
Cray® Graph Engine User Guide (2.0.UP00)
S-3014

Contents
1 About the Cray® Graph Engine User Guide...5

2 About the Cray Graph Engine (CGE)...7

2.1 Cray Graph Engine (CGE) Features...7

2.2 Concepts of Operation...7

2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database..7

2.2.2 What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF.................8

2.3 About SPARQL ...10

2.4 System Architecture Overview..10

2.5 RDF and SPARQL Resources...11

3 Building a Database ...12

3.1 About Rules Files ...14

3.2 Create a Set of Inferencing Rules ..14

3.3 Sample RDFS Rules File ..17

3.4 Limitations to Jena Rules Syntax ...19

4 Launch the CGE Server Using the cge-launch Command...20

5 Mechanisms to Interact with the Cray Graph Engine (CGE) Database..22

5.1 Cray Graph Engine (CGE) Command Line Interface..22

5.1.1 Cray Graph Engine (CGE) Command Output..23

5.1.2 Cray Graph Engine (CGE) CLI Common Options..24

5.1.3 SSH Identities...28

5.1.4 CGE Hadoop HDFS Configuration...28

5.1.5 Cray Graph Engine (CGE) Properties File...29

5.1.6 Create Checkpoints Using the CGE checkpoint Command...31

5.1.7 Compile SPARQL Commands Using the CGE compile Command...32

5.1.8 Check the Database State Using the CGE echo Command...33

5.1.9 Launch the CGE Web Server Using the fe Command..34

5.1.10 Determine How Locations Are Being Searched Using the get-configuration
Command..34

5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the keyword-
lookup Command..35

5.1.12 Retrieve Default Server Logging Information Using the log-info Command.......................35

5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names Using
the log-lookup Command...36

5.1.14 Change the Default Logging Configuration of the CGE Server Using the log-
reconfigure Command...36

Contents

S3014 2

5.1.15 Display Information About the Default NVP Configurations Using the CGE nvp-info
Command..37

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure Command............37

5.1.17 Display Server Output Directory Information Using the output-info Command37

5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure
Command ...38

5.1.19 Execute Queries Using the CGE query Command..38

5.1.20 Shutdown the CGE Server Using the shutdown Command...41

5.1.21 Execute Sparql Queries and Updates Using the sparql Command......................................41

5.1.22 Execute Updates on a Database Using the CGE update Command.....................................42

5.2 Access the Cray Graph Engine (CGE) Graphical User Interface ...43

5.2.1 Execute SPARQL Queries Using the CGE UI..45

5.2.2 Execute SPARQL Updates Using the CGE Update Interface..45

5.2.3 Create a Checkpoint Using the CGE UI...46

5.2.4 Cray Graph Engine (CGE) Advanced Options ..47

5.2.5 View Server Configurations Using the CGE UI..48

5.2.6 Edit Server Configurations Using the CGE UI..49

5.3 SPARQL Endpoints...52

5.4 Launch the CGE Web Server ...54

5.5 Create and Use a Database..54

6 Cray Graph Engine (CGE) Security Mechanisms...56

6.1 Grant Basic Access to Owned Query Engines ...56

6.1.1 Eliminating the Interactive Host Key Verification..58

6.2 Create a CGE Specific RSA/DSA Host Key..59

6.3 Grant Other Users Access to Their CGE Query Engine ...60

6.3.1 Grant Other Users Access to One of the Owned Data Sets ...61

6.3.2 Grant Other Users Access to All of the Owned Data Sets ..61

7 Built-in Graph Functions...63

7.1 Combining Graph Algorithms with SPARQL ...63

7.2 Invocation of a Graph Function ..64

7.2.1 The CONSTRUCT Clause ..64

7.2.2 The INVOKE Clause...64

7.2.3 The PRODUCING Clause...65

7.3 Inputs to the Graph Function ..66

7.4 Sequence of Operators ..67

7.5 Bad Rank...68

7.6 Betweenness Centrality...69

7.7 Community Detection Label Propagation (LP)..70

Contents

S3014 3

7.8 Page Rank...71

7.9 S-T (Source – Target) Connectivity...72

7.10 S-T Set Connectivity..73

7.11 Triangle Counting..74

7.12 Vertex Triangle Counting...75

7.13 Triangle Finding...76

8 Cray Graph Engine (CGE) Extension Functions..78

8.1 Cray Graph Engine (CGE) Interval Analytics Functions..78

8.2 Cray Graph Engine (CGE) Haversine Functions...82

8.3 Cray Graph Engine (CGE) Square Root Function...82

9 Cray Graph Engine (CGE) Property Path Support...84

10 Cray Graph Engine (CGE) Quick Reference..87

11 Use the Cray Graph Engine (CGE) for a Hello World Example..90

12 CGE Java API...93

12.1 Use CGE Java API via Maven...95

12.2 Use CGE API via Java Development Kit (JDK)...97

12.3 Use CGE API via Pre-built Main Entry Points...98

12.4 Use Case: A Comprehensive Java Program...100

12.5 Limitations of CGE Java API...110

13 Logging and Troubleshooting...112

13.1 Troubleshooting Common Cray Graph Engine (CGE) Issues...113

13.2 Terminate Orphaned cge-server Jobs...119

Contents

S3014 4

1 About the Cray® Graph Engine User Guide
The Cray® Graph Engine User Guide contains information about using the Cray Graph Engine (CGE), its
Command Line Interface (CLI) and Graphical User Interface (GUI) to create and use RDF databases.

Release Information
This publication version addresses the product version 2.0.UP00 of the Cray® Graph Engine.

Record of Revision
Publication
Number

Date Description

S-3010-115 March 2015 This publication addressed the Beta release of the Cray® Graph
Engine.

S-3010-1000 March 2016 This publication addressed the 1.0.UP00 release of the Cray®

Graph Engine.

S-3010-2000 August 2016 This publication addressed the 2.0.UP00 release of the Cray®

Graph Engine.

Typographic Conventions
Monospace Monospaced text indicates program code, reserved words, library functions,

command-line prompts, screen output, file names, path names, and other software
constructs.

Monospaced Bold Bold monospaced text indicates commands that must be entered on a command
line or in response to an interactive prompt.

Oblique or Italics Oblique or italicized text indicates user-supplied values in commands or
sytax definitions.

Proportional Bold Proportional bold text indicates a graphical user interface window or element.

\ (backslash) A backslash at the end of a command line is the Linux® shell line continuation
character; the shell parses lines joined by a backslash as though they were a single
line. Do not type anything after the backslash or the continuation feature will not
work correctly.

Alt-Ctrl-f Monospaced hyphenated text typically indicates a keyboard combination.

About the Cray® Graph Engine User Guide

S3014 5

Scope and Audience
This publication does not include in-depth information about RDF and SPARQL. The intended audience of this
publication is users and system administrators. It is assumed that all the commands documented in this guide are
executed via the bash shell.

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, Urika-XA, Urika-GD, and YARCDATA. The following are trademarks of Cray Inc.:
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX,
LIBSCI, NODEKARE. The following system family marks, and associated model number marks, are trademarks
of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a
sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

Feedback
Visit the Cray Publications Portal at http://pubs.cray.com and make comments online using the Contact Us button
in the upper-right corner or Email pubs@cray.com. Your comments are important to us and we will respond within
24 hours.

About the Cray® Graph Engine User Guide

S3014 6

http://pubs.cray.com
mailto:pubs@cray.com
mailto:pubs@cray.com

2 About the Cray Graph Engine (CGE)
CGE is a highly optimized software application designed for high-speed processing of interconnected data. It
features an advanced platform for searching very large, graph-oriented databases and querying for complex
relationships between data items in the database. It provides the tools required for capturing, organizing and
analyzing large sets of interconnected data. CGE enables performing real-time analytics on the largest and most
complex graph problems, and features highly optimized support for inference, deep graph analysis, and pattern-
based queries.

2.1 Cray Graph Engine (CGE) Features
CGE features include:

● Optimized query engine for high-speed parallel data analysis.

● Support for submitting queries, updates and creating checkpoints.

● A rich Command Line Interface (CLI).

● The CGE graphical user interface, which acts as a SPARQL 1.1 end point. This interface enables editing
SPARQL queries or SPARUL updates and submitting them to the CGE database. It also accepts a set of
commands that allow users to perform various tasks, such as creating a checkpoint on a database, setting
Name Value Pairs (NVPs) to control certain aspects of data preprocessing, and query processing etc.

● SPARQL query language extension via the INVOKE and PRODUCING operators, which allow a classical graph
algorithm to be passed an RDF graph and for the algorithm’s results to be returned as data that is compatible
with SPARQL 1.1. This enables graph algorithm library calls to be nested within a SPARQL query.

● Multi-user support.

● Compatibility with POSIX-compliant file systems.

● Database preprocessing to apply inference rules to the data, as well as to index the data.

2.2 Concepts of Operation
CGE's operational model is comprised of the following major components:

● The graph oriented database

● Resource Description Framework (RDF)

About the Cray Graph Engine (CGE)

S3014 7

2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database
Most modern database systems use a relational representation of their data. This means that data items are
stored in tables, with each row of the table holding data items that are in some way related to each other. For
example, all of the data items in the same row might be associated with the same person, as shown in the
following table:

Employee ID Given Name Family Name Date Hired Job Position

29650 Georgia Smith 11/17/2001 Eng5

In practice, a relational row like the one above is contained in a table of many similar rows:

Employee ID Given Name Family Name Date Hired Job position

29650 Georgia Smith 11/17/2001 Eng5

10926 Alex Jones 2/5/2008 Mktng3

72219 Paul Anderson 8/21/2005 Admin2

....

One of these fields is called the "key" and is used as the basis for looking up data from any of the other fields. In
this example, “Employee ID” would probably be used as the key. The column labels, “Employee ID”, “Given name”
etc. are implicit. They are not stored with the table, but with a database schema that is associated with the table.
The schema defines each field in the relation.

The kind of information that may be associated with a scheme is shown below:

Field Name Datatype

0 Employee ID Integer, min 0, max 99999

1 Given name Character, String length < 30

2 Family name Character, String length < 30

3 Date hired Integer 1-12, Integer 1-31, Integer > 1985

4 Job position Character, String length < 10

NOTE: The database schema shown above is used as an example and is entirely conceptual. There are
typically many tables in a large relational database, each with its own defining schema.

2.2.2 What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF
RDF is a data representation standard that allows data from different schemas to be merged. It accomplishes this
by extending the linking structure of the Web using Uniform Resource Identifiers (URIs) in order to create triples to
name a subject, an object, and the relationship or predicate between the two.

Resource Description Framework Triples
An RDF triple contains three components:

About the Cray Graph Engine (CGE)

S3014 8

● the subject, which is an RDF URI reference or a blank node

● the predicate, which is an RDF URI reference

● the object, which is an RDF URI reference, a literal or a blank node

Hence, data items in RDF are always represented as a trio of character strings, referred to as the “subject”,
“predicate” and “object” fields. Because they were originally intended to be unique across the Internet,
components of RDF triples use the generic URI / IRI syntax (RFCs 3986 and 3987).

A triple holding the same kind of information shown in the previous relational example might look like the
following:

<http://cray.com/example/employeeID#29650> (subject)
<http://cray.com/example/hasGivenName> (predicate)
“Georgia”^^<http://www.w3.org/2001/XMLSchema#string> (object)

NOTE: The above three statements should be entered on a single line and have been shown in separate
lines in this document due to lack of space. Furthermore, the text: (subject), (predicate) and (object) in the
above lines are shown in this document for clarity and are not part of an actual triple.

Note that the given name data item “Georgia” is expressed as an RDF literal: the value coupled with a URL-like
string identifying its data type. RDF triples are intended to be self-identifying in two ways, both of which can be
seen in this example:

1. The literal’s data type is attached to it.

2. The predicate identifies the class of data that the object belongs to, information that in the case of relational
data, is implicit in the schema and the data item’s position in the tuple. For RDF triples, there is no schema.
That type of identifying information is explicit, in the predicate of the triple.

As is illustrated below, any subject-predicate-object triple can also be viewed as a source vertex-edge-sink vertex
component of a directed graph:

<http://...ID#29650> <http://.../hasGivenName> “Georgia”^^<http://
www....#string>

NOTE: The statements shown above should be entered on a single line and have been shown on
separate lines due to lack of space.

Figure 1. RDF Triple Viewed as a Graph Component

CGE is designed to store and analyze datasets when the patterns of relationships and interconnections between
data items are at least as important as the data items themselves. The SPARQL query language is convenient in
the sense that it provides most of the same features as SQL for filtering, grouping, and updating database
information. Unlike SQL, however, SPARQL also provides a powerful mechanism for specifying (in a query) a
complex interconnection pattern to search for in the database. For indefinite-size patterns and aggregate

About the Cray Graph Engine (CGE)

S3014 9

information that can not be expressed in SPARQL, CGE supports the capability of nesting a call to a classical
graph analysis function within a SPARQL query.

Each subject-predicate-object relationship is an RDF triple. In CGE, each element in the internal representation of
the database includes a graph field, which specifies the subset of the graph that the triple belongs to. If the graph
field is left blank, the triple becomes part of the default graph. Typically this default, or unnamed, graph is the main
data subset.

2.3 About SPARQL
SPARQL is an RDF query language developed for semantic database queries. SPARQL queries replace the table
and schema format of relational SQL queries with RDF triples and ontologies, which define predicates and
relationships.

Some SPARQL features are listed below:

● The ability to explore data by querying for unknown relationships.

● Implicit JOIN syntax, which reduces the overhead for processing a complex query with multiple JOINs to the
equivalent of traversing a graph.

● The GRAPH keyword allows data to be queried along with its source, returning both the data that matches the
query and the name of the graph that contains the data.

● Unlike the proprietary query languages used in many graph database systems, SPARQL is a standardized,
non-proprietary query language.

● Tools and APIs for interacting with RDF/SPARQL systems are widely and freely available for all major
programming languages and platforms

This release of the CGE software supports a subset of SPARQL 1.1. The following SPARQL 1.1 features are not
implemented:

● The SERVICE keyword, for querying remote data.

● The MD5, SHA1, SHA256, SHA384, and SHA512 encryption functions.

● The UCASE and LCASE functions, which return a string literal whose lexical form is the upper or lower case of
the lexical form of the argument, are implemented for ASCII characters only.

● The property paths feature, which extends the predicate portion of the query, allowing more extensive search
patterns without the overhead of additional OPTIONAL statements.

