions.

Note: CSML is not supported for first generation Intel Xeon Phi coprocessors
codenamed Knights Corner. When building a program that is to use the Intel
Xeon Phi coprocessor, unload the cray-libsci module before loading the
craype-intel-knc module. Developers writing code to run on Intel Xeon Phi
coprocessors must use the Intel Math Kernel Library (MKL) instead of CSML.

6.1.1 Basic CSML Components

Table 8. CSML Basics

Module: cray-libsci

Man pages: intro_libsci(3s), intro_libsci_acc(3s),
intro_blas1(3s), intro_blas2(3s),
intro_blas3(3s), intro_blacs(3s),
intro_lapack(3s), intro_lapacke(3s),
intro_scalapack(3s), intro_irt(3),
intro_fft(3s), intro_fftw2(3),
intro_fftw3(3)

Note: Library-specific man pages are available only
when the associated module is loaded.

S–2529–116 55

Cray Programming Environment User's Guide

The CSML collection contains the following Scientific Libraries.

• BLAS (Basic Linear Algebra Subroutines)

• BLACS (Basic Linear Algebra Communication Subprograms)

• LAPACK (Linear Algebra Routines)

• LAPACKE (C interfaces to LAPACK Routines)

• ScaLAPACK (Scalable LAPACK)

• FFT (Fast Fourier Transform Routines)

• FFTW2 (the Fastest Fourier Transforms in the West, release 2)

• FFTW3 (the Fastest Fourier Transforms in the West, release 3)

In addition, the Cray LibSci collection contains three libraries developed by Cray.

• IRT (Iterative Refinement Toolkit)

• LibSci_ACC (Accelerated BLAS and LAPACK routines, optimized for use on
systems with GPU accelerators)

6.1.2 BLAS and LAPACK

The BLAS and LAPACK libraries are loaded by default as part of the
cray-libsci module. The BLAS (Basic Linear Algebra Subroutines) library
contains three levels of optimized subroutines. Level 1 BLAS perform the following
types of basic vector-vector operations:

• Dot products and various vector norms

• Scaling, copying, swapping, and computing linear combination of vector

• Generate or apply plane or modified plane rotations

For more information, see the intro_blas1(3s) man page.

Level 2 BLAS perform matrix-vector operations, and generally produce improved
code performance when inlined. For more information about Level 2 BLAS, see the
intro_blas2(3s) man page.

Level 3 BLAS perform matrix-matrix operations. For more information about Level 3
BLAS, see the intro_blas3(3s) man page.

LAPACK is a public domain library of subroutines for solving dense linear algebra
problems, including the following:

• Systems of linear equations
• Linear least squares problems
• Eigenvalue problems
• Singular value decomposition (SVD) problems

56 S–2529–116

Libraries [6]

LAPACK is the successor to the older LINPACK and EISPACK packages. It extends
the functionality of these packages by including equilibration, iterative refinement,
error bounds, and driver routines for linear systems, routines for computing
and reordering the Schur factorization, and condition estimation routines for
eigenvalue problems. Performance issues are addressed by implementing the most
computationally-intensive algorithms using Level 2 and Level 3 BLAS.

For more information about LAPACK, see the intro_lapack(3s) man page.

6.1.2.1 Notes

• BLAS library behavior is dependent on the craype-processor module. At
most sites this module is typically loaded by default and transparent to the
user. However, if your site has multiple types of compute nodes, or if you are
working in an unmanaged CDL or Linux cross-compiling environment, it may be
necessary to load the craype-processor module corresponding to the compute
nodes on the Cray system for which you intend to develop code in order to obtain
best performance. Your choices are:

– craype-barcelona (AMD quad core, Cray XT4)
– craype-shanghai (AMD quad core, Cray XT5)
– craype-istanbul (AMD six cores)
– craype-mc8 (AMD eight cores)
– craype-mc12 (AMD twelve cores)
– craype-interlagos (AMD sixteen cores)
– craype-interlagos-cu (AMD sixteen cores, optimized for Compute

Unit Affinity)
– craype-abudhabi (AMD sixteen cores)
– craype-abudhabi-cu (AMD sixteen cores, optimized for Compute Unit

Affinity)
– craype-sandybridge (Intel eight cores/sixteen threads)
– craype-ivybridge (Intel twelve cores/twenty-four threads)

Note: If you select a processor type with fewer cores than are actually present
on the Cray compute nodes, your code will not make full use of the Cray
system resources and may either run slowly or cause conflicts with aprun
options and placement. If you select a processor type with more cores than are
actually present on the Cray compute nodes, your application may appear to
compile successfully but will not run.

• If you require a C interface to BLAS and LAPACK but want to use Cray LibSci
BLAS or LAPACK routines, use the Fortran interfaces.

• To obtain threading behavior, set OMP_NUM_THREADS, as described in BLACS
and ScaLAPACK on page 58.

S–2529–116 57

Cray Programming Environment User's Guide

• You can access the Fortran interfaces from a C program by adding an underscore
to the respective routine names and passing arguments by reference (rather than
by value). For example, you can call the dgetrf() function as follows:

dgetrf_(&uplo, &m, &n, a, &lda, ipiv, work, &lwork, &info);

• C programmers using the Fortran interface must order arrays in Fortran
column-major order.

• Some older versions of the Cray BLAS and LAPACK libraries optimized to
support older AMD processors include routines from the 64-bit libGoto library
from the University of Texas. Use of libGoto library routines in Cray libraries
is being phased out.

6.1.3 BLACS and ScaLAPACK

The BLACS (Basic Linear Algebra Communication Subprograms) and ScaLAPACK
(Scalable LAPACK) libraries are loaded by default as part of the cray-libsci
module. BLACS is a package of routines that provide the same functionality
for message-passing linear algebra communication as the Basic Linear Algebra
Subprograms (BLAS) provide for linear algebra computation. With these two
packages, software for dense linear algebra can use calls to BLAS for computation
and calls to BLACS for communication. The BLACS consist of communication
primitives routines, global reduction routines, and support routines.

For more information about BLACS, see the intro_blacs(3s) man page.

The ScaLAPACK library uses BLACS primitives to provide optimized routines for
solving real or complex general, triangular, or positive definite distributed systems;
for reducing distributed matrices to condensed form and an eigenvalue problem solver
for real symmetric distributed matrices; and to perform basic operations involving
distributed matrices and vectors.

LU and Cholesky routines in ScaLAPACK have been modified to allow the user to
choose an underlying broadcast algorithm during run time. It can be done either via
an environment variable, or by calling a helper routine in a program.

For more information about ScaLAPACK, see the intro_scalapack(3s) man
page.

58 S–2529–116

Libraries [6]

6.1.3.1 Notes

• Some ScaLAPACK routines require the Basic Linear Algebra Communication
Subprograms (BLACS) to be initialized. This can be done through a call to
BLACS_GRIDINIT. Also, each distributed array that is passed as an argument
to a ScaLAPACK routine requires a descriptor, which is set through a call to
DESCINIT.

• The ScaLAPACK and BLACS libraries can be used in MPI and SHMEM
applications. Cray LibSci also supports hybrid MPI/ScaLAPACK applications,
which use threaded BLAS on a compute node and MPI between nodes. To use
ScaLAPACK in a hybrid application:

1. Adjust the process grid dimensions in ScaLAPACK to account for the
decrease in BLACS nodes.

2. Ensure that the number of BLACS processes required is equal to the number
of nodes required, not the number of cores.

3. Set the OMP_NUM_THREADS environment variable.

6.1.4 Iterative Refinement Toolkit (IRT)

The Iterative Refinement Toolkit (IRT) is a library of Fortran subroutines that
provides solutions to linear systems using 32-bit factorizations while preserving
accuracy through mixed-precision iterative refinement. IRT exploits the fact that
single-precision solvers can be up to twice as fast as double-precision solvers, and
uses an iterative refinement process to obtain solutions accurate to double-precision.
IRT includes both serial and parallel implementations of the LU and Cholesky
algorithms, and serial versions of the QR algorithm for real and complex matrices.

IRT includes the following features:

• Sophisticated stopping criteria

• Potential minimization of forward error

• Ability to return error bounds

• Return an estimate of the condition number of matrix A

• Return to the double-precision factorization-and-solve process if IRT cannot
obtain a solution

S–2529–116 59

Cray Programming Environment User's Guide

IRT provides two interfaces:

• Benchmarking interface. The benchmarking interface routines replace the
high-level drivers of LAPACK and ScaLAPACK. The names of the benchmark
API routines are identical to their LAPACK or ScaLAPACK counterparts or
replace calls to successive factorization and solver routines. This allows you to
use the IRT process without modifying your application.

For example, the IRT dgesv() routine replaces either the LAPACK dgesv()
routine or the LAPACK dgetrf() and dgetrs() routines. To use the
benchmarking interface, set the IRT_USE_SOLVERS environment variable to 1.

Note: Use this interface with caution; calls to the LAPACK LU, QR or
Cholesky routines are intercepted and the IRT is used instead.

• Expert interface. The expert interface routines give you greater control of the
iterative refinement process and provide details about the success or failure of the
process. The format of advanced API calls is:

call irt_factorization-method_data-type_processing-mode(arguments)

such as: call irt_po_real_parallel(arguments).

For more information about IRT, see the intro_irt(3) man page.

6.1.5 Fourier Transformations

Fast Fourier transforms are handled by using FFTW. Alternatively, on Cray XT,
Cray XE, and Cray XK systems, FFT can be handled using ACML.

The intro_fft(3s) man page is a disambiguation page.

6.1.5.1 FFTW

FFTW is a C subroutine library with Fortran interfaces for computing the discrete
Fourier transform in one or more dimensions, of arbitrary input size, and of both
real and complex data (as well as of even/odd data, such as the discrete cosine/sine
transforms). The Fast Fourier Transform algorithm is applied for many problem sizes.

Cray LibSci includes both version 2.1.5.x and multiple 3.2.x and 3.3.x versions of the
Fastest Fourier Transform in the West (FFTW) library. By default, no version of
FFTW is loaded.

The FFTW 3.3.x and FFTW 2.1.5.1 modules cannot be loaded at the same time. If
a module is already loaded, you must first unload one module, before loading the
desired module. For example, if you have loaded the FFTW 3.3.x library and want to
use FFTW 2.1.5.1 instead, use:

% module swap fftw/3.3.0.2 fftw/2.1.5.1

60 S–2529–116

Libraries [6]

For more information about FFTW, see the intro_fftw2(3) and
intro_fftw3(3) man pages.

