
Cray® Graph Engine User Guide (2.5.UP00)
S-3014

Contents
1 About the Cray® Graph Engine User Guide...6

2 About the Cray Graph Engine (CGE)...8

2.1 Cray Graph Engine (CGE) Features...8

2.2 Concepts of Operation...8

2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database..9

2.2.2 What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF.................9

2.3 About SPARQL ...11

2.4 System Architecture Overview..11

2.5 RDF and SPARQL Resources...12

3 Building a Database ...13

3.1 About Rules Files ...15

3.2 Create a Set of Inferencing Rules ..15

3.3 Sample RDFS Rules File ..18

3.4 Limitations to Jena Rules Syntax ...20

4 Launch the CGE Server Using the cge-launch Command...21

5 Mechanisms to Interact with the Cray Graph Engine (CGE) Database..23

5.1 Cray Graph Engine (CGE) Command Line Interface..23

5.1.1 Cray Graph Engine (CGE) Command Output..24

5.1.2 Cray Graph Engine (CGE) CLI Common Options..25

5.1.3 SSH Identities...30

5.1.4 CGE Hadoop HDFS Configuration...30

5.1.5 Cray Graph Engine (CGE) Properties File...31

5.1.6 Create Checkpoints Using the CGE checkpoint Command...33

5.1.7 Compile SPARQL Commands Using the CGE compile Command...35

5.1.8 Check the Database State Using the CGE echo Command...36

5.1.9 Launch the CGE Web Server Using the fe Command..37

5.1.10 Determine How Locations Are Being Searched Using the get-configuration
Command..37

5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the keyword-
lookup Command..38

5.1.12 Retrieve Default Server Logging Information Using the log-info Command.......................39

5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names Using
the log-lookup Command...39

5.1.14 Change the Default Logging Configuration of the CGE Server Using the log-
reconfigure Command...40

Contents

S3014 2

5.1.15 Display Information About the Default NVP Configurations Using the CGE nvp-info
Command..40

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure Command............41

5.1.17 Display Server Output Directory Information Using the output-info Command41

5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure
Command ...41

5.1.19 Execute Queries Using the CGE query Command..42

5.1.20 Cray Graph Engine (CGE) Optimizer Configuration ..44

5.1.21 Shutdown the CGE Server Using the shutdown Command...44

5.1.22 Execute Sparql Queries and Updates Using the sparql Command......................................44

5.1.23 Execute Updates on a Database Using the CGE update Command.....................................45

5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command............46

5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command...............47

5.1.26 Create a Properties File Using the CGE generate properties Command.......................47

5.2 Access the Cray Graph Engine (CGE) Graphical User Interface ...49

5.2.1 Launch the CGE Web Server ..53

5.2.2 Execute SPARQL Queries Using the CGE UI..53

5.2.3 Execute SPARQL Updates Using the CGE Update Interface..55

5.2.4 Create a Checkpoint Using the CGE UI...57

5.2.5 Cray Graph Engine (CGE) Advanced Options ..58

5.2.6 View Server Configurations Using the CGE UI..59

5.2.7 Edit Server Configurations Using the CGE UI..60

5.2.8 Control Options..62

5.3 SPARQL Endpoints...63

5.4 Create and Use a Database..66

6 CGE Security..68

6.1 Cray Graph Engine (CGE) Security Mechanisms...70

6.1.1 Create a CGE Specific RSA/DSA Host Key...70

6.2 Setup CGE Security..71

6.2.1 Configure Server Side Identification and Authentication..71

6.2.2 Configure the ACL File User Permissions..73

6.2.3 Configure Web UI Identification, Authentication and Encryption..78

6.2.4 Configure LDAP for CGE...79

6.2.5 Configure Private Authentication for CGE..80

6.2.6 Configuring SSL for CGE...81

6.2.7 Launch a Secured Web UI...83

6.3 Endpoint Security..83

6.4 CGE User Authentication..85

Contents

S3014 3

6.5 Grant Basic Access to Owned Query Engines ...88

6.5.1 Eliminate Interactive Host Key Verification...91

6.6 Grant Other Users Access to Their CGE Query Engine ...91

6.6.1 Grant Other Users Access to One of the Owned Data Sets ...92

6.6.2 Grant Other Users Access to All of the Owned Data Sets ..93

7 Built-in Graph Functions...94

7.1 Combining Graph Algorithms with SPARQL ...94

7.2 Invocation of a Graph Function ..95

7.2.1 The CONSTRUCT Clause ..95

7.2.2 The INVOKE Clause...95

7.2.3 The PRODUCING Clause...96

7.3 Inputs to the Graph Function ..97

7.4 Sequence of Operators ..98

7.5 Bad Rank...99

7.6 Betweenness Centrality...100

7.7 Community Detection Label Propagation (LP)..101

7.8 Community Detection Parallel Louvain Method (PLM)..102

7.9 Page Rank...103

7.10 S-T (Source – Target) Connectivity...104

7.11 S-T Set Connectivity..105

7.12 Triangle Counting..106

7.13 Vertex Triangle Counting...107

7.14 Triangle Finding...108

8 Cray Graph Engine (CGE) Extension Functions..110

8.1 Cray Graph Engine (CGE) Interval Analytics Functions..110

8.2 Cray Graph Engine (CGE) Haversine Functions...114

8.3 Cray Graph Engine (CGE) Square Root Function...114

8.4 Custom Aggregate Functions..115

9 Cray Graph Engine (CGE) Property Path Support...118

10 Cray Graph Engine (CGE) Quick Reference..121

11 Use the Cray Graph Engine (CGE) for a Hello World Example..124

12 Support for Simple GraphML Files...127

13 CGE API...130

13.1 CGE API Versioning..130

13.2 Use the CGE Java API..130

13.2.1 Use CGE Java API via Maven...132

13.2.2 Use CGE API via Java Development Kit (JDK)..134

13.2.3 Use CGE API via Pre-built Main Entry Points..136

Contents

S3014 4

13.2.4 Use Case: A Comprehensive Java Program..138

13.2.5 Limitations of CGE Java API..147

13.3 Use the CGE Python API..148

13.3.1 Use Case: A Comprehensive Python Program..149

13.3.2 Run the CGE Python API as a Python Application..152

13.3.3 Run a Python API from the Python Interpreter...153

14 Logging and Troubleshooting...157

14.1 Troubleshooting Common Cray Graph Engine (CGE) Issues...158

14.2 Terminate Orphaned cge-server Jobs...165

14.3 Diagnose CGE Python API Issues..165

Contents

S3014 5

1 About the Cray® Graph Engine User Guide
The Cray® Graph Engine User Guide contains information about using the Cray Graph Engine (CGE), its
Command Line Interface (CLI) and Graphical User Interface (GUI) to create and use RDF databases.

Release Information
This publication version addresses the product version 2.5.UP00 of the Cray® Graph Engine.

Record of Revision
Publication Number Date CGE Release

S-3010 March 2015 Beta release

S-3010 March 2016 1.0.UP00

S-3010 August 2016 2.0.UP00

S-3010 December 2016 2.5.UP00

Record of Revision
● New content:

○ CGE Python API.

○ Custom aggregate functions.

○ Community Detection Parallel Louvain Method (PLM) algorithm.

○ New CGE front end commands: generate keystore, generate shiro and generate
properties.

○ New NVP parameter: cge.server.RevealUserDataInLogs.

○ Documentation for CGE's support for simple GraphML files.

● Updated content:

○ Updates to the security content.

○ Updates to the CGE property files content.

○ Updates to the CGE UI sections.

About the Cray® Graph Engine User Guide

S3014 6

Typographic Conventions
Monospace Monospaced text indicates program code, reserved words, library functions,

command-line prompts, screen output, file names, path names, and other software
constructs.

Monospaced Bold Bold monospaced text indicates commands that must be entered on a command
line or in response to an interactive prompt.

Oblique or Italics Oblique or italicized text indicates user-supplied values in commands or
sytax definitions.

Proportional Bold Proportional bold text indicates a graphical user interface window or element.

\ (backslash) A backslash at the end of a command line is the Linux® shell line continuation
character; the shell parses lines joined by a backslash as though they were a single
line. Do not type anything after the backslash or the continuation feature will not
work correctly.

Alt-Ctrl-f Monospaced hyphenated text typically indicates a keyboard combination.

Scope and Audience
This publication does not include in-depth information about RDF and SPARQL. The intended audience of this
publication is users and system administrators. It is assumed that all the commands documented in this guide are
executed via the bash shell.

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, Urika-XA, Urika-GD, and YARCDATA. The following are trademarks of Cray Inc.:
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX,
LIBSCI, NODEKARE. The following system family marks, and associated model number marks, are trademarks
of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a
sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

Feedback
Visit the Cray Publications Portal at http://pubs.cray.com and make comments online using the Contact Us button
in the upper-right corner or Email pubs@cray.com. Your comments are important to us and we will respond within
24 hours.

About the Cray® Graph Engine User Guide

S3014 7

http://pubs.cray.com
mailto:pubs@cray.com
mailto:pubs@cray.com

2 About the Cray Graph Engine (CGE)
CGE is a highly optimized software application designed for high-speed processing of interconnected data. It
features an advanced platform for searching very large, graph-oriented databases and querying for complex
relationships between data items in the database. It provides the tools required for capturing, organizing and
analyzing large sets of interconnected data. CGE enables performing real-time analytics on the largest and most
complex graph problems, and features highly optimized support for inference, deep graph analysis, and pattern-
based queries.

2.1 Cray Graph Engine (CGE) Features
CGE features include:

● Optimized query engine for high-speed parallel data analysis.

● Support for submitting queries, updates and creating checkpoints.

● A rich Command Line Interface (CLI).

● The CGE graphical user interface, which acts as a SPARQL 1.1 end point. This interface enables editing
SPARQL queries or SPARUL updates and submitting them to the CGE database. It also accepts a set of
commands that allow users to perform various tasks, such as creating a checkpoint on a database, setting
Name Value Pairs (NVPs) to control certain aspects of data preprocessing, and query processing etc.

● SPARQL query language extension via the INVOKE and PRODUCING operators, which allow a classical graph
algorithm to be passed an RDF graph and for the algorithm’s results to be returned as data that is compatible
with SPARQL 1.1. This enables graph algorithm library calls to be nested within a SPARQL query.

● Support for SPARQL aggregate functions.

● Multi-user support.

● Compatibility with POSIX-compliant file systems.

● Database preprocessing to apply inference rules to the data, as well as to index the data.

● CGE Python and CGE Java APIs

● Support for a number of built in graph algorithms.

2.2 Concepts of Operation
CGE's operational model is comprised of the following major components:

● The graph oriented database

● Resource Description Framework (RDF)

About the Cray Graph Engine (CGE)

S3014 8

2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database
Most modern database systems use a relational representation of their data. This means that data items are
stored in tables, with each row of the table holding data items that are in some way related to each other. For
example, all of the data items in the same row might be associated with the same person, as shown in the
following table:

Employee ID Given Name Family Name Date Hired Job Position

29650 Georgia Smith 11/17/2001 Eng5

In practice, a relational row like the one above is contained in a table of many similar rows:

Employee ID Given Name Family Name Date Hired Job position

29650 Georgia Smith 11/17/2001 Eng5

10926 Alex Jones 2/5/2008 Mktng3

72219 Paul Anderson 8/21/2005 Admin2

....

One of these fields is called the "key" and is used as the basis for looking up data from any of the other fields. In
this example, “Employee ID” would probably be used as the key. The column labels, “Employee ID”, “Given name”
etc. are implicit. They are not stored with the table, but with a database schema that is associated with the table.
The schema defines each field in the relation.

The kind of information that may be associated with a scheme is shown below:

Field Name Datatype

0 Employee ID Integer, min 0, max 99999

1 Given name Character, String length < 30

2 Family name Character, String length < 30

3 Date hired Integer 1-12, Integer 1-31, Integer > 1985

4 Job position Character, String length < 10

NOTE: The database schema shown above is used as an example and is entirely conceptual. There are
typically many tables in a large relational database, each with its own defining schema.

2.2.2 What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF
RDF is a data representation standard that allows data from different schemas to be merged. It accomplishes this
by extending the linking structure of the Web using Uniform Resource Identifiers (URIs) in order to create triples to
name a subject, an object, and the relationship or predicate between the two.

Resource Description Framework Triples
An RDF triple contains three components:

About the Cray Graph Engine (CGE)

S3014 9

● the subject, which is an RDF URI reference or a blank node

● the predicate, which is an RDF URI reference

● the object, which is an RDF URI reference, a literal or a blank node

Hence, data items in RDF are always represented as a trio of character strings, referred to as the “subject”,
“predicate” and “object” fields. Because they were originally intended to be unique across the Internet,
components of RDF triples use the generic URI / IRI syntax (RFCs 3986 and 3987).

A triple holding the same kind of information shown in the previous relational example might look like the
following:

<http://cray.com/example/employeeID#29650> (subject)
<http://cray.com/example/hasGivenName> (predicate)
“Georgia”^^<http://www.w3.org/2001/XMLSchema#string> (object)

NOTE: The above three statements should be entered on a single line and have been shown in separate
lines in this document due to lack of space. Furthermore, the text: (subject), (predicate) and (object) in the
above lines are shown in this document for clarity and are not part of an actual triple.

Note that the given name data item “Georgia” is expressed as an RDF literal: the value coupled with a URL-like
string identifying its data type. RDF triples are intended to be self-identifying in two ways, both of which can be
seen in this example:

1. The literal’s data type is attached to it.

2. The predicate identifies the class of data that the object belongs to, information that in the case of relational
data, is implicit in the schema and the data item’s position in the tuple. For RDF triples, there is no schema.
That type of identifying information is explicit, in the predicate of the triple.

As is illustrated below, any subject-predicate-object triple can also be viewed as a source vertex-edge-sink vertex
component of a directed graph:

<http://...ID#29650> <http://.../hasGivenName> “Georgia”^^<http://
www....#string>

NOTE: The statements shown above should be entered on a single line and have been shown on
separate lines due to lack of space.

Figure 1. RDF Triple Viewed as a Graph Component

CGE is designed to store and analyze datasets when the patterns of relationships and interconnections between
data items are at least as important as the data items themselves. The SPARQL query language is convenient in
the sense that it provides most of the same features as SQL for filtering, grouping, and updating database
information. Unlike SQL, however, SPARQL also provides a powerful mechanism for specifying (in a query) a
complex interconnection pattern to search for in the database. For indefinite-size patterns and aggregate

About the Cray Graph Engine (CGE)

S3014 10

information that can not be expressed in SPARQL, CGE supports the capability of nesting a call to a classical
graph analysis function within a SPARQL query.

Each subject-predicate-object relationship is an RDF triple. In CGE, each element in the internal representation of
the database includes a graph field, which specifies the subset of the graph that the triple belongs to. If the graph
field is left blank, the triple becomes part of the default graph. Typically this default, or unnamed, graph is the main
data subset.

2.3 About SPARQL
SPARQL is an RDF query language developed for semantic database queries. SPARQL queries replace the table
and schema format of relational SQL queries with RDF triples and ontologies, which define predicates and
relationships.

Some SPARQL features are listed below:

● The ability to explore data by querying for unknown relationships.

● Implicit JOIN syntax, which reduces the overhead for processing a complex query with multiple JOINs to the
equivalent of traversing a graph.

● The GRAPH keyword allows data to be queried along with its source, returning both the data that matches the
query and the name of the graph that contains the data.

● Unlike the proprietary query languages used in many graph database systems, SPARQL is a standardized,
non-proprietary query language.

● Tools and APIs for interacting with RDF/SPARQL systems are widely and freely available for all major
programming languages and platforms

This release of the CGE software supports a subset of SPARQL 1.1. The following SPARQL 1.1 features are not
implemented:

● The SERVICE keyword, for querying remote data.

● The MD5, SHA1, SHA256, SHA384, and SHA512 encryption functions.

● The UCASE and LCASE functions, which return a string literal whose lexical form is the upper or lower case of
the lexical form of the argument, are implemented for ASCII characters only.

● The property paths feature, which extends the predicate portion of the query, allowing more extensive search
patterns without the overhead of additional OPTIONAL statements.

NOTE: Although CGE does not natively support the SPARQL 1.1 property paths feature, it does
support certain types of property paths. CGE’s property path support is currently experimental and
should be used with care. Contact Cray Support for additional information.

To learn more about SPARQL, visit http://jena.apache.org/tutorials/sparql.html

2.4 System Architecture Overview
CGE is designed to provide performance and scalability on large, complex, interconnected databases. Its query
engine is based on a data parallelism approach, in which the software strives to keep every processor busy on a
roughly equal fraction of the data. The query engine is serviced by a user interface and a command line interface.

About the Cray Graph Engine (CGE)

S3014 11

http://jena.apache.org/tutorials/sparql.html

See Cray Graph Engine User Interface and Cray Graph Engine (CGE) Command Line Interface for more
information.

CGE uses the open-source Jena ARQ SPARQL parser to parse each query or update, and its parser auxiliary
software translates it into a lower-level representation that can drive the query engine. Query results are written to
the file system in a tab-separated-values (.tsv) format. For convenience, a pointer to the results file is returned to
the user when the query completes.

Extensive logging information is also written as the query or update progresses, as an aid to troubleshooting.

2.5 RDF and SPARQL Resources
Cray recommends the following resources for learning more about RDF and SPARQL:

RDF Resources
● RDF primer at https://www.w3.org/TR/rdf-primer/

SPARQL Resources
● "SPARQL by Example”, available at http://www.cambridgesemantics.com/, is an excellent introductory tutorial

written by Lee Feigenbaum of Cambridge Semantics and Eric Prud’hommeaux of W3C

● SPARQL Tutorial at http://jena.apache.org

● "Learning SPARQL", available at http://www.learningsparql.com by Bob DuCharme

● SPARQLer Query Validator at http://sparql.org/query-validator.html

● SPARQL 1.1 query language tutorial at https://www.w3.org/TR/sparql11-query/

Semantic Web Resources
"Semantic Web for the Working Ontologist", available at http://www.workingontologist.org by Dean Allemang and
James Hendler.

About the Cray Graph Engine (CGE)

S3014 12

https://www.w3.org/TR/rdf-primer/
http://www.cambridgesemantics.com/
http://jena.apache.org/
http://www.learningsparql.com
http://sparql.org/query-validator.html
https://www.w3.org/TR/sparql11-query/
http://www.workingontologist.org

3 Building a Database
The Cray Graph Engine (CGE) is launched using the cge-launch command. When the CGE application is
launched, a database directory is specified using the -d option of the cge-launch command. Initially, this
directory contains RDF data in N-triples or N-quads format. When the application is first launched on a new
database directory, the database is compiled and stored in an internal format in the same directory. Subsequent
launches of the application using the cge-launch command with the same database directory will use the
compiled database. The update command can then be used to add to or update an existing database. For more
information, see the cge-launch and update man pages.

For CGE to recognize raw RDF data to be built, the data must be presented in one of three ways in this directory

1. in a single file called dataset.nq (for N-Quads form data)

2. in a single file called dataset.nt (for N-Triples form data)

3. in multiple files listed in a file called graph.info

Converting Data to RDF Triples
CGE reads RDF data in N-triples or N-quads format. There are many third party tools that may be used to convert
data into RDF. D2R is often used to extract data from an RDBMS into RDF format. The TopBraid Composer by
TopQuadrant® can also be used to convert Excel, TSV, UML, or XML data. Conversion of data to RDF is beyond
the scope of this publication.

Building the Internal Representation
Once the data has been translated into RDF, the user must place the data in the directory where CGE will build its
compiled database files. If the RDF is contained in a single file, the simplest method is to rename this file to
dataset.nt or dataset.nq. A dataset.nt has NTriples format, whereas a dataset.nq file has NQuads
format. On the other hand, if the RDF is found in more than one file, a file named graph.info will need to be
created. This file contains a list of RDF files, one file per line. Each file name in graph.info may optionally be
followed by a graph name. If a graph name is specified, the graph name is applied to any triples found in the
corresponding RDF file.

Following is a sample of a dataset.nt file which has been extracted from the Lehigh University Benchmark
(LUBM) synthetic dataset:

<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Department14.University0.edu/GraduateCourse17> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#TeachingAssistant> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teachingAssistantOf>
<http://www.Department14.University0.edu/Course6> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Department14.University0.edu/GraduateCourse18> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#GraduateStudent> .

Building a Database

S3014 13

<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#name>
"GraduateStudent87" .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#emailAddress>
"GraduateStudent87@Department14.University0.edu" .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFr
om> <http://www.University843.edu <http://www.university843.edu/>> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor>
<http://www.Department14.University0.edu/AssistantProfessor6> .

IMPORTANT: Each predicate must appear on its own line. Some predicates are shown on multiple lines
in the sample above due to lack of space.

The specification for NTriples can be found at https://www.w3.org/TR/n-triples/

Following is a sample of a graph.info file:

example graph.info file

filenames can be absolute
/lustre/scratch/users/jdoe/database1/dbtriples1.nt

or they can be relative to the database directory, which is where the graph.info file resides
database2/dbtriples2.nt

they can specify a named subgraph with a URI
/lustre/scratch/users/jdoe/database3/dbquads3.nq <http://cray.com/namedGraphs/Graph3>

NOTE: Triples and quads are supported in both the .nt and .nq files. Quads in the RDF file are not
affected by the optional graph name specified in the graph.info file. Lines containing only white space
or lines beginning with the comment character (‘#’) are ignored. If the file is a mix of triples and quads, the
triples become part of the graph specified in the graph.info file.

As mentioned earlier, when the application is launched via the cge-launch command. The -d parameter
specifies the database directory.

WARNING: The -d parameter is mandatory. Launching CGE without specifying it produces an error.

This directory must already exist if it has been populated with dataset.nt, dataset.nq, rules and/or a
graph.info file. If a compiled database is not present, a database is built using the graph.info,
dataset.nt, or dataset.nq file in that directory.

When the database has been built, the following files are saved in the database directory:

● dbQuads

● string_table_chars

● string_table_chars.index

● graph.info file is created (if not already present), which is only used to load in a database from RDF files
and is not used once the database is compiled.

Once the database has been built, CGE can begin executing queries and updates. When the application is
subsequently launched via the cge-launch command specifying the same directory, the dbQuads file is
detected, and the compiled database is read rather than the RDF.

NOTE: If a user attempts to create a new database and the input data files contain no valid triples, i.e.,
there are some nonempty lines (which are not comments and were not valid triples or quads), the
database will exit with an error. In addition, the recommended way to create an empty database is to
create a completely empty input file using the touch command and then starting the database.

Building a Database

S3014 14

https://www.w3.org/TR/n-triples/

When loading a dataset, CGE will look for a dataset in the following places:

● If dbQuads exists, it will be used.

● If dbQuads does not exist, but graph.info exists, graph.info will be opened and read to obtain a list of
source data files, which will then be used to build a new dataset.

● If neither dbQuads nor graph.info exist, but dataset.nt (or dataset.nq) exist, dataset.nt or
dataset.nq will be used to build a new dataset.

● If none of the above files exist, CGE will fail.

In each of these cases, if the file exists but is in some way invalid, CGE will fail.

Memory Requirements
● Memory Requirement for reading a database from RDF - The amount of memory required to read a

database from RDF depends on the number of triples/quads in the database, the number of unique strings in
the dictionary, and the length of those strings. As a rule of thumb, however, the main memory should be 4
times the size of the RDF file(s). For example, for a 100 GiB triples file, at least 400 GiB (4 * 100) should be
used.

● Memory Requirement for loading a compiled database - A compiled database consists primarily of the
dbQuads files, containing the compiled quads, and the string_table_chars files, containing the
dictionary. To enable CGE to load the database and execute meaningful queries, the main memory should be
20 times the sum of the sizes of dbQuads and the string_table_chars file. For example, if dbQuads is
32 GiB and string_table_chars is 256 GiB, at least (20 * (32 + 256)) GiB of memory should be used.

3.1 About Rules Files
One way to greatly increase the knowledge contained in the database is to provide a set of inferencing rules.
These rules are used during the database builds and in subsequent data updates (whether by SPARQL updates
or by editing the database) to create new relationships between objects. Providing inferencing rules grants
SPARQL queries access to inferred data, in addition to the raw data that was imported into the system.

Forward vs. Backward Chaining
There are two types of chaining:

● Forward Chaining - In forward chaining, the inferencing rules are recursively applied to the database,
creating new quads and adding them to the database. If a implies b and a is in the database, we add b to the
database.

● Backward Chaining - Rather than pre-computing quads in the database as in forward chaining, with
backward chaining the queries are modified to support those rules. If a implies b and a query searches for b,
it is changed to search for (a UNION b).

CGE’s rules inference engine does not implement backward chaining, but it implements a highly parallel form of
forward chaining.

Building a Database

S3014 15

3.2 Create a Set of Inferencing Rules
Inferencing can be performed to generate additional relationships once the Cray Graph Engine (CGE) builds a
database. CGE accomplishes this with a user defined rules file, which contains a set of rules specific to the data
being processed. The rules file format and semantics are based on the Jena rules, documented at http://
jena.apache.org/. In this version of CGE there are certain limitations to these rules, which are described in
Limitations to Jena Rules Syntax .

The rules file has the form: one or more prefixes, followed by one or more rules

left-hand side quad(s) -> right-hand side quad(s)

Comments are denoted by a # character at the beginning of a line.

The quad, or quads, on the left-hand side of the -> are the quads that the inferencer will attempt to match to infer
the quad, or quads, on the right-hand side of the ->. All of the left-hand-side rules must be satisfied in order for the
inference to be made. Each rule must end with a period (.) and a newline character, and each rule must be on its
own line. The inferencer does not recognize the escape character (\).

A quad takes the form:

(subject predicate object [graph])

It is mandatory to specify the subject, predicate and object. The graph field is optional. If a graph is not specified,
the inferencer will use the default graph and the rule will apply only to triples in that graph. The subject, predicate
and object fields can be any valid form of these fields as specified by the N-Quads grammar, except as described
in Limitations to Jena Rules Syntax in CGE. The graph field in a quad has the same valid forms as an object. If a
rule contains a URI, that URI must have existed in at least one of the data files that were included in the
database. Alternatively, to apply a new ontology that was not in the original data files, create a new file that
contains any new objects and predicates, and add that file to the database. The fields of a quad in a rule can
also be variables, or shorthand versions of strings built from a specified prefix. A variable must begin with a ?
character, followed by a valid name. A name can contain any of the following characters:

name := [a-zA-Z][_a-zA-Z0-9]*

To specify one or more prefixes at the beginning of a rules file, before any rules, use the following syntax:
@prefix prefix_name: <http://urlstring#>

A rules file does not have to use prefixes. However they can be used to simplify quads within rules. For example,
prefixes are useful for creating shorthand versions of URIs that will be used repeatedly in the rules statements.

As with rules, each prefix must end with a period (.) and a newline, and each prefix must be on its own line.

The following prefix and rule examples are from the rule set used for the LUBM data.

Inferencing a Database
When a database is built with inferencing enabled and a rules.txt file is found in the database directory, CGE
will start applying the forward chaining rules found in that file to the triples/quads read from the RDF. The inferred
quads are added to the in-memory database and stored in the compiled dbQuads file. If inferencing is enabled,
the rules.txt file is also used when updating a database using SPARUL commands. As with any other quads
added by the SPARUL commands, the inferred quads are added to the in-memory database but are not written to
disk until the database is check-pointed.

For more information, see About Rules Files

NOTE: Inferencing is enabled by default and may be disabled by setting the value of the
cge.server.InferOnUpdate control parameter to 0. Control parameters are configuration keywords
that allow controlling server configuration settings. For more information, see Control Options.

Building a Database

S3014 16

http://jena.apache.org/
http://jena.apache.org/

Examples

A prefix statement
@prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

In this example the term rdf:type is shorthand for:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.

The inferencer expands the prefixed version of the string to the full string when creating the rules used during
inferencing. The rule in this example says that for a given triple ?x rdf:type ub:Course in the default graph,
infer a new triple ?x is-type ub:Work and add it to the default graph, as shown in the next example.

Inferring a new triple
Applying this rule:

(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

to this triple in the data input:

<http://www.Department10.University0.edu/Course6> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> \
 <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course>

infers (and adds) this new triple to the default graph:

<http://www.Department10.University0.edu/Course6> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> \
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Work>

A rule to establish a hierarchy of types
The following rule shows one way that ontology rules are used to establish a hierarchy of data types.

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee) .
(?x rdf:type ub:Employee) -> (?x rdf:type ub:Person) .

A Faculty member is also an Employee, an Employee is also a Person, and so on. Such a rule eliminates the
need to explicitly including each desired type for each such item in the database. Note that this rule did not use
the graph field.

The following rule uses a variable for the graph field. This rule is excerpted from the RDFS rules file, which is
based on some of the Jena rules for RDFS and OWL. The complete rules file is reproduced in Sample RDFS
Rules File .

(?x ?a ?y ?g) (?a owl:inverseOf ?b ?g) -> (?y ?b ?x ?g) .

This rule is also an example of another way rules are used to establish relationships between triples in the
database. This rule states that if two predicates A and B are defined to be inverses of each other and then if the
triple (X A Y) appears in the database, then the system can infer that the triple (Y B X) is also there, or
should be there.

Building a Database

S3014 17

Cross-database rules
Another use of a rules file is to establish a relationship between triples in two different databases. For example, if
one were extending a U.S.-based database with some additional data from France, it might streamline the
process to include such rules as:

(<x.cray.eg.france#personne> <x.cray.eg.france#nom> ?name <x.cray.eg.frenchdb>) -> \
(<x.cray.eg.us#person> <x.cray.eg.us#name> ?name <x.cray.eg.usdb>) .

By this rule the fields in the quads are translated into their English counterparts, consistent with the data that is
already in the American based database.

3.3 Sample RDFS Rules File
The following sample rules file is based on the Jena rules for RDFS and OWL. It is reproduced here courtesy of
w3.org.

These rules are based on the Jena rules for rdfs, plus some Jena rules
for OWL.
#Line breaks inserted into some of these rules for formatting purposes.
#This was done for readability within this document, but is not valid syntax.

Make a prefix for rdf:type. The IRI is defined by the SPARQL to be

http://www.w3.org/1999/02/22-rdf-syntax-ns#type, which we can
shorthand with rdf:type by defining a prefix for rdf:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Shorthand for rdfs

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Shorthand for owl

@prefix owl: <http://www.w3.org/2002/07/owl#> .

Skip this one.

[rdf1and4: (?x ?p ?y) -> (?p rdf:type rdf:Property), (?x rdf:type
rdfs:Resource), (?y rdf:type rdfs:Resource)]
Add rule for rdfs 2:

[rdfs2: (?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type ?c)]
(?x ?p ?y ?g) (?p rdfs:domain ?c ?g) -> (?x rdf:type ?c ?g) .

[rdfs2a: (?x rdfs:domain ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:domain ?z)]
(?y rdfs:subClassOf ?z ?g) (?x rdfs:domain ?y ?g) -
> (?x rdfs:domain ?z ?g) .

Add rule for rdfs 3:

[rdfs3: (?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)]
(?x ?p ?y ?g) (?p rdfs:range ?c ?g) -> (?y rdf:type ?c ?g) .

[rdfs3a: (?x rdfs:range ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:range ?z)]

(?y rdfs:subClassOf ?z ?g) (?x rdfs:range ?y ?g) -> (?x rdfs:range ?z ?g) .

Building a Database

S3014 18

Add rule for rdfs 5a:

[rdfs5a: (?a rdfs:subPropertyOf ?b), (?b rdfs:subPropertyOf ?c) ->
(?a rdfs:subPropertyOf ?c)]
(?a rdfs:subPropertyOf ?b ?g) (?b rdfs:subPropertyOf ?c ?g) -> (?a
rdfs:subPropertyOf ?c ?g) .

Add rule for rdfs 6:

[rdfs6: (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)]
(?a ?p ?b ?g) (?p rdfs:subPropertyOf ?q ?g) -> (?a ?q ?b ?g) .

Skip this one.

[rdfs7: (?a rdf:type rdfs:Class) -> (?a rdfs:subClassOf ?a)]

Add rule for rdfs 8:

[rdfs8: (?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) ->
(?a rdfs:subClassOf ?c)]
(?a rdfs:subClassOf ?b ?g) (?b rdfs:subClassOf ?c ?g) -> (?a rdfs:subClassOf ?c ?
g) .

Add rule for rdfs 9:

[rdfs9: (?x rdfs:subClassOf ?y), (?a rdf:type ?x) ->
(?a rdf:type ?y)]
Put the quad with the most potential matches as the first quad to
try and improve performance since since the first quads are handled
in parallel.
(?a rdf:type ?x ?g) (?x rdfs:subClassOf ?y ?g) -> (?a rdf:type ?y ?g) .

Add rules for inverse property from owl.

[inverseOf1: (?P owl:inverseOf ?Q) -> (?Q owl:inverseOf ?P)]
[inverseOf2: (?P owl:inverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)]
We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent
potential performance problems.
(?a owl:inverseOf ?b ?g) -> (?b owl:inverseOf
?a ?g) . (?x ?a ?y ?g) (?a owl:inverseOf ?b
?g) -> (?y ?b ?x ?g) .

Add rule for owl transitive property.

[transitivePropery1: (?P rdf:type owl:TransitiveProperty),
(?A ?P ?B), (?B ?P ?C) -> (?A ?P ?C)]
We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent
potential performance problems.
(?a ?p ?b ?g) (?p rdf:type owl:TransitiveProperty ?g) (?b ?p ?c ?g) -> (?a ?p ?
c ?g) .

Skip this one.

[rdfs10: (?x rdf:type rdfs:ContainerMembershipProperty) -> (?x
rdfs:subPropertyOf rdfs:member)]

Building a Database

S3014 19

NOTE: Each prefix and rule must appear on its own line. Some prefixes and rules and are shown on
multiple lines in the sample above due to lack of space.

3.4 Limitations to Jena Rules Syntax
This release of CGE does not support all aspects of Jena syntax and semantics for rules. Specifically:

● The @include construct is not supported.

● Calls to functions or built-in primitives, such as print, all, or max are not supported.

● The [...] syntax is not supported, including named rules.

● Backward chaining is not supported. Furthermore, backward syntax (<-) cannot be used to express forward
chaining.

● If multiple premises or conclusions (quads) are specified on either side of the -> in a single rule, each pair
must be separated by a space. The use of commas as separators is not supported.

● Native UTF-8 is not supported in rules files, however Unicode characters are supported within URIs, where
they are valid syntax.

NOTE: It is important to note that turning inferencing on/off is a database level setting. Turning
inferencing on can negatively impact performance. When this setting is set to true, the inferencer will run
during the first time that the database compiles and for subsequent updates. Since the whole database is
examined when inferencing occurs, turning this feature on after a period of time during which it was
turned off, will still affect the data that was loaded during the period when it was turned off. In other words,
if a user turns inferencing off and then adds or updates data, that data will also be inferenced once the
user turns the inferencing feature on again and performs another update.

Building a Database

S3014 20

4 Launch the CGE Server Using the cge-launch
Command

The cge-launch command is used to launch the query engine and enables creating and building a database in
a single step. This command handles the details of allocating batch resources (if necessary), setting up the
launch environment, and composing a command line for the query engine on a given platform. This eliminates the
need for a user to be aware of the details of a given platform's batch system or other considerations.

NOTE: Try relaunching CGE if the system displays an error message saying, "Server failed to
start up” upon execution of the cge-launch command.

There are two pieces of information that need to be specified when starting up the query engine. These include:

● The path to the directory where the data set resides. This can be specified via the -d option of the cge-
launch command.

● The path to a directory where the result files produced by queries need to be placed. This can be specified via
the -o option of the cge-launch command.

Following is an example of using cge-launch:

$ cge-launch -o pathtoResultsFile -d path -l logfile

In the preceding statement, pathtoResultsFile is used as an example for the path to the directory that will
contain the results of queries and/or updates, path is used as an example for the path to the database directory
and logfile is used as an example for the log file that will contain the command and server output.

The -o and -d options of the cge-launch command accept:

● UNIX style pathnames as naming files on a POSIX compliant file system

● URLs of the following forms:

○ file://unix_pathname - This form is the equivalent of the Unix Style Pathname in URL form

○ hdfs://name-server-address[:name-server-port-number]/HDFS_pathname - This type of
format indicates that a Hadoop Distributed File System (HDFS) file or directory is known to the specified
name server and is located within that name-server's name space at HDFS_pathname.

Both the aforementioned forms must refer to a file/directory that is shared across and equally accessible from
all nodes. CGE will determine where to look for this file/directory based on recognizing one of the
aforementioned path formats.

A few points to note while using checkpoints:

● If a full URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. file:/path) will be written to the POSIX filesystem
at the pathname specified in the URL.

● If a relative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE startup.

