p oo

I A R <
P

4,,,a11¢’¢¢'

Ry

JE P
R
B < <
P R
G r e e s AP

i s e

i e s e
c e s st
st P s
e s rdglh

SESSEES TS S-3014

,;I;fl’,';:.ooo:: ‘:‘:“.
'///'/'l,l"“" “.‘\:\‘,...
’/'/ll': 2000008 :‘:\k\\‘
V030509250000 Go SO DR RETIINNNNNE
10t et Y004 D2 PRI ‘
t, 1,4 'S N o
(0,4 b O DB NN)
i A Q) vV NESE
'III'l + \:‘\\::\\\“..~
Y N
7 “‘:\\“::\\\\~
‘1 S SO RINNNNNREE
by 'y vy .
“ \\\\\‘ N
\\‘ NN e
‘ ‘\\\\\\ \‘\\\
sy NERR
1% 5 5 S T TN S R
1S S S NN
PR S R R N
SR T T T U TR
R S NN N
A \ v
10 5 5 5 TP S S
\\\\\\ \\‘ \ \ . .
AN WA NN
\\\\ \\\ \\ \ \ \ \ \
A\ S \ VEY T
\ W\ \ Viat oy Y
‘ \ \\ \ \ \ \ \
\\\\\\\\\\\\\\
WY N Vg)
\ \ \ \
\\\ WV \\ vy .) v
\\ WV \ Voo Y \ \
\\\\ v AR v \ \
\ \ ‘ \ \
vy \
W\ AR RN ‘
\\\ \ Vv \ \ .
\ A} \ \ \ \
\ \ v \)
\\\ \ \ \ \ \ \ \ “ \
\\ \ \ N \ . \
\\ \\ \ AN \ \ \
SRR vy oy \ \ vy
\ \ \ \ \ \ \ \ \
' \\ \ B A \ Y Y
\\ \\\\\\\\ \\\\ \ \‘ -
' \ \
\\ \\ AN vy v Y \ A ‘\‘
\\\\\\\\\\\ \\‘\\
WS e e T
\\ A SRR \ A\ \
AN ABAY v) \ \ Yy,
\\\\\ \\\\\ PO S T Yy Vo
] . 4

Contents

Contents

1 About the Cray® Graph ENgiNe USEI GUITE.........cceeiuieiuieieiieteeetee et et eeteeetee ettt e tteetee et e et e eaaeesteenteeaeenteesbeereannas 6
2 About the Cray Graph ENQGINE (CGE)......uu ittt ettt e e e e e e e e e e e e e e e e e e s e e s aa s s annanaes 8
P R O] i T (U | T PP 8
A @0 g [o1=T o1 (0] @] o 1T r- 14 o o 1SR 8
2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database............ccccccccveeeeiniiiiiiininnee. 9
2.2.2 Differences Between CGE and Relational Database..............ccoooeiiiiiiiiiiiiiiiicieeee 9
PG B N o Lo U1] oY o SRR PRR 11
2.4 SyStem ArChItECIUIE OVEIVIEW........ciiiiieei ettt ettt e et e e e e e e aaaaaaaaaaaaaaassasaaaaaanneaarbnnranes 11
2.5 RDF QN0 SPARQL RESOUICES.citiiitieeeiieiieiittee et et ee e e e e e s e s saie e tbaaaeeeteeeaeaaaessasasstssbssaseseaaaaeeesessnanssnrnnes 12
3 The CGE Database BUIld PrOCESS...........uiiiiiiiiiiiiiie ettt ettt ettt e e e s st e e e s s st bbbt e e e e s annnteeeeee s 13
0 Y o T T B W] LTSN 1 RS 15
3.2 ADOUL INFErENCE RUIES FlIES......oeeiiiiieiiiie ettt et et e s e nnnenneenes 15
3.3 SamPle RDFS RUIES FlEttt e e e e e e e e s et e e et e e e e e e e e e e s aaannnrenes 19
3.4 Limitations t0 JeNa RUIES SYNTAXoooiiiiiiiii ittt ettt et e s s e s s e aaabbnaraees 20
4 Launch the CGE Server Using the cge-1aunch COMMANG.........cccccuiiiiiiiiiiiiiiiiiieireeeee e e e e s eeeae e e e e e e e e e e e s e s aee e 22
5 Mechanisms to Interact with the Cray Graph Engine (CGE) Database................ccccciiiiiiiiiiiieiicecceeeee e, 24
LI O €1 O N P PP PRP 24
5.1.1 Cray Graph Engine (CGE) Command OULPUL.........ccoiiiiiiiiieriiiiieee ettt siineeee e 26
5.1.2 CGE CLI COMMON OPIONS.ettiiiiiiiiitiee ittt e ettt e e s rse ettt e e st e e e e s s aiabe e e e e e s asbeae e e e s aannneeeeeas 26
5.1.3 SSH IAENTIHIES. ..ottt e ettt e e e e e e e e e e e s e aaabbbbeeeeeaaaaaeaeesaaannnnnnes 32
5.1.4 CGE Hadoop HDFS CONfIQUIALION........coiiiiiiiiiiiee ettt e e e e e e e e e e 32
5.1.5 Cray Graph Engine (CGE) Properties Fil€.........uuuviiiiiiiiiiieie e 33
5.1.6 Create Checkpoints Using the CGE checkpoint COmMmMand..........ccccoververiereeeenesiiiiinnninnnnen 36
5.1.7 Compile SPARQL Commands Using the CGE compile Command...........cccccocuvvvvvinnrnennennnnnn. 37
5.1.8 Check the Database State Using the CGE echo Command............ccvvvvveieeeieiieeeeeeeeeeeeeeeeeeeeeee 38
5.1.9 Launch the CGE Web Server Using the fe Command................coovieiiiiiciiiiiiieeeeee e 39
5.1.10 Search Configuration File Locations Using the get-configuration Command................. 39
5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the keyword-
100KUDP COMMEAN.........oiiiiiiiiiiiiicee et e e e e e e e et e et ee e e e s e e eeeeeeeeeseeeeesesrsba bbb e aesaaeeeens 40
5.1.12 Retrieve Default Server Logging Information Using the 1og-info Command....................... 41
5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names Using
the 1og—100kup COMMEANG.........covitiiiiiiiiieieeeeeeeeeee et e e e e e e e e e e e e et aeeeeeeeeseeesesearar i es 41
5.1.14 Change the Default Logging Configuration of the CGE Server Using the 1og-
reconfigure COMMANG. ..o e e e e e e e e e e e e s e s s e e n et rreerraeaaaaaeeaeeas 42
5.1.15 Retrieve the Default NVP Configurations Using the CGE nvp-info Command.................... 42

S3014 2

Contents

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure Command............ 43

5.1.17 Display Server Output Directory Information Using the output-info Command 43
5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure

(0] 19114 T= T o 1RO 43

5.1.19 Execute Queries Using the CGE query COMMaNd............ccoooiiiiiiiiiiiiiiiieeeeeeeeee 44

5.1.20 Cray Graph Engine (CGE) Optimizer Configurationc.ooouiiiiiiiiiieieieee e 46

5.1.21 Shutdown the CGE Server Using the shutdown COmMmand............ccccceeeviiiiiieeee i 46

5.1.22 Execute Sparqgl Queries and Updates Using the spargl Command............ccccvvveeeeeeeeeennnnnnns 47

5.1.23 Execute Updates on a Database Using the CGE update Command...............occvvvvveeeeeennnnns 47

5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command............ 48

5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command............... 49

5.1.26 Create a Properties File Using the CGE generate properties Command...................... 50

S O] = 1 T PP PP PPPPPPRPPPRP 51

5.2.1 Launch the CGE WED SEIVETooiiiiiiiiii ettt 56

5.2.2 Execute SPARQL Queries UsiNg the CGE Ul.........oooi oo 56

5.2.3 Execute SPARQL Updates Using the CGE Update Interface...........cccccceviiiiiiieeeiinniiiiiiieeeeeee 58

5.2.4 Create a Checkpoint Using the CGE Ul.........coooiiiiiiiieeeeeeee e 60

5.2.5 Cray Graph Engine (CGE) Advanced OPLIONSuuueriieiiiiiiiiiiaiaaaaaaaeee e 61

5.2.6 View Server Configurations Using the CGE Ul............ccoiiiiiiiiiiiiiievnveevee e 62

5.2.7 Edit Server Configurations Using the CGE Ul.............coooiiiiiiiiiiiiieeeeeee e 63

R o] 11 0] I @] o] 1] 41 TP EPT PP 65

5.3 SPARQL ENUPOINTS.eiiieeieiiitteee ettt ettt e ettt e e e e e bbbt e e e e e bbb et e e e e e aan b b e e e e e e e anbbr e e e e e e anrreeas 67

5.4 Create and USE 8 DAtAD@SE...... ... ittt e et bbbttt et e e e e e e e e e e e e e e e aeaaannnnaee 69

LSO 01T Y@= o Tot= | =4 71

6.1 Cancel a Query Using the CGE WED Ul.........uiiiiiiiiiiici et ee e e e e e e e e e e e s e eanannnes 72

6.2 Cancel a Request Running Under a CGE CLI QUETY.........ccccuiiiiiiieieieee e e e e e e e e e 75

AL O T =T =Tol U] 1 PP PTTTOTP 76

7.1 Cray Graph Engine (CGE) Security MEChANISMS.ouiiiiiiiiiiiiiiee e 78

7.1.1 Create a CGE SpecCific RSA/DSA HOSE KEYciiiiiiiiiiiiiiii et 78

7.2 SEIUP CGE SECUIMLY.....oiiii ittt ettt e e e oo oo oo oo bbbt bbbt ettt ettt et e e e aeaaaaaeaeeaaaesaaaaaannnannnes 79

7.2.1 Configure Server Side Identification and Authentication...................ocooe i 79

7.2.2 Configure the ACL File USEr PermMiSSIONS........uuiiiiiiiiiie et s et e e e e e e e e e 81

7.2.3 Configure Web Ul Identification, Authentication and EnCryption............cccccovviiiiiiiniiiiiiiieeeeeene 86

7.2.4 Configure LDAP fOF CGE.......oiiiiiiiiiiiiiei ettt ee e 87

7.2.5 Configure Private Authentication fOr CGE...........uuiiiiiiiiiiiaaiia e 88

7.2.6 CONfIQUIE SSLOr CGE....uuiiiiiiiii it e e e e e e e et e e et e s e e e e aaaaaaaaees 89

7.2.7 Launch @ SECUred WED Ul.......ocuiiiiiiiie ettt 91

RS =T [T T T RS Y=ol U)Y/ 91

S3014 3

Contents

7.4 CGE USEr AUTNENTICATION ...ttt ettt ettt et ettt e e e e e aaaaaaaaaaaesaesaaaaaannnnnenarnee 93

7.5 Grant Basic Access to Owned QUErY ENGINEScooiiiiiiiiiiiiiiii ettt 96

7.5.1 Eliminate Interactive Host Key VerifiCation............ccuviiieeeiiiiiii e 99

7.6 Grant Other Users Access to Their CGE QUETY ENQINEGuvviiiiiiiiiiiiice et e e e e e e e e 99

7.6.1 Grant Other Users Access to One of the Owned Data Setsocccuvvviiiiiiiiieiiiniiiiiiiiieeeeen 100

7.6.2 Grant Other Users Access to All of the Owned Data Setscc.eeeevveeiiiiiiiiiiieeeeiieeeee 101

8 BUIIE-IN Graph FUNCHONS. ...ttt et ettt e e aa e e e e e e e e e e e e e bbb bbbt beebe e e e e e eeaaaaaaaaaaaaans 102
8.1 Combine Graph Algorithms with SPARQLcoiiiiiiiiiei et e e e e e e e eieees 102

8.2 Invocation of @ Graph FUNCLONoooiiiiii e s e e s e e e e eanes 103

8.2.1 The CONSTRUCT ClAUSE ...cuveiiiirieiiireee it i ettt n et e et e s nn e e nre e s e e nnnee e s nnnee s 103

8.2.2 The INVOKE ClAUSE........eiiiireiiiiiriee ittt ettt et e st e e st e s nn e e e nnn e e e nnnee e 103

8.2.3 The PRODUCTING ClAUSE.......uueiiiieierireie ittt sttt ettt s st e e s e sn e e snee e e nnree s 104

8.3 INPULS 10 the Graph FUNCHONueiiiiiiiiiieee e e e e e e e e e e e e e e eeeaeeseesannnnnns 105

8.4 SEUUENCE Of OPEIALOIS. . .. etteiiieei ittt e ettt e e sttt e e e e s s bbb e e e e e s st bbb et e e e e s st bbeeeeeesaabbbbeeeeessaabbaneeeaesannes 106

LTI =TT I = o] SO PPRRSRRT 107

8.6 BEIWEENNESS CONIIAILY.eeeeiiiiiiiee ettt et e e e e e e e e e e e e s e sanbb bbb e bereeaaaaaaaaaaaaas 108

8.7 Community Detection Label Propagation (LP).........cccooiiiiiiiiiiiiiiiiie ettt 109

8.8 Community Detection Parallel Louvain Method (PLM).........couviiiiiiiieiii e e e 110

SRS =T =N = L] O PPREEER 111

8.10 S-T (Source — Target) CONNECTHIVILY........uiiieiiiiiiiiie ettt e e e e et e e e e e nneeees 112

8.11 S-T S CONNECLIVILY......tteeeeeiiitee ettt ettt e e e ekttt e e e skt e e e e e okt b et e e e e st be et e e e s ambbeeeeessbbeeeeeeaanes 113

T A 1 =T o To | L @ 1H] 1] o To TP UPUPPPP TR PP 114

8.13 VerteX TraNGIe COUNTING. ittt ettt e et e e e e e e e e e e s s e s e e abb et bbbt e e et e eeeeeeaaaaaaaaaaaaaaaanan 115

S0 TV oo | L= o [T Vo TR PEEERRRRR 116

O CGE EXIENSION FUNCHIONS. .. .eeiiieiiitiiiee ettt ettt sttt e e s sttt e e sttt e e s s ab bt e e e s anb b et e e e s e nnbbe e e e s annbbeeeesannbbeeeeeanbneas 118
9.1 Cray Graph Engine (CGE) Interval AnalytiCsS FUNCLIONS.........oicuiiiiiiiiiiiiiee et 118

9.2 Cray Graph Engine (CGE) Haversing FUNCHONS.oouiiiiiiiiiii et 120

9.3 Cray Graph Engine (CGE) Square ROOt FUNCLON...........coiiiiiiiiiiiiiie et 121

9.4 CUStOM AQQregate FUNCHONS. e ittt e e e e e e e ettt e et e e e e e aaeaeaeeeaesanananas 122

10 Cray Graph Engine (CGE) Property Path SUPPOIL..........ccuiiiiiiiiiiiiieeeee e 124
11 Cray Graph Engine (CGE) QUICK REEIENCE.........uuiiiiiiiiiiiiiii i r e e e e e e e e s e e s s s eeeees 127
12 Get Started With USING CGE........cooiiiiiiiiii ittt ettt e sttt e e s s bbb e et e e s sbbb b et e e s sabbbeeeessabbbeeeenan 130
13 Support for SIMPIE GraphML FIlES.......coci ittt e s e e e e s s e et e e s e ananreeea e s 134
14 LUSEre SHHPING ON CGE.. ...ttt ettt e e e e e e oo e oo b et bbbttt et e et aaaaeaesassaababbebbeeeeeeeaaaaaaeaesaaannnrnnes 137
L5 CGE APttt ettt et h b ek e e e oAb et e oo R e e e e R R et e e R b e e e o b be e e eabe e e e aRbe e e abbe e e enneeeanrneeann 138
15.1 CGE AP VEISIONINGciiiiieeeie e i e e i ettt e et eeeaeaeeeeaaease st s s ase e taataetaasaesaseeeeaeaaaaaaaeaaessesaaaaanannnnrenes 138

15.2 Prepare the Environment for Using CGE Java APl on UrKa-XC........ccccccev i, 138

TR R O € N o\ 7= 1 A PSR 139

S3014 4

Contents

15.3.1 Build CGE Java Applications USING MaVENuuuiiiiiiiiiaaaiaaiiiiiiiiie et 141
15.3.2 Build CGE ApplicatioNS USING JDKuuuuiiiiiiiiiiiiieetieeia e 143
15.3.3 Build CGE Applications Using Pre-built Main Entry POINES..........cviiiiiiiiiiieiiieeiee e, 144
15.3.4 Use Case: A Comprehensive Java Programeeeeeeereeeoiiiisicciiiiiieeeres e e e e e e s ssssssnsnseneens 146
15.3.5 Limitations Of CGE JAVA APL.......eiiiiiiiiieie ettt e e e e e e e e s e s s e s et enaneeeeeeeeees 153

R Ol e i Y1 T] o 1Y = RSP PTR 153
15.4.1 Use Case: A Comprehensive PYthon Program ... 154
15.4.2 Run the CGE Python API as a Python Application ... 157
15.4.3 Run a Python API from the Python Interpreter............ccoooiiiiiiiiiiieeeeee e 159

15.5 CGE SPArK AP .ottt sttt e e e e e e 162
15.5.1 Convert TSV Files t0 SPark DAtaselS.cccoiiuuiiiieiiiiiiiee ittt 163
15.5.2 Determining the SCREMIE.........u i e e b e e e e 165
15.5.3 Role of the Spark Schema in TSV Translation................eeiii e 167
15.5.4 Example of Spark Scala to Spark Dataset CONVErSIiON...........ocooiiiiiiiiiiiiiiiieeieeieeeeeeeeeeeeeen 170
15.5.5 Errors and Exceptions Encountered while Using the CGE Spark APl........ccccccevviiiiiiiienneennn, 172
15.5.6 RUN CGE frOM SPArK.......cciiiicciitieiiiti et e e s s e s aas s s an e eneennneneees 173
15.5.7 CGE Spark DataFrame to RDF Triples Data CONVEIEr.........cuuevieeiiiiiiieeee e siiieeee e 177

16 Logging and TroUDIESNOOTING.cciiiiiiiiiite ettt ettt e e s ettt e e s s aab e et e e e s aabbb b e e e e e s annrnneeeens 179
16.1 CGE Error Messages and Resolution INfOrmation..................uueuiieiiiiiiieiiiiiiiiiiieiieiieeeseeeeeeeeeeeeeeeeeeeeees 180
16.2 Terminate Orphaned cge-Server JODS.o 185
16.3 Diagnose CGE PYIhON AP ISSUES.........cciiiii ettt ettt e e e e e e e e e e e e e e s e e s s e s e areeaeeees 186
S3014 5

About the Cray® Graph Engine User Guide

1 About the Cray® Graph Engine User Guide

The Cray® Graph Engine User Guide contains information about using the Cray Graph Engine (CGE), its
Command Line Interface (CLI) and Graphical User Interface (GUI) to create and use RDF databases.