6.1.5.2 ACML

The AMD Core Math Library (ACML) is available for Cray XT, Cray XE, and
Cray XK systems equipped with AMD Opteron CPUs only.

The ACML module is not loaded as part of the default Cray LibSci. However, if you
need ACML for FFT functions, math functions, or random number generators, you
can load the library using the acml module:

% module load acml

Note: If you load the acml module manually, you must also use -l acml option
when compiling and linking to link in the ACML library.

ACML includes:

• A suite of Fast Fourier Transform (FFT) routines for real and complex data

• Fast scalar, vector, and array math transcendental library routines optimized for
high performance

• A comprehensive random number generator suite:

– Base generators plus a user-defined generator

– Distribution generators

– Multiple-stream support

ACML's internal timing facility uses the clock() function. If you run an
application on compute nodes that uses the plan feature of FFTs, underlying timings
will be done using the native version of clock(). On CNL, clock() returns the
sum of user and system CPU times.

6.1.6 PETSc

Table 9. PETSc Basics

Modules: cray-petsc, cray-petsc-complex, cray-tpsl

Man pages: intro_petsc(3s)

Note: Library-specific man pages are available only
when the associated module is loaded.

Website: http://www.mcs.anl.gov/petsc/petsc-as/

S–2529–116 61

http://www.mcs.anl.gov/petsc/petsc-as/

Cray Programming Environment User's Guide

PETSc (Portable, Extensible, Toolkit for Scientific Computation) is an open source
library of parallel linear and nonlinear equation solvers intended for use in large-scale
C, C++, or Fortran applications. PETSc uses standard MPI functions for all
message-passing communication.

The PETSc modules are not loaded by default. PETSC is dependent on the
cray-libsci and craype modules. Make certain these modules are loaded
before using PETSc. When you load the petsc module, the Third-Party Scientific
Libraries (cray-tpsl) module is automatically loaded as well, to provide access to
the libraries required to support PETSc.

Note: Always use the cray-tpsl module that is linked to the PETSc module.
PETSc and Trilinos are asynchronous products and may at times use different
versions of the TPSL libraries.

PETSc provides many of the mechanisms needed for parallel applications, such
as simple parallel matrix and vector assembly routines that allow the overlap of
communication and computation. In addition, PETSc includes support for parallel
distributed arrays useful for finite difference methods, such as:

• Parallel vectors, including code for communicating ghost points
• Parallel matrices, including several sparse storage formats
• Scalable parallel preconditioners
• Krylov subspace methods
• Parallel Newton-based nonlinear solvers
• Parallel time-stepping ordinary differential equation (ODE) solvers

The following packages are included in PETSc/TPSL.

• MUMPS (MUltifrontal Massively Parallel sparse direct Solver) is a package of
parallel, sparse, direct linear-system solvers based on a multifrontal algorithm.
For further information, see http://graal.ens-lyon.fr/MUMPS/.

• SuperLU is a sequential version of SuperLU_dist (not included with
petsc-complex), and a sequential incomplete LU preconditioner that can
accelerate the convergence of Krylov subspace iterative solvers. For further
information, see http://crd.lbl.gov/~xiaoye/SuperLU/.

• SuperLU_dist is a package of parallel, sparse, direct linear-system
solvers (available in Cray LibSci). For further information, see
http://crd.lbl.gov/~xiaoye/SuperLU/.

• ParMETIS (Parallel Graph Partitioning and Fill-reducing Matrix Ordering)
is a library of routines that partition unstructured graphs and meshes and
compute fill-reducing orderings of sparse matrices. For further information, see
http://glaros.dtc.umn.edu/gkhome/views/metis/.

62 S–2529–116

http://graal.ens-lyon.fr/MUMPS/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://glaros.dtc.umn.edu/gkhome/views/metis/

Libraries [6]

• HYPRE is a library of high-performance preconditioners that use parallel
multigrid methods for both structured and unstructured grid problems
(not included with petsc-complex). For further information, see
http://www.llnl.gov/CASC/linear_solvers/.

• SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers)
consists of 5 solvers: CVODE, CVODES, IDA, IDAS, and KINSOL. In
addition, SUNDIALS provides a MATLAB interface to CVODES, IDAS,
and KINSOL that is called sundialsTB. For further information, see
https://computation.llnl.gov/casc/sundials/main.html.

• Scotch is a software package and libraries for sequential and parallel
graph partitioning, static mapping, sparse matrix block ordering, and
sequential mesh and hypergraph partitioning. For further information, see
http://www.labri.fr/perso/pelegrin/scotch/.

Note: Although you can access these packages individually, Cray supports their
use only through the PETSc or Trilinos interface.

6.1.6.1 Notes

• If you use PETSc with the Cray Fortran compiler, either add the directive !dir$
PREPROCESS EXPAND_MACROS to the source code or add the -F option to
the ftn command line.

• The solvers in Cray PETSc are heavily optimized using the Cray Adaptive
Sparse Kernels (CASK) library. CASK is an auto-tuned library within the Cray
PETSc package that is transparent to the application developer, but improves
the performance of most PETSc iterative solvers. You can expect the largest
performance improvements when using blocked matrices (BAIJ or SBAIJ), but
may also see large gains when using standard compressed sparse row (CSR) AIJ
PETSc matrices.

6.1.7 Trilinos

Table 10. Trilinos Basics

Modules: cray-trilinos, cray-tpsl

Man pages: intro_trilinos(1),

Note: Library-specific man pages are available only
when the associated module is loaded.

Website: http://trilinos.sandia.gov/

S–2529–116 63

http://www.llnl.gov/CASC/linear_solvers/
https://computation.llnl.gov/casc/sundials/main.html
http://www.labri.fr/perso/pelegrin/scotch/
http://trilinos.sandia.gov/

Cray Programming Environment User's Guide

Trilinos is a separate module, comparable to PETSc, that provides abstract,
object-oriented interfaces to established libraries such as Metis/ParMetis, SuperLU,
Aztec, BLAS, and LAPACK. Trilinos also includes a set of Cray Adaptive Sparse
Kernels (CASK) that perform SpMV, and include optimized versions of single- and
multiple-vector matrix vector multiplies.

The Trilinos module is not loaded by default. Trilinos is dependent on the
cray-libsci and craype modules. Make certain these modules are loaded
before using Trilinos. When you load the cray-trilinos module, the Third-party
Scientific Libraries (cray-tpsl) module is automatically loaded as well, to provide
access to the libraries required to support Trilinos.

Note: Always use the cray-tpsl module that is linked to the Trilinos module.
Trilinos and PETSc are asynchronous products and may at times use different
versions of the TPSL libraries.

To use the Trilinos packages, load your compiling environment of choice, and then
load the Trilinos module.

% module load cray-trilinos

After you load the Trilinos module, all header and library locations are set
automatically and you are ready to compile your code. No Trilinos-specific linking
information is required on the command line.

If linking to more than one Trilinos package, the libraries are linked automatically in
the correct order of package dependency. For more information about link order, see
http://trilinos.sandia.gov/packages/interoperability.html.

6.1.8 Cray LibSci_ACC

Cray LibSci_ACC is a library of BLAS, LAPACK and ScaLAPACK routines
optimized for use on Cray systems equipped with GPU accelerators (i.e., Cray XK
systems and future CPU/GPU hybrid systems). These routines enhance user
application performance by generating and executing autotuned kernels for GPUs.
Cray LibSci_ACC also provides a C language API to allow pass-by-value semantics
for input parameters. Cray LibSci_ACC provides both automatic selection of the
appropriate CPU or GPU algorithm based on problem size and data layout, and
manual selection for programmers who want to control the accelerator resources
used by their applications.

The Cray LibSci_ACC library is supported in the Cray and GNU programming
environments by CCE 8.0 or later.

64 S–2529–116

http://trilinos.sandia.gov/packages/interoperability.html

Libraries [6]

Table 11. Cray LibSci_ACC Basics

Modules: cray-libsci-acc, cray-libsci,
PrgEnv-PE_type, craype-accel-GPU_type

Man pages: intro_libsci_acc(3s), intro_libsci(3s),
intro_blas1(3s), intro_blas2(3s),
intro_blas3(3s), intro_lapack(3s),
intro_scalapack(3s)

Note: Library-specific man pages are available only
when the associated module is loaded.

The Cray LibSci_ACC module, cray-libsci-acc, is not loaded by default. Cray
LibSci_ACC requires that the following modules be loaded:

• cray-libsci (loaded by default)

• A programming environment module, either PrgEnv-cray or PrgEnv-gnu

• The correct accelerator module for the type of GPU present, either
craype-accel-nvidia20 for systems with NVIDIA Fermi GPUs or
craype-accel-nvidia35 for systems with NVIDIA Kepler GPUs.

6.2 MPT

Table 12. MPT Basics

Modules: cray-mpich and cray-shmem,

Man pages: intro_mpi(3), intro_shmem(3)

Note: Library-specific man pages are available only
when the associated module is loaded.

Documentation: Getting Started on MPI I/O

Websites: http://www.mpi-forum.org/

http://openshmem.org/

The Cray Message Passing Toolkit (MPT) consists of two components.

• MPI (Message-Passing Interface)

• SHMEM (SHared MEMory)

S–2529–116 65

http://www.mpi-forum.org/
http://openshmem.org/

Cray Programming Environment User's Guide

MPI is a widely used parallel programming model that establishes a practical,
portable, efficient, and flexible standard for passing messages between ranks in
parallel processes. Cray MPI is derived from Argonne National Laboratory MPICH
and implements the MPI-3.0 standard as documented by the MPI Forum in MPI: A
Message Passing Interface Standard, Version 3.0, with the exceptions noted in MPI
Usage Notes on page 67. Cray MPI is supported on all current Cray systems, for use
with the Cray (CCE), GNU, Intel, and PGI compilers.

SHMEM is a similar parallel programming model, except based on using
data-passing routines to put and get data in the Partitioned Global Address Space
(PGAS). SHMEM was originally developed by Cray Research for use on the
Cray T3D system, but has since become an open standard. Cray SHMEM is fully
compliant with OpenSHMEM 1.0 and supported on all current Cray systems, for use
with the Cray (CCE), GNU, Intel, and PGI compilers.

Programmers can use MPI independently of SHMEM, SHMEM independently of
MPI, or both together. This has implications for module usage and linking options.
For more information, see Using MPI and SHMEM Modules on page 66.