Launch the CGE Server Using the cge-launch Command

S3014 21

● If a full pathname but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE startup, so, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, if CGE was started with a simple pathname or
FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

The --configFile parameter specifies the pathname of the configuration file to be used by the server when
setting up persistently configured settings. If this option is present, its value is used, otherwise the
$CGE_CONFIG_FILE_NAME environment variable is taken from the invoking environment and used.

The --configDir parameter specifies the pathname of a directory containing configuration information. This
information may include a cge.properties file, SSH keys and authorized_keys files and other CGE
configuration. This directory, if specified, will be added to list of directories CGE searches for these files. The
value of this parameter will be placed in the $CGE_CONFIG_DIR_NAME environment variable and passed to CGE.
If this option is not specified and $CGE_CONFIG_DIR_NAME is set in the invoking user's environment, that value
will be used instead. For more information, see the cge-launch(1) man page.

Launch the CGE Server Using the cge-launch Command

S3014 22

5 Mechanisms to Interact with the Cray Graph Engine
(CGE) Database

The following mechanisms can be used to interact with the CGE database:

● CGE Graphical User Interface (GUI)

● CGE Command Line Interface (CLI)

5.1 Cray Graph Engine (CGE) Command Line Interface
The CGE CLI provides access to all the core functionality of the database via the command line. This interface is
provided as part of the standard installation of CGE.

The list of available CGE CLI commands can be retrieved by executing the cge-cli help command without
any options, as shown below:

$ cge-cli help

cge-cli commands are listed in the following table:

Table 1. CGE CLI Commands

Command Description

cge-cli checkpoint Requests creation of a checkpoint

cge-cli echo Allows sending echo requests, which can be used to ping
CGE to check if it is up and responding

cge-cli fe Launches a web-based interface for accessing the server
via a browser and provides SPARQL endpoints, which can
be accessed via standard SPARQL APIs and tooling

cge-cli help Displays help information

cge-cli get-configuration Determines the locations being searched for configuration
files and the effective properties.

cge-cli keyword-lookup Provides help with converting keywords between names
and indexes so that the log options for using with other
commands can be determined.

cge-cli log-info Retrieves the current logging setup of the server

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 23

Command Description

cge-cli log-lookup Provides help with converting log levels between names
and values so that the log options to use with other
commands can be determined.

cge-cli log-reconfigure Reconfigures the default logging setup of the server. The
logging configuration changes persist until the server is
shut down.

cge-cli nvp-info Retrieves the current NVP setup of the server

cge-cli nvp-reconfigure Reconfigures the default NVPs of the server. The NVP
configuration changes persist until the server is shut down.

cge-cli output-info Retrieves the current output directory for results from the
server.

cge-cli output-reconfigure Requests that the output directory for results be changed.
The changes made persist until the server is shut down.

cge-cli query Runs queries against the server, takes in SPARQL queries
from files or from stdin only when no other query options
are provided

cge-cli sparql Runs a mixture of queries and/or updates against the
server, takes in SPARQL queries/updates from files or from
stdin only when no other input options are provided

cge-cli update Runs updates against the server, takes in SPARQL updates
from files or from stdin only when no other update options
are provided

cge-launch Launches the CGE Query Engine

cge-cli generate keystore Creates/inspects a Java keystore file, which is used to
enable SSL support for the fe command.

cge-cli generate Generates a Shiro configuration template that can be
customized as desired.

cge-cli generate properties Create a properties file that can be used to provide a
variety of configuration to commands, without needing to
specify it directly at the command line.

Where more specific help for an individual command may be obtained by running the cge-cli help command,
as shown in the following example:

$ cge-cli help checkpoint

5.1.1 Cray Graph Engine (CGE) Command Output
CGE CLI commands produce the following types of output:

● Logging - Provides diagnostic information about what a command is doing and is useful primarily for
diagnosing any issues that may occur. All logging output goes to standard error.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 24

● Command Output - Provides actual informational output of the command's status, such as query results,
update success/failure etc. All command output is transmitted to the standard output.

As each type of output goes to a different output stream, output can easily be separated using standard shell
redirection e.g.

$ cge-cli query example.rq > results.txt 2> query-client.log

The above example redirects the command output to the results.txt file and the logging to
query-client.log file.

5.1.2 Cray Graph Engine (CGE) CLI Common Options
Certain options that are common to all commands and are provided by the CGE CLI are described in the following
table:

Table 2. Common Command Line Options

Option Argument(s) Default
Value

Example Purpose

Communication Options

--db-host
--dbhost

Host localhost --db-host machine Specifies the host
on which the
database is
running

--db-port
--dbport

Port 3750 --db-port 12345 Specifies the port
on which the
database is
running

--i
--identity

Identity directory ~/.ssh -i /my/custom/identity Specifies the path
to a SSH identity
directory to use for
authenticating to
the server. When
omitted, several
default locations
are tried and the
first valid location
is used

--trust-keys N/A N/A --trust-keys When this option is
set, new host keys
will automatically
be trusted even
when running in
non-interactive
mode. This is
useful in
environments
where the

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 25

Option Argument(s) Default
Value

Example Purpose

database port (and
thus the host and
port combination
required to trust
the key for) may
frequently change.
This option should
only be used when
connecting to
trusted database
servers.

--username Username alice --username alice When set, use this
username to
connect to the
database. In order
for this to work, it
is required to have
access to a key
pair which has
been authorized
for the given
username.
Therefore, this
does not permit
the user to
impersonate
arbitrary users,
instead it allows
the user to act as
another user only if
the user has an
appropriate key
pair.

Client Logging Options

--debug
--verbose

N/A N/A --verbose Enables verbose
mode, which
includes setting
the log level to
debug. All logging
output goes to
stderr, allowing
it to be separated
from command
output, which goes
to stdout.

If the --quiet
option is also

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 26

Option Argument(s) Default
Value

Example Purpose

specified, then the
verbose mode
takes precedence.

--quiet N/A N/A --quiet Enables quiet
mode, which sets
the log level to
error, causes
little/no logging to
go stderr. All
logging output is
transmitted to
stderr, allowing
it to be separated
from command
output, which is
transmitted to
stdout.

If one of the
verbose mode
options is also
specified,
precedence is
given to the
verbose mode.

--trace N/A N/A --trace Enables trace
mode, which
includes setting
the log level to
trace. All logging
output is
transmitted to
stderr, allowing
it to be separated
from the command
output, which is
sent to stdout.

If the --quiet
option is also
specified,
precedence is
given to the
verbose mode

--reveal --reveal Reveals user data
in client side
logging output. By
default any logging

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 27

Option Argument(s) Default
Value

Example Purpose

that contains items
considered to be
user data e.g.
Queries, query
plans etc is
obscured to
prevent data
leakage. Enabling
this option disables
that functionality.

Server Configuration Options

--nvp Name and value N/A --nvp
cge.DoMemoryLeakDetection
1

Sets a NVP to
send to the server
as part of the
request. Usually
necessary only if
asked by Cray
support to enable
advanced options
for debugging an
issue.

--log-disable N/A N/A --log-disable Disables all server
side logging for the
request

--log-level Log_level N/A --log-level 16

Supported log levels include:

● 0=None
● 1=Off
● 2=Error
● 4=Warn
● 8=Info
● 16=Debug
● 32=Trace

Changes the
server logging
level for the
request.

Supported values
may be obtained
by using the log-
lookup
command.

--log-string Log_string N/A --log-level Foo Specifies a string
that will be
included in every
server log line
pertaining to the
request. This is
useful if it is
required to isolate
and extract the log
lines specific to a
request.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 28

Option Argument(s) Default
Value

Example Purpose

--log-
keyword-level

Keyword_level N/A --log-keyword-level 41 32 Changes the
server logging
level for a specific
logging keyword.
The database
server uses a
keyword-based
system that
enables extracting
log levels specific
to certain parts of
the request
processing or
changing the log
level for a specific
keyword.

Supported values
may be obtained
by using the log-
lookup and
keyword-lookup
commands.

--log-global-
keyword

Keyword N/A --log-global-keyword 41 Specifies that a
given keyword
should be included
in all log lines.

Miscellaneous Options

-h command

--help command

N/A N/A --help checkpoint Prints the help
information for the
command rather
than running the
command

--batch
--non-
interactive

N/A N/A --non-interactive When set, this
option guarantees
that the script will
never prompt the
user for input, i.e. it
will never use
stdin. This may
cause some
commands to fail if
they would require
any user input
other than the
provided options.
This is useful when
invoking the CLI in

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 29

Option Argument(s) Default
Value

Example Purpose

a non-interactive
context.

--configDir
--config-dir

Directory N/A --configDir /path/to/config Sets the first
location to search
for configuration
files

-- N/A N/A -- Used to separate
the options from
the arguments to
the command. This
is useful if
arguments may be
mistaken for
options. Any
arguments seen
after the -- are
treated as
arguments even if
they could
otherwise be
considered as
options.

5.1.3 SSH Identities
SSH is used to encrypt communications with the database and to verify that a user is authorized to access a
database. An identity directory or directories to be used explicitly can be specified via the -i or --identity
option. If this option is not used, the following defaults are used:

1. If the environment variable $CGE_CONFIG_DIR_NAME is defined, search it for keys

2. If there is a .cge directory under a user's home directory (as defined by the $HOME environment variable),
search it for keys

3. If there is a .ssh directory under a user's home directory (as defined by the $HOME environment variable),
search it for keys

Only keys from the first directory found to contain keys will be used. Enabling verbose mode displays log output,
detailing which keys are being used.

5.1.4 CGE Hadoop HDFS Configuration
In some instances, the CGE command-line interface will need access to the HDFS configuration in order to
access data results and configuration files that may be located there. To do so, the value of the environment
variable HADOOP_CONF_DIR will be inspected and if this is a valid directory, the relevant configurations files from
this directory will be used. Otherwise the default location /etc/hadoop/conf will be searched. If the verbose
mode is enabled verbose, the system will display log output detailing which configurations files are being used.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 30

Usage of URL paths for HDFS and Lustre
When checkpointing to Lustre, specify a full URL to the Lustre file. The pathname specified is interpreted relative
to the scheme and authority of the data directory URL. So, to checkpoint to a different scheme, specify a URL that
specifies the different scheme. To checkpoint to Lustre from HDFS, the path

file:/mnt/lustre/my/data/directory

will inform the checkpoint command where to put the data.

● If a full URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. file:/path) will be written to the POSIX filesystem
at the pathname specified in the URL.

● If a relative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE startup.

● If a full pathname but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE startup, so, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, if CGE was started with a simple pathname or
FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

5.1.5 Cray Graph Engine (CGE) Properties File
A cge.properties file may be used in order to specify some options without having to explicitly state them with
every command invocation. This properties file may exist in any of the following locations:

1. If the --configDir option is set, use the properties file from that directory if it exists

2. If the environment variable $CGE_CONFIG_FILE_NAME is defined and that file exists, use that file

3. If the environment variable $CGE_CONFIG_DIR_NAME is defined and it contains a properties file, use that

4. If there is a properties file in the working directory from which the command line interface was launched, use
that

5. If there is a .cge directory under your home directory (as defined by the $HOME environment variable) and it
contains a properties file, use that

Only the first file found will be used. Enabling verbose mode displays output detailing exactly which properties file
(if any) are used. Additionally, the get-configuration command can be used to view more detail, such as the
locations being searched, which file is used, and the effective properties.

If present, values from this file are used unless these are specifically overridden using command line options.

Currently the following properties are supported:

Table 3. CGE Property Files

Property Value Equivalent Command
Line Option

Description

cge.cli.db.host Host --db-host

--dbhost
Host name of a CGE server
that the CLI will connect to
if the --dbhost option is
not used.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 31

Property Value Equivalent Command
Line Option

Description

cge.cli.db.port Port --db-port

--dbport
Port number of a CGE
server that the CLI will
connect to if the --dbport
option is not used.

cge.cli.trust-keys True / False --trust-keys Eliminates the need for a
first-time interactive CLI
command each time you
start using a server on a
new TCP/IP port number
combination.

cge.cli.server.host ServerHost --server-host Set the default host on
which the front end
launched by the fe
Command will accept
HTTP requests

cge.cli.server.port cge.cli.server.p
ort

--server-port Sets the default port
number on which the front
end launched by the fe
command will accept HTTP
requests

cge.cli.server.securi
ty

ShiroConfigurati
on

--security Sets the Apache Shiro
configuration file used to
configure user
authentication for the front
end.

cge.cli.server.ssl.en
abled

True/False --ssl Sets whether SSL is
enabled for the front end.

cge.cli.server.ssl.la
x

True/False --ssl-lax Sets whether the SSL
configuration for the front
end should permit older
cyphers and protocols.

cge.cli.server.ssl.ke
ystore

KeystoreFile --keystore Sets the location of the
Java key store used to
provide the SSL certificate
for the front en.

cge.cli.server.ssl.pa
ssword

KeystorePassword Sets the password needed
to unlock the Java key
store which provides the
SSL certificate for the front
end.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 32

Property Value Equivalent Command
Line Option

Description

cge.cli.server.ssl.ke
y-password

CertificatePassw
ord

Sets the password needed
to unlock the SSL
certificate within the Java
keystore.

Note that if there is a properties file that overrides the default value, it will be noted in the logging and will contain
a warning to alert the user of the fact that they have set it in the properties file. Leaving an out of date properties
file around can interfere with correct communications with the database server with no clear reason.

Defining Command Aliases
The properties file may also be used to define command aliases. These are essentially shortcuts to other
commands. An alias is defined in the following manner:

$ cge.cli.alias.algebra=compile -c algebra

This defines a new alias algebra which simply invokes the compile command passing in the -c Algebra option.
The CLI can then be invoked using the following command:

$ cge-cli algebra example.rq

This would compile the given query into algebra and is equivalent to running the following command:

$ cge-cli compile -c algebra example.rq

Command aliases are subject to the following restrictions:

● Aliases cannot override built-in commands.

● Aliases cannot be defined recursively, which means that an alias cannot be defined in terms of another alias.

Advanced Command Alias Definition
There are some more advanced functions that can be performed on aliases such as using positional parameters.
For example, consider the following definition:

$ cge.cli.alias.c=compile -c $1

This creates the alias c, which again invokes the compile command. However, this time it uses a positional
parameter for the value of the -c option. With this definition the CLI can be invoked in the following manner:

$ cge-cli c rpn example.rq

Here the first argument after the alias is injected into the expansion of the alias so this is equivalent to running the
following:

$ cge-cli compile -c rpn example.rq

NOTE: If a positional parameter receives no value, it will be passed through as-is, which will likely result
in parser errors.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 33

5.1.6 Create Checkpoints Using the CGE checkpoint Command
The checkpoint command is used to request the creation of the checkpoint, which is a dump to disk of the
current database state, optionally including a NQuads file that can be used to export the database to other tools.
A checkpoint is a compiled database consisting of a dbQuads, string_table_chars, and
string_table_chars.index file.

This command simply takes in a path to a directory in which to create the checkpoint. The checkpoint directory is
given as a URI. This URI may be a full file:// or hdfs:///URL, or it may be a relative URI (e.g. a simple
absolute or relative pathname) in which case it will be resolved relative to the base URI on the server (i.e. the
current database directory).

CAUTION: If a relative path is used, the path will be evaluated relative to the data directory of the running
CGE instance.

It is possible to checkpoint to the same data directory the user started from by using that directory's path as the
path for the checkpoint. The checkpoint, if successful, will overwrite the existing dbQuads,
string_table_chars and string_table_chars.index files, so that the next time you start from that
directory you will get the new dataset.

Alternatively, it is also possible to checkpoint to another directory. If the directory already contains a dataset, and
the checkpoint succeeds, the dataset will be overwritten.

CAUTION: If the data directory is being moved to a different location, make sure to shutdown any
instance of CGE that was launched using that data directory before relaunching CGE.

Examples
Following are a couple of examples of using the checkpoint command:

● Using a relative URL to a file

$ cge-cli checkpoint /lus/scratch/user/db/cp1
● Using a HDFS URL

$ cge-cli checkpoint hdfs:///user/db/cp1
● Using NQuads

If an NQuads file needs to be generated for use with other RDF and SPARQL tools, use the -q or --quads
option of the checkpoint command, as shown in the following example:

$ cge-cli checkpoint --quads /lus/scratch/user/db/cp1

Once the checkpoint has been created, the system will display a message saying: Checkpoint creation
succeeded

Additional items to note while using checkpoints:
● If a full URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS

URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. file:/path) will be written to the POSIX filesystem
at the pathname specified in the URL.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 34

● If a relative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE startup.

● If a full pathname, but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE startup. Therefore, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, otherwise if CGE was started with a simple
pathname or FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

● The checkpoint command allows overwriting existing checkpoints. However it will do so in such a way that
it guarantees that this is an atomic operation. This means that either the checkpoint is overwritten and
replaced, or the previous checkpoint will continue to exist.

For more information, see the cge-cli-checkpoint(1) man page.

5.1.7 Compile SPARQL Commands Using the CGE compile Command
The compile command is used to compile SPARQL commands into the logical and/or physical plans that the
database server will use to execute the command. This can be useful for understanding how the system is
interpreting and optimizing a query or update.

Following is an example of using the compile command:

$ cge-cli compile -c algebra example.rq

The preceding example would compile the SPARQL command found in the example.rq file into algebra form
and display it to standard output. Multiple files can be specified in order to compile a large number of files at once.

Compilation Modes
The -c/--compiler-mode option is used to specify the desired compilation output type. Supported values are
as follows:

Table 4. Compilation Modes

Compilation Mode Output Mode

algebra The optimized SPARQL algebra for the query/update as text in
SPARQL Set Expression (SSE) format. This can be thought of as
the logical plan for the query.

raw-algebra The unoptimized SPARQL algebra for the query/update as text in
SSE format. This is the unoptimized logical plan for the query.

rpn The physical plan for the query/update in binary form. Primarily
intended for Cray developer use only.

rpn-string The physical plan for the query/update in text. Primarily intended
for Cray developer use only.

all Produces all of the above.

This option may be specified multiple times to request multiple output formats. If the all option is also specified,
it would supersede any individual format requests. The -a or --all options can also be specified as a shortcut
for specifying the -c all option.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 35

Compilation Output
By default, compilation output goes to stdout and can be redirected to a file if desired. However, if multiple files
need to be processed, or if more than one output type needs to be generated, then it is recommended to use the
-f or --files option, which outputs a file for each input and compilation mode combination in the directory
where the cge-cli command is being executed. The output file names are automatically generated based upon
the input file name by replacing the extension with the appropriate extension for the output type:

Table 5. Compilation Output

Output Type Output File Extension

algebra .algebra

raw-algebra .rawalgebra

rpn .rpn

rpn-string .rpnstring

For example, suppose that there is a file named getTenRows.rq that contains the following SPARQL query:

sparql query: select * {?s ?p ?o} limit 10

Now execute the compile command on the getTenRows.rq, as shown in the following example:

$ cge-cli compile -c all getTenRows.rq --files
0 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Started Algebra to RPN message conversion
2 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Finished Algebra to RPN message conversion (3 operations)

The above command would create the following four files:

● getTenRows.rawalgebra

● getTenRows.rawalgebra

● getTenRows.rpn

● getTenRows.rpnstring

For more information, see the cge-cli-compile(1) man page.

5.1.8 Check the Database State Using the CGE echo Command
The echo command is used to check that the database server is up and able to respond to requests.

As the name implies, the echo command simply sends some data to the database server and checks that the
server echoes it back correctly.

An example of using the echo command is shown below:

$ cge-cli echo Test data

The above command sends the data Test data to the server. If the data is sent successfully, the system returns
a message saying: Echoed data received and validated successfully.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 36

Generating Test Data
Use the echo command to generate some random data to send to the server. This can be used to test much
larger requests than what would need to be manually typed in. For example:

$ cge-cli echo -g 8000

If the data is sent successfully, the system returns a messaging saying: "Echoed data received and
validated successfully".

For more information, see the cge-cli-echo(1) man page.

5.1.9 Launch the CGE Web Server Using the fe Command
The fe command is used to launch a web server that provides a user interface and SPARQL endpoints to CGE.

In order to stream query results over HTTP, this command must be running on a host that has access to the same
file system that the database server is writing results to. Typically, this means executing the fe command on a
login node of the system running CGE. It should be noted that since it is often required to have the user interface
available for a long period, it is recommended to launch it in the background so that it is resistant to terminal
disconnects.

For example:

$ nohup cge-cli fe > web-server.log 2>&1 &

When the CGE user interface server has started, the system returns a message indicating that the server has
started and is ready to accept HTTP requests.

Once the user interface has been launched, it is possible to access the SPARQL endpoints on the machine and
port displayed in the log message.

Verifying the Server Connection
It may be useful to verify that the database server is up and running when starting the web server. In this case,
the --ping option can be used with the fe command, which makes the fe command check that the database
server is up and running before launching the web server:

$ cge-cli fe --ping

Running on a Different Port
Sometimes it may be necessary to run the web server on a different port. This can be achieved by using the --
server-port option with the fe command (whose default value is 3756) to supply an alternative port on which
to run the web server, as shown below:

$ cge-cli fe --server-port 12345

If an alternative port is chosen to run the web server, it is important to modify the URLs appropriately when
accessing the user interface.

For more information, see the cge-cli-fe(1) man page.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 37

5.1.10 Determine How Locations Are Being Searched Using the get-configuration
Command

The get-configuration command is used to determine locations of CGE configuration files and the effective
properties. This command does not communicate with the database. It inspects the user's local environment and
provides information to help understand how configuration is being discovered. For example:

$ cge-cli get-configuration
/opt/cray/cge/2.5.1183_r6061c0b_fe2.5.0_20160926.144651_1_2016101912/bin/cge-cli:
line 8: pushd: .: Permission denied
/opt/cray/cge/2.5.1183_r6061c0b_fe2.5.0_20160926.144651_1_2016101912/bin/cge-cli:
line 11: popd: directory stack empty
0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled, logs will
obscure/omit user data. Set cge.server.RevealUserDataInLogs=1 in the in-scope
cge.properties file to disable this behaviour.
Environment Variables:
 CGE_CONFIG_FILE_NAME=
 CGE_CONFIG_DIR_NAME=
 HOME=/home/crayusr

Searched Locations:
 1 - /opt/cray/cge/2.5.1183_r6061c0b_fe2.5.0_20160926.144651_1_2016101912/bin
 2 - /home/crayusr/.cge

Properties File Found? No

Properties

Here it can been seen that the output includes relevant environment variables, the locations searched for
configuration, and whether a file was found. If a file was found then the path to that file is shown. Finally, all CGE
related properties from that file are listed along with their values, as part of the output.

5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the
keyword-lookup Command

The keyword-lookup command provides the means to lookup mappings between keyword IDs and user-
friendly keyword names. These can be used to find the values that need to be passed to the log options when
invoking other commands. Unlike most of the other commands, the keyword-lookup command does not
actually contact the database.

For example, use the following command to lookup a specific keyword ID:

$ cge-cli log-lookup 28
/opt/cray/cge/2.5.1183_r6061c0b_fe2.5.0_20160926.144651_1_2016101912/bin/cge-cli: \
line 8: pushd: .: Permission denied
/opt/cray/cge/2.5.1183_r6061c0b_fe2.5.0_20160926.144651_1_2016101912/bin/cge-cli: \
line 11: popd: directory stack empty
0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled, \
logs will obscure/omit user data. Set cge.server.RevealUserDataInLogs=1 \
in the in-scope cge.properties file to disable this behaviour.
28=ORDR

Alternatively, a keyword ID can be looked up based upon the keyword name using the keyword-lookup
command, as shown in the following example:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 38

$ cge-cli keyword-lookup QRY

The keyword-lookup command can be used without any arguments to display the full mapping of levels to
names, as shown below:

$ cge-cli keyword-lookup

For more information, see the cge-cli-keyword-lookup(1) man page.

5.1.12 Retrieve Default Server Logging Information Using the log-info Command
The log-info command retrieves information about the server's default logging configuration.

NOTE: The information returned by the log-info command does not necessarily reflect the logging
settings for individual requests since all commands may use the Cray Graph Engine (CGE) Command
Line Interface to change the log configuration for specific requests.

An example of using the log-info command is shown below:

$ cge-cli log-info

Example output of the above command is shown below:

$ cge-cli log-info
0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand - Making
request...
Server Log Configuration:
Version 1 - Printing Enabled - Default Level Info (8) - Keyword Levels Set {0-42}

In the above example, we can see that the server is configured with the default settings, as indicated by the text:
Default Level Info (8). However, in other cases we might see different settings, as shown in the following
example output:

$ cge-cli log-info
0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand - Making
request...
Server Log Configuration:
Version 1 - Printing Enabled - Default Level Warn (4) - Keyword Levels Set {0-42}
Keyword TCP (Index 41) = Debug (16)

In the second example above, we can see that the default level has been turned down to Warn, but the TCP
keyword is turned up to Debug. The server's default log configuration can be used via the log-reconfigure
command if needed. For more information, see cge-cli-log-info(1) and cge-cli-log-reconfigure(1)
man pages.

5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names
Using the log-lookup Command

The log-lookup command provides the means to lookup mappings between log level values and user-friendly
log level names. These can be used to find the values that need to be passed to the log options, when invoking
other commands. It does so without contacting the database.

An example of using the log-lookup command for looking up the log level that has a value of 16 is shown
below:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 39

$ cge-cli log-lookup 16

An example of looking up a level based on the name follows:

$ cge-cli log-lookup Warn

Alternatively, use the log-lookup command without any arguments to retrieve the full mapping of levels to
names, as shown in the following example:

$ cge-cli log-lookup

For more information, see the cge-cli-log-lookup(1) man page.

5.1.14 Change the Default Logging Configuration of the CGE Server Using the log-
reconfigure Command

The log-reconfigure command changes the default logging configuration of the server.

The information returned by the log-info command does not necessarily reflect the logging settings for
individual requests since all commands may use the Cray Graph Engine (CGE) Command Line Interface to
change the log configuration for specific requests.

For example:

$ cge-cli log-reconfigure --log-level 16

The system will display a message if an incorrect value is specified for the log-level.

Upon successful execution of this command, the system returns the message: "Received success
response".

TIP: It is recommended to verify that the log configuration changes have been implemented by using the
log-info command. It may also be helpful to use the log-lookup and keyword-lookup commands
to determine the values that need to be passed the options, in order to configure logging settings as
desired.

WARNING: Do not set the server log levels to DEBUG or TRACE, especially, if the Cray Graph Engine
(CGE) server is running with a large number of images.

For more information, see the cge-cli-log-reconfigure(1) man page.

5.1.15 Display Information About the Default NVP Configurations Using the CGE nvp-
info Command

The nvp-info command retrieves information about the default NPVconfiguration of the server. The information
retrieved by the nvp-info command does not necessarily reflect the NVP settings for individual requests since
commands may change the NVP configuration for specific requests.

An example of using the nvp-info command is shown below:

$ cge-cli nvp-info

If the server's default NVP configuration needs to be changed, use the nvp-reconfigure command.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 40

For more information, see the cge-cli-nvp-info(1) man page.

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure
Command

The nvp-reconfigure command is used to change the server's default NVP configuration.

Upon successful execution of this command, the system returns a message saying: "Received success
response". Configuration changes are not necessarily reflected in the NVP settings for individual requests since
commands may change the NVP configuration for specific requests. It is recommended to use the nvp-info
command to verify that the changes have taken effect, as shown below:

$ cge-cli nvp-info

Most of the supported NPVs have a defined range of acceptable values. Values specified outside of those ranges
will be normalized into the range for that NVP. Unsupported NVPs are simply ignored, with a warning printed in
the database logs and their values will not be stored by the server.

For more information, see the cge-cli-nvp-reconfigure(1) man page.

5.1.17 Display Server Output Directory Information Using the output-info Command
The output-info command retrieves information about the current output directory of the server. This is the
directory to which the server writes query results to for later retrieval.

An example of using the output-info command is shown below:

$ cge-cli output-info

The output-reconfigure command can be used if it is required to change the server's output directory.

For more information, see the cge-cli-output-info(1) man page.

5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure
Command

The The output-reconfigure command is used to change the servers output directory to which it writes query
results for later retrieval. This directory is given as a URI, full file:// or hdfs:// URLs may be used. If a
relative URI is given then this is resolved relative to the base URI of the server i.e., the current database directory.

An example of using the output-reconfigure is shown below:

$ cge-cli output-reconfigure /new/output/directory

NOTE:

After executing the output-reconfigure command, it is recommended to use the output-info
command to verify that the changes have taken effect, as shown below:

$ cge-cli output-info
For more information, see the cge-cli-output-reconfigure(1) man page.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 41

5.1.19 Execute Queries Using the CGE query Command
The query command is used to execute queries against the running database. This command can be used to
execute a single query or a sequence of queries.

Queries that need to be executed may be specified in a number of ways:

● By providing a list of files, which contain lists of files containing queries to be executed

● By providing the names of query files directly

● Via stdin (only if no queries are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, those queries are executed before any queries are specified directly. This command may only be used
to execute SPARQL queries. To execute updates, use the update command or to execute mixtures of queries
and updates use the sparql command.

An example of using the query command is shown below:

$ cge-cli query --list queries.txt extra-query.rq

The above command will execute all the queries specified in the queries.txt file before executing the query
specified in the extra-query.rq file. Executing queries by default produces only information about where to
obtain the results and not the result itself.

An example of using the query command is shown below:

$ cge-cli query types.rq

Here we can see that the database returns the following results information:

0 28 1756 0 file:///lus/scratch/rvesse/results/queryResults.2016-06-13T13.47.22Z000.28889.tsv

This is a simple tab separated string with the fields being as follows:

Table 6. Status Descriptions

Column Index Information

0 Status - will be 0 for successful queries

1 Result count - number of results returned

2 Result size - results size in bytes

3 Execution time - query execution time in seconds

4 Results location - path to the file containing the results

5 Error message - should be blank for successful queries

Results File Format
The file containing the results is in SPARQL Results TSV format and contains only the tabular results for the
query. This means that if an ASK/CONSTRUCT/DESCRIBE query has been created, the results file will not contain
the final results.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 42

Printing Results
This simple format makes it easy to process with standard command line tools,. For example, the following
command can be used to show the results in the console:

$ cge-cli query --quiet types.rq | cut -d$'\t' -f 5 | xargs cat

As noted earlier, the results file contains only the tabular results for the query. If results of an ASK/CONSTRUCT/
DESCRIBE query are desired to be printed, see the 'Streaming Results' section below.

Streaming Results
As already seen, it is possible to use simple command line tools to extract and dump the query results to stdout.
However, this only works for SELECT queries, and when the results can be accepted in SPARQL Results TSV
format. If it is desired to retrieve the final results in an arbitrary format, the --stream option of the query
command will need to be used. This option may only be used when executing a single query and it takes the
MIME type of the desired results format.

$ cge-cli query --stream application/sparql-results+xml types.rq

Results are returned in SPARQL Results XML format. Supported formats include the following:

Table 7. Output Result Formats

Query Types MIME Types Output Format

ASK and SELECT application/sparql-results+xml SPARQL Results XML

application/sparql-results+json SPARQL Results JSON

text/csv SPARQL Results CSV

text/tab-separated-values SPARQL Results TSV

CONSTRUCT and
DESCRIBE

application/n-triples NTriples

text/turtle Turtle

application/rdf+xml RDF/XML

application/rdf+json RDF/JSON

application/ld+json JSON-LD

NOTE: Requesting a format that does not match the query type or is unknown will result in an error.

There are also three special values that may be passed to this option:

● text

● json

● xml

When these values are specified, the CLI will automatically select an appropriate text (line-based), JSON or XML
output format in which to stream the results, while taking into account the type of query being evaluated. For
example providing --stream text might produce SPARQL results TSV for an ASK/SELECT query but produce
NTriples for a CONSTRUCT/DESCRIBE query. When these special values are used, the exact output format will not
be known in advance but will be guaranteed to fall into the general format given.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 43

Making Multiple Queries
When multiple queries are executed, they are executed in the order specified (subject to the aforementioned
precedence of list files over individual files) and the command will print a results header for each query.

$ cge-cli query types.rq list-graphs.rq ask-types.rq

A results header is retrieved for each query run.

For more information, see the cge-cli-query(1) man page

5.1.20 Cray Graph Engine (CGE) Optimizer Configuration
On rare occasions, it may be required to change the query optimizer configuration. This can be performed by
using the --opt-off and --opt-on options. Both of these options take the name of an optimizer flag to disable/
enable as desired.

The following example shows how to set the optimizer flag to off:

$ cge-cli query --opt-off optFilterPlacement types.rq

Executing the above statement would execute the query with the filter placement optimization disabled. If both
the enabled and disabled flag options are specified, the flag will be considered as disabled. There are some flags
whose values cannot be changed regardless of the options given.

CAUTION: Turning optimization off may result in significantly increased memory usage and/or
performance degradation. Therefore, it is strongly recommended that the optimizer configuration be
changed only when advised to do so by a Cray support engineer.

5.1.21 Shutdown the CGE Server Using the shutdown Command
The shutdown command is used to instruct the Cray Graph Engine (CGE) server instance to shut down.

An example of using the shutdown command is shown below:

$ cge-cli shutdown

The shutdown command requests that the server be shutdown gracefully. If this command is executed by the
user that owns the server process, the user will receive a success message indicating that the server has shut
down.

NOTE: If the server is in a bad state, then this command will not succeed. Standard Linux techniques for
killing an application process should be used in this case.

5.1.22 Execute Sparql Queries and Updates Using the sparql Command
The sparql command is used to execute queries and/or updates against the database. It can be used to
execute a single query/update or to execute a whole sequence of queries and/or updates.

Queries and updates to be executed may be specified in a number of ways:

● By providing list files which contain lists of query and/or update files to be executed

● By providing the names of query and/or update files directly

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 44

● Via stdin (only if no queries/updates are specified in other ways and the --non-interactive option is not
used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, queries specified in those list files will be executed before any queries specified directly.

This command may be used to execute a combination of SPARQL queries and updates. Use the query
command to execute SPARQL queries. Use the update command to execute SPARQL updates.

An example of using the sparql command is shown below:

$ cge-cli sparql --list commands.txt extra-command.ru

The above command will execute all the queries specified in the commands.txt file before executing the queries
specified in the extra-command.ru file.

An example of using the sparql command is shown below:

$ cge-cli sparql list-graphs.rq create-graph.ru list-graphs.rq

Executing queries/updates using the sparql command produces the corresponding results for the command.
This means that for queries it produces information about the results and for updates it produces a success/failure
message as appropriate.

For more information about the sparql command, see the cge-cli-sparql(1) man page.

Differences Between the sparql and query Commands
The major differences between the sparql and query commands include:

● The sparql command can run a mixture of queries and updates, whereas the query command can run
queries only.

● The query command can stream results directly using the --stream option.

5.1.23 Execute Updates on a Database Using the CGE update Command
The update command is used to execute updates on a database. This command can be used to execute a
single update or a sequence of updates. It supports all the common options described in Cray Graph Engine
(CGE) Command Line Interface.

Updates to be executed may be specified in a number of ways:

● By providing list files, which contain lists of update files to be run.

● By providing the names of update files directly

● Via stdin (only if no updates are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, updates contained within those files will be executed before any updates specified directly.

This command may only be used to execute SPARQL updates. If it is required to executed queries, use
the query command. To execute a combination of queries and updates, use the sparql command

An example of using the update command is shown below:

$ cge-cli update --list updates.txt extra-update.ru

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 45

The above statement will execute all the queries specified in updates.txt file before executing the query
specified in the extra-update.ru file. Executing an update returns a message indicating whether the update
succeeded or failed.

$ cge-cli update create-graph.ru

Running Multiple Updates
If multiple updates need to be executed, they will be executed in the order specified (subject to the
aforementioned precedence of list files over individual files) and the command will print a success or failure
message for each update.

For example:

$ cge-cli update create-graph.ru drop-graph.ru

For more information, see the cge-cli-update(1) man page.

5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command
The generate keystore command is used to create/inspect a Java keystore file, which is used to enable SSL
support for the fe command.

This command supports three different modes of operation:

1. Importing an existing SSL certificate

2. Inspecting an existing key store

3. Generating a self signed SSL certificate

Security Concerns
Key store files are protected by passwords so this command may prompt to either enter/create passwords as
necessary. As passwords must be entered interactively, this command may fail if run with the --non-
interactive option. The user will need to know and supply these passwords elsewhere in order for the key
store to be used. The related cge-cli generate properties command can be used to store the necessary
passwords in obfuscated form in the properties file.

Importing a Certificate
This is the most frequently used mode. It allows an existing SSL certificate in possession to be imported into a
key store file for use by the fe command:

$ cge-cli generate keystore --importserver.cer

This imports the certificate from the server.cer file into a key store file in the default location.

CAUTION: In order for the imported certificate to be usable it must contain the private key as well as the
Digital signature from the certificate authority. Without the private key a certificate cannot be used for SSL

Inspect a Key Store
This mode can be used to inspect an existing key store to see what certificate is present in it. For example:

$ cge-cli generate keystore --display

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 46

Generate a Self-signed Certificate
CAUTION: This mode should only be used for testing purposes. Using a self-signed certificate in a
production environment is insecure and not recommended.