Release Information

This publication version addresses the product version 3.1UP00 of the Cray® Graph Engine.

Record of Revision

Date Addressed Release
March 2015 Beta release

March 2016 1.0UPOO

August 2016 2.0UP00

December 2016 2.5UP00

April, 2017 3.0UP00

August, 2017 3.1UPOO

Record of Revision
e New content
Information related to the following has been added with this revision:
o Using CGE from Spark.
o Lustre stripping on CGE.
o Spark dataframe to RDF triples data converter.
o Addition of information about JVM's default memory allocation when launching cge-c1i.
e Updated content:
The following information has been updated with this release:
o Updated the default start up time from 300 to 900 seconds.
o Updates to CGE Spark API

o Minor additions to the 'Use the CGE Python API' topic, indicating that the py4 package can be stored in
any location.

S3014 6

About the Cray® Graph Engine User Guide

Typographic Conventions

Monospace Monospaced text indicates program code, reserved words, library functions,
command-line prompts, screen output, file names, path names, and other software
constructs.

Monospaced Bold Bold monospaced text indicates commands that must be entered on a command
line or in response to an interactive prompt.

Obliqueor Italics Obligue or italicized textindicates user-supplied values in commands or
sytax definitions.

Proportional Bold Proportional bold text indicates a graphical user interface window or element.

\ (backslash) A backslash at the end of a command line is the Linux® shell line continuation

character; the shell parses lines joined by a backslash as though they were a single
line. Do not type anything after the backslash or the continuation feature will not
work correctly.

Alt-Ctrl-f Monospaced hyphenated text typically indicates a keyboard combination.

Scope and Audience

This publication does not include in-depth information about RDF and SPARQL. The intended audience of this
publication is users and system administrators. It is assumed that all the commands documented in this guide are
executed via the bash shell.

Trademarks

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, Urika-XA, Urika-GD, and YARCDATA. The following are trademarks of Cray Inc.:
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX,
LIBSCI, NODEKARE. The following system family marks, and associated model number marks, are trademarks
of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a
sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

S3014 7

About the Cray Graph Engine (CGE)

2

About the Cray Graph Engine (CGE)

CGE is a highly optimized software application designed for high-speed processing of interconnected data. It
features an advanced platform for searching very large, graph-oriented databases and querying for complex
relationships between data items in the database. It provides the tools required for capturing, organizing and
analyzing large sets of interconnected data. CGE enables performing real-time analytics on the largest and most
complex graph problems, and features highly optimized support for inference, deep graph analysis, and pattern-
based queries.

2.1 CGE Features

Major features of CGE are listed below:

An optimized query engine for high-speed parallel data analysis.
Support for submitting queries, updates and creating checkpoints.
Arich CLI.

The CGE graphical user interface, which acts as a SPARQL 1.1 end point. This interface enables editing
SPARQL queries or SPARUL updates and submitting them to the CGE database. It also accepts a set of
commands that allow users to perform various tasks, such as creating a checkpoint on a database, setting
Name Value Pairs (NVPSs) to control certain aspects of data preprocessing, and query processing etc.

SPARQL query language extension via the INVOKE and PRODUCING operators, which allow a classical graph
algorithm to be passed an RDF graph and for the algorithm’s results to be returned as data that is compatible
with SPARQL 1.1. This enables graph algorithm library calls to be nested within a SPARQL query.

Support for SPARQL aggregate functions.

Multi-user support.

Capability to cancel queries.

Compatibility with POSIX-compliant file systems.

Database preprocessing to apply inference rules to the data, as well as to index the data.
CGE Python, CGE Java and CGE Spark APIs

Support for a number of built in graph algorithms.

2.2 Concepts of Operation

CGE's operational model is comprised of the following major components:

The graph oriented database

S3014 8

About the Cray Graph Engine (CGE)

e Resource Description Framework (RDF)

2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database

Most modern database systems use a relational representation of their data. This means that data items are
stored in tables, with each row of the table holding data items that are in some way related to each other. For
example, all of the data items in the same row might be associated with the same person, as shown in the
following table:

Employee ID Given Name Family Name Date Hired Job position
29650 Georgia Smith 11/17/2001 Eng5

10926 Alex Jones 2/5/2008 Mktng3
72219 Paul Anderson 8/21/2005 Admin2

One of these fields is called the "key" and is used as the basis for looking up data from any of the other fields. In
this example, Employee ID would probably be used as the key. The column labels, Employee ID, Given
name etc. are implicit. They are not stored with the table, but with a database schema that is associated with the
table. The schema defines each field in the relation.

The kind of information that may be associated with a scheme is shown below:

Field Name Datatype

0 Employee ID Integer, min 0, max 99999

1 Given name Character, String length < 30

2 Family name Character, String length < 30

3 Date hired Integer 1-12, Integer 1-31, Integer > 1985
4 Job position Character, String length < 10

The database schema shown above is used as an example and is entirely conceptual. There are typically many
tables in a large relational database, each with its own defining schema.

2.2.2 Differences Between CGE and Relational Database

Most modern database systems use a relational representation of their data. This means that data items are
stored in tables, with each row of the table holding data items that are in some way related to each other. For
example, all of the data items in the same row might be associated with the same person, as shown in the
following table:

Employee ID Given Name Family Name Date Hired Job position
29650 Georgia Smith 11/17/2001 Eng5

10926 Alex Jones 2/5/2008 Mktng3
72219 Paul Anderson 8/21/2005 Admin2

S3014

About the Cray Graph Engine (CGE)

One of these fields is called the "key" and is used as the basis for looking up data from any of the other fields. In
this example, Employee ID would probably be used as the key. The column labels, Employee ID, Given
name etc. are implicit. They are not stored with the table, but with a database schema that is associated with the
table. The schema defines each field in the relation.

The kind of information that may be associated with a scheme is shown below:

Field Name Datatype

0 Employee 1D Integer, min 0, max 99999

1 Given name Character, String length < 30

2 Family name Character, String length < 30

3 Date hired Integer 1-12, Integer 1-31, Integer > 1985
4 Job position Character, String length < 10

As opposed to relational databases, CGE uses RDF to store data.

RDF is a data representation standard that allows data from different schemas to be merged. It accomplishes this
by extending the linking structure of the Web using Uniform Resource Identifiers (URIS) in order to create triples to
name a subject, an object, and the relationship or predicate between the two.

An RDF triple contains three components:

e the subject, which is an RDF URI reference or a blank node

e the predicate, which is an RDF URI reference

e the object, which is an RDF URI reference, a literal or a blank node

Hence, data items in RDF are always represented as a trio of character strings, referred to as the “subject”,
“predicate” and “object” fields. Because they were originally intended to be unique across the Internet,
components of RDF triples use the generic URI / IRI syntax (RFCs 3986 and 3987).

A triple holding the same kind of information shown in the previous relational example might look like the
following:

<http://cray.com/example/employeeID#29650> (subject)
<http://cray.com/example/hasGivenName> (predicate)
“Georgia”~*<http://www.w3.0org/2001/XMLSchema#string> (object)

The three statements within the preceding code block should be entered on a single line and have been shown in
separate lines in this publication due to lack of space. Furthermore, the text: (subject), (predicate) and
(object) in the above lines are shown in this document for clarity and are not part of an actual triple.

RDF triples are intended to be self-identifying in two ways, both of which can be seen in this example:

1. The literal’'s data type is attached to it.

2. The predicate identifies the class of data that the object belongs to, information that in the case of relational
data, is implicit in the schema and the data item’s position in the tuple. For RDF triples, there is no schema.
That type of identifying information is explicit, in the predicate of the triple.

Any subject-predicate-object triple can also be viewed as a source vertex-edge-sink vertex component of a
directed graph:

<http://...ID#29650> <http://.../hasGivenName> “Georgia”**<http://www....#string>

S3014 10

About the Cray Graph Engine (CGE)

Figure 1. RDF Triple Viewed as a Graph Component

hasGivenName . »
Georgia”

CGE is designed to store and analyze datasets when the patterns of relationships and interconnections between
data items are at least as important as the data items themselves. The SPARQL query language provides most of
the same features as SQL for filtering, grouping, and updating database information. Unlike SQL, however,
SPARQL also provides a powerful mechanism for specifying (in a query) a complex interconnection pattern to
search for in the database. CGE supports the capability of nesting a call to a classical graph analysis function
within a SPARQL query for indefinite pattern sizes and aggregate information that can not be expressed in
SPARQL.

Each subject-predicate-object relationship is an RDF triple. In CGE, each element in the internal representation of
the database includes a graph field, which specifies the subset of the graph that the triple belongs to. If the graph
field is left blank, the triple becomes part of the default graph. Typically this default, or unnamed, graph is the main
data subset.

2.3 About SPARQL

SPARQL is an RDF query language developed for executing semantic database queries. SPARQL queries
replace the table and schema format of relational SQL queries with RDF triples and ontologies, which define
predicates and relationships.

This release of the CGE software supports a subset of SPARQL 1.1. The following SPARQL 1.1 features are not
implemented:

e The SERVICE keyword, for querying remote data.
e The MD5, SHAL, SHA256, SHA384, and SHA512 encryption functions.

e The UCASE and LCASE functions, which return a string literal whose lexical form is the upper or lower case of
the lexical form of the argument, are implemented for ASCII characters only.

e The property paths feature, which extends the predicate portion of the query, allowing more extensive search
patterns without the overhead of additional OPTIONAL Statements.

Although CGE does not natively support the SPARQL 1.1 property paths feature, it does support certain types
of property paths. CGE’s property path support is currently experimental and should be used with care.
Contact Cray Support for additional information.

2.4 System Architecture Overview

CGE is designed to provide performance and scalability on large, complex, interconnected databases. Its query
engine is based on a data parallelism approach, in which the software strives to keep every processor busy on a
roughly equal fraction of the data. The query engine is serviced by a user interface and a command line interface.

CGE uses the open-source Jena ARQ SPARQL parser to parse each query or update, and its parser auxiliary
software translates it into a lower-level representation that can drive the query engine. Query results are written to

S3014 11

About the Cray Graph Engine (CGE)

the file system in a tab-separated-values (.tsv) format. For convenience, a pointer to the results file is returned to
the user when the query completes.

Extensive logging information is also written as the query or update progresses, as an aid to troubleshooting.

2.5 RDF and SPARQL Resources

Cray recommends the following resources for learning more about RDF and SPARQL:

RDF Resources
e RDF primer at https://www.w3.org/TR/rdf-primer/

SPARQL Resources

e "SPAROQL by Example”, available at http.//www.cambridgesemantics.com/, is an excellent introductory tutorial
written by Lee Feigenbaum of Cambridge Semantics and Eric Prud’hommeaux of W3C

e SPARQL Tutorial at http://jena.apache.org

e "Learning SPARQL", available at http.//www.learningspargl.com by Bob DuCharme
e SPARQLer Query Validator at http://sparql.org/query-validator.html

e SPARQL 1.1 query language tutorial at https://www.w3.org/TR/sparql11-query/

Semantic Web Resources
"Semantic Web for the Working Ontologist", available at http.//www.workingontologist.org by Dean Allemang and
James Hendler.

S3014 12

https://www.w3.org/TR/rdf-primer/
http://www.cambridgesemantics.com/
http://jena.apache.org/
http://www.learningsparql.com
http://sparql.org/query-validator.html
https://www.w3.org/TR/sparql11-query/
http://www.workingontologist.org

The CGE Database Build Process

3 The CGE Database Build Process

CGE is launched using the cge-1aunch command. When the CGE application is launched, a database directory
is specified using the -d option of the cge-1aunch command. Initially, this directory contains RDF data in N-
triples or N-quads format. When the application is first launched on a new database directory, the database is
compiled and stored in an internal format in the same directory. Subsequent launches with the same database
directory will use the compiled database. The update command can then be used to add data to an existing
database or to update it. For more information, see the cge-launch and update man pages.

Data must be presented in this directory in one of the following ways to enable CGE to recognize raw RDF data to
be built:

1. Inasingle file called dataset.nqg (for N-Quads form data)
2. Inasingle file called dataset.nt (for N-Triples form data)

3. In multiple files listed in a file called graph.info

Data to RDF Triples Conversion

CGE reads RDF data in N-triples or N-quads format. There are many third-party tools that may be used to convert
data into RDF. D2R is often used to extract data from an RDBMS into RDF format. The TopBraid Composer by
TopQuadrant® can also be used to convert Excel, TSV, UML, or XML data. Conversion of data to RDF is beyond
the scope of this publication.

Internal Representation

Once the data has been translated into RDF, the user must place the data in the directory where CGE builds its
compiled database files. If the RDF is contained in a single file, rename this file to dataset.nt or dataset.ngq.
A dataset.nt has NTriples format, whereas a dataset.nq file has NQuads format. On the other hand, if the
RDF is found in more than one file, a file named graph . info will need to be created. This file contains a list of
RDF files, one file per line. Each file name in graph.info may optionally be followed by a graph name. If a
graph name is specified, the graph name is applied to any triples found in the corresponding RDF file.

Following is a sample of a dataset.nt file that has been extracted from the Lehigh University Benchmark
(LUBM) synthetic dataset:

<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Departmentl4.University0.edu/GraduateCoursel7> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#TeachingAssistant> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teachingAssistantOf>
<http://www.Departmentl4.University0.edu/Course6> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owlf#takesCourse>
<http://www.Departmentl4.University0.edu/GraduateCoursel8> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#GraduateStudent> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#name>

S3014 13

The CGE Database Build Process

"GraduateStudent87" .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#emailAddress>
"GraduateStudent87@Departmentl4.University0.edu" .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFr
om> <http://www.University843.edu <http://www.university843.edu/>> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor>
<http://www.Departmentl4.University0.edu/AssistantProfessor6> .

Each predicate must appear on its own line. Some predicates are shown on multiple lines in the code block above
due to lack of space.

The specification for NTriples can be found at https://www.w3.org/TR/n-triples/
Following is a sample of a graph.info file:

example graph.info file

filenames can be absolute
/lustre/scratch/users/jdoe/databasel/dbtriplesl.nt

or they can be relative to the database directory, which is where the graph.info file resides
database2/dbtriples2.nt

they can specify a named subgraph with a URI
/lustre/scratch/users/jdoe/database3/dbquads3.ng <http://cray.com/namedGraphs/Graph3>

Triples and quads are supported in both the .nt and . nqg files. Quads in the RDF file are not affected by the
optional graph name specified in the graph . info file. Lines containing only white space or lines beginning with
the comment character (‘#’) are ignored. If the file is a mix of triples and quads, the triples become part of the
graph specified in the graph. info file. As mentioned earlier, when the application is launched via the cge-
launch command. The -d parameter specifies the database directory.

Y WARNING: The -d parameter is mandatory. Launching CGE without specifying it will result in an error.

This directory must already exist if it has been populated with dataset.nt, dataset.nq, rules and/or a
graph.info file. If a compiled database is not present, a database is built using the graph.info,
dataset.nt, or dataset.nq file in that directory.

When the database has been built, the following files are saved in the database directory:
e dbQuads

e string table chars

e string table chars.index

e graph.info file is created (if not already present), which is only used to load in a database from RDF files
and is not used once the database is compiled.

CGE can begin executing queries and updates once the database has been built. When the application is
subsequently launched via the cge-1aunch command specifying the same directory, the dbQuads file is
detected, and the compiled database is read rather than the RDF.

CAUTION: If a user attempts to create a new database and the input data files do not contain any valid
triples, the database will exit with an error. The recommended way of creating an empty database is to
create a completely empty input file using the touch command and then starting the database.

CGE searches for a dataset in the following places when loading a dataset:

S3014 14

https://www.w3.org/TR/n-triples/

The CGE Database Build Process

e If dbQuads exists, it will be used.

e If dbQuads does not exist, but graph.info exists, graph.info will be opened and read to obtain a list of
source data files, which will then be used to build a new dataset.

e If neither dbQuads nor graph.info exist, but dataset.nt (or dataset.nq) exist, dataset.nt or
dataset.ng will be used to build a new dataset.

e |f none of the above files exist, CGE wiill fail.

In each of these cases, if the file exists but is in some way invalid, CGE will fail.

Memory Requirements

e Memory Requirement for reading a database from RDF - The amount of memory required to read a
database from RDF depends on the number of triples/quads in the database, the number of unique strings in
the dictionary, and the length of those strings. As a rule of thumb, however, the main memory should be 4
times the size of the RDF file(s). For example, for a 100 GiB triples file, at least 400 GiB (4 * 100) should be
used.

e Memory Requirement for loading a compiled database - A compiled database consists primarily of the
dbQuads files, containing the compiled quads, and the string table chars files, containing the
dictionary. To enable CGE to load the database and execute meaningful queries, the main memory should be
20 times the sum of the sizes of dbQuads and the string table chars file. For example, if dbQuads is
32 GiB and string table chars is 256 GiB, at least (20 * (32 + 256)) GiB of memory should be used.

3.1 About Rules Files

One way to greatly increase the knowledge contained in the database is to provide a set of inferencing rules.
These rules are used during the database builds and in subsequent data updates (whether by SPARQL updates
or by editing the database) to create new relationships between objects. Providing inferencing rules grants
SPARQL queries access to inferred data, in addition to the raw data that was imported into the system.

Forward vs. Backward Chaining
There are two types of chaining:

e Forward Chaining - In forward chaining, the inferencing rules are recursively applied to the database,
creating new quads and adding them to the database. If a implies b and a is in the database, we add b to the
database.

e Backward Chaining - Rather than pre-computing quads in the database as in forward chaining, with
backward chaining the queries are modified to support those rules. If a implies b and a query searches for b,
it is changed to search for (a UNION b).