Support for MPI and SHMEM varies depending on whether you are using a
Cray XC30 system with Aries interconnect, a Cray XE or Cray XK system with
Gemini interconnect, or a Cray XT system with SeaStar interconnect, and depending
on which version of CLE your site uses. Because of these issues, Cray provides a
variety of different MPI and SHMEM modules. These modules are hardware- and
OS-dependent, so your system administrator should install only the modules that
support your hardware on your system.

To see which functions and environment variables are supported on your system,
always check the intro_mpi(3) or intro_shmem(3) man pages.

6.2.1 Using MPI and SHMEM Modules

No MPT-related modules are loaded by default.

• If your code uses MPI code only, load the cray-mpich module before
compiling or linking. This ensures that your code is linked using the -lmpich
option.

• If your code uses SHMEM code only, load the cray-shmem module before
compiling or linking. This ensures that your code is linked using the -lsma
option.

• If your code uses both MPI and SHMEM, load both the cray-mpich and
cray-shmem modules. Your code will be linked using both the -lmpich and
-lsma options.

66 S–2529–116

Libraries [6]

6.2.2 MPI Usage Notes

On Cray XE, Cray XK, and Cray XC30 systems, rank 0 on each node may appear to
some software (for example, malloc) to be multi-threaded, even if the code is not
actually multi-threaded. This is caused by the MPICH internal error thread that runs
on each node and uses the threading library, libpthreads, and may safely be
ignored.

Cray MPT does not support MPI 2.2 dynamic process management.

The following process-creation functions are not supported.

• MPI_CLOSE_PORT and MPI_OPEN_PORT

• MPI_COMM_ACCEPT

• MPI_COMM_CONNECT and MPI_COMM_DISCONNECT

• MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE

• MPI_COMM_GET_ATTR - with attribute MPI_UNIVERSE_SIZE

• MPI_COMM_GET_PARENT

• MPI_LOOKUP_NAME

• MPI_PUBLISH_NAME and MPI_UNPUBLISH_NAME

The MPI_LONG_DOUBLE data type is supported for Intel and GNU compilers only.
It is not supported for CCE (Cray) or PGI compilers.

MPT supports the -default64 argument for the PGI and Cray CCE compilers
only. See the ftn(1) man page for more information about this argument.
MPI-3 features, in particular new MPI-3 subroutine calls, are not supported for
-default64.

6.2.3 SHMEM Usage Notes

On Cray XE, Cray XK, and Cray XC30 systems, rank 0 on each node may appear to
some software (for example, malloc) to be multi-threaded even if the code is not
actually multi-threaded. This is caused by the DMAPP internal error thread that runs
on each node and uses the threading library, libpthreads, and may safely be
ignored.

Typically, target or source arrays that reside on remote processing elements (PEs)
are identified by passing the address of the corresponding data object on the local
PE. The local existence of a corresponding data object implies that a data object is
symmetric.

S–2529–116 67

Cray Programming Environment User's Guide

Symmetric accessible data objects passed to SHMEM routines can be arrays or
scalars. A symmetric data object is one where the local and remote addresses have a
known relationship. You can use SHMEM routines to access remote symmetric data
objects by using the address of the corresponding data object on the local PE.

The following data objects are symmetric:

• Fortran data objects in common blocks or with the SAVE attribute.
• Non-stack C and C++ variables.
• Fortran arrays allocated with shpalloc(3f)
• C and C++ data allocated by shmalloc(3c)

Only local addresses can be used as arguments to SHMEM calls. For instance, using
an address obtained by exchanging addresses between PEs is not supported.

Whether the addresses returned by a collective call to shmalloc are the same for
all PEs depends on the configuration of Virtual Memory Randomization (VMR),
a Linux kernel feature:

• Default configuration (VMR is turned OFF): The addresses returned by a
collective call to shmalloc may or may not return the same addresses for all
PEs, depending on application characteristics. For a well-behaved application, the
addresses may be the same for all PEs.

• Non-default configuration (VMR is turned ON): The Cray SHMEM library prints
an informational message similar to LIBSMA INFO: PE0: Linux VM
Randomization is turned on on this system. A collective call to
shmalloc does not return the same addresses for all PEs.

A SHMEM application must call start_pes or shmem_init as the very first
SHMEM routine called within the application to guarantee that lower-level resources
are set up correctly. Otherwise, the SHMEM application does not execute correctly.
Similarly, a SHMEM application must call shmem_finalize as the very last
SHMEM routine called within the application to guarantee correct cleanup of
previously allocated network protocol resources.

SHMEM routines can be used in conjunction with Message Passing Interface (MPI)
routines in the same application. Programs that use both MPI and SHMEM should
call MPI_Init followed by start_pes or shmem_init. At the end of the
program, shmem_finalize should be called followed by MPI_Finalize.
SHMEM processing element numbers are equal to the MPI rank within the
MPI_COMM_WORLD communicator, if the MPI job consists of a single application.

Note: Alternatively, you can use the MPICH_GNI_DMAPP_INTEROP
environment variable to control MPI, SHMEM, UPC, and Coarray Fortran
interoperability.

Note: Multi-binary SHMEM jobs are not currently supported on CNL.

68 S–2529–116

Libraries [6]

The SHMEM routines reside in libsma.a. The following command lines compile
programs that include SHMEM routines:

cc c_program.c
CC cplusplus_program.C
ftn fortran_program.f

6.2.4 GPU-to-GPU Communications

The GPU-to-GPU feature allows an MPI application to use GPU pointers in MPI
point-to-point and collective communication routines. The GPU-to-GPU feature
improves performance by pipelining data transfers between GPU, host CPU, and
network, and simplifies the code by eliminating explicit CUDA calls for moving data
between GPU and host.

The following example illustrates the steps needed to compile and execute a program
that performs a reduction of data residing in GPU buffers and stores the results in
the rank 0 host buffer.

Procedure 2. Using GPU-to-GPU Communications

1. Load the cudatoolkit module.

$ module load cudatoolkit

Load the accelerator module.

2. If necessary, determine which accelerator module is required, and then load the
accelerator module.

$ cnselect -L subtype
nVidia_Kepler
$ module load craype_accel_nvidia35

For more information about available accelerator modules, see Targeting for an
Accelerator on page 31.

3. Compile the program. (An example program is provided later in this section.)
If the Cray CCE compiler is used, the -h gnu option is required in order to
compile source files that include cuda.h.

$ cc -h gnu -o reduce_g2g reduce_g2g.c

4. Set the MPICH_RDMA_ENABLED_CUDA environment variable to enable the
GPU-to-GPU feature, as described in the intro_mpi(3) man page, and set the
CRAY_CUDA_PROXY environment variable to allow CUDA calls to be made by
multiple MPI processes on the same node. For example, the following batch
script specifies eight PEs, at two per node.

#!/usr/bin/env sh
#PBS -l mppwidth=8,mppnppn=2,walltime=1:00:00
cd $PBS_O_WORKDIR
export CRAY_CUDA_PROXY=1 MPICH_RDMA_ENABLED_CUDA=1
aprun -n 8 -N 2 reduce_g2g

S–2529–116 69

Cray Programming Environment User's Guide

5. Submit the job, reserving nodes with the desired GPU type.

$ qsub -V -l mppnodes=\"$(cnselect -e
subtype=nVidia_Kepler)\" example.job

This results in the following output:

$ cat reduce_g2g.sh.o6587140
28 28 28 28

Here is a listing of the code used in the above example.

#include <cuda.h>
#include <cuda_run time.h>
#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

const int ARRAY_SIZE = 4;
const int ARRAY_BYTES = ARRAY_SIZE*sizeof(int);

int i, rank, *gpu_buffer, host_buffer[ARRAY_SIZE];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

// Initialize each element of host_buffer to the MPI rank.
for (i = 0; i < ARRAY_SIZE; i++)

host_buffer[i] = rank;

// Allocate GPU buffer.
cudaMalloc((void**)&gpu_buffer, ARRAY_BYTES);
// Copy host_buffer to gpu_buffer
cudaMemcpy(gpu_buffer, host_buffer, ARRAY_BYTES, cudaMemcpyHostToDevice);

// Global reduction: sum elements of gpu_buffer into rank 0 host_buffer.
MPI_Reduce(gpu_buffer, host_buffer, ARRAY_SIZE, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);

MPI_Finalize();

if (rank == 0) {
for (i = 0; i < ARRAY_SIZE-1; i++)

printf("%d ", host_buffer[i]);
printf("%d\n", host_buffer[ARRAY_SIZE-1]);

}
}

70 S–2529–116

Libraries [6]

6.3 Hugepages

Table 13. Hugepages Basics

Modules: craype-hugepagespagesize

Man pages: intro_hugepages(1)

Hugepages are virtual memory pages which are bigger than the default base page size
of 4KB. Hugepages can improve memory performance for common access patterns
on large data sets. Access to hugepages is provided through a virtual file system
called hugetlbfs. Every file on this file system is backed by huge pages and is
directly accessed with mmap() or read().

The libhugetlbfs library allows an application to use huge pages more easily
than it could by directly accessing the hugetlbfs file system. A user may use
libhugetlbfs to back application text and data segments.

Due to differing memory management mechanisms on Cray XT and
Cray XE/Cray XK systems, the implementation of the libhugetlbfs library
differs on these two architectures. Due to the different router chips, implementation
on Gemini-based (Cray XE/Cray XK) and Aries-based (Cray XC30) systems also
differs.

6.3.1 When to Use Hugepages

• For SHMEM applications, map the static data and/or private heap onto huge
pages.

• For applications written in Unified Parallel C, Coarray Fortran, and other
languages based on the PGAS programming model, map the static data and/or
private heap onto huge pages.

• For MPI applications, map the static data and/or heap onto huge pages.

• For an application which uses shared memory, which needs to be concurrently
registered with the high speed network drivers for remote communication.

• For an application doing heavy I/O.

• To improve memory performance for common access patterns on large data sets.

6.3.2 When to Avoid Using Hugepages

Applications sometimes consist of many steering programs in addition to the core
application. Applying huge page behavior to all processes would not provide
any benefit and would consume huge pages that would otherwise benefit the core
application.

S–2529–116 71

Cray Programming Environment User's Guide

6.3.3 Cray XC30 Usage

On Cray XC30 systems, huge pages are available by default. Modules
craype-hugepages2M, craype-hugepages4M, craype-hugepages8M,
craype-hugepages16M, craype-hugepages32M,
craype-hugepages64M, craype-hugepages128M,
craype-hugepages256M, and craype-hugepages512M set the necessary
link options and environment variables (e.g., HUGETLB_DEFAULT_PAGE_SIZE,
HUGETLB_MORECORE, HUGETLB_ELFMAP) to facilitate the usage of 2MB, 8MB,
16MB, 32MB, 64MB, 128MB, 256BMB, and 512MB huge pages, respectively.