In this mode a self-signed certificate is generated and added to the key store. This can be used to test the use of
SSL without the need to first obtain a certificate from a recognised certificate authority. However the certificates
generated in this way are inherently insecure, may not be trusted by many other tools and should be avoided
wherever possible.

$ cge-cli generate keystore --self-signed

This will prompt the user to enter a variety of identifying information for their certificate, and adds the resulting
certificate to the key store ready for use.

5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command
The generate shiro command is part of the cge-cli generate command group. This command is used to
generate a Shiro configuration template that can be customized as desired. It enables users to quickly create a
configuration that can be used with the fe command to provide user authentication.

For example:

$ cge-cli generate shiro ldap > example.ini

The above will generate a Shiro configuration based upon the LDAP template to standard output. In this example,
this is redirected to the example.ini file, where it can be edited as needed.

Available templates
There are for templates available through this command which are detailed in the following table:

Template Description

ldap A template that can be customised to allow integration with a LDAP server, i.e. it
allows authentication to be deferred to an existing LDAP service

forms A template that has both locally defined user accounts and roles, it uses forms
authentication

simple A template that has locally defined user accounts and uses HTTP Basic
authentication

anon A template that enables anonymous access, i.e. no user authentication

5.1.26 Create a Properties File Using the CGE generate properties Command
The generate properties command is part of the cge-cli generate command group. It helps create a
properties file that can be used to provide a variety of configuration to commands without needing to specifying it
directly at the command line. This command can either create/modify a properties file, so it can be used to create
an entirely new configuration, or use it to update an existing configuration.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 47

The options supplied to this command are the same as options supplied to many other commands. However, the
values of these options are simply added/updated in the relevant properties file, instead of being used for their
normal function. Additionally, there are some options specific to this command that control which properties file is
created/modified, and whether modifications are merged with, or overwrite existing properties in that file.

The default behaviour of this command is to modify existing properties i.e. the resulting properties file is the result
of reading the existing properties and applying any modifications requested by this command. If you instead
prefer to create an entirely new set of properties then you should use the --overwrite option to specify that
existing properties are not preserved. It is generally best to be explicit about which properties file you wish to
modify, otherwise you may modify the wrong properties file. The -f or --file options are used to specify the
specific file to modify. The logging output of this command will explicitly note which properties file is being
modified.

Setting values in the properties file does not guarantee that they are used. Any property which can also be set via
a command line option can be overridden by specifying that option. The logging output will indicate when a
property has been used and when a property has been overridden by a command line option.

Basic Usage
The following example generates a properties file in one of the default locations that cge-cli will search for it:

$ cge-cli generate properties -f ~/.cge/cge.properties --db-port 1234

Advanced Usage
In the following example we overwrite our existing properties file and specify several properties, including one that
does not have a specific command line option to set it:

$ cge-cli generate properties -f ~/.cge/cge.properties --overwrite \
--db-host example.mycompany.com --db-port 1234 -p
cge.server.RevealUserDataInLogs \
1 --ssl-passwords

Command Specific Options
Table 8. Command specific options

Option Value(s) Example Usage Description

-f

--file

PropertiesF
ile

-f ~/.cge/cge.properties Provides the path to the
properties file that needs to be
created/modified.

--
overwrite

--overwrite When set, indicates that any
existing properties file at
specified/automatically discovered
location should be overwritten.

The default behaviour is to first
read in the file if it exists meaning
that any existing properties not
being modified by this command
are left intact. If you specify this

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 48

Option Value(s) Example Usage Description

option any existing properties are
lost.

-p

--property

Key Value -p
cge.server.RevealUserDataInLogs
1

When set, indicates that the given
property and value should be
added to the properties file. This
can be used to add any property
which does not have a specific
option for modifying it.

--ssl-
passwords

--ssl-passwords When set, will prompt for
passwords used to secure the
Java key store which contains the
SSL certificate use by the cge-
cli fe command

These passwords will be stored in
the properties file in obfuscated
form to provide some protection
from casual inspection. You
should apply appropriate
permissions to the properties file
to fully protect these.

5.2 Access the Cray Graph Engine (CGE) Graphical User Interface
CGE provides a simple interface for access via a browser and also provides SPARQL 1.1 protocol compliant
endpoints. The CGE user interface enables you to perform a number of tasks, including:

● Executing queries

● Executing updates

● Creating checkpoints on a database

● Using advanced options for viewing and editing server configurations, as well as for performing server NVP
and logging configuration changes.

To access the CGE user interface, point the browser at: http://machine:3756/dataset/, where machine is
the host name of the machine where the web server is hosted. Multiple instances of CGE can be launched on the
same node at different ports.

CAUTION: The firewall configuration of the host machine must allow for port 3756 to be accessed
externally or this will not work, unless the browser is running on the same host. If the site's firewall
configuration does not permit this, SSH port forwarding can be used to forward the remote port to the
local machine, as shown in the following example:

$ ssh machine -L 3756:hostname:3756

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 49

In the above example, machine is the machine running CGE’s web server. The first 3756 is the local
host port to connect to, whereas hostname:3756 is the remote reference.

The results format received in the browser is dictated by the HTTP Accept header that your browser
sends (or conversely that your programmatic HTTP client sends). The 'Force text/plain as the
response Content' option controls the Content-Type header that the front end responds with, which
affects how the browser interprets the response. Depending on the browser if this option is disabled (the
default) then this might mean that it downloads/offers to save the response to a file rather than displaying
it in the browser, enabling the aforementioned option changes the response Content-Type to always be
text/plain regardless of what format the front end actually outputs which forces the browser to display the
response in the browser itself. If it is needed to display the results in a different format, customise the
HTTP Accept header accordingly, most browsers have some means to configure this. For example in
Firefox navigate to About>Config. Click through the warning if it appears and then search for accept and
edit the value of the network.http.accept.default setting to add the desired content types. The
closest thing to plain text that the front end will produce is text/tab-separated-values. Most browsers
include application/xml in their default accept header, which mean you will typically get SPARQL
XML results by default (or RDF/XML if it were a CONSTRUCT query).

Logging on to the CGE UI
The CGE UI can then be accessed by pointing the browser at: http://localhost:3756/dataset/.

If you have configured the server to perform user authentication, the first thing you will see is one of the following
screens, depending on what authentication method has been configured. For more information, see CGE Security
on page 68.

● When configured for forms authentication you will see you the following screen:

When configured for basic authentication, the browser will prompt for credentials like so:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 50

The exact format of this dialogue will depend upon the browser you're using, this example is from Safari. Either
way the user will need to enter their credentials in order to log in.

Upon successfully accessing the CGE user interface the following screen will be displayed:

Figure 2. Cray Graph Engine User Interface

At the top of the page you will find the navigation bar:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 51

Figure 3. CGE UI Navigation Bar

This provides a number of useful pieces of information. Firstly it indicates the underlying database server that the
front end will be connecting to. In this example the underlying database server is on example.mycompany.com:
1234

There are then three menus which provide access to the various functionalities of the server. The data access
menu contains the following:

Figure 4. Data Access Menu Options

The options in the menu include:

● SPARQL Query enables making queries

● Export Query Results allows you to make a query but only returns meta data about where the results have
been saved to disk

● SPARQL Update enables making updates

● Checkpoint enables checkpointing the database to disk

The configurations management menu contains the following options:

Figure 5. Configuration Management Menu Options

● Database Information provides access to the current configuration of the server

● Edit Database Configuration allows you to edit that configuration

Finally the user menu shows the currently logged in username and provides access to logout functionality:

Figure 6. User Menu options

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 52

If you have not configured user authentication, the system will instead display the following warning:

Figure 7. Insecure Mode Warning

5.2.1 Launch the CGE Web Server
Before using the Cray Graph Engine GUI, it is required to launch the database via the cge-launch command
and leave the default port setting of 3750 unchanged. If an alternative port has been used, then it will be required
to add the --db-port option to specify an alternative port. Once the database has been launched, the Cray
Graph Engine (CGE) graphical user interface and/or the SPARQL endpoints may be used. This can be
accomplished by launching the web server that provides the user interface on a login node of the system where
CGE is running, as shown below:

$ cge-cli fe

Alternatively, you can use the following command to have the web server continue running in the background with
its logs redirected, even if you disconnect from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

NOTE: The web server is launched by the same script as the rest of the Command Line Interface tools,
and supports many of the same standard options detailed in Cray Graph Engine (CGE) Command Line
Interface.

5.2.2 Execute SPARQL Queries Using the CGE UI

About this task
The Cray Graph Engine (CGE) Query Interface allows executing SPARQL queries on a loaded RDF database
running within CGE. The main feature of this interface is the text field for entering queries to execute. Secondly,
there is a check box that enables specifies that the server returns the query results with a

Content-Type header value of text/plain, which will force the browser to display the results as many
browsers will download the results rather than display them by default. The rest of the options seen in this
interface are described later in the Advanced Options section.

The browser interface uses standard HTTP content negotiation to determine the format in which to return the
query results, most browsers out of the box will receive results in an XML/JSON format:

Procedure

1. Optional: Log on to the CGE UI by pointing a browser at http://machine-login1:3756/login, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 53

2. Access the CGE Query Interface using one of the following mechanisms:

● Point the browser at http://machine:3756/dataset/query
● Select the Query Interface link from the Data Access drop down on the CGE Query Interface UI.

Figure 8. Query Interface

3. Execute a SPARQL query,by entering it in the SPARQL Query field. The check box under the SPARQL
Query field can be selected to specify that the server should return the query results with a Content-Type
header value of text/plain. This will force the browser to display the results in the browser, as many browsers
will download the results rather than display them by default.

4. Select the Run Query button, which will submit the query to the server and deliver the results to the browser.
The user interface uses standard HTTP content negotiation to determine the format in which to return the
query results. Most browsers receive results in an XML/JSON format.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 54

5.2.2.1 Get Query Metadata
Sometimes it may not be desired to get all the results delivered over HTTP. Instead, it may be needed to simply
submit a query whose results will be processed later. To do this, use the export query results endpoint accessed
at: http://machine:3756/dataset/export-results, where machine is used as an example for the machine name.

This interface is functionally identical to the Query interface. The endpoints differ only in the format of the
response. The export results endpoint return only the meta data about query results. This is similar to the default
behaviour of the query command. The meta data is returned in one of three formats, where the response format
to use is determined by content negotiation.

Table 9. Query Metadata

Format Example Response Content Types

Tab separated values (TSV) 0 100 0 2 /tmp/results.tsv ● text/plain
● text/tab-separated-

values

XML <?xml version="1.0"
encoding="UTF-8"?> <cge-
results> <query><!
[CDATA[SELECT * WHERE
{ }]]></query>
<count>100</count>
<size>0</size> <time>2</
time> <status>0</status>
<location>/tmp/
results.tsv</location> </
cge-results>

application/xml

JSON { "query" : "SELECT *
\nWHERE\n { }\n" ,
"count" : 100 , "size" :
0 , "time" : 2 ,
"status" : 0 ,
"location" : "/tmp/
results.tsv" }

application/json

This interface only supports SELECT queries. Any other queries will be rejected, this is because the meta data is
only accurate and complete for SELECT queries.

5.2.3 Execute SPARQL Updates Using the CGE Update Interface

About this task
The Cray Graph Engine (CGE) Update Interface enables executing SPARQL updates on a database. SPARQL
update is a language extension to SPARQL 1.1 that makes it possible to make updates to an active RDF
database, using SPARQL query syntax. Use the CGE Update Interface to perform a number of tasks, including
updating the default database to add or remove RDF triples and quads, copying or moving the contents of one
database to another, and performing multiple update operations in a single action.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 55

Procedure

1. Optional: Log on to the CGE UI by pointing a browser at http://machine-login1:3756/login, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured.

2. Access CGE's Update Interface by selecting one of the following mechanism:

● Point a browser at http://machine:3756/dataset/update

● Select Sparql Update from the Data Access drop down on the CGE UI.

Figure 9. CGE Update Interface

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 56

3. To execute a SPARQL update, enter the update statement into the SPARQL Update field.

4. Select the Run Update button to submit the update for processing. Once the system has finished executing
the update, it will send either a success/failure message as appropriate.

5.2.4 Create a Checkpoint Using the CGE UI

About this task
When a database is started for the first time its initial state is considered to be a checkpoint. When a change is
made to the database, its state can be preserved by creating a checkpoint. This preserves a copy of the previous
in-memory database. Creating a checkpoint creates a persistent record of the database state, which is written to
the database directory in a file named export_dataset.nq.

NOTE: Checkpoints can only be created on running databases. If there are any queries or updates
executing, it important to ensure that they finish executing before a checkpoint is created, otherwise the
state of the database in the checkpoint may not contain the desired updates to it.

Procedure

1. Optional: Log on to the CGE UI by pointing a browser at http://machine-login1:3756/login, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

2. Access the Checkpoint Interface using one of the following mechanisms:

● Point the browser at http://machine:3756/dataset/checkpoint, where machine is the machine
running CGE’s web server.

● Select Checkpoint from the Data Access drop down.

This brings up the Checkpoint Interface, as shown below:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 57

Figure 10. Creating a Checkpoint

3. Specify a location for the checkpoint in the Checkpoint Location field. This is the directory where the
checkpoint will be saved. The server will generate an error if this directory does not exist or is read-only.

4. Select the Create Checkpoint button to create the checkpoint. This will return a success/failure message as
appropriate, as shown in the following example output:

Checkpoint created at /lus/scratch/cge/datasets/lubm/0/temp

5.2.5 Cray Graph Engine (CGE) Advanced Options
CGE provides a number of advanced options that can be used to change the behavior of the database server for
a specific request. Some of these options impact the server, whereas others impact individual requests. To access
this interface, select Edit Database Configuration from the Data Access drop down. The user interface for
configuring advanced options is shown in the following figure:

Figure 11. Server Name Value Pairs

NOTE: Options provided in this section of the user interface are relevant only for the processing of the
request under consideration and should be updated for each individual request. If it is desired to change

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 58

the options for the database server as a whole, it will be required to use the interface described in the
'Edit Server Configurations Using the CGE UI' topic of this publication.

Server NVPs (Name Value Pairs)
In the Server NVPs section, NVPs can be specified to pass to the database server. These can be used to control
behavior or enable additional debugging information.

IMPORTANT: In most cases, it will not be required to enter anything in the Server NVPs field, unless
specifically instructed to do so by a Cray representative for gathering information to aid in diagnosing
encountered issues.

Server Logging Configuration
The Server Logging Options section provides options that allow configuring the amount of logging the database
server will produce in the server side logs during the processing of a request. The desired logging level (i.e. log
verbosity) can be selected from the Server Log Level drop down, which is followed by the Server Log String
field, in which a log string can be entered. The log string can be up to 128 characters and will be included on
each log line pertaining to the request. This is often useful for extracting all the log lines pertaining to a specific
request.

Messages of types INFO, WARNING, and ERROR can be logged in the system, INFO being the default log level.

This interface also provides the option to disable logging for the request entirely, though it is generally
recommended to avoid this option as it makes it difficult to monitor the status of the server while it processes
queries.

5.2.6 View Server Configurations Using the CGE UI

About this task
The Server Information interface allows you to view all the server configuration settings defined in the system.

IMPORTANT: In most cases it will not be required to change server configuration settings, unless
specifically instructed to do so by a Cray representative in order to gather information for diagnosing
issues being experienced.

Procedure

1. Optional: Log on to the CGE UI by pointing a browser at http://machine-login1:3756/login, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 59

2. Access the Database Information interface using one of the following mechanisms:

● Point a browser at http://machine:3756/dataset/info, where machine is the machine running
the Cray Gray Engine's (CGE’s) web server.

● Select Database Information from the Configuration Management drop down on the CGE UI

Figure 12. Server Configurations

The information displayed on the Server Information interface includes information about the log and NVP
configurations of the server, as well as the results output directory.

5.2.7 Edit Server Configurations Using the CGE UI

About this task
The Edit Server Configuration interface allows editing server configurations.

IMPORTANT: It is recommended not to change server configuration settings, unless specifically
instructed to do so by a Cray representative in order to gather information for diagnosing issues.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 60

Procedure

1. Optional: Log on to the CGE UI by pointing a browser at http://machine-login1:3756/login, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

2. Access the Cray Graph Engine (CGE) Edit Server Configuration interface, by using one of the following
mechanisms:

● Point a browser at http://machine:3756/dataset/config, where machine is the machine
running CGE’s web server.

● Select Edit Database Configuration from the Configuration Management drop down on the CGE UI.

Figure 13. Editing Server Configurations

3. Select the desired server NVP and logging options using the Server NVPs and Server Logging Options
sections of the UI. In addition to the Server NVPs and Server Logging Options, this interface also contains
a Server Output Directory field that allows changing the server output directory. This is the directory to
which the database writes results, and from which the web server reads in order to deliver query results over
HTTP.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 61

CAUTION: It is best not to change server configuration settings, as doing so can adversely affect
performance (especially if it is changed to point to a relatively slow file system).

4. Select the Reconfigure Server button when the changes have been made.

Unlike the options presented in the other interfaces, the values set from this interface persist for the lifetime of
the server and become the new defaults.

Upon doing so, the system will return a response detailing the success/failures of the pieces of configuration
that were to be updated, as shown in the following example output:

Updated Server NVP Configuration successfully
Updated Server Logging Configuration successfully

5.2.8 Control Options
In most cases it will not be needed to change server configuration settings, unless a Cray support representative
specifically requests, in order to gather information for diagnosing issues. However, there are some settings that
you may occasionally wish to change. Name Value Pairs (NVPs) that enable you to modify these settings are
listed in the following table:

Table 10. CGE NVPs

Parameter Description Default Value

cge.server.QueryTimeout This parameter sets the maximum runtime (within the
server) of a given query in seconds (wall clock time).
This timeout will be checked after every operation.
However, it does not interrupt operations. After the query
times out, the server will terminate that query and will be
immediately ready for subsequent queries. Acceptable
values for this parameter range from 0 seconds
(automatic termination at the start of the second
operation) to 100, 000 years expressed in seconds
(3153600000000). If a negative value is entered for this
field, it will be converted to 0.

31536000

cge.server.InferOnUpdate Causes inferencing to be enabled or disabled for a given
update. Has a value of either “0” or “1”. The default value
of this parameter is "1", which sets inferencing on for
updates. A rules.txt file must be present for
inferencing to take place. If no rules.text file exists,
inferencing will not be performed. If updates to the
database were made after inferencing was turned on,
triples added previously will stay saved in the database if
inferencing is turned off subsequently.

1

cge.server.BuddyMaxGBs Sets the upper limit on the amount of memory used by
the big buddy allocator. The value of BuddyMaxGBs
must be a non-negative integer value and is used to
specify the maximum number of gigabytes allocated for
the big buddy allocator. For example, setting the value to
50 will set the upper limit on the memory allocated for the
big buddy allocator to 50 GB. By default, the limit is set to

128 GB

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 62

Parameter Description Default Value

128 GB and the maximum is 1 TB. Setting this parameter
to 0 will disable the limit.

cge.server.LittleBuddyMa
xGBs

Sets the upper limit on the amount of memory used by
the little buddy allocator. The value of
LittleBuddyMaxGBs must be a non-negative integer
value and is used to specify the maximum number of
Gigabytes allocated for the little buddy allocator. For
example, setting the value to 8 will set the upper limit on
the memory allocated for the little buddy allocator to 8
GB. By default, the limit is set to 16 GB and the
maximum is 128 GB. Setting this parameter to 0 will
disable the limit.

16 GB

cge.server.RevealUserDat
aInLogs

Specifies whether or not to obscure user data output to
logs. If log data is obscured for the given application run,
CGE issues the warning: "User data obscurred.
set cge.server.RevealUserDataInLogs=1 to
show". Setting the value of this parameter to 1 informs
CGE to not obscure user data output to logs.

By default,
obscures user
data that is output
to the logs.

NVPs for GraphML Support

cge.server.ExportGMLRDFE
nable

Setting this NVP to 1 will cause CGE to export the quads
generated for a given GraphML file to an nt file of the
same name as the input GraphML file but with the nt
extension

Off

cge.server.GMLInsertPref
ix

Setting this to 1 will cause CGE to insert the urn: prefix
when converting identifiers for graphs, nodes, and edges
to URIs.

On

cge.server.GMLCheckPrefi
x

Setting this to 1 will cause CGE to check an identifier for
a known prefix before inserting the urn: default prefix.

CGE inserts the
urn: prefix by
default.

5.3 SPARQL Endpoints
CGE provides standards compliant SPARQL endpoints via the cge-cli fe command. When run this command
launches an embedded Jetty web server that provides SPARQL 1.1 protocol compliant endpoints that may be
used by any SPARQL aware tools to make queries and updates against CGE.

These endpoints are SPARQL 1.1 protocol compliant and provide all the standard parameters.

Web Server
The web server is a standard Java servlets based web application, for ease of deployment and usage we host
this in an embedded Jetty server. The web application consists of a bunch of Java servlets defined in the cge-
sparql-server module with one for each service provided by the CGE SPARQL server. Additionally there is
some static HTML content, each piece of HTML content actually represents only a small portion of a page of the

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 63

browser interface. These pieces are served and combined dynamically by a simple templating engine, this allows
for easily tweaking portions of the browser interface and having those be automatically reflected on all pages of
the interface.

Standard SPARQL tools can be used to interact with the Cray Graph Engine (CGE) by pointing them at the
relevant endpoint URLs, which are shown in the following table:

Table 11. SPARQL Endpoints

Service Endpoint URL

SPARQL Query http://machine:3756/dataset/query

SPARQL Update http://machine:3756/dataset/update

In the above examples, machine is used as an example for the name of the machine running CGE’s web server.

Supported Content Types
The SPARQL query endpoint uses standard HTTP content negotiation to determine how to return query results to
the SPARQL tool, depending on the Accept header that the tool sends.

NOTE: The results format received in the browser is dictated by the HTTP Accept header that your
browser sends (or conversely that your programmatic HTTP client sends). The 'Force text/plain as
the response Content' option controls the Content-Type header that the front end responds with,
which affects how the browser interprets the response. Depending on the browser if this option is disabled
(the default) then this might mean that it downloads/offers to save the response to a file rather than
displaying it in the browser, enabling the aforementioned option changes the response Content-Type to
always be text/plain regardless of what format the front end actually outputs which forces the browser to
display the response in the browser itself. If it is needed to display the results in a different format,
customise the HTTP Accept header accordingly, most browsers have some means to configure this. For
example in Firefox navigate to About>Config. Click through the warning if it appears and then search for
accept and edit the value of the network.http.accept.default setting to add the desired content
types. The closest thing to plain text that the front end will produce is text/tab-separated-values. Most
browsers include application/xml in their default accept header, which mean you will typically get
SPARQL XML results by default (or RDF/XML if it were a CONSTRUCT query).

The following standard formats are supported by the query endpoint:

Table 12. Query Types and Supported Content Types

Query Type Supported Content Types

ASK and SELECT ● SPARQL Results XML

● SPARQL Results JSON

● SPARQL Results CSV

● SPARQL Results TSV

CONSTRUCT and DESCRIBE ● NTriples

● Turtle

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 64

Query Type Supported Content Types

● RDF/XML

● RDF/JSON

● JSON-LD

Standard HTTP behavior of returning the message "406 Not Acceptable" will apply if the tool does not
include any formats the endpoint can produce in its Accept header.

Custom Parameters
CGE features endpoints that provide custom parameters, which can be used to configure the same advanced
options supported by the CGE user interfaces. These parameters are listed in the following table:

Table 13. Custom Parameters

Parameter Example Purpose

forcePlainText forcePlainText=true Used to force the returned Content-Type to be
text/plain regardless of the actual content type
being returned.

This is only useful for browser access to the
endpoints and may cause errors if used with
SPARQL tools.

nvps nvps=foo%3Dbar Specifies the NVPs to be passed to the database
and applied to the request.

These must be specified in Java properties file
style with one name=value pair per line

log-level log-level=16 Specifies the log level to use for database logging
of the request. This takes an integer value with
values interpreted as follows:

● 2 = Error

● 4 = Warn

● 8 = Info

● 16 = Debug

● 32 = Trace

The log-lookup command can be used for
translating integer values to the desired log
levels.

log-string log-string=Foo Specifies a string to be included on every
database log entry pertaining to the request.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 65

Parameter Example Purpose

Maximum supported length is 128 characters and
longer strings will be truncated accordingly.

log-disable log-disable=true Can be set to disable all database logging for the
request

5.4 Create and Use a Database

Prerequisites
If the Cray Graph Engine (CGE) is needed to perform inferencing on data, ensure that a valid rules.txt file
exists in the directory containing the data.

About this task
The following instructions can be used to create a database and execute queries and/or updates on the database
once it has been built.

Procedure

1. If the data is not in RDF format, convert the data to RDF.

2. If the RDF data resides in a single file, save/rename that file to dataset.nt or dataset.nq. This is
required because CGE accepts ONLY files in .nt or .nq formats as input. All other formats should be
converted to either .nt or .nq (including .rdf). On the other hand, if the data resides in more than one file,
create a graph.info file and add the names of the RDF file to that file.

3. Build the database using the cge-launch command as shown below:

$ cge-launch -o pathtoResultsDir -d path -l logfile

In the above statement, pathtoResultsDir is used as an example for the path to the directory that will
contain the results of queries and/or updates. path is used as an example for the path to the database
directory and logfile is used as an example for the log file that will contain the command and server output.
pathtoResultsDir MUST be a directory and MUST contain either a triples or quads file. These files must
be named dataset.nt or dataset.nq respectively. For more information, see the cge-launch(1) man
page.

NOTE: When the database has been built, the following files are saved in the database directory:

● dbQuads
● string_table_chars
● string_table_chars.index

Executing multiple update commands at a time is not supported currently. Updates should be split into
separate files and/or submissions.Collectively, the aforementioned files are the disk representation of the
binary version of the database which can be reloaded into CGE. When the CGE application is launched again

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 66

and the same database directory is specified, the dbQuads file will be detected and the compiled database
will be read instead of the RDF. Furthermore, if the database directory contains a rules.txt file, CGE will
perform inferencing on the data. This is because inferencing is turned on by default. It can be turned off by
setting the cge.server.InferOnUpdate NVP parameter to 0.

4. Execute the fe command to launch a web server that provides a user interface and SPARQL endpoints to
CGE.

$ nohup cge-cli fe > web-server.log 2>&1 &

5. To execute a query or update on the database, use either the CGE UI or the CGE CLI.

a. To execute queries/updates via the CGE UI, follow the instructions listed below:

1. Connect to the CGE UI by pointing the browser at: http://machine:3756/dataset/. This brings
up the CGE UI.

2. Select the Query Interface or Update Interface to execute queries and updates respectively.
Optionally, server configuration parameters can also be specified to control the query/update.

b. To execute queries/updates via the CGE CLI, use the query, update and sparql commands to
execute SPARQL queries, updates and/or combination of queries and updates correspondingly. For
usage information, see the associated man pages.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 67

6 CGE Security
CGE security starts at the entry point to the request handling in the CGE server and extends outward to the web
UI and the CGE CLI commands. CGE Security is comprised of the following mechanisms:

● Server side user identification and authentication

● User permissions and access control

● User accountability

● Client side user identification and authentication

Server Side User Identification and Authentication
Users on the server side of CGE are identified by user names, which are character strings that name the user.
User names within CGE are not necessarily tied to any specific user known to the Linux platform on which the
CGE server is running, though there are scenarios in which it is practical to configure CGE users using their Linux
login usernames. This freedom from the Linux platform permits a database owner to set up a CGE instance that is
web accessible (more on this later) and has a user community completely defined by the database owner without
respect to ability to log into the Linux platform on which the CGE Instance is running. This is similar to other web-
based frameworks that permit the owner of the framework to set up the user community without needing to be
able to create user logins on the host platform.

The CGE Server handles requests in the context of a client connection. Each connection establishes a context in
which one or more sequential requests may be issued. While each connection may present a sequence of
requests, these connections are not persistent in the sense that they represent an open ended logged in
relationship with the client. The most common scenario is a connection that presents one or two requests and
handles the responses, then disconnects.

Each connection is made without context preserved from any previous connection. Because of this, each time a
client connects to submit requests, the client submits the user name (identity) of the user making the request. The
CGE server uses the SSH public-key authentication protocol to verify that the client submitting the user name has
the authorization to present that user name.

Normally, authentication strives to verify that the user presenting an identity actually is the user who owns that
identity. In the case of the CGE server, the expectation is that this level of authentication has already been done
on the client side. The CGE server needs to know that it is talking to a client that is authorized to present work on
behalf of the specified user.

User Permissions and Access Control
The CGE server handles work as a sequence of requests. Each request has a particular type, such as

● Query

● Update

● Checkpoint

● Shutdown

CGE Security

S3014 68

Each request type has an associated permission that determines whether a client making that request is allowed
to make that request or not. Permissions can be associated with individual users or groups of users by making
permission assignments in an Access Control List (ACL) located in the directory where the CGE dataset is found.

When a request arrives, the username presented by the request is authenticated and then the permissions
associated with that username are looked up. If the permission associated with the incoming request type is
present in the user's permission set, the request is allowed to proceed. If not, the user is notified of the request
failure and the request is not allowed to proceed.

This mechanism allows the owner of a CGE database to establish coarse grained protections against
unauthorized actions by otherwise authorized user.

User Accountability
When a user submits a request, the CGE Server runs that request on behalf of that user. The owner of the CGE
database may want to review the operations that have been executed by a given user. To this end, from the
moment a request arrives to the moment that the request completes processing and reports its result (successful
or not) the username of the client making the request is recorded with each log entry written by the CGE server
into its operational log. Even if the user has the permission to turn off all logging for the duration of the request,
CGE server records log entries at the beginning of the request indicating that the user has turned off logging.
Those log entries are tagged with the requesting user's username.

Client Side Identification and Authentication
Client side identification and authentication is responsible for assuring that a user making a request actually is the
purported user. There are two different kinds of client seen by CGE:

● logged in Linux users running CGE CLI commands and APIs as clients

● Web-based clients

The identification and authentication for these two different kinds of clients differs, so each are explored
separately.

● Logged In Linux users as clients - A logged in Linux user has already been identified and authenticated by
Linux, and the user's credentials have been established by Linux. If there were a simple trustworthy way to
transmit those credentials directly to the CGE Server, this would be sufficient and the client would simply
assert the user's logged in Linux identity with every request. Because requests are transmitted outside of a
trusted context, however, the CGE Server authenticates the requested username using SSH public-key
authentication as described above.

Within the category of Logged In Linux users, a client may be either a normal client or a super client. The
distinction is between clients that can only present a single username to the CGE server and clients that may
present some larger set of usernames (constrained by the CGE server configuration) to the CGE server.

○ Normal clients - A normal logged in Linux user client presents the username of the Linux user with each
request. The server side authentication of a logged in Linux user uses that user's public SSH key for
public-key authentication of the user. Since Linux is a trusted repository for user identity, once the user
has logged into Linux the user's identity can be trusted (by the client) at all times. The degree to which the
client is trusted by the CGE Server hinges on the ability of the SSH protocol to match the requested
username with a working public key.

○ Super clients - A super client is a logged in Linux user whose private SSH key matches with more than
one public-key/username pair in the CGE Server configuration. Generally, the owner of the CGE
Database will be a super client, allowing him or her to run the Web UI and enable user authentication, but
any user can be set up by the database owner as a super client. In the case of a super client, an arbitrary

CGE Security

S3014 69

username is presented with each request (generally corresponding to a user who has been authenticated
using some higher level mechanism). If the username matches a public key that works with the super
client user's private SSH key, the supplied username will be used by the CGE server. If not, the request
will fail to authenticate at the CGE server and will not proceed.

It is worth noting that the use of the same public key for multiple users while keeping the associated private
key private to the owner of that key does not constitute SSH key sharing, since there is only one user (the
super client user) who owns the key pair. In the case of key sharing, all users sharing the key have access to
the same key pair. In this case, only the super client has access to the private key and the public key is used
to allow the super client to authenticate as 'authorized to present' the specified username.

● Web UI clients - The Web UI, CGE CLI front end is also capable of authenticating clients. It supports
authentication using either an enterprise LDAP server or a user private authentication mode. The Web-UI also
permits encryption of web transactions using SSL, to protect secrets (both authentication secrets and data
secrets) in transit. When a user logs into the Web UI, the Web UI presents the logged in user name instead of
the username of the Linux user who started the Web UI. For this to work, the user who starts the Web-UI
needs to be the super client who has the correct private SSH key for all of the Web based users authorized to
use the CGE Instance.

Notice that Web UI clients are separated from logged in Linux clients by the keys used to log them in. A Linux
user who has Web UI username/key pair on the CGE Server but no Linux username/key pair cannot use the
Linux command line CGE CLI command. By the same token, if the user has no Web UI username/key pair,
that user cannot use CGE through the Web UI. This allows the CGE Database owner to control both the form
of access (via permissions) and the mode of access (command-line or web or both).

6.1 Cray Graph Engine (CGE) Security Mechanisms
The CGE query engine protects the port on which it communicates with clients using an encrypted authentication
mechanism based on the Secure Shell (SSH) passwordless authentication mechanism. Before using the CGE
user interface query clients to make requests on data sets, authentication must be configured. If it is required to
set up the query engine to permit multiple users to execute requests, it will be required to configure public keys for
each user. This can be configured on a per-data set or all data sets basis.

6.1.1 Create a CGE Specific RSA/DSA Host Key

About this task
At some sites, site policy may dictate the use of a pass phrase with SSH keys used for logging into a system. If a
pass phrase is used when creating your SSH key, the CGE authentication mechanism will be unable to use your
SSH key(s) as its host key(s), so separate CGE specific host key(s) will need to be created. To do this, follow the
instructions listed below:

Procedure

Create the key in the .cge directory using ssh-keygen(1) instead of creating the key in the .ssh directory:

$ mkdir -p $HOME/.cge
$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/users/username/.ssh/id_rsa): /users/username/.cge/id_rsa
Enter passphrase (empty for no passphrase):

CGE Security

S3014 70

Enter same passphrase again:
Your identification has been saved in /users/username/.cge/id_rsa.

Your public key has been saved in /users/username/.cge/id_rsa.pub.
The key fingerprint is:
eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host
The key's randomart image is:
+--[RSA 2048]----+
| . . |
| + + * o |
| + + B = o . |
| o . + = . . |
| . . S + . |
| |
| E o |
| . o |
| . . |
+--[MD5]----------+
$ ls -l $HOME/.cge
total 8
-rw------- 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

NOTE: While this example shows creation of keys under $HOME/.cge, it can be used to place keys
in any directory. If $HOME/.cge is not a convenient place to put the keys, follow the above procedure
to generate the keys in some other (suitably protected) directory, then use the --configDir option
to cge-launch or the $CGE_CONFIG_DIR_NAME environment variable to point to that directory. If it
is required to use CGE specific keys that are stored on HDFS, create them in a temporary directory
using this procedure, then copy them onto HDFS in the location of your choice (appropriately
protecting them). Then use an HDFS URL as the value of $CGE_CONFIG_DIR_NAME or the
argument to the --configDir option to the cge-launch command to select that directory instead
of $HOME/.cge as the key directory.

Once this has been done, CGE will use the keys in the .cge directory instead of the ones in the .ssh
directory and there should be no further problems with pass phrases.

6.2 Setup CGE Security
Setting up security for a given instance of CGE involves the following steps:

● Configure authorized logged in Linux users (including the database owner) in an appropriate
authorized_keys file

● Configure any super client authorized users using the public SSH key of the Super Client and the usernames
of the various users in the appropriate authorized_keys file

● Configure user permissions in the database ACL file

● Optionally create an SSL configuration for cge-cli fe
● Create an authentication configuration (private or LDAP, simple or forms based) for cge-cli fe
● Start the CGE Web UI using cge-cli fe with appropriate security options

6.2.1 Configure Server Side Identification and Authentication
Configuring server side identification and authentication includes setting up both authorized Linux logged In (i.e.
command-line) users, and setting up any super client authorized users that are needed for Web UI access or
other purposes. The database owner needs to make decisions about the following:

● Is it required to allow command line clients to access the dataset?

● Is it required to grant Web-UI clients access to the dataset?

CGE Security

S3014 71

● At what scope (single dataset or all the datasets) is it required to authorize each given user, both the Web-UI
identity and the Linux identity?

The authorized_keys File
The CGE Server searches the file named authorized_keys in each of the following directories for a username that
matches the username presented with a given request:

● the database data directory

● the CGE configuration directory (either by default: $HOME/.cge, or the value of $CGE_CONFIG_DIR_NAME
which can be set using the --configDir=URL option to cge-launch)

● $HOME/.ssh

Each username match is tested in turn until the public key associated with that match works for public-key
authentication. Once a match is found, the user has successfully authenticated and becomes an authorized user
for the duration of that request. Subsequent permission checks determine what that user is authorized to do.