CGE's rules inference engine does not implement backward chaining, but it implements a highly parallel form of
forward chaining.

S3014 15

The CGE Database Build Process

3.2 About Inference Rules Files

Inferencing can be performed to generate additional relationships once the CGE builds a database. CGE
accomplishes this with a user defined rules file, which contains a set of rules specific to the data being processed.
The rules file format and semantics are based on Apache Jena rules.

In this version of CGE there are certain limitations to these rules:

e The @include construct is not supported.

e Calls to functions or built-in primitives, such as print, all, or max are not supported.
e The [...] syntax is not supported, including named rules.

e Backward chaining is not supported. Furthermore, backward syntax (<-) cannot be used to express forward
chaining.

e If multiple premises or conclusions (quads) are specified on either side of the -> in a single rule, each pair
must be separated by a space. The use of commas as separators is not supported.

e Native UTF-8 is not supported in rules files, however Unicode characters are supported within URIs, where
they are valid syntax.

A CAUTION: It is important to note that turning inferencing on/off is a database level setting. Turning
inferencing on can negatively impact performance. When this setting is set to true, the inferencer will run
during the first time that the database compiles and for subsequent updates. Since the whole database is
examined when inferencing occurs, turning this feature on after a period of time during which it was
turned off, will still affect the data that was loaded during the period when it was turned off. In other words,
if a user turns inferencing off and then adds or updates data, that data will also be inferenced once the
user turns the inferencing feature on again and performs another update.

Inference Rules File Format
The rules file has the form: one or more prefixes, followed by one or more rules:
left-hand side quad(s) -> right-hand side quad(s)

Comments are denoted by a # character at the beginning of a line. The quad, or quads, on the left-hand side of
the -> are the quads that the inferencer will attempt to match to infer the quad, or quads, on the right-hand side of
the ->. All of the left-hand-side rules must be satisfied in order for the inference to be made. Each rule must end
with a period (.) and a newline character, and each rule must be on its own line. The inferencer does not
recognize the escape character (\).

A quad takes the form:
(subject predicate object [graph])

It is mandatory to specify the subject, predicate and object. The graph field is optional. If a graph is not specified,
the inferencer will use the default graph and the rule will apply only to triples in that graph. The subject, predicate
and object fields can be any valid form of these fields as specified by the N-Quads grammar, except as described
in the list of limitations above. The graph field in a quad has the same valid forms as an object. If a rule contains
a URI, that URI must have existed in at least one of the data files that were included in the database. Alternatively,
to apply a new ontology that was not in the original data files, create a new file that contains any new objects and
predicates, and add that file to the database. The fields of a quad in a rule can also be variables, or shorthand
versions of strings built from a specified prefix. A variable must begin with a 2 character, followed by a valid name.
A name can contain any of the following characters:

name := [a-zA-Z][a-zA-7Z0-9]*

S3014 16

The CGE Database Build Process

To specify one or more prefixes at the beginning of a rules file, before any rules, use the following syntax:
@prefix prefix name: <http://urlstring#>

A rules file does not have to use prefixes. However they can be used to simplify quads within rules. For example,
prefixes are useful for creating shorthand versions of URIs that will be used repeatedly in the rules statements.

As with rules, each prefix must end with a period (.) and a newline, and each prefix must be on its own line.

Inferencing a Database

When a database is built with inferencing enabled and a rules. txt file is found in the database directory, CGE
will start applying the forward chaining rules found in that file to the triples/quads read from the RDF. The inferred
guads are added to the in-memory database and stored in the compiled dbQuads file. If inferencing is enabled,
the rules. txt file is also used when updating a database using SPARUL commands. As with any other quads
added by the SPARUL commands, the inferred quads are added to the in-memory database but are not written to
disk until the database is check-pointed.

NOTE: Inferencing is enabled by default and may be disabled by setting the value of the
cge.server.InferOnUpdate control parameter to 0. Control parameters are configuration keywords
that allow controlling server configuration settings.

Examples

The following prefix and rule examples are from the rule set used for the LUBM data.

A prefix statement

@prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
(?x rdf:type ub:Course) -> (?x rdf:type ub:Work)

In this example the term rdf : type is shorthand for:
<http://www.w3.0rg/1999/02/22-rdf-syntax-nsitype>.

The inferencer expands the prefixed version of the string to the full string when creating the rules
used during inferencing. The rule in this example says that for a given triple ?x rdf:type
ub:Course in the default graph, infer a new triple ?x is-type ub:Work and add it to the
default graph, as shown in the next example.

Inferring a new triple

Applying this rule:
(?x rdf:type ub:Course) -> (?x rdf:type ub:Work)

to this triple in the data input:

<http://www.Departmentl0.University0.edu/Course6> <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#type> \
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course>

infers (and adds) this new triple to the default graph:

S3014 17

The CGE Database Build Process

<http://www.Departmentl0.University0.edu/Course6> <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#type> \
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Work>

A rule to establish a hierarchy of types

The following rule shows one way that ontology rules are used to establish a hierarchy of data
types.

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee)
(?x rdf:type ub:Employee) -> (?x rdf:type ub:Person)

A Faculty member is also an Employee, an Employee is also a Person, and so on. Such a rule
eliminates the need to explicitly including each desired type for each such item in the database.
Note that this rule did not use the graph field.

The following rule uses a variable for the graph field. This rule is excerpted from the RDFS rules
file, which is based on some of the Jena rules for RDFS and OWL. The complete rules file is
reproduced in Sample RDFS Rules File .

(?x ?a ?y ?g) (?a owl:inverseOf ?b ?g) -> (?y ?b ?x ?2q)

This rule is also an example of another way rules are used to establish relationships between
triples in the database. This rule states that if two predicates A and B are defined to be inverses of
each other and then if the triple (x A Y) appears in the database, then the system can infer that
the triple (Y B X) is also there, or should be there.

A rule to establish a hierarchy of types

The following rule shows one way that ontology rules are used to establish a hierarchy of data
types.

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee)
(?x rdf:type ub:Employee) -> (?x rdf:type ub:Person)

A Faculty member is also an Employee, an Employee is also a Person, and so on. Such a rule
eliminates the need to explicitly including each desired type for each such item in the database.
Note that this rule did not use the graph field. The following rule uses a variable for the graph
field. This rule is excerpted from the RDFS rules file, which is based on some of the Jena rules for
RDFS and OWL. The complete rules file is reproduced in Sample RDFS Rules File .

(?x ?a ?y ?g) (?a owl:inverseOf ?b ?g) -> (?2y ?b ?x ?2q)

This rule is also an example of another way rules are used to establish relationships between
triples in the database. This rule states that if two predicates A and B are defined to be inverses of
each other and then if the triple (x A Y) appears in the database, then the system can infer that
the triple (Y B X) is also there, or should be there.

Cross-database rules

Another use of a rules file is to establish a relationship between triples in two different databases.
For example, if one were extending a U.S.-based database with some additional data from
France, it might streamline the process to include such rules as:

S3014

18

The CGE Database Build Process

(<x.cray.eg.francefpersonne> <x.cray.eg.france#nom> ?name <x.cray.eg.frenchdb>) -> \
(<x.cray.eg.us#person> <x.cray.eg.us#name> ?name <x.cray.eg.usdb>)

By this rule the fields in the quads are translated into their English counterparts, consistent with
the data that is already in the American based database.

3.3 Sample RDFS Rules File

The following sample rules file is based on the Jena rules for RDFS and OWL. It is reproduced here courtesy of
wa3.org.

These rules are based on the Jena rules for rdfs, plus some Jena rules
for OWL.

#Line breaks inserted into some of these rules for formatting purposes.
#This was done for readability within this document, but is not valid syntax.
Make a prefix for rdf:type. The IRI is defined by the SPARQL to be

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type, which we can

shorthand with rdf:type by defining a prefix for rdf:

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

Shorthand for rdfs

@prefix rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#> .

Shorthand for owl

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

Skip this one.

[rdfland4: (?x ?p ?y) -> (?p rdf:type rdf:Property), (?x rdf:type
rdfs:Resource), (?y rdf:type rdfs:Resource)]

Add rule for rdfs 2:

[rdfs2: (?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type ?c)]
(?x ?p ?y ?9) (?p rdfs:domain ?c ?g) -> (?x rdf:type ?c ?g)

[rdfs2a: (?x rdfs:domain ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:domain ?z)]
(?y rdfs:subClassOf ?z ?g) (?x rdfs:domain ?y ?g) -
> (?x rdfs:domain ?z ?qg)

Add rule for rdfs 3:

[rdfs3: (?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)]
(?x ?p ?y ?g) (?p rdfs:range ?c ?g) -> (?y rdf:type ?c ?q)

[rdfs3a: (?x rdfs:range ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:range ?z)]
(?y rdfs:subClassOf ?z ?g) (?x rdfs:range ?y ?g) -> (?x rdfs:range ?z ?g)
Add rule for rdfs 5a:

[rdfs5a: (?a rdfs:subPropertyOf ?b), (?b rdfs:subPropertyOf ?c) ->
(?a rdfs:subPropertyOf ?c)]

S3014 19

The CGE Database Build Process

(?a rdfs:subPropertyOf ?b ?g) (?b rdfs:subPropertyOf ?c ?g) -> (?a
rdfs:subPropertyOf ?c ?g)

Add rule for rdfs 6:

[rdfs6: (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)]
(?a ?p ?b ?g) (?p rdfs:subPropertyOf ?q ?g) -> (?a ?q ?b ?g)

Skip this one.
[rdfs7: (?a rdf:type rdfs:Class) -> (?a rdfs:subClassOf ?a)]
Add rule for rdfs 8:

[rdfs8: (?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) ->
(?a rdfs:subClassOf ?c)]
(?a rdfs:subClassOf ?b ?g) (?b rdfs:subClassOf ?c ?g) -> (?a rdfs:subClassOf ?c ?

9)

Add rule for rdfs 9:

[rdfs9: (?x rdfs:subClassOf ?y), (?a rdf:type ?x) ->

(?a rdf:type ?y)]

Put the quad with the most potential matches as the first quad to

try and improve performance since since the first quads are handled
in parallel.

(?a rdf:type ?x ?g) (?x rdfs:subClassOf ?y ?g) -> (?a rdf:type ?y ?Qg)

Add rules for inverse property from owl.

[inverseOfl: (?P owl:inverseOf ?Q) -> (?Q owl:inverseOf °?P)]

[inverseOf2: (?P owl:inverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)]

We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent

potential performance problems.

(?a owl:inverseOf ?b ?g) -> (?b owl:inverseOf

?a ?g) . (?x ?a ?y ?9g) (?a owl:inverseOf ?b

?g) -> (?y ?b ?x ?g)

Add rule for owl transitive property.

[transitiveProperyl: (?P rdf:type owl:TransitiveProperty),

(?A ?P ?B), (?B ?P ?C) -> (?A ?P ?C)]

We again process the quad that most likely will have the largest number

of potential matches first (make it first quad in rule) to prevent

potential performance problems.

(?a ?p ?b ?g) (?p rdf:type owl:TransitiveProperty ?g) (?b ?p ?c ?g) -> (?a ?p ?
c ?g)

Skip this one.

[rdfsl0: (?x rdf:type rdfs:ContainerMembershipProperty) -> (?x
rdfs:subPropertyOf rdfs:member)]

NOTE: Each prefix and rule must appear on its own line. Some prefixes and rules and are shown on
multiple lines in the sample above due to lack of space.

S3014

20

The CGE Database Build Process

3.4 Limitations to Jena Rules Syntax

This release of CGE does not support all aspects of Jena syntax and semantics for rules. Specifically:
e The @include construct is not supported.

e Calls to functions or built-in primitives, such as print, all, or max are not supported.

e The [...] syntax is not supported, including named rules.

e Backward chaining is not supported. Furthermore, backward syntax (<-) cannot be used to express forward
chaining.

e If multiple premises or conclusions (quads) are specified on either side of the -> in a single rule, each pair
must be separated by a space. The use of commas as separators is not supported.

e Native UTF-8 is not supported in rules files, however Unicode characters are supported within URIs, where
they are valid syntax.

NOTE: It is important to note that turning inferencing on/off is a database level setting. Turning
inferencing on can negatively impact performance. When this setting is set to true, the inferencer will run
during the first time that the database compiles and for subsequent updates. Since the whole database is
examined when inferencing occurs, turning this feature on after a period of time during which it was
turned off, will still affect the data that was loaded during the period when it was turned off. In other words,
if a user turns inferencing off and then adds or updates data, that data will also be inferenced once the
user turns the inferencing feature on again and performs another update.

S3014 21

Launch the CGE Server Using the cge-1aunch Command

4 Launch the CGE Server Using the cge-launch
Command

The cge-launch command launches the query engine and enables creating and building a database in a single
step. It handles the details of allocating batch resources, setting up the launch environment, and composing a
command line for the query engine on a given platform.

Following is an example of using cge-launch:

$ cge-launch -o pathtoResultsFile -d path -1 logfile

In the preceding statement:

e pathtoResultsFile - specifies the directory that will contain the results of queries and/or updates
e path - specifies the path to the database directory

e logrile - specifies the log file that will contain the command and server output.

The following options of the cage-1aunch command must be specified when launching the server:

e The -d option that specifies the path to the directory where the data set resides.

e The -o option that specifies the path to a directory where the result files produced by queries need to be
placed.

Both the -d and -o options accept:

e UNIX style pathnames as naming files on a POSIX compliant file system
e URLs of the following forms:

o file://unix pathname - This form is the equivalent of the Unix Style Pathname in URL form

o hdfs://name-server-address|:name-server-port-number]/HDFS pathname - This type of
format indicates that a Hadoop Distributed File System (HDFS) file or directory is known to the specified
name server and is located within that name-server's name space at HDF'S pathname.

Both the aforementioned forms must refer to a file/directory that is shared across and equally accessible from
all nodes. CGE will determine where to look for this file/directory based on recognizing one of the
aforementioned path formats.

When using checkpoints:

e If afull URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a file URL (i.e. £ile:/path) will be written to the POSIX file system at
the pathname specified in the URL.

e If arelative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE start up.

e If a full pathname but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE start up, so, if CGE was started using an HDFS URL, the

S3014 22

Launch the CGE Server Using the cge-1aunch Command

checkpoint will be written at the specified path within HDFS, if CGE was started with a simple pathname or file
URL, the checkpoint will be written at the specified path within the POSIX file space.

TIP: Relaunch CGE if the system displays an error message saying, "Server failed to start up”
upon execution of the cge-1aunch command.

For more information, see the cge-launch (1) man page.

S3014 23

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5 Mechanisms to Interact with the Cray Graph Engine
(CGE) Datahase

The following mechanisms can be used to interact with the CGE database:
e CGE Graphical User Interface (GUI)
e CGE Command Line Interface (CLI)

51 CGECLI

The CGE CLI provides access to all the core functionality of the database via the command line. This interface is
provided as part of the standard installation of CGE. The default JVM’s maximum memory allocation when
launching cge-cli is 2GB.

The list of available CGE CLI commands can be retrieved by executing the cge-cl1i help command without
any options, as shown below:

$ cge-cli help
Table 1. CGE CLI Commands and Descriptions

Command Description

cge—-cli checkpoint Requests checkpoint creation.

cge—cli echo Allows sending echo requests, which can be used to ping CGE.

cge-cli fe Launches a web-based interface for accessing the server and provides
SPARQL endpoints, which can be accessed via standard SPARQL APIs
and tooling.

cge-cli help Displays help information.

cge-cli get-configuration Determines the locations being searched for configuration files and
effective properties.

cge-cli keyword-lookup Provides help with converting keywords between names and indexes to
help determine the log options to use with other commands.

cge-cli log-info Retrieves the server's current logging setup.

cge—-cli log-lookup Provides help with converting log levels between names and values to

help determine the log options to use with other commands.

cge-cli log-reconfigure Reconfigures the default logging setup of the server. The logging
configuration changes persist until the server is shut down.

S3014 24

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Command Description
cge-cli nvp-info Retrieves the current NVP setup of the server
cge—-cli nvp-reconfigure Reconfigures the default NVPs of the server. The NVP configuration

changes persist until the server is shut down.

cge-cli output-info Retrieves the current output directory for results from the server.

cge-cli output-reconfigure |Requests thatthe output directory for results be changed. The changes
made persist until the server is shut down.

cge-cli query Runs queries against the server, takes in SPARQL queries from files or
from stdin only when no other query options are provided

cge-cli sparqgl Runs a mixture of queries and/or updates against the server, takes in
SPARQL queries/updates from files or from stdin only when no other
input options are provided

cge-cli update Runs updates against the server, takes in SPARQL updates from files or
from stdin only when no other update options are provided

cge-launch Launches the CGE Query Engine

cge-cli generate keystore Creates/inspects a Java keystore file, which is used to enable SSL
support for the fe command.

cge—-cli generate Generates a Shiro configuration template that can be customized as
desired.

cge-cli generate properties |Creates a properties file that can be used to provide a variety of
configuration to commands, without needing to specify it directly at the
command line.

Use the cge-cli help command to retrieve help information for a specific CGE command, as shown in the
following example:

$ cge-cli help command

Command Output
CGE CLI commands produce the following types of output:

e Logging - Provides diagnostic information about what a command is doing and is useful primarily for
diagnosing any issues that may occur. All logging output goes to standard error.

e Command Output - Provides actual informational output of the command's status, such as query results,
update success/failure etc. All command output is transmitted to the standard output.

As each type of output goes to a different output stream. Output can easily be separated using standard shell
redirection, as shown in the following example:

$ cge-cli query example.rq > results.txt 2> query-client.log

The above example redirects the command output to the results. txt file and the logging to
query-client.log file.

S3014 25

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.1 Cray Graph Engine (CGE) Command Output

CGE CLI commands produce the following types of output:

e Logging - Provides diagnostic information about what a command is doing and is useful primarily for
diagnosing any issues that may occur. All logging output goes to standard error.

e Command Output - Provides actual informational output of the command'’s status, such as query results,
update success/failure etc. All command output is transmitted to the standard output.