NOTE: Although CGE does not natively support the SPARQL 1.1 property paths feature, it does
support certain types of property paths. CGE’s property path support is currently experimental and
should be used with care. Contact Cray Support for additional information.

To learn more about SPARQL, visit http://jena.apache.org/tutorials/sparql.html

2.4 System Architecture Overview
CGE is designed to provide performance and scalability on large, complex, interconnected databases. Its query
engine is based on a data parallelism approach, in which the software strives to keep every processor busy on a
roughly equal fraction of the data. The query engine is serviced by a user interface and a command line interface.

About the Cray Graph Engine (CGE)

S3014 10

http://jena.apache.org/tutorials/sparql.html

See Cray Graph Engine User Interface and Cray Graph Engine (CGE) Command Line Interface for more
information.

CGE uses the open-source Jena ARQ SPARQL parser to parse each query or update, and its parser auxiliary
software translates it into a lower-level representation that can drive the query engine. Query results are written to
the file system in a tab-separated-values (.tsv) format. For convenience, a pointer to the results file is returned to
the user when the query completes.

Extensive logging information is also written as the query or update progresses, as an aid to troubleshooting.

2.5 RDF and SPARQL Resources
Cray recommends the following resources for learning more about RDF and SPARQL:

RDF Resources
● RDF primer at http://www.w3.org/TR/rdf-primer

SPARQL Resources
● "SPARQL by Example”, available at http://www.cambridgesemantics.com, is an excellent introductory tutorial

written by Lee Feigenbaum of Cambridge Semantics and Eric Prud’hommeaux of W3C

● SPARQL Tutorial at http://jena.apache.org

● "Learning SPARQL", available at http://www.learningsparql.com by Bob DuCharme

● SPARQLer Query Validator at http://sparql.org/query-validator.html.

● SPARQL 1.1 query language tutorial at http://www.w3.org/TR/sparql11-query

Semantic Web Resources
"Semantic Web for the Working Ontologist", available at http://www.workingontologist.org by Dean Allemang and
James Hendler.

About the Cray Graph Engine (CGE)

S3014 11

http://www.w3.org/TR/rdf-primer/
http://www.cambridgesemantics.com/
http://jena.apache.org/
http://www.learningsparql.com
http://sparql.org/query-validator.html
http://www.w3.org/TR/sparql11-query/
http://www.workingontologist.org

3 Building a Database
The Cray Graph Engine (CGE) is launched using the cge-launch command. When the CGE application is
launched, a database directory is specified using the -d option of the cge-launch command. Initially, this
directory contains RDF data in N-triples or N-quads format. When the application is first launched on a new
database directory, the database is compiled and stored in an internal format in the same directory. Subsequent
launches of the application using the cge-launch command with the same database directory will use the
compiled database. The update command can then be used to add to or update an existing database. For more
information about using the cge-launch and update commands, see Cray Graph Engine (CGE) Command
Line Interface and the cge-launch and update man pages.

For CGE to recognize raw RDF data to be built, the data must be presented in one of three ways in this directory

1. in a single file called dataset.nq (for N-Quads form data)

2. in a single file called dataset.nt (for N-Triples form data)

3. in multiple files listed in a file called graph.info

Converting Data to RDF Triples
CGE reads RDF data in N-triples or N-quads format. There are many third party tools that may be used to convert
data into RDF. D2R is often used to extract data from an RDBMS into RDF format. The TopBraid Composer by
TopQuadrant™ can also be used to convert Excel, TSV, UML, or XML data. Conversion of data to RDF is beyond
the scope of this publication.

Building the Internal Representation
Once the data has been translated into RDF, the user must place the data in the directory where CGE will build its
compiled database files. If the RDF is contained in a single file, the simplest method is to rename this file to
dataset.nt or dataset.nq. A dataset.nt has NTriples format, whereas a dataset.nq file has NQuads
format. On the other hand, if the RDF is found in more than one file, a file named graph.info will need to be
created. This file contains a list of RDF files, one file per line. Each file name in graph.info may optionally be
followed by a graph name. If a graph name is specified, the graph name is applied to any triples found in the
corresponding RDF file.

Following is a sample of a dataset.nt file which has been extracted from the Lehigh University Benchmark
(LUBM) synthetic dataset:

<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Department14.University0.edu/GraduateCourse17> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#TeachingAssistant> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teachingAssistantOf>
<http://www.Department14.University0.edu/Course6> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Department14.University0.edu/GraduateCourse18> .
<http://www.Department14.University0.edu/GraduateStudent87>

Building a Database

S3014 12

http://d2rq.org/d2rq-language
http://www.topquadrant.com
http://www.topquadrant.com

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#GraduateStudent> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#name>
"GraduateStudent87" .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#emailAddress>
"GraduateStudent87@Department14.University0.edu" .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFr
om> <http://www.University843.edu <http://www.university843.edu/>> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor>
<http://www.Department14.University0.edu/AssistantProfessor6> .

IMPORTANT: Each predicate must appear on its own line. Some predicates are shown on multiple lines
in the sample above due to lack of space.

The specification for NTriples can be found at http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples.

Following is a sample of a graph.info file:

example graph.info file

filenames can be absolute
/lustre/scratch/users/jdoe/database1/dbtriples1.nt

or they can be relative to the database directory, which is where the graph.info file resides
database2/dbtriples2.nt

they can specify a named subgraph with a URI
/lustre/scratch/users/jdoe/database3/dbquads3.nq <http://cray.com/namedGraphs/Graph3>

NOTE: Triples and quads are supported in both the .nt and .nq files. Quads in the RDF file are not
affected by the optional graph name specified in the graph.info file. Lines containing only white space
or lines beginning with the comment character (‘#’) are ignored. If the file is a mix of triples and quads, the
triples become part of the graph specified in the graph.info file.

As mentioned earlier, when the application is launched via the cge-launch command. The -d parameter
specifies the database directory.

WARNING: The -d parameter is mandatory. Launching CGE without specifying it produces an error.

This directory must already exist if it has been populated with dataset.nt, dataset.nq, rules and/or a
graph.info file. If a compiled database is not present, a database is built using the graph.info,
dataset.nt, or dataset.nq file in that directory.

When the database has been built, the following files are saved in the database directory:

● dbQuads

● string_table_chars

● string_table_chars.index

● graph.info file is created (if not already present), which is only used to load in a database from RDF files
and is not used once the database is compiled.

Once the database has been built, CGE can begin executing queries and updates. When the application is
subsequently launched via the cge-launch command specifying the same directory, the dbQuads file is
detected, and the compiled database is read rather than the RDF.

IMPORTANT: Executing multiple update commands at a time is not supported currently. Updates should
be split into separate files and/or submissions.

Building a Database

S3014 13

When loading a dataset, CGE will look for a dataset in the following places:

● If dbQuads exists, it will be used.

● If dbQuads does not exist, but graph.info exists, graph.info will be opened and read to obtain a list of
source data files, which will then be used to build a new dataset.

● If neither dbQuads nor graph.info exist, but dataset.nt (or dataset.nq) exist, dataset.nt or
dataset.nq will be used to build a new dataset.

● If none of the above files exist, CGE will fail.

In each of these cases, if the file exists but is in some way invalid, CGE will fail.

Memory Requirements
● Memory Requirement for reading a database from RDF - The amount of memory required to read a

database from RDF depends on the number of triples/quads in the database, the number of unique strings in
the dictionary, and the length of those strings. As a rule of thumb, however, the main memory should be 4
times the size of the RDF file(s). For example, for a 100 GiB triples file, at least 400 GiB (4 * 100) should be
used.

● Memory Requirement for loading a compiled database - A compiled database consists primarily of the
dbQuads files, containing the compiled quads, and the string_table_chars files, containing the
dictionary. To enable CGE to load the database and execute meaningful queries, the main memory should be
20 times the sum of the sizes of dbQuads and the string_table_chars file. For example, if dbQuads is
32 GiB and string_table_chars is 256 GiB, at least (20 * (32 + 256)) GiB of memory should be used.

3.1 About Rules Files
One way to greatly increase the knowledge contained in the database is to provide a set of inferencing rules.
These rules are used during the database builds and in subsequent data updates (whether by SPARQL updates
or by editing the database) to create new relationships between objects. Providing inferencing rules grants
SPARQL queries access to inferred data, in addition to the raw data that was imported into the system.

Forward vs. Backward Chaining
There are two types of chaining:

● Forward Chaining - In forward chaining, the inferencing rules are recursively applied to the database,
creating new quads and adding them to the database. If a implies b and a is in the database, we add b to the
database.

● Backward Chaining - Rather than pre-computing quads in the database as in forward chaining, with
backward chaining the queries are modified to support those rules. If a implies b and a query searches for b,
it is changed to search for (a UNION b).

CGE’s rules inference engine does not implement backward chaining, but it implements a highly parallel form of
forward chaining.

Building a Database

S3014 14

3.2 Create a Set of Inferencing Rules
Inferencing can be performed to generate additional relationships once the Cray Graph Engine (CGE) builds a
database. CGE accomplishes this with a user defined rules file, which contains a set of rules specific to the data
being processed. The rules file format and semantics are based on the Jena rules, documented at http://
jena.apache.org/documentation/inference/index.html#rules. In this version of CGE there are certain limitations to
these rules, which are described in Limitations to Jena Rules Syntax .

The rules file has the form: one or more prefixes, followed by one or more rules

left-hand side quad(s) -> right-hand side quad(s)

Comments are denoted by a # character at the beginning of a line.

The quad, or quads, on the left-hand side of the -> are the quads that the inferencer will attempt to match to infer
the quad, or quads, on the right-hand side of the ->. All of the left-hand-side rules must be satisfied in order for the
inference to be made. Each rule must end with a period (.) and a newline character, and each rule must be on its
own line. The inferencer does not recognize the escape character (\).

A quad takes the form:

(subject predicate object [graph])

It is mandatory to specify the subject, predicate and object. The graph field is optional. If a graph is not specified,
the inferencer will use the default graph and the rule will apply only to triples in that graph. The subject, predicate
and object fields can be any valid form of these fields as specified by the N-Quads grammar, except as described
in Limitations to Jena Rules Syntax in CGE. The graph field in a quad has the same valid forms as an object. If a
rule contains a URI, that URI must have existed in at least one of the data files that were included in the
database. Alternatively, to apply a new ontology that was not in the original data files, create a new file that
contains any new objects and predicates, and add that file to the database. The fields of a quad in a rule can
also be variables, or shorthand versions of strings built from a specified prefix. A variable must begin with a ?
character, followed by a valid name. A name can contain any of the following characters:

name := [a-zA-Z][_a-zA-Z0-9]*

To specify one or more prefixes at the beginning of a rules file, before any rules, use the following syntax:
@prefix prefix_name: <http://urlstring#>

A rules file does not have to use prefixes. However they can be used to simplify quads within rules. For example,
prefixes are useful for creating shorthand versions of URIs that will be used repeatedly in the rules statements.

As with rules, each prefix must end with a period (.) and a newline, and each prefix must be on its own line.

The following prefix and rule examples are from the rule set used for the LUBM data.

Inferencing a Database
When a database is built with inferencing enabled and a rules.txt file is found in the database directory, CGE
will start applying the forward chaining rules found in that file to the triples/quads read from the RDF. The inferred
quads are added to the in-memory database and stored in the compiled dbQuads file. If inferencing is enabled,
the rules.txt file is also used when updating a database using SPARUL commands. As with any other quads
added by the SPARUL commands, the inferred quads are added to the in-memory database but are not written to
disk until the database is check-pointed.

For more information, see About Rules Files

NOTE: Inferencing is enabled by default and may be disabled by setting the value of the
cge.server.InferOnUpdate control parameter to 0. Control parameters are configuration keywords
that allow controlling server configuration settings. For more information, see Control Options.

Building a Database

S3014 15

http://jena.apache.org/documentation/inference/index.html#rules
http://jena.apache.org/documentation/inference/index.html#rules

Examples

A prefix statement
@prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

In this example the term rdf:type is shorthand for:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.

The inferencer expands the prefixed version of the string to the full string when creating the rules used during
inferencing. The rule in this example says that for a given triple ?x rdf:type ub:Course in the default graph,
infer a new triple ?x is-type ub:Work and add it to the default graph, as shown in the next example.

Inferring a new triple
Applying this rule:

(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

to this triple in the data input:

<http://www.Department10.University0.edu/Course6> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> \
 <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course>

infers (and adds) this new triple to the default graph:

<http://www.Department10.University0.edu/Course6> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> \
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Work>

A rule to establish a hierarchy of types
The following rule shows one way that ontology rules are used to establish a hierarchy of data types.

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee) .
(?x rdf:type ub:Employee) -> (?x rdf:type ub:Person) .

A Faculty member is also an Employee, an Employee is also a Person, and so on. Such a rule eliminates the
need to explicitly including each desired type for each such item in the database. Note that this rule did not use
the graph field.

The following rule uses a variable for the graph field. This rule is excerpted from the RDFS rules file, which is
based on some of the Jena rules for RDFS and OWL. The complete rules file is reproduced in Sample RDFS
Rules File .

(?x ?a ?y ?g) (?a owl:inverseOf ?b ?g) -> (?y ?b ?x ?g) .

This rule is also an example of another way rules are used to establish relationships between triples in the
database. This rule states that if two predicates A and B are defined to be inverses of each other and then if the
triple (X A Y) appears in the database, then the system can infer that the triple (Y B X) is also there, or
should be there.

Building a Database

S3014 16

Cross-database rules
Another use of a rules file is to establish a relationship between triples in two different databases. For example, if
one were extending a U.S.-based database with some additional data from France, it might streamline the
process to include such rules as:

(<x.cray.eg.france#personne> <x.cray.eg.france#nom> ?name <x.cray.eg.frenchdb>) -> \
(<x.cray.eg.us#person> <x.cray.eg.us#name> ?name <x.cray.eg.usdb>) .

By this rule the fields in the quads are translated into their English counterparts, consistent with the data that is
already in the American based database.

3.3 Sample RDFS Rules File
The following sample rules file is based on the Jena rules for RDFS and OWL. It is reproduced here courtesy of
w3.org.

These rules are based on the Jena rules for rdfs, plus some Jena rules
for OWL.
#Line breaks inserted into some of these rules for formatting purposes.
#This was done for readability within this document, but is not valid syntax.