One important decision the database owner needs to make is where to put a given user authorization. The choice
of the authorized_keys file to store a given username/key combination depends on the breadth of
authorization the owner of one or more databases wants to grant to the user. This breadth has three scopes:

● authorization to use only one database

● authorization to use all databases configured from the same configuration directory (typically all owned
databases)

● authorization to use all owned databases and, likely, to log into the Linux host using the self identity

By placing a user's authorization in the authorized_keys file in the database data directory, the user is granted
the most limited scope of authorization. This is appropriate for users that need to be granted access to that
specific database, or if the database owner owns multiple databases with multiple potentially overlapping lists of
authorized users and wants local control over each user authorization. By placing the user's authorization in the
CGE Configuration directory, the user is granted intermediate scope of authorization. This is appropriate if the
database owner owns multiple databases with a core set of users who are authorized on all of the databases.
Placing a user in the $HOME/.ssh/authorized_keys file can potentially permit that user to log in as the
database owner, which is a serious security threat. Never put any username/key combination that is not
specifically your own SSH key (for login) in the $HOME/.ssh/authorized_keys file. This file is included in the
search solely to make using CGE as the owner of the database simpler.

Authorized Keys for Command Line/API Use of the CGE Database
Users who are authorized to log into the server where the CGE database resides and use the cge-cli command
or one of the CGE APIs to interact with your CGE Database need to have the public SSH key corresponding to
their private SSH key stored in one of the authorized_keys files. Users may communicate their public SSH
keys to you using whatever means (E-mail, publicly readable files, etc.) is mutually convenient. The user's public
key can be generated using the ssh-keygen command and usually resides in the user's $HOME/.ssh directory
in one of the following files:

● id_rsa.pub (RSA based public key)

● id_dsa.pub (DSA based public key)

When adding a command line/API key to the authorized_keys file, make sure that the key is a single line
comprised of three parts (separated by spaces):

CGE Security

S3014 72

● the signing scheme used by the key (RSA or DSA)

● the key itself

● the username@host identifying the user

and that the username part of the username@host part matches the logged in user name of the requesting
user. The host part is ignored, so it can be anything. Here is an example entry. Note that the content, which is a
single line, is split up into multiple lines due to lack of space:

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDOVyLTKwz/RAngMegeTST2Ow0JMwFea9qQC6R7en7A
+BcsIaNt2m+9Vh/AocMfaruwpyHr26\
epsdpC8Thw4+9NIUfoUoJyKC6TMZcntF7e3RiY1yZt6uvKUIgs75zS4fqZMAtHEiuvgLHkZwypKF1vssc
usSYCMkNxXUa0E38UcPVmH\
+zEGWpc9yyObl+7Ae4PuKIjw6gpOtX8W8Wz/
Eb5UAwf56pCR045izZBwRe7y9anHe3+XtluFU9zU1I80aeRHg64KmMS3jCNhGIFOwmW\
O8iYmxHXyCheifxdYpCgI+jN+jQ6CqbFe4OrbkbuP/elAmFYl5BHMWi7LmYVWEYP user@nid00030

This will authorize the user user with the corresponding private SSH key to use your database.

Authorized Keys for Web-UI Users
The Web-UI uses the Super Client key of the user running the cge-cli fe command to submit requests on behalf
of logged-in Web-UI clients. Normally, the user running the cge-cli fe command is the owner of the database, so
examples of adding users are shown using your public SSH key as the authorizing key for Web-UI users in the
authorized_keys file.

Assuming you are the user who will be running the cge-ci fe command for your database, the following command
adds the user david as an authorized Web-UI user of your CGE Database:

$ $ sed -e "s/ $USER@/ david@/"< $HOME/.ssh/id_rsa.pub >> \
 authorized_keys

This replaces your username from your id_rsa.pub public key file (a similar command will work with an
id_dsa.pub file as well) with david creating a user named david that you are authorized to authenticate for your
CGE Database instance. Do this for all the Web-UI users you want to authorize. You will also need to make sure
they are able to log into your Web-UI.

6.2.2 Configure the ACL File User Permissions
By default, in the absence of an ACL file, users of the CGE database file will fall into one of two categories:

● the instance owner (a user who's username matches that of the Linux username of the user who started the
CGE Server)

● everyone else

As the instance owner, you have all permissions when interacting with the CGE Server. All other authorized users
are permitted only to query the database.

This section explains how to set up an ACL file that allows more precise control of access to the database on a
per-user basis.

CGE Security

S3014 73

CGE Permissions
CGE uses a hierarchical set of permissions to control the types of requests an authorized user is permitted to
make. The following lists the permissions and the requests or actions they control:

● data.query - permission to query (read only) the data set

● data.update - permission to update (write only) the data set

● data.checkpoint - permission to checkpoint (save to storage) the data set

● request.nvp - permission to set one or more configuration NVP settings to be effective for the duration of
an individual request, if not present, specifying NVP settings causes the request to fail

● request.log - permission to modify logging behavior for the duration of an individual request, if not present,
logging is unchanged but the request proceeds normally

● server.config.nvp.get - permission to read the NVP configuration in effect in the running server

● server.config.nvp.set - permission to alter the NVP configuration in effect in the running server for all
subsequent requests

● server.config.log.get - permission to read the logging configuration in effect in the running server

● server.config.log.set - permission to alter the logging configuration in effect in the running server for
all subsequent requests

● server.config.output.get - permission to read the name of the output directory used by the server to
store result files

● server.config.output.set - permission to change the output directory used by the server to store result
files for all subsequent requests

● server.shutdown - permission to shut down the running server

Permissions may be named individually or may be named using a wildcard character ('*') at any level of the
hierarchy. A wildcard character all by itself signifies all permissions. Here are some examples of permission sets
and their equivalent wild card definitions:

● All Permissions : *

● data.query,data.update,data.checkpoint : data.*

● server.config.nvp.get,server.config.log.get,server.config.output.get :
server.*.get or server.config.*.get

● server.config.nvp.get,server.config.nvp.set : server.*.nvp.* or *.nvp.*, or
server.config.nvp.*

Notice that various more or less specific forms of wildcarding produce the same result with the current set of
permissions. In future releases, new permissions might be added that might match one of the less specific
wildcard specifications and grant unexpected rights to a given user. It is generally best to use the most specific
wildcard form possible to achieve the desired set of permissions so that you do not experience permission creep
from release to release. It is also a good idea to review you ACLs with respect to the permissions available in a
given release to ensure that no new permissions are being unexpectedly granted.

The ACL File
The ACL file is a file named user_perms.cfg in the data directory of your database. This file, if present, contains
the permission assignments for authorized users using your database. For your convenience, this file allows you

CGE Security

S3014 74

to group permissions and users using roles, each of which is a named set of permissions containing the
permissions needed to carry out a specific related set of database responsibilities, and groups, each of which is a
named set of users to be assigned a common set of permissions or roles. The ACL also permits you to specify
permissions or roles for individual users by name, and to specify a default set of permissions using the default
user name (*). Here is a sample ACL that illustrates all of these elements:

[roles]
An administrator has all permissions
admin = *

An auditor has the ability to adjust the logging
behavior of the running CGE Server
auditor = server.config.log.*

A consumer of data is allowed to query the CGE Database
and provide per-request NVPs because some NVPs impact the
efficiency / practicality of certain queries.
consumer = data.query,request.nvp

A producer of data is allowed to query, update, and
checkpoint the CGE Database, and is allowed to set
per-request NVPs because some NVPs impact the efficiency
or practicality of certain queries, and some options on
checkpointing are controlled by NVPs.
producer = data.*,request.nvp

[groups]
admins = joe,mary,abdul
auditors = phyllis,jodi,allan
producers = anne,grace,william

A group of users to whom no access is permitted. This is
a useful way of temporarily disabling a user while keeping
that user's authorized keys active. The group is defined
here with its member list, but is never assigned any roles
or permissions. This prevent's these users from being
treated as default users (allowing default users to have
more permissions) while ensuring they have no access.
denied_users = wilbur,ginger,ava

[permissions]
group:admins = role:admin
group:auditors = role:auditor
group:producers = role:producer
The user 'david' is an auditor who also needs to be able to
see what is in the database, so he needs both the auditor and
consumer role.
david = role:auditor,role:consumer
The user 'fred' needs to be able to query, but we don't trust
him with changing per-request NVPs, so he can't do that.
fred = role:auditor,data.query

Everyone else who is not specifically mentioned either by name
or by group is allowed to be a 'consumer'
* = role:consumer

There are a few things to notice about the above sample ACL. First of all, it is divided into sections of three types:

● The roles section contains role definitions

CGE Security

S3014 75

● the groups section contains group definitions

● the permissions section contains permission assignments to both groups (where the group name is
qualified by the group: prefix), and users.

There may be any number of sections of a given type. The aggregate effect of multiple sections of the same type
is the same as having one large section of that type containing all of the content of the smaller sections.

The second thing to notice is that comments are permitted in an ACL file. Comments take the form of a '#'
character followed by any arbitrary text up to a newline. The comment ends at the newline.

The third thing is not obvious from the example, but the sections, definitions and assignments do not need to be
presented in any particular order. As long as the definitions and assignments take place within the appropriate
sections and convey an unambiguous intent, the CGE Server will figure out any necessary ordering.

There are some rules about what constitutes unambiguous intent:

● A role or group may have at most one definition in the ACL

● A group or user may have at most one permission assignment in the ACL

● A user may belong to at most one group

● A user may not both belong to a group and have a permission assignment

● The list of permissions and roles in a permission assignment may contain any arbitrary list of permissions and
roles, even repeated permissions or repeated roles

● The default (*) user is a default user, not a wildcard user, so assigning permissions or roles to it, at most once,
does not violate any of the above rules regarding explicitly named users

If an ACL file is changed while the CGE Server is running, its contents will take effect upon receipt of the next
request. This permits on-the-fly changes to the ACL, but it also opens up the possibility of creating a malformed
interim ACL while editing or in the process of copying a new ACL into position. In order to replace an ACL safely,
it is a good practice to make a copy of the ACL that needs to be edited, then edit the copy and verify it using the
cge-test-permissions command, before moving it into place using the mv(1) Linux command. The
advantage of using the mv(1) command instead of the cp(1) command is that the rename of the file performed
by mv(1) is atomic, so no request can come in while the file is being copied. The risk of a race condition here is
tiny, but it could produce surprising effects that cannot be reproduced.

For more information, see the cge-test-permissions(1) and CGE-PERMISSIONS(5) man pages.

Verifying an ACL File
The cge-test-permissions command allows you to verify the correctness of an ACL without needing to read
through the CGE Server log for errors. While an ACL file may reside on any file system accessible by the CGE
Server for its ultimate use (e.g. HDFS) , the cge-test-permissions command only has access to files on
POSIX compliant (i.e. Linux native) file systems. Since you are most likely to edit your ACL files on a native file
system and then copy them to, for example, an HDFS file system, this should not be too much of an
inconvenience, but it is important to note that specifying a URL for an ACL filename to cge-test-permissions
will result in an error.

Here are a few examples of common uses of cge-test-permissions using the example ACL file shown
above:

Check that the ACL file is correctly formed and unambiguous,
expecting a silent exit (the exit value will be 0) on success
$ cge-test-permissions perms_example.cfg

CGE Security

S3014 76

Check the definition of the 'auditor' role
$ cge-test-permissions -r auditor perms_example.cfg
Role 'auditor':
 Permissions: server.config.log.get, server.config.log.set

Check the definition and permissions assigned to the 'auditors' group
$ cge-test-permissions -g auditors perms_example.cfg
Group 'auditors':
 Roles:
 auditor [server.config.log.get, server.config.log.set]
 Assigned Permissions: <none>
 Effective Permissions: server.config.log.get, server.config.log.set
 Members: phyllis, jodi, allan

Check the definition of the user 'jodi'
$ cge-test-permissions -u jodi perms_example.cfg
User 'jodi':
 Member of group auditors [server.config.log.get, server.config.log.set]
 Roles: <none>
 Assigned Permissions: <none>
 Effective Permissions: server.config.log.get, server.config.log.set

Check the definition of the user 'fred'
$ cge-test-permissions -u fred perms_example.cfg
User 'fred':
 Member of no group
 Roles:
 auditor [server.config.log.get, server.config.log.set]
 Assigned Permissions: data.query
 Effective Permissions: data.query, server.config.log.get,
server.config.log.set
Check the definition of the denied user 'ava'
$ cge-test-permissions -u ava example_acl
User 'ava':
 Member of group denied_users []
 Roles: <none>
 Assigned Permissions: <none>
 Effective Permissions: <none>

If any of the above commands were run using an ACL with errors or ambiguity in it, the command would have
reported errors as it found them, allowing you to correct the errors and re-run the command.

The first example is simple. If no options are given, the command simply verifies that the specified file is
acceptable and exits silently if it is okay.

The second example displays the contents of the single role named auditor. Here the name of the role and the
permissions that make up that role are displayed.

The third example displays both the definition and the permissions of the group auditors. In this case, the name
of the group and the users making up that group are displayed. In addition to that, though, the group also may be
assigned some set of roles, and may be assigned some set of explicit permissions. Any roles assigned to this
group are displayed, and two different kinds of permissions are displayed. The first set of permissions is the
Assigned Permissions these are the permissions that were explicitly assigned to the group by name. The
second set of permissions is the Effective Permissions. These are the permissions that result from
combining the permissions derived from roles with any permissions explicitly assigned by name. They are the
permissions that will actually be used to make an access decision when a member of this group issues a request
to the CGE Server.

CGE Security

S3014 77

The fourth example displays information about the user jodi. A user may belong to a group, or be assigned
permissions and / or roles explicitly, so all of this is displayed. Here we see that jodi is a member of the group
auditors which contributes a set of permissions, but has no explicitly assigned permissions or roles. The
Effective Permissions here are the permissions derived from group membership, role assignment and
explicit permission assignment. In the case of jodi the effective permissions are derived from the group
auditors so they are the same as that group.

The fifth example displays information about fred who has an explicit role assignment and an explicit permission
assignment but is not a member of any group. Here we see the role auditor contributes a set of permissions,
and there is one permission explicitly assigned to fred. The Effective Permissions in fred's case are the
combination of the role permissions and the explicit permissions (no permissions are contributed by a group).

The last example displays information about ava who has had all permission explicitly denied to her by placing
her in a group of users who are denied permissions. Notice that she is a member of the group denied_users
which has no permissions assigned to it. She has no explicit permissions and no effective permissions.

It is also possible to dump out the complete state (all roles, groups and users) defined by an ACL file using
thecge-test-permissions -a command. This produces a lot of output, so it is not shown here, but the output
is formatted the way it is shown above.

Once you are satisfied with your ACL file, place it in your data directory and it will take immediate effect.

6.2.3 Configure Web UI Identification, Authentication and Encryption
After setting up the web UI users and their permissions, the web UI needs to be configured to identify and
authenticate users who want to use the database through the web UI. The cge-cli fe command searches the
working directory from which it is launched followed by the CGE configuration directory (either by default:
$HOME/.cge, or the value of $CGE_CONFIG_DIR_NAME which can be set using the --configDir=URL option
to cge-launch) to find its configuration files. Any configuration that is put in the CGE configuration directory will
be shared by any web UI that is launched using that directory. This can be convenient when running multiple web
UI instances using the same configuration.

There are three major elements of this configuration:

● The identification and authentication mechanism to be used (private or LDAP) and the form in which the
credentials are presented to the CGE web UI (forms or HTTP basic).

● The list of users and passwords to use (or, in the case of LDAP, the particulars of the LDAP server interaction)

● SSL Encryption to protect the content of communications (including credentials) and to assure the web UI
user of the authenticity of the web UI service.

Choose and Configure an Identification and Authentication Mechanism
The web UI uses the Apache Shiro Security Framework to implement Identification and authentication of users.
This framework permits the user to configure one or more security realms as the basis for Authentication. An
example of a realm is LDAP authentication, in which an enterprise or cluster based LDAP directory is used for
authentication decisions. Another example is a simple private text based user / password list stored in the
configuration (.ini) file. Which of these you choose depends on how you want to define your user base for your
instance of CGE.

In addition to this, there are two different mechanisms for collecting the user's identity and authentication
credentials: HTTP Basic and Forms based. In the HTTP basic approach, HTTP issues an authentication
challenge to the browser or application attempting to access your web UI and the browser or application prompts

CGE Security

S3014 78

the user for an identity and a password. From that, the browser generates and remembers a set of authentication
credentials and attaches them to every subsequent request. This is useful for programmatic access to the web UI,
but can be a bit cumbersome for user interactive use. In the Forms based approach, the user is presented with a
login page on first contact with the web UI. The user fills out a username and password, and the web UI
establishes a session with the user. This is very convenient for interactive use of the web UI but awkward for
programmatic use, where the program will have trouble interacting with the login page. Which of these you
choose depends on the mix of user interactive and programmatic access you expect your web UI to support.

CGE offers a tool, cge-cli generate shiro, that allows you to generate template configuration files for
HTTP Basic with private authentication data, Forms based with private authentication data, and Forms based with
LDAP authentication. To use HTTP Basic with LDAP you need to make a minor change to the Forms based with
LDAP configuration.

More complex and expressive Shiro configurations are also supported by CGE, but cge-cli generate shiro
does not offer tools to generate templates for them. Templates and advice may be found in the open-source Shiro
community. For more information, see http://shiro.apache.org/documentation.html .

Choose the Mechanism
The first choice that needs to be made is the kind of authentication the CGE Instance web UI needs. If the user is
setting up an independent instance of CGE where the user wants to fully control the security environment of the
instance, or the user does not have access to an LDAP server that fully expresses the range of users the user will
be interacting with, then the private approach to storing authentication data makes sense for the CGE Instance.
An example of this might be some kind of moderated public access to a CGE Database, where the user does not
want other users to be configured as part of the user's LDAP directory. If the user is setting up an enterprise wide
CGE server, where the authentication data for all users is already stored in an enterprise LDAP server, and it is
required to allow those users selective access to the CGE Instance, the LDAP approach makes the most sense.
The ability to log into the web UI does not necessarily impart the ability to interact with the database. The user
must also be authorized as a web UI client (i.e. have the web UI Super Client public key associated with his or her
username in an authorized_keys file).

The next decision is whether to use the HTTP or Forms based login mechanism. If it is expected to have a mix of
user interactive and programmatic use of the web UI, then HTTP Basic makes the most sense, even though it is a
bit more cumbersome for interactive users. If only user interactive use is anticipated, then the Forms based
approach makes the most sense.

6.2.4 Configure LDAP for CGE
To set up an LDAP based Apache® Shiro template configuration file, issue the following command on the login
node of the system where it is intended to run CGE:

$ cge-cli generate shiro ldap > $HOME/.cge/shiro.ini

This command will create a template configuration that you can edit to work with your specific site LDAP server. If
running CGE on a Urika-GX system, Cray recommends to have a centrally configured LDAP server for the Urika-
GX cluster running on the login node in order to use that LDAP server as a forwarding agent to the site's
enterprise LDAP. To use this approach for configuring LDAP for CGE, change the following line in the
configuration to include the name of the login node instead of host-login1:

ldapRealm.contextFactory.url = ldap://host-login1:389

CGE Security

S3014 79

http://shiro.apache.org/documentation.html

For example:

ldapRealm.contextFactory.url = ldap://machine-login1:389

In the preceding example, machine is used as an example for the name of the machine. This tells Apache Shiro
where to look for the Urika-GX LDAP server, which resides on your Urika-GX login1 node as Urika-GX is shipped.

The configuration that results here will be Forms-based. To use an HTTP basic configuration with LDAP, change
the following line:

/** = authc

to:

/** = authcBasic

This will make the default requirement for accessing Web-UI pages be HTTP basic authentication (authcBasic)
instead of Forms authentication (authc).

CGE web UI can be directly integrated with the site's LDAP server, in which case, the configuration will need to
match what the site's LDAP expects. To enable this, edit the part of the template that looks like:

Define a LDAP realm
ldapRealm = org.apache.shiro.realm.ldap.JndiLdapRealm

Configure the template for User lookups
You will need to ask a system administrator what the format should be here
The following is the default on Urika-GX systems as shipped but your system
may be differently configured
ldapRealm.userDnTemplate = uid={0},ou=People,ou=external,dc=local

Configure to point to LDAP server of choice
The LDAP server resides on the login1 node on Urika-GX systems as shipped
389 is the normal default port for LDAP servers
ldapRealm.contextFactory.url = ldap://host-login1:389

Only uncomment and change this if your server needs a specific auth mechanism.
By default the client should negotiate this automatically with the server
#ldapRealm.contextFactory.authenticationMechanism = DIGEST-MD5

If your LDAP server needs credentials to access it set them here
In most cases this should be unnecessary
#ldapRealm.contextFactory.systemUsername = ldap-admin
#ldapRealm.contextFactory.systemPassword = ldap-admin-password

6.2.5 Configure Private Authentication for CGE

About this task
Use this procedure to set up private authentication for the CGE instance web UI.

Procedure

1. Execute one of the following commands on the login node of the system where CGE is intended to run.

CGE Security

S3014 80

● $ cge-cli generate shiro simple > $HOME/.cge/shiro.ini
● $ cge-cli generate shiro forms > $HOME/.cge/shiro.ini

The first command will produce an HTTP Basic configuration template, the second command will produce
a forms-based configuration template.

2. Add users.

a. Look for the users section of the configuration template.

[users]
Define two users
admin = admin
user = password

b. Edit users as needed.

For example, to have three users: phyllis, jodi and allan, set up the users as follows:

[users]
Define two users
phyllis = PasswordForPhyllis
jodi = PasswordForJodi
allan = PasswordForAllan

These examples show the passwords stored as clear-text. Refer to http://shiro.apache.org/
documentation.html for examples related to using one-way encryption to make passwords less
accessible .

6.2.6 Configuring SSL for CGE
SSL provides three types of protection for data and users. The first protection it affords is assurance that the user
is interacting with a web UI that is, in fact, the web UI for your CGE instance. By providing an SSL certificate that
is correctly signed, your web UI tells users (and their browsers) that they are talking to the right web UI. To the
user, that means that it is safe to present a username and password to the web UI, that the user can safely
present sensitive information to the web UI without concern that an impostor web UI will steal it, and that any data
coming from the web UI is trustworthy, since it comes from a verified web UI. This means that the user can trust
the data for decision making and trust the database with new data. The second protection SSL affords is
encryption of authentication secrets so that the user can present a username and password without fear of these
secrets being intercepted in-flight to the web UI. The third protection SSL affords is encryption of query and
update data so that the user can query and update the database without fear of sensitive query results or
sensitive update data being either intercepted or modified in flight to and from the web UI.

There are two kinds of SSL certificates that may be used to provide SSL protection of the web UI:

● Verified - A verified SSL certificate is purchased from a third party Certificate Authority (CA). The CA provides
a secure verification service. Certificates from that authority can be verified securely by any web browser or
SSL enabled application with no user intervention.

● Self-signed - A self-signed certificate is one that the owner of the web UI can generate for themselves, but
which has no third-party verification. Users are prompted by their browsers to accept or reject self-signed
certificates, and are usually advised not to accept them. In some cases, where users know for sure what your
certificate looks like and that you are trustworthy, they might be willing to accept a self-signed certificate. In
general, self-signed certificates are used for prototyping and debugging of web UI deployments. When it
comes time to go live with data, it is a good idea to obtain a verified certificate and replace the self-signed

CGE Security

S3014 81

http://shiro.apache.org/documentation.html
http://shiro.apache.org/documentation.html

certificate with it. CGE provides the cge-cli generate keystore command to help with creation and
importation of SSL certificates.

● Using a Verified SSL Certificate - Obtaining a verified SSL certificate is outside the scope of this discussion,
but once you have an SSL Certificate downloaded to your site and want to install it, installation is simple. The
following command will import the certificate into your keystore for you to use:

$ cge-cli generate keystore --import your.cer --keystore ~/.cge/keystore

This will produce a file named keystore in the .cge directory in the home directory. This is the default place
that CGE looks for CGE configuration files. The keys in the keystore file will be found by CGE by default by
looking in this file. If a different directory is used (or, for example, a directory on HDFS) for CGE's
configuration, it is possible to choose the path or URL of that directory as the argument to the --keystore
option. The SSL certificate will be imported from the file user.cer which is the verified certificate
downloaded from the certificate authority.

CAUTION: In order for the imported certificate to be usable it must contain the private key as well as
the Digital signature from the certificate authority. Without the private key a certificate cannot be used
for SSL

● Using a Self-Signed SSL Certificate - To use a self-signed certificate, execute the following command:

$ cge-cli generate keystore --self-signed --keystore ~/.cge/keystore

The system will be prompt for a bunch of information about the self-signed certificate and then it will be
created in the .cge directory in the home directory. This is the default place that CGE looks for CGE
configuration files. The keys in the keystore file will be found by CGE by default by looking in this file. If
using a different directory (or, for example, a directory on HDFS) for CGE's configuration, it is possible to
choose the path or URL of that directory as the argument to the --keystore option

● Giving Your Web-UI Access to Your SSL Keystore - In addition to file protections, both the SSL keystore
and certificates can be password protected. In this case, cge-cli fe needs to know these passwords to
access the certificate. These passwords need to be stored in the CGE properties file (by default
$HOME/.cge/cge.properties) as follows:

cge.cli.server.ssl.password = MyKeyStorePassword
cge.cli.server.ssl.key-password = MyCertificatePassword

By default these passwords are stored in clear text. If you want them stored in an obfuscated (one-way
hashed) form, you can use the following command to set up these passwords:

$ cge-cli generate properties --ssl-passwords

The system will prompt for these two passwords, obfuscate them, and add them to the cge.properties
file.

● Securing Your SSL Certificate - The SSL certificate contains sensitive information and should be properly
secured. With it, it is possible for an impostor to impersonate the SSL protected web-site. While the
information in the SSL keystore is somewhat obfuscated, it is best not to treat it as secured simply by those
means. Using Linux file permissions you can further secure the keystore to help prevent unauthorized use. If
a user needs to run the Web-UI (i.e. invoking the cge-cli fe command) the user can simply make the file
mode readable only by themself. For example:

$ ls -l keystore
-rw-r--r-- 1 erl criemp 2222 Sep 26 10:56 keystore
$ chmod 600 keystore
$ ls -l keystore
-rw------- 1 erl criemp 2222 Sep 26 10:56 keystore

CGE Security

S3014 82

Take similar steps to protect the cge.properties file and any verified certificate files, since these contain
similarly sensitive data.

6.2.7 Launch a Secured Web UI

Prerequisites
Set up the CGE authentication and SSL encryption

About this task
After setting up the authentication and SSL encryption in the desired way, launch the Web UI using the configured
security features.

Procedure

Launch the CGE web UI

● If the filenames used in the security section examples of this publication are used, and the CGE database
instance is running on the default port, the following command will start a secure version of the Web UI
with both authentication and SSL encryption enabled:

$ cge-cli fe --security=/data/directory/shiro.ini --ssl
● If not using SSL, then the following command will enable authentication without SSL.

CAUTION: There is a chance of credential leakage when not using SSL, so this is not really a
secure way to run a web UI.

$ cge-cli fe --security=/data/directory/shiro.ini

6.3 Endpoint Security
The CGE server provides two mechanisms for endpoint security:

1. SSL encryption

2. User authentication

Both of these features are off by default as they require additional user provided configuration.

SSL Encryption
When enabled, SSL provides encryption of communications between the client and the SPARQL server. Note that
Communications between the SPARQL server and the database server are always encrypted regardless of
whether this is enabled. By enabling this feature you gain complete end to end encryption from the client all the
way to the database server.

SSL Certificates and the Key Store
In order to enable this feature you will need to provide a suitable SSL certificate. Obtaining an SSL certificate is
covered elsewhere in the documentation and you should refer to that for more detail.

CGE Security

S3014 83

To use a certificate, import it into a Java key store, which can be done using the Java keytool utility:

$ keytool -import-v -trustcacerts -alias cge -file server.cer -keystore ~/.cge/keystore

In this example we import a certificate from the server.cer file to the key store located at ~/.cge/keystore.

Note that each certificate must have a unique alias within the key store. Key stores are protected by a password
for which the user will be prompted. If the key store does not yet exist, the user will be prompted for a new
password and a new file will be created.

In order for the server to pick up the correct certificate, the key store file should ideally contain only the certificate
to be used for SSL. If it contains multiple certificates, the SSL may fail to function.

The cge-generate keystore command provides a simple wrapper around some common keytool
commands. For example, the above could also be execute as:

$ cge-cli generate keystore --alias cge --importserver.cer --keystore ~/.cge/
keystore

Locating the key store
For the server to access the key store, it must be provided with the location of the key store and the password to
access it. The location can be provided explicitly using the --keystore option. if this is not specified, then it tries
to locate a key store as follows:

1. If the located configuration file contains a cge.cli.server.ssl.keystore property, use the file specified
by that.

2. Otherwise search for a file named keystore in any of the specified configuration directories. As with other
configurations files only the first one found will be used.

If the key store and/or the certificate itself require passwords then these must be provided in the configuration
file using the following properties:

Table 14. Key store Properties

Property Description

cge.cli.server.ssl.password Password for the key store

cge.cli.server.ssl.key-password Password for the certificate

To avoid storing the password in plain text it may be stored in obfuscated form as supported by Jetty.

Enabling SSL
Assuming you have an appropriate certificate in place in your key store, and your properties file configured with
any necessary passwords then, you can enable SSL with the --ssl option. For example:

$ cge-cli fe --ssl

This will start the server configured for SSL Communications i.e. It will only respond to https:// URLs. If there is
not an appropriate certificate available then you will be unable to communicate with the server.

Enabling Lax SSL
The default configurations for SSL only permits strong cipher suites and cryptographic protocols to be used.
Some older tools may encounter difficulties when trying to communicate with the server if they do not support

CGE Security

S3014 84

appropriate cipher suites and/or cryptographic protocols. In this case you may want to enable Lax SSL mode. For
example:

$ cge-cli fe --ssl --ssl-lax

CAUTION: In this mode, the server will permit the use of cipher suites and cryptographic protocols that
have known flaws, are considered weak and/or may be susceptible to widely published and easily
reproducible attacks. Therefore, we strongly recommend that you only use this mode when absolutely
necessary.

6.4 CGE User Authentication
User authentication allows you to configure the server such that users accessing it must first authenticate
themselves. This means that the server knows the identity of the user and can provide this information to the
database server meaning that only users authorised to access the database can perform actions against it. This
provides for a strong audit trail that logs user activity on a database.

When not enabled the server runs in anonymous access mode. This allows anybody to access the server and all
actions are carried out using the identity of the process owner.

Apache Shiro configuration
The server relies upon Apache Shiro to provide the authentication layer, this allows for a wide range of
configurations that can be tailored to your requirements. Note that authentication does not imply authorisation, it is
perfectly possible to create A configuration where a user can authenticate themselves but does not have the
authorisation to actually perform actions against the database.

In order to enable authentication you must provide a valid Shiro configuration file, which is beyond the scope of
this publication.

For more information, see Generate a Shiro Configuration Template Using the generate shiro Command on page
47 and visit http://shiro.apache.org/configuration.html and http://shiro.apache.org/web.html. As many users may
not be familiar with this framework the command line interface includes a helper command that will generate
templates for the most common configurations.

Enabling user authentication
Once the appropriate Shiro configuration has been put in place, the user can start the server with authentication
enabled, as shown in the following example:

$ cge-cli fe --security example.ini

This will start the server with Shiro configured according to the given file.

CAUTION: In the event that the configuration is invalid the server will fail to start.

Authorizing Users
Authentication does not imply authorization. Regardless of what Shiro authentication realm is chosen, individual
users must still be authorized to access the database. Authorizing users to access the database via the SPARQL
server is a little different from authorizing them to access the database directly. In this scenario, the SPARQL

CGE Security

S3014 85

http://shiro.apache.org/configuration.html
http://shiro.apache.org/web.html

server will be running as the user who launched the process, therefore all requests to the database will use that
users key pair. As a result that user will need to have their key pair authorised for use by other users, as shown in
the following example:

$ cat ~/.ssh/id_rsa.pub | sed 's/my-name/other-user/'>> /my/db/authorized_keys

In this example the user is authorizing their public key to be used by other-user. This does not grant that user
the ability to connect to the database directly with this key as they would not have access to the corresponding
private key. Essentially, the user delegates the ability for a process owned by themselves to use a key pair owned
by themselves, on behalf of another user.

Login Mechanisms
Apache Shiro supports two login mechanisms which can be used as desired. Firstly it supports HTTP Basic
authentication, in this mode any attempt to access the server that requires authentication Will send a HTTP
authentication challenge back to the client. In a web browser this will typically result in the browser presenting a
login prompt to the user. When the user enters their credentials this is submitted back to server for the server to
verify against the configured authentication realm. In this mode every request to the server requires credentials to
be presented, however most browsers will remember credentials for the life of the browser session and
automatically submit them with subsequent requests.

Secondly it supports forms authentication, in this mode any attempts to access the server that requires
authentication will redirect the user to the login page. The server provides a login page at /login so Shiro
configurations should use that as the login URL. The user can then enter their credentials in a form in the browser
before submitting them back to the server for the verification. In this mode the server will use cookies to identify
the user, it checks the cookie against its record of logged in users to determine if the user has previously
authenticated. This means that the user need only present their credentials once and thereafter need only present
the cookie.

Which login mechanism is selected to be sued will depend on how the user intends to use the server. If you
primarily use the server to provide SPARQL endpoints for access by SPARQL tools and libraries then you are
better off using basic authentication as many tools and libraries do not support forms authentication. On the other
hand if you are primarily using the server for the browser interface then forms authentication is more user-friendly.

NOTE: With both mechanisms, credentials are sent unencrypted to the server and therefore are subject
to interception by a malicious user/application. In order to ensure secure deployments, use the user
authentication features in conjunction with the SSL features.

LDAP Integration
Apache Shiro can be configured to integrate with the system LDAP server or a central LDAP server as desired.
An example configuration for this can be obtained using the cge-cli generate shiro command, as shown in
the following example:

$ cge-cli generate shiro ldap > example.ini

Here we output the template to the file example.ini which will look something like the following:

[main]
Define a LDAP realm
ldapRealm = org.apache.shiro.realm.ldap.JndiLdapRealm

Configure the template for User lookups
You will need to ask a system administrator what the format should be here

CGE Security

S3014 86

The following is the default on Urika-GX systems as shipped but your system
administrator may have
ldapRealm.userDnTemplate = uid={0},ou=People,ou=external,dc=local

Configure to point to LDAP server of choice
The LDAP server resides on the login1 node on Urika-GX systems as shipped
389 is the normal default port for LDAP servers
ldapRealm.contextFactory.url = ldap://host-login1:389

Only uncomment and change this if your server needs a specific auth mechanism.
By default the client should negotiate this automatically with the server
#ldapRealm.contextFactory.authenticationMechanism = DIGEST-MD5

If your LDAP server needs credentials to access it set them here
In most cases this should be unecessary
#ldapRealm.contextFactory.systemUsername = ldap-admin
#ldapRealm.contextFactory.systemPassword = ldap-admin-password

Associate the realm with the security manager
securityManager.realms = $ldapRealm

Enable auth caching, reduces load on the LDAP server
Comment this out to disable caching
cacheManager = org.apache.shiro.cache.MemoryConstrainedCacheManager
securityManager.cacheManager = $cacheManager

Configure the login page, /login is the page provided by the CGE SPARQL Server
authc.loginUrl = /login

[urls]
Enable logouts
/logout = logout

Require authentication for all paths, comment this out and uncomment the
subsequent line
if you prefer to use HTTP Basic Authentication rather than Forms Authentication
/** = authc
#/** = authcBasic

On most LDAP servers, the user will only need to change two lines. Firstly the user will need to set the URL for
the server:

ldapRealm.contextFactory.url = ldap://host-login1:389

To use the system LDAP server provided on a Urika-GX System this should be set to the login1 node of the
system. For example if your system was named machine then the URL should be ldap://machine-
login1:389. If it is required to use a central LDAP server, contact the IT department to determine the correct
URL to use.

The other setting that you will need to change is the search template which is used to build the full LDAP
distinguished name for a user:

ldapRealm.userDnTemplate = uid={0},ou=People,ou=external,dc=local

The example given here is the distinguished name format used by default on Urika-GX Systems. However your
system administrator and/or IT department may use a very different format. If this setting is incorrect, all attempts
to authenticate will fail. Please contact the system administrator and/or IT department to determine the correct
distinguished name format.

CGE Security

S3014 87

There are a variety of other LDAP related settings seen in the generated template but these are all commented
out as they should not be needed for most common LDAP setups. If the two aforementioned settings are correctly
configured and you are still unable to authenticate successfully please contact the System administrator and/or IT
department to enquire whether any advanced settings are needed.