As each type of output goes to a different output stream, output can easily be separated using standard shell

redirection e.g.

$ cge-cli query example.rqg > results.txt 2> query-client.log

The above example redirects the command output to the results. txt file and the logging to
query-client.log file.

5.1.2 CGE CLI Common Options

Certain options that are common to all commands and are provided by the CGE CLI are described in the following

table:

Table 2. Common Command Line Options

Option

Argument(s)

Default
Value

Example

Purpose

Communication Option

(7]

-—-db-host

—--dbhost

Host

localhost

-—db-host machine

Specifies the host
on which the
database is
running

-—-db-port
—-—-dbport

Port

3750

-—-db-port 12345

Specifies the port
on which the
database is
running

——i

--identity

Identity directory

~/.ssh

-i /my/custom/identity

Specifies the path
to a SSH identity
directory to use
for authenticating
to the server.
When omitted,
several default
locations are tried
and the first valid
location is used

--keep-alive-
timeout

Seconds

60

--keep-alive-timeout 30

Configures the
connection keep
alive time out. As

S3014

26

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option Argument(s) Default Example Purpose
Value

of CGE 3.1UPO00,
connections are
cached and kept
alive. This results
in improved
performance,
especially in
situations that
require many
requests to be
issued to the
database.

--no-keep-alive N/A N/A --no-keep-alive Disables
connection keep
alive. This may be
useful in multi
user
environments,
where many users
are sharing the
same database

--trust-keys N/A N/A --trust-keys When this option
is set, new host
keys will
automatically be
trusted even when
running in non-
interactive mode.
This is useful in
environments
where the
database port
(and thus the host
and port
combination
required to trust
the key for) may
frequently change.
This option should
only be used
when connecting
to trusted
database servers.

——username Username alice --username alice When set, use this
username to
connect to the
database. In order
for this to work, it
is required to have

S3014 27

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

access to a key
pair which has
been authorized
for the given
username.
Therefore, this
does not permit
the user to
impersonate
arbitrary users,
instead it allows
the user to act as
another user only
if the user has an
appropriate key
pair.

Client Logging Options

--debug

--verbose

N/A

N/A

--verbose

Enables verbose
mode, which
includes setting
the log level to
debug. All logging
output goes to
stderr, allowing
it to be separated
from command
output, which
goes to stdout.

If the -—quiet
option is also
specified, then the
verbose mode
takes precedence.

-—-quiet

N/A

N/A

-—-quiet

Enables quiet
mode, which sets
the log level to
error, causes
little/no logging to
go stderr. All
logging output is
transmitted to
stderr, allowing
it to be separated
from command
output, which is
transmitted to
stdout.

S3014

28

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

If one of the
verbose mode
options is also
specified,
precedence is
given to the
verbose mode.

-—trace

N/A

N/A

-—trace

Enables trace
mode, which
includes setting
the log level to
trace. All logging
output is
transmitted to
stderr, allowing
it to be separated
from the
command output,
which is sent to
stdout.

If the -—quiet
option is also
specified,
precedence is
given to the
verbose mode

--reveal

-—-reveal

Reveals user data
in client side
logging output. By
default any
logging that
contains items
considered to be
user data e.g.
Queries, query
plans etc is
obscured to
prevent data
leakage. Enabling
this option
disables that
functionality.

Server Configuration O

ptions

--nvp

Name and value

N/A

--nvp
cge.DoMemoryLeakDetectio
n 1

Sets a NVP to
send to the server
as part of the

S3014

29

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

request. Usually
necessary only if
asked by Cray
support to enable
advanced options
for debugging an
issue.

--log-disable

N/A

N/A

--log-disable

Disables all server
side logging for
the request

--log-level

Log level

N/A

--log-level 16
Supported log levels include:
e (O=None

e 1=0ff

e 2=Error

e 4=Warn

e B8=Info

e 16=Debug

e 32=Trace

Changes the
server logging
level for the
request.

Supported values
may be obtained
by using the 1og-
lookup
command.

--log-string

Log string

N/A

--log-level Foo

Specifies a string
that will be
included in every
server log line
pertaining to the
request. This is
useful if it is
required to isolate
and extract the log
lines specific to a
request.

--log-keyword-
level

Keyword level

N/A

--log-keyword-level 41
32

Changes the
server logging
level for a specific
logging keyword.
The database
server uses a
keyword-based
system that
enables extracting
log levels specific
to certain parts of
the request
processing or
changing the log

S3014

30

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

level for a specific
keyword.

Supported values
may be obtained
by using the 1og-
lookup and
keyword-
lookup
commands.

--log-global-
keyword

Keyword

N/A

--log-global-keyword 41

Specifies that a
given keyword
should be
included in all log
lines.

Miscellaneous Options

-h command

--help command

N/A

N/A

--help checkpoint

Prints the help
information for the
command rather
than running the
command

--batch

—--non-interactive

N/A

N/A

--non-interactive

When set, this
option guarantees
that the script will
never prompt the
user for input, i.e.
it will never use
stdin. This may
cause some
commands to fail
if they would
require any user
input other than
the provided
options. This is
useful when
invoking the CLI in
a non-interactive
context.

--configDir

--config-dir

Directory

N/A

--configDir/configpath

Sets the first
location to search
for configuration
files

N/A

N/A

Used to separate
the options from
the arguments to
the command.

S3014

31

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option Argument(s) Default Example Purpose
Value

This is useful if
arguments may
be mistaken for
options. Any
arguments seen
after the —- are
treated as
arguments even if
they could
otherwise be
considered as
options.

5.1.3 SSH Identities

SSH is used to encrypt communications with the database and to verify that a user has authorized access to the
database. Use the -1 or —-identity options to specify an identity directory or directories. The following
locations will be searched for keys in the absence of these options:

1. The $CGE_CONFIG_DIR NAME environment variable SCGE CONFIG DIR NAME, if defined

2. The .cge directory, if present under a user's home directory and as defined by the $SHOME environment
variable.

3. The .ssh directory, if present under a user's home directory and as defined by the SHOME environment
variable.

Only keys from the first directory found to contain keys will be used. Enabling verbose mode displays log output,
detailing which keys are being used.

5.1.4 CGE Hadoop HDFS Configuration

The CGE CLI requires access to HDFS configuration to retrieve data results and configuration files that may exist
there. As such, the value of the HADOOP_CONF DIR environment variable is inspected and relevant
configurations files from this directory are used if this variable specifies a valid directory, otherwise the default
location /etc/hadoop/conf is searched. The system will display log output, which lists configurations files that
are used if the verbose mode is enabled.

HDFS and Lustre URL Path Locations

Specify a full URL to the Lustre file system when check-pointing to Lustre. The pathname specified is interpreted
relative to the scheme and authority of the data directory URL. To checkpoint to a different scheme, specify the
scheme's URL. While check-pointing to Lustre from HDFS, the following path will inform the checkpoint
command where to store the data:

file:/mnt/lustre/my/data/directory

e The checkpoint is written exactly as specified by the URL if a full URL is used. This means that an HDFS URL
will cause the checkpoint to be written to the path specified in the URL on the HDFS file system described by

S3014 32

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

the rest of the URL, and a file URL (i.e. £ile:/path) will be written to the POSIX file system at the
pathname specified in the URL.

e The checkpoint will be written in a directory relative to the data directory used at CGE start up if a relative
path (i.e., a simple path with no leading /' character) is used.

e The pathname will be interpreted within the space specified by the URL of the data directory used at CGE
start up if a full pathname but no URL is specified. The checkpoint will be written at the specified path within
HDFS if CGE was started using an HDFS URL. The checkpoint will be written at the specified path within the
POSIX file space if CGE was started with a simple pathname or file URL.

5.1.5 Cray Graph Engine (CGE) Properties File

A cge.properties file can be used to specify some command options, thus eliminating the need to explicitly
state them with every command invocation.

The properties file can be:
1. specified via the -——configDir option
2. specified via the SCGE_CONFIG FILE NAME environment variable
3. specified via the SCGE_CONFIG_DIR NAME environment variable
located in the working directory from which the command-line interface is launched

4
5. located in the . cge directory, which in turn is located under the home directory, as defined by the SHOME
environment variable

Only the first properties file found will be used. Enabling verbose mode displays output detailing exactly which
properties file (if any) are used. If present, values from this file are used unless these are specifically overridden
using command line options. Use the get-configuration command to view additional detail, such as the
locations being searched, which file is used, and the effective properties. The following properties are currently
supported:

Table 3. CGE Property Files

Property Supported Values Equivalent Description
Command Line
Option
cge.cli.db.host Host --db-host Host name of a
CGE server that
--dbhost .
s the CLI wil

connect to if the
--dbhost option
is not used.

cge.cli.db.port Port --db-port Port number of a
CGE server that
the CLI will
connect to if the
--dbport
option is not
used.

--dbport

S3014 33

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Property

Supported Values

Equivalent
Command Line
Option

Description

cge.cli.trust-keys

True / False

-—trust-keys

Eliminates the
need for a first-
time interactive
CLI command
each time you
start using a
server on a new
TCP/IP port
number
combination.

cge.

cli.

server.

host

ServerHost

--server-host

Sets the default
host on which the
front end
launched by the
fe Command will
accept HTTP
requests

cge.

cli.

server.

port

cge.cli.server.port

—--server-port

Sets the default
port number on
which the front
end launched by
the fe command
will accept HTTP
requests

cge.

cli.

server.

security

ShiroConfiguration

--security

Sets the Apache
Shiro
configuration file
used to configure
user
authentication for
the front end.

cge

.cli.

server.

ssl.enabled

True/False

--ssl

Sets whether SSL
is enabled for the
front end.

cge.

cli.

server.

ssl.lax

True/False

--ssl-lax

Sets whether the
SSL configuration
for the front end
should permit
older cyphers and
protocols.

cge

.cli.

server.

ssl.keystore

KeystoreFile

--keystore

Sets the location
of the Java key
store used to
provide the SSL
certificate for the
front en.

S3014

34

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Property Supported Values Equivalent Description
Command Line
Option
cge.cli.server.ssl.password KeystorePassword Sets the

password needed
to unlock the
Java key store
which provides
the SSL
certificate for the
front end.

cge.cli.server.ssl.key-password |CertificatePassword

Sets the
password needed
to unlock the SSL
certificate within
the Java
keystore.

If there is a properties file that overrides the default value, it will be indicated in the logging and will contain a
warning to alert the user of the fact that they have set it in the properties file.

A CAUTION: Leaving an out of date properties file around can interfere with correct communications with

the database server with no clear reason.

Defining Command Aliases

The properties file may also be used to define command aliases. These are essentially shortcuts to other

commands. An alias is defined in the following manner:

$ cge.cli.alias.algebra=compile -c algebra

This defines a new alias algebra which simply invokes the compile command passing in the —c Algebra option.

The CLI can then be invoked using the following command:

$ cge-cli algebra example.rq

This would compile the given query into algebra and is equivalent to running the following command:

$ cge-cli compile -c algebra example.rq

Restrictions
Command aliases are subject to the following restrictions:

e Aliases cannot override built-in commands.

e Aliases cannot be defined recursively, which means that an alias cannot be defined in terms of another alias.

Advanced Command Alias Definition

Certain advanced functions can be performed on aliases, such as using positional parameters. For example,

consider the following definition:

$ cge.cli.alias.c=compile -c $1

S3014

35

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

This creates the c alias, which invokes the compile command. However, it uses a positional parameter for the
value of the —c option. With this definition, the CLI can be invoked in the following manner:

$ cge-cli c rpn example.rq

Here, the first argument after the alias is injected into the expansion of the alias so this is equivalent to running
the following:

$ cge-cli compile -c rpn example.rq

CAUTION: A positional parameter that receives no value will be passed through as-is, which will likely
result in parser errors.

5.1.6 Create Checkpoints Using the CGE checkpoint Command

The checkpoint command is used to request checkpoint creation. A checkpoint is a dump to disk of the current
database state, optionally including a NQuads file that can be used to export the database to other tools. It is a
compiled database consisting of a dbQuads, string table chars,and string table chars.index file.

This command simply accepts a directory path to create the checkpoint in. The checkpoint directory is specified
as a URI, which may be a full path, such as file:// or hdfs:///URL. It can also be a relative URI, in which
case it will be resolved relative to the base URI on the server, which is the current database directory. If a relative
path is used, the path will be evaluated relative to the data directory of the running CGE instance.

By using that directory's path as the checkpoint's path, it is possible to checkpoint to the same data directory the
user started from. A successfully created checkpoint will overwrite the existing doQuads, string table chars
and string table chars.index files, so that the new dataset is retrieved the next time the user starts from
that directory. Alternatively, it is also possible to checkpoint to another directory. If the directory already contains a
dataset, and the checkpoint succeeds, the dataset will be overwritten.

If the data directory is being moved to a different location, shutdown any instance of CGE that was launched
using that data directory before relaunching CGE.

While using the checkpoint command:

e If afull URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. file: /path) will be written to the POSIX file system
at the pathname specified in the URL.

e |If arelative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE start up.

e If a full pathname, but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE start up. Therefore, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, otherwise if CGE was started with a simple
pathname or FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

e The checkpoint command allows overwriting existing checkpoints. However it will do so in such a way that
it guarantees that this is an atomic operation. This means that either the checkpoint is overwritten and
replaced, or the previous checkpoint will continue to exist.

For more information, see the cge-cli-checkpoint (1) man page.

S3014 36

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Examples

Use a relative URL to a file

$ cge-cli checkpoint /lus/scratch/user/db/cpl

Use a HDFS URL

$ cge-cli checkpoint hdfs:///user/db/cpl

Use NQuads

If an NQuads file needs to be generated for use with other RDF and SPARQL tools, use the -g or
--quads option of the checkpoint command, as shown in the following example:

$ cge-cli checkpoint --quads /lus/scratch/user/db/cpl
Checkpoint creation succeeded

5.1.7 Compile SPARQL Commands Using the CGE compile Command

The compile command is used to compile SPARQL commands into the logical and/or physical plans that the
database server will use for command execution. This can be useful for understanding how the system is
interpreting and optimizing a query or update. Specify multiple files to compile a large number of files at the same

time.

Compilation Modes

The -c/--compiler-mode option is used to specify the desired compilation output type. Supported values

include:

Table 4. Compilation Modes

Compilation Mode

Output Mode

algebra

The optimized SPARQL algebra for the query/update as text in
SPARQL Set Expression (SSE) format. This can be thought of as
the logical plan for the query.

raw-algebra

The unoptimized SPARQL algebra for the query/update as text in
SSE format. This is the unoptimized logical plan for the query.

rpn

The physical plan for the query/update in binary form. Primarily
intended for Cray developer use only.

rpn-string

The physical plan for the query/update in text. Primarily intended
for Cray developer use only.

all

Produces all of the above.

S3014

37

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

This option may be specified multiple times to request multiple output formats. It wil supersede any individual
format requests if the a11 option is also specified. The -a or --a11 options can also be specified as a shortcut
for specifying the -c¢ all option.

Compilation Output

By default, the compilation output is sent to standard output and can be redirected to a file if desired. It is
recommended to use the -f or --files option if multiple files need to be processed, or if more than one output
type needs to be generated. This will output a file for each input and compilation mode combination in the
directory that the cge-c1i command is being executed. The output file names are automatically generated,
based upon the input file name by replacing the extension with the appropriate extension for the output type:

Table 5. Compilation Output

Output Type Output File Extension
algebra .algebra
raw—-algebra .rawalgebra

rpn .rpn

rpn-string .rpnstring

For more information, see the cge-cli-compile (1) man page.

Examples

The following example will compile the SPARQL command found in the example. rq file into
algebraic form and display it to standard output.

$ cge-cli compile -c algebra example.rq

Suppose that there is a file named getTenRows . rq that contains the following SPARQL query:

spargl query: select * {?s ?p 20} limit 10

Now execute the compile command on getTenRows.qgr

$ cge-cli compile -c all getTenRows.rq --files

0 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Started Algebra to RPN message conversion

2 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Finished Algebra to RPN message conversion (3
operations)

The above command would create the following files:
e getTenRows.rawalgebra

e getTenRows.rawalgebra

e getTenRows.rpn

e getTenRows.rpnstring

S3014 38

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.8 Check the Database State Using the CGE echo Command

The echo command checks whether or not the database server is up and able to respond to requests by sending
some data to the database server and verifying that the server echoes it back correctly. If the data is sent
successfully, the system returns a message saying: Echoed data received and validated
successfully.

For more information, see the cge-cli-echo (1) man page.

Example: Retrieve Database Status

The following command will send the data Test data to the server.

$ cge-cli echo Test data

5.1.9 Launch the CGE Web Server Using the fe Command

The fe command launches a web server that provides a user interface and SPARQL endpoints to CGE. In order
to stream query results over HTTP, this command must be running on a host that has access to the same file
system that the database server is writing results to. Typically, this means executing the fe command on a login
node of the system running CGE. Since it is often required to have the user interface available for a long period, it
is recommended to launch it in the background so that it is resistant to terminal disconnects.

For example:
$ nohup cge-cli fe > web-server.log 2>&l1 &

When the CGE user interface server has started, the system returns a message indicating that the server has
started and is ready to accept HTTP requests. Once the user interface has been launched, it is possible to access
the SPARQL endpoints on the machine. The port used is displayed in the log message. The default port used is
3756. Use the --server-port port to specify a different port, if needed, to run the web server on.

$ cge-cli fe --server-port 12345
If an alternative port is chosen to run the web server, it is important to modify the URLs appropriately when
accessing the user interface.

Server Connection Verification
Use the --ping option of the fe command to verify that the database server is up and running when starting the

web server.
$ cge-cli fe --ping

For more information, see the cge-cli-fe (1) man page.

5.1.10 Search Configuration File Locations Using the get-configuration Command

The get-configuration command determines the locations of CGE configuration files and the effective
properties. This command does not communicate with the database. It inspects the user's local environment and
provides information to help understand how configuration is being discovered.

S3014 39

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

The output of this command includes relevant environment variables, the locations searched for configuration,
and whether a file was found. If a file was found, the path to that file is also displayed. Finally, all CGE related
properties from that file are listed along with their values, as part of the output.