Make a prefix for rdf:type. The IRI is defined by the SPARQL to be

http://www.w3.org/1999/02/22-rdf-syntax-ns#type, which we can
shorthand with rdf:type by defining a prefix for rdf:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Shorthand for rdfs

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Shorthand for owl

@prefix owl: <http://www.w3.org/2002/07/owl#> .

Skip this one.

[rdf1and4: (?x ?p ?y) -> (?p rdf:type rdf:Property), (?x rdf:type
rdfs:Resource), (?y rdf:type rdfs:Resource)]
Add rule for rdfs 2:

[rdfs2: (?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type ?c)]
(?x ?p ?y ?g) (?p rdfs:domain ?c ?g) -> (?x rdf:type ?c ?g) .

[rdfs2a: (?x rdfs:domain ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:domain ?z)]
(?y rdfs:subClassOf ?z ?g) (?x rdfs:domain ?y ?g) -
> (?x rdfs:domain ?z ?g) .

Add rule for rdfs 3:

[rdfs3: (?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)]
(?x ?p ?y ?g) (?p rdfs:range ?c ?g) -> (?y rdf:type ?c ?g) .

[rdfs3a: (?x rdfs:range ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:range ?z)]

(?y rdfs:subClassOf ?z ?g) (?x rdfs:range ?y ?g) -> (?x rdfs:range ?z ?g) .

Building a Database

S3014 17

Add rule for rdfs 5a:

[rdfs5a: (?a rdfs:subPropertyOf ?b), (?b rdfs:subPropertyOf ?c) ->
(?a rdfs:subPropertyOf ?c)]
(?a rdfs:subPropertyOf ?b ?g) (?b rdfs:subPropertyOf ?c ?g) -> (?a
rdfs:subPropertyOf ?c ?g) .

Add rule for rdfs 6:

[rdfs6: (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)]
(?a ?p ?b ?g) (?p rdfs:subPropertyOf ?q ?g) -> (?a ?q ?b ?g) .

Skip this one.

[rdfs7: (?a rdf:type rdfs:Class) -> (?a rdfs:subClassOf ?a)]

Add rule for rdfs 8:

[rdfs8: (?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) ->
(?a rdfs:subClassOf ?c)]
(?a rdfs:subClassOf ?b ?g) (?b rdfs:subClassOf ?c ?g) -> (?a rdfs:subClassOf ?c ?
g) .

Add rule for rdfs 9:

[rdfs9: (?x rdfs:subClassOf ?y), (?a rdf:type ?x) ->
(?a rdf:type ?y)]
Put the quad with the most potential matches as the first quad to
try and improve performance since since the first quads are handled
in parallel.
(?a rdf:type ?x ?g) (?x rdfs:subClassOf ?y ?g) -> (?a rdf:type ?y ?g) .

Add rules for inverse property from owl.

[inverseOf1: (?P owl:inverseOf ?Q) -> (?Q owl:inverseOf ?P)]
[inverseOf2: (?P owl:inverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)]
We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent
potential performance problems.
(?a owl:inverseOf ?b ?g) -> (?b owl:inverseOf
?a ?g) . (?x ?a ?y ?g) (?a owl:inverseOf ?b
?g) -> (?y ?b ?x ?g) .

Add rule for owl transitive property.

[transitivePropery1: (?P rdf:type owl:TransitiveProperty),
(?A ?P ?B), (?B ?P ?C) -> (?A ?P ?C)]
We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent
potential performance problems.
(?a ?p ?b ?g) (?p rdf:type owl:TransitiveProperty ?g) (?b ?p ?c ?g) -> (?a ?p ?
c ?g) .

Skip this one.

[rdfs10: (?x rdf:type rdfs:ContainerMembershipProperty) -> (?x
rdfs:subPropertyOf rdfs:member)]

Building a Database

S3014 18

NOTE: Each prefix and rule must appear on its own line. Some prefixes and rules and are shown on
multiple lines in the sample above due to lack of space.

3.4 Limitations to Jena Rules Syntax
This release of CGE does not support all aspects of Jena syntax and semantics for rules. Specifically:

● The @include construct is not supported.

● Calls to functions or built-in primitives, such as print, all, or max are not supported.

● The [...] syntax is not supported, including named rules.

● Backward chaining is not supported. Furthermore, backward syntax (<-) cannot be used to express forward
chaining.

● If multiple premises or conclusions (quads) are specified on either side of the -> in a single rule, each pair
must be separated by a space. The use of commas as separators is not supported.

● Native UTF-8 is not supported in rules files, however Unicode characters are supported within URIs, where
they are valid syntax.

NOTE: It is important to note that turning inferencing on/off is a database level setting. Turning
inferencing on can negatively impact performance. When this setting is set to true, the inferencer will run
during the first time that the database compiles and for subsequent updates. Since the whole database is
examined when inferencing occurs, turning this feature on after a period of time during which it was
turned off, will still affect the data that was loaded during the period when it was turned off. In other words,
if a user turns inferencing off and then adds or updates data, that data will also be inferenced once the
user turns the inferencing feature on again and performs another update. The current version of CGE
supports the 2004 RDF NTriples standard. The 2014 RDF 1.1 NTriples standard is not supported by
CGE.

Building a Database

S3014 19

4 Launch the CGE Server Using the cge-launch
Command

The cge-launch command is used to launch the query engine and enables creating and building a database in
a single step. This command handles the details of allocating batch resources (if necessary), setting up the
launch environment, and composing a command line for the query engine on a given platform. This eliminates the
need for a user to be aware of the details of a given platform's batch system or other considerations.

NOTE: Try relaunching CGE if the system displays an error message saying, "Server failed to
start up” upon execution of the cge-launch command.

There are two pieces of information that need to be specified when starting up the query engine. These include:

● The path to the directory where the data set resides. This can be specified via the -d option of the cge-
launch command.

● The path to a directory where the result files produced by queries need to be placed. This can be specified via
the -o option of the cge-launch command.

Following is an example of using cge-launch:

$ cge-launch -o pathtoResultsFile -d path -l logfile

In the preceding statement, pathtoResultsFile is used as an example for the path to the directory that will
contain the results of queries and/or updates, path is used as an example for the path to the database directory
and logfile is used as an example for the log file that will contain the command and server output.

The -o and -d options of the cge-launch command accept:

● UNIX style pathnames as naming files on a POSIX compliant file system

● URLs of the following forms:

○ file://unix_pathname - This form is the equivalent of the Unix Style Pathname in URL form

○ hdfs://name-server-address[:name-server-port-number]/HDFS_pathname - This type of
format indicates that a Hadoop Distributed File System (HDFS) file or directory is known to the specified
name server and is located within that name-server's name space at HDFS_pathname.

Both the aforementioned forms must refer to a file/directory that is shared across and equally accessible from
all nodes. CGE will determine where to look for this file/directory based on recognizing one of the
aforementioned path formats.

A few points to note while using checkpoints:

● If a full URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. file:/path) will be written to the POSIX filesystem
at the pathname specified in the URL.

● If a relative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE startup.

Launch the CGE Server Using the cge-launch Command

S3014 20

● If a full pathname but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE startup, so, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, if CGE was started with a simple pathname or
FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

The --configFile parameter specifies the pathname of the configuration file to be used by the server when
setting up persistently configured settings. If this option is present, its value is used, otherwise the
$CGE_CONFIG_FILE_NAME environment variable is taken from the invoking environment and used.

The --configDir parameter specifies the pathname of a directory containing configuration information. This
information may include a cge.properties file, SSH keys and authorized_keys files and other CGE
configuration. This directory, if specified, will be added to list of directories CGE searches for these files. The
value of this parameter will be placed in the $CGE_CONFIG_DIR_NAME environment variable and passed to CGE.
If this option is not specified and $CGE_CONFIG_DIR_NAME is set in the invoking user's environment, that value
will be used instead. For more information, see the cge-launch(1) man page.

Launch the CGE Server Using the cge-launch Command

S3014 21

5 Mechanisms to Interact with the Cray Graph Engine
(CGE) Database

The following mechanisms can be used to interact with the CGE database:

● CGE Graphical User Interface (GUI)

● CGE Command Line Interface (CLI)

5.1 Cray Graph Engine (CGE) Command Line Interface
The CGE CLI provides access to all the core functionality of the database via the command line. This interface is
provided as part of the standard installation of CGE.

The list of available CGE CLI commands can be retrieved by executing the cge-cli help command without
any options, as shown below:

$ cge-cli help

cge-cli commands are listed in the following table:

Table 1. CGE CLI Commands

Command Description

cge-cli checkpoint Requests creation of a checkpoint

cge-cli echo Allows sending echo requests, which can be used to ping
CGE to check if it is up and responding

cge-cli fe Launches a web-based interface for accessing the server
via a browser and provides SPARQL endpoints, which can
be accessed via standard SPARQL APIs and tooling

cge-cli help Displays help information

get-configuration Determines the locations being searched for configuration
files and the effective properties.

cge-cli keyword-lookup Provides help with converting keywords between names
and indexes so that the log options for using with other
commands can be determined.

cge-cli log-info Retrieves the current logging setup of the server

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 22

Command Description

cge-cli log-lookup Provides help with converting log levels between names
and values so that the log options to use with other
commands can be determined.

cge-cli log-reconfigure Reconfigures the default logging setup of the server. The
logging configuration changes persist until the server is
shut down.

cge-cli nvp-info Retrieves the current NVP setup of the server

cge-cli nvp-reconfigure Reconfigures the default NVPs of the server. The NVP
configuration changes persist until the server is shut down.

cge-cli output-info Retrieves the current output directory for results from the
server.

cge-cli output-reconfigure Requests that the output directory for results be changed.
The changes made persist until the server is shut down.

cge-cli query Runs queries against the server, takes in SPARQL queries
from files or from stdin only when no other query options
are provided

cge-cli sparql Runs a mixture of queries and/or updates against the
server, takes in SPARQL queries/updates from files or from
stdin only when no other input options are provided

cge-cli update Runs updates against the server, takes in SPARQL updates
from files or from stdin only when no other update options
are provided

cge-launch Launches the CGE Query Engine

Where more specific help for an individual command may be obtained by running the cge-cli help command,
as shown in the following example:

$ cge-cli help checkpoint

5.1.1 Cray Graph Engine (CGE) Command Output
CGE CLI commands produce the following types of output:

● Logging - Provides diagnostic information about what a command is doing and is useful primarily for
diagnosing any issues that may occur. All logging output goes to standard error.

● Command Output - Provides actual informational output of the command's status, such as query results,
update success/failure etc. All command output is transmitted to the standard output.

As each type of output goes to a different output stream, output can easily be separated using standard shell
redirection e.g.

$ cge-cli query example.rq > results.txt 2> query-client.log

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 23

The above example redirects the command output to the results.txt file and the logging to
query-client.log file.

5.1.2 Cray Graph Engine (CGE) CLI Common Options
Certain options that are common to all commands and are provided by the CGE CLI are described in the following
table:

Table 2. Common Command Line Options

Option Argument(s) Default
Value

Example Purpose

Communication Options

--db-host
--dbhost

Host Localhost --db-host machine Specifies the host
on which the
database is running

--db-port
--dbport

Port 3750 --db-port 12345 Specifies the port
on which the
database is running

--i
--identity

Identity
directory

~/.ssh -i /my/custom/identity Specifies the path
to a SSH identity
directory to use for
authenticating to
the server. When
omitted, several
default locations are
tried and the first
valid location is
used

--trust-keys N/A N/A --trust-keys When this option is
set, new host keys
will automatically be
trusted even when
running in non-
interactive mode.
This is useful in
environments
where the database
port (and thus the
host and port
combination
required to trust the
key for) may
frequently change.
This option should
only be used when
connecting to

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 24

Option Argument(s) Default
Value

Example Purpose

trusted database
servers.

Client Logging Options

--debug
--verbose

N/A N/A --verbose Enables verbose
mode, which
includes setting the
log level to debug.
All logging output
goes to stderr,
allowing it to be
separated from
command output,
which goes to
stdout.

If the --quiet
option is also
specified, then the
verbose mode
takes precedence.

--quiet N/A N/A --quiet Enables quiet
mode, which sets
the log level to
error, causes
little/no logging to
go stderr. All
logging output is
transmitted to
stderr, allowing it
to be separated
from command
output, which is
transmitted to
stdout.

If one of the
verbose mode
options is also
specified,
precedence is given
to the verbose
mode.

--trace N/A N/A --trace Enables trace
mode, which
includes setting the
log level to trace.
All logging output is
transmitted to

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 25

Option Argument(s) Default
Value

Example Purpose

stderr, allowing it
to be separated
from the command
output, which is
sent to stdout.

If the --quiet
option is also
specified,
precedence is given
to the verbose
mode

Server Configuration Options

--nvp Name and
value

N/A --nvp
cge.DoMemoryLeakDetection 1

Sets a NVP to send
to the server as part
of the request.
Usually necessary
only if asked by
Cray support to
enable advanced
options for
debugging an issue.

--log-disable N/A N/A --log-disable Disables all server
side logging for the
request

--log-level Log_level N/A --log-level 16

Supported log levels include:

● 0=None
● 1=Off
● 2=Error
● 4=Warn
● 8=Info
● 16=Debug
● 32=Trace

Changes the server
logging level for the
request.

Supported values
may be obtained by
using the log-
lookup command.

--log-string Log_string N/A --log-level Foo Specifies a string
that will be included
in every server log
line pertaining to
the request. This is
useful if it is
required to isolate
and extract the log
lines specific to a
request.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 26

Option Argument(s) Default
Value

Example Purpose

--log-keyword-
level

Keyword_levelN/A --log-keyword-level 41 32 Changes the server
logging level for a
specific logging
keyword. The
database server
uses a keyword-
based system that
enables extracting
log levels specific to
certain parts of the
request processing
or changing the log
level for a specific
keyword.

Supported values
may be obtained by
using the log-
lookup and
keyword-lookup
commands.

--log-global-
keyword

Keyword N/A --log-global-keyword 41 Specifies that a
given keyword
should be included
in all log lines.