Configuration properties
Once the preferred configuration has been put in place, it may be helpful to specify all the relevant options directly
in the cge.properties file, instead of having to remember all the command line options. Doing this will help
specify a default configuration, which is automatically picked up and applied. The following table details all the
available properties that can be used to change the configuration of the SPARQL server.

Command Line option Property Description

--server-host cge.cli.server.host Sets the hostname upon which the server
listens for requests

--server-port cge.cli.server.port Sets the port number upon which the server
listens for requests

--security cge.cli.server.security Sets the Apache Shiro configuration file
used to configure user authentication

--ssl cge.cli.server.ssl.enabled Enables SSL when set to true enable SSL

--ssl-lax cge.cli.server.ssl.lax When set to true, permit SSL protocols and
ciphers known to be insecure

--keystore cge.cli.server.ssl.keystore Sets the location of the Java key store file
that contains the certificate to use for SSL

cge.cli.server.ssl.password Sets the password used to access the Java
key store

cge.cli.server.ssl.key-
password

Sets the password used to access the SSL
certificate within the Java key store

6.5 Grant Basic Access to Owned Query Engines

About this task
The Cray Graph Engine (CGE) query engine and CGE CLI commands use your SSH configuration to obtain
public and private keys for use in authentication. Configuring basic query engine authentication is almost the
same as configuring SSH passwordless authentication to the localhost IP host for your login account. The steps
involved in granting basic access to your query engine are listed below:

Procedure

1. Ensure that you have a .ssh directory in your home directory and that the directory permissions are 700
(rwx------).

CGE Security

S3014 88

To find out whether you have a .ssh directory, and whether or not it is correctly protected, use the following
command:

$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

If this looks correct you can move on to the next step. If the directory does not exist at all, you will need to
create it, as shown below:

$ mkdir $HOME/.ssh
$ chmod 700 $HOME/.ssh
$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

If the directory does not have the correct permissions, you can simply change those. However, it is important
to ensure that the directory is writable only by you. As long as this requirement is met, you do not need to
change anything. The following command can be used if it is required to set the permissions on the directory:

$ chmod 700 $HOME/.ssh
$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

2. Create a public / private authentication key pair using ssh-keygen if the key pair does not currently exist.
Use the following command to find out whether or not a public / private key pair has been configured.

NOTE: The following shows only key files (there will probably be other files as well unless this is a
brand new .ssh directory):

$ ls -l $HOME/.ssh
total 80
-rw------- 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id_dsa.pub
-rw------- 1 username group 883 Apr 8 2014 id_rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

In the above example, there may be only an RSA key pair (id_rsa and id_rsa.pub), only a DSA key pair
(id_dsa and id_dsa.pub) or both. A file with ".pub" in its name is a public key file. A file without ".pub" in
its name is a private key file. All of your private key files should have -rw------- for their permissions as
shown above. Your public key files may be readable (not writable) by anyone, but do not need to be, so the
permissions shown above are okay, but not required. The minimum permission set that should be used is -
rw------- , this enables reading and modifying the file. The maximum permission set should have -rw-
r--r-- , which permits other users to read but not modify the public key. If there is not even a single public/
private key pair in the .ssh directory, an SSH key will need to be generated . This can be done using the
ssh-keygen command:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/users/username/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /users/username/.ssh/id_rsa.
Your public key has been saved in /users/username/.ssh/id_rsa.pub.
The key fingerprint is:
eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host
The key's randomart image is:
+--[RSA 2048]----+
| . . |
| + + * o |
| + + B = o . |
| o . + = . . |
| . . S + . |

CGE Security

S3014 89

| |
| E o |
| . o |
| . . |
+--[MD5]----------+
$ ls -l $HOME/.ssh
total 8
-rw------- 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

This produces a public / private key pair which can be used for passwordless authentication to localhost.

NOTE: At present, CGE does not support ssh-agent forwarding, so it is not recommended to
specify a pass-phrase when creating a key.

3. Place the public authentication key in the .ssh/authorized_keys file. This will enable interacting with
CGE query engines started by the user on this machine (it does not allow other users to use the user's query
engines). Set this up as follows:

$ cat $HOME/.ssh/id_*.pub >> $HOME/.ssh/authorized_keys
$ chmod 644 $HOME/.ssh/authorized_keys
$ ls -l $HOME/.ssh
total 80
-rw-r--r-- 1 username group 2601 Jun 18 2014 authorized_keys
-rw------- 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id_dsa.pub
-rw------- 1 username group 883 Apr 8 2014 id_rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

4. Test using ssh to log into localhost without a password. The simplest way to test this is to try connecting to
localhost through SSH. This will have the effect of logging on to the same host the the user is currently logged
on to:
$ ssh localhost
The authenticity of host 'localhost (::1)' can't be established.
ECDSA key fingerprint is 0a:34:d6:d9:71:b4:6c:e6:1d:49:95:ea:7d:09:54:89 [MD5].
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.
Last login: Tue Jan 6 11:56:10 2015 from localhost

Message of the day...

$ exit

As you can see, the first time you do this, you will be prompted to verify that the key for localhost is correct.
The user will also be prompted like this the first time the user tries to connect with a query engine with a new
TCP/IP port number, so it is a good idea to do an interactive query or other kind of front-end command before
trying to use a new query engine port from a script or other automated environment. Once authenticity of the
host / port pair has been verified, this pair will be added automatically to your list of known hosts and the user
should not need to do this again. To avoid the need for performing the interactive Host Key verification step,
see Eliminate Interactive Host Key Verification To show that this works, try a second attempt to use SSH to
log into localhost:

$ ssh localhost
Last login: Tue Jan 6 11:56:10 2015 from localhost
--
-
Message of the day...
--
-
$ exit
$

CGE Security

S3014 90

5. Once this has been set up, it is required to authenticate the localhost / <port number> pairs for all
query engine ports so that the clients can connect non-interactively. To do this, start CGE on each port you
intend to use and run an interactive request through CGE, once for each port. The cge-cli echo
command provides a simple way of doing so, as shown in the following example:
$ cge-cli echo --db-port=73737
The authenticity of host 'localhost' can't be established.
RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.
Are you sure you want to continue connecting? [Yes/No]: yes
13835 [main] WARN com.cray.cge.cli.communications.client.ssh.LoggingBridge - Permanently added 'localhost' (RSA) to the list of
known hosts.
14110 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Sending echo request...
14157 [main] INFO com.cray.cge.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated successfully

To avoid the need for performing the interactive Host Key verification step, see Eliminate Interactive Host Key
Verification

6.5.1 Eliminate Interactive Host Key Verification
The SSH protocol uses the host key to authenticate the server to the client, which is of particular importance
when the client will be sending confidential data (passwords, for example) to the server. Since the SSH protocol
used by CGE does not permit the use of passwords, and the clients do not generally send other secrets to CGE,
there is no real need for the client (and the invoking user) to verify that the host key is the one that the user trusts.

By default, the CGE CLI commands require explicit first time verification of host keys, as you have seen in the
examples above. There is, however, a setting that you can set in your cge.properties file(s) that will cause the
CGE CLI commands to consider any host key as trusted. This eliminates the need for a first-time interactive CLI
command each time you start using a server on a new TCP/IP port number, and streamlines the process of
connecting to a new instance CGE.

To add this setting, make sure that all appropriate cge.properties files contain the following line:

cge.cli.trust-keys=true

The same behavior can be achieved by adding the --trust-keys option to any of the CGE CLI commands.

IMPORTANT: While implicitly trusting host keys for CGE is generally a safe practice, in the case where
your data set contains actual confidential data, and you are using the CGE CLI clients to update the data
set with new confidential data, you want to be certain that there is nothing other than CGE itself listening
to the contents of your updates. In that case, the host key is an important part of ensuring that there is
nothing between you and your CGE instance. This is not expected to be a common case among CGE
users, but if your use of CGE falls into this category, it is recommended not to use the mechanisms
described here.

6.6 Grant Other Users Access to Their CGE Query Engine
The Cray Graph Engine (CGE) can protect the contents of user-owned data sets from view/modification by
unauthorized users via CGE instances that you run. Regardless of this protection, it is required to protect the raw
data in user-owned data sets using traditional Linux file protection, otherwise users who have access to their data
can start their query engine, using their data without knowledge. To ensure that only authorized users gain access
to user-owned data, it is best to set the permissions on each directory containing a data set to permit access
(read, write and execute/search) only by its owner, and then to set the permissions on the files in the directory to
permit access (read and write) only to their owners.

As the owner of a running instance of a CGE, it is possible to control the list of users to whom access is granted.
There are two modes of granting access to other users:

CGE Security

S3014 91

● Access to a single data set

● Access to any provided data set

A key first step to any of this is protecting owned data sets from being used under some other user's instance of
CGE. If a user can run her own instance of CGE using your data, then you have no further control. So, if it is
required to control access to owned data sets, make sure they are protected against access by users other than
you. By setting the permissions on the data directory for the data set to rwx------ you achieve this by
preventing other users from looking in that directory for files. If other users can be allowed to run their own
instances of CGE using user-owned data, these permissions may be set any way desired.

Assuming data sets have been protected against other users, now individual users can be granted access.
Regardless of whether you want to grant access to one or all data sets, you need the contents of each user's
public key file from that user's .ssh directory. The user can follow the steps for setting up keys shown above if she
does not have them yet. It is okay for the user to send you the public key(s) via e-mail, or any other method
(including letting you copy them from the files yourself). They need to be appended to an appropriate
authorized_keys file.

For more information, see Configure the ACL File User Permissions on page 73.

IMPORTANT: Remember that any user trying to connect with the server will need to authenticate the
server as described in Grant Basic Access to Owned Query Engines or configure the CLI to trust Host
Keys as described in Eliminate Interactive Host Key Verification.

Ask users to do the following after granting them access:

$ cge echo --db-port=73737
The authenticity of host localhost' can't be established.
RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.
Are you sure you want to continue connecting? [Yes/No]: yes
13835 [main] WARN com.cray.cge.communications.client.ssh.LoggingBridge - Permanently added 'localhost' (RSA) to the
list of known hosts.
14110 [main] INFO com.cray.cge.sparql.cli.lightweight.commands.debug.EchoCommand - Sending echo request...
14157 [main] INFO com.cray.cge.sparql.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated
successfully

NOTE: It is important to note that a user should NEVER add another user's public key to the user-owned
$HOME/.ssh/authorized_keys file. Doing so will allow the user to login as the user who owns that
file.

In the following example, it is assumed that /lus/scratch/username/lubm0 directory contains one of user-
owned data sets:

$ ls -ld /lus/scratch/username/lubm0
drwxr-xr-x 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubm0
$ chmod og-rwx /lus/scratch/username/lubm0
$ ls -ld /lus/scratch/username/lubm0
drwx------ 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubm0
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ chmod og-rwx /lus/scratch/username/lubm0/*
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw------- 1 username group 221 Jan 6 13:13 authorized_keys
-rwx------ 1 username group 3321856 Oct 9 11:52 dbQuads
-rwx------ 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw------- 1 username group 8192 Oct 9 11:52 string_table_chars.index

Now this data set can only be used by instances of the query engine that the user starts. Other users wanting
access will need to connect with a client and will be subject to client authentication.

CGE Security

S3014 92

6.6.1 Grant Other Users Access to One of the Owned Data Sets
To grant a user access to one of your data sets, all you need to do is put the user's public key in the
authorized_keys file in the same directory where your data set resides, as shown in the following example:
$ ls -l /lus/scratch/username/lubm0/
total 4792
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ cat my_friend_id_rsa.pub >> /lus/scratch/username/lubm0/authorized_keys
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ cat /lus/scratch/username/built_lubm0/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAxp7+CpYHL44jmuWeGXEMy+ijE/
X72f70YL8neITsR5gotXCIZh9V0G9ar8mNDlkoshN7Jp1qiRrQjYNy93hs9BBCz9kA5V9PhGC59qypEhNovYRo48lsUvTmHK0RWOVLfIZKNCkLVmbQubmEzM0FfUoY/ifNbTfrV4yGH2PNA4k= my_friend@myhost

Once you have done this, the user 'my_friend' will have access to this data set only and not to all of your data
sets. You can copy the authorized_keys file to any other data set you want to grant access to, and edit it as
needed.

6.6.2 Grant Other Users Access to All of the Owned Data Sets
If you do not need to restrict access to specific data sets to a particular user, it is simpler to grant that user access
to all of your data sets in one authorized_keys file. CGE uses a directory located at $HOME/.cge that allows
you to set up configuration files that apply to all of your data sets. Users can grant access to all of their data sets
by creating an authorized_keys file in this directory and putting authorized public keys in that file, as shown in
the following example:

% mkdir -p $HOME/.cge
$ chmod o-w,g-w $HOME/.cge
$ cat my_friend_id_rsa.pub >> $HOME/.cge/authorized_keys
$ ls -l $HOME/.cge
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
$ cat $HOME/.cge/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAxp7+CpYHL44jmuWeGXEMy+ijE/
X72f70YL8neITsR5gotXCIZh9V0G9ar8mNDlkoshN7Jp1qiRrQjYNy93hs9BBCz9kA5V9PhGC59qypEhNovYRo48lsUvTmHK0RWOVLfIZKNCkLVmbQubmEz
M0FfUoY/
ifNbTfrV4yGH2PNA4k= my_friend@myhost

While this example shows placement of the global authorized_keys file in $HOME/.cge, it can be used to
place the authorized_keys file in any directory. If $HOME/.cge is not a convenient place to put the
authorized_keys file, follow the above procedure to place it in some other (suitably protected) directory, then
use the --configDir option to cge-launch or the $CGE_CONFIG_DIR_NAME environment variable to point to
that directory. If a global authorized_keys file needs to be stored on HDFS, create the file using this procedure,
then copy it onto HDFS in the location of choice (appropriately protecting it). Then use an HDFS URL as the value
of $CGE_CONFIG_DIR_NAME or the argument to the --configDir option to cge-launch to select that
directory instead of $HOME/.cge.

Now the user my_friend will have access to all of your data sets.

CGE Security

S3014 93

7 Built-in Graph Functions
SPARQL is intrinsically designed to find explicit patterns in graphs, using the basic graph patterns called out in
SPARQL specifications. Often these patterns themselves create a graph that needs to be analyzed in a way that
is not easily implemented with SPARQL’s basic graph patterns. One example of this in the Lehigh University
Benchmark (LUBM) ontology would be to find students who take courses from their advisers, and then find the
shortest path through a social network between specific pairs of those students. Another example is to use
betweenness centrality to find the most “central” (i.e., connecting the most entities not otherwise connected)
entities in a graph, often a social network.

To address this other type of processing, CGE’s SPARQL implementation has been extended to incorporate
graph-function capability. This means that the input to the graph function is a graph, not just a few scalars, such
as numbers or IRIs. This capability includes both the syntax that enables calling of graph functions, and a small
number of built-in graph functions (BGFs) that are callable by any CGE user.

The built-in graph functions included in this release of CGE are:

● BadRank: Assigns a “badness” score to all vertices in the graph based on their nearness to known bad
vertices.

● Betweenness Centrality: Ranks each vertex by how frequently it is on the shortest path between vertices.

● Page Rank: Measures the relative importance of a vertex in a graph.

● Community Detection Label Propagation (LP): Detects communities in networks and assigns vertices in
the graph to communities.

● Community Detection Parallel Louvain Method (PLM): Detects communities in networks and assigns
vertices in the graph to communities. This method is a distributed memory implementation using CoarrayC+ +
and is inspired by the shared-memory Parallel Louvain Method in NetworKit.

● S-T Connectivity: Finds the shortest path, if one exists, between two vertices in the graph.

● S-T Set Connectivity: Finds the shortest path, if one exists, between a set of vertices designated as sources
and a set of vertices designated as targets.

● Triangle Counting: Counts the total number of triangles in a graph.

● Triangle Finding: Finds all the triangles in the graph.

● Vertex Triangle Counting: Gathers statistics on the vertices based on the triangles they participate in and for
non-cyclic triangles, their position in the triangle.

7.1 Combining Graph Algorithms with SPARQL
CGE provides an infrastructure for calling graph algorithms from within SPARQL queries. A graph algorithm is
called via a CGE-specific SPARQL operator named INVOKE.

It is useful to note the following items:

Built-in Graph Functions

S3014 94

1. The INVOKE operator cites the name of the graph algorithm being invoked, using an URI notation that is
similar to that used for representing built-in functions in SPARQL.

2. Scalar arguments can be input to the graph algorithm via a parenthesized argument list.

3. The INVOKE clause is always preceded by a SPARQL CONSTRUCT clause, whose function in this context is to
build the graph that is input to the graph algorithm. CGE provides the capability of nesting a CONSTRUCT/
INVOKE clause within a SELECT/WHERE clause. This enables a subquery within a SPARQL query to select or
produce a subgraph, which is used as input to the graph algorithm.

4. The INVOKE clause is immediately followed by a PRODUCING clause, whose function is to bind the results of
the graph algorithm to specific SPARQL variables.

5. While RDF graphs may define many different types of subjects and objects, the CGE graph algorithms treat
them all as homogeneous vertices and do not distinguish between them according to type, with the exception
of functions that explicitly expect some vertices to be distinguished.

6. The CONSTRUCT-INVOKE-PRODUCING combination needs to be nested within a SELECT-WHERE clause.

7. For all CGE-specific built-in graph functions, if the query writer wants to specify a non-default value for an
argument, values for the preceding arguments also need to be specified, even if default values for those
arguments are to be used.

7.2 Invocation of a Graph Function
Four SPARQL constructs are involved while invoking graph functions. These include:

● CONSTRUCT
● INVOKE
● PRODUCING
● SELECT-WHERE

7.2.1 The CONSTRUCT Clause
There are three main differences between a standard SPARQL CONSTRUCT clause and the way it is used in CGE
in a CONSTRUCT-INVOKE-PRODUCING combination. These differences are described below:

1. As mentioned above, the CONSTRUCT-INVOKE-PRODUCING combination always appears nested within the
WHERE clause of a SELECT query.

2. While a standard SPARQL CONSTRUCT query returns an RDF graph to the user, the CONSTRUCT clause of a
CONSTRUCT-INVOKE-PRODUCING combination does not return anything to the user; instead the constructed
graph is passed to the graph algorithm as input, and then discarded after the graph algorithm completes
execution.

3. Because the output of the nested CONSTRUCT clause is eventually discarded, CGE relaxes some of the rules
for constructing RDF graphs. In particular, since some graph algorithms expect weighted edges. CGE allows
predicates to be literals inside a nested CONSTRUCT clause.

Built-in Graph Functions

S3014 95

7.2.2 The INVOKE Clause
In CGE, graph functions are invoked using the CGE-specific INVOKE keyword with the CONSTRUCT query form.
The syntax of the INVOKE keyword is shown below:

INVOKE <http://cray.com/graphAlgorithm.graph_function> (arguments)

In the above example, graph_function is the name of the graph function to be invoked and arguments is a
comma-separated list of arguments to be provided to the graph function. The types and number of arguments in
this list are dependent on the function being invoked.

Using the INVOKE Keyword
SELECT *
 WHERE {
 CONSTRUCT {
 ?s ?p ?o .
 } WHERE {
 ?s ?p ?o .
 }
 INVOKE <http://cray.com/graphAlgorithm.graph_function> (42,0.19,“string”)
 PRODUCING ?varX ?varY
}

In the above example, the INVOKE keyword is used to invoke a graph function named "graph_function” with three
scalar arguments as well as the graph produced by the CONSTRUCT clause.

7.2.3 The PRODUCING Clause
In the Cray Graph Engine (CGE), the invocation of a graph function results in an intermediate result set.
Ultimately, this is what enables graph functions to be composed with other SPARQL operators such as UNION,
ORDER BY, or FILTER, as they also output an intermediate result set. The PRODUCING keyword can be used to
bind the columns of the returned intermediate result set to SPARQL variables. The PRODUCING keyword accepts
a list of SPARQL variable names which will be bound to the columns of the intermediate result set returned by the
INVOKE keyword. Therefore, while using the PRODUCING keyword, it is required to know the following:

● How many columns will exist in the returned intermediate result set

● What set of values each column represents

The syntax of the PRODUCING keyword is shown below:

PRODUCING ?varA ?varB

In the above statement, ?varA and ?varB are the variables specified by the PRODUCING operator to be bound
to columns of the returned vectors of results.

Using the PRODUCING Clause
The community detection algorithm returns two columns of information. Information contained in these columns is
described below:

● The first column contains each of the vertex IDs of the graph that was sent to the algorithm.

● The corresponding entry in the second column contains an integer that represents the identity of the
community to which that vertex was assigned.

Built-in Graph Functions

S3014 96

Thus the PRODUCING clause would specify variables that the query author chose to reflect the two vectors of data
being returned, as shown in the following query snippet:

…
INVOKE <http://cray.com/graphAlgorithm.community>()
PRODUCING ?vertexID ?communityID
…

7.3 Inputs to the Graph Function
Three types of inputs to a graph algorithm are possible:

1. The graph itself – Each graph function expects input to come from the output of the preceding CONSTRUCT
operator.

2. Scalar inputs – Scalar values can be passed to the graph algorithm via a parenthesized list in the INVOKE
clause.

3. Vector inputs – Sets of values can be input to the graph algorithm by adding them to the graph that the
CONSTRUCT operator builds. Generally these inputs are distinguished in the input graph by a triple with a type
predicate and a special type object.

In the following example, the Bad Rank algorithm expects to receive a set of vertex IDs of vertices considered to
be spam, i.e, it could represent some other undesirable attribute. Note that the WHERE clause associated with the
CONSTRUCT clause includes a VALUES clause, that names a set of vertices that are to be considered spam by the
Bad Rank algorithm. That set of vertices is added to the CONSTRUCT clause’s graph as a set of triples with a
rdf:type predicate and the special object cray:spamNode. The scalar argument list of the INVOKE clause also
specifies that this cray:spamNode object is to be used for identifying spam vertices. Similarly, a vector input to
the graph algorithm can already be present in the database.

Using Vector Inputs for Graph Algorithm
PREFIX cray: <http://cray.com/>
SELECT ?vertex ?ranking
{
 CONSTRUCT{
 ?sub ?pred ?obj .
 ?badNode a cray:spamNode .
 }
 WHERE {
 {
 ?sub ?pred ?obj .
 } UNION {
 VALUES ?badNode {
 <http://www.Department5.University0.edu/Course34>
 <http://www.Department6.University0.edu/GraduateCourse34>
 <http://www.Department14.University0.edu/GraduateCourse31>
 <http://www.Department5.University0.edu/Course34>
 <http://www.Department10.University0.edu/GraduateCourse25>
 <http://www.Department11.University0.edu/Course11>
 <http://www.Department13.University0.edu/GraduateStudent87>
 }
 }
 }
 INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01, cray:spamNode)

Built-in Graph Functions

S3014 97

 PRODUCING ?vertex ?ranking
}
ORDER BY DESC (?ranking)
LIMIT 100

The above example shows the invocation of the Bad Rank algorithm with a set of spam vertices present in the
input graph.

7.4 Sequence of Operators
The PRODUCING operator needs to immediately follow the INVOKE operator, which in turn needs to immediately
follow the WHERE clause containing the CONSTRUCT operator. The CONSTRUCT-INVOKE-PRODUCING
combination should always appear as a nested subquery inside a SELECT clause’s associated WHERE clause.
Graph algorithms, like SELECT clauses themselves, can be nested arbitrarily deep in a query. Hence the
sequence of operators that are involved in calling a graph algorithm is:

1. CONSTRUCT-WHERE
2. INVOKE
3. PRODUCING
4. SELECT-WHERE

NOTE: As mentioned earlier, the graph that is created by the CONSTRUCT clause that is part of a
CONSTRUCT-INVOKE-PRODUCING combination is never produced as output of the query; it is thrown
away after it is used as input to the graph algorithm. If you want to see the graph that this CONSTRUCT
clause builds, you must write a separate CONSTRUCT query.

Example: Sequence of Operators
The following example illustrates the use of both spam and non-spam vertices with Bad Rank:

PREFIX cray: <http://cray.com/>
SELECT ?vertex ?ranking {
 CONSTRUCT {
 ?sub ?pred ?obj .
 } WHERE{
 {
 ?sub <http://bgf/isLinked> ?obj .
 ?sub <http://bgf/hasWeightLink> ?weightURI .
 ?obj <http://bgf/hasWeightLink> ?weightURI .
 ?weightURI <http://bgf/hasWeight> ?pred
 } UNION {
 ?sub <http://bgf/hasClassification> <http://bgf/spam> .
 BIND (<http://bgf/hasClassification> as ?pred) .
 BIND (<http://bgf/spam> as ?obj)
 } UNION {
 ?sub <http://bgf/hasClassification> <http://bgf/nonspam> .
 BIND (<http://bgf/hasClassification> as ?pred) .
 BIND (<http://bgf/nonspam> as ?obj)
 }
 }
 INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01,
 <http://bgf/spam>, <http://bgf/nonspam>, <http://bgf/hasClassification>)
 PRODUCING ?vertex ?ranking

Built-in Graph Functions

S3014 98

}
ORDER BY DESC (?ranking)
LIMIT 100

7.5 Bad Rank

URI
<http://cray.com/graphAlgorithm.badrank>

Description
The Bad Rank algorithm assigns a “badness” score to all vertices in the graph based on their nearness to known
bad vertices.

Inputs and Default Values
Input Default Value

The threshold of the maximum difference between per-
vertex Bad Rank results from successive iterations of
the algorithm below, which the algorithm will terminate.

0.0001

The probability that the next step in a (random) walk will
be followed.

0.84

The probability that a random walk will take a next step
to a bad vertex.

0.01

The URI that designates the object field of a triple that
identifies a spam vertex

<http://cray.com/spamVertex>

The URI that designates the object field of a triple that
identifies a non-spam, or trusted vertex.

<http://cray.com/nonspamVertex>

The URI that designates the predicate field of a triple
that identifies either a spam or a non-spam vertex.

Defaults to the standard RDFS type predicate, <http://
www.w3.org/1999/02/22-rdf-syntax-ns#type> The
above can be abbreviated in a SPARQL query as “a”.

The indicator that specifies whether or not
normalization should be applied to results. Acceptable
values for this parameter are 0 and 1.

1. If the default value is used, the scores are all
mapped to floating point numbers between 0.0 and
1.0, with the maximum value found mapping to 1.0,
the minimum score found mapping to 0.0, and other
scores mapping between those values proportionately.
If the value is set to 0, results will not be normalized
and will be presented as Bad Rank computed them.

Built-in Graph Functions

S3014 99

Outputs
Bad Rank produces a two-column intermediate result that can be thought of as a set of pairs. The first item in
each pair is the identifier of a vertex, whereas the second is the double-precision Bad Rank value of the vertex.

7.6 Betweenness Centrality

URI and scalar arguments
<http://cray.com/graphAlgorithm.betweenness_centrality> (st_vx_ct, normalize)

In the above URI, st_vx_ct and normalize are used as examples.

Description
This is the CGE-specific implementation of the classical vertex-betweenness-centrality algorithm. This algorithm
assigns each vertex a numerical score. Take a given vertex V. In full generality, its betweenness score is defined
to be the sum (over all other pairs of vertices) of the ratio of the number of shortest paths between that pair that
go through V, over the total number of shortest paths between that pair. Thus it measures a sort of “importance” of
each vertex, in terms of the shortest paths to other vertices that pass through it.

Inputs and Default Values
Parameter Description Default Value

st_vx_ct The st_vx_ct parameter can either be an integer or a
decimal.

● If the starting_vertex_ctl parameter is an integer,
it represents how many starting vertices should be used
when approximating the betweenness score of every
vertex in the graph.

● If the starting_vertex_ctl parameter is a decimal,
it should be between 0.0 and 1.0. If a decimal
argument is used, the decimal value will represent the
fraction of the graph's vertices, randomly chosen, that
will be used as starting vertices for approximating the
betweenness scores. A value of 1.0 (the default)
specifies that every vertex in the graph will be used as a
starting vertex.

1.0

normalize The normalize parameter specifies whether or not the
betweenness scores should be normalized. The acceptable
values for this parameter are 0 and 1, where 1 specifies that
betweenness scores should be normalized.

Normalizing the scores means to subtract from the
betweenness score of each vertex the minimum
betweenness score and then divide that partial result by the

1

Built-in Graph Functions

S3014 100

Parameter Description Default Value

difference between the maximum and minimum
betweenness scores found among all the vertices.
Normalized scores will be between 0.0 and 1.0.

Outputs
A call to the Betweenness Centrality function returns a two-column intermediate result set. The first column
contains the vertex identifier (URI), whereas the second column contains the centrality score of the vertex. In
other words, each row of the output result set pairs a vertex’s ID with a double-precision floating-point value
representing the centrality score for that vertex.

Example: Betweenness Centrality
PREFIX cray: <http://cray.com/>
SELECT ?vertices ?scores
WHERE {
 CONSTRUCT {
 ?sub ?pred ?obj .
 } WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.betweenness_centrality(.01,1)
 PRODUCING ?vertices ?scores
}
ORDER BY DESC(?scores)

7.7 Community Detection Label Propagation (LP)

URI
<http://cray.com/graphAlgorithm.community_detection_LP>

Description
The Label Propagation algorithm is used for detecting communities in networks and assigns vertices in the graph
to communities. Each vertex is initially assigned to its own community. At every step, each vertex looks at the
community affiliation of all its neighbors, and updates their state to the mode community affiliation. The mode
community affiliation takes into account the edge weights.

The Label Propagation algorithm is relatively inexpensive, but convergence is not guaranteed.

Inputs and Default Values
The input graph to the Label Propagation function is expected to contain triples of the form (vertex1, weight,
vertex2), where weight is an integer.

Built-in Graph Functions

S3014 101

Input Default Value

The number of steps that the algorithm executes.
Currently an early exit is not included if convergence is
detected. Therefore, the algorithm executes the number
of steps specified in the input.

20

Outputs
A call to the Label Propagation function returns an array of vertex IDs paired with an array of community IDs
These IDs can be used to identify which community each vertex was assigned to.

Example: Label Propagation
PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?vertex ?comm
WHERE{
CONSTRUCT {
 ?sub ?weight ?obj .
} WHERE {
 ?sub <http://wga/isLinked> ?obj .
 ?sub <http://wga/hasWeightLink> ?weightURI .
 ?obj <http://wga/hasWeightLink> ?weightURI .
 ?weightURI <http://wga/hasWeight> ?weight
}
INVOKE cray:graphAlgorithm.community_detection_LP(5)
PRODUCING ?vertex ?comm
}
ORDER BY ?comm

7.8 Community Detection Parallel Louvain Method (PLM)

URI
<http://cray.com/graphAlgorithm.community_detection_PLM>

Description
The Parallel Louvain Method is used for detecting communities in networks and assigns vertices in the graph to
communities. The community_dection_PLM method is a distributed memory implementation using CoarrayC+
+ and is inspired by the shared-memory Parallel Louvain Method in NetworKit, an open-source package (https://
networkit.iti.kit.edu), and corresponding paper “Engineering Parallel Algorithms for Community Detection in
Massive Networks” by Christian L. Staudt and Henning Meyerhenke. The algorithm can take up to two input
parameters. The first parameter controls the maximum number of PLM steps taken. The second parameter is
number of initial Label Propagation steps to take to initialize the starting communities before running the PLM
steps. If the number of Label Propagation steps is set to 0, each vertex is initially assigned to its own community.

Built-in Graph Functions

S3014 102

If no vertices are moved during a PLM step, the routine will exit early, returning the community assignments
corresponding to the largest computed modularity score found up to this point.

Inputs and Default Values
The input graph to the Label Propagation function is expected to contain triples of the form (vertex1, weight,
vertex2), where weight is an integer.

Input Default Value

Maximum number of PLM steps. An early exit is
included if convergence is detected (if no vertices are
moved during a PLM step, the process has converged).

20

Number of Label Propagation steps to be run to
initialize the starting community assignments prior to
running the PLM steps.

(Input number of PLM steps)/2

Outputs
A call to the function returns an array of vertex IDs paired with an array of community IDs These IDs can be used
to identify which community each vertex was assigned to.

Example: Parallel Louvain
PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?vertex ?comm
WHERE{
CONSTRUCT {
 ?sub ?weight ?obj .
} WHERE {
 ?sub <http://wga/isLinked> ?obj .
 ?sub <http://wga/hasWeightLink> ?weightURI .
 ?obj <http://wga/hasWeightLink> ?weightURI .
 ?weightURI <http://wga/hasWeight> ?weight
}
INVOKE cray:graphAlgorithm.community_detection_PLM(25,5)
PRODUCING ?vertex ?comm
}
ORDER BY ?comm

7.9 Page Rank

URI
<http://cray.com/graphAlgorithm.pagerank>

Description
Page Rank can be used to measure the relative importance of a vertex in a graph.

Built-in Graph Functions

S3014 103

Inputs and Default Values

Outputs
Page Rank produces a two-column intermediate result that can be thought of as a set of pairs. The first item in
each pair is the identifier of a vertex, whereas the second is the double-precision Page Rank value of the vertex.

Example: Page Rank
The following example selects all of the edges from the default graph and calls S-T Set Connectivity on the
resulting graph.

PREFIX cray: <http://cray.com/>

 SELECT ?vertices ?pagerank
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 { ?sub ?pred ?obj . }
 }
 INVOKE cray:graphAlgorithm.pagerank(0.0005,0.85)
 PRODUCING ?vertices ?pagerank
 }
 ORDER BY DESC(?pagerank)

7.10 S-T (Source – Target) Connectivity

URI
<http://cray.com/graphAlgorithm.st_connectivity>

Description
The S-T Connectivity function calculates the length of the path between two vertices, if one exists.

Inputs and Default Values
● Vector inputs - None.

● Scalar inputs - The input graph to the S-T Connectivity function is expected to contain triples of the form
(vertex1, predicate, vertex2) where the value of predicate is ignored. The S-T Connectivity function requires
two scalar input arguments, which are the IRIs of the two vertices under consideration, source and target,
respectively. This is illustrated in the example below:

INVOKE <http://cray.com/graphAlgorithm.st_connectivity>
(<urn:mySourceVertex>, <urn:myTargetVertex>)

In the above example, <urn:mySourceVertex> and <urn:myTargetVertex> are the IRIs of the source
and target vertices, respectively.

Built-in Graph Functions

S3014 104

Outputs
The following example culls needed edges from the default graph and calls S-T Connectivity on the resulting
graph.

Example: S-T (Source Target) Connectivity
PREFIX cray: <http://cray.com/>

SELECT ?nHops
WHERE {
 CONSTRUCT {
 ?v1 ?p ?v2 .
 } WHERE {
 SELECT ?v1 ?v2 ?p
 WHERE {
 ?v1 <urn:hasLink> ?v2 .
 BIND(<urn:path> AS ?p)
 }
 }
 INVOKE cray:graphAlgorithm.st_connectivity(<http://ga.org/string#000/
vertex#00000001>,
 <http://ga.org/string#000/vertex#00200000>)
 PRODUCING ?nHops
}

7.11 S-T Set Connectivity

URI
<http://cray.com/graphAlgorithm.st_set_connectivity>

Inputs and Default Values
● Scalar inputs - None.

● Vector inputs - The S-T Set Connectivity function accepts input of a set of vertices designated as sources
and a set of vertices designated as targets. These are added to the constructed graph using the
<http:∕∕cray.com∕sourceVertex> and <http:∕∕cray.com∕targetVertex> URIs, as well as the
standard RDFS predicate <http:∕∕www.w3.org∕1999∕02∕22-rdf-syntax-ns#type>, which may be abbreviated as
“a” in a SPARQL query.

Subject Predicate Object

Source vertex identifier a <http:∕∕cray.com∕sourceVertex>

Target vertex identifier a <http:∕∕cray.com∕targetVertex>

Outputs
A call to the S-T Set Connectivity function returns an intermediate result set containing a single integer. The
values and meaning of this integer are described below:

Built-in Graph Functions

S3014 105

● If the integer’s value is 0, there is no path between any pair of vertices with the source vertex taken from the
source set and the target vertex taken from the target set.

● If the value is greater than 0, it represents the number of hops in the shortest path between any such pair of
vertices.

IMPORTANT: The S-T Set Connectivity function will return an error in the following cases:

1. Nonexistence of input source and/or target vertex

2. Invalid input source and/or target vertex

3. Nonexistence of input source and/or target vertex in the input edge list

Example: S-T Set Connectivity
The following example selects all of the edges from the default graph and calls S-T Set Connectivity on the
resulting graph.