In Cray systems that have the Aries NIC, the Aries IO Memory Management Unit
(IOMMU) provides hardware support for memory protection and address translation.
The Aries IOMMU uses an entirely different memory translation mechanism
than Gemini uses: the IOMMU is divided into 16 translation context registers
(TCRs). Each translation context (TC) supports a single page size. The TCRs can
independently address different page sizes and present that to the network as a
contiguous memory domain. The TCR entries are used to set and clear the page table
entries (PTEs) used by GNI. PTE entries are cached in Aries NIC memory in a page
table. Up to 512 PTEs can be used by applications. 512MiB (largest hugepage size) x
512 PTEs = 256GiB of addressable memory per node on Aries systems.

For more detailed information and examples see the intro_hugepages(1), and
aprun(1) man pages, and Workload Management and Application Placement for the
Cray Linux Environment.

6.3.4 Cray XE and Cray XK Usage

By default, the system is configured to have huge pages available. Pre-allocated
huge pages are reserved inside the kernel and cannot be used for other purposes. On
Cray XE and Cray XK systems, PGAS, SHMEM and MPI applications are likely to
require the usage of huge pages for static data and/or the heap.

Modules craype-hugepages128K, craype-hugepages512K,
craype-hugepages2M, craype-hugepages8M, craype-hugepages16M,
and craype-hugepages64M set the necessary link options and environment
variables (e.g., HUGETLB_DEFAULT_PAGE_SIZE, HUGETLB_MORECORE,
HUGETLB_ELFMAP) to facilitate the usage of 128KB, 512KB, 2MB, 8MB, 16MB,
or 64MB huge pages, respectively.

It is not required to use the -m option on the aprun command on the
Cray XE/Cray XK system to allocate huge pages, because the kernel allows the
dynamic creation of huge pages. However, it is advisable to specify this option and
preallocate an appropriate number of huge pages, when memory requirements are
known, to reduce operating system overhead.

72 S–2529–116

Libraries [6]

For more detailed information and examples see the intro_hugepages(1), and
aprun(1) man pages, and Workload Management and Application Placement for the
Cray Linux Environment.

6.3.5 Cray XT Usage

Nodes do not have huge pages allocated by default.

To use hugepages, link an application with the libhugetlbfs library.

At run time, define the environment variable HUGETLB_MORECORE=yes.

The application launcher, aprun, must be told that a given application wants to
use huge pages. Specify a per-PE huge page memory requirement on the aprun
invocation line using the [-m size[h|hs]] option.

For more information see the aprun(1) man page, and Workload Management and
Application Placement for the Cray Linux Environment.

6.3.6 Running Independent Software Vendor (ISV) Applications

To enable a dynamically linked executable, that was not originally linked with
libhugetlbfs, to use Cray's libhugetlbfs library at run time, you must first
load a hugepages module and set the environment variable LD_PRELOAD so that it
contains the libhugetlbfs pathname:

module load craype-hugepages2M
export LD_PRELOAD=/usr/lib64/libhugetlbfs.so

If an ISV application is already using LD_PRELOAD to set dynamic library
dependencies, then use a white-space separated list. For example:

export LD_PRELOAD="/usr/lib64/libhugetlbfs.so /directory_name/lib.so"

To confirm the usage of hugepages, one may set HUGETLB_VERBOSE to 3 or higher:

export HUGETLB_VERBOSE=3

Statically linked executables can only use Cray's libhugetlbfs if they are
linked with it. Statically linked executables do not process LD_PRELOAD; therefore
statically linked ISVs must be relinked with libhugetlbfs.

The nm and ldd commands are useful for determining the contents and dynamic
dependencies of executables.

Note: ISV applications sometimes consist of scripts which run several executables,
only some of which need to run with huge pages. The environment variable
HUGETLB_RESTRICT_EXE enables the libhugetlbfs library to selectively
map only the named executables onto huge pages.

S–2529–116 73

Cray Programming Environment User's Guide

6.3.7 Known Issues

Huge pages are a per-node resource, not a per-job resource, nor a per-process
resource. There is no guarantee that the requested number of huge pages will be
available on the compute nodes. If the memory pool becomes fragmented, which it
can over time, the number of free blocks that are equal to or larger than the huge
page size can decrease below the number needed to service the request, even though
there may be enough free memory in the pool when summing free blocks of all sizes.
For this reason, use huge page sizes no larger than needed.

If the heap is mapped to huge pages (by setting HUGETLB_MORECORE to yes) and
if a malloc call requires that the heap be extended, and if there are not enough
free blocks in the memory pool large enough to support the required number of
huge pages, libhugetlbfs will issue the following WARNING message and then
glibc will fall back to allocating base pages.

libhugetlbfs [nid000xx:xxxxx]: WARNING: New heap segment map at
0x10000000 failed: Cannot allocate memory

This is a warning and jobs are able to continue running. The allocated base pages use
GART entries; however, because there are a limited number of GART entries, future
memory requests may fail altogether due to lack of available GART entries.

With craype-hugepages modules loaded, it is no longer necessary to include
-lhugetlbfs on the link line. Doing so will result in messages indicating multiple
definitions, such as:

//usr/lib64/libhugetlbfs.a(elflink.o): In function
_` _libhugetlbfs_do_remap_segments':

/usr/src/packages/BUILD/cray-libhugetlbfs-2.11/elflink.c:2012:
multiple definition of _` _libhugetlbfs_do_remap_segments'

//usr/lib64/libhugetlbfs.a(elflink.o):/usr/src/packages/BUILD/
cray-libhugetlbfs-2.11/elflink.c:2012: first defined here

Adjust makefiles or build scripts accordingly.

74 S–2529–116

Debugging Code [7]

The Cray system supports a variety of debugging options ranging from simple
command-line debuggers to separately licensed third-party GUI tools. These options
are capable of performing a variety of tasks ranging from analyzing core files to
setting breakpoints and debugging running parallel programs.

As a rule, your code must be compiled using the -g command line option before you
can use any of the debuggers to produce meaningful information. If, however, you
are using both a compiler and a debugger that support Fast-track Debugging, the -g
option is replaced by using the -G fast option.

Note: The PGI debugger, PGDBG, is not supported on Cray systems.

Note: At this time, systems equipped with Intel Xeon Phi coprocessors are
supported by DDT and TotalView only. The Cray Debugger Support Tools and
Cray Fast-track Debugging are not supported on Intel Xeon Phi systems. If your
site is configured to load the atp module by default, you must unload this module
before loading the craype-intel-knc module.

7.1 Cray Debugger Support Tools
Cray provides a collection of basic debugging packages that are referred to
collectively as the Cray Debugger Support Tools and are installed as a single rpm, but
loaded and used as individual modules. These packages are:

• CCDB: Cray's comparative debugger features a graphical user interface and
extends the comparative debugging capabilities of lgdb, allowing users to easily
compare data structures between two executing applications.

• LGDB: a GDB-based parallel debugger used to debug applications compiled with
CCE, PGI, GNU, Intel Fortran, C and C++ compilers. It allows programmers to
either launch an application or attach to an already-running application that was
launched with aprun.

• ATP: a system that monitors user applications and replaces the core dump with
a more comprehensive stack backtrace and analysis.

• STAT: stack trace analysis tool

S–2529–116 75

Cray Programming Environment User's Guide

7.1.1 Using CCDB

Table 14. ccdb Basics

Module: cray-ccdb

Command: ccdb

Man page: ccdb(1)

Note: Tool-specific man pages are available only when the
associated module is loaded.

Online help: Embedded in user interface.

To begin using CCDB on the Cray system, load the cray-ccdb module:

> module load cray-ccdb

Launch the CCDB application using the ccdb command. After you do so, the main
control and display window pops open.

> ccdb

Note: Users running CCDB remotely on a workstation may be prompted for a
password when attempting to access a Cray system.

CCDB includes an integrated help system that includes all additional information
about using CCDB. Help is accessible whenever CCDB is running by either clicking
the ? button in the current window or selecting Help from the menu bar of the CCDB
monitor window.

Note: CCDB is a GUI tool that requires your workstation to support the X Window
System. Depending on your system configuration, you may need to use the ssh
-X option to enable X Window System support in your shell session. Depending
on your workstation configuration, you may also need to enable X Window System
hosting on your workstation or load an X Window client such as Xming.

7.1.2 Using LGDB

Table 15. lgdb Basics

Module: cray-lgdb

Command: lgdb

Man page: lgdb(1)

Note: Tool-specific man pages are available only when the
associated module is loaded.

Online help: Embedded in user interface.

76 S–2529–116

Debugging Code [7]

To initiate an LGDB session, enter the lgdb command. After you do so, the
debugger command prompt is displayed:

lgdb 2.3 - Cray Line Mode Parallel Debugger
With Cray Comparative Debugging Technology.
Copyright 2007-2013 Cray Inc. All Rights Reserved.
Copyright 1996-2013 Monash University. All rights Reserved.

Type "help" for a list of commands.
dbg all>

Once lgdb is running and the command prompt is displayed, the program uses a
command-line interface similar to that used by gdb.

LGDB includes extensive online help. Enter help at the command prompt to display
the list of help topics.

dbg all> help
assign Change the value of a program variable.
attach Attach to an application under debugger control.
backtrace Print backtrace of all stack frames.
break Set breakpoint at specified line or function.
build Build an assertion script.
compare Compare the contents of two variables.
continue Continue program being debugged, after signal or breakpoint.
decomposition Define a decomposition scheme.
defset Create a set of processes.
delete Delete a breakpoint.
disable Disable a breakpoint.
down Move down one or more stack frames.
enable Enable a breakpoint.
finish Execute program being debugged until current function returns.
focus Set the current process set.
frame Print the currently selected stack frame.
gdbmode Enter gdb direct mode (experimental).
halt Halt execution of application under debugger control.
help Display help information about commands.
info Display information about the application being debugged.
kill Kill an application under debugger control.
launch Launch an application under debugger control.
list List source for specified function or line.
maint Commands for use by ccdb maintainers.
next Step program, proceeding through subroutine calls.
print Print the value of an expression.
quit Exit the debugger.
release Release an application from debugger control.
session Create a new WLM session.
set Set information about the debugger environment.
show Show information about the debugger environment.
source Read debugger commands from a file.
start Start executing a dataflow graph.
step Step program until it reaches a different source line.
stop Stop the currently executing dataflow graph.
tbreak Set a temporary breakpoint at a specified line or function.
unset Unset information in the debugger environment.

up Move up one or more stack frames.