Miscellaneous Options

-h command

--help command

N/A N/A --help checkpoint Prints the help
information for the
command rather
than running the
command

--batch
--non-
interactive

N/A N/A --non-interactive When set, this
option guarantees
that the script will
never prompt the
user for input, i.e. it
will never use
stdin. This may
cause some
commands to fail if
they would require
any user input other
than the provided
options. This is
useful when
invoking the CLI in
a non-interactive
context.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 27

Option Argument(s) Default
Value

Example Purpose

--configDir
--config-dir

Directory N/A --configDir /path/to/config Sets the first
location to search
for configuration
files

-- N/A N/A -- Used to separate
the options from the
arguments to the
command. This is
useful if arguments
may be mistaken
for options. Any
arguments seen
after the -- are
treated as
arguments even if
they could
otherwise be
considered as
options.

5.1.3 SSH Identities
SSH is used to encrypt communications with the database and to verify that a user is authorized to access a
database. An identity directory or directories to be used explicitly can be specified via the -i or --identity
option. If this option is not used, the following defaults are used:

1. If the environment variable $CGE_CONFIG_DIR_NAME is defined, search it for keys

2. If there is a .cge directory under a user's home directory (as defined by the $HOME environment variable),
search it for keys

3. If there is a .ssh directory under a user's home directory (as defined by the $HOME environment variable),
search it for keys

Only keys from the first directory found to contain keys will be used. Enabling verbose mode displays log output,
detailing which keys are being used.

5.1.4 CGE Hadoop HDFS Configuration
In some instances, the CGE command-line interface will need access to the HDFS configuration in order to
access data results and configuration files that may be located there. To do so, the value of the environment
variable HADOOP_CONF_DIR will be inspected and if this is a valid directory, the relevant configurations files from
this directory will be used. Otherwise the default location /etc/hadoop/conf will be searched.

Usage of URL paths for HDFS and Lustre
When checkpointing to Lustre, specify a full URL to the Lustre file. The pathname specified is interpreted relative
to the scheme and authority of the data directory URL. So, to checkpoint to a different scheme, specify a URL that
specifies the different scheme. To checkpoint to Lustre from HDFS, the path

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 28

file:/mnt/lustre/my/data/directory

will inform the checkpoint command where to put the data.

● If a full URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. file:/path) will be written to the POSIX filesystem
at the pathname specified in the URL.

● If a relative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE startup.

● If a full pathname but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE startup, so, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, if CGE was started with a simple pathname or
FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

5.1.5 Cray Graph Engine (CGE) Properties File
A cge.properties file may be used in order to specify some options without having to explicitly state them with
every command invocation. This properties file may exist in any of the following locations:

1. If the --configDir option is set, use the properties file from that directory if it exists

2. If the environment variable $CGE_CONFIG_FILE_NAME is defined and that file exists, use that file

3. If the environment variable $CGE_CONFIG_DIR_NAME is defined and it contains a properties file, use that

4. If there is a properties file in the working directory from which the command line interface was launched, use
that

5. If there is a .cge directory under your home directory (as defined by the $HOME environment variable) and it
contains a properties file, use that

Only the first file found will be used. Enabling verbose mode displays output detailing exactly which properties file
(if any) are used. Additionally, the get-configuration command can be used to view more detail, such as the
locations being searched, which file is used, and the effective properties.

If present, values from this file are used unless these are specifically overridden using command line options.

Currently the following properties are supported:

Table 3. CGE Property Files

Property Value Equivalent Command
Line Option

Description

cge.cli.db.host Host --db-host

--dbhost
Host name of a CGE server
that the CLI will connect to
if the --dbhost option is
not used.

cge.cli.db.port Port --db-port

--dbport
Port number of a CGE
server that the CLI will
connect to if the --dbport
option is not used.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 29

Property Value Equivalent Command
Line Option

Description

cge.cli.trust-keys True / False --trust-keys Eliminates the need for a
first-time interactive CLI
command each time you
start using a server on a
new TCP/IP port number
combination.

Note that if there is a properties file that overrides the default value, it will be noted in the logging and will contain
a warning to alert the user of the fact that they have set it in the properties file. Leaving an out of date properties
file around can interfere with correct communications with the database server with no clear reason.

Defining Command Aliases
The properties file may also be used to define command aliases. These are essentially shortcuts to other
commands. An alias is defined in the following manner:

$ cge.cli.alias.algebra=compile -c algebra

This defines a new alias algebra which simply invokes the compile command passing in the -c Algebra option.
The CLI can then be invoked using the following command:

$ cge-cli algebra example.rq

This would compile the given query into algebra and is equivalent to running the following command:

$ cge-cli compile -c algebra example.rq

Command aliases are subject to the following restrictions:

● Aliases cannot override built-in commands.

● Aliases cannot be defined recursively, which means that an alias cannot be defined in terms of another alias.

Advanced Command Alias Definition
There are some more advanced functions that can be performed on aliases such as using positional parameters.
For example, consider the following definition:

$ cge.cli.alias.c=compile -c $1

This creates the alias c, which again invokes the compile command. However, this time it uses a positional
parameter for the value of the -c option. With this definition the CLI can be invoked in the following manner:

$ cge-cli c rpn example.rq

Here the first argument after the alias is injected into the expansion of the alias so this is equivalent to running the
following:

$ cge-cli compile -c rpn example.rq

NOTE: If a positional parameter receives no value, it will be passed through as-is, which will likely result
in parser errors.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 30

5.1.6 Create Checkpoints Using the CGE checkpoint Command
The checkpoint command is used to request the creation of the checkpoint, which is a dump to disk of the
current database state, optionally including a NQuads file that can be used to export the database to other tools.
A checkpoint is a compiled database consisting of a dbQuads, string_table_chars, and
string_table_chars.index file.

This command simply takes in a path to a directory in which to create the checkpoint. The checkpoint directory is
given as a URI. This URI may be a full file:// or hdfs:// URL, or it may be a relative URI (e.g. a simple
absolute or relative pathname) in which case it will be resolved relative to the base URI on the server (i.e. the
current database directory).

CAUTION: If a relative path is used, the path will be evaluated relative to the data directory of the running
CGE instance.

It is possible to checkpoint to the same data directory the user started from by using that directory's path as the
path for the checkpoint. The checkpoint, if successful, will overwrite the existing dbQuads,
string_table_chars and string_table_chars.index files, so that the next time you start from that
directory you will get the new dataset.

Alternatively, it is also possible to checkpoint to another directory. If the directory already contains a dataset, and
the checkpoint succeeds, the dataset will be overwritten.

CAUTION: If the data directory is being moved to a different location, make sure to shutdown any
instance of CGE that was launched using that data directory before relaunching CGE.

Examples
Following are a couple of examples of using the checkpoint command:

● Using a relative URL to a file

$ cge-cli checkpoint /lus/scratch/user/db/cp1
● Using a HDFS URL

$ cge-cli checkpoint hdfs:/user/db/cp1
● Using NQuads

If an NQuads file needs to be generated for use with other RDF and SPARQL tools, use the -q or --quads
option of the checkpoint command, as shown in the following example:

$ cge-cli checkpoint --quads /lus/scratch/user/db/cp1

Once the checkpoint has been created, the system will display a message saying: Checkpoint creation
succeeded

Additional items to note while using checkpoints:
● If a full URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS

URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. file:/path) will be written to the POSIX filesystem
at the pathname specified in the URL.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 31

● If a relative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE startup.

● If a full pathname, but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE startup. Therefore, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, otherwise if CGE was started with a simple
pathname or FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

● The checkpoint command allows overwriting existing checkpoints. However it will do so in such a way that
it guarantees that this is an atomic operation. This means that either the checkpoint is overwritten and
replaced, or the previous checkpoint will continue to exist.

For more information, see the cge-cli-checkpoint(1) man page.

5.1.7 Compile SPARQL Commands Using the CGE compile Command
The compile command is used to compile SPARQL commands into the logical and/or physical plans that the
database server will use to execute the command. This can be useful for understanding how the system is
interpreting and optimizing a query or update.

Following is an example of using the compile command:

$ cge-cli compile -c algebra example.rq

The preceding example would compile the SPARQL command found in the example.rq file into algebra form
and display it to standard output. Multiple files can be specified in order to compile a large number of files at once.

Compilation Modes
The -c/--compiler-mode option is used to specify the desired compilation output type. Supported values are
as follows:

Table 4. Compilation Modes

Compilation Mode Output Mode

algebra The optimized SPARQL algebra for the query/update as text in
SPARQL Set Expression (SSE) format. This can be thought of as
the logical plan for the query.

raw-algebra The unoptimized SPARQL algebra for the query/update as text in
SSE format. This is the unoptimized logical plan for the query.

rpn The physical plan for the query/update in binary form. Primarily
intended for Cray developer use only.

rpn-string The physical plan for the query/update in text. Primarily intended
for Cray developer use only.

all Produces all of the above.

This option may be specified multiple times to request multiple output formats. If the all option is also specified,
it would supersede any individual format requests. The -a or --all options can also be specified as a shortcut
for specifying the -c all option.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 32

Compilation Output
By default, compilation output goes to stdout and can be redirected to a file if desired. However, if multiple files
need to be processed, or if more than one output type needs to be generated, then it is recommended to use the
-f or --files option, which outputs a file for each input and compilation mode combination in the directory
where the cge-cli command is being executed. The output file names are automatically generated based upon
the input file name by replacing the extension with the appropriate extension for the output type:

Table 5. Compilation Output

Output Type Output File Extension

algebra .algebra

raw-algebra .rawalgebra

rpn .rpn

rpn-string .rpnstring

For example, suppose that there is a file named getTenRows.rq that contains the following SPARQL query:

sparql query: select * {?s ?p ?o} limit 10

Now execute the compile command on the getTenRows.rq, as shown in the following example:

$ cge-cli compile -c all getTenRows.rq --files
0 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Started Algebra to RPN message conversion
2 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Finished Algebra to RPN message conversion (3 operations)

The above command would create the following four files:

● getTenRows.rawalgebra

● getTenRows.rawalgebra

● getTenRows.rpn

● getTenRows.rpnstring

For more information, see the cge-cli-compile(1) man page.

5.1.8 Check the Database State Using the CGE echo Command
The echo command is used to check that the database server is up and able to respond to requests.

As the name implies, the echo command simply sends some data to the database server and checks that the
server echoes it back correctly.

An example of using the echo command is shown below:

$ cge-cli echo Test data

The above command sends the data Test data to the server. If the data is sent successfully, the system returns
a message saying: Echoed data received and validated successfully.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 33

Generating Test Data
Use the echo command to generate some random data to send to the server. This can be used to test much
larger requests than what would need to be manually typed in. For example:

$ cge-cli echo -g 8000

If the data is sent successfully, the system returns a messaging saying: "Echoed data received and
validated successfully".

For more information, see the cge-cli-echo(1) man page.

5.1.9 Launch the CGE Web Server Using the fe Command
The fe command is used to launch a web server that provides a user interface and SPARQL endpoints to CGE.

In order to stream query results over HTTP, this command must be running on a host that has access to the same
file system that the database server is writing results to. Typically, this means executing the fe command on a
login node of the system running CGE. It should be noted that since it is often required to have the user interface
available for a long period, it is recommended to launch it in the background so that it is resistant to terminal
disconnects.

For example:

$ nohup cge-cli fe > web-server.log 2>&1 &

When the CGE user interface server has started, the system returns a message indicating that the server has
started and is ready to accept HTTP requests.

Once the user interface has been launched, it is possible to access the SPARQL endpoints on the machine and
port displayed in the log message.

Verifying the Server Connection
It may be useful to verify that the database server is up and running when starting the web server. In this case,
the --ping option can be used with the fe command, which makes the fe command check that the database
server is up and running before launching the web server:

$ cge-cli fe --ping

Running on a Different Port
Sometimes it may be necessary to run the web server on a different port. This can be achieved by using the --
server-port option with the fe command (whose default value is 3756) to supply an alternative port on which
to run the web server, as shown below:

$ cge-cli fe --server-port 12345

If an alternative port is chosen to run the web server, it is important to modify the URLs appropriately when
accessing the user interface.

For more information, see the cge-cli-fe(1) man page.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 34

5.1.10 Determine How Locations Are Being Searched Using the get-configuration
Command

The get-configuration command is used to determine locations of CGE configuration files and the effective
properties. This command does not communicate with the database. It inspects the user's local environment and
provides information to help understand how configuration is being discovered. For example:

$ cge-cli get-configuration

The output of this command includes relevant environment variables and the location of found configuration files.
The output also indicates whether or not the file was found. If the file was found, the path to that file is shown.
Finally, all CGE related properties from that file are listed along with their values, as part of the output.

5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the
keyword-lookup Command

The keyword-lookup command provides the means to lookup mappings between keyword IDs and user-
friendly keyword names. These can be used to find the values that need to be passed to the log options when
invoking other commands. Unlike most of the other commands, the keyword-lookup command does not
actually contact the database.

For example, use the following command to lookup a specific keyword ID:

$ cge-cli log-lookup 28

Alternatively, a keyword ID can be looked up based upon the keyword name using the keyword-lookup
command, as shown in the following example:

$ cge-cli keyword-lookup QRY

The keyword-lookup command can be used without any arguments to display the full mapping of levels to
names, as shown below:

$ cge-cli keyword-lookup

For more information, see the cge-cli-keyword-lookup(1) man page.

5.1.12 Retrieve Default Server Logging Information Using the log-info Command
The log-info command retrieves information about the server's default logging configuration.

NOTE: The information returned by the log-info command does not necessarily reflect the logging
settings for individual requests since all commands may use the Cray Graph Engine (CGE) Command
Line Interface to change the log configuration for specific requests.

An example of using the log-info command is shown below:

$ cge-cli log-info

Example output of the above command is shown below:

$ cge-cli log-info
0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand - Making

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 35

request...
Server Log Configuration:
Version 1 - Printing Enabled - Default Level Info (8) - Keyword Levels Set {0-42}

In the above example, we can see that the server is configured with the default settings, as indicated by the text:
Default Level Info (8). However, in other cases we might see different settings, as shown in the following
example output:

$ cge-cli log-info
0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand - Making
request...
Server Log Configuration:
Version 1 - Printing Enabled - Default Level Warn (4) - Keyword Levels Set {0-42}
Keyword TCP (Index 41) = Debug (16)

In the second example above, we can see that the default level has been turned down to Warn, but the TCP
keyword is turned up to Debug. The server's default log configuration can be used via the log-reconfigure
command if needed. For more information, see cge-cli-log-info(1) and cge-cli-log-reconfigure(1)
man pages.

5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names
Using the log-lookup Command

The log-lookup command provides the means to lookup mappings between log level values and user-friendly
log level names. These can be used to find the values that need to be passed to the log options, when invoking
other commands. It does so without contacting the database.