PREFIX cray: <http://cray.com/>
SELECT ?distance
WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 ?srcNode a cray:sourceVertex .
 ?trgNode a cray:targetVertex .
 }
 WHERE{
 {
 ?sub ?pred ?obj .
 }
 UNION {
 VALUES ?srcNode
 {
 <http://bgf.org/c/03/i/000000>
 <http://bgf.org/c/05/i/000000>
 <http://bgf.org/c/08/i/000003>
 }
 }
 UNION {
 VALUES ?trgNode
 {
 <http://bgf.org/c/05/i/000001>
 <http://bgf.org/c/08/i/000007>
 }
 }
 }
 INVOKE cray:graphAlgorithm.st_set_connectivity()
 PRODUCING ?distance
}

Built-in Graph Functions

S3014 106

7.12 Triangle Counting

URI
<http://cray.com/graphAlgorithm.triangle_counting>

Description
Triangle Counting is used to count the total number of triangles in a graph.

Inputs and Default Values
● Vector inputs - None.

● Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be included in the count.

○ 0: Return a count of all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles

○ 1: Return a count of all the unique triangles in the graph, both cyclic and non-cyclic triangles

○ 2: Return a count of only the non-cyclic triangles

○ 3: Return a count of only the cyclic triangles (including rotations)

○ 4: Return a count of only the unique cyclic triangles

Outputs
This algorithm returns a single integer containing the number of triangles.

Example: Triangle Counting
PREFIX cray: <http://cray.com/>

 SELECT ?total_num_triangles
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.triangle_counting(1)
 PRODUCING ?total_num_triangles

7.13 Vertex Triangle Counting

URI
<http://cray.com/graphAlgorithm.vertex_triangle_counting>

Built-in Graph Functions

S3014 107

Description
The Vertex Triangle Counting algorithm is used to gather statistics on the vertices based on the triangles they
participate in and for non-cyclic triangles, their position in the triangle.

Inputs and Default Values
● Vector inputs- None.

● Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be included in the counting statistics.

○ 0: Return a count of all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles.

○ 1: Return a count of all the unique triangles in the graph, both cyclic and non-cyclic triangles

○ 2: Return a count of only the non-cyclic triangles

○ 3: Return a count of only the cyclic triangles (including rotations)

○ 4: Return a count of only the unique cyclic triangles

Outputs
Output is a four-column intermediate result. Each row in the intermediate results contains a vertex URI followed
by a total count of the triangles for which it participates as either a through_vertex, in_vertex, or
out_vertex, respectively. The PRODUCING clause should be interpreted as "vertexID","through_count",
"in_count", "out_count", where the counts refer to the number of triangles in which the vertex participates in
that role.

Example: Vertex Triangle Counting
PREFIX cray: <http://cray.com/>
 SELECT ?id ?through ?in ?out
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.vertex_triangle_counting(0)
 PRODUCING ?id ?through ?in ?out
 }

7.14 Triangle Finding

URI
<http://cray.com/graphAlgorithm.triangle_finding>

Built-in Graph Functions

S3014 108

Description
The Triangle Finding algorithm is used to find all the triangles in the graph. The output can be customized to
return either all triangles, or only the cyclic or non-cyclic triangles. The number of triangles in a given region of a
graph is a good indicator of the density of that part of the graph.

Inputs and Default Values
● Vector inputs- None.

● Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be output..

○ 0 - Return all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles

○ 1: Return all the unique triangles in the graph, both cyclic and non-cyclic triangles

○ 2: Return only the non-cyclic triangles

○ 3: Return only the cyclic triangles (including rotations)

○ 4: Return only the unique cyclic triangles

Outputs
The code returns a four-column IRA . Each row in the IRA represents the three URIs of the vertices of a triangle
followed by a cyclic flag (set to 1 for cyclic, 0 for non-cyclic). The non-cyclic triangles are written out in the order of
through_vertex, in_vertex, out_vertex. The cyclic flag is considered optional in the PRODUCING clause in the case
where only the URIs of the vertices are needed.

Example: Triangle Finding
PREFIX cray: <http://cray.com/>

 SELECT ?vertexID1 ?vertexID2 ?vertexID3 ?cyc
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.triangle_finding(1)
 PRODUCING ?vertexID1 ?vertexID2 ?vertexID3 ?cyc

Built-in Graph Functions

S3014 109

8 Cray Graph Engine (CGE) Extension Functions
CGE provides a number of extension functions, including:

● Interval analytics functions.

● Haversine functions.

● Square root function.

8.1 Cray Graph Engine (CGE) Interval Analytics Functions

Intervals
An interval is defined as the sequence between any two variables of compatible atomic types, where one defines
the start of the interval and the other defines the end of the interval. The interval is inclusive of the start and end.

Intersecting and Non-Intersecting Intervals
Two or more intervals are said to be intersecting if there is an interval in time during which all of the intervals
under consideration are present. More precisely, intersecting time intervals are those where the latest start time is
less than the earliest end time, i.e., no period has ended before the last period to begin, has started. This period is
termed as an intersection and starts at the beginning of the last interval to start and ends at the end of the first
interval to end.

On the other hand, non-intersecting time intervals are those where a period has ended before the last period to
begin has started, as illustrated in the following figure:

Cray Graph Engine (CGE) Extension Functions

S3014 110

Figure 14. Intersecting Intervals

Continuous and Non-Continuous Intervals
Two or more intervals are said to be “continuous” if there is at least one interval present during the complete span,
from the start of the first interval to start, to end of the last interval to end. In non-continuous intervals, at least one
gap (period within which no intervals are present) is present between the intervals under consideration. This is
illustrated in the following figure:

Figure 15. Continuous Period With Non-Intersecting Intervals

Cray Graph Engine (CGE) Extension Functions

S3014 111

Figure 16. Non-Continuous Period with Non-Intersecting Intervals

Using Interval Analytics Functions For Temporal Analysis
Interval functions can be used to gather fine-grained detail about intervals. For example, they can be used to:

● Determine if a time period that ends at the same time is contiguous with one that starts at the same time.

● Determine whether or not two or more time intervals intersect.

● Determine the continuity of a given time period.

Function Prefix
The prefix to use when using interval functions in queries is:

PREFIX arq: <http://jena.hpl.hp.com/ARQ/function#>

List of Interval Analytics Functions
NOTE: The names of all the CGE interval functions are case-sensitive. Interval functions work with any
type that has a < comparison, e.g., numerics and strings.

The list of CGE-specific interval analytics functions, their syntax and description is provided in the following table:

Table 15. List of CGE-specific Interval Functions

Function Description

listmin(element1, elementN) This function returns the smallest item in the comma-
separated list of items provided as arguments.

listmax(element1, elementN) This function returns the largest item in the list of
arguments.

iscontinuous(start1,end1,... startN, endN) This is a pairwise function that accepts a list of
comma-separated list of start and end times and
determines whether or not there is a gap between the
intervals under consideration.

Cray Graph Engine (CGE) Extension Functions

S3014 112

Function Description

● True when there is complete coverage from
earliest starting time to latest end time, i.e. there
are no gaps in the coverage.

● False if there is any gap in the coverage

isintersecting(start1, end1, startN,
endN)

This is a pairwise function that determines whether or
not there is a period within which all the intervals
under consideration are present. This function
returns:

● True when there is an interval where all intervals
are present.

● False if there is no interval when all intervals are
present

duration(startTime, endTime) This function uses the Unix epoch and time functions
to calculate the duration between the start and end
times, which are provided as arguments. This
function returns the xsd:dayTimeDuration between
startTime and endTime.

NOTE: This function only accepts dates
starting from July 5, 1776.

NOTE: Although the listmin(), listmax(), iscontinuous() and isintersecting() functions
support all SPARQL compatible types, the arguments provided to these function should all be of
compatible atomic types, otherwise an xsd_error will be returned. Furthermore, the duration()
function will return an xsd_error in the following cases:

● Either of the arguments are not of type xsd:dateTime

● The sum of (duration(xsdDate1, xsdDateTime2) - duration(xsdDateTime2, xsdDate1)) will not
be zero. This is because xsdDate is defined to span 24 hours (for standard days), and it is assumed
that the start time is at the beginning of the day, and the end time is at the end of the day

There are a few important items to note when using the interval analytics functions:

● The interval analytic functions do not fully support the xsd:date and xsd:time data types and may return
incorrect results; users should avoid these two types.

● Comparisons of xsd:date and xsd:dateTime within the same day may return unexpected results.
xsd:date and xsd:dateTime comparisons are supported outside of the 14 hour time zone range and the
24 hour day span of xsd:date.

● xsd:date results are now included when filtering on xsd:dateTime (outside the same day) and vice versa
(xsd:dateTime results when filter on xsd:date). If strict xsd:dateTime results (or xsd:date results) are
required, the appropriate data type filter should be added.

Cray Graph Engine (CGE) Extension Functions

S3014 113

● The duration() function supports combinations of xsd:date and xsd:dateTime. If an xsd:date result is
the start time, the duration will start at the beginning of the day. Similarly, if the xsd:date result is the end
time, the duration will end at the end of the day.

8.2 Cray Graph Engine (CGE) Haversine Functions
CGE supports the haversinemeters() and haversinemiles() functions to enable support for spatially aware
applications. These functions are based on the Haversine formula, which is an equation that calculates the great-
circle distance between two points on a sphere from the longitudes and latitudes of the two points. For more
information, visit http://en.wikipedia.org/wiki/Haversine_formula.

The syntax of CGE Haversine functions is shown below:

● afq:haversinemeters(latStart, longStart, latEnd, longEnd)
● afq:haversinemiles(latStart, longStart, latEnd, longEnd)

NOTE: The haversinemeters() and haversinemiles() functions are case sensitive.

Inputs
Both the CGE haversinemeters() and haversinemiles() functions accept the following inputs in
xsd:decimal, xsd:double and xsd:float formats:

● atStart – The starting position of the latitude (dimensions of the values in degrees)

● longStart – The starting position of the longitude (dimensions of the values in degrees)

● latEnd – The ending position of the latitude (dimensions of the values in degrees)

● longEnd – The ending position of the latitude (dimensions of the values in degrees)

Acceptable latitude values range from -90 to 90, whereas acceptable longitude values range from -180 degrees
to 180 degrees.

NOTE: Important: The functions will return an empty value if:

● Invalid position coordinates are provided

● Empty input values are provided

● Insufficient parameters are provided.

Output
The haversinemeters() function returns the distance between two points in meters, whereas the
haversinemiles() function returns the distance between two points in miles.

Function Prefix
The prefix to use when using CGE Haversine functions in queries is:

PREFIX afq: <http://jena.hpl.hp.com/ARQ/function#>

Cray Graph Engine (CGE) Extension Functions

S3014 114

http://en.wikipedia.org/wiki/Haversine_formula

8.3 Cray Graph Engine (CGE) Square Root Function
The square root function, sqrt() is used to retrieve the square root of the specified number

Syntax
The syntax of the square root function is:

sqrt(argument)

NOTE: The name of the sqrt()function is case sensitive.

Function Prefix
The prefix to use when using the sqrt()function in queries is:

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>

Table 16. CGE Square Root Function's Examples

Argument Type Example

Integer PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt("9223372036854775807"^^ <http://www.w3.org/2001/XMLSchema#integer) AS ?a) }

Decimal PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(4294967296.0) AS ?a) }

Float PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt ("3.4E38"^^xsd:float) AS ?a) }

Double PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt("1.797E308"^^xsd:double) AS ?a) }

Boolean PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(true) AS ?a) }

NOTE: Passing “true” as the Boolean argument returns 1, whereas
passing “false” as the Boolean argument returns 0.

NOTE: The sqrt() function will return an empty value if a negative number is provided as an argument.
Furthermore, the sqrt() function will return an empty value if arguments of certain types are used.
These argument types include:

● xsd:dateTime

● String

● IRI

● Arbitrary data type

You can also use derived data types as arguments to the sqrt()function, as shown in the following query:

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a{ BIND (afn:sqrt ("18446744073709551615"^^<http://www.w3.org/2001/XMLSchema#positiveInteger>) AS ?a) }

NOTE: Executing the sqrt() function when a negative derived type is used as an argument will result in
an empty value.

Cray Graph Engine (CGE) Extension Functions

S3014 115

8.4 Custom Aggregate Functions
CGE supports the following custom aggregate functions:

● variance
● standard deviation
● geometric mean
● mode
● median

Table 17. Custom Aggregate Functions

Function Purpose

variance Returns the variance of an expression.

standard deviation Calculates the standard deviation of a set of numeric values. Requires
at least two values.

geometric mean Calculates the nth root of the product of the numbers, where n is the
count of numbers.

mode Returns the most frequently occurring number in a group of supplied
arguments.

median Calculate the median, which is the value separating the higher half of a
data sample, a population, or a probability distribution, from the lower
half.

Examples
● variance

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#variance>(?o) AS ?RESULT)
WHERE
 { ?s ?p ?o}
GROUP BY ?p

● geometric mean

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#geometric_mean>(?o) AS ?
RESULT)
WHERE
 { ?s ?p ?o}
GROUP BY ?p

● standard deviation

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#standard_deviation>(?o) AS ?
RESULT)
WHERE
 { ?s ?p ?o}
GROUP BY ?p

Cray Graph Engine (CGE) Extension Functions

S3014 116

● mode

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#mode>(?o) AS ?RESULT)
WHERE
 { ?s ?p ?o}
GROUP BY ?p

● median

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#median>(?o) AS ?RESULT)
WHERE
 { ?s ?p ?o}
GROUP BY ?p

Custom aggregate functions can be freely mixed together or with standard SPARQL aggregate functions, such as:

● SUM

● MIN

● MAX

● SAMPLE

● AVG

● GROUPCONCAT

For example:

SELECT ?p
 (AGG<http://www.dotnetrdf.org/leviathan#variance>(?o) AS ?RESULT1)

 (SUM (?o) AS ?RESULT2)
 (AGG<http://www.dotnetrdf.org/leviathan#median>(?o) AS ?RESULT3)

CAUTION: The DISTINCT flavors of custom aggregates are currently not supported.

Geometric Mean
Geometric mean is defined as the nth root of the product of n values. The product’s absolute value is used under
the radical sign to avoid negative numbers. The result in this case will be zero. The product’s absolute value is
used under the radical sign to avoid negative numbers. In other words, if the product happens to be negative, that
value is negated to make it positive and then its root is retrieved.

Cray Graph Engine (CGE) Extension Functions

S3014 117

9 Cray Graph Engine (CGE) Property Path Support
CGE does not natively support all the SPARQL 1.1 property paths features, however it does support certain types
of property paths.

NOTE: CGE’s property path support should be used with care. This support is disabled by default and
must be explicitly enabled by the user. Contact Cray Support for additional information.

● Simple Property Paths - By default, simple property paths that are equivalent to simple fixed length Basic
Graph Patterns (BGPs) are supported. This means that property paths consisting of only the sequence / and
inverse ^ operators are permitted, since these can be written out as a simple BGP using blank node
variables. For example:

SELECT * WHERE
{
?s <urn:a>/<urn:b> ?o
}

Can be rewritten as follows:

SELECT * WHERE
{
?s <urn:a> _:p0 .
_:p0 <urn:b> ?o .
}

● Complex Property Paths Emulation - Some more complex property paths can be emulated through query
rewriting, which expands the property paths into an equivalent query form.

NOTE: It is important to be aware that this support is only emulation, and may not provide complete
answers that a SPARQL engine with native property path support would produce.

The following table details the additional operators, which may be emulated and the restrictions and limitations on
that emulation.

Table 18. Additional Operators that May be Emulated

Operator Example Description Additional Notes

*
?s <urn:a>*
?o

Finds paths of zero or
more steps between two
nodes in the graph

● Path to which the * operator applied
must be either a predicate or inverse
predicate

● Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

● Paths are evaluated only up to a
maximum length (default 5) which

Cray Graph Engine (CGE) Property Path Support

S3014 118

Operator Example Description Additional Notes

may be user configured on a per-
query basis

● Expands into a UNION that looks for
paths of each length up to the
specified maximum

+
?s <urn:a>+
?o

Finds paths of one or
more steps between two
nodes in the graph

● Path to which the + operator applied
must be either a predicate or inverse
predicate

● Paths are evaluated only up to a
maximum length (default being 5)
which may be user configured on a
per-query basis

● Expands into a UNION that looks for
paths of each length up to the
specified maximum

?
?s <urn:a>?
?o

Finds paths of zero or one
steps between two nodes
in the graph

● Path to which the ? operator applied
must be either a predicate or inverse
predicate

● Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

● Expands into a UNION that looks for
paths of length zero and one

|
?s <urn:a> |
<urn:b> ?o

Finds paths between two
nodes that use any of the
alternative paths given

● Paths to which the | operator applied
may themselves be complex but only
paths that are predicates or inverse
predicates are guaranteed to expand
into a valid query

● Expands into a UNION that considers
each alternative, where the
alternative is itself a property path it
may be further expanded as
necessary

!
(
property
)

?s ! <urn:a>
?o

Find paths between two
nodes that do not pass
through a given predicate

● The negated property set operator
only applies to predicates or inverse
predicates and thus can always be
expanded

● Expands into a MINUS that considers
all paths and then eliminates the
undesirable paths

Cray Graph Engine (CGE) Property Path Support

S3014 119

Enabling Emulation
CGE also provides the option to change the maximum length of paths (for the expansion of the * and +
operators), as shown in the following example:

% cge-cli query --opt-on optPathExpand --path-expansion 3 paths.rq

The above query would run the query with property path expansion enabled and a maximum path length of 3.

NOTE: This value can be set to any desired value, however it is important to note that the higher this
value is set to, the more complex the query that will be generated. This will result in slower performance
because the database server will need to search for longer paths. Therefore, it is recommended to set the
length of paths to the minimum possible value for optimal emulation performance. It is also important to
note that setting a maximum length of zero or less will result in disabling the expansion.

Cray Graph Engine (CGE) Property Path Support

S3014 120

10 Cray Graph Engine (CGE) Quick Reference
The order in which CGE operations should be performed is:

Step 1: Set up SSH keys
If the following command allows re-logging into the login node without a password, then the SSH keys are set up
sufficiently for using CGE.

$ ssh localhost

On the other hand, if the previous command fails and there are existing SSH keys that do not use pass-phrases
or have the ssh-agent defined, then try the following:

$ cat ~/.ssh/id_*.pub >> ~/.ssh/authorized_keys

At this point, if it is possible to run the aforementioned test and to re-log in to the login node without using a
password, pass-phrase, or ssh-agent, then this step can be considered to be complete. If, on the other hand, the
aforementioned test fails, there are no SSH keys defined yet, the following commands can be used to set them
up:

CAUTION: Ensure that there are no existing SSH keys because this will overwrite any existing keys.
Also, do not specify a pass-phrase when running ssh-keygen

$ mkdir -p ~/.ssh
$ chmod 700 ~/.ssh
$ ssh-keygen
$ chmod 600 ~/.ssh/id_*
$ chmod 600 ~/.ssh/authorized_keys

If the existing SSH key(s) use pass-phrase(s) or the ssh-agent, or if a more complex SSH key configuration is
required, see Cray Graph Engine (CGE) Security Mechanisms on page 70. This section also contains information
about fine-tuning access to CGE instances.

Step 2: Start the CGE Server
The cge-launch command launches the CGE query engine and enables creating and building a database in a
single step.

The following is an example of using the cge-launch command:

$ cge-launch -o pathtoResultsDir -d path -l logfile

In the preceding example:

● -o - Specifies the path to a directory where you want the result files produced by queries to be placed.

Cray Graph Engine (CGE) Quick Reference

S3014 121

CAUTION: This path MUST be a directory.

● -d - Specifies the path to the directory containing the data set to be loaded into the server. This directory
must contain all input data files for the data set.

NOTE: This directory MUST contain at least one of the following if the data set is being built for the
first time with CGE (only one of these will actually be used):

○ dataset.nt - This file contains triples and must be named dataset.nt

○ dataset.nq - This file contains quads and must be named dataset.nq

○ graph.info - This file contains a list of pathnames or URLs to files containing triples or quads
and must be named graph.info.

● -l - Specifies a log file to capture the command output from the run. If the database server is logging to
stderr, this log file will capture that information as well. There are two special argument values for this: ':1'
and ':2’, which refer to stdout and stderr, respectively, so that the log can be directed to either of those. If
the -l option is specified, the cge-launch command runs silently, producing no output to the terminal
stdout/stderr.

For more information, see Launch the CGE Server Using the cge-launch Command on page 21 and Building a
Database on page 13.

Step 3: Execute CGE CLI Commands (Optional)
CGE CLI commands can be executed after the CGE query engine has been launched. Following is an example of
using the CGE nvp-info CLI command:

$ cge-cli nvp-info

CGE CLI features a number of commands, which are documented in the Cray Graph Engine (CGE) Command
Line Interface on page 23 section.

Step 3: Start up the CGE Front End Server to Connect with the CGE Server (Optional)
The CGE graphical user interface and SPARQL endpoints can be accessed once the database has been
launched. This can be accomplished by launching the web server that provides the user interface on a login node
of the system where CGE is running.

$ cge-cli fe --ping

The --ping option in the preceding example is used to verify that the database can be connected to immediately
upon launch and that any failure is seen immediately. Not doing so may delay and hide failures. If the ping
operation does not succeed, and it is certain that the user executing this command is the only user running CGE,
and that everything else is set up correctly, the user should go back to the first step and make sure that the SSH
keys are set up right. The system may prompt to trust the host key when the fe command is run for the first
time.The default URL to access the UI is http://<hostname>:3756/dataset, where hostname is used as an
example for the web server's name. For more information, see Launch the CGE Web Server Using the fe
Command on page 37.

Alternatively, the following command can be used to have the web server continue running in the background with
its logs redirected, even if disconnected from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

Cray Graph Engine (CGE) Quick Reference

S3014 122

Step 4: Access and Use the CGE Front End (Optional)
For more information, see Access the Cray Graph Engine (CGE) Graphical User Interface on page 49.

Shutdown the CGE Server
● Shut down the CGE server using the shutdown command, as shown in the following example:

$ cge-cli shutdown

For more information, see Shutdown the CGE Server Using the shutdown Command on page 44.

● Shut down the CGE front end if it was started.

Additional Information
Cancelling a query - To cancel a query, hit CTRL-C on the window where the CGE server was launched or
locate the CGE server instance's PID on the login node and use kill -INT <PID>. After that, re-launch CGE.

Cray Graph Engine (CGE) Quick Reference

S3014 123

11 Use the Cray Graph Engine (CGE) for a Hello World
Example

About this task
In this example, a tiny RDF triples database and query are created in such a way that it creates a sort of "Hello
World" output.

Procedure

1. Create a .nt file. This is the original, readable representation of the database

<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "World" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Home Planet" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Earth" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hello" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hi" .

2. Store the .nt file in the directory that has been selected or created for it.

IMPORTANT: This directory must contain a file named dataset.nt if it contains triples or
dataset.nq if it contains quads.

3. Select or create another directory into which the query engine should write the results and then launch the
CGE server in a terminal window.

$ cge-launch -I 1 -N 1 -d /dirContainingExample/example -o \
/dirContainingExampleOutput -l :2

For more information about the cge-launch command, and its parameters, see the cge-launch man page
or Launch the CGE Server Using the cge-launch Command on page 21.

The server will output a few pages of log messages, as it starts up and converts the database to its internal
representation. When it finishes, the system will display a message similar to the following:

$ Serving queries on nid00057 16702

4. In another terminal window, launch the CGE front end:

$ cge-cli fe

When the CGE front end has been launched, a message similar to the following will be returned:

249 [main] INFO com.cray.cge.cli.commands.sparql.ServerCommand - CGE SPARQL Protocol Server has started and is
ready to accept HTTP requests on localhost:3756

NOTE: The CGE SPARQL protocol server listens at port 3756, which is the default port ID.

Now the browser can be started.

Use the Cray Graph Engine (CGE) for a Hello World Example

S3014 124

5. Optional: Log on to the CGE UI by pointing a browser at http://machine-login1:3756/login, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured.

6. Execute a query against the dataset created by typing in the query and selecting the Run Query button.

Figure 17. CGE Hello World Query Example

After the query finishes executing, the output file containing the query's results will be stored in the output
directory that was specified in the cge-launch command. This can be verified by listing the contents of that
directory and reviewing the contents of the output file, as shown in the following example:

$ cd /dirContainingExampleOutput
$ ls
queryResults.34818.2015-10-05T19.33.53Z000.tsv
$ cat queryResults.34818.2015-10-05T19.33.53Z000.tsv

Use the Cray Graph Engine (CGE) for a Hello World Example

S3014 125

?greeting ?object
“Hello” “Home Planet”
“Hi” “Home Planet”
“Hello” “World”
“Hi” “World”
“Hello” “Earth”
“Hi” “Earth”

Since the Excel application can read .tsv files, results can also be viewed in Excel, as shown in the following
figure:

Figure 18. Viewing CGE Output in Excel

7. To halt the CGE server, execute:

$ cge-cli shutdown

Use the Cray Graph Engine (CGE) for a Hello World Example

S3014 126

12 Support for Simple GraphML Files
CGE enables importing simple GraphML files and generating the corresponding quads for the given graph(s). To
enable importing a GraphML file, the user can either list a GraphML file in a graph.info file as part of a
database build, or load a GraphML file. When CGE processes an input file, any file that ends with the .graphml
extension will be treated as a GraphML file.

The syntax supported for GraphML files is based on the DTD specification provided at: http://
graphml.graphdrawing.org/

The following is a sample GraphML file that represents a simple graph:

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
 http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
 <graph id="G" edgedefault="undirected">
 <node id="n0"/>
 <node id="n1"/>
 <node id="n2"/>
 <node id="n3"/>
 <node id="n4"/>
 <edge id="e1" source="n0" target="n2"/>
 <edge id="e2" source="n1" target="n2"/>
 <edge id="e3" source="n2" target="n3"/>
 <edge id="e4" source="n3" target="n4"/>
 </graph>
</graphml>

Limitations
There are multiple limitations in the current support for GraphML files, including the following:

● The xml and graphml elements are parsed, but otherwise ignored.

● Edge data is currently ignored.

● Default edge direction for a graph is ignored.

● Edge direction attribute is ignored.

● Default values for data are ignored.

● Elements in a graph are limited to descriptions, data, nodes and edges.

● Nodes and edges can only contain descriptions or data as subelements.

● Nested graphs are not supported.

CGE will report warning or error messages to the log file for any incorrect syntax or unsupported features.

Support for Simple GraphML Files

S3014 127

http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/

When translating an edge to a quad, CGE will convert the edge identifier as well as the source and target
identifiers to URIs.

For example, given the following edge from the example above:

<edge id="e1" source="n0" target="n2"/>

CGE would generate the following quad:

<urn:n0> <urn:e2> <urn:n2> <urn:G> .

Note that when converting the identifier to a URI, CGE will insert the urn: prefix by default. Also, if any error is
found when parsing an edge no quad will be generated for that edge. For example, if a node referred to by an
edge does not exist in the given graph, or if there was an error when parsing the node declaration, these errors
will prevent a quad from being generated for an edge.

NVPs for GraphML Support
● cge.server.ExportGMLRDFEnable - Setting this NVP to 1 will cause CGE to export the quads generated

for a given GraphML file to an nt file of the same name as the input GraphML file but with the nt extension.
For example, if a graph.info file includes the line:

/my/path/to/file_name.graphml

The given NVP is set to 1 then CGE will write the quads produced by the GraphML file to an nt file named:

/my/path/to/file_name.nt

Exporting the quads to an nt file can be useful if the quads will be loaded multiple times since loading quads is
faster and uses less memory than loading from a GraphML file. This NVP is off by default.

● cge.server.GMLInsertPrefix - Setting this to 1 will cause CGE to insert the urn: prefix when converting
identifiers for graphs, nodes, and edges to URIs. For example, the following edge:

<edge id="e1" source="n0" target="n2"/>

would result in URIs of <urn:e1>, <urn:n0> and <urn:n2> for the edge, source and target identifiers,
respectively. This NVP is on by default.

● cge.server.GMLCheckPrefix - Setting this to 1 will cause CGE to check an identifier for a known prefix
before inserting the urn: default prefix. The prefixes that CGE will check for are:

○ urn:

○ http:

○ https:

If a graph, node or edge identifier starts with one of these prefixes and this NVP is set, CGE will not insert the
urn: prefix. For example, given the following edge:

<edge id="http://www.mysite.com/e1" source="n0" target="n2"/>

and having this NVP set will result in the following URIs:

○ <http://www.mysite.com/e1>

Support for Simple GraphML Files

S3014 128

○ <urn:n0>

○ <urn:n2>

Notice that since the source and target identifiers did not include a known prefix, CGE will insert the urn:
prefix by default.

Support for Simple GraphML Files

S3014 129

13 CGE API

13.1 CGE API Versioning
CGE API file versioning consists of filename subtext "vX.Y.Z", where X, Y, and Z represent integers. The
following table correlates versions of CGE with API version numbers:

CGE Java API Python API

2.0UP00 v1.0.0 none

2.5UP00 v1.1.0 v1.0.0

The CGE user guide sections describing each type of API use vX.Y.Z for file versioning. Users are expected to
replace this with the appropriate version of interest from the table.

13.2 Use the CGE Java API
The CGE Java API consists of four Java JAR files and a ReadMe file:

1. cge-java-api-vX.Y.Z-with-dependencies.jar - Contains executable Java classes. Using the
executable Java classes, users can write their own Java code to perform CGE actions like launching the
server, querying, updating, checkpointing, etc.

2. cge-java-api-examples-vX.Y.Z-sources.jar - Contains sample source code. Users can build their
own Java programs referring to these examples.

3. cge-java-api-vX.Y.Z-javadocs.jar - Contains documentation of Java classes that the CGE API is
comprised of.

4. cge-java-examples-vX.Y.Z-with-dependencies.jar - Contains executable sample source code.
Samples provided with the CGE API can also be executed, as their entry points are included in the
executable sample source code

5. ReadMe_JavaAPI.txt - Contains commands and scripts documented in this guide. These commands and
scripts are suitable for copying and pasting for execution.

Where vX.Y.Z is the version code documented in CGE API Versioning on page 130.

This section describes how to utilize these .jar files.

CGE API

S3014 130

Extracting the source code
To extract the Java source code, run the following command:

$ jar -xf PATH_TO_JAR/cge-java-api-examples-vX.Y.Z-sources.jar

A directory structure similar to the following should appear:

./META-INF

./META-INF/MANIFEST.MF

./com

./com/cray

./com/cray/cge

./com/cray/cge/api

./com/cray/cge/api/examples

./com/cray/cge/api/examples/ExampleUtils.java

./com/cray/cge/api/examples/Checkpoint.java

./com/cray/cge/api/examples/LaunchAndShutdown.java

./com/cray/cge/api/examples/Shutdown.java

./com/cray/cge/api/examples/LaunchAndTerminateOnJvmExit.java

./com/cray/cge/api/examples/Status.java

./com/cray/cge/api/examples/ComprehensiveExample.java

./com/cray/cge/api/examples/UpdateExisting.java

./com/cray/cge/api/examples/IsRunning.java

./com/cray/cge/api/examples/StatusExisting.java

./com/cray/cge/api/examples/QueryExisting.java

./com/cray/cge/api/examples/CheckpointExisting.java

./com/cray/cge/api/examples/Update.java

./com/cray/cge/api/examples/Query.java

./com/cray/cge/api/examples/Config.java

./com/cray/cge/api/examples/hooks

./com/cray/cge/api/examples/hooks/InheritIOHook.java

./com/cray/cge/api/examples/LaunchOnly.java

The .java files are source-code examples that users can refer to when building their own Java programs. These
are also included in the executable Java classes, so users can execute them directly if desired.

Extracting the API Class Documentation
To extract the API class documentation, run the following command:

$ jar -xf PATH_TO_JAR/cge-java-api-vX.Y.Z-javadocs.jar

A directory structure similar to the following should appear. Please note that there is an extensive directory
structure that exists under the ./com directory, but it is not displayed in the following.

./META-INF

./META-INF/MANIFEST.MF

./resources

./resources/titlebar.gif

./resources/tab.gif

./resources/titlebar_end.gif

./resources/background.gif

./com

./allclasses-frame.html

./overview-frame.html

./overview-summary.html

./package-list

CGE API

S3014 131

./deprecated-list.html

./serialized-form.html

./index.html

./help-doc.html

./index-all.html

./allclasses-noframe.html

./constant-values.html

./stylesheet.css

./overview-tree.html

This file system is meant to be run with a web-browser.

● To view on Windows systems, right-click on overview-summary.html and then select the open with menu
option to open the file using the web-browser of interest, such as Internet Explorer or Chrome.

● To execute on Linux systems, ensure that an X-Windows server is running on the target computer, and that
the $DISPLAY environment variable is set appropriately. Then execute with the web-browser of interest, for
example using firefox help-doc.html&.

In either case, the documentation should appear for point-and-click viewing.

Using API Executables
There are several ways to utilize the executable Java classes .jar files, as illustrated by the following:

● Use Java API via Maven

● Use Java API via Java Development Kit (JDK)

● Use Java API via pre-built main entry points

● Use Java API Comprehensive Example program

13.2.1 Use CGE Java API via Maven

About this task
The following procedure illustrates a use-case for using Maven to develop a Java application program to execute
the cge-launch command. This sample program will utilize the LaunchOnly.java sample file.

Procedure

1. Create an application framework.

$ mvn archetype:generate -DgroupId=com.mycompany.launchonly \
-DartifactId=my-launchonly -DarchetypeArtifactId=maven-archetype-quickstart \
-DinteractiveMode=false

This is a standard Maven command to make a framework for developing a Java application; in this case, a
framework is created in the new my-launchonly area.

2. Switch to the my-launchonly directory.

$ cd my-launchonly

3. Install executable classes as a local jar file.

CGE API

S3014 132

$ mvn install:install-file \
-Dfile=./cge-java-examples-vX.Y.Z-with-dependencies.jar \
-DgroupId=com.cray.cge.api \
-DartifactId=cge-user-apis \
-Dversion=1.0.0 \
-Dpackaging=jar

This is a standard Maven command for creating a directory structure for an executable .jar file.

4. Copy the LaunchOnly.java file into this area of the new mycompany directory.

$ cp .../LaunchOnly.java \
./src/main/java/com/mycompany/launchonly/LaunchOnly.java

5. Develop a pom.xml file for the application or overwrite the default pom.xml file.

There can be many variations of this file, the following is shown as a suggestion for the contents of this file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.cray.cge.api.examples</groupId>
 <artifactId>my-launchonly</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>my-launchonly</name>
 <url>http://maven.apache.org</url>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>attached</goal>
 </goals>
 <phase>package</phase>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>com.cray.cge.api.examples.LaunchOnly</mainClass>
 </manifest>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>

CGE API

S3014 133

 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.cray.cge.api</groupId>
 <artifactId>cge-user-apis</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>
</project>

6. Build the package.

Users can first delete all files in their ~/.m2 directory, as Maven will download what it needs to build the
package into this area.

$ mvn clean package

7. Execute the code using one of the following:

● $ java -jar ./target/my-launchonly-1.0.0-jar-with-dependencies.jar /path-to-dataset ./

● $ java -cp ./target/my-launchonly-1.0.0-jar-with-dependencies.jar
com.cray.cge.api.examples.LaunchOnly /path-to-dataset ./

● $ export CLASSPATH=./target/my-launchonly-1.0.0-jar-with-dependencies.jar;
java com.cray.cge.api.examples.LaunchOnly /path-to-dataset ./

Note the following items:

● The ./ argument specifies where the program will place the result files.

● /path-to-dataset is the directory path to the user's dataset area,
e.g. /lus/scratch/ripple/mkdb/sp2b/25k

● Outputs are the cge_launcher.log and cge_runtime.log files.

Outputs to stdout from execution should be similar to the following:

Launcher arguments are:
cge-launch -d /path-to-dataset -o my-launchonly/. -l cge_runtime.log -p 12345 --
nodeCount 1 --imagesPerNode 1 --sessionTimeout 900
Starting CGE...
CGE not yet ready (1 seconds elapsed)
CGE not yet ready (2 seconds elapsed)
CGE not yet ready (3 seconds elapsed)
CGE ready in 7 seconds
CGE is running

8. Shut down the CGE CLI.

$ cge-cli shutdown --db-port 22334

13.2.2 Use CGE API via Java Development Kit (JDK)

About this task
This procedure illustrates a use-case where programmers utilize the JDK directly for Java program development.

CGE API

S3014 134

Procedure

1. Create a program.

$ mkdir jdk_is_running
$ cd jdk_is_running

This sample program will determine if the CGE server is running.

2. Create a directory to put the .jar files into and move to that directory

$ mkdir cray_jars

3. Copy the cge-java-examples-vX.Y.Z-with-dependencies.jar file to this area.

$ cp /opt/cray/cge/default/lib/java/cge-java-examples-vX.Y.Z-with-
dependencies.jar cray_jars

4. Create a file called Manifest.txt.

$ touch Manifest.txt

5. Edit the Manifest.txt file to contain the following lines.

Main-Class: com.cray.cge.api.examples.IsRunning
Class-Path: cray_jars/cge-java-examples-vX.Y.Z-with-dependencies.jar
<blank_line>

IMPORTANT: The file containing the above lines must have a blank line (press Enter/Return to
create a blank line) the end of the file. in the preceding example, <blank_line> is used to indicate
a line with no characters.