Example: Search Locations of Configuration Files

$ cge-cli get-configuration
/opt/cray/cge/2.5.1183 r6061cO0b fe2.5.0 20160926.144651 1 2016101912/
bin/cge-cli: line 8: pushd: .: Permission denied
/opt/cray/cge/2.5.1183 r6061c0b fe2.5.0 20160926.144651 1 2016101912/
bin/cge-cli: line 11: popd: directory stack empty

0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled,
logs will obscure/omit user data. Set
cge.server.RevealUserDataInLogs=1 in the in-scope cge.properties file
to disable this behaviour.

Environment Variables:

CGE_CONFIG FILE NAME=

CGE_CONFIG DIR NAME=

HOME=/home/crayusr

Searched Locations:

1 - /opt/cray/cge/
2.5.1183_r606lc0b_fe2.5.0_20160926.144651_1_2016101912/bin
2 - /home/crayusr/.cge

Properties File Found? No

Properties

5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the
keyword-lookup Command

The keyword-lookup command provides the means to lookup mappings between keyword IDs and user-
friendly keyword names. These can be used to find the values that need to be passed to the log options when
invoking other commands.

For more information, see the cge-cli-keyword-lookup (1) man page.

Examples

Use the keyword-1lookup command to lookup a specific keyword ID

$ cge-cli log-lookup 28
/opt/cray/cge/2.5.1183 r6061c0b_fe2.5.0 20160926.144651 1 2016101912/bin/cge-cli: \
line 8: pushd: .: Permission denied
/opt/cray/cge/2.5.1183 r6061cOb fe2.5.0 20160926.144651 1 2016101912/bin/cge-cli: \
line 11: popd: directory stack empty

0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled, \

logs will obscure/omit user data. Set cge.server.RevealUserDataInLogs=1 \

in the in-scope cge.properties file to disable this behaviour.

28=0RDR

S3014 40

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Use the keyword-1lookup command to lookup a keyword ID.

$ cge-cli keyword-lookup QRY

Use the keyword-1lookup command without any arguments to display the full mapping of levels to names

$ cge-cli keyword-lookup

5.1.12 Retrieve Default Server Logging Information Using the 1log-info Command

The 1og-info command retrieves information about the server's default logging configuration. However, the
information returned by the 1og-info command does not necessarily reflect the logging settings for individual
requests since all commands may use the CGE command-line options to change the log configuration for specific
requests.

The server's default log configuration can be used via the 1og-reconfigure command, if needed.

For more information, see cge-cli-log-info (1) and cge-cli-log-reconfigure (1) man pages.

Examples

In the following example, the text: 'Default Level Info (8)'indicates that the serveris
configured with default settings.

$ cge-cli log-info

0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand -
Making request...

Server Log Configuration:

Version 1 - Printing Enabled - Default Level Info (8) - Keyword Levels
Set {0-42}

The following example indicates that the server is configured with non-default settings.

$ cge-cli log-info

0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand -
Making request...

Server Log Configuration:

Version 1 - Printing Enabled - Default Level Warn (4) - Keyword Levels
Set {0-42}
Keyword TCP (Index 41) = Debug (16)

5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names
Using the 1og-1lookup Command
The 1log-lookup command provides the means to lookup mappings between log level values and user-friendly

log level names. These can be used to find the values that need to be passed to the log options, when invoking
other commands.

S3014 41

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

An example of using the 1og-lookup command for looking up the log level that has a value of 16 is shown
below:

Examples

Look up the log level that has a value of 16

$ cge-cli log-lookup 16

Look up a level based on the name

$ cge-cli log-lookup Warn

Retrieve the full mapping of levels to names

$ cge-cli log-lookup

For more information, see the cge-cli-log-lookup (1) man page.

5.1.14 Change the Default Logging Configuration of the CGE Server Using the 1og-
reconfigure Command

The log-reconfigure command changes the default logging configuration of the server. The information
returned by the 1og-info command does not necessarily reflect the logging settings for individual requests since
all commands may use the CLI option to change the log configuration for specific requests.

The system will display a message if an incorrect value is specified for the log-level. Upon successful execution of
this command, the system returns the message: "Received success response".

TIP: It is recommended to verify that the log configuration changes have been implemented by using the
log-info command. It may also be helpful to use the 1og-lookup and keyword-lookup commands
to determine the values that need to be passed the options, in order to configure logging settings as
desired.

N WARNING: Do not set the server log levels to DEBUG or TRACE, especially, if the CGE server is running
with a large number of images.

For more information, see the cge-cli-log-reconfigure (1) man page.

Example: Change the Default Logging Configuration

$ cge-cli log-reconfigure --log-level 16

S3014 42

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.15 Retrieve the Default NVP Configurations Using the CGE nvp-info Command

The nvp-info command retrieves the default server NVP configuration. The information retrieved does not
necessarily reflect the NVP settings for individual requests, since commands may change the NVP configuration
for specific requests.

For more information, see the cge-cli-nvp-info (1) man page.

Example: Retrieve Default NVP Configurations

$ cge-cli nvp-info

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure
Command
The nvp-reconfigure command modifies the server's default NVP configuration.

Upon successful execution of this command, the system returns a message saying: "Received success
response". Configuration changes are not necessarily reflected in the NVP settings for individual requests since
commands may change the NVP configuration for specific requests. It is recommended to use the nvp-info
command to verify that the changes have taken effect, as shown below:

$ cge-cli nvp-info

Most of the supported NPVs have a defined range of acceptable values. Values specified outside of those ranges
will be normalized into the range for that NVP. Unsupported NVPs are simply ignored, with a warning printed in
the database logs and their values will not be stored by the server.

For more information, see the cge-cli-nvp-reconfigure (1) man page.

5.1.17 Display Server Output Directory Information Using the output-info Command

The output-info command retrieves information about the current output directory of the server. This is the
directory that the server writes query results to.

For more information, see the cge-cli-output-info (1) man page.

Example: Display Server Output Directory Information

$ cge-cli output-info

5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure
Command

The output-reconfigure command modifies the server's output directory that it writes query results to. This
directory is specified as a URI. URLs of type file:// or hdfs:// may be used. If a relative URI is specified, it
will be resolved relative to the base URI of the server, which is the current database directory.

S3014 43

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

TIP: After executing the output-reconfigure command, it is recommended to use the output-info
command to verify that the changes have taken effect, as shown below:

$ cge-cli output-info

For more information, see the cge-cli-output-reconfigure (1) man page.

Example: Modify the server's output directory

S cge-cli output-reconfigure /new/output/directory

5.1.19 Execute Queries Using the CGE query Command

The query command is used to execute queries against the running database. This command can be used to
execute a single query or a sequence of queries.

Queries that need to be executed may be specified in a number of ways:

e By providing a list of files, which contain lists of files containing queries to be executed

e By providing the names of query files directly

e Via stdin (only if no queries are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, those queries are executed before any directly specified queries. This command may only be used to
execute SPARQL queries. To execute updates, use the update command or to execute mixtures of queries and
updates use the spargl command.

An example of using the query command is shown below:

$ cge-cli query --list queries.txt extra-query.rq

The above command will execute all the queries specified in the queries. txt file before executing the query
specified in the extra-query. rq file. Executing queries by default produces only information about where to
obtain the results and not the result itself.

An example of using the query command is shown below:
$ cge-cli query types.rq

0 28 1756 0 file:///lus/scratch/rvesse/results/queryResults.
2016-06-13T13.47.227000.28889.tsv

Here we can see that the database returns a simple tab separated string with the following fields:

Table 6. query Command's Output Description

Column Index |Information

0 Status - will be 0 for successful queries

1 Result count - number of results returned

2 Result size - results size in bytes

3 Execution time - query execution time in seconds

4 Results location - path to the file containing the results

S3014 44

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Column Index |Information

5 | Error message - should be blank for successful queries

Results File Format

The file containing the results is in SPARQL Results TSV format and contains only the tabular results for the
query. This means that if an ASK/CONSTRUCT/DESCRIBE query has been created, the results file will not contain
the final results.

Printing Results
This simple format makes it easy to process with standard command line tools. For example, the following
command can be used to display the results in the console:

$ cge-cli query --quiet types.rq | cut -d$'\t' -f 5 | xargs cat

As noted earlier, the results file contains only the tabular results for the query. If results of an ASK/CONSTRUCT/
DESCRIBE query are desired to be printed, see the 'Streaming Results' section below.

Streaming Results
As already seen, it is possible to use simple command line tools to extract and dump the query results to stdout.

However, this only works for SELECT queries, and when the results can be accepted in SPARQL Results TSV
format. Use the —-stream option of the query command if it is desired to retrieve the final results in an arbitrary
format. This option may only be used when executing a single query and it takes the MIME type of the desired
results format.

S cge-cli query --stream application/sparql-results+xml types.rq

Results are returned in SPARQL Results XML format. Supported formats include the following:

Table 7. Output Result Formats

Query Types MIME Types Output Format

ASK and SELECT application/spargl-results+xml SPARQL Results XML
application/spargl-results+json SPARQL Results JSON
text/csv SPARQL Results CSV
text/tab-separated-values SPARQL Results TSV

CONSTRUCT and application/n-triples NTriples

PESCRIBE text/turtle Turtle
application/rdf+xml RDF/XML
application/rdf+json RDF/JSON
application/ld+json JSON-LD

A CAUTION: Requesting a format that does not match the query type or is unknown will result in an error.

S3014 45

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

There are also three special values that may be passed to this option:

e text
e Jjson
e xml

When these values are specified, the CLI will automatically select an appropriate text (line-based), JSON or XML
output format in which to stream the results, while taking into account the type of query being evaluated. For
example providing --stream text might produce SPARQL results TSV for an ASK/SELECT query but produce
NTriples for a CONSTRUCT/DESCRIBE query. When these special values are used, the exact output format will not
be known in advance but will be guaranteed to fall into the general format given.

Execution of Multiple Queries

When multiple queries are executed, they are executed in the order specified (subject to the aforementioned
precedence of list files over individual files) and the command will print a results header for each query.

$ cge-cli query types.rq list-graphs.rq ask-types.rq

Aresults header is retrieved for each query run.

For more information, see the cge-cli-query (1) man page

5.1.20 Cray Graph Engine (CGE) Optimizer Configuration

Use the —--opt-off and --opt-on options to perform query optimizer configuration. Both of these options take
the name of an optimizer flag to disable/enable as desired.

The following example shows how to set the optimizer flag to of £:
$ cge-cli query --opt-off optFilterPlacement types.rq

The preceding example will execute the query with the filter placement optimization disabled. The flag will be
considered as disabled if both the enabled and disabled flag options are specified. Values of some flags cannot
be changed, regardless of the options specified.

A CAUTION: Turning optimization off may result in significantly increased memory usage and/or
performance degradation. Therefore, it is strongly recommended that the optimizer configuration be
changed only when advised to do so by a Cray support engineer.

5.1.21 Shutdown the CGE Server Using the shutdown Command

The shutdown command instructs the CGE server instance to shut down gracefully. If this command is executed
by the user that owns the server process, the user will receive a success message indicating that the server has
shut down.

This command will not succeed if the server is in a bad state. Standard Linux techniques for killing an application
process should be used in this case.

For more information, see the cge-cli-shutdown (1) man page.

S3014 46

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Example: Shut down the CGE server

$ cge-cli shutdown

5.1.22 Execute Spargl Queries and Updates Using the spargl Command

The spargl command is used to execute queries and/or updates against the database. It can be used to
execute a single query/update or to execute a whole sequence of queries and/or updates.

Queries and updates to be executed may be specified in a number of ways:
e By providing list files which contain lists of query and/or update files to be executed
e By providing the names of query and/or update files directly

e Via stdin (only if no queries/updates are specified in other ways and the -—non-interactive option is not
used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, queries specified in those list files will be executed before any queries specified directly. This command
may be used to execute a combination of SPARQL queries and updates. Use the query command to execute
SPARQL queries. Use the update command to execute SPARQL updates. Executing queries/updates using the
spargl command produces the corresponding results for the command. It displays information about the results
for queries, whereas it displays a success/failure message as appropriate for updates.

Differences Between the sparql and query Commands

e The spargl command can run a mixture of queries and updates, whereas the query command can run
queries only.

e The query command can stream results directly using the --stream option.

For more information about the spargl command, see the cge-cli-spargl (1) man page.

Execute all the queries specified in the commands . txt file before executing the queries specified in
the extra-command. ru file

$ cge-cli spargl --list commands.txt extra-command.ru

5.1.23 Execute Updates on a Database Using the CGE update Command

The update command executes updates on a database. This command can be used to execute a single update

or a sequence of updates. Executing an update returns a message indicating whether the update succeeded or
failed.

Updates to be executed may be specified in a number of ways:
e By providing list files, which contain lists of update files to be run.
e By providing the names of update files directly

e Via stdin (only if no updates are specified in other ways and the --non-interactive option is not used)

S3014 a7

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

The supported input methods have the precedence shown in the list above. Therefore, updates contained within
any specified list files will be executed before any directly specified updates.

This command may only be used to execute SPARQL updates. If it is required to executed queries, use
the query command. To execute a combination of queries and updates, use the spargl command.

Execution of Multiple Updates

If multiple updates need to be executed, they will be executed in the order specified, subject to the
aforementioned precedence of list files over individual files. The command will print a success or failure message
for each update.

For more information, see the cge-cli-update (1) man page.

Examples

Execute an Update

$ cge-cli update --list updates.txt extra-update.ru

The above statement will execute all the queries specified in updates. txt file before executing
the query specified in the extra-update. ru file.

Execute Multiple Updates

$ cge-cli update create-graph.ru drop-graph.ru

5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command

The generate keystore command is used to create/inspect a Java keystore file, which is used to enable SSL
support for the fe command.

This command supports three different modes of operation:
1. Importing an existing SSL certificate

2. Inspecting an existing key store

3. Generating a self signed SSL certificate

Security Concerns

Key store files are protected by passwords so this command may prompt to either enter/create passwords as
necessary. As passwords must be entered interactively, this command may fail if run with the --non-
interactive option. The user will need to know and supply these passwords elsewhere in order for the key
store to be used. The related cge-cli generate properties command can be used to store the necessary
passwords in obfuscated form in the properties file.

Imported Certificates
This is the most frequently used mode. It allows an existing SSL certificate in possession to be imported into a
key store file for use by the fe command:

$ cge-cli generate keystore --importserver.cer

S3014 48

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

This imports the certificate from the server. cer file into a key store file in the default location.

A CAUTION: In order for the imported certificate to be usable it must contain the private key as well as the
Digital signature from the certificate authority. Without the private key a certificate cannot be used for SSL

Key Store Inspection
This mode can be used to inspect an existing key store to see what certificate is present in it. For example:

S cge-cli generate keystore --display

Self-signed Certificate Generation

CAUTION: This mode should only be used for testing purposes. Using a self-signed certificate in a
production environment is insecure and not recommended.

In this mode a self-signed certificate is generated and added to the key store. This can be used to test the use of
SSL without the need to first obtain a certificate from a recognised certificate authority. However the certificates
generated in this way are inherently insecure, may not be trusted by many other tools and should be avoided
wherever possible.

$ cge-cli generate keystore --self-signed

This will prompt the user to enter a variety of identifying information for their certificate, and adds the resulting
certificate to the key store ready for use.

5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command

The generate shiro command is part of the cge-cli generate command group and generates a Shiro
configuration template that can be customized as desired. It enables users to quickly create a configuration that
can be used with the fe command to provide user authentication.

Available templates
The following templates are available through the generate shiro command:

Table 8. generate shiro Templates

Template Description

ldap A template that can be customised to allow integration with a LDAP server, i.e. it allows
authentication to be deferred to an existing LDAP service

forms Atemplate that has both locally defined user accounts and roles, it uses forms
authentication

simple A template that has locally defined user accounts and uses HTTP Basic authentication

anon Atemplate that enables anonymous access, i.e. no user authentication

S3014 49

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Example: Generate a Shiro Configuration

The following example will generate a Shiro configuration based upon the LDAP template to
standard output. The configuration is redirected to the example. ini file, where it can be edited
as needed.

$ cge-cli generate shiro ldap > example.ini

5.1.26 Create a Properties File Using the CGE generate properties Command

The generate properties command is part of the cge-cli generate command group and helps create a
properties file that can be used to provide a variety of configuration to commands, without needing to specify it
directly at the command-line. This command can either create/modify a properties file, so it can be used to create
an entirely new configuration, or use it to update an existing configuration.

The options supplied to this command are simply added/updated in the relevant properties file, instead of being
used for their normal function. Additionally, there are some options specific to this command that control which
properties file is created/modified, and whether modifications are merged with, or if they overwrite existing
properties in that file.

The default behaviour of this command is to modify existing properties. The returned properties file is the result of
reading the existing properties and applying any modifications requested by this command. If it is preferred to
create an entirely new set of properties, use the —--overwrite option to specify that existing properties are not
preserved. It is generally best to be explicit about which properties file needs to be modified using the - or --
f1ile options, otherwise an incorrect properties file ma be modified. The logging output of this command will
explicitly note which properties file is being modified.

Setting values in the properties file does not guarantee that they will be used. Any property which can also be set
via a command-line option can be overridden by specifying that option. The logging output will indicate when a
property has been used and when a property has been overridden by a command line option.

Basic Usage

The following example generates a properties file in one of the default locations that cge-c1i will search for it:

$ cge-cli generate properties -f ~/.cge/cge.properties --db-port 1234

Advanced Usage
The following example overwrites an existing properties file and specifies several properties, including one that
does not have a specific command-line option to set it:

$ cge-cli generate properties -f ~/.cge/cge.properties --overwrite \
--db-host example.mycompany.com --db-port 1234 -p cge.server.RevealUserDataInlLogs 1 --ssl-passwords

Table 9. Command specific options

Option Value(s) Example Usage Description

-f PropertiesFile |-f ~/.cge/cge.properties Provides the path to the
properties file that needs to

--file be created/modified.

S3014 50

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option Value(s) Example Usage Description

- --overwrite When set, indicates that
overwrite any existing properties file
at specified/automatically
discovered location should
be overwritten.

The default behaviour is to
first read in the file if it
exists meaning that any
existing properties not
being modified by this
command are left intact. If
you specify this option any
existing properties are lost.