An example of using the log-lookup command for looking up the log level that has a value of 16 is shown
below:

$ cge-cli log-lookup 16

An example of looking up a level based on the name follows:

$ cge-cli log-lookup Warn

Alternatively, use the log-lookup command without any arguments to retrieve the full mapping of levels to
names, as shown in the following example:

$ cge-cli log-lookup

For more information, see the cge-cli-log-lookup(1) man page.

5.1.14 Change the Default Logging Configuration of the CGE Server Using the log-
reconfigure Command

The log-reconfigure command changes the default logging configuration of the server.

The information returned by the log-info command does not necessarily reflect the logging settings for
individual requests since all commands may use the Cray Graph Engine (CGE) Command Line Interface to
change the log configuration for specific requests.

For example:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 36

$ cge-cli log-reconfigure --log-level 16

The system will display a message if an incorrect value is specified for the log-level.

Upon successful execution of this command, the system returns the message: "Received success
response".

TIP: It is recommended to verify that the log configuration changes have been implemented by using the
log-info command. It may also be helpful to use the log-lookup and keyword-lookup commands
to determine the values that need to be passed the options, in order to configure logging settings as
desired.

WARNING: Do not set the server log levels to DEBUG or TRACE, especially, if the Cray Graph Engine
(CGE) server is running with a large number of images.

For more information, see the cge-cli-log-reconfigure(1) man page.

5.1.15 Display Information About the Default NVP Configurations Using the CGE nvp-
info Command

The nvp-info command retrieves information about the default NPVconfiguration of the server. The information
retrieved by the nvp-info command does not necessarily reflect the NVP settings for individual requests since
commands may change the NVP configuration for specific requests.

An example of using the nvp-info command is shown below:

$ cge-cli nvp-info

If the server's default NVP configuration needs to be changed, use the nvp-reconfigure command.

For more information, see the cge-cli-nvp-info(1) man page.

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure
Command

The nvp-reconfigure command is used to change the server's default NVP configuration.

Upon successful execution of this command, the system returns a message saying: "Received success
response". Configuration changes are not necessarily reflected in the NVP settings for individual requests since
commands may change the NVP configuration for specific requests. It is recommended to use the nvp-info
command to verify that the changes have taken effect, as shown below:

$ cge-cli nvp-info

Most of the supported NPVs have a defined range of acceptable values. Values specified outside of those ranges
will be normalized into the range for that NVP. Unsupported NVPs are simply ignored, with a warning printed in
the database logs and their values will not be stored by the server.

For more information, see the cge-cli-nvp-reconfigure(1) man page.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 37

5.1.17 Display Server Output Directory Information Using the output-info Command
The output-info command retrieves information about the current output directory of the server. This is the
directory to which the server writes query results to for later retrieval.

An example of using the output-info command is shown below:

$ cge-cli output-info

The output-reconfigure command can be used if it is required to change the server's output directory.

For more information, see the cge-cli-output-info(1) man page.

5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure
Command

The The output-reconfigure command is used to change the servers output directory to which it writes query
results for later retrieval. This directory is given as a URI, full file:// or hdfs:// URLs may be used. If a
relative URI is given then this is resolved relative to the base URI of the server i.e., the current database directory.

An example of using the output-reconfigure is shown below:

$ cge-cli output-reconfigure /new/output/directory

NOTE:

After executing the output-reconfigure command, it is recommended to use the output-info
command to verify that the changes have taken effect, as shown below:

$ cge-cli output-info
For more information, see the cge-cli-output-reconfigure(1) man page.

5.1.19 Execute Queries Using the CGE query Command
The query command is used to execute queries against the running database. This command can be used to
execute a single query or a sequence of queries.

Queries that need to be executed may be specified in a number of ways:

● By providing a list of files, which contain lists of files containing queries to be executed

● By providing the names of query files directly

● Via stdin (only if no queries are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, those queries are executed before any queries are specified directly. This command may only be used
to execute SPARQL queries. To execute updates, use the update command or to execute mixtures of queries
and updates use the sparql command.

An example of using the query command is shown below:

$ cge-cli query --list queries.txt extra-query.rq

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 38

The above command will execute all the queries specified in the queries.txt file before executing the query
specified in the extra-query.rq file. Executing queries by default produces only information about where to
obtain the results and not the result itself.

An example of using the query command is shown below:

$ cge-cli query types.rq

Here we can see that the database returns the following results information:

0 28 1756 0 file:///lus/scratch/rvesse/results/queryResults.2016-06-13T13.47.22Z000.28889.tsv

This is a simple tab separated string with the fields being as follows:

Table 6. Status Descriptions

Column Index Information

0 Status - will be 0 for successful queries

1 Result count - number of results returned

2 Result size - results size in bytes

3 Execution time - query execution time in seconds

4 Results location - path to the file containing the results

5 Error message - should be blank for successful queries

Results File Format
The file containing the results is in SPARQL Results TSV format and contains only the tabular results for the
query. This means that if an ASK/CONSTRUCT/DESCRIBE query has been created, the results file will not contain
the final results.

Printing Results
This simple format makes it easy to process with standard command line tools,. For example, the following
command can be used to show the results in the console:

$ cge-cli query --quiet types.rq | cut -d$'\t' -f 5 | xargs cat

As noted earlier, the results file contains only the tabular results for the query. If results of an ASK/CONSTRUCT/
DESCRIBE query are desired to be printed, see the 'Streaming Results' section below.

Streaming Results
As already seen, it is possible to use simple command line tools to extract and dump the query results to stdout.
However, this only works for SELECT queries, and when the results can be accepted in SPARQL Results TSV
format. If it is desired to retrieve the final results in an arbitrary format, the --stream option of the query
command will need to be used. This option may only be used when executing a single query and it takes the
MIME type of the desired results format.

$ cge-cli query --stream application/sparql-results+xml types.rq

Results are returned in SPARQL Results XML format. Supported formats include the following:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 39

Table 7. Output Result Formats

Query Types MIME Types Output Format

ASK and SELECT application/sparql-results+xml SPARQL Results XML

application/sparql-results+json SPARQL Results JSON

text/csv SPARQL Results CSV

text/tab-separated-values SPARQL Results TSV

CONSTRUCT and
DESCRIBE

application/n-triples NTriples

text/turtle Turtle

application/rdf+xml RDF/XML

application/rdf+json RDF/JSON

application/ld+json JSON-LD

NOTE: Requesting a format that does not match the query type or is unknown will result in an error.

There are also three special values that may be passed to this option:

● text

● json

● xml

When these values are specified, the CLI will automatically select an appropriate text (line-based), JSON or XML
output format in which to stream the results, while taking into account the type of query being evaluated. For
example providing --stream text might produce SPARQL results TSV for an ASK/SELECT query but produce
NTriples for a CONSTRUCT/DESCRIBE query. When these special values are used, the exact output format will not
be known in advance but will be guaranteed to fall into the general format given.

Making Multiple Queries
When multiple queries are executed, they are executed in the order specified (subject to the aforementioned
precedence of list files over individual files) and the command will print a results header for each query.

$ cge-cli query types.rq list-graphs.rq ask-types.rq

It can be seen that a results header is retrieved for each query run.

For more information, see the cge-cli-query(1) man page

5.1.19.1 Common Errors Encountered Using the Cray Graph Engine (CGE) query Command
There are a number of common errors that may be encountered when using the query command:

● Parser Errors - Parser errors occur when a query is not in valid SPARQL 1.1 format. The error message
details the unexpected token, along with what the parser was expecting at that stage of the parsing.

● Unsupported Features The system will also return an error message in cases where it is attempted to use
an unsupported SPARQL 1.1 feature.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 40

● Communications Error - Communication errors occur when the CLI cannot connect to the database. There
are a variety of errors that can be encountered, depending on exactly what goes wrong with the
communications between the CLI and the database server. If the same error is consistently returned, it is
recommended to:

○ Add the --trace option to the command to get detailed information about the communications being
attempted.

○ Review the log messages carefully.

○ Review the server logs if possible, as there are some situations which will manifest as client side
communications errors that can be tracked down to the configuration of the server.

For more information, see Troubleshooting Common Cray Graph Engine (CGE) Issues on page 113

5.1.19.2 Cray Graph Engine (CGE) Optimizer Configuration
On rare occasions, it may be required to change the query optimizer configuration. This can be performed by
using the --opt-off and --opt-on options. Both of these options take the name of an optimizer flag to disable/
enable as desired.

The following example shows how to set the optimizer flag to off:

$ cge-cli query --opt-off optFilterPlacement types.rq

Executing the above statement would execute the query with the filter placement optimization disabled. If both
the enabled and disabled flag options are specified, the flag will be considered as disabled. There are some flags
whose values cannot be changed regardless of the options given.

CAUTION: Turning optimization off may result in significantly increased memory usage and/or
performance degradation. Therefore, it is strongly recommended that the optimizer configuration be
changed only when advised to do so by a Cray support engineer.

5.1.20 Shutdown the CGE Server Using the shutdown Command
The shutdown command is used to instruct the Cray Graph Engine (CGE) server instance to shut down.

An example of using the shutdown command is shown below:

$ cge-cli shutdown

The shutdown command requests that the server be shutdown gracefully. If this command is executed by the
user that owns the server process, the user will receive a success message indicating that the server has shut
down. On the other hand, if this command is executed by a user who does not own the server process, the
system will return an error message.

NOTE: If the server is in a bad state, then this command will not succeed. Standard Linux techniques for
killing an application process should be used in this case.

5.1.21 Execute Sparql Queries and Updates Using the sparql Command
The sparql command is used to execute queries and/or updates against the database. It can be used to
execute a single query/update or to execute a whole sequence of queries and/or updates.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 41

Queries and updates to be executed may be specified in a number of ways:

● By providing list files which contain lists of query and/or update files to be executed

● By providing the names of query and/or update files directly

● Via stdin (only if no queries/updates are specified in other ways and the --non-interactive option is not
used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, queries specified in those list files will be executed before any queries specified directly.

This command may be used to execute a combination of SPARQL queries and updates. Use the query
command to execute SPARQL queries. Use the update command to execute SPARQL updates.

An example of using the sparql command is shown below:

$ cge-cli sparql --list commands.txt extra-command.ru

The above command will execute all the queries specified in the commands.txt file before executing the queries
specified in the extra-command.ru file.

An example of using the sparql command is shown below:

$ cge-cli sparql list-graphs.rq create-graph.ru list-graphs.rq

Executing queries/updates using the sparql command produces the corresponding results for the command.
This means that for queries it produces information about the results and for updates it produces a success/failure
message as appropriate.

For more information about the sparql command, see the cge-cli-sparql(1) man page.

Differences Between the sparql and query Commands
The major differences between the sparql and query commands include:

● The sparql command can run a mixture of queries and updates, whereas the query command can run
queries only.

● The query command can stream results directly using the --stream option.

5.1.22 Execute Updates on a Database Using the CGE update Command
The update command is used to execute updates on a database. This command can be used to execute a
single update or a sequence of updates. It supports all the common options described in Cray Graph Engine
(CGE) Command Line Interface.

Updates to be executed may be specified in a number of ways:

● By providing list files, which contain lists of update files to be run.

● By providing the names of update files directly

● Via stdin (only if no updates are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, updates contained within those files will be executed before any updates specified directly.

This command may only be used to execute SPARQL updates. If it is required to executed queries, use
the query command. To execute a combination of queries and updates, use the sparql command

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 42

An example of using the update command is shown below:

$ cge-cli update --list updates.txt extra-update.ru

The above statement will execute all the queries specified in updates.txt file before executing the query
specified in the extra-update.ru file. Executing an update returns a message indicating whether the update
succeeded or failed.

$ cge-cli update create-graph.ru

Running Multiple Updates
If multiple updates need to be executed, they will be executed in the order specified (subject to the
aforementioned precedence of list files over individual files) and the command will print a success or failure
message for each update.

For example:

$ cge-cli update create-graph.ru drop-graph.ru

For more information, see the cge-cli-update(1) man page.

5.2 Access the Cray Graph Engine (CGE) Graphical User Interface
CGE provides a simple interface for access via a browser and also provides SPARQL 1.1 protocol compliant
endpoints. The CGE user interface enables you to perform a number of tasks, including:

● Executing queries

● Executing updates

● Creating checkpoints on a database

● Using advanced options for viewing and editing server configurations, as well as for performing server NVP
and logging configuration changes.

To access the CGE user interface, point the browser at: http://machine:3756/dataset/, where machine is the host
name of the machine where the web server is hosted. Multiple instances of CGE can be launched on the same
node at different ports.

IMPORTANT: The firewall configuration of the host machine must allow for port 3756 to be accessed
externally or this will not work, unless the browser is running on the same host. If the site's firewall
configuration does not permit this, SSH port forwarding can be used to forward the remote port to the
local machine, as shown in the following example:

$ ssh machine -L 3756:hostname:3756

In the above example, machine is the machine running CGE’s web server. The first 3756 is the local
host port to connect to, whereas hostname:3756 is the remote reference.

NOTE: The results format received in the browser is dictated by the HTTP Accept header that
your browser sends (or conversely that your programmatic HTTP client sends). The 'Force
text/plain as the response Content' option controls the Content-Type header that the
front end responds with, which affects how the browser interprets the response. Depending on
the browser if this option is disabled (the default) then this might mean that it downloads/offers to
save the response to a file rather than displaying it in the browser, enabling the aforementioned

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 43

option changes the response Content-Type to always be text/plain regardless of what format the
front end actually outputs which forces the browser to display the response in the browser itself. If
it is needed to display the results in a different format, customise the HTTP Accept header
accordingly, most browsers have some means to configure this. For example in Firefox navigate
to About>Config. Click through the warning if it appears and then search for accept and edit the
value of the network.http.accept.default setting to add the desired content types. The
closest thing to plain text that the front end will produce is text/tab-separated-values. Most
browsers include application/xml in their default accept header, which mean you will typically
get SPARQL XML results by default (or RDF/XML if it were a CONSTRUCT query).

The CGE UI can then be accessed by pointing the browser at: http://localhost:3756/dataset/.

Upon successfully accessing the CGE user interface the following screen will be displayed:

Figure 2. Cray Graph Engine User Interface

Queries and/or updates can be executed directly from this page. Additional tasks can be performed using the
links at the top of this interface.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 44

5.2.1 Execute SPARQL Queries Using the CGE UI

About this task
The Cray Graph Engine (CGE) Query Interface allows executing SPARQL queries on a loaded RDF database
running within CGE.