6. Make a directory to locate the source file.

$ mkdir -p com/cray/cge/api/examples
$ cp IsRunning.java com/cray/cge/api/examples

7. Copy the IsRunning.java sample code into the new directory.

NOTE: The directory name must match the package name in the source code.

See 'Extracting the Source Code' for the location of IsRunning.java.

8. Build the package.

$ javac -classpath cray_jars/cge-java-examples-vX.Y.Z-with-dependencies.jar \
com/cray/cge/api/examples/IsRunning.java

9. Run via the Java interpreter.

$ java -cp cray_jars/cge-java-examples-vX.Y.Z-with-dependencies.jar: \ com/
cray/cge/api/examples/IsRunning

The output from execution will indicate that either CGE is running or CGE is not running .

10. Build executable JAR file.

CGE API

S3014 135

$ jar cvfm0 out.jar Manifest.txt com/cray/cge/api/examples/IsRunning.class

11. Run the executable JAR file.

$ java -jar out.jar

Output from execution should be either CGE is running or CGE is not running.

13.2.3 Use CGE API via Pre-built Main Entry Points

About this task
This procedure illustrates a use-case where developers can run the main entry points in the
cge-java-examples-v1.0.0-with-dependencies.jar file directly. These correspond with the example
Java files containing the source line public static void main(String[] args), of which there are
several, for example: ./com/cray/cge/api/examples/Shutdown.java. See Extracting the source code on
page 131 for the location of Shutdown.java.

From any directory that contains cge-java-examples-vX.Y.Z-with-dependencies.jar. The following
examples show actual paths to datasets and repositories.

Procedure

1. Launch the CGE server

$ java -cp cge-java-examples-vX.Y.Z-with-dependencies.jar \
com.cray.cge.api.examples.LaunchOnly /lus/scratch/ripple/mkdb/sp2b/25k ./

NOTE: The ./ argument specifies where the program will place the result files. In this example,
the /lus/scratch..." area contains a typical sp2b test dataset.

Output includes the files cge_launcher.log and cge_runtime.log. Outputs that appear on stdout
should be similar to the following:

Launcher arguments are:
cge-launch -d /lus/scratch/ripple/mkdb/sp2b/25k \
-o /ufs/home/users/$USER/my_repository/. \
-l /ufs/home/users/$USER/my_repository/cge_runtime.log \
-p 22334 --nodeCount 1 --imagesPerNode 1 --sessionTimeout 900
Starting CGE...
CGE not yet ready (1 seconds elapsed)
CGE not yet ready (2 seconds elapsed)
CGE ready in 5 seconds
CGE is running

2. Check if the CGE server is running

$ java -cp cge-java-examples-vX.Y.Z-with-dependencies.jar
com.cray.cge.api.examples.IsRunning

The following will be displayed on stdout:

CGE is running

CGE API

S3014 136

3. Execute a query

$ $ java -cp cge-java-examples-vX.Y.Z-with-
dependencies.jar com.cray.cge.api.examples.QueryExisting \
/home/users/$USER/cge-benchmark/cge_queries/sp2b/2.txt > query_results.out >
SELEC(COUNT(?s) as ?CNT) {?s ?p ?o}

In the preceding example, 2.txt is a pre-defined query meant for the sp2b-25k dataset. It is also possible to
create a 2.txt file with SELECT(COUNT(?s) as ?CNT) {?s ?p ?o} as the only line.

The query results will by default go to stdout and a .tsv file. In this example, the query results are extensive
so we redirect the default output to a file named query_results.out. The generated file
queryResults.2016-05-12T16.07.46Z000.12512.tsv is also shown:

$ ls -l query_results.out
-rw-r--r-- 1root 292653May 1211:07query_results.out
$ ls -l queryResults.2016-05-12T16.07.46Z000.12512.tsv
-rw-r--r-- 1root 299154May 1211:07queryResults.2016-05-12T16.07.46Z000.12512.tsv

4. Update

$ java -cp cge-java-examples-vX.Y.Z-with-dependencies.jar \
com.cray.cge.api.examples.UpdateExisting > updates.log

This update to the dataset is the simple default INSERT DATA {<urn:s> <urn:p> <urn:o>}, found in
the Update.java sample file. See Extracting the source code on page 131 for the location of
Update.java. An argument such as .examples.UpdateExisting ./path-to-file can be used to
specify a more complex update command contained in a file.

The update output will by default go to stdout and consists of CGE log entries. In this example, the results are
redirected to a file updates.log:

$ ls -l updates.log
-rw-r--r-- 1 root 8056 May 12 11:09 updates.log

5. Create a checkpoint

$ java -cp cge-java-examples-vX.Y.Z-with-dependencies.jar \
com.cray.cge.api.examples.CheckpointExisting chkpt.sp2b.25k

This will checkpoint the dataset to a subdirectory in the dataset area, which in this example is
named ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016. Files in this directory
consist of:

● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/string_table_chars.index
● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/export_dataset.nq
● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/string_table_chars
● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/dbQuads

The following will be displayed on stdout:

Checkpoint successful - see directory ./checkpoints

6. Shutdown the CGE server

$ java -cp cge-java-examples-vX.Y.Z-with-dependencies.jar \
com.cray.cge.api.examples.Shutdown > shutdown.log

CGE API

S3014 137

The shutdown output will by default go to stdout and consists of CGE log entries. In this example, the results
are redirected to a file shutdown.log.

$ ls -l shutdown.log
-rw-r--r-- 1 root 663 May 12 12:05 shutdown.log

13.2.4 Use Case: A Comprehensive Java Program

About this task
This procedure illustrates a use-case where Java programmers create a Java program that will execute several
features of the Java API, namely:

1. Launching the CGE server

2. Running query and update commands

3. Checkpointing the dataset

4. Shutting down the CGE server.

This case utilizes the cge-java-api-vX.Y.Z-with-dependencies.jar file.

Procedure

1. Create an application framework:

mvn archetype:generate \
-DgroupId=com.cray.cge.api.examples \
-DartifactId=my-run-cge \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DinteractiveMode=false

This is a standard Maven command to make a framework for developing a java application; in this case, a
framework is created in the new my-run-cge directory area.

2. Install executable classes as a local JAR file

mvn install:install-file \
-Dfile=/opt/cray/cge/default/lib/java/cge-java-api-vX.Y.Z-with-dependencies.jar
\
-DgroupId=com.cray.cge.api \
-DartifactId=cge-user-apis \
-Dversion=1.0.0 \
-Dpackaging=jar

This is a standard Maven command to install an executable .jar file. A directory structure similar to the
following should appear in the user's .m2/repository directory:

./com

./com/cray

./com/cray/cge

./com/cray/cge/api

./com/cray/cge/api/cge-user-apis

./com/cray/cge/api/cge-user-apis/maven-metadata-local.xml

./com/cray/cge/api/cge-user-apis/1.0.0

CGE API

S3014 138

./com/cray/cge/api/cge-user-apis/1.0.0/cge-user-apis-1.0.0.pom

./com/cray/cge/api/cge-user-apis/1.0.0/cge-user-apis-1.0.0.jar

3. Switch to my-run-cge directory and then copy the file to ./src/main/java/com/myapp/runcge.

$ cd my-run-cge
$ cp ../com/cray/cge/api/examples/ComprehensiveExample.java \
./src/main/java/com/myapp/runcge

4. Write the Java source code. Following is the source code for the proposed Java program used in this
example. This can be copied into the ./src/main/java/com/myapp/runcge framework area:

package com.cray.cge.api.examples;

// for standard java processing
import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.concurrent.TimeUnit;
import java.util.Date;
import org.apache.commons.lang3.StringUtils;

// for prepare cge launcher
import com.cray.cge.api.CgeConnection;
import com.cray.cge.api.CgeLauncher;
import com.cray.cge.api.builders.CgeConnectionBuilder;
import com.cray.cge.api.builders.CgeLauncherBuilder;
import com.cray.cge.api.builders.JobOptionsBuilder;
import com.cray.cge.communications.messaging.exceptions.CommunicationsException;

// for query execution
import org.apache.jena.atlas.io.IO;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.ResultSetFormatter;
import com.hp.hpl.jena.sparql.resultset.ResultsFormat;
import com.cray.cge.sparql.engine.results.ResultsMetadata;

// for update execution
import com.hp.hpl.jena.update.UpdateProcessor;

// for log4j initialization
import org.apache.log4j.Level;

/**
 * Example that demonstrates launching CGE, run query, update, checkpoint and
shutdown.
 */
public class ComprehensiveExample
{
 /**
 * Default sparql commands run by this example
 */
 public static final String DEFAULT_QUERY = "SELECT ?type (COUNT(?s) AS ?
usages) WHERE { ?s a ?type } GROUP BY ?type";
 public static final String DEFAULT_UPDATE = "INSERT DATA { <urn:s> <urn:p>
<urn:o> }";

 // default runtime values the user can override with command line args.
 public static String dataset_area = "./";

CGE API

S3014 139

 public static String output_area = "./";
 public static String checkpoint_area = "./";
 public static int NODE_COUNT=1;
 public static int IMAGE_COUNT=1;
 public static String query = DEFAULT_QUERY;
 public static String update = DEFAULT_UPDATE;
 public static String query_filename = null;
 public static String update_filename = null;
 public static File queryFile=null;
 public static File updateFile=null;
 public static int RUNTIME_TIMEOUT = 10; // minutes
 public static int STARTUP_TIMEOUT = 15; // seconds
 public static int CGE_CONNECTION_TIMEOUT = 3; // seconds
 public static int SERVER_PORT = 56789; // valid port number range: 1-65535
(1-1023 may require superuser privileges)

 private static void showUsage()
 {
 System.out.println("\nExercises CGE by launching the server, run query,
update, checkpoint, and shutdown");
 System.out.println("Usage:");
 System.out.println(" -c CGE server-connect timeout (seconds)
(default: 3)");
 System.out.println(" -d Directory containing dataset
(default: ./)");
 System.out.println(" -k Checkpoint dataset directory
(default: ./)");
 System.out.println(" -n Number of nodes to run CGE on (default:
1)");
 System.out.println(" -i Number of images to run CGE on (default:
1)");
 System.out.println(" -o Outputs directory (created if does not
exist) (default: ./)");
 System.out.println(" -p CGE server port (default: " + SERVER_PORT
+ ") range: 1024-65535 (1-1023 as su)");
 System.out.println(" -q File with sparql query (default: '" +
DEFAULT_QUERY + "')");
 System.out.println(" -r Runtime timeout (minutes) (default: 10)");
 System.out.println(" -s Startup timeout (seconds) (default: 15)");
 System.out.println(" -u File with sparql update (default: '" +
DEFAULT_UPDATE + "')");
 System.out.println("\n");
 }

 /**
 * Expects a next argument, prints an error and exists if none present
 * @param i Current Argument Index
 * @param argv Arguments
 * @param arg Current Argument for which we expect a value as the next
argument
 */
 private static void expectNextArg(int i, String[] argv, String arg)
 {
 if (i >= argv.length - 1)
 {
 System.err.println("Unexpected end of arguments, expected a value to
be specified after the " + arg + " option");
 System.exit(1);
 }
 }

CGE API

S3014 140

 /**
 * Parses Arguments
 * @param argv Arguments
 */
 private static void parseArgs(String[] argv)
 {
 for (int i = 0; i < argv.length; i++)
 {
 try
 {
 String arg = argv[i];
 if (arg.equals("-h"))
 {
 // Show Usage Summary and exit
 showUsage();
 System.exit(1);
 }
 // we have one or more name-value-pair ("NVP") args
 // (e.g., "-n 4").
 expectNextArg(i, argv, arg); // exits if "value" of the NVP is
absent
 if (arg.equals("-d")) {
 dataset_area = argv[++i];
 } else if (arg.equals("-o")) {
 output_area = argv[++i];
 } else if (arg.equals("-k")) {
 checkpoint_area = argv[++i];
 } else if (arg.equals("-n")) {
 NODE_COUNT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-p")) {
 SERVER_PORT = Integer.parseInt(argv[++i]);
 if ((SERVER_PORT > 65535) || (SERVER_PORT < 1)) {
 System.out.println("Error: arg '-p server port " +
SERVER_PORT + "' value out of range");
 System.exit(1);
 } else if (SERVER_PORT < 1024) {
 System.out.println("Notice: arg '-p server port " +
SERVER_PORT + "' may require su privileges");
 }
 } else if (arg.equals("-c")) {
 CGE_CONNECTION_TIMEOUT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-r")) {
 RUNTIME_TIMEOUT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-i")) {
 IMAGE_COUNT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-q")) {
 query_filename = argv[++i];
 queryFile = new File(query_filename);
 if (!queryFile.isFile()) {
 System.out.println("Problem with " + query_filename + " -
does not exist or not a file");
 System.exit(1);
 }
 } else if (arg.equals("-u")) {
 update_filename = argv[++i];
 updateFile = new File(update_filename);
 if (!updateFile.isFile()) {
 System.out.println("Problem with " + update_filename + " -
does not exist or not a file");
 System.exit(1);
 }

CGE API

S3014 141

 } else {
 System.err.println("Illegal Option " + arg);
 showUsage();
 System.exit(1);
 }
 }
 catch (NumberFormatException numEx)
 {
 //Occurs when a numeric parameter is expected but not received
 System.err.println("Illegal value '" + argv[i] + "' encountered
after option " + argv[i-1] + " when an integer value was expected");
 System.exit(1);
 }
 }
 }

 // main entry point
 public static void main(String[] args) throws IOException,
CommunicationsException, InterruptedException {

 // suppress "log4j WARN" messages
 org.apache.log4j.Logger.getRootLogger().setLevel(org.apache.log4j.Level.OFF);

 parseArgs(args);

 String DB_LOG = "cge_runtime.log";
 String LAUNCHER_LOG = "cge_launcher.log";

 // show the runtime selections
 System.out.println("CgeLauncherBuilder - start ... ");
 System.out.println("... dataset " + dataset_area);
 System.out.println("... output area " + output_area);
 System.out.println("... checkpoint area " + checkpoint_area);
 System.out.println("... query file " + query_filename);
 System.out.println("... update file " + update_filename);
 System.out.println("... node count " + NODE_COUNT);
 System.out.println("... image count " + IMAGE_COUNT);
 System.out.println("... server port " + SERVER_PORT);
 System.out.println("... run timeout " + RUNTIME_TIMEOUT);
 System.out.println("... start timeout " + STARTUP_TIMEOUT);
 System.out.println("... connect timeout " + CGE_CONNECTION_TIMEOUT);

 // Prepare the launcher
 CgeLauncher launcher = new CgeLauncherBuilder()
 .forExistingDatabase(dataset_area)
 .usingOutputDirectory(output_area)
 .usingDatabaseLogFile(DB_LOG)
 .usingLauncherLogFile(LAUNCHER_LOG)
 .onPort(SERVER_PORT)
 .withJobOptions(new JobOptionsBuilder()
 .withNodes(NODE_COUNT)
 .withImagesPerNode(IMAGE_COUNT)
 .withMaximumRuntime(RUNTIME_TIMEOU
T, TimeUnit.MINUTES)
 .build())
 .build();

 System.out.println("CgeConnectionBuilder - start ...");

 CgeConnection cge = new CgeConnectionBuilder()

CGE API

S3014 142

 .usingLauncher(launcher)
 .withConnectionTimeout(CGE_CONNECTION_TIMEOUT,
TimeUnit.SECONDS)
 .onHost("localhost")
 .onPort(SERVER_PORT)
 .build();

 System.out.println("CgeConnectionBuilder - done!");

 // Start CGE
 startCge(cge, STARTUP_TIMEOUT, false);
 if (cge.isRunning()) {
 System.out.println("CGE is running");
 } else {
 System.err.println("CGE failed to start");
 }

 // run query
 if (cge.isRunning()) {
 System.out.println("start query... ");
 if (queryFile != null) {
 query = IO.readWholeFileAsUTF8(queryFile.getAbsolutePath());
 }
 System.out.println("running query:\n\n" + query + "\n");

 ResultsMetadata results = cge.querySummary(query);
 if (results.wasSuccessful()) {
 System.out.println("query complete - see results in " +
results.getLocation());
 } else {
 System.out.println("Error: query failed with: " +
results.getError());
 }
 } else {
 System.err.println("CGE appears to not be running");
 }

 // run update
 if (cge.isRunning()) {
 System.out.println("start update... ");
 if (updateFile != null) {
 update = IO.readWholeFileAsUTF8(updateFile.getAbsolutePath());
 }
 System.out.println("running update:\n\n" + update + "\n");
 // Updates are evaluated via the Apache Jena ARQ UpdateProcessor API
 UpdateProcessor up = cge.update(update);
 up.execute();
 System.out.println("update complete - see " + DB_LOG + " for log
entries.");
 } else {
 System.err.println("CGE does not appear to be running");
 }

 // run checkpoint
 if (cge.isRunning()) {
 System.out.println("start checkpoint... ");
 // Checkpoint the database currently in use by cge-server.

CGE API

S3014 143

 Date curr_date = new Date();
 String clean_date = curr_date.toString();
 File cpDir = new File(checkpoint_area, "checkpoint" + File.separator +
dataset_area.replace('/','_') + "_" + clean_date.replace(' ', '_'));
 cge.checkpoint(cpDir, true);
 System.out.println("Checkpoint successful - see directory " +
checkpoint_area + "/checkpoint");
 } else {
 System.err.println("CGE failed to start");
 }

 // Shutdown
 if (cge.isRunning()) {
 System.out.println("start shutdown... ");
 cge.stop();
 cge.getProcess().waitFor();
 System.out.println("...shutdown complete");
 }

 System.out.println("exiting...");
 System.exit(0);
 }

 /**
 * Starts the CGE instance represented by the given connection
 *
 * @param cge
 * CGE connection
 * @param maxWaitSeconds
 * Maximum number of seconds to wait for start up
 * @param returnOnInterrupt
 * Whether to return if interrupted while waiting
 * @throws IOException
 * Thrown if there is a problem starting CGE
 */
 public static void startCge(CgeConnection cge, int maxWaitSeconds, boolean
returnOnInterrupt) throws IOException {

 System.out.println("Starting CGE...");
 cge.start();

 long startTime = System.currentTimeMillis();
 while (TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() -
startTime) < maxWaitSeconds)
 {
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException e)
 {
 // Ignore or return as appropriate
 if (returnOnInterrupt)
 {
 System.out.println(String.format("Interrupted while waiting for
CGE to ready (%d seconds elapsed)",

TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - startTime)));

CGE API

S3014 144

 return;
 }
 }
 if (cge.isRunning())
 {
 System.out.println(String.format("CGE ready in %d seconds",

TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - startTime)));
 return;
 }
 System.out.println(String.format("CGE not yet ready (%d seconds
elapsed)",

TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - startTime)));
 }
 }
}

5. Use the following pom.xml file, which is developed for building application code:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.cray.cge.api.examples</groupId>
 <artifactId>my-run-cge</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>my-run-cge</name>
 <url>http://maven.apache.org</url>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>attached</goal>
 </goals>
 <phase>package</phase>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>com.cray.cge.api.examples.ComprehensiveExample</
mainClass>
 </manifest>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <dependencies>

CGE API

S3014 145

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.cray.cge.api</groupId>
 <artifactId>cge-user-apis</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>
</project>

6. Build

$ mvn clean package

Users can first delete all files in their ~/.m2 directory, as Maven will download what it needs to build the
package into this area.

7. Execute the help command. This will show the help menu for the application, defining the optional runtime
arguments (note that all have default values):

system:~/comprehensive_test/my-run-cge> java -jar target/my-run-cge-1.0.0-jar-
with-dependencies.jar -h
 Exercises CGE by launching the server, run query, update, checkpoint, and
shutdown
Usage:
 -c CGE server-connect timeout (seconds) (default: 3)
 -d Directory containing dataset (default: ./)
 -k Checkpoint dataset directory (default: ./)
 -n Number of nodes to run CGE on (default: 1)
 -i Number of images to run CGE on (default: 1)
 -o Outputs directory (created if does not exist) (default: ./)
 -p CGE server port (default: 56789) range: 1024-65535 (1-1023 as su)
 -q File with sparql query (default: 'SELECT ?type (COUNT(?s) AS ?
usages) WHERE { ?s a ?type } GROUP BY ?type')
 -r Runtime timeout (minutes) (default: 10)
 -s Startup timeout (seconds) (default: 15)
 -u File with sparql update (default: 'INSERT DATA { <urn:s> <urn:p>
<urn:o> }')

8. Execute.

The following is a sample execution command and resulting output:

system:~/comprehensive_test/my-run-cge> java -jar target/my-run-cge-1.0.0-jar-with-dependencies.jar -d \
/lus/scratch/ripple/mkdb/sp2b/25k -p 12345 -r 2 -i 4 -n 3 -k /lus/scratch/temp -q sp2b_query_9.txt
CgeLauncherBuilder - start ...
... dataset /lus/scratch/ripple/mkdb/sp2b/25k
... output area ./
... checkpoint area /lus/scratch/temp
... query file sp2b_query_9.txt
... update file null
... node count 3
... image count 4
... server port 12345
... run timeout 2
... start timeout 15
... connect timeout 3
CgeConnectionBuilder - start ...
CgeConnectionBuilder - done!
Starting CGE...
CGE not yet ready (1 seconds elapsed)

CGE API

S3014 146

CGE not yet ready (2 seconds elapsed)
CGE not yet ready (3 seconds elapsed)
CGE ready in 7 seconds
CGE is running
start query...
running query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?predicate
WHERE {
 {
 ?person rdf:type foaf:Person .
 ?subject ?predicate ?person
 } UNION {
 ?person rdf:type foaf:Person .
 ?person ?predicate ?object
 }
}

query complete - see results in file: /lus/scratch/comprehensive_test/my-run-cge/queryResults.<YEAR-DAY-TIME>.tsv
start update...
running update:

INSERT DATA { <urn:s> <urn:p> <urn:o> }

update complete - see cge_runtime.log for log entries.
start checkpoint...
Checkpoint successful - see directory /lus/scratch/temp/checkpoint
start shutdown...
...shutdown complete
exiting...

The dataset being referenced in this example is sp2b-25k, and resides in
the /lus/scratch/ripple/mkdb/sp2b/25k directory. Three nodes and four images were specified for
the CGE server to execute on. Two minutes were allowed for the execution, 15 seconds for the startup, and
three seconds to connect to the server, which should have been started at port 12345. The CGE server began
executing within seven seconds of the initial command. The query being run was in the local file
sp2b_query_9.txt, the content of which is shown following the "running query" banner. The output area for
the query results was the local directory ./. An update command file is not specified and so the default was
used. The checkpointed dataset went into the /lus/scratch/temp/checkpoint directory under a sub-
directory that in this case was named
_lus_scratch_ripple_mkdb_sp2b_25k_DAY_MONTH_DATE_TIME_ZONE_YEAR. The shutdown would
have removed all processes started by the Java execution, as could be verified by running ps aux |grep
$USER from a command line after the "exiting..." message appears.

13.2.5 Limitations of CGE Java API
Following are some limitations that should be kept under consideration when using the CGE Java API.

Network access requirements
Connecting to the database requires network access from the machine running the API to the node where the
database is running. If there is no such access, no operations can be carried out.

Launching the database
Launching a database relies upon being able to use the cge-launch command, this imposes two key limitations:

1. The command must be visible on the user's $PATH or the $PATH of the execution environment in order to
launch a database, where $PATH is an environment variable.

2. Launching a database can only be carried out on the system i.e., if a user is running code that uses the API
on a remote system, the user will not be able to launch databases.

CGE API

S3014 147

Accessing query results
When executing queries, the database writes the results to the configured file system. In order to retrieve those
results from the API, access is required to the same file system and sufficient privileges are required to read those
result files.

If queries are being executed on a machine without access to the configured file system, the user will only be able
to access meta data about the results, not the results themselves.

Log capture
The log capture functionality of the API relies upon access to the database log file. If that file is not known or not
accessible (for example if the user is running on a remote machine), it will not be possible to retrieve log entries.

Note that the API will inject a unique identifier into the logs for each operation carried out via the API. Therefore it
is possible to extract the log entries at a later date because the API will still be able to indicate the unique
identifier used, which can be stored for later reference.

13.3 Use the CGE Python API
The CGE Python API allows users to run CGE operations from their python applications on login nodes. The
Python API can start the CGE server, run a query, update, checkpoint, and shutdown. Python users will indirectly
utilize the CGE Java API in a Java Virtual Machine (JVM) - the 'py4j' component provides the gateway to that
JVM. Essentially, a user's python application will function as a front end UI - users can be as spare or elaborate
as desired in their python applications for starting the CGE server, managing their queries, updates and
checkpoints, and displaying query results.

CGE Python API Components
CGE Python API components and their locations on the Urika-GX system are listed below:

● /usr/share/py4j/py4j0.10.3.jar - This is version 0.10.3 of the py4j package which implements a
python to Java bridge.

● /usr/lib/python2.7/site-packages/py4j/ - This is the py4j python code that executes under python
version 2.7

● /usr/lib/python3.4/site-packages/py4j/ - This is the py4j python code that executes under python
version 3.4

● /opt/cray/cge/default/lib/java/cge-java-api-vX.Y.Z-with-dependencies.jar - This is
the CGE Java API.

● /opt/cray/cge/default/lib/python/cge_python_api-vX.Y.Z.py - This is an API example that
can run as a python application or in the python interpreter.

The py4j Package
The 'py4j' component of the Python API is an open-source package that enables python programs running in a
python interpreter to dynamically access Java objects running in a Java Virtual Machine (JVM). The Python API
utilizes this package to access the CGE Java API to build Job Options, launch the CGE server, setup runtime
locations for CGE logs and query output, execute queries and updates, etc. It consists of a Java .jar file, and .py

CGE API

S3014 148

files that can execute under the two python versions shown. Detailed documentation of this package can be found
at https://www.py4j.org

13.3.1 Use Case: A Comprehensive Python Program
This is the cge_python_api-vX.Y.Z.py component of the Python API that shows how to interact with CGE.
This sample will start CGE, run a query, an update, checkpoint, and shutdown.

Copyright 2016 Cray Inc. All Rights Reserved.
 #
 # (c) Cray Inc. All Rights Reserved. Unpublished Proprietary
 # Information. This unpublished work is protected by trade secret,
 # copyright and other laws. Except as permitted by contract or
 # express written permission of Cray Inc., no part of this work or
 # its content may be used, reproduced or disclosed in any form.

"""CGE Python API allows users to run CGE from their python applications.
Python users will transparently utilize the CGE Java API in a JVM (Java
Virtual Machine) - the 'py4j' package referenced here provides the gateway
to that JVM. Essentially, a user's python application will function as a
front-end UI - users can be as spare or elaborate as desired in their python
applications for starting the cge-server, managing their queries updates
and checkpoints, and interpreting and displaying query results. This
example shows how to start cge-server, run a query, update, checkpoint, and
shutdown. It is meant to form the basis for more elaborate user python apps.
"""
__version__ = '0.1'
__revision__ = '$Revision:$'
__all__ = ['Server', '__version__', '__revision__']

bring in standard objects
import time
import os

#--- bring in the py4j JVM gateway objects
from py4j.java_gateway import JavaGateway
from py4j.java_gateway import java_import

#--- start the Java GatewayServer in a JVM (explicit paths to the jar files)
gateway = JavaGateway.launch_gateway(
 jarpath='/share/py4j/py4j0.10.3.jar',
 classpath='/opt/cray/cge/default/lib/java/cge-java-api-v1.1.0-with-
dependencies.jar')

#--- bring in some commonly used items
java_import(gateway.jvm,'com.cray.cge.api.builders.*')
my_timeunit = gateway.jvm.java.util.concurrent.TimeUnit

#--- these can be modified as desired for different port,
#--- node count and images per node.
MY_CGE_SERVER_PORT = 23239
MY_NODE_COUNT = 2
MY_IMAGE_COUNT = 6

#--- build the JobOptions
my_cge_joboptions_builder =
gateway.jvm.com.cray.cge.api.builders.JobOptionsBuilder()

CGE API

S3014 149

https://www.py4j.org

my_cge_joboptions_builder.withNodes(MY_NODE_COUNT)
my_cge_joboptions_builder.withImagesPerNode(MY_IMAGE_COUNT)
#--- runtime timeout can be changed as desired
RUNTIME_TIMEOUT_MINUTES = 60
my_cge_joboptions_builder.withMaximumRuntime(RUNTIME_TIMEOUT_MINUTES,
my_timeunit.MINUTES)

#--- get the job options
my_cge_joboptions = my_cge_joboptions_builder.build()

#--- read back and show the options
readback_nodes = my_cge_joboptions.getNodes()
print "read back: nodes=",readback_nodes
readback_imagesPerNode = my_cge_joboptions.getImagesPerNode()
print "read back: images per node=",readback_imagesPerNode
readback_totalImages = my_cge_joboptions.getTotalImages()
print "read back: total images=",readback_totalImages

#--- build the launcher-builder
my_cge_launcher_builder =
gateway.jvm.com.cray.cge.api.builders.CgeLauncherBuilder()
#--- specify dataset location (sample shown)
my_cge_launcher_builder.forExistingDatabase("/mnt/lustre/ripple/mkdb/sp2b/25k")
#--- place query output files into current working dir.
cwd = os.getcwd()
my_cge_launcher_builder.usingOutputDirectory(cwd)
#--- the cge runtime and launcher log will go into the current working dir.
my_cge_launcher_builder.usingDatabaseLogFile("cge_runtime.log")
my_cge_launcher_builder.usingLauncherLogFile("cge_launcher.log")
my_cge_launcher_builder.onPort(MY_CGE_SERVER_PORT)
my_cge_launcher_builder.withJobOptions(my_cge_joboptions)

#--- build the launcher-builder and get the launcher
my_cge_launcher = my_cge_launcher_builder.build()

#--- build the connection-builder
my_cge_conn_builder =
gateway.jvm.com.cray.cge.api.builders.CgeConnectionBuilder()
#--- allow 15 second startup timeout (make larger if desired)
my_cge_conn_builder.withConnectionTimeout(15, my_timeunit.SECONDS)
my_cge_conn_builder.onHost("localhost")
my_cge_conn_builder.onPort(MY_CGE_SERVER_PORT)
my_cge_conn_builder.nonInteractive()
my_cge_conn_builder.trustHostKeys()

#--- make the connection
my_cge_conn_builder.usingLauncher(my_cge_launcher)
my_conn = my_cge_conn_builder.build()

#--- read back and show the options
readback_port = my_conn.getPort()
print "read back port=",readback_port
readback_host = my_conn.getHost()
print "read back host=",readback_host

#--- time stamp the start time
CGE_STARTUP_TIMEOUT_SECONDS = 1000
ONE_SECOND = 1
start = time.time()

#--- start cge

CGE API

S3014 150

my_conn.start()

#--- poll 'isRunning()' for the signal that cge has started
#--- (sleep a second between polls to minimize processing)
while True:
 time.sleep(ONE_SECOND)
 delta = time.time() - start
 if delta >= CGE_STARTUP_TIMEOUT_SECONDS:
 print "CGE did not start"
 #--- kill the Java JVM
 gateway.shutdown()
 exit()
 if my_conn.isRunning() == True:
 print "CGE started ok!"
 break

#--- look at cge status another way
java_import(gateway.jvm,'com.cray.cge.api.status.*')
my_CgeStatus = my_conn.status()
runtime_status = my_CgeStatus.toString()
print "runtime status=",runtime_status

#--- a simple query
DEFAULT_QUERY = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP
BY ?type"
print DEFAULT_QUERY

#--- run the query against the dataset specified above
my_query_results = my_conn.querySummary(DEFAULT_QUERY)

#--- wait for query completion
my_query_results.wasSuccessful()

#--- get name of results file
my_query_results.getLocation()

#--- a simple update command
DEFAULT_UPDATE = "INSERT DATA { <urn:s> <urn:p> <urn:o> }"
print DEFAULT_UPDATE

#--- run the update
my_update_cmd = my_conn.update(DEFAULT_UPDATE)
my_update_cmd.execute()

#--- run checkpoint, place in current working dir.
my_conn.checkpoint(cwd, False)

#--- shutdown cge
my_conn.stop()

#--- wait for cge to shutdown
my_conn.getProcess().waitFor()

#--- kill the Java JVM
gateway.shutdown()

Although the code can be run as-is, or with a more complex query and update defined in place of the simple
query and update shown, the program is meant to be a guide to more elaborate code development specific to the
user's requirements. For example, at the point where the "DEFAULT_QUERY" is defined and printed, users could
develop a more sophisticated query management technique for acquiring complex queries from files and looping

CGE API

S3014 151

through their execution. Similarly for updates and checkpoints. The selection of MY_NODE_COUNT and
MY_IMAGE_COUNT could incorporate a UI for more interactive selection of those values. And so forth for other
sections of the code.

In general, the use of gateway.jvm.com.cray.cge.api and the functions referenced must be invoked in the order
shown and with equivalent arguments. In between those function invocations, users can be as elaborate or spare
as their applications require. When running under Python-3, the arguments to "print" statements need to be
placed in parenthesis. For example: print "read back: nodes=", readback_nodes, should be changed to
print ("read back: nodes=", readback_nodes)

13.3.2 Run the CGE Python API as a Python Application
To run this code as a python application on a login node, enter the command python cge_python_api-vX.Y.Z.py,
(where vX.Y.Z should be replaced with the corresponding version number). The current version number of the
Python API is 1.0.0

Here is an example of output that will appear:

[userid@nid00030~]$ python cge_python_api-v1.0.0.py
read back: nodes= 2
read back: images per node= 6
read back: total images= 12
read back port= 23239
read back host= localhost
CGE started ok!
runtime status= Process: Running - CGE: Running
SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP BY ?type
INSERT DATA { <urn:s> <urn:p> <urn:o> }
[userid@nid00030 ~]$

● The read back values show the user's selections

● The total images is computed by CGE and shown. The print, "CGE started ok!" indicates that the
CGE server started successfully on the specified dataset, within the timeout argument values, with the given
node and image count.

● The runtime status is shown as Running.

● The program's sample query command is shown in the print of the SELECT statement.

● The program's sample update command is shown in the print of the INSERT statement.

Example file outputs from the program:

[userid@nid00030 ~]$ ls -lt
total 2256
-rw-r--r-- 1 userid hw 1473 Sep 27 15:54 cge_launcher.log
-rw-r--r-- 1 userid hw 129254 Sep 27 15:54 cge_runtime.log
-rw-r--r-- 1 userid hw 3675 Sep 27 15:54 rules.txt
-rw-r--r-- 1 userid hw 1413120 Sep 27 15:54 string_table_chars
-rw-r--r-- 1 userid hw 8192 Sep 27 15:54 string_table_chars.index
-rw-r--r-- 1 userid hw 671208 Sep 27 15:54 dbQuads
-rw-r--r-- 1 userid hw 769 Sep 27 15:54 queryResults.
2016-09-27T20.54.59Z000.8006.tsv

● The *.log files are produced by CGE.

● The rules.txt, string_table*, and dbQuads file are the files of the checkpointed example dataset.

CGE API

S3014 152

● The queryResults*.tsv file is the output of the SELECT query.

The following are user processes active when running the Python program:

[userid@nid00030 ~]$ top -u $USER
top - 16:09:17 up 47 days, 1:22, 39 users, load average: 0.08, 0.09, 0.38
Tasks: 789 total, 2 running, 787 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni, 99.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 52914899+total, 33347744+free, 9836832 used, 18583470+buff/cache
KiB Swap: 0 total, 0 free, 0 used. 49864905+avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
57794 userid 20 0 273696 8148 3508 S 0.3 0.0 0:00.02 cge-launch
57796 userid 20 0 249036 37280 4032 S 0.0 0.0 0:00.65 mrun
57732 userid 20 0 344940 11368 3580 S 0.0 0.0 0:00.05 python
57733 userid 20 0 35.916g 126492 15576 S 0.0 0.0 0:01.98 java

The Python process launched the Java JVM process with the gateway =
JavaGateway.launch_gateway(..) command. The Java JVM process is exited with the
gateway.shutdown() command.

The cge-launch and mrun processes are the runtime signature of CGE, which was launched with the
my_conn.start() command. These processes are exited with the my_conn.stop() command.