-p Key Value -p When set, indicates that the
cge.server.RevealUserDataInlLogs given property and value
~Tproperty 1 should be added to the

properties file. This can be
used to add any property
which does not have a
specific option for modifying
it.

—-ssl- ~-ssl-passwords When set, will prompt for

passwords used to secure
the Java key store which
contains the SSL certificate
use by the cge-cli fe
command

passwords

These passwords will be
stored in the properties file
in obfuscated form to
provide some protection
from casual inspection. You
should apply appropriate
permissions to the
properties file to fully
protect these.

5.2 CGEGUI

CGE provides a simple interface for access via a browser and also provides SPARQL 1.1 protocol compliant
endpoints. The CGE user interface enables you to perform a number of tasks, including:

S3014 51

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

e Executing queries

e Executing updates

e Creating checkpoints on a database

e Using advanced options for viewing and editing server configurations, as well as for performing server NVP
and logging configuration changes.

To access the CGE user interface, point the browser at: http://machine:3756/dataset/, where machine is
the host name of the machine where the web server is hosted. Multiple instances of CGE can be launched on the
same node at different ports.

A\

CAUTION: The firewall configuration of the host machine must allow for port 3756 to be accessed
externally or this will not work, unless the browser is running on the same host. If the site's firewall
configuration does not permit this, SSH port forwarding can be used to forward the remote port to the
local machine, as shown in the following example:

S ssh machine -L 3756:hostname:3756

In the above example, machine is the machine running CGE’s web server. The first 3756 is the local
host port to connect to, whereas hostname: 3756 is the remote reference.

The results format received in the browser is dictated by the HTTP Accept header that your browser
sends (or conversely that your programmatic HTTP client sends). The 'Force text/plain as the
response Content' option controls the Content-Type header that the front end responds with, which
affects how the browser interprets the response. Depending on the browser if this option is disabled (the
default) then this might mean that it downloads/offers to save the response to a file rather than displaying
it in the browser, enabling the aforementioned option changes the response Content-Type to always be
text/plain regardless of what format the front end actually outputs which forces the browser to display the
response in the browser itself. If it is needed to display the results in a different format, customise the
HTTP Accept header accordingly, most browsers have some means to configure this. For example in
Firefox navigate to About>Config. Click through the warning if it appears and then search for accept and
edit the value of the network.http.accept.default setting to add the desired content types. The
closest thing to plain text that the front end will produce is text/tab-separated-values. Most browsers
include application/xml in their default accept header, which mean you will typically get SPARQL
XML results by default (or RDF/XML if it were a CONSTRUCT query).

Logging on to the CGE Ul

The CGE Ul can then be accessed by pointing the browser at: http://localhost:3756/dataset/.

If you have configured the server to perform user authentication, the first thing you will see is one of the following
screens, depending on what authentication method has been configured. For more information, see CGE Security
on page 76.

e When configured for forms authentication you will see you the following screen:

S3014

52

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Cray Graph Engine i Login

Login Required

User Name

Password

When configured for basic authentication, the browser will prompt for credentials like so:

To view this page, you must log in to localhost:
3756.

Your password will be sent unencrypted.

1

MName: |

Password:

Remember this password in my keychain

The exact format of this dialogue will depend upon the browser you're using, this example is from Safari. Either
way the user will need to enter their credentials in order to log in.

Upon successfully accessing the CGE user interface the following screen will be displayed:

S3014

53

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 2. Cray Graph Engine User Interface

Cray Graph Engine B dxasot focahost 37T | e Data Access v ‘ F Confiquration Maragoment w L snawaz

QU SRAACL Cuery

2 Export Qluery Rz

+ SFIAOL Upcaie
Query Interface R Chockpaint

‘SPARGL Quary

Server NVPs

Sarver Logging Options

Sorver Log Loved Uss Sorver Detast [

Server Log string [Prinind o esch server o] e for this request)

Drsable all sarver legging for this rquest

At the top of the page you will find the navigation bar:

S3014

54

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 3. CGE Ul Navigation Bar

Cray Graph Engine B dataset (example.mycompany.com:1234) @Data Access~ |/ Configuration Management ~ = & rvesse ~

This provides a number of useful pieces of information. Firstly it indicates the underlying database server that the
front end will be connecting to. In this example the underlying database server is on example.mycompany.com:
1234

There are then three menus which provide access to the various functionalities of the server. The data access
menu contains the following:

Figure 4. Data Access Menu Options

"Wy Data Access~ | / Confi

Q, SPARQL Query

2 Export Query Results
+ SPARQL Update

I Checkpoint

The options in the menu include:
e SPARQL Query enables making queries

e Export Query Results allows you to make a query but only returns meta data about where the results have
been saved to disk

e SPARQL Update enables making updates
e Checkpoint enables checkpointing the database to disk
The configurations management menu contains the following options:

Figure 5. Configuration Management Menu Options

/ Configuration Management ~

W Database Information
£+ Edit Database Configuration

e Database Information provides access to the current configuration of the server
e Edit Database Configuration allows you to edit that configuration

Finally the user menu shows the currently logged in username and provides access to logout functionality:

Figure 6. User Menu options

2 rvesse ~

® Logout

S3014 55

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

If you have not configured user authentication, the system will instead display the following warning:

Figure 7. Insecure Mode Warning

A\ Insecure Mode

5.2.1 Launch the CGE Web Server

Before using the Cray Graph Engine GUI, it is required to launch the database via the cge-1aunch command
and leave the default port setting of 3750 unchanged. If an alternative port has been used, then it will be required
to add the --db-port option to specify an alternative port. Once the database has been launched, the Cray
Graph Engine (CGE) graphical user interface and/or the SPARQL endpoints may be used. This can be
accomplished by launching the web server that provides the user interface on a login node of the system where
CGE is running, as shown below:

$ cge-cli fe

Alternatively, you can use the following command to have the web server continue running in the background with
its logs redirected, even if you disconnect from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&l &

NOTE: The web server is launched by the same script as the rest of the Command Line Interface tools,
and supports many of the same standard options detailed in CGE CLI.

5.2.2 Execute SPARQL Queries Using the CGE Ul

About this task

The Cray Graph Engine (CGE) Query Interface allows executing SPARQL queries on a loaded RDF database
running within CGE. The main feature of this interface is the text field for entering queries to execute. Secondly,
there is a check box that enables specifies that the server returns the query results with a

Content-Type header value of text/plain, which will force the browser to display the results as many
browsers will download the results rather than display them by default. The rest of the options seen in this
interface are described later in the Advanced Options section.

The browser interface uses standard HTTP content negotiation to determine the format in which to return the
query results, most browsers out of the box will receive results in an XML/ JSON format:

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

S3014 56

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Cray Graph Engine i Login

Login Required

User Name

Password

2. Access the CGE Query Interface using one of the following mechanisms:
e Point the browser at http://machine:3756/dataset/query
e Select the Query Interface link from the Data Access drop down on the CGE Query Interface Ul.

Figure 8. Query Interface

Cray Graph Engina B danamot focaicst:377T) | W Duta Accss v # Corfiguration Maragoment L

€ SPAACL Cuery

2 Export Query Azsulis

Query Interface

mmmmmmm ry

Farce texiiplain 23 the response Content:Type Horces results to be dislayed in browser)

Server NVPs

Sarver Logging Options

Sorver Log Level| Use Sorver Defaut

Server Log string [Prinind o esch server o] e for this request)

Drsable all sarver legging for this rquest

3. Execute a SPARQL query,by entering it in the SPARQL Query field. The check box under the SPARQL
Query field can be selected to specify that the server should return the query results with a Content-Type
header value of text/plain. This will force the browser to display the results in the browser, as many browsers
will download the results rather than display them by default.

4. Select the Run Query button, which will submit the query to the server and deliver the results to the browser.
The user interface uses standard HTTP content negotiation to determine the format in which to return the
guery results. Most browsers receive results in an XM1./JSON format.

S3014 57

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.2.2.1 Get Query Metadata

Sometimes it may not be desired to get all the results delivered over HTTP. Instead, it may be needed to simply
submit a query whose results will be processed later. To do this, use the export query results endpoint accessed
at: http://machine:3756/dataset/export-results, where machine is used as an example for the machine name.

This interface is functionally identical to the Query interface. The endpoints differ only in the format of the
response. The export results endpoint return only the meta data about query results. This is similar to the default
behaviour of the query command. The meta data is returned in one of three formats, where the response format
to use is determined by content negotiation.

Table 10. Query Metadata

Format Example Response Content Types

Tab separated values (TSV) 0 100 0 2 /tmp/results.tsv |4 text/plain

e text/tab-separated-
values

XML <?xml version="1.0" application/xml
encoding="UTF-8"?> <cge-
results> <query><!
[CDATA[SELECT * WHERE

{ } 11></query>
<count>100</count>
<size>0</size> <time>2</
time> <status>0</status>
<location>/tmp/
results.tsv</location> </
cge-results>

JSON { "query" : "SELECT * application/json
\nWHERE\n { }\n" ,
"count" : 100 , "size"
0, "time" : 2 ,
"status" : 0 ,
"location" : "/tmp/
results.tsv" }

This interface only supports SELECT queries. Any other queries will be rejected, this is because the meta data is
only accurate and complete for SELECT queries.

5.2.3 Execute SPARQL Updates Using the CGE Update Interface

About this task

The Cray Graph Engine (CGE) Update Interface enables executing SPARQL updates on a database. SPARQL
update is a language extension to SPARQL 1.1 that makes it possible to make updates to an active RDF
database, using SPARQL query syntax. Use the CGE Update Interface to perform a number of tasks, including
updating the default database to add or remove RDF triples and quads, copying or moving the contents of one
database to another, and performing multiple update operations in a single action.

S3014 58

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1login, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured.

Cray Graph Engine i Login

Login Required

User Name

Password

2. Access CGE's Update Interface by selecting one of the following mechanism:
e Pointabrowserat http://machine:3756/dataset/update
e Select Spargl Update from the Data Access drop down on the CGE UL.
Figure 9. CGE Update Interface

Update Interface

SPARQOL Update

Server NVPs
Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemoryLeakDetection=1
#

Lines beginning with a # are comments
#

Server Logging Options

Server Log Level Use Server Default | <
Server Log String (Printed on each server log line for this request)

| Disable all server logging for this request

Run Update

S3014 59

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

3. To execute a SPARQL update, enter the update statement into the SPARQL Update field.

4. Select the Run Update button to submit the update for processing. Once the system has finished executing
the update, it will send either a success/failure message as appropriate.

5.24 Create a Checkpoint Using the CGE Ul

About this task

When a database is started for the first time its initial state is considered to be a checkpoint. When a change is
made to the database, its state can be preserved by creating a checkpoint. This preserves a copy of the previous
in-memory database. Creating a checkpoint creates a persistent record of the database state, which is written to
the database directory in a file named export dataset.nq.

NOTE: Checkpoints can only be created on running databases. If there are any queries or updates
executing, it important to ensure that they finish executing before a checkpoint is created, otherwise the
state of the database in the checkpoint may not contain the desired updates to it.

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

Cray Graph Engine i Login

Login Required

User Name

Password

2. Access the Checkpoint Interface using one of the following mechanisms:

e Point the browser at http://machine:3756/dataset/checkpoint, where machine is the machine
running CGE'’s web server.

e Select Checkpoint from the Data Access drop down.

This brings up the Checkpoint Interface, as shown below:

S3014 60

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 10. Creating a Checkpoint

Cray Graph Engine B dataset (localhost:3770)

Checkpoint Interface

Checkpoint Location

Include a quads dump (NQuads) with the checkpoint?

Server NVPs
Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemoryLeakDetection=1
#

Lines beginning with a # are comments
#

Server Logging Options

Server Log Level Use Server Default | &)
Server Log String

Disable all server logging for this request

Create Checkpoint

@Data Access =

Configuration Management = X snawaz =

(Printed on each server log line for this request)

3. Specify a location for the checkpoint in the Checkpoint Location field. This is the directory where the
checkpoint will be saved. The server will generate an error if this directory does not exist or is read-only.

4. Select the Create Checkpoint button to create the checkpoint. This will return a success/failure message as
appropriate, as shown in the following example output:

Checkpoint created at /lus/scratch/cge/datasets/lubm/0/temp

5.25 Cray Graph Engine (CGE) Advanced Options

CGE provides a number of advanced options that can be used to change the behavior of the database server for
a specific request. Some of these options impact the server, whereas others impact individual requests. To access
this interface, select Edit Database Configuration from the Data Access drop down. The user interface for
configuring advanced options is shown in the following figure:

Figure 11. Server Name Value Pairs

Server NVPs

Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemorylLeakDetection=1

#

Lines beginning with a # are comments

#

Server Logging Options

Server Log Level Use Server Default E

Server Log String

Disable all server logging for this request

(Printed on each server log line for this request)

NOTE: Options provided in this section of the user interface are relevant only for the processing of the
request under consideration and should be updated for each individual request. If it is desired to change

S3014

61

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

the options for the database server as a whole, it will be required to use the interface described in the
‘Edit Server Configurations Using the CGE Ul topic of this publication.

Server NVPs (Name Value Pairs)
In the Server NVPs section, NVPs can be specified to pass to the database server. These can be used to control
behavior or enable additional debugging information.

IMPORTANT: In most cases, it will not be required to enter anything in the Server NVPs field, unless
specifically instructed to do so by a Cray representative for gathering information to aid in diagnosing
encountered issues.

Server Logging Configuration

The Server Logging Options section provides options that allow configuring the amount of logging the database
server will produce in the server side logs during the processing of a request. The desired logging level (i.e. log
verbosity) can be selected from the Server Log Level drop down, which is followed by the Server Log String
field, in which a log string can be entered. The log string can be up to 128 characters and will be included on
each log line pertaining to the request. This is often useful for extracting all the log lines pertaining to a specific
request.

Messages of types INFO, WARNING, and ERROR can be logged in the system, INFO being the default log level.

This interface also provides the option to disable logging for the request entirely, though it is generally
recommended to avoid this option as it makes it difficult to monitor the status of the server while it processes
gueries.

5.2.6 View Server Configurations Using the CGE Ul

About this task

The Server Information interface enables viewing all the server configuration settings defined in the system.

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

Cray Graph Engine i Login

Login Required

User Name

Password

2. Access the Database Information interface using one of the following mechanisms:

S3014 62

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

e Pointabrowser athttp://machine:3756/dataset/info, where machine is the machine running
the CGE web server.

e Select Database Information from the Configuration Management drop down on the CGE Ul

Figure 12. Server Configurations

Cray Graph Engine 2 dataset (localhost:3750) | 'E¥Data Access ~ | / Configuration Management~ | A rvesse ~

I Server Log Configuration

Printing Enabled Yes

Default Log Level Info (8)

£* Server NVP Configuration

cge.mock-server

& Server Output Directory

/foo/bar

The information displayed on the Server Information interface includes information about the log and NVP
configurations of the server, as well as the results output directory.

5.2.7 Edit Server Configurations Using the CGE Ul

About this task

The Edit Server Configuration interface allows editing server configurations.

CAUTION: Modifying server configuration settings can adversely affect performance, especially if it is
changed to point to a relatively slow file system. Therefore, it is recommended not to change server
configuration settings, unless specifically instructed to do so by a Cray representative in order to gather
information for diagnosing issues.

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

S3014 63

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Cray Graph Engine & Login

Login Required

User Name

Password

2. Access the CGE Edit Server Configuration interface, by using one of the following mechanisms:

e Pointabrowserathttp://machine:3756/dataset/config, where machine is the machine
running CGE'’s web server.

e Select Edit Database Configuration from the Configuration Management drop down on the CGE UI.

Figure 13. Editing Server Configurations

Cray Graph Engine 2 dataset (localhost:3770) = @#Data Access ~ | /* Configuration Management ~ | & snawaz ~

i‘ Database Information
H . : ﬂ Edit Database Configuration
Edit Server Configuration 2
Use this form to change configuration for the server for the remainder of the lifetime of the server, note that the changes made are not persistent beyond the lifetime of the server.

Server NVPs

Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemoryLeakDetection=1

#

Lines beginning with a # are comments

#

Server Logging Options
Server Log Level Use Server Default |

Server Log String (Printed on each server log line for this request)
Disable all server logging for this request

Server Output Directory:

Reconfigure Server

3. Select the desired server NVP and logging options using the Server NVPs and Server Logging Options
sections of the Ul. In addition to the Server NVPs and Server Logging Options, this interface also contains
a Server Output Directory field that allows changing the server output directory. This is the directory to
which the database writes results, and from which the web server reads in order to deliver query results over
HTTP.

4. Select the Reconfigure Server button when the changes have been made.

Unlike the options presented in the other interfaces, the values set from this interface persist for the lifetime of
the server and become the new defaults.

Upon doing so, the system will return a response detailing the success/failures of the pieces of configuration
that were to be updated, as shown in the following example output:

S3014 64

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Updated Server NVP Configuration successfully
Updated Server Logging Configuration successfully

5.2.8 Control Options

In most cases it will not be needed to change server configuration settings, unless a Cray support representative
specifically requests, in order to gather information for diagnosing issues. However, there are some settings that
you may occasionally wish to change. Name Value Pairs (NVPs) that enable you to modify these settings are

listed in the following table:
Table 11. CGE NVPs

Parameter

Description

Default Value

cge.server.QueryTimeout

This parameter sets the maximum
runtime (within the server) of a given
guery in seconds (wall clock time). This
timeout will be checked after every
operation. However, it does not
interrupt operations. After the query
times out, the server will terminate that
guery and will be immediately ready for
subsequent queries. Acceptable values
for this parameter range from O
seconds (automatic termination at the
start of the second operation) to 100,
000 years expressed in seconds
(3153600000000). If a negative value
is entered for this field, it will be
converted to 0.