Figure 3. Query Interface

Procedure

1. To access CGE's Query Interface, point the browser at http://machine:3756/dataset/query, or
select the Query Interface link from the list of links at the top of the UI.

2. To execute a SPARQL query, enter it in the SPARQL Query field. The check box under the SPARQL Query
field can be selected to specify that the server should return the query results with a Content-Type header
value of text/plain. This will force the browser to display the results in the browser, as many browsers will
download the results rather than display them by default.

3. To execute a query, simply select the Run Query button, which will submit the query to the server and deliver
the results to the browser. The user interface uses standard HTTP content negotiation to determine the format
in which to return the query results. Most browsers receive results in an XML/JSON format.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 45

5.2.2 Execute SPARQL Updates Using the CGE Update Interface

About this task
The Cray Graph Engine (CGE) Update Interface allows you to execute SPARQL updates on a database.
SPARQL update is a language extension to SPARQL 1.1 that makes it possible to make updates to an active
RDF database, using SPARQL query syntax. Use the CGE Update Interface to perform a number of tasks,
including updating the default database to add or remove RDF triples and quads, copying or moving the contents
of one database to another, and performing multiple update operations in a single action.

Procedure

1. To access CGE's Update Interface, point your browser at http://machine:3756/dataset/update or
select the Update Interface link from the top on the main landing page of the CGE user interface.

Figure 4. CGE Update Interface

2. To execute a SPARQL update, enter the update statement into the SPARQL Update field.

3. Select the Run Update button to submit the update for processing. Once the system has finished executing
the update, it will send either a success/failure message as appropriate.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 46

5.2.3 Create a Checkpoint Using the CGE UI

About this task
When a database is started for the first time its initial state is considered to be a checkpoint. When a change is
made to the database, its state can be preserved by creating a checkpoint. This preserves a copy of the previous
in-memory database. Creating a checkpoint creates a persistent record of the database state, which is written to
the database directory in a file named export_dataset.nq.

NOTE: Checkpoints can only be created on running databases. If there are any queries or updates
executing, it important to ensure that they finish executing before a checkpoint is created, otherwise the
state of the database in the checkpoint may not contain the desired updates to it.

Procedure

1. To access the Cray Graph Engine (CGE) Checkpoint Interface, point the browser at http://machine:
3756/dataset/checkpoint, where machine is the machine running CGE’s web server. This brings up the
Checkpoint Interface, as shown below:

Figure 5. Creating a Checkpoint

2. Specify a location for the checkpoint in the Checkpoint Location field. This is the directory where the
checkpoint will be saved. The server will generate an error if this directory does not exist or is read-only.

3. Select the Create Checkpoint button to create the checkpoint. This will return a success/failure message as
appropriate, as shown in the following example output:

Checkpoint created at /lus/scratch/cge/datasets/lubm/0/temp

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 47

5.2.4 Cray Graph Engine (CGE) Advanced Options
CGE provides a number of advanced options that can be used to change the behavior of the database server for
a specific request. Some of these options impact the server, whereas others impact individual requests. The user
interface for configuring advanced options is shown in the following figure:

Figure 6. Server Name Value Pairs

NOTE: Options provided in this section of the user interface are relevant only for the processing of the
request under consideration and should be updated for each individual request. If it is desired to change
the options for the database server as a whole, it will be required to use the interface described in the
'Edit Server Configurations Using the CGE UI ' topic of this publication.

Server NVPs (Name Value Pairs)
In the Server NVPs section, NVPs can be specified to pass to the database server. These can be used to control
behavior or enable additional debugging information.

IMPORTANT: In most cases, it will not be required to enter anything in the Server NVPs field, unless
specifically instructed to do so by a Cray representative for gathering information to aid in diagnosing
encountered issues.

Server Logging Configuration
The Server Logging Options section provides options that allow configuring the amount of logging the database
server will produce in the server side logs during the processing of a request. The desired logging level (i.e. log
verbosity) can be selected from the Server Log Level drop down, which is followed by the Server Log String
field, in which a log string can be entered. The log string can be up to 128 characters and will be included on
each log line pertaining to the request. This is often useful for extracting all the log lines pertaining to a specific
request.

Messages of types INFO, WARNING, and ERROR can be logged in the system, INFO being the default log level.

This interface also provides the option to disable logging for the request entirely, though it is generally
recommended to avoid this option as it makes it difficult to monitor the status of the server while it processes
queries.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 48

5.2.5 View Server Configurations Using the CGE UI

About this task
The Server Information interface allows you to view all the server configuration settings defined in the system.

IMPORTANT: In most cases it will not be required to change server configuration settings, unless
specifically instructed to do so by a Cray representative in order to gather information for diagnosing
issues being experienced.

Procedure

To access the Server Information interface, point your browser at http://machine:3756/dataset/
info, where machine is the machine running the Cray Gray Engine's (CGE’s) web server. This displays a
screen similar to the following:

Figure 7. Server Configurations

The information displayed on the Server Information interface includes information about the log and NVP
configurations of the server, as well as the results output directory.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 49

5.2.6 Edit Server Configurations Using the CGE UI

About this task
The Edit Server Configuration interface allows editing server configurations.

IMPORTANT: It is recommended not to change server configuration settings, unless specifically
instructed to do so by a Cray representative in order to gather information for diagnosing issues.

Procedure

1. To access the Cray Graph Engine (CGE) Edit Server Configuration interface, point the browser at http://
machine:3756/dataset/config, where machine is the machine running CGE’s web server. This
presents the following screen:

Figure 8. Editing Server Configurations

2. Select the desired server NVP and logging options using the Server NVPs and Server Logging Options
sections of the UI. In addition to the Server NVPs and Server Logging Options, this interface also contains
a Server Output Directory field that allows changing the server output directory. This is the directory to
which the database writes results, and from which the web server reads in order to deliver query results over
HTTP.

CAUTION: It is best not to change server configuration settings, as doing so can adversely affect
performance (especially if it is changed to point to a relatively slow file system).

3. When the required changes have been made, select the Reconfigure Server button to attempt the
reconfiguration. Upon doing so, the system will return a response detailing the success/failures of the pieces
of configuration that were to be updated, as shown in the following example output:

Updated Server NVP Configuration successfully
Updated Server Logging Configuration successfully

Unlike the options presented in the other interfaces, the values set from this interface persist for the lifetime of
the server and become the new defaults.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 50

5.2.6.1 Control Options
In most cases it will not be needed to change server configuration settings, unless a Cray support representative
specifically requests, in order to gather information for diagnosing issues. However, there are some settings that
you may occasionally wish to change. Name Value Pairs (NVPs) that enable you to modify these settings are
listed in the following table:

Table 8. CGE NVPs

Parameter Description Default Value

cge.server.QueryTimeout This parameter sets the maximum runtime (within the
server) of a given query in seconds (wall clock time).
This timeout will be checked after every operation.
However, it does not interrupt operations. After the query
times out, the server will terminate that query and will be
immediately ready for subsequent queries. Acceptable
values for this parameter range from 0 seconds
(automatic termination at the start of the second
operation) to 100, 000 years expressed in seconds
(3153600000000). If a negative value is entered for this
field, it will be converted to 0.

31536000

cge.server.InferOnUpdate Causes inferencing to be enabled or disabled for a given
update. Has a value of either “0” or “1”. The default value
of this parameter is "1", which sets inferencing on for
updates. A rules.txt file must be present for
inferencing to take place. If no rules.text file exists,
inferencing will not be performed. If updates to the
database were made after inferencing was turned on,
triples added previously will stay saved in the database if
inferencing is turned off subsequently.

1

cge.server.BuddyMaxGBs Sets the upper limit on the amount of memory used by
the big buddy allocator. The value of BuddyMaxGBs
must be a non-negative integer value and is used to
specify the maximum number of gigabytes allocated for
the big buddy allocator. For example, setting the value to
50 will set the upper limit on the memory allocated for the
big buddy allocator to 50 GB. By default, the limit is set to
128 GB and the maximum is 1 TB. Setting this parameter
to 0 will disable the limit.

128 GB

cge.server.LittleBuddyMa
xGBs

Sets the upper limit on the amount of memory used by
the little buddy allocator. The value of
LittleBuddyMaxGBs must be a non-negative integer
value and is used to specify the maximum number of
Gigabytes allocated for the little buddy allocator. For
example, setting the value to 8 will set the upper limit on
the memory allocated for the little buddy allocator to 8
GB. By default, the limit is set to 16 GB and the
maximum is 128 GB. Setting this parameter to 0 will
disable the limit.

16 GB

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 51

5.3 SPARQL Endpoints
Standard SPARQL tools can be used to interact with the Cray Graph Engine (CGE) by pointing them at the
relevant endpoint URLs, which are shown in the following table:

Table 9. SPARQL Endpoints

Service Endpoint URL

SPARQL Query http://machine:3756/dataset/query

SPARQL Update http://machine:3756/dataset/update

In the above examples, machine is used as an example for the name of the machine running CGE’s web server.

These endpoints are SPARQL 1.1 protocol compliant and provide all the standard parameters.

Supported Content Types
The SPARQL query endpoint uses standard HTTP content negotiation to determine how to return query results to
the SPARQL tool, depending on the Accept header that the tool sends.

NOTE: The results format received in the browser is dictated by the HTTP Accept header that your
browser sends (or conversely that your programmatic HTTP client sends). The 'Force text/plain as
the response Content' option controls the Content-Type header that the front end responds with,
which affects how the browser interprets the response. Depending on the browser if this option is disabled
(the default) then this might mean that it downloads/offers to save the response to a file rather than
displaying it in the browser, enabling the aforementioned option changes the response Content-Type to
always be text/plain regardless of what format the front end actually outputs which forces the browser to
display the response in the browser itself. If it is needed to display the results in a different format,
customise the HTTP Accept header accordingly, most browsers have some means to configure this. For
example in Firefox navigate to About>Config. Click through the warning if it appears and then search for
accept and edit the value of the network.http.accept.default setting to add the desired content
types. The closest thing to plain text that the front end will produce is text/tab-separated-values. Most
browsers include application/xml in their default accept header, which mean you will typically get
SPARQL XML results by default (or RDF/XML if it were a CONSTRUCT query).

The following standard formats are supported by the query endpoint:

Table 10. Query Types and Supported Content Types

Query Type Supported Content Types

ASK and SELECT ● SPARQL Results XML

● SPARQL Results JSON

● SPARQL Results CSV

● SPARQL Results TSV

CONSTRUCT and DESCRIBE ● NTriples

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 52

Query Type Supported Content Types

● Turtle

● RDF/XML

● RDF/JSON

● JSON-LD

Standard HTTP behavior of returning the message "406 Not Acceptable" will apply if the tool does not
include any formats the endpoint can produce in its Accept header.

Custom Parameters
CGE features endpoints that provide custom parameters, which can be used to configure the same advanced
options supported by the CGE user interfaces. These parameters are listed in the following table:

Table 11. Custom Parameters

Parameter Example Purpose

forcePlainText forcePlainText=true Used to force the returned Content-Type to be
text/plain regardless of the actual content type
being returned.

This is only useful for browser access to the
endpoints and may cause errors if used with
SPARQL tools.

nvps nvps=foo%3Dbar Specifies the NVPs to be passed to the database
and applied to the request.

These must be specified in Java properties file
style with one name=value pair per line

log-level log-level=16 Specifies the log level to use for database logging
of the request. This takes an integer value with
values interpreted as follows:

● 2 = Error

● 4 = Warn

● 8 = Info

● 16 = Debug

● 32 = Trace

The log-lookup command can be used for
translating integer values to the desired log
levels.

log-string log-string=Foo Specifies a string to be included on every
database log entry pertaining to the request.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 53

Parameter Example Purpose

Maximum supported length is 128 characters and
longer strings will be truncated accordingly.

log-disable log-disable=true Can be set to disable all database logging for the
request

5.4 Launch the CGE Web Server
Before using the Cray Graph Engine GUI, it is required to launch the database via the cge-launch command
and leave the default port setting of 3750 unchanged. If an alternative port has been used, then it will be required
to add the --db-port option to specify an alternative port. Once the database has been launched, the Cray
Graph Engine (CGE) graphical user interface and/or the SPARQL endpoints may be used. This can be
accomplished by launching the web server that provides the user interface on a login node of the system where
CGE is running, as shown below:

$ cge-cli fe

Alternatively, you can use the following command to have the web server continue running in the background with
its logs redirected, even if you disconnect from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

NOTE: The web server is launched by the same script as the rest of the Command Line Interface tools,
and supports many of the same standard options detailed in Cray Graph Engine (CGE) Command Line
Interface.

5.5 Create and Use a Database

Prerequisites
If the Cray Graph Engine (CGE) is needed to perform inferencing on data, ensure that a valid rules.txt file
exists in the directory containing the data.

About this task
The following instructions can be used to create a database and execute queries and/or updates on the database
once it has been built.

Procedure

1. If the data is not in RDF format, convert the data to RDF.

2. If the RDF data resides in a single file, save/rename that file to dataset.nt or dataset.nq. This is
required because CGE accepts ONLY files in .nt or .nq formats as input. All other formats should be

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 54

converted to either .nt or .nq (including .rdf). On the other hand, if the data resides in more than one file,
create a graph.info file and add the names of the RDF file to that file.

3. Build the database using the cge-launch command as shown below:

$ cge-launch -o pathtoResultsDir -d path -l logfile

In the above statement, pathtoResultsDir is used as an example for the path to the directory that will
contain the results of queries and/or updates. path is used as an example for the path to the database
directory and logfile is used as an example for the log file that will contain the command and server output.
pathtoResultsDir MUST be a directory and MUST contain either a triples or quads file. These files must
be named dataset.nt or dataset.nq respectively. For more information, see the cge-launch(1) man
page.

NOTE: When the database has been built, the following files are saved in the database directory:

● dbQuads
● string_table_chars
● string_table_chars.index

Executing multiple update commands at a time is not supported currently. Updates should be split into
separate files and/or submissions.Collectively, the aforementioned files are the disk representation of the
binary version of the database which can be reloaded into CGE. When the CGE application is launched again
and the same database directory is specified, the dbQuads file will be detected and the compiled database
will be read instead of the RDF. Furthermore, if the database directory contains a rules.txt file, CGE will
perform inferencing on the data. This is because inferencing is turned on by default. It can be turned off by
setting the cge.server.InferOnUpdate NVP parameter to 0.