13.3.3 Run a Python API from the Python Interpreter
The Python API can be run from the python interpreter by copy-paste of the program into the interpreter.
Processes started and outputs produced are the same as shown above. For example, here is a sample run of the
code from the python interpreter, with the interpreter's responses shown:

[userid@nid00030 ~]$ python
Python 2.7.5 (default, Nov 20 2015, 02:00:19)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>>
>>> # bring in standard objects
... import time
>>> import os
>>>
>>>
>>> #--- bring in the py4j JVM gateway objects
... from py4j.java_gateway import JavaGateway
>>> from py4j.java_gateway import java_import
>>>
>>>
>>> #--- start the Java GatewayServer in a JVM (explicit paths to the jar files)
... gateway = JavaGateway.launch_gateway(
... jarpath='/usr/share/py4j/py4j0.10.3.jar',
... classpath='/opt/cray/cge/default/lib/java/cge-java-api-v1.1.0-with-
dependencies.jar')
>>>
>>>
>>> #--- bring in some commonly used items
... java_import(gateway.jvm,'com.cray.cge.api.builders.*')
>>> my_timeunit = gateway.jvm.java.util.concurrent.TimeUnit
>>>

CGE API

S3014 153

>>>
>>> #--- these can be modified as desired for different port,
... #--- node count and images per node.
... MY_CGE_SERVER_PORT = 23239
>>> MY_NODE_COUNT = 2
>>> MY_IMAGE_COUNT = 6
>>>
>>>
>>> #--- build the JobOptions
... my_cge_joboptions_builder =
gateway.jvm.com.cray.cge.api.builders.JobOptionsBuilder()
>>>
>>> my_cge_joboptions_builder.withNodes(MY_NODE_COUNT)
JavaObject id=o1
>>> my_cge_joboptions_builder.withImagesPerNode(MY_IMAGE_COUNT)
JavaObject id=o2
>>> #--- runtime timeout can be changed as desired
... RUNTIME_TIMEOUT_MINUTES = 60
>>> my_cge_joboptions_builder.withMaximumRuntime(RUNTIME_TIMEOUT_MINUTES,
my_timeunit.MINUTES)
JavaObject id=o4
>>>
>>> #--- get the job options
... my_cge_joboptions = my_cge_joboptions_builder.build()
>>>
>>> #--- read back and show the options
... readback_nodes = my_cge_joboptions.getNodes()
>>> print "read back: nodes=",readback_nodes
read back: nodes= 2
>>> readback_imagesPerNode = my_cge_joboptions.getImagesPerNode()
>>> print "read back: images per node=",readback_imagesPerNode
read back: images per node= 6
>>> readback_totalImages = my_cge_joboptions.getTotalImages()
>>> print "read back: total images=",readback_totalImages
read back: total images= 12
>>>
>>> #--- build the launcher-builder
... my_cge_launcher_builder =
gateway.jvm.com.cray.cge.api.builders.CgeLauncherBuilder()
>>> #--- specify dataset location (sample shown)
... my_cge_launcher_builder.forExistingDatabase("/mnt/lustre/ripple/mkdb/sp2b/
25k")
#--- place query output files into current working dir.
cwd = os.getcwd()
my_cge_launcher_builder.usingOutputDirectory(cwd)
#--- the cge runtime and launcher log will go into the current working dir.
my_cge_launcher_builder.usingDatabaseLogFile("cge_runtime.log")
my_cge_launcher_builder.usingLauncherLogFile("cge_launcher.log")
my_cge_launcher_builder.onPort(MY_CGE_SERVER_PORT)
my_cge_launcher_builder.withJobOptions(my_cge_joboptions)
JavaObject id=o7

>>> #--- place query output files into current working dir.
... cwd = os.getcwd()
>>> my_cge_launcher_builder.usingOutputDirectory(cwd)
JavaObject id=o8
>>> #--- the cge runtime and launcher log will go into the current working dir.
... my_cge_launcher_builder.usingDatabaseLogFile("cge_runtime.log")
JavaObject id=o9
>>> my_cge_launcher_builder.usingLauncherLogFile("cge_launcher.log")
JavaObject id=o10

CGE API

S3014 154

>>> my_cge_launcher_builder.onPort(MY_CGE_SERVER_PORT)
JavaObject id=o11
>>> my_cge_launcher_builder.withJobOptions(my_cge_joboptions)
JavaObject id=o12
>>>
>>>
>>> #--- build the launcher-builder and get the launcher
... my_cge_launcher = my_cge_launcher_builder.build()
>>>
>>>
>>> #--- build the connection-builder
... my_cge_conn_builder =
gateway.jvm.com.cray.cge.api.builders.CgeConnectionBuilder()
>>> #--- allow 15 second startup timeout (make larger if desired)
... my_cge_conn_builder.withConnectionTimeout(15, my_timeunit.SECONDS)
JavaObject id=o16
>>> my_cge_conn_builder.onHost("localhost")
JavaObject id=o17
>>> my_cge_conn_builder.onPort(MY_CGE_SERVER_PORT)
my_cge_conn_builder.nonInteractive()
JavaObject id=o18
>>> my_cge_conn_builder.nonInteractive()
my_cge_conn_builder.trustHostKeys()
JavaObject id=o19
>>> my_cge_conn_builder.trustHostKeys()
JavaObject id=o20
>>>
>>>
>>> #--- make the connection
... my_cge_conn_builder.usingLauncher(my_cge_launcher)
JavaObject id=o21
>>> my_conn = my_cge_conn_builder.build()
>>>
>>> #--- read back and show the options
... readback_port = my_conn.getPort()
>>> print "read back port=",readback_port
read back port= 23239
>>> readback_host = my_conn.getHost()
>>> print "read back host=",readback_host
read back host= localhost
>>>
>>> #--- time stamp the start time
... CGE_STARTUP_TIMEOUT_SECONDS = 1000
>>> ONE_SECOND = 1
>>> start = time.time()
>>>
>>> #--- start cge
... my_conn.start()
>>>
>>>
>>> #--- poll 'isRunning()' for the signal that cge has started
... #--- (sleep a second between polls to minimize processing)
... while True:
... time.sleep(ONE_SECOND)
... delta = time.time() - start
... if delta >= CGE_STARTUP_TIMEOUT_SECONDS:
... print "CGE did not start"
... #--- kill the Java JVM
... gateway.shutdown()
... exit()
... if my_conn.isRunning() == True:

CGE API

S3014 155

... print "CGE started ok!"

... break

...
CGE started ok!
>>>
>>>
>>> #--- look at cge status another way
... java_import(gateway.jvm,'com.cray.cge.api.status.*')
>>> my_CgeStatus = my_conn.status()
>>> runtime_status = my_CgeStatus.toString()
>>> print "runtime status=",runtime_status
runtime status= Process: Running - CGE: Running
>>>
>>> #--- a simple query
... DEFAULT_QUERY = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type }
GROUP BY ?type"
>>> print DEFAULT_QUERY
SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP BY ?type
>>>
>>>
>>>
>>> #--- run the query against the dataset specified above
... my_query_results = my_conn.querySummary(DEFAULT_QUERY)
>>>
>>> #--- wait for query completion
... my_query_results.wasSuccessful()
True
>>>
>>> #--- get name of results file
... my_query_results.getLocation()
u'file:///home/users/userid/queryResults.2016-09-27T21.59.35Z000.31323.tsv'
>>>
>>>
>>> #--- a simple update command
... DEFAULT_UPDATE = "INSERT DATA { <urn:s> <urn:p> <urn:o> }"
>>> print DEFAULT_UPDATE
INSERT DATA { <urn:s> <urn:p> <urn:o> }
>>>
>>> #--- run the update
... my_update_cmd = my_conn.update(DEFAULT_UPDATE)
>>> my_update_cmd.execute()
>>>
>>>
>>> #--- run checkpoint, place in current working dir.
... my_conn.checkpoint(cwd, False)
>>>
>>>
>>> #--- shutdown cge
... my_conn.stop()
>>>
>>> #--- wait for cge to shutdown
... my_conn.getProcess().waitFor()
0
>>>
>>>
>>> #--- kill the Java JVM
... gateway.shutdown()
>>>
>>>

CGE API

S3014 156

14 Logging and Troubleshooting
CGE produces a text log, which is a trace of program execution during query or update processing. Users can
view the log with a text editor (such as vi), or typically the Linux less command. The log can be searched using
the grep command for text messages of interest.

INFO messages will be deposited into the log during normal operation. CGE can also generate ERROR and WARN
messages. All of these messages can yield information about activity that takes place during command
execution.

System error message can be present in the log under conditions where CGE exits or improperly shuts down.

When queries or updates are executed, INFO messages with “now starting query #” are written to the log.
For example:
2015-Feb-10 19:34:26.513 CST INFO [][7720] 0x43 parser/parseAndBuildSM.cpp@374 allocQueryGlobals [] [QRY] <OT> now starting query # 1

Many other INFO messages will also be deposited to the log during normal operation. For example, long
processing times can be seen in the log from one INFO message to the next:
2015-Feb-13 14:44:45.500 CST INFO [][9448] 0xb utils/malloc/cqe_malloc.cpp@901 LogRequest [] [QRY |MEM] image 0 : request by "file: parser/qengine/database.cpp,
func: readFromDisk line: 989" of 69.849 MiB (0x45d9688) was filled. (0x10005200c80)
2015-Feb-13 14:49:31.099 CST INFO [][9448] 0xc parser/qengine/database.cpp@1141 readFromDisk [] [QRY |STRT] time to read in db of size 139.698 GiB (0x22ecb28000):
285.679279

When large datasets are used, the INFO message for the total start up time can be long, as shown in the
following example:
2014-Dec-18 14:40:37.428 CST INFO [][25977] 0x5b parser/dbServer.cpp@1259 main [] [QRY |STRT|PERF] Total startup time: 1434.489315 seconds

The following are examples of ERROR messages that CGE can produce when query or update processing has
failed:

1. No such file or directory
2. No space left on device
3. Exiting because malloc of
4. Lookup failure for HURI
5. Invalid graph algorithm name
6. Exiting with status
7. Bad entry
8. Short read
9. Assertion
10. Realloc of
11. Error detected in Dispatcher

It is recommend to search the log for the text: "ERROR" and contact Cray Support if problems are encountered in
query or update processing.

The following are samples of WARN messages that can be produced. WARN messages are subjective in preceding
errors in processing:

Logging and Troubleshooting

S3014 157

1. huri was not found
2. directory not specified
3. not found in IRA
4. No valid quads in database
5. Invalid object for quad
6. Number of warnings found
7. Unsupported datatype
8. not in the dictionary
9. IRA huris not allocated

Search the log for WARN messages and contact Cray Support if problems in query or update processing are
suspected.

The following are examples of system error messages that CGE can produce when query or update processing
has failed. Search the log for the last INFO messages and contact Cray Support if any of these follow:

1. DUE TO TIME LIMIT
2. terminate called without an active exception
3. srun: error
4. Segmentation fault
5. Bus error
6. free invalid pointer
7. Out of memory
8. Unable to terminate gracefully
9. Floating point exception
10. Aborted
11. Killed
12. Unable to allocate resources
13. Exited with exit code
14. Requested nodes are busy
15. transaction completed with an error state
16. LIBDMAPP ERROR
17. IRI Resolution Error
18. rpn not found for
19. Trapped with SIGINT

14.1 Troubleshooting Common Cray Graph Engine (CGE) Issues
The most common errors that are likely to be encountered while using CGE involve failure to connect to a
database server successfully. There are a variety of different errors that can occur, depending on exactly what

Logging and Troubleshooting

S3014 158

goes wrong. Common error messages that are likely to be encountered along with troubleshooting techniques are
documented in the following table.

Table 19. CGE Error Messages and Troubleshooting Information

Error Message Description Resolution

Unable to establish a connection
to the database server at
host:port as it does not appear
to be running

The CLI tried to connect to a
database server running on
the given host and port
combination but was unable
to establish a connection. This
typically means one of two
things:

1. There is no database
server running on that
host and port

2. Firewall rules are
preventing access to that
host and port

● Verify that you have passed
the correct host and port to the
CLI

● Verify that there is a database
server running on that host
and port

● Verify that there are no firewall
rules that are preventing
access to the host and port.
Contact a system
administrator for additional
information.

Unable to authenticate to the
database server at host:port.
You do not have any SSH keys
present in your configured
identity Directory

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was established successfully,
but authentication to the
database server failed
because there are no SSH
keys configured.

Create at least one SSH key and
place it in the appropriate directory.

Unable to authenticate to the
database server at host:port.
Your SSH key(s) from your
configured identity directory
are not in the authorized_keys
file of the database or its
owner

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was established successfully
but authentication to the
database server failed
because none of the SSH
keys were in the
authorized_keys file that
the database is using.

This may also be caused by
the CLI selecting the wrong
SSH identity. As described in
the SSH identities section, the
first identity found by
searching several default
locations is used, but this may
not always be the desired
identity.

● Review the database logs (if
possible) to see which
authorized_keys file was
in-use:

○ If the database server was
launched, then this is
either in the database
directory itself or in the
~/.cge directory

○ If another user launched
the database server,
contact them to find out
which authorized_keys
file is in-use

● Add the public key to the
relevant authorized_keys
file, or ask the relevant user to
do so.

Logging and Troubleshooting

S3014 159

Error Message Description Resolution

● Use the --identity option
to specify the desired identity
directory to use

Host key for host host:port is
not trusted, please run in
interactive mode and trust this
key or manually add the host key
to your known_hosts file in your
configured identity idDirectory

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was successfully established
but the database server was
unable to prove its identity to
the CLI because the host key
provided by the database
server was not trusted.

This error is usually only seen
the first time when a
connection to a specific server
instance is established. Once
the key is trusted (see
resolution steps) this error
should no longer be seen for
this host and port
combination.

● If CGE is being run in
interactive mode, the system
will prompt to trust the host
key. Enter Yes to do so.

● If it is required to use CGE
non-interactively, adding the
--trust-keys option to
commands will automatically
trust previously unknown host
keys

Timed out attempting to
establish a database connection
(waited N seconds), database
server may be too busy to
service your request currently

The CLI tried to connect to a
database server running on
the given host and port
combination but was unable
to establish a connection
within the timeout interval.
This means that the database
server is currently busy
processing another request
and cannot accept the request
at this time.

● Check the database logs to
see what the database is
currently doing

○ If the last log message
states: "Trying to read
RPN message from
network..." then the
database is ready,
otherwise the database is
busy

● If the database is busy, there
are a number of options that
can be used to troubleshoot
the issue:

○ Execute the request again
later

○ Increase the timeout with
the --timeout option to
wait for a longer period of
time.

○ Disable the timeout by
setting --timeout 0 to

Logging and Troubleshooting

S3014 160

Error Message Description Resolution

wait indefinitely until the
database server is ready
to process the next
request

● In rare cases, the database
may have become hung (if it is
busy and you have not see
any new log messages for
long periods of time then this
is most likely the problem) in
which case you should kill and
restart the database server
and then retry your commands

Server failed to start up One or more of the CGE job
steps failed to launch because
CGE was not found.

Try relaunching CGE if the system
displays this message. In addition,
it is recommended to ensure that
all compute nodes are correctly
configured. In particular verify the
following:

● The same version of CGE is
installed on all compute nodes
and the login nodes

● All shared file systems are
mounted and mounted in the
same place on all compute
nodes and the login nodes

● The munged process is
running on all compute nodes

If any of the preceding is not true
and if relaunching the CGE CLI
does not correct the problem,
contact Cray Support.

Not enough symmetric heap for
new sorting keys

There is not enough
symmetric heap for new
sorting keys

use the -H option to cge-launch
to set the symmetric heap value to
a larger value. Try doubling what
shows up by default near the top of
the log for a start.

Symmetric heap is a boundary
value on a resource that is
allocated as needed, so using a
larger than necessary value does
not mean that this value will be
allocated. It only means that no
more than this value will be
allocated. It is better to
overestimate by a bit than to
underestimate.

Logging and Troubleshooting

S3014 161

Error Message Description Resolution

[PE_64]:inet_listen_socket_setup
:inet_setup_listen_socket: bind
failed port 20219 listen_sock =
5 Address already in use

This may be due to leftover
cge-server processes

Follow the instructions
documented in Terminate
Orphaned cge-server Jobs on
page 165

Error: Timed out waiting for the
server to start running

When a computational loop
during a database build takes
an extremely long time
without producing any
indication of forward progress
(generally some kind of output
in the log), cge-launch may
decide that the start up
sequence has hung and
terminate it with this message.

Change the interval used to detect
a start up hang from its default
setting of 300 seconds (5 minutes)
to some longer interval. If you
know the problem is just that a
dataset is very computationally
intensive to build and is prone to
such timeouts, setting this timeout
value to 3600 seconds (an hour) is
almost certain to eliminate any
chance of this failure at the
expense of causing you to take a
very long time to detect an actual
hang in start up. To change this,
use the --
startupTimeout=seconds
option to cge-launch.

HTTP Errors are reported by a
tool or API

A request submitted to the
HTTP Interface provided by
the cge-cli fe command
was not successful. If the
request was submitted via a
tool or API then only minimal
error details may be reported
directly to you. However
please see the resolutions for
ways to find more detailed
error information.

● Submit the same request
using a browser. The browser
window may contain additional
error messages which indicate
the underlying error. Please
review these carefully since
they may indicate one of the
other common errors detailed
in this table.

● Please review the front end
logging as this will have
logged the HTTP error and
associated error details. These
may indicate one of the other
common errors detailed in this
table.

● If there is no obvious cause or
additional error messages in
the browser/front end logs
then please review the
database logs for error
messages that may indicate if/
why the request failed on the
database server.

● In rare cases, the offending
request may have caused the
database server to crash in

Logging and Troubleshooting

S3014 162

Error Message Description Resolution

which case, it will be
necessary to relaunch it before
making further requests

○ If a crash has occurred
please report this to your
Cray support
representative

:inet_listen_socket_setup :inet_
setup_listen_socket : bind
failed port 1371 listen_sock = 5
Address already in use

A previous cge-launch or
HPC/mrun job failed or was
killed, and the inet_listen
socket is likely in the
TIME_WAIT state on one or
more of the compute nodes.

Wait 60-90 seconds for the
inet_listen_socket (port
1371) to clear up from TIME_WAIT
state. If the problem persists, the
likely cause is some other program
has an active socket connection to
port 1371 on one (or more)
compute nodes. That application
must release port 1371 on the
affected node(s) before new cge-
launch or HPC/mrun jobs can be
run on that node(s).

User user does not have
permission to perform operation
operation

An action was requested for
which the requesting user did
not have the appropriate
permissions

● Submit the request as a user
who does have the appropriate
permissions

● Contact the database owner
and ask if you can be granted
the appropriate permissions

Additional Troubleshooting Tips and Helpful Information
● In rare cases, it is possible for the CGE server to be killed by the Linux kernel Out of Memory (OOM) Killer

mechanism. In these cases, the CGE Server log will contain the message, 'cge-server signaled with
9' and a message of the form:

Mon Nov 14 2016 10:50:53.388221 CST[][mrun]:ERROR:nid00002: PE 432: Killed

The CGE Server log will contain no other indication of an error. In some cases, the user may also see a
message like 'There was an error communicating with the remote server' produced by CGE clients. In cases
like this, it is possible to confirm that the OOM Killer is involved by examining the console logs on the node
reported by the mrun error message above for messages coincident with the failure of the form:

Out of memory (oom_kill_allocating_task): Kill process...

If this situation arises, Cray recommends that it be treated like any other CGE memory exhaustion failure: try
rewriting the query so that it consumes a smaller amount of memory for temporary data structures, for
example by avoiding cross-products of intermediate query results, or try re-running on a larger number of
compute nodes.

● Both the munge and ncmd system services must be running for mrun/CGE to work. If either service is
stopped or disabled, mrun will no longer be able to function

Logging and Troubleshooting

S3014 163

● If the same error is encountered even after following the suggested fixes in this section it is recommended to
add the --trace option to the command in order to get detailed information about the communications being
attempted and review the log messages carefully both on the front end and server side to try and understand
what is going wrong. It is also worth reviewing the server logs if you are able as there are some situations,
which will manifest as client side communications errors caused by an error on the server. Reviewing the
server logs may provide additional information about why you are encountering an error. If you are still unable
to resolve the issue, please contact Cray support providing logs from both the CLI and the database server to
aid in diagnosis of the issue.

● The results format received in the browser is dictated by the HTTP Accept header that your browser sends (or
conversely that your programmatic HTTP client sends). The Force text/plain as the response
Content option controls the Content-Type header that the front end responds with, which affects how the
browser interprets the response. Depending on the browser if this option is disabled (the default) then this
might mean that it downloads/offers to save the response to a file rather than displaying it in the browser,
enabling the aforementioned option changes the response Content-Type to always be text/plain regardless
of what format the front end actually outputs which forces the browser to display the response in the browser
itself. If the results need to displayed in a different format, customize the HTTP Accept header accordingly.
Most browsers have some means to configure this. For example, in Firefox, navigate to About>Config. Click
through the warning if it appears, and then search for accept and edit the value of the
network.http.accept.default setting to add the desired content types. The closest thing to plain text
that the front end will produce is text/tab-separated-values. Most browsers include application/xml in
their default accept header, which means you will typically get SPARQL XML results by default (or RDF/XML
if it were a CONSTRUCT query).

● Writing a large dataset to a Lustre directory when there is insufficient free space on the Lustre file system may
produce a segmentation fault. To resolve this issue, free up some more space on the file system.

● An empty dataset means a file that is either entirely empty or contains no invalid lines and no valid triples. For
example, a file that only contains a comment. The recommended way to create an empty dataset is simply to
touch the dataset.nt file and then start the database.

Process and Request Termination
It is important to understand that the command line interface acts like a client to the database server. When a
command that requires a connection to the database is executed, the control flow is as follows:

1. Command performs any client side validation and processing that is necessary for the requested action

2. A request to the database is prepared

3. A connection to the database is established

4. The request is submitted to the database

5. The client blocks until it receives a response from the database

6. The response is processed as necessary

7. Command returns results, if any, and exits with an appropriate exit code or continues on to the next requested
action

If the process is terminated during steps four and five above, this does not also terminate the submitted request.
That request will continue to be processed until such time as it completes on the database, when the database
completes that request it will encounter an error trying to send a response and log that in the database logs.
Therefore if a long running request is submitted and then the user terminates the command line process, further
requests may not be submitted until the database has completed the previous request. Typically when this

Logging and Troubleshooting

S3014 164

happens, the user will encounter an error stating that the command line timed out trying to connect to the
database, this indicates that the database is currently busy handling another request.

In order to recover from this, either wait for the database to complete the outstanding request or restart the
database. Restarting the database will lose any in-memory changes that were not yet checkpointed to disk.

TIP: For databases with read/write workloads, it is recommended to checkpoint regularly and doing so
prior to any request that is expected to take a long time.

14.2 Terminate Orphaned cge-server Jobs

Prerequisites
This procedure requires root privileges.

About this task
Follow the instructions listed in this procedure to track orphaned cge-server jobs down and terminate them.
The examples shown in this procedure can be used for a system with 3 sub-racks.

Procedure

1. Log on to the System Management Workstation (SMW) as root

2. Execute the following to find out if there are stray cge-server processes.

pdsh -w 'nid000[00-47]' "ps -ef|grep 'cge-serve[r]'|grep -v grep | awk '{print \$2}';true"|wc -w

3. Terminate the stray cge-server processes

pdsh -w nid000[00-30,32-46] "ps -ef|grep 'cge-serve[r]'|awk '{print \$2}'|xargs kill"

4. Rerun the preceding command to ensure all stray cge-server processes have been terminated.

5. Verify that all the stray cge-server processes have been terminated by executing the following command:

pdsh -w 'nid000[00-47]' "ps -ef|grep 'cge-serve[r]'|grep -v grep | awk '{print \$2}';true"|wc -w
0

This output indicates that everything has been cleared.

14.3 Diagnose CGE Python API Issues

Exceptions
The Java JVM will pass exception information back to the python interpreter. Here are examples of common
runtime and programming errors that produce exceptions:

Logging and Troubleshooting

S3014 165

● Starting CGE with a reference to a nonexistent dataset - An exception will occur if the dataset referenced
in the forExistingDatabase() invocation does not exist.

>>>
>>> my_cge_launcher_builder.forExistingDatabase("/mnt/lustre/xxx/ripple/mkdb/sp2b/25k")

Traceback (most recent call last):
 File "test.py", line 66, in <module>
 my_cge_launcher_builder.forExistingDatabase("/mnt/lustre/xxx/ripple/mkdb/sp2b/25k")
 File "/usr/lib/python2.7/site-packages/py4j/java_gateway.py", line 1133, in __call__
 answer, self.gateway_client, self.target_id, self.name)
 File "/usr/lib/python2.7/site-packages/py4j/protocol.py", line 319, in get_return_value
 format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o6.forExistingDatabase.
: java.lang.IllegalArgumentException: Database directory /mnt/lustre/xxx/ripple/mkdb/sp2b/25k must be an existing directory
 at com.cray.cge.api.builders.CgeLauncherBuilder.forExistingDatabase(CgeLauncherBuilder.java:65)
 at com.cray.cge.api.builders.CgeLauncherBuilder.forExistingDatabase(CgeLauncherBuilder.java:95)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
 at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
 at py4j.Gateway.invoke(Gateway.java:280)
 at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
 at py4j.commands.CallCommand.execute(CallCommand.java:79)
 at py4j.GatewayConnection.run(GatewayConnection.java:214)
 at java.lang.Thread.run(Thread.java:745)

● Running a query against a connection where the cge-server has already exited - The my_conn object is
still valid, but the call to querySummary() generates an exception because the CGE server is not running.

>>> my_conn.isRunning()
False
>>>
>>>
>>> my_query_results = my_conn.querySummary(DEFAULT_QUERY)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python2.7/site-packages/py4j/java_gateway.py", line 1133, in __call__
 answer, self.gateway_client, self.target_id, self.name)
 File "/usr/lib/python2.7/site-packages/py4j/protocol.py", line 319, in get_return_value
 format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o25.querySummary.
: com.hp.hpl.jena.query.QueryExecException: There was an error communicating with the remote server
 at com.cray.cge.sparql.engine.CgeQueryEngine.eval(CgeQueryEngine.java:157)
 at com.hp.hpl.jena.sparql.engine.QueryEngineBase.evaluateNoMgt(QueryEngineBase.java:142)
 at com.hp.hpl.jena.sparql.engine.QueryEngineBase.createPlan(QueryEngineBase.java:110)
 at com.hp.hpl.jena.sparql.engine.QueryEngineBase.getPlan(QueryEngineBase.java:88)
 at com.cray.cge.api.builders.CgeConnectionImpl.querySummary(CgeConnectionImpl.java:628)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
 at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
 at py4j.Gateway.invoke(Gateway.java:280)
 at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
 at py4j.commands.CallCommand.execute(CallCommand.java:79)
 at py4j.GatewayConnection.run(GatewayConnection.java:214)
 at java.lang.Thread.run(Thread.java:745)
Caused by: com.cray.cge.communications.messaging.exceptions.CommunicationsSecurityException: \
Unable to establish a connection to the database server at localhost:23239 as it does not appear to be running
 at com.cray.cge.communications.client.ssh.SshClient.connect(SshClient.java:484)
 at com.cray.cge.communications.client.AbstractClient.connect(AbstractClient.java:61)
 at com.cray.cge.sparql.engine.CgeQueryEngine.eval(CgeQueryEngine.java:102)
 ... 15 more Caused by: com.jcraft.jsch.JSchException: java.net.ConnectException: Connection refused
 at com.jcraft.jsch.Util.createSocket(Util.java:394)
 at com.jcraft.jsch.Session.connect(Session.java:215)
 at com.cray.cge.communications.client.ssh.SshClient.connect(SshClient.java:439)
 ... 17 more Caused by: java.net.ConnectException: Connection refused
 at java.net.PlainSocketImpl.socketConnect(Native Method)
 at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
 at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
 at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
 at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
 at java.net.Socket.connect(Socket.java:589)
 at java.net.Socket.connect(Socket.java:538)
 at java.net.Socket.<init>(Socket.java:434)
 at java.net.Socket.<init>(Socket.java:211)
 at com.jcraft.jsch.Util$1.run(Util.java:362)

● Invoking withJobOptions() more than once - This shows how the withJobOptions() function can
only be invoked once for a given instance of the CgeLauncherBuilder.

>>>
>>> my_cge_launcher_builder.withJobOptions(my_cge_joboptions)
>>>
>>> my_cge_launcher_builder.withJobOptions(my_cge_joboptions)
Traceback (most recent call last):

Logging and Troubleshooting

S3014 166

 File "<stdin>", line 1, in <module>
 File "/usr/lib/python2.7/site-packages/py4j/java_gateway.py", line 1133, in __call__
 answer, self.gateway_client, self.target_id, self.name)
 File "/usr/lib/python2.7/site-packages/py4j/protocol.py", line 319, in get_return_value
 format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o7.withJobOptions.
: java.lang.IllegalStateException: Cannot set job options as they have already been set
 at com.cray.cge.api.builders.CgeLauncherBuilder.withJobOptions(CgeLauncherBuilder.java:144)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
 at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
 at py4j.Gateway.invoke(Gateway.java:280)
 at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
 at py4j.commands.CallCommand.execute(CallCommand.java:79)
 at py4j.GatewayConnection.run(GatewayConnection.java:214)
 at java.lang.Thread.run(Thread.java:745)

Errors
● Attempt to access gateway that has been shutdown - This error shows a legitimate shutdown of the JVM,

but then an attempt to utilize the previously active connection.

>>>
>>> gateway.shutdown()
>>>
>>> my_conn.getPort()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "py4j/java_gateway.py", line 1131, in __call__
 answer = self.gateway_client.send_command(command)
 File "py4j/java_gateway.py", line 881, in send_command
 connection = self._get_connection()
 File "py4j/java_gateway.py", line 825, in _get_connection
 raise Py4JNetworkError("Gateway is not connected.")
py4j.protocol.Py4JNetworkError: Gateway is not connected.
>>>
>>>

● Shutting down the gateway before stopping the connection- This error shows a legitimate shutdown of
the JVM, then an attempt to stop the CGE server.

>>>
>>> gateway.shutdown()
>>>
>>> my_conn.stop()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "py4j/java_gateway.py", line 1131, in __call__
 answer = self.gateway_client.send_command(command)
 File "py4j/java_gateway.py", line 881, in send_command
 connection = self._get_connection()
 File "py4j/java_gateway.py", line 825, in _get_connection
 raise Py4JNetworkError("Gateway is not connected.")
py4j.protocol.Py4JNetworkError: Gateway is not connected.

● Not enough CPUs available to launch CGE - After starting the connection and waiting a suitable start up
time, the call to isRunning() returns False, and the call for status() returns Failed and NotRunning.

>>> my_conn.start()
>>>
>>> my_conn.isRunning()

Logging and Troubleshooting

S3014 167

False
>>>
>>> my_CgeStatus = my_conn.status()
>>> my_CgeStatus.toString()
u'Process: Failed - CGE: NotRunning'

The error can be seen in the cge_runtime.log.

Tue Sep 20 2016 16:28:38.336870 CDT[][mrun]:ERROR:Not enough CPUs for exclusive access. Available: 1 Needed: 2

● Exiting python without explicitly running gateway.shutdown() - This leaves the Java JVM process as
a still-active orphan process.

[userid@nid00030 ~]$ top -u $USER
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
64461 userid 20 0 35.778g 36304 14640 S 0.0 0.0 0:00.42 java

in which case the user should kill the process explicitly:

[userid@nid00030~]$ kill -964461

Logging and Troubleshooting

S3014 168

	Contents
	1 About the Cray® Graph Engine User Guide
	2 About the Cray Graph Engine (CGE)
	2.1 Cray Graph Engine (CGE) Features
	2.2 Concepts of Operation
	2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database
	2.2.2 What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF

	2.3 About SPARQL
	2.4 System Architecture Overview
	2.5 RDF and SPARQL Resources

	3 Building a Database
	3.1 About Rules Files
	3.2 Create a Set of Inferencing Rules
	3.3 Sample RDFS Rules File
	3.4 Limitations to Jena Rules Syntax

	4 Launch the CGE Server Using the cge-launch Command
	5 Mechanisms to Interact with the Cray Graph Engine (CGE) Database
	5.1 Cray Graph Engine (CGE) Command Line Interface
	5.1.1 Cray Graph Engine (CGE) Command Output
	5.1.2 Cray Graph Engine (CGE) CLI Common Options
	5.1.3 SSH Identities
	5.1.4 CGE Hadoop HDFS Configuration
	5.1.5 Cray Graph Engine (CGE) Properties File
	5.1.6 Create Checkpoints Using the CGE checkpoint Command
	5.1.7 Compile SPARQL Commands Using the CGE compile Command
	5.1.8 Check the Database State Using the CGE echo Command
	5.1.9 Launch the CGE Web Server Using the fe Command
	5.1.10 Determine How Locations Are Being Searched Using the get-configuration Command
	5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the keyword-lookup Command
	5.1.12 Retrieve Default Server Logging Information Using the log-info Command
	5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names Using the log-lookup Command
	5.1.14 Change the Default Logging Configuration of the CGE Server Using the log-reconfigure Command
	5.1.15 Display Information About the Default NVP Configurations Using the CGE nvp-info Command
	5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure Command
	5.1.17 Display Server Output Directory Information Using the output-info Command
	5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure Command
	5.1.19 Execute Queries Using the CGE query Command
	5.1.20 Cray Graph Engine (CGE) Optimizer Configuration
	5.1.21 Shutdown the CGE Server Using the shutdown Command
	5.1.22 Execute Sparql Queries and Updates Using the sparql Command
	5.1.23 Execute Updates on a Database Using the CGE update Command
	5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command
	5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command
	5.1.26 Create a Properties File Using the CGE generate properties Command

	5.2 Access the Cray Graph Engine (CGE) Graphical User Interface
	5.2.1 Launch the CGE Web Server
	5.2.2 Execute SPARQL Queries Using the CGE UI
	5.2.2.1 Get Query Metadata

	5.2.3 Execute SPARQL Updates Using the CGE Update Interface
	5.2.4 Create a Checkpoint Using the CGE UI
	5.2.5 Cray Graph Engine (CGE) Advanced Options
	5.2.6 View Server Configurations Using the CGE UI
	5.2.7 Edit Server Configurations Using the CGE UI
	5.2.8 Control Options

	5.3 SPARQL Endpoints
	5.4 Create and Use a Database

	6 CGE Security
	6.1 Cray Graph Engine (CGE) Security Mechanisms
	6.1.1 Create a CGE Specific RSA/DSA Host Key

	6.2 Setup CGE Security
	6.2.1 Configure Server Side Identification and Authentication
	6.2.2 Configure the ACL File User Permissions
	6.2.3 Configure Web UI Identification, Authentication and Encryption
	6.2.4 Configure LDAP for CGE
	6.2.5 Configure Private Authentication for CGE
	6.2.6 Configuring SSL for CGE
	6.2.7 Launch a Secured Web UI

	6.3 Endpoint Security
	6.4 CGE User Authentication
	6.5 Grant Basic Access to Owned Query Engines
	6.5.1 Eliminate Interactive Host Key Verification

	6.6 Grant Other Users Access to Their CGE Query Engine
	6.6.1 Grant Other Users Access to One of the Owned Data Sets
	6.6.2 Grant Other Users Access to All of the Owned Data Sets

	7 Built-in Graph Functions
	7.1 Combining Graph Algorithms with SPARQL
	7.2 Invocation of a Graph Function
	7.2.1 The CONSTRUCT Clause
	7.2.2 The INVOKE Clause
	7.2.3 The PRODUCING Clause

	7.3 Inputs to the Graph Function
	7.4 Sequence of Operators
	7.5 Bad Rank
	7.6 Betweenness Centrality
	7.7 Community Detection Label Propagation (LP)
	7.8 Community Detection Parallel Louvain Method (PLM)
	7.9 Page Rank
	7.10 S-T (Source – Target) Connectivity
	7.11 S-T Set Connectivity
	7.12 Triangle Counting
	7.13 Vertex Triangle Counting
	7.14 Triangle Finding

	8 Cray Graph Engine (CGE) Extension Functions
	8.1 Cray Graph Engine (CGE) Interval Analytics Functions
	8.2 Cray Graph Engine (CGE) Haversine Functions
	8.3 Cray Graph Engine (CGE) Square Root Function
	8.4 Custom Aggregate Functions

	9 Cray Graph Engine (CGE) Property Path Support
	10 Cray Graph Engine (CGE) Quick Reference
	11 Use the Cray Graph Engine (CGE) for a Hello World Example
	12 Support for Simple GraphML Files
	13 CGE API
	13.1 CGE API Versioning
	13.2 Use the CGE Java API
	13.2.1 Use CGE Java API via Maven
	13.2.2 Use CGE API via Java Development Kit (JDK)
	13.2.3 Use CGE API via Pre-built Main Entry Points
	13.2.4 Use Case: A Comprehensive Java Program
	13.2.5 Limitations of CGE Java API

	13.3 Use the CGE Python API
	13.3.1 Use Case: A Comprehensive Python Program
	13.3.2 Run the CGE Python API as a Python Application
	13.3.3 Run a Python API from the Python Interpreter

	14 Logging and Troubleshooting
	14.1 Troubleshooting Common Cray Graph Engine (CGE) Issues
	14.2 Terminate Orphaned cge-server Jobs
	14.3 Diagnose CGE Python API Issues