S–2529–116 77

Cray Programming Environment User's Guide

usage Display usage information about deferred mode commands.
viewset Display information about process sets.
watch Set watchpoint on specified expression.
whatis Print the data type of an expression.

Enter help topic for more information about a given topic.

For more information about using the launch command to launch an application
from within LGDB or using the attach command to attach the debugger to an
already-running process, see the lgdb(1) man page and the launch and attach
topics in the help system.

7.1.3 Using Abnormal Termination Processing (ATP)

Table 16. atp Basics

Module: atp

Commands: ataprun

Man page: intro_atp(1)

Note: Tool-specific man pages are available only when
the associated module is loaded.

Abnormal Termination Processing (ATP) monitors user applications. When the atp
module is loaded and ATP is enabled, ATP is launched when a job is started and
delivers a heuristically determined set of core files in the event of an application
crash. If an application takes a system trap, ATP performs analysis on the dying
application. All stack backtraces of the application processes are gathered into a
merged stack backtrace tree and written to disk as the file, atpMergedBT.dot.
The stack backtrace tree for the first process to die is sent to stderr as is the
number of the signal that caused the application to fail.

The atpMergedBT.dot file can be viewed with stat-view, (the Stack Trace
Analysis Tool viewer). The merged stack backtrace tree provides a concise yet
comprehensive view of what the application was doing at the time of its termination.
For more information about using stat-view, see the stat-view(1) man page.

Note: The stat-view command and man page are available only when the
stat module is loaded.

78 S–2529–116

Debugging Code [7]

ATP is designed to analyze failing applications. It does not play any role
with commands. That is, an application must use a supported parallel
programming model, such as MPI, SHMEM, OpenMP, CAF, or UPC, in
order to benefit from ATP analysis. When the atp module is loaded, ATP
sets the MPICH_ABORT_ON_ERROR, SHMEM_ABORT_ON_ERROR, and
DMAPP_ABORT_ON_ERROR environment variables. This enables MPI, SHMEM,
and DMAPP applications to raise a signal when they discover usage errors—rather
than only printing to stderr and exiting—which, therefore, enables ATP to notice
the problem and perform its analysis.

Note: Using ATP disables the Linux standard of dumping core and replaces it with
dumping a set of files named atp.core.apid.rank for application crashes.

ATP is site-configurable to be enabled by default and launched automatically
whenever a job is launched using the aprun command. For more information about
using ATP, see the intro_atp(1) man page.

7.1.4 Using STAT

Table 17. STAT Basics

Module: stat

Commands: stat-gui, stat-view

Man pages: intro_stat(1), stat-gui(1), stat-view(1)

Note: Tool-specific man pages are available only when
the associated module is loaded.

Online help: http://www.paradyn.org/STAT/STAT.html

Note: The STAT command naming convention has changed; statgui and
statview are deprecated and will be removed in the next release of STAT. They
are replaced by stat-gui and stat-view.

STAT (Stack Trace Analysis Tool) gathers and merges the stack traces from a parallel
application's processes and produces 2D spatial and 3D spatial-temporal call graphs
that encode the calling behavior of the application processes in the form of a prefix
tree. The 2D graph represents a single snapshot of the entire application, while the 3D
form represents a series of snapshots from the application taken over time.

S–2529–116 79

http://www.paradyn.org/STAT/STAT.html

Cray Programming Environment User's Guide

7.2 Using Cray Fast-track Debugging
Normally, code must be compiled using the -g option before it can be debugged
using a conventional debugger. The -g option typically disables all compiler
optimizations, producing an executable containing full DWARF information that can
be breakpointed, stepped-through, or paused and restarted anywhere, but at the cost of
a much larger and far slower-running program.

Cray Fast-track Debugging significantly increases the speed of the debugging process
by producing executables that contain both full DWARF information and run at
optimized-code speed. Essentially this is done by producing two parallel executables:
one that is fully optimized, and another that is not. While this combined executable is
considerably larger than a normal executable, when it is executed under the control of
a debugger that supports fast-track debugging, it runs at optimized-code speed until it
hits a break point—at which time it switches to the unoptimized code, and allows you
to set breakpoints, examine registers, pause, resume, and step through the code as if
the entire program was compiled using the -g option.

As far as the debugger is concerned, there are no user interface changes, aside from
the possibility that you might pursue a backtrace far enough back to begin seeing
internal names instead of user names for variables. (For example, instead of foo,
you might see debug$foo.) All the work involved in using fast-track debugging is
done on the compiler side.

Procedure 3. Using Cray Fast-track Debugging

Using Cray Fast-track Debugging is a two-step process, requiring both a compiler and
a debugger that support fast-track debugging. The steps are:

1. Compile your program using your compiler's fast-track debugging option. For
example, if you are using the Cray Fortran compiler, compile and link your code
using the -G fast option:

users/yourname> ftn -Gfast myapp.f

2. Execute your program using your debugger's normal control method. For
example, if you are using the lgdb command line debugger to debug a
single-rank application, first execute lgdb and then use the launch command
to launch the application:

$ lgdb
dbg all> launch $a ./myapp

Once the debugging session is launched, fast-track debugging is transparent to the
user. Sections of the code that contain breakpoints execute slowly, as if compiled
using the -g option. Other sections of the code that do not contain breakpoints
execute at normal speed, as if compiled using normal optimizations.

For more information about lgdb, see the lgdb(1) man page and the help
system within lgdb.

80 S–2529–116

Debugging Code [7]

7.2.1 Supported Compilers and Debuggers

At this time, Cray Fast-track Debugging is supported on the front end by the Cray
Compiling Environment (CCE) compilers.

On the back end, Cray Fast-track Debugging is supported by ccdb, lgdb and
Allinea DDT debuggers.

7.3 About Core Files
On Cray systems, in the absence of ATP, when an application fails, one core file is
generated for the first failing process. If a file named core already exists in the
current working directory, it is not overwritten.

On large MPP systems where an application might be running thousands of
processes, a conventional core file may not be sufficient to indicate the actual cause of
the failure. For this reason, Cray systems support Abnormal Termination Processing
(ATP). If ATP is enabled, a failing application generates a heuristically determined
set of core files in place of a single core file. A core file is created for each set of
processes that have the same backtrace, which is determined by comparing routine
names (not line numbers or memory addresses) and after pruning out system routines.
For SPMD (Single Program, Multiple Data) programs, this typically causes only a
small handful of core files to be generated.

For more information about ATP, see Using Abnormal Termination Processing (ATP)
on page 78.

7.4 Using DDT

Table 18. DDT Basics

Module: ddt

Commands: ddt

Man page: ddt(1)

Note: Tool-specific man pages are available only when the
associated module is loaded.

Online help: The DDT GUI includes an extensive online help system
accessible by selecting Help from the menu. If you have
problems displaying the help, see the DDT User Guide for
information about configuring X-Windows forwarding and
VNC connections.

Documentation: /opt/cray/ddt/version/doc

S–2529–116 81

Cray Programming Environment User's Guide

DDT, an optional product from Allinea Software is a scalable debugger with a
graphical user interface. It can be used to debug Fortran, C, and C++ programs,
including MPI and OpenMP code, and to launch and debug programs, attach to
already running programs, or open and debug core files. DDT is compatible with
the Cray, PGI, GCC, and Intel compilers.

The DDT GUI requires either X-Windows forwarding or VNC in order to work.

DDT can be used either within an interactive shell or via the batch system.
Submission through a batch system requires the use of template files
that specify the batch parameters. Sample template files are found in
/opt/cray/ddt/version/templates.

In an interactive shell, the fastest way to launch DDT is by entering the ddt
command:

users/yourname> ddt

Assuming X-Windows forwarding is configured correctly, the main program window
displays a pop-up menu offering the following options.

• Run and Debug a Program
• Debug a Multi-Process Non-MPI Program
• Attach to a Running Program
• Open a Core File
• Restore a Checkpoint
• Cancel

Select the option you want to use, or Cancel to close the pop-up menu and proceed to
the DDT main window. All the above options are also available through the Sessions
menu Run option.

7.4.1 Known Limitations

DDT has a number of defaults that affect batch queue submission behavior. When
you begin a DDT session, either by selecting Run and Debug a Program from the
pop-up Welcome menu or by selecting Run from the Session menu in the DDT main
window, the Queue Submission Mode window displays. If you use a batch queuing
system such as PBS Pro, always verify the Queue Submission Parameters before
proceeding.

In particular, verify that the default Queue name and Procs Per Node match your
system's configuration. The default Queue name is generally site-specific, while
the Procs Per Node value must match your system's processor types: dual-core,
quad-core, and so on.

If you need to change the Queue Submission Parameters, click the Change button on
the Queue Submission Mode window to do so for the duration of the current session.
Alternatively, you can create a template file that stores your preferred parameters.
Instructions for creating and using template files are provided in the DDT User Guide.

82 S–2529–116

Debugging Code [7]

To change your system's default Queue Submission Parameters for all users,
contact your site administrator. Default configuration information is stored
in the /opt/cray/ddt/version/default-config.ddt file. This
information includes the name of the default template, which currently is
/opt/cray/ddt/version/templates/xt4.qtf. The actual default queue
submission parameters are specified in the default template file.

7.5 Using TotalView

Table 19. TotalView Basics

Module: totalview

Commands: totalview, totalviewcli

Man page: totalview(1)

Note: Tool-specific man pages are available only when
the associated module is loaded.

Online help: The TotalView GUI contains an extensive HTML online
help system but requires that $TV_HTMLHELP_VIEWER
be defined before use. For more information, see the
Totalview documentation.

Documentation: /opt/totalview/version/doc

TotalView is an optional product from Rogue Wave Software that provides
source-level debugging of applications running on multiple compute nodes.
TotalView is compatible with the Cray, PGI, GNU, and Intel compilers.

TotalView can be launched in either or two modes: in GUI mode (using the
totalview command), or in command-line mode (using the totalviewcli
command). TotalView is typically run interactively. If your site has not designated
any compute nodes for interactive processing, use the qsub -I command to reserve
the number of compute nodes you want to use in interactive mode.