4. Execute the fe command to launch a web server that provides a user interface and SPARQL endpoints to
CGE.

$ nohup cge-cli fe > web-server.log 2>&1 &

5. To execute a query or update on the database, use either the CGE UI or the CGE CLI.

a. To execute queries/updates via the CGE UI, follow the instructions listed below:

1. Connect to the CGE UI by pointing the browser at: http://machine:3756/dataset/. This brings
up the CGE UI.

2. Select the Query Interface or Update Interface to execute queries and updates respectively.
Optionally, server configuration parameters can also be specified to control the query/update.

b. To execute queries/updates via the CGE CLI, use the query, update and sparql commands to
execute SPARQL queries, updates and/or combination of queries and updates correspondingly. For
usage information, see the associated man pages.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

S3014 55

6 Cray Graph Engine (CGE) Security Mechanisms
The CGE query engine protects the port on which it communicates with clients using an encrypted authentication
mechanism based on the Secure Shell (SSH) passwordless authentication mechanism. Before using the CGE
user interface query clients to make requests on data sets, authentication must be configured. If it is required to
set up the query engine to permit multiple users to execute requests, it will be required to configure public keys for
each user. This can be configured on a per-data set or all data sets basis.

6.1 Grant Basic Access to Owned Query Engines

About this task
The Cray Graph Engine (CGE) query engine and CGE CLI commands use your SSH configuration to obtain
public and private keys for use in authentication. Configuring basic query engine authentication is almost the
same as configuring SSH passwordless authentication to the localhost IP host for your login account. The steps
involved in granting basic access to your query engine are listed below:

Procedure

1. Ensure that you have a .ssh directory in your home directory and that the directory permissions are 700
(rwx------).

To find out whether you have a .ssh directory, and whether or not it is correctly protected, use the following
command:

$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

If this looks correct you can move on to the next step. If the directory does not exist at all, you will need to
create it, as shown below:

$ mkdir $HOME/.ssh
$ chmod 700 $HOME/.ssh
$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

If the directory does not have the correct permissions, you can simply change those. However, it is important
to ensure that the directory is writable only by you. As long as this requirement is met, you do not need to
change anything. The following command can be used if it is required to set the permissions on the directory:

$ chmod 700 $HOME/.ssh
$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

Cray Graph Engine (CGE) Security Mechanisms

S3014 56

2. Create a public / private authentication key pair using ssh-keygen if the key pair does not currently exist.
Use the following command to find out whether or not a public / private key pair has been configured.

NOTE: The following shows only key files (there will probably be other files as well unless this is a
brand new .ssh directory):

$ ls -l $HOME/.ssh
total 80
-rw------- 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id_dsa.pub
-rw------- 1 username group 883 Apr 8 2014 id_rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

In the above example, there may be only an RSA key pair (id_rsa and id_rsa.pub), only a DSA key pair
(id_dsa and id_dsa.pub) or both. A file with ".pub" in its name is a public key file. A file without ".pub" in
its name is a private key file. All of your private key files should have -rw------- for their permissions as
shown above. Your public key files may be readable (not writable) by anyone, but do not need to be, so the
permissions shown above are okay, but not required. The minimum permission set that should be used is -
rw------- , this enables reading and modifying the file. The maximum permission set should have -rw-
r--r-- , which permits other users to read but not modify the public key. If there is not even a single public/
private key pair in the .ssh directory, an SSH key will need to be generated . This can be done using the
ssh-keygen command:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/users/username/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /users/username/.ssh/id_rsa.
Your public key has been saved in /users/username/.ssh/id_rsa.pub.
The key fingerprint is:
eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host
The key's randomart image is:
+--[RSA 2048]----+
| . . |
| + + * o |
| + + B = o . |
| o . + = . . |
| . . S + . |
| |
| E o |
| . o |
| . . |
+--[MD5]----------+
$ ls -l $HOME/.ssh
total 8
-rw------- 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

This produces a public / private key pair which can be used for passwordless authentication to localhost.

NOTE: At present, CGE does not support ssh-agent forwarding, so it is not recommended to
specify a pass-phrase when creating a key.

3. Place the public authentication key in the .ssh/authorized_keys file. This will enable interacting with
CGE query engines started by the user on this machine (it does not allow other users to use the user's query
engines). Set this up as follows:

$ cat $HOME/.ssh/id_*.pub >> $HOME/.ssh/authorized_keys
$ chmod 644 $HOME/.ssh/authorized_keys
$ ls -l $HOME/.ssh
total 80
-rw-r--r-- 1 username group 2601 Jun 18 2014 authorized_keys
-rw------- 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id_dsa.pub

Cray Graph Engine (CGE) Security Mechanisms

S3014 57

-rw------- 1 username group 883 Apr 8 2014 id_rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

4. Test using ssh to log into localhost without a password. The simplest way to test this is to try connecting to
localhost through SSH. This will have the effect of logging on to the same host the the user is currently logged
on to:
$ ssh localhost
The authenticity of host 'localhost (::1)' can't be established.
ECDSA key fingerprint is 0a:34:d6:d9:71:b4:6c:e6:1d:49:95:ea:7d:09:54:89 [MD5].
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.
Last login: Tue Jan 6 11:56:10 2015 from localhost

Message of the day...

$ exit

As you can see, the first time you do this, you will be prompted to verify that the key for localhost is correct.
The user will also be prompted like this the first time the user tries to connect with a query engine with a new
TCP/IP port number, so it is a good idea to do an interactive query or other kind of front-end command before
trying to use a new query engine port from a script or other automated environment. Once authenticity of the
host / port pair has been verified, this pair will be added automatically to your list of known hosts and the user
should not need to do this again. To avoid the need for performing the interactive Host Key verification step,
see Eliminating the Interactive Host Key Verification To show that this works, try a second attempt to use SSH
to log into localhost:

$ ssh localhost
Last login: Tue Jan 6 11:56:10 2015 from localhost
--
-
Message of the day...
--
-
$ exit
$

5. Once this has been set up, it is required to authenticate the localhost / <port number> pairs for all
query engine ports so that the clients can connect non-interactively. To do this, start CGE on each port you
intend to use and run an interactive request through CGE, once for each port. The cge-cli echo
command provides a simple way of doing so, as shown in the following example:
$ cge-cli echo --db-port=73737
The authenticity of host 'localhost' can't be established.
RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.
Are you sure you want to continue connecting? [Yes/No]: yes
13835 [main] WARN com.cray.cge.cli.communications.client.ssh.LoggingBridge - Permanently added 'localhost' (RSA) to the list of
known hosts.
14110 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Sending echo request...
14157 [main] INFO com.cray.cge.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated successfully

To avoid the need for performing the interactive Host Key verification step, see Eliminating the Interactive
Host Key Verification

6.1.1 Eliminating the Interactive Host Key Verification
The SSH protocol uses the host key to authenticate the server to the client, which is of particular importance
when the client will be sending confidential data (passwords, for example) to the server. Since the SSH protocol
used by CGE does not permit the use of passwords, and the clients do not generally send other secrets to CGE,
there is no real need for the client (and the invoking user) to verify that the host key is the one that the user trusts.

By default, the CGE CLI commands require explicit first time verification of host keys, as you have seen in the
examples above. There is, however, a setting that you can set in your cge.properties file(s) that will cause the

Cray Graph Engine (CGE) Security Mechanisms

S3014 58

CGE CLI commands to consider any host key as trusted. This eliminates the need for a first-time interactive CLI
command each time you start using a server on a new TCP/IP port number, and streamlines the process of
connecting to a new instance CGE.

To add this setting, make sure that all appropriate cge.properties files contain the following line:

cge.cli.trust-keys=true

The same behavior can be achieved by adding the --trust-keys option to any of the CGE CLI commands.

IMPORTANT: While implicitly trusting host keys for CGE is generally a safe practice, in the case where
your data set contains actual confidential data, and you are using the CGE CLI clients to update the data
set with new confidential data, you want to be certain that there is nothing other than CGE itself listening
to the contents of your updates. In that case, the host key is an important part of ensuring that there is
nothing between you and your CGE instance. This is not expected to be a common case among CGE
users, but if your use of CGE falls into this category, it is recommended not to use the mechanisms
described here.

6.2 Create a CGE Specific RSA/DSA Host Key

About this task
At some sites, site policy may dictate the use of a pass phrase with SSH keys used for logging into a system. If a
pass phrase is used when creating your SSH key, the CGE authentication mechanism will be unable to use your
SSH key(s) as its host key(s), so separate CGE specific host key(s) will need to be created. To do this, follow the
instructions listed below:

Procedure

Create the key in the .cge directory using ssh-keygen(1) instead of creating the key in the .ssh directory:

$ mkdir -p $HOME/.cge
$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/users/username/.ssh/id_rsa): /users/username/.cge/id_rsa
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /users/username/.cge/id_rsa.

Your public key has been saved in /users/username/.cge/id_rsa.pub.
The key fingerprint is:
eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host
The key's randomart image is:
+--[RSA 2048]----+
| . . |
| + + * o |
| + + B = o . |
| o . + = . . |
| . . S + . |
| |
| E o |
| . o |
| . . |
+--[MD5]----------+
$ ls -l $HOME/.cge
total 8
-rw------- 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

NOTE: While this example shows creation of keys under $HOME/.cge, it can be used to place keys
in any directory. If $HOME/.cge is not a convenient place to put the keys, follow the above procedure
to generate the keys in some other (suitably protected) directory, then use the --configDir option
to cge-launch or the $CGE_CONFIG_DIR_NAME environment variable to point to that directory. If it
is required to use CGE specific keys that are stored on HDFS, create them in a temporary directory
using this procedure, then copy them onto HDFS in the location of your choice (appropriately

Cray Graph Engine (CGE) Security Mechanisms

S3014 59

protecting them). Then use an HDFS URL as the value of $CGE_CONFIG_DIR_NAME or the
argument to the --configDir option to the cge-launch command to select that directory instead
of $HOME/.cge as the key directory.

Once this has been done, CGE will use the keys in the .cge directory instead of the ones in the .ssh
directory and there should be no further problems with pass phrases.

6.3 Grant Other Users Access to Their CGE Query Engine
The Cray Graph Engine (CGE) can protect the contents of user-owned data sets from view/modification by
unauthorized users via CGE instances that you run. Regardless of this protection, it is required to protect the raw
data in user-owned data sets using traditional Linux file protection, otherwise users who have access to their data
can start their query engine, using their data without knowledge. To ensure that only authorized users gain access
to user-owned data, it is best to set the permissions on each directory containing a data set to permit access
(read, write and execute/search) only by its owner, and then to set the permissions on the files in the directory to
permit access (read and write) only to their owners.

As the owner of a running instance of a CGE, it is possible to control the list of users to whom access is granted.
There are two modes of granting access to other users:

● Access to a single data set

● Access to any provided data set

A key first step to any of this is protecting owned data sets from being used under some other user's instance of
CGE. If a user can run her own instance of CGE using your data, then you have no further control. So, if it is
required to control access to owned data sets, make sure they are protected against access by users other than
you. By setting the permissions on the data directory for the data set to rwx------ you achieve this by
preventing other users from looking in that directory for files. If other users can be allowed to run their own
instances of CGE using user-owned data, these permissions may be set any way desired.

Assuming data sets have been protected against other users, now individual users can be granted access.
Regardless of whether you want to grant access to one or all data sets, you need the contents of each user's
public key file from that user's .ssh directory. The user can follow the steps for setting up keys shown above if she
does not have them yet. It is okay for the user to send you the public key(s) via e-mail, or any other method
(including letting you copy them from the files yourself). They need to be appended to an appropriate
authorized_keys file.

IMPORTANT: Remember that any user trying to connect with the server will need to authenticate the
server as described in Grant Basic Access to Owned Query Engines or configure the CLI to trust Host
Keys as described in Eliminating the Interactive Host Key Verification.

Ask users to do the following after granting them access:

$ cge echo --db-port=73737
The authenticity of host localhost' can't be established.
RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.
Are you sure you want to continue connecting? [Yes/No]: yes
13835 [main] WARN com.cray.cge.communications.client.ssh.LoggingBridge - Permanently added 'localhost' (RSA) to the
list of known hosts.
14110 [main] INFO com.cray.cge.sparql.cli.lightweight.commands.debug.EchoCommand - Sending echo request...
14157 [main] INFO com.cray.cge.sparql.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated
successfully

NOTE: It is important to note that a user should NEVER add another user's public key to the user-owned
$HOME/.ssh/authorized_keys file. Doing so will allow the user to login as the user who owns that
file.

Cray Graph Engine (CGE) Security Mechanisms

S3014 60

In the following example, it is assumed that /lus/scratch/username/lubm0 directory contains one of user-
owned data sets:

$ ls -ld /lus/scratch/username/lubm0
drwxr-xr-x 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubm0
$ chmod og-rwx /lus/scratch/username/lubm0
$ ls -ld /lus/scratch/username/lubm0
drwx------ 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubm0
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ chmod og-rwx /lus/scratch/username/lubm0/*
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw------- 1 username group 221 Jan 6 13:13 authorized_keys
-rwx------ 1 username group 3321856 Oct 9 11:52 dbQuads
-rwx------ 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw------- 1 username group 8192 Oct 9 11:52 string_table_chars.index

Now this data set can only be used by instances of the query engine that the user starts. Other users wanting
access will need to connect with a client and will be subject to client authentication.

6.3.1 Grant Other Users Access to One of the Owned Data Sets
To grant a user access to one of your data sets, all you need to do is put the user's public key in the
authorized_keys file in the same directory where your data set resides, as shown in the following example:
$ ls -l /lus/scratch/username/lubm0/
total 4792
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ cat my_friend_id_rsa.pub >> /lus/scratch/username/lubm0/authorized_keys
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ cat /lus/scratch/username/built_lubm0/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAxp7+CpYHL44jmuWeGXEMy+ijE/
X72f70YL8neITsR5gotXCIZh9V0G9ar8mNDlkoshN7Jp1qiRrQjYNy93hs9BBCz9kA5V9PhGC59qypEhNovYRo48lsUvTmHK0RWOVLfIZKNCkLVmbQubmEzM0FfUoY/ifNbTfrV4yGH2PNA4k= my_friend@myhost

Once you have done this, the user 'my_friend' will have access to this data set only and not to all of your data
sets. You can copy the authorized_keys file to any other data set you want to grant access to, and edit it as
needed.