31536000

cge.server.InferOnUpdate

Causes inferencing to be enabled or
disabled for a given update. Has a
value of either “0” or “1”. The default
value of this parameter is "1", which
sets inferencing on for updates. A
rules.txt file must be present for
inferencing to take place. If no

rules. text file exists, inferencing will
not be performed. If updates to the
database were made after inferencing
was turned on, triples added previously
will stay saved in the database if
inferencing is turned off subsequently.

cge.server.BuddyMaxGBs

Sets the upper limit on the amount of
memory used by the big buddy
allocator. The value of BuddyMaxGBs
must be a non-negative integer value
and is used to specify the maximum
number of gigabytes allocated for the
big buddy allocator. For example,
setting the value to 50 will set the upper

128 GB

S3014

65

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Parameter

Description

Default Value

limit on the memory allocated for the
big buddy allocator to 50 GB. By
default, the limit is set to 128 GB and
the maximum is 1 TB. Setting this
parameter to 0 will disable the limit.

cge.server.LittleBuddyMaxGBs

Sets the upper limit on the amount of
memory used by the little buddy
allocator. The value of
LittleBuddyMaxGBs must be a non-
negative integer value and is used to
specify the maximum number of
Gigabytes allocated for the little buddy
allocator. For example, setting the value
to 8 will set the upper limit on the
memory allocated for the little buddy
allocator to 8 GB. By default, the limit is
set to 16 GB and the maximum is 128
GB. Setting this parameter to 0 will
disable the limit.

16 GB

cge.server.RevealUserDataInLogs

Specifies whether or not to obscure
user data output to logs. If log data is
obscured for the given application run,
CGE issues the warning: "User data
obscurred. set
cge.server.RevealUserDatalInLo
gs=1 to show". Setting the value of
this parameter to 1 informs CGE to not
obscure user data output to logs.

By default,
obscures user
data that is
output to the
logs.

cge.server.BuddyMemPercent Set the percentage of node memory 35
used for the large persistent allocators.
cge.server.PersistBuddyMemPercent set the percentage of node memory 25
used for the large non-persistent
allocators.
NVPs for GraphML Support
cge.server.ExportGMLRDFEnable Setting this NVP to 1 will cause CGE to | Off
export the quads generated for a given
GraphML file to an nt file of the same
name as the input GraphML file but with
the nt extension
cge.server.GMLInsertPrefix Setting this to 1 will cause CGE to On

insert the urn: prefix when converting
identifiers for graphs, nodes, and edges
to URls.

cge.server.GMLCheckPrefix

Setting this to 1 will cause CGE to
check an identifier for a known prefix
before inserting the urn: default prefix.

CGE inserts the
urn: prefix by
default.

S3014

66

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.3 SPARQL Endpoints

CGE provides standards compliant SPARQL endpoints via the cge-cli fe command. When run this command
launches an embedded Jetty web server that provides SPARQL 1.1 protocol compliant endpoints that may be
used by any SPARQL aware tools to make queries and updates against CGE.

These endpoints are SPARQL 1.1 protocol compliant and provide all the standard parameters.

Web Server

The web server is a standard Java servlets based web application, for ease of deployment and usage we host
this in an embedded Jetty server. The web application consists of a bunch of Java servlets defined in the cge-
spargl-server module with one for each service provided by the CGE SPARQL server. Additionally there is
some static HTML content, each piece of HTML content actually represents only a small portion of a page of the
browser interface. These pieces are served and combined dynamically by a simple templating engine, this allows
for easily tweaking portions of the browser interface and having those be automatically reflected on all pages of
the interface.

Standard SPARQL tools can be used to interact with the Cray Graph Engine (CGE) by pointing them at the
relevant endpoint URLs, which are shown in the following table:

Table 12. SPARQL Endpoints

Service Endpoint URL
SPARQL Query http://machine:3756/dataset/query
SPARQL Update http://machine:3756/dataset/update

In the above examples, machine is used as an example for the name of the machine running CGE’s web server.

Supported Content Types

The SPARQL query endpoint uses standard HTTP content negotiation to determine how to return query results to
the SPARQL tool, depending on the Accept header that the tool sends.

NOTE: The results format received in the browser is dictated by the HTTP Accept header that your
browser sends (or conversely that your programmatic HTTP client sends). The 'Force text/plain as
the response Content'option controls the Content-Type header that the front end responds with,
which affects how the browser interprets the response. Depending on the browser if this option is disabled
(the default) then this might mean that it downloads/offers to save the response to a file rather than
displaying it in the browser, enabling the aforementioned option changes the response Content-Type to
always be text/plain regardless of what format the front end actually outputs which forces the browser to
display the response in the browser itself. If it is needed to display the results in a different format,
customise the HTTP Accept header accordingly, most browsers have some means to configure this. For
example in Firefox navigate to About>Config. Click through the warning if it appears and then search for
accept and edit the value of the network.http.accept.default setting to add the desired content
types. The closest thing to plain text that the front end will produce is text/tab-separated-values. Most
browsers include application/xml in their default accept header, which mean you will typically get
SPARQL XML results by default (or RDF/XML if it were a CONSTRUCT query).

S3014 67

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

The following standard formats are supported by the query endpoint:

Table 13. Query Types and Supported Content Types

Query Type Supported Content Types

AsK and SELECT e SPARQL Results XML
e SPARQL Results JSON
e SPARQL Results CSV
e SPARQL Results TSV

CONSTRUCT and DESCRIBE e NTriples
e Turtle
e RDF/XML
e RDF/JSON
e JSON-LD

Standard HTTP behavior of returning the message "406 Not Acceptable” will apply if the tool does not
include any formats the endpoint can produce in its Accept header.

Custom Parameters

CGE features endpoints that provide custom parameters, which can be used to configure the same advanced
options supported by the CGE user interfaces. These parameters are listed in the following table:

Table 14. Custom Parameters

Parameter Example Purpose

forcePlainText forcePlainText=true Used to force the returned Content-Type to be
text/plain regardless of the actual content type
being returned.

This is only useful for browser access to the
endpoints and may cause errors if used with
SPARQL tools.

nvps nvps=foo%3Dbar Specifies the NVPs to be passed to the database
and applied to the request.

These must be specified in Java properties file
style with one name=value pair per line

log-level log-level=16 Specifies the log level to use for database logging
of the request. This takes an integer value with
values interpreted as follows:

e 2 = Error

e 4 = Warn

S3014 68

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Parameter

Example

Purpose

e 8 = Info

e 16

Debug

e 32 = Trace

The 1og-lookup command can be used for
translating integer values to the desired log
levels.

log-string

log-string=Foo

Specifies a string to be included on every
database log entry pertaining to the request.

Maximum supported length is 128 characters and
longer strings will be truncated accordingly.

log-disable

log-disable=true

Can be set to disable all database logging for the
request

5.4 Create and Use a Database

Prerequisites

If the Cray Graph Engine (CGE) is needed to perform inferencing on data, ensure that a valid rules. txt file
exists in the directory containing the data.

About this task

The following instructions can be used to create a database and execute queries and/or updates on the database

once it has been built.

Procedure

1. If the data is not in RDF format, convert the data to RDF.

2. If the RDF data resides in a single file, save/rename that file to dataset.nt or dataset.nqg. Thisis
required because CGE accepts ONLY files in .nt or .ng formats as input. All other formats should be
converted to either .nt or . nqg (including .rdf). On the other hand, if the data resides in more than one file,
create a graph. info file and add the names of the RDF file to that file.

3. Build the database using the cge-1aunch command as shown below:

$ cge-launch -o pathtoResultsDir -d path -1 logfile

In the above statement, pathtoResultsDir is used as an example for the path to the directory that will
contain the results of queries and/or updates. path is used as an example for the path to the database
directory and Iogfile is used as an example for the log file that will contain the command and server output.
pathtoResultsDir MUST be a directory and MUST contain either a triples or quads file. These files must

S3014

69

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

be named dataset.nt or dataset.nqg respectively. For more information, see the cge-launch (1) man
page.

NOTE: When the database has been built, the following files are saved in the database directory:

e dbQuads

e string table chars

e string table chars.index

Executing multiple update commands at a time is not supported currently. Updates should be split into
separate files and/or submissions.Collectively, the aforementioned files are the disk representation of the
binary version of the database which can be reloaded into CGE. When the CGE application is launched again
and the same database directory is specified, the dbQuads file will be detected and the compiled database
will be read instead of the RDF. Furthermore, if the database directory contains a rules. txt file, CGE will
perform inferencing on the data. This is because inferencing is turned on by default. It can be turned off by
setting the cge.server.InferOnUpdate NVP parameter to 0.

4. Execute the fe command to launch a web server that provides a user interface and SPARQL endpoints to
CGE.

$ nohup cge-cli fe > web-server.log 2>&l1 &

5. To execute a query or update on the database, use either the CGE Ul or the CGE CLI.

a. To execute queries/updates via the CGE UlI, follow the instructions listed below:

1. Connect to the CGE Ul by pointing the browser at: http://machine:3756/dataset/. This brings
up the CGE UL.

2. Select the Query Interface or Update Interface to execute queries and updates respectively.
Optionally, server configuration parameters can also be specified to control the query/update.

b. To execute queries/updates via the CGE CLI, use the query, update and spargl commands to
execute SPARQL queries, updates and/or combination of queries and updates correspondingly. For
usage information, see the associated man pages.

S3014 20

Query Cancellation

6 Query Cancellation

The CGE Server will cancel a request any time the client making the request disconnects from the server, or if the
request exceeds an NVP configurable timeout value. Request cancellation can occur between operations within a
guery, inside the merge operation, inside the filter operation or inside the group-by operation. The first two of
these will always recognize request cancellation, while cancellation must be explicitly enabled for the filter and
group-by operations. Some of this optimization is disabled when cancellation is enabled, resting in slower
operation. Set the server.LoopInterruptGranularitySeconds NVP value to a non-zero value (1 is a good
choice) to enable cancellation in filter and group-by operations. This value can be set either in the
cge.properties file or in the NVPs sent with a specific query. The maximum number of seconds defaults to 1
in merge operations, but can be increased by increasing this setting.

Wait for the memory allocation process to complete if query cancellation is taking longer than several minutes.
Restart the CGE server on additional nodes to provide additional memory, thus preventing queries from slowing
down frequently.

Process and Request Termination

The CGE CLI acts as a client to the database server. When a command requiring a connection to the database is
executed, the control flow is as follows:

Command performs any client side validation and processing that is necessary for the requested action
A request to the database is prepared

A connection to the database is established

The request is submitted to the database

The client waits until it receives a response from the database

The response is processed as necessary

N o g e NP

Command returns results, if any, and exits with an appropriate exit code or continues on to the next requested
action

If the process is terminated during steps four and five, CGE will make a best effort to terminate the submitted
request by forcibly disconnecting the active connection. The database server will spot the disconnection and will
terminate request processing at the next cancellation point. Cancellation may not be immediate and may take a
long time to occur, depending on the current operation. When running the CGE SPARQL server, use the active
connections interface to explicitly cancel requests submitted via HTTP.

Therefore after submitting a cancellation request for terminating a long running query, it may not be possible to
submit further requests until the database has either cancelled/completed the previous request. Typically when
this happens the system will return an error stating that the command line timed out trying to connect to the
database. If query cancellation takes more than several minutes to complete, restart the CGE server on a larger
block of nodes to provide additional memory and prevent queries from slowing down due to lack of memory.

S3014 71

Query Cancellation

Restarting the database will lose any in-memory changes that were not yet checkpointed to disk. For databases
with read/write workloads, checkpoint regularly prior to executing long running queries.

Query Cancellation Using a Timeout

Setting the server.QueryTimeout NVP value while submitting a query is another way of cancelling long
running queries. The query will time out when the number of specified is reached, causing it to fail and send back
a failure message. This can be useful when developing queries or when the duration of execution is unknown.
Configure this setting either in the cge .properties file or specify it with the submitted query.

NVPs Associated with Query Cancellation
e server.QueryTimeout - Set a timeout value in seconds for a given query or all queries

e server.LoopInterruptGranularitySeconds - When non-zero, enables cancellation in the filter
operation. When greater than 1 increases the interval, at which cancellation will be checked in merge and
filter operations.

In addition to these user NVPs, there are three NVPs provided for internal testing purposes. These are listed here
because setting them will cause a dramatic performance degradation for queries.

//| WARNING: The default value for NVPs is 0. Do not modify this value unless advised by Cray Support for
debugging purposes.

e server.TestCancellationDispatcherPauseSeconds

e server.TestCancellationFilterPauseSeconds

e server.TestCancellationMakemergePauseSeconds

e server.TestCancellationGroupInitHurisPauseSeconds

e server.TestCancellationGroupEvalArgPauseSeconds

6.1 Cancel a Query Using the CGE Web Ul

About this task

If a user has submitted a query using the CGE web Ul (which is launched via the cge-c1i fe command), the
sytsem will present a web-browser similar to the following:

S3014 72

Query Cancellation

Figure 14. CGE Query Submitted Using the Ul

Cray Graph Engine B dataset (localhost:16563) = WData Access » | / Configuration Management ~ & Insecure Mode

Query Interface
SPARQL Query

SELECT 7x 7y 72 WHERE {
7x <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Student>
Py <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http.//www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Faculty>
7z <http//www.w3.0rg/1998/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course>
x <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor> 7y .
7x <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse> 7z .
Py <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owliiteacherOf> 7z

Force text/plain as the response Content-Type (forces results to be displayed in browser)

Procedure

Terminate a CGE query using one of the following options

e Usethe server.QueryTimeout NVP to cancel the query.

This option can be used for cancelling a query by setting a timeout on a query by editing the NVPs to be

sent with the query.

1. Scroll down to the Server NVPs and set the value of server.QueryTimeout to the number of

seconds the query should to be allowed to run before it times out.

Figure 15. Change the Query Timeout Value

LA I TS I 1 R €A AT
?x <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse> 7z .
7y <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teacherOf> 7z

R T I

Force text/plain as the response Content-Type (forces results to be displayed in browser)

Server NVPs

Lines beginning with a # are comments
#
You can also enter

\Q optimizer flags in the following form e.g.

Server Logging Options
Server Log Level Use Server Default

When a query runs more than that number of seconds specified via the server.QueryTimeout

paramter , it will time-out, in which case, the Ul will look similar to the following:

S3014

73

Query Cancellation

Figure 16. CGE Query Execution Error Pop Up

Cray Graph Engine 8 dataset (localhost:16563) = B¥Data Access » | /* Configuration Management + 4\ Insecure Mode

Query Execution Error

Failed to execute the given query successfully
Error -1: Request timed out at user threshold

e Canel a query using the Active DataBase Connections screen.

This option can be used for cancelling a query if a timeout was not specified via the
server.QueryTimeout parameter.

1. Select Configuration Management menu at the top of the window:

Cray Graph Engine 8 dataset (localhost:16563) = @WData Access ~ | / Configuration Management ~ | A Insecure Mode

W Database Information
#* Edit Database Configuration

#* Active Connections

Query Interface
SPARQL Query

SELECT ?x 7y 7z WHERE {
% <http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Student> .
Ty <http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Faculty> .
z <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course> .
x <http:/fwww.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor> ?y .
7% <http:/fwww.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse> 7z .
?y <http:/fwww.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teacherOf> 7z

Force text/plain as the response Content-Type (forces results to be displayed in browser)

2. Select the Active Connections menu option.

The query under consideration will be displayed on this page as an active request.

S3014 74

Query Cancellation

Figure 17. CGE Active Database Connections Screen

Cray Graph Engine B dataset (ocalhost:16563) WData Access ~ | / Configuration Management = A Insecure Mode

Active Database Connections
Database User State Active Request? Actions

ocalhost: 16563 erl CONNECTED Yes Cancel Active Request Terminate Connection

3. Select Cancel Active Request next to the currently running request.
Figure 18. CGE Query Cencelled Pop Up

Cray Graph Engine 8 dataset (localhost:16563) ~ ‘WData Access = | / Configuration Management ~ A Insecure Mode

Request Cancelled

Active request successfully cancelled

The query under consideration will be cancelled and the server will become available for other requests,
usually within a few seconds.

6.2 Cancel a Request Running Under a CGE CLI Query

Queries submitted using the cge-c1i query command can be terminated by using the --nvp option and
specifying a timeout interval.

$ cge-cli query --db-port=16563 --nvp server.QueryTimeout 10 --quiet Query09.sparql
Error -1: Request timed out at user threshold

Queries can also be terminated at any time by simply killing the CGE CLI process by using CTRL-C or other
signal:

$ cge-cli query --db-port=16563 --quiet mytests/lubm0/query/Query09.sparql; sleep 1; cge-cli echo --db-
port=16563

~CO0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled, logs will obscure/omit user
data. Set cge.server.RevealUserDataInLogs=1 \

in the in-scope cge.properties file to disable this behaviour.

1756 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Sending echo request...

1943 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Echoed data received and validated
successfully

S3014 75

CGE Security

7 CGE Security

CGE security starts at the entry point to the request handling in the CGE server and extends outward to the web
Ul and the CGE CLI commands. CGE Security is comprised of the following mechanisms:

e Server side user identification and authentication
e User permissions and access control

e User accountability

e Client side user identification and authentication

Server Side User Identification and Authentication

Users on the server side of CGE are identified by user names, which are character strings that name the user.
User names within CGE are not necessarily tied to any specific user known to the Linux platform on which the
CGE server is running, though there are scenarios in which it is practical to configure CGE users using their Linux
login usernames. This freedom from the Linux platform permits a database owner to set up a CGE instance that is
web accessible (more on this later) and has a user community completely defined by the database owner without
respect to ability to log into the Linux platform on which the CGE Instance is running. This is similar to other web-
based frameworks that permit the owner of the framework to set up the user community without needing to be
able to create user logins on the host platform.

The CGE Server handles requests in the context of a client connection. Each connection establishes a context in
which one or more sequential requests may be issued. While each connection may present a sequence of
requests, these connections are not persistent in the sense that they represent an open ended logged in
relationship with the client. The most common scenario is a connection that presents one or two requests and
handles the responses, then disconnects.

Each connection is made without context preserved from any previous connection. Because of this, each time a
client connects to submit requests, the client submits the user name (identity) of the user making the request. The
CGE server uses the SSH public-key authentication protocol to verify that the client submitting the user name has
the authorization to present that user name.

Normally, authentication strives to verify that the user presenting an identity actually /s the user who owns that
identity. In the case of the CGE server, the expectation is that this level of authentication has already been done
on the client side. The CGE server needs to know that it is talking to a client that is authorized to present work on
behalf of the specified user.