Example 1. Using TotalView to control program execution

To debug an application on the Cray system, use TotalView to launch aprun, which
in turn launches the application to be debugged.

users/yourname> totalview aprun -a [aprun_arguments] ./myapp
[myapp_arguments]

The -a option is a TotalView option indicating that the arguments that follow apply
to aprun, not TotalView.

S–2529–116 83

Cray Programming Environment User's Guide

Example 2. Debugging a core file

To use TotalView to examine a core file, use the totalview command to launch the
GUI. Then, in the New Program window, click the Open a core file button and use
the browse functions to find, select, and open the core file you want to examine.

Example 3. Attaching TotalView to a running process

To attach TotalView to a running process, you must be logged in to the same login
node that you used to launch the process, and then you must attach to the instance of
aprun that was used to launch the process, not the process itself. To do so:

1. Use the totalview command to launch the GUI.

2. In the New Program window, click the Attach to process button. The list of
processes currently running displays.

3. Select the instance of aprun that you want, and click OK. TotalView displays
a process window showing both aprun and the program threads that were
launched by that instance of aprun.

7.5.1 Known Limitations

The TotalView debugging suite for Cray systems differs in functionality from the
standard TotalView implementation. It does not support:

• Debugging MPI_Spawn(), OpenMP, or Cray SHMEM programs.

• Compiled EVAL points and expressions.

• Type transformations for the PGI C++ compiler standard template library
collection classes.

• Exception handling for the PGI C++ compiler run time library.

• Spawning a process onto the compute processors.

• Machine partitioning schemes, gang scheduling, or batch systems.

84 S–2529–116

Optimizing Code [8]

After your code is compiled, debugged, and capable of running to completion or
planned termination, you can begin looking for ways in which to improve execution
speed. In general, the opportunities for optimization fall into three categories, which
require progressively more programmer effort. These categories are:

• Improving overall I/O
• Improving use of compiler-generated optimizations
• Analyzing code behavior and rewriting code to optimize performance

8.1 Improving I/O

8.1.1 Using iobuf

Table 20. IOBUF Basics

Module: iobuf

Man page: iobuf(3)

Environment variable: IOBUF_PARAMS

IOBUF is an I/O buffering library that can reduce the I/O wait time for programs that
read or write large files sequentially. IOBUF intercepts standard I/O calls such as
read and open and adds a layer of buffering, thus improving program performance
by enabling asynchronous prefetching and caching of file data.

IOBUF can also gather run time statistics and print a summary report of I/O activity
for each file.

IOBUF is not suitable for all I/O styles. IOBUF does not maintain coherent buffering
between processes that open the same file. For this reason, do not use IOBUF with
shared file I/O, such as MPI-IO routines like MPI_File_write_all. IOBUF is
not thread-safe, so do not use it with multithreaded programs in which the threads
perform buffered I/O. IOBUF can be linked into programs that use these I/O styles,
but buffering should not be enabled on those files.

S–2529–116 85

Cray Programming Environment User's Guide

In general, no program source changes are needed in order to take advantage of
IOBUF. Instead, IOBUF is implemented by following these steps:

1. Load the IOBUF module:

% module load iobuf

2. Relink the program.

3. Set the IOBUF_PARAMS environment variable as needed.

% setenv IOBUF_PARAMS='*:verbose'

4. Execute the program.

If a memory allocation error occurs, buffering is reduced or disabled for that file and a
diagnostic is printed to stderr. When the file is opened, a single buffer is allocated
if buffering is enabled. The allocation of additional buffers is done when a buffer
is needed. When a file is closed, its buffers are freed (unless asynchronous I/O is
pending on the buffer and lazyclose is specified).

The behavior of IOBUF is controlled by the use of environment variables:

• IOBUF_PARAMS

Selects files and sets parameters for buffering. If this environment variable is
not set, the default state is no buffering and the I/O call is passed on to the next
layer without intervention.

The simplest parameter specification is export IOBUF_PARAMS='*'. This
setting matches all files and enables buffering with default parameters. For more
information about valid IOBUF_PARAMS parameters and their usage, see the
iobuf(3) man page.

• IOBUF_DEBUG

If set, library debugging output is printed. This feature is mainly for debugging
the library itself. Valid settings are read, write, heap, open, buffers,
wait, params, and all.

• IOBUF_MAX_FILES

The maximum file descriptor number managed by IOBUF. Roughly equivalent to
the maximum number of files which can be open with buffering at the same time.
The default is 256. Each file descriptor requires about 512 bytes, so the default
setting requires 32 KB of memory.

See the iobuf(3) man page for more information regarding the usage of the IOBUF
library.

86 S–2529–116

Optimizing Code [8]

8.1.2 Improving MPI I/O

Table 21. MPI I/O Basics

Module: cray-mpich2

Man page: intro_mpi(3)

Environment
variables:

MPICH_MPIIO_HINTS,
MPICH_RANK_REORDER_METHOD, others

Documentation: Getting Started on MPI I/O

When working with MPI code, one of the most effective ways to realize significant
improvements in program execution speed is by fine-tuning MPI rank placement
and I/O usage. The Cray Message Passing Toolkit (MPT) provides more than forty
environment variables designed to help you do just that, the two most significant of
which are MPICH_MPIIO_HINTS and MPICH_RANK_REORDER_METHOD. For
a listing of the MPI environment variables and their valid values and uses, see the
intro_mpi(3) man page.

A full discussion of MPI I/O optimization is beyond the scope of this document.
For more information on this subject, including detailed explanations and examples,
see Getting Started on MPI I/O.

Optimizing MPI rank placement can require considerably more detailed analysis.
Alternately, you can use Cray Performance Analysis Tools to instrument your
program to study MPI behavior, and then to generate suggested MPI rank reordering
information. For more details, see the intro_craypat(1), pat_build(1),
and pat_report(1) man pages, and Using Cray Performance Measurement and
Analysis Tools.

8.2 Using Compiler Optimizations
This section collects some of the more common tips and tricks for getting
better-performing code out of the compilers. This section will be expanded as
information is developed.

8.2.1 Cray Compiling Environment (CCE)

The Cray Fortran and C/C++ compilers are optimizing compilers that perform
substantial analysis during compilation and generate highly optimized code
automatically. The Cray compilers also support a large number of command-line
arguments that enable you to exert manual control over compiler optimizations, and
fine-tune the behavior of the compiler.

S–2529–116 87

Cray Programming Environment User's Guide

For more detailed information about the Cray Fortran, C, and C++ compiler
command-line arguments, see the crayftn(1), craycc(1), and crayCC(1) man
pages, respectively.

Two of the most useful compiler command-line arguments are the Fortran -rd
and C/C++ -h list=m options that instruct the compiler to generate annotated
loopmark listings showing what optimizations were performed and their locations.
Together with the -h negmsgs option that generates listings showing potential
optimizations that were not performed, and why, these arguments can help you
zero-in on areas in your code that are compiling without error, but not with maximum
efficiency.

For more detailed information about generating and reading loopmark listings, see the
Cray Fortran Reference Manual and Cray C and C++ Reference Manual.

The Cray compilers also support a large number of pragmas and directives that enable
you to exert manual control over compiler optimization behavior. In many cases, code
that is not optimizing well can be corrected without substantial changes to the code
itself, but simply by applying the right pragmas or directives.

For more information about Cray compiler pragmas and directives, see the
intro_directives(1) man page.

8.3 Using the Cray Performance Measurement and Analysis
Tools

Table 22. Performance Analysis Basics

Module: perftools, perftools-lite

Commands: pat_build, pat_report, app2

Man pages: intro_craypat(1), craypat-lite(1),
pat_build(1), pat_report(1), pat_help(1),
app2(1), reveal(1), intro_papi(3), hwpc(5),
nwpc(5), accpc(5), rapl(5)

Note: Tool-specific man pages are available only when
the associated module is loaded.

Online help: CrayPat includes an extensive online help system that
features many examples and the answers to many
frequently asked questions. To access the help system,
enter pat_help at the command line.

Documentation: Using Cray Performance Measurement and Analysis
Tools

88 S–2529–116

Optimizing Code [8]

Note: The PGI profiling tools, pgprof and pgcollect, are not supported on
Cray systems.

Note: The GNU profiling tool, gprof is not supported on Cray systems.

After you have compiled and debugged your program, you are ready to begin
analyzing its performance. The Cray Performance Analysis Tools are a suite of
optional utilities that enable you to capture and analyze performance data generated
during the execution of your program in order to help you to find answers to two
fundamental questions: How fast is my program running? and How can I make
it run faster?

The performance analysis process consists of three basic steps.

1. Instrument your program, to specify what kind of data you want to collect under
what conditions.

2. Execute your instrumented program, to generate and capture the desired data.

3. Analyze the resulting data.

Accordingly, the Cray Performance Measurement and Analysis Tools suite consists of
these major components:

• CrayPat-lite: a new, simplified, and easier-to-use front-end for CrayPat that
provides basic performance analysis information automatically, with a minimum
of user interaction.

• CrayPat: the full-featured performance analysis tool set, which enables users to
instrument programs, capture performance data during program execution, and
generate extensive text reports from the resulting data

• Cray Apprentice2: the second-level data analysis tool, used to visualize,
manipulate, explore, and compare sets of program performance data in a GUI
environment

• Reveal: the next-generation integrated performance analysis and code
optimization tool, which enables users to correlate performance data captured
during program execution directly to the original source, and identify
opportunities for further optimization

• PAPI: the Performance Application Programming Interface

Note: At this time, CrayPat-lite is not supported on systems equipped with Intel
Xeon Phi coprocessors. The full version of CrayPat is supported on such systems,
but with reduced functionality. In particularly, hardware counter data collection and
all functions and reports related to the PAT_RT_PERFCTR set of environment
variables are not currently supported.

S–2529–116 89

Cray Programming Environment User's Guide

8.3.1 About CrayPat-lite

CrayPat-lite is a simplified, easy-to-use version of the Cray Performance
Measurement and Analysis Tool set. CrayPat-lite provides basic performance analysis
information automatically, with a minimum of user interaction, and yet offers
information useful to users wishing to explore their program's behavior further using
the full CrayPat tool set.

To use CrayPat-lite, load the perftools-lite module.

CrayPat-lite supports three basic experiments:

• sample_profile — A sampling experiment, which reports execution time,
aggregate MFLOP count, the top time-consuming functions and routines, MPI
behavior in user functions (if the application is an MPI program), and generates
the data files listed above. This is the default experiment.

• event_profile — A tracing experiment, which generates a profile of the top
functions traced as well as node observations and possible rank order suggestions.

• gpu — Tracing experiments that focus on the program's use of GPU accelerators.

To switch from using CrayPat-lite to using the full CrayPat tool set, unload the
perftools-lite module and load the perftools module.

For more information about CrayPat-lite, see Using Cray Performance Measurement
and Analysis Tools.

8.3.2 About CrayPat

CrayPat is the full-featured performance analysis tool set, and consists of three major
components:

• pat_build, which is the utility used to instrument programs for data capture

• the CrayPat run time environment, which controls the conditions under which the
program executes and the amounts and types of data captured

• pat_report, which is the utility used to generate reports from the resulting
captured data

To begin working with the performance analysis tools, first load your programming
environment of choice, and then load the perftools module.

users/yourname> module load perftools

For successful results, the perftools module must be loaded before you compile
the program to be instrumented, instrument the program, execute the instrumented
program, or generate a report. If you want to instrument a program that was compiled
before the perftools module was loaded, you may under some circumstances find
that relinking is sufficient, but as a rule it's best to load the perftools module
and then recompile.

90 S–2529–116

Optimizing Code [8]

8.3.2.1 Instrumenting the Program

After the program is compiled and linked, use the pat_build command to
instrument the program for performance analysis. In simplest form, pat_build is
used like this:

> pat_build executable

This produces a copy of your original program, which is named executable+pat (for
example, a.out+pat) and instrumented for the default experiment, Automatic
Profiling Analysis. Your original executable remains untouched.

The pat_build command supports a large number of options and directives,
including an API that enables you to instrument specified regions of your code.
These options and directives are summarized in the pat_build(1) man page and
documented more extensively in Using Cray Performance Measurement and Analysis
Tools.

8.3.2.2 Collecting Data

Instrumented programs are executed just like any other program; either by using the
aprun command if your site permits interactive sessions or by using your system's
batch commands.

CrayPat supports more than fifty optional run time environment variables that enable
you to control instrumented program behavior and data collection during execution.
For example, if you use the C shell and want to collect data in detail rather than in
aggregate, consider setting the PAT_RT_SUMMARY environment variable to 0 (off)
before launching your program.

/lus/nid00008> setenv PAT_RT_SUMMARY 0

Doing so records data with timestamps, which makes additional reports available
in Cray Apprentice2, but at the cost of potentially much larger data file sizes and
somewhat increased overhead.

The CrayPat run time environment variables are summarized in the
intro_craypat(1) man page and documented more extensively in Using Cray
Performance Measurement and Analysis Tools.

8.3.2.3 Analyzing Data

Assuming your instrumented program runs to completion or planned termination,
CrayPat outputs one or more data files. The exact number, location, and content of the
data file(s) varies depending on the nature of your program, the type of experiment for
which it was instrumented, and the run time environment variable settings in effect at
the time of program execution.

S–2529–116 91

Cray Programming Environment User's Guide

All initial data files are output in .xf format, with a generated file name consisting of
your original program name, plus pat, plus the execution process ID number, plus
a code string indicating the type of data contained within the file. Depending on the
program run and the types of data collected, CrayPat output may consist of either a
single .xf data file or a directory containing multiple .xf data files. If the program
was instrumented for Automatic Profiling Analysis, a file with the suffix .apa is also
generated. This file is a customized template for this program and is created for use
with future instrumentation experiments.

To begin analyzing the captured data, use the pat_report command. In simplest
form, it looks like this:

/lus/nid00008> pat_report myprog+pat+PID-nodes.xf

The pat_report command accepts either a file or directory name as input and
processes the .xf file(s) to generate a text report. In addition, it also exports the
.xf data to a single .ap2 file, which is both a self-contained archive that can be
reopened later using the pat_report command and the exported-data file format
used by Cray Apprentice2.

The pat_report command provides more than thirty predefined report templates,
as well as a large variety of user-configurable options. These reports and options are
summarized in the pat_report(1) man page and documented more extensively in
Using Cray Performance Measurement and Analysis Tools.

8.3.2.4 For More Information

In addition to Using Cray Performance Measurement and Analysis Tools and the
intro_craypat(1), pat_build(1), and pat_report(1) man pages, there is a
substantial amount of information, including an FAQ and examples, in the CrayPat
online help system. The help system is accessible whenever the perftools module
is loaded; to access the help system, enter pat_help at the command line. For more
information about using the help system, see the pat_help(1) man page.

8.3.3 About Cray Apprentice2

Cray Apprentice2 is an optional GUI tool that is used to visualize and manipulate the
performance analysis data captured during program execution. Cray Apprentice2
can be run either on the Cray system or, optionally, on a standalone Linux desktop
machine. Cray Apprentice2 can display a wide variety of reports and graphs,
depending on the type of program being analyzed, the way in which the program
was instrumented for data capture, and the data that was collected during program
execution.

92 S–2529–116

Optimizing Code [8]

Cray Apprentice2 is not directly integrated with CrayPat. You cannot launch
Cray Apprentice2 from within CrayPat, nor can you set up or run performance
analysis experiments from within Cray Apprentice2. Rather, use CrayPat first,
to instrument your program and capture performance analysis data, and then use
Cray Apprentice2 to visualize and explore the resulting data files.

The number and appearance of the reports that can be generated using
Cray Apprentice2 is determined by the kind and quantity of data captured during
program execution, which in turn is determined by the way in which the program
was instrumented and the environment variables in effect at the time of program
execution. For example, changing the PAT_RT_SUMMARY environment variable to
0 before executing the instrumented program nearly doubles the number of reports
available when analyzing the resulting data in Cray Apprentice2.

To run Cray Apprentice2, load the perftools module, if it is not already loaded.

users/yourname> module load perftools

Then use the app2 command to launch Cray Apprentice2.

users/yourname> app2 [datafile.ap2] &

Note: Cray Apprentice2 requires that your workstation be configured to host X
Window System sessions. If the app2 command returns an "unable to open
display" error, contact your system administrator for help in configuring X
Window System hosting and forwarding.

At this point the GUI takes over. If you specified a data file name with the app2
command, the file is opened and parsed and the Overview report is displayed. If
you did not specify a data file name, the Open File window opens and you can use
standard GUI tools to browse through the file system and select the data file you
want to open.

For more information about using Cray Apprentice2, see the app2(1) man page,
the Cray Apprentice2 help system, and Using Cray Performance Measurement and
Analysis Tools.

8.3.4 About Reveal

Reveal is Cray's next-generation integrated performance analysis and code
optimization tool. Reveal extend's Cray's existing performance measurement,
analysis, and visualization technology by combining run time performance statistics
and program source code visualization with Cray Compiling Environment (CCE)
compile-time optimization feedback.

Note: Reveal requires use of CCE, and therefore is not supported on Intel Xeon
Phi coprocessor systems at this time.

S–2529–116 93

Cray Programming Environment User's Guide

Reveal supports source code navigation using whole-program analysis data and
program libraries provided by the Cray Compiling Environment, coupled with
performance data collected during program execution by the Cray performance tools,
to understand which high-level serial loops could benefit from improved parallelism.
Reveal provides enhanced loopmark listing functionality, dependency information
for targeted loops, and assists users optimizing code by providing variable scoping
feedback and suggested compiler directives.

To begin using Reveal on the Cray system, verify that the perftools module
is loaded:

> module load perftools

Launch the Reveal application using the reveal command:

> reveal

Note: Reveal requires that your workstation be configured to host X Window
System sessions. If the reveal command returns an "cannot open
display" error, contact your system administrator for help in configuring X
Window System hosting.

You can specify data files to be opened when you launch Reveal. For example, this
command launches Reveal and opens both the compiler-generated program library
file and the CrayPat-generated run time performance data file, thus enabling you to
correlate performance data captured during program execution with specific lines and
loops in the original source code:

> reveal my_program_library.pl my_performance datafile.ap2

Alternately, Reveal opens a file selection window and you can then select the data
file(s) you want to open.

For more information about using the reveal command, see the reveal(1) man
page.

8.3.5 About PAPI

CrayPat uses PAPI, the Performance API. This interface is normally transparent to the
user. However, if you want more information about PAPI, see the intro_papi(3)
and papi_counters(5) man pages.

Note: To access PAPI functions and utilities directly, you must first unload the
perftools module and then load the papi module. However, after you do so,
Cray-originated man pages, the pat_help command, and the $CRAYPAT_ROOT
path will be unavailable. Therefore, if you plan to use utilities or develop programs
that use PAPI directly, plan your work and save your reference information
accordingly.

Additional information about using PAPI is available through the PAPI website, at
http://icl.cs.utk.edu/papi/.

94 S–2529–116

http://icl.cs.utk.edu/papi/

glibc Functions [A]

The supported glibc functions and system calls are listed in Table 23. For further
information, see the man pages.

Note: Some fcntl() commands are not supported for applications that use
Lustre. The supported commands are:

• F_GETFL

• F_SETFL

• F_GETLK

• F_SETLK

• F_SETLKW64

• F_SETLKW

• F_SETLK64

Also, asynchronous I/O (aio) calls are not supported for applications that use
Lustre.