User Permissions and Access Control
The CGE server handles work as a sequence of requests. Each request has a particular type, such as

e Query
e Update
e Checkpoint

e Shutdown

S3014 76

CGE Security

Each request type has an associated permission that determines whether a client making that request is allowed
to make that request or not. Permissions can be associated with individual users or groups of users by making
permission assignments in an Access Control List (ACL) located in the directory where the CGE dataset is found.

When a request arrives, the username presented by the request is authenticated and then the permissions
associated with that username are looked up. If the permission associated with the incoming request type is
present in the user's permission set, the request is allowed to proceed. If not, the user is notified of the request
failure and the request is not allowed to proceed.

This mechanism allows the owner of a CGE database to establish coarse grained protections against
unauthorized actions by otherwise authorized user.

User Accountability

When a user submits a request, the CGE Server runs that request on behalf of that user. The owner of the CGE
database may want to review the operations that have been executed by a given user. To this end, from the
moment a request arrives to the moment that the request completes processing and reports its result (successful
or not) the username of the client making the request is recorded with each log entry written by the CGE server
into its operational log. Even if the user has the permission to turn off all logging for the duration of the request,
CGE server records log entries at the beginning of the request indicating that the user has turned off logging.
Those log entries are tagged with the requesting user's username.

Client Side Identification and Authentication

Client side identification and authentication is responsible for assuring that a user making a request actually is the
purported user. There are two different kinds of client seen by CGE:

e logged in Linux users running CGE CLI commands and APIs as clients
e Web-based clients

The identification and authentication for these two different kinds of clients differs, so each are explored
separately.

e Logged In Linux users as clients - A logged in Linux user has already been identified and authenticated by
Linux, and the user's credentials have been established by Linux. If there were a simple trustworthy way to
transmit those credentials directly to the CGE Server, this would be sufficient and the client would simply
assert the user's logged in Linux identity with every request. Because requests are transmitted outside of a
trusted context, however, the CGE Server authenticates the requested username using SSH public-key
authentication as described above.

Within the category of Logged In Linux users, a client may be either a normal client or a super client. The
distinction is between clients that can only present a single username to the CGE server and clients that may
present some larger set of usernames (constrained by the CGE server configuration) to the CGE server.

o Normal clients - A normal logged in Linux user client presents the username of the Linux user with each
request. The server side authentication of a logged in Linux user uses that user's public SSH key for
public-key authentication of the user. Since Linux is a trusted repository for user identity, once the user
has logged into Linux the user's identity can be trusted (by the client) at all times. The degree to which the
client is trusted by the CGE Server hinges on the ability of the SSH protocol to match the requested
username with a working public key.

o Super clients - A super client is a logged in Linux user whose private SSH key matches with more than
one public-key/username pair in the CGE Server configuration. Generally, the owner of the CGE
Database will be a super client, allowing him or her to run the Web Ul and enable user authentication, but
any user can be set up by the database owner as a super client. In the case of a super client, an arbitrary

S3014 77

CGE Security

username is presented with each request (generally corresponding to a user who has been authenticated
using some higher level mechanism). If the username matches a public key that works with the super
client user's private SSH key, the supplied username will be used by the CGE server. If not, the request
will fail to authenticate at the CGE server and will not proceed.

It is worth noting that the use of the same public key for multiple users while keeping the associated private
key private to the owner of that key does not constitute SSH key sharing, since there is only one user (the
super client user) who owns the key pair. In the case of key sharing, all users sharing the key have access to
the same key pair. In this case, only the super client has access to the private key and the public key is used
to allow the super client to authenticate as 'authorized to present' the specified username.

e Web Ul clients - The Web Ul, CGE CLI front end is also capable of authenticating clients. It supports
authentication using either an enterprise LDAP server or a user private authentication mode. The Web-Ul also
permits encryption of web transactions using SSL, to protect secrets (both authentication secrets and data
secrets) in transit. When a user logs into the Web Ul, the Web Ul presents the logged in user name instead of
the username of the Linux user who started the Web Ul. For this to work, the user who starts the Web-UI
needs to be the super client who has the correct private SSH key for all of the Web based users authorized to
use the CGE Instance.

Notice that Web Ul clients are separated from logged in Linux clients by the keys used to log them in. A Linux
user who has Web Ul username/key pair on the CGE Server but no Linux username/key pair cannot use the
Linux command line CGE CLI command. By the same token, if the user has no Web Ul username/key pair,
that user cannot use CGE through the Web Ul. This allows the CGE Database owner to control both the form
of access (via permissions) and the mode of access (command-line or web or both).

7.1 Cray Graph Engine (CGE) Security Mechanisms

The CGE query engine protects the port on which it communicates with clients using an encrypted authentication
mechanism based on the Secure Shell (SSH) passwordless authentication mechanism. Before using the CGE
user interface query clients to make requests on data sets, authentication must be configured. If it is required to
set up the query engine to permit multiple users to execute requests, it will be required to configure public keys for
each user. This can be configured on a per-data set or all data sets basis.

7.1.1 Create a CGE Specific RSA/IDSA Host Key

About this task

At some sites, site policy may dictate the use of a pass phrase with SSH keys used for logging into a system. If a
pass phrase is used when creating your SSH key, the CGE authentication mechanism will be unable to use your
SSH key(s) as its host key(s), so separate CGE specific host key(s) will need to be created. To do this, follow the
instructions listed below:

Procedure

Create the key in the .cge directory using ssh-keygen (1) instead of creating the key in the . ssh directory:

$ mkdir -p $HOME/.cge

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/users/username/.ssh/id rsa): /users/username/.cge/id rsa
Enter passphrase (empty for no passphrase):

S3014 78

CGE Security

Enter same passphrase again:
Your identification has been saved in /users/username/.cge/id_rsa.

Your public key has been saved in /users/username/.cge/id_rsa.pub.
The key fingerprint is:
eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host
The key's randomart image is:

+--[RSA 2048]----+
| . .

| ot o

| ++B=o0

| o . +t=.

| s o 8 4

| 5 o o

| E o |
| o |
| ..

Fr== WMD) || s========= +

$ 1ls -1 $HOME/.cge

total 8

BRAWREEE e 1 username group 1679 Jan 6 11:49 id rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id rsa.pub

NOTE: While this example shows creation of keys under $SHOME/ . cge, it can be used to place keys
in any directory. If SHOME/ . cge iS not a convenient place to put the keys, follow the above procedure
to generate the keys in some other (suitably protected) directory, then use the --configDir option
to cge-launch or the $CGE_CONFIG DIR NAME environment variable to point to that directory. If it
is required to use CGE specific keys that are stored on HDFS, create them in a temporary directory
using this procedure, then copy them onto HDFS in the location of your choice (appropriately
protecting them). Then use an HDFS URL as the value of $CGE_CONFIG DIR NAME or the
argument to the -—-configDir option to the cge-launch command to select that directory instead
of SHOME/ . cge as the key directory.

Once this has been done, CGE will use the keys in the .cge directory instead of the ones in the . ssh
directory and there should be no further problems with pass phrases.

7.2 Setup CGE Security

Setting up security for a given instance of CGE involves the following steps:

Configure authorized logged in Linux users (including the database owner) in an appropriate
authorized keys file

Configure any super client authorized users using the public SSH key of the Super Client and the usernames
of the various users in the appropriate authorized keys file

Configure user permissions in the database ACL file
Optionally create an SSL configuration for cge-c1i fe
Create an authentication configuration (private or LDAP, simple or forms based) for cge-cl1i fe

Start the CGE Web Ul using cge-cli fe with appropriate security options

7.2.1 Configure Server Side Identification and Authentication

Configuring server side identification and authentication includes setting up both authorized Linux logged In (i.e.
command-line) users, and setting up any super client authorized users that are needed for Web Ul access or
other purposes. The database owner needs to make decisions about the following:

Is it required to allow command line clients to access the dataset?
Is it required to grant Web-UlI clients access to the dataset?

S3014

79

CGE Security

e At what scope (single dataset or all the datasets) is it required to authorize each given user, both the Web-UI
identity and the Linux identity?

The authorized keys File

The CGE Server searches the file named authorized_keys in each of the following directories for a username that
matches the username presented with a given request:

e the database data directory

e the CGE configuration directory (either by default: SHOME/ . cge, or the value of $CGE_CONFIG DIR NAME
which can be set using the ——configDir=URL option to cge-launch)

e SHOME/.ssh

Each username match is tested in turn until the public key associated with that match works for public-key
authentication. Once a match is found, the user has successfully authenticated and becomes an authorized user
for the duration of that request. Subsequent permission checks determine what that user is authorized to do.

One important decision the database owner needs to make is where to put a given user authorization. The choice
of the authorized keys file to store a given username/key combination depends on the breadth of
authorization the owner of one or more databases wants to grant to the user. This breadth has three scopes:

e authorization to use only one database

e authorization to use all databases configured from the same configuration directory (typically all owned
databases)

e authorization to use all owned databases and, likely, to log into the Linux host using the self identity

By placing a user's authorization in the authorized keys file in the database data directory, the user is granted
the most limited scope of authorization. This is appropriate for users that need to be granted access to that
specific database, or if the database owner owns multiple databases with multiple potentially overlapping lists of
authorized users and wants local control over each user authorization. By placing the user's authorization in the
CGE Configuration directory, the user is granted intermediate scope of authorization. This is appropriate if the
database owner owns multiple databases with a core set of users who are authorized on all of the databases.
Placing a user in the SHOME/ . ssh/authorized keys file can potentially permit that user to log in as the
database owner, which is a serious security threat. Never put any username/key combination that is not
specifically your own SSH key (for login) in the $HOME/ . ssh/authorized keys file. This file is included in the
search solely to make using CGE as the owner of the database simpler.

Authorized Keys for Command Line/API Use of the CGE Database

Users who are authorized to log into the server where the CGE database resides and use the cge-c1i command
or one of the CGE APIs to interact with your CGE Database need to have the public SSH key corresponding to
their private SSH key stored in one of the authorized keys files. Users may communicate their public SSH
keys to you using whatever means (E-mail, publicly readable files, etc.) is mutually convenient. The user's public
key can be generated using the ssh-keygen command and usually resides in the user's SHOME/ . ssh directory
in one of the following files:

e id rsa.pub (RSA based public key)
e id dsa.pub (DSA based public key)

When adding a command line/API key to the authorized_keys file, make sure that the key is a single line
comprised of three parts (separated by spaces):

S3014 80

CGE Security

e the signing scheme used by the key (RSA or DSA)
e the key itself

e the username@host identifying the user

and that the username part of the username@host part matches the logged in user name of the requesting
user. The host part is ignored, so it can be anything. Here is an example entry. Note that the content, which is a
single line, is split up into multiple lines due to lack of space:

ssh-rsa

AAAAB3NzaClyc2EAAAADAQABAAABAQDOVYyLTKwz/RAngMegeTST20w0IJMwFea9gQC6R7en7A
+BcsIaNt2m+9Vh/AocMfaruwpyHr26\
epsdpC8Thw4+9NIUfoUoJyKC6TMZcntF7e3RiY1yZt6uvKUIgs75zS4fqZMAtHEiuvgLHkZwypKFlvssc
usSYCMkNxXUaOE38UcPVmH\

+2zEGWpc9yyObl+7Ae4PuKIjw6gpOtX8W8Wz/
Eb5UAwWEf56pCR045izZBwRe7y9%anHe3+Xt1uFU9zU1I80aeRHg64KmMS3jCNhGIFOwWmMW\
08iY¥mxHXyCheifxdYpCgI+jN+jQ6CgbFed4OrbkbuP/elAmFY15BHMWi7LmYVWEYP user@nid00030

This will authorize the user user with the corresponding private SSH key to use your database.

Authorized Keys for Web-Ul Users

The Web-UIl uses the Super Client key of the user running the cge-cli fe command to submit requests on behalf
of logged-in Web-UI clients. Normally, the user running the cge-cli fe command is the owner of the database, so
examples of adding users are shown using your public SSH key as the authorizing key for Web-Ul users in the
authorized_keys file.

Assuming you are the user who will be running the cge-ci fe command for your database, the following command
adds the user david as an authorized Web-Ul user of your CGE Database:

$ $ sed -e "s/ $USERQ/ david@/"< $HOME/.ssh/id rsa.pub >> \
authorized keys

This replaces your username from your id_rsa.pub public key file (a similar command will work with an

id dsa.pub file as well) with david creating a user named david that you are authorized to authenticate for your
CGE Database instance. Do this for all the Web-UI users you want to authorize. You will also need to make sure
they are able to log into your Web-UI.

7.2.2 Configure the ACL File User Permissions

By default, in the absence of an ACL file, users of the CGE database file will fall into one of two categories:

e the instance owner (a user who's username matches that of the Linux username of the user who started the
CGE Server)

e everyone else

As the instance owner, you have all permissions when interacting with the CGE Server. All other authorized users
are permitted only to query the database.

This section explains how to set up an ACL file that allows more precise control of access to the database on a
per-user basis.

S3014 81

CGE Security

CGE Permissions

CGE uses a hierarchical set of permissions to control the types of requests an authorized user is permitted to
make. The following lists the permissions and the requests or actions they control:

e data.query - permission to query (read only) the data set
e data.update - permission to update (write only) the data set
e data.checkpoint - permission to checkpoint (save to storage) the data set

e request.nvp - permission to set one or more configuration NVP settings to be effective for the duration of
an individual request, if not present, specifying NVP settings causes the request to fail

e request.log - permission to modify logging behavior for the duration of an individual request, if not present,
logging is unchanged but the request proceeds normally

e server.config.nvp.get - permission to read the NVP configuration in effect in the running server

e server.config.nvp.set - permission to alter the NVP configuration in effect in the running server for all
subsequent requests

e server.config.log.get - permission to read the logging configuration in effect in the running server

e server.config.log.set - permission to alter the logging configuration in effect in the running server for
all subsequent requests

e server.config.output.get - permission to read the name of the output directory used by the server to
store result files

e server.config.output.set - permission to change the output directory used by the server to store result
files for all subsequent requests

e server.shutdown - permission to shut down the running server

Permissions may be named individually or may be named using a wildcard character (*') at any level of the
hierarchy. A wildcard character all by itself signifies all permissions. Here are some examples of permission sets
and their equivalent wild card definitions:

e All Permissions : *
® data.query,data.update,data.checkpoint :data.*

® server.config.nvp.get,server.config.log.get,server.config.output.get:
server.*.get Ofr server.config.*.get

® server.config.nvp.get,server.config.nvp.set:server.*.nvp.*Or *.nvp.*, or
server.config.nvp.*

Notice that various more or less specific forms of wildcarding produce the same result with the current set of
permissions. In future releases, new permissions might be added that might match one of the less specific
wildcard specifications and grant unexpected rights to a given user. It is generally best to use the most specific
wildcard form possible to achieve the desired set of permissions so that you do not experience permission creep
from release to release. It is also a good idea to review you ACLs with respect to the permissions available in a
given release to ensure that no new permissions are being unexpectedly granted.

The ACL File

The ACL file is a file named user_perms.cfg in the data directory of your database. This file, if present, contains
the permission assignments for authorized users using your database. For your convenience, this file allows you

S3014 82

CGE Security

to group permissions and users using roles, each of which is a named set of permissions containing the
permissions needed to carry out a specific related set of database responsibilities, and groups, each of which is a
named set of users to be assigned a common set of permissions or roles. The ACL also permits you to specify
permissions or roles for individual users by name, and to specify a default set of permissions using the default
user name (*). Here is a sample ACL that illustrates all of these elements:

[roles]
An administrator has all permissions
admin = *

An auditor has the ability to adjust the logging
behavior of the running CGE Server
auditor = server.config.log.*

A consumer of data is allowed to query the CGE Database

and provide per-request NVPs because some NVPs impact the
efficiency / practicality of certain queries.

consumer = data.query,request.nvp

A producer of data is allowed to query, update, and

checkpoint the CGE Database, and is allowed to set

per-request NVPs because some NVPs impact the efficiency
or practicality of certain queries, and some options on
checkpointing are controlled by NVPs.

producer = data.*,request.nvp

[groups]

admins = joe,mary,abdul
auditors = phyllis,jodi,allan
producers = anne,grace,william

A group of users to whom no access is permitted. This is
a useful way of temporarily disabling a user while keeping
that user's authorized keys active. The group is defined
here with its member list, but is never assigned any roles
or permissions. This prevent's these users from being
treated as default users (allowing default users to have
more permissions) while ensuring they have no access.
denied users = wilbur,ginger,ava

H= e e e

[permissions]

group:admins = role:admin

group:auditors = role:auditor

group:producers = role:producer

The user 'david' is an auditor who also needs to be able to

see what is in the database, so he needs both the auditor and
consumer role.

david = role:auditor,role:consumer

The user 'fred' needs to be able to query, but we don't trust
him with changing per-request NVPs, so he can't do that.

fred = role:auditor,data.query

Everyone else who is not specifically mentioned either by name

or by group is allowed to be a 'consumer'
* = role:consumer

There are a few things to notice about the above sample ACL. First of all, it is divided into sections of three types:

e The roles section contains role definitions

S3014 83

CGE Security

e the groups section contains group definitions

e the permissions section contains permission assignments to both groups (where the group name is
qualified by the group: prefix), and users.

There may be any number of sections of a given type. The aggregate effect of multiple sections of the same type
is the same as having one large section of that type containing all of the content of the smaller sections.

The second thing to notice is that comments are permitted in an ACL file. Comments take the form of a '#'
character followed by any arbitrary text up to a newline. The comment ends at the newline.

The third thing is not obvious from the example, but the sections, definitions and assignments do not need to be
presented in any particular order. As long as the definitions and assignments take place within the appropriate
sections and convey an unambiguous intent, the CGE Server will figure out any necessary ordering.

There are some rules about what constitutes unambiguous intent:

e Arole or group may have at most one definition in the ACL

e Agroup or user may have at most one permission assignment in the ACL
e Auser may belong to at most one group

e Auser may not both belong to a group and have a permission assignment

e The list of permissions and roles in a permission assignment may contain any arbitrary list of permissions and
roles, even repeated permissions or repeated roles

e The default (*) user is a default user, not a wildcard user,