Table 23. Supported glibc Functions

a64l abort abs access

addmntent alarm alphasort argz_add

argz_add_sep argz_append argz_count argz_create

argz_create_sep argz_delete argz_extract argz_insert

argz_next argz_replace argz_stringify asctime

asctime_r asprintf atexit atof

atoi atol atoll basename

bcmp bcopy bind_textdomain_codeset bindtextdomain

bsearch btowc bzero calloc

catclose catgets catopen cbc_crypt

chdir chmod chown clearenv

clearerr clearerr_unlocked close closedir

S–2529–116 95

Cray Programming Environment User's Guide

confstr copysign copysignf copysignl

creat ctime ctime_r daemon

daylight dcgettext dcngettext des_setparity

dgettext difftime dirfd dirname

div dngettext dprintf drand48

dup dup2 dysize ecb_crypt

ecvt ecvt_r endfsent endmntent

endttyent endusershell envz_add envz_entry

envz_get envz_merge envz_remove envz_strip

erand48 err errx exit

fchmod fchown fclose fcloseall

fcntl fcvt fcvt_r fdatasync

fdopen feof feof_unlocked ferror

ferror_unlocked fflush fflush_unlocked ffs

ffsl ffsll fgetc fgetc_unlocked

fgetgrent fgetpos fgetpwent fgets

fgets_unlocked fgetwc fgetwc_unlocked fgetws

fgetws_unlocked fileno fileno_unlocked finite

flock

flockfile fnmatch fopen fprintf

fputc fputc_unlocked fputs fputs_unlocked

fputwc fputwc_unlocked fputws fputws_unlocked

fread fread_unlocked free freopen

frexp fscanf fseek fseeko

fsetpos fstat fsync ftell

ftello ftime ftok ftruncate

ftrylockfile funlockfile fwide fwprintf

fwrite fwrite_unlocked gcvt get_current_dir_name

getc getc_unlocked getchar getchar_unlocked

getcwd getdate getdate_r getdelim

getdirentries getdomainname getegid getenv

geteuid getfsent getfsfile getfsspec

getgid gethostname getline getlogin

getlogin_r getmntent getopt getopt_long

96 S–2529–116

glibc Functions [A]

getopt_long_only getpagesize getpass getpid

getprotoent getprotobyname getprotobynumber

getrlimit getrusage gettext gettimeofday

getttyent getttynam getuid getusershell

getw getwc getwc_unlocked getwchar

getwchar_unlocked gmtime gmtime_r gsignal

hasmntopt hcreate hcreate_r hdestroy

hsearch iconv iconv_close iconv_open

imaxabs index initstate insque

ioctl isalnum isalpha isascii

isblank iscntrl isdigit isgraph

isinf islower isnan isprint

ispunct isspace isupper iswalnum

iswalpha iswblank iswcntrl iswctype

iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit

isxdigit jrand48 kill l64a

labs lcong48 ldexp lfind

link llabs localeconv localtime

localtime_r lockf longjmp lrand48

lsearch lseek lstat malloc

mblen mbrlen mbrtowc mbsinit

mbsnrtowcs mbsrtowcs mbstowcs mbtowc

memccpy memchr memcmp memcpy

memfrob memmem memmove memrchr

memset mkdir mkdtemp mknod

mkstemp mktime modf modff

modfl mrand48 nanosleep ngettext

nl_langinfo nrand48 on_exit open

opendir passwd2des pclose perror

pread printf psignal putc

putc_unlocked putchar putchar_unlocked putenv

putpwent puts putw putwc

putwc_unlocked putwchar putwchar_unlocked pwrite

S–2529–116 97

Cray Programming Environment User's Guide

qecvt qecvt_r qfcvt qfcvt_r

qgcvt qsort raise rand

random re_comp re_exec read

readdir readlink readv realloc

realpath regcomp regerror regexec

regfree registerrpc remove remque

rename rewind rewinddir rindex

rmdir scandir scanf seed48

seekdir setbuf setbuffer setegid

setenv seteuid setfsent setgid

setitimer setjmp setlinebuf setlocale

setlogmask setmntent setrlimit setstate

setttyent setuid setusershell setvbuf

sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

signal sigpending sigprocmask sigsuspend

sleep snprintf sprintf srand

srand48 srandom sscanf ssignal

stat stpcpy stpncpy strcasecmp

strcat strchr strcmp strcoll

strcpy strcspn strdup strerror

strerror_r strfmon strfry strftime

strlen strncasecmp strncat strncmp

strncpy strndup strnlen strpbrk

strptime strrchr strsep strsignal

strspn strstr strtod strtof

strtok strtok_r strtol strtold

strtoll strtoq strtoul strtoull

strtouq strverscmp strxfrm svcfd_create

swab swprintf symlink syscall

sysconf tdelete telldir textdomain

tfind time timegm timelocal

timezone tmpfile toascii tolower

toupper towctrans towlower towupper

98 S–2529–116

glibc Functions [A]

truncate tsearch ttyslot twalk

tzname tzset umask umount

uname ungetc ungetwc unlink

unsetenv usleep utime vasprintf

vdprintf verr verrx versionsort

vfork vfprintf vfscanf vfwprintf

vprintf vscanf vsnprintf vsprintf

vsscanf vswprintf vwarn vwarnx

vwprintf warn warnx wcpcpy

wcpncpy wcrtomb wcscasecmp wcscat

wcschr wcscmp wcscpy wcscspn

wcsdup wcslen wcsncasecmp wcsncat

wcsncmp wcsncpy wcsnlen wcsnrtombs

wcspbrk wcsrchr wcsrtombs wcsspn

wcsstr wcstok wcstombs wcswidth

wctob wctomb wctrans wctype

wcwidth wmemchr wmemcmp wmemcpy

wmemmove wmemset wprintf write

writev xdecrypt xencrypt

S–2529–116 99

	Cray Programming Environment User's Guide
	Changes to this Document
	Introduction [1]
	1.1 What You Must Know About Your System
	1.1.1 Processor Type
	1.1.2 Compute Units and CPUs
	1.1.3 CPU Numbering
	1.1.4 Which Network ASIC?
	1.1.5 Which GPU or Coprocessor?
	1.1.6 Which Operating System?
	1.1.7 What Is a Compute Node?
	1.1.8 Which File System?
	1.1.9 Which Batch System?

	1.2 Logging In
	1.2.1 UNIX or Linux Users
	1.2.2 Windows Users
	1.2.3 Apple Users

	1.3 Navigating the File Systems

	Using Modules [2]
	2.1 What Is Loaded Now?
	2.2 What Is Available?
	2.3 Loading and Unloading Modulefiles
	2.4 Swapping Compiler Modulefiles
	2.5 Swapping Other Programming Environment Components
	2.6 Using Targeting Modules
	2.6.1 Targeting for a Cray System
	2.6.1.1 Compiling Without the Cray Networking Libraries

	2.6.2 Targeting for a Standalone Linux workstation, CDL, or Servi
	2.6.3 Targeting for an Accelerator
	2.6.4 Targeting for Intel Xeon Phi
	2.6.4.1 Offload Mode
	2.6.4.2 Autonomous Mode
	2.6.4.3 Known Limitations

	2.7 Module Help
	2.8 For More Information

	Batch Systems and Program Execution [3]
	3.1 Interactive Mode
	3.1.1 Notes

	3.2 Batch Mode
	3.3 Using aprun
	3.3.1 Special Considerations for Intel Xeon Phi

	Using Compilers [4]
	4.1 About Compiler Drivers
	4.1.1 Bypassing the Compiler Drivers

	4.2 About C/C++ Data Types
	4.3 About the Cray Compiling Environment (CCE)
	4.3.1 Known Limitations

	4.4 About PGI Compilers
	4.4.1 Known Limitations

	4.5 About Intel Compilers
	4.5.1 Known Limitations

	4.6 About GNU Compilers
	4.6.1 Known Limitations

	4.7 About the Chapel Parallel Programming Language
	4.8 About Cross-compilers

	Dynamic Linking [5]
	5.1 Implementation
	5.2 Linking Defaults
	5.3 Modify Linking Behavior to Use Non-default Libraries

	Libraries [6]
	6.1 Cray Scientific and Math Libraries (CSML)
	6.1.1 Basic CSML Components
	6.1.2 BLAS and LAPACK
	6.1.2.1 Notes

	6.1.3 BLACS and ScaLAPACK
	6.1.3.1 Notes

	6.1.4 Iterative Refinement Toolkit (IRT)
	6.1.5 Fourier Transformations
	6.1.5.1 FFTW
	6.1.5.2 ACML

	6.1.6 PETSc
	6.1.6.1 Notes

	6.1.7 Trilinos
	6.1.8 Cray LibSci_ACC

	6.2 MPT
	6.2.1 Using MPI and SHMEM Modules
	6.2.2 MPI Usage Notes
	6.2.3 SHMEM Usage Notes
	6.2.4 GPU-to-GPU Communications

	6.3 Hugepages
	6.3.1 When to Use Hugepages
	6.3.2 When to Avoid Using Hugepages
	6.3.3 Cray XC30 Usage
	6.3.4 Cray XE and Cray XK Usage
	6.3.5 Cray XT Usage
	6.3.6 Running Independent Software Vendor (ISV) Applications
	6.3.7 Known Issues

	Debugging Code [7]
	7.1 Cray Debugger Support Tools
	7.1.1 Using CCDB
	7.1.2 Using LGDB
	7.1.3 Using Abnormal Termination Processing (ATP)
	7.1.4 Using STAT

	7.2 Using Cray Fast-track Debugging
	7.2.1 Supported Compilers and Debuggers

	7.3 About Core Files
	7.4 Using DDT
	7.4.1 Known Limitations

	7.5 Using TotalView
	7.5.1 Known Limitations

	Optimizing Code [8]
	8.1 Improving I/O
	8.1.1 Using iobuf
	8.1.2 Improving MPI I/O

	8.2 Using Compiler Optimizations
	8.2.1 Cray Compiling Environment (CCE)

	8.3 Using the Cray Performance Measurement and Analysis Tools
	8.3.1 About CrayPat-lite
	8.3.2 About CrayPat
	8.3.2.1 Instrumenting the Program
	8.3.2.2 Collecting Data
	8.3.2.3 Analyzing Data
	8.3.2.4 For More Information

	8.3.3 About Cray Apprentice2
	8.3.4 About Reveal
	8.3.5 About PAPI

	glibc Functions [A]
	List of Figures
	Figure 1. Selecting SSH Protocol
	Figure 2. Enabling X11 Forwarding
	Figure 3. Logging In

	List of Procedures
	Procedure 1. Setting Up the Programming Environment
	Procedure 2. Using GPU-to-GPU Communications
	Procedure 3. Using Cray Fast-track Debugging

	List of Examples
	Example 1. Using TotalView to control program execution
	Example 2. Debugging a core file
	Example 3. Attaching TotalView to a running process

	List of Tables
	Table 1. AMD, Intel, Cray, and BASIL Terminology
	Table 2. aprun Versus qsub Options
	Table 3. C/C++ Data Type Sizes
	Table 4. Cray Compiler Basics
	Table 5. PGI Compiler Basics
	Table 6. Intel Composer Basics
	Table 7. GNU Compiler Basics
	Table 8. CSML Basics
	Table 9. PETSc Basics
	Table 10. Trilinos Basics
	Table 11. Cray LibSci_ACC Basics
	Table 12. MPT Basics
	Table 13. Hugepages Basics
	Table 14. ccdb Basics
	Table 15. lgdb Basics
	Table 16. atp Basics
	Table 17. STAT Basics
	Table 18. DDT Basics
	Table 19. TotalView Basics
	Table 20. IOBUF Basics
	Table 21. MPI I/O Basics
	Table 22. Performance Analysis Basics
	Table 23. Supported glibc Functions