6.3.2 Grant Other Users Access to All of the Owned Data Sets
If you do not need to restrict access to specific data sets to a particular user, it is simpler to grant that user access
to all of your data sets in one authorized_keys file. CGE uses a directory located at $HOME/.cge that allows
you to set up configuration files that apply to all of your data sets. Users can grant access to all of their data sets
by creating an authorized_keys file in this directory and putting authorized public keys in that file, as shown in
the following example:

% mkdir -p $HOME/.cge
$ chmod o-w,g-w $HOME/.cge
$ cat my_friend_id_rsa.pub >> $HOME/.cge/authorized_keys
$ ls -l $HOME/.cge
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
$ cat $HOME/.cge/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAxp7+CpYHL44jmuWeGXEMy+ijE/
X72f70YL8neITsR5gotXCIZh9V0G9ar8mNDlkoshN7Jp1qiRrQjYNy93hs9BBCz9kA5V9PhGC59qypEhNovYRo48lsUvTmHK0RWOVLfIZKNCkLVmbQubmEz
M0FfUoY/
ifNbTfrV4yGH2PNA4k= my_friend@myhost

While this example shows placement of the global authorized_keys file in $HOME/.cge, it can be used to
place the authorized_keys file in any directory. If $HOME/.cge is not a convenient place to put the

Cray Graph Engine (CGE) Security Mechanisms

S3014 61

authorized_keys file, follow the above procedure to place it in some other (suitably protected) directory, then
use the --configDir option to cge-launch or the $CGE_CONFIG_DIR_NAME environment variable to point to
that directory. If a global authorized_keys file needs to be stored on HDFS, create the file using this procedure,
then copy it onto HDFS in the location of choice (appropriately protecting it). Then use an HDFS URL as the value
of $CGE_CONFIG_DIR_NAME or the argument to the --configDir option to cge-launch to select that
directory instead of $HOME/.cge.

Now the user my_friend will have access to all of your data sets.

Cray Graph Engine (CGE) Security Mechanisms

S3014 62

7 Built-in Graph Functions
SPARQL is intrinsically designed to find explicit patterns in graphs, using the basic graph patterns called out in
SPARQL specifications. Often these patterns themselves create a graph that needs to be analyzed in a way that
is not easily implemented with SPARQL’s basic graph patterns. One example of this in the Lehigh University
Benchmark (LUBM) ontology would be to find students who take courses from their advisers, and then find the
shortest path through a social network between specific pairs of those students. Another example is to use
betweenness centrality to find the most “central” (i.e., connecting the most entities not otherwise connected)
entities in a graph, often a social network.

To address this other type of processing, CGE’s SPARQL implementation has been extended to incorporate
graph-function capability. This means that the input to the graph function is a graph, not just a few scalars, such
as numbers or IRIs. This capability includes both the syntax that enables calling of graph functions, and a small
number of built-in graph functions (BGFs) that are callable by any CGE user.

The built-in graph functions included in this release of CGE are:

● BadRank: Assigns a “badness” score to all vertices in the graph based on their nearness to known bad
vertices.

● Betweenness Centrality: Ranks each vertex by how frequently it is on the shortest path between vertices.

● Page Rank: Measures the relative importance of a vertex in a graph.

● Label Propagation: Detects communities in networks and assigns vertices in the graph to communities.

● S-T Connectivity: Finds the shortest path, if one exists, between two vertices in the graph.

● S-T Set Connectivity: Finds the shortest path, if one exists, between a set of vertices designated as sources
and a set of vertices designated as targets.

● Triangle Counting: Counts the total number of triangles in a graph.

● Triangle Finding: Finds all the triangles in the graph.

● Vertex Triangle Counting: Gathers statistics on the vertices based on the triangles they participate in and for
non-cyclic triangles, their position in the triangle.

7.1 Combining Graph Algorithms with SPARQL
CGE provides an infrastructure for calling graph algorithms from within SPARQL queries. A graph algorithm is
called via a CGE-specific SPARQL operator named INVOKE.

It is useful to note the following items:

1. The INVOKE operator cites the name of the graph algorithm being invoked, using an URI notation that is
similar to that used for representing built-in functions in SPARQL.

2. Scalar arguments can be input to the graph algorithm via a parenthesized argument list.

Built-in Graph Functions

S3014 63

3. The INVOKE clause is always preceded by a SPARQL CONSTRUCT clause, whose function in this context is to
build the graph that is input to the graph algorithm. CGE provides the capability of nesting a CONSTRUCT/
INVOKE clause within a SELECT/WHERE clause. This enables a subquery within a SPARQL query to select or
produce a subgraph, which is used as input to the graph algorithm.

4. The INVOKE clause is immediately followed by a PRODUCING clause, whose function is to bind the results of
the graph algorithm to specific SPARQL variables.

5. While RDF graphs may define many different types of subjects and objects, the CGE graph algorithms treat
them all as homogeneous vertices and do not distinguish between them according to type, with the exception
of functions that explicitly expect some vertices to be distinguished.

6. The CONSTRUCT-INVOKE-PRODUCING combination needs to be nested within a SELECT-WHERE clause.

7. For all CGE-specific built-in graph functions, if the query writer wants to specify a non-default value for an
argument, values for the preceding arguments also need to be specified, even if default values for those
arguments are to be used.

7.2 Invocation of a Graph Function
Four SPARQL constructs are involved while invoking graph functions. These include:

● CONSTRUCT
● INVOKE
● PRODUCING
● SELECT-WHERE

7.2.1 The CONSTRUCT Clause
There are three main differences between a standard SPARQL CONSTRUCT clause and the way it is used in CGE
in a CONSTRUCT-INVOKE-PRODUCING combination. These differences are described below:

1. As mentioned above, the CONSTRUCT-INVOKE-PRODUCING combination always appears nested within the
WHERE clause of a SELECT query.

2. While a standard SPARQL CONSTRUCT query returns an RDF graph to the user, the CONSTRUCT clause of a
CONSTRUCT-INVOKE-PRODUCING combination does not return anything to the user; instead the constructed
graph is passed to the graph algorithm as input, and then discarded after the graph algorithm completes
execution.

3. Because the output of the nested CONSTRUCT clause is eventually discarded, CGE relaxes some of the rules
for constructing RDF graphs. In particular, since some graph algorithms expect weighted edges. CGE allows
predicates to be literals inside a nested CONSTRUCT clause.

7.2.2 The INVOKE Clause
In CGE, graph functions are invoked using the CGE-specific INVOKE keyword with the CONSTRUCT query form.
The syntax of the INVOKE keyword is shown below:

INVOKE <http://cray.com/graphAlgorithm.graph_function> (arguments)

Built-in Graph Functions

S3014 64

In the above example, graph_function is the name of the graph function to be invoked and arguments is a
comma-separated list of arguments to be provided to the graph function. The types and number of arguments in
this list are dependent on the function being invoked.

Using the INVOKE Keyword
SELECT *
 WHERE {
 CONSTRUCT {
 ?s ?p ?o .
 } WHERE {
 ?s ?p ?o .
 }
 INVOKE <http://cray.com/graphAlgorithm.graph_function> (42,0.19,“string”)
 PRODUCING ?varX ?varY
}

In the above example, the INVOKE keyword is used to invoke a graph function named "graph_function” with three
scalar arguments as well as the graph produced by the CONSTRUCT clause.

7.2.3 The PRODUCING Clause
In the Cray Graph Engine (CGE), the invocation of a graph function results in an intermediate result set.
Ultimately, this is what enables graph functions to be composed with other SPARQL operators such as UNION,
ORDER BY, or FILTER, as they also output an intermediate result set. The PRODUCING keyword can be used to
bind the columns of the returned intermediate result set to SPARQL variables. The PRODUCING keyword accepts
a list of SPARQL variable names which will be bound to the columns of the intermediate result set returned by the
INVOKE keyword. Therefore, while using the PRODUCING keyword, it is required to know the following:

● How many columns will exist in the returned intermediate result set

● What set of values each column represents

The syntax of the PRODUCING keyword is shown below:

PRODUCING ?varA ?varB

In the above statement, ?varA and ?varB are the variables specified by the PRODUCING operator to be bound
to columns of the returned vectors of results.

Using the PRODUCING Clause
The community detection algorithm returns two columns of information. Information contained in these columns is
described below:

● The first column contains each of the vertex IDs of the graph that was sent to the algorithm.

● The corresponding entry in the second column contains an integer that represents the identity of the
community to which that vertex was assigned.

Thus the PRODUCING clause would specify variables that the query author chose to reflect the two vectors of data
being returned, as shown in the following query snippet:

…
INVOKE <http://cray.com/graphAlgorithm.community>()

Built-in Graph Functions

S3014 65

PRODUCING ?vertexID ?communityID
…

7.3 Inputs to the Graph Function
Three types of inputs to a graph algorithm are possible:

1. The graph itself – Each graph function expects input to come from the output of the preceding CONSTRUCT
operator.

2. Scalar inputs – Scalar values can be passed to the graph algorithm via a parenthesized list in the INVOKE
clause.

3. Vector inputs – Sets of values can be input to the graph algorithm by adding them to the graph that the
CONSTRUCT operator builds. Generally these inputs are distinguished in the input graph by a triple with a type
predicate and a special type object.

In the following example, the Bad Rank algorithm expects to receive a set of vertex IDs of vertices considered to
be spam, i.e, it could represent some other undesirable attribute. Note that the WHERE clause associated with the
CONSTRUCT clause includes a VALUES clause, that names a set of vertices that are to be considered spam by the
Bad Rank algorithm. That set of vertices is added to the CONSTRUCT clause’s graph as a set of triples with a
rdf:type predicate and the special object cray:spamNode. The scalar argument list of the INVOKE clause also
specifies that this cray:spamNode object is to be used for identifying spam vertices. Similarly, a vector input to
the graph algorithm can already be present in the database.

Using Vector Inputs for Graph Algorithm
PREFIX cray: <http://cray.com/>
SELECT ?vertex ?ranking
{
 CONSTRUCT{
 ?sub ?pred ?obj .
 ?badNode a cray:spamNode .
 }
 WHERE {
 {
 ?sub ?pred ?obj .
 } UNION {
 VALUES ?badNode {
 <http://www.Department5.University0.edu/Course34>
 <http://www.Department6.University0.edu/GraduateCourse34>
 <http://www.Department14.University0.edu/GraduateCourse31>
 <http://www.Department5.University0.edu/Course34>
 <http://www.Department10.University0.edu/GraduateCourse25>
 <http://www.Department11.University0.edu/Course11>
 <http://www.Department13.University0.edu/GraduateStudent87>
 }
 }
 }
 INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01, cray:spamNode)
 PRODUCING ?vertex ?ranking
}
ORDER BY DESC (?ranking)
LIMIT 100

Built-in Graph Functions

S3014 66

The above example shows the invocation of the Bad Rank algorithm with a set of spam vertices present in the
input graph.

7.4 Sequence of Operators
The PRODUCING operator needs to immediately follow the INVOKE operator, which in turn needs to immediately
follow the WHERE clause containing the CONSTRUCT operator. The CONSTRUCT-INVOKE-PRODUCING
combination should always appear as a nested subquery inside a SELECT clause’s associated WHERE clause.
Graph algorithms, like SELECT clauses themselves, can be nested arbitrarily deep in a query. Hence the
sequence of operators that are involved in calling a graph algorithm is:

1. CONSTRUCT-WHERE
2. INVOKE
3. PRODUCING
4. SELECT-WHERE

NOTE: As mentioned earlier, the graph that is created by the CONSTRUCT clause that is part of a
CONSTRUCT-INVOKE-PRODUCING combination is never produced as output of the query; it is thrown
away after it is used as input to the graph algorithm. If you want to see the graph that this CONSTRUCT
clause builds, you must write a separate CONSTRUCT query.

Example: Sequence of Operators
The following example illustrates the use of both spam and non-spam vertices with Bad Rank:

PREFIX cray: <http://cray.com/>
SELECT ?vertex ?ranking {
 CONSTRUCT {
 ?sub ?pred ?obj .
 } WHERE{
 {
 ?sub <http://bgf/isLinked> ?obj .
 ?sub <http://bgf/hasWeightLink> ?weightURI .
 ?obj <http://bgf/hasWeightLink> ?weightURI .
 ?weightURI <http://bgf/hasWeight> ?pred
 } UNION {
 ?sub <http://bgf/hasClassification> <http://bgf/spam> .
 BIND (<http://bgf/hasClassification> as ?pred) .
 BIND (<http://bgf/spam> as ?obj)
 } UNION {
 ?sub <http://bgf/hasClassification> <http://bgf/nonspam> .
 BIND (<http://bgf/hasClassification> as ?pred) .
 BIND (<http://bgf/nonspam> as ?obj)
 }
 }
 INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01,
 <http://bgf/spam>, <http://bgf/nonspam>, <http://bgf/hasClassification>)
 PRODUCING ?vertex ?ranking
}
ORDER BY DESC (?ranking)
LIMIT 100

Built-in Graph Functions

S3014 67

7.5 Bad Rank

URI
<http://cray.com/graphAlgorithm.badrank>

Inputs and Default Values
● Scalar inputs - None.

● Vector inputs - The Bad Rank algorithm accepts input designation of a set of vertices that are known to be
“bad”, and optionally a set of vertices that are known to be "trusted", within the main input graph. This code
can take three scalar arguments of type double.

Input Default Value

The threshold of the maximum difference between per-
vertex Bad Rank results from successive iterations of
the algorithm below, which the algorithm will terminate.

0.0001

The probability that the next step in a (random) walk will
be followed.

0.84

The probability that a random walk will take a next step
to a bad vertex.

0.01

The URI that designates the object field of a triple that
identifies a spam vertex

<http://cray.com/spamVertex>

The URI that designates the object field of a triple that
identifies a non-spam, or trusted vertex.

<http://cray.com/nonspamVertex>

The URI that designates the predicate field of a triple
that identifies either a spam or a non-spam vertex.

Defaults to the standard RDFS type predicate, <http://
www.w3.org/1999/02/22-rdf-syntax-ns#type> The
above can be abbreviated in a SPARQL query as “a”.

The indicator that specifies whether or not
normalization should be applied to results. Acceptable
values for this parameter are 0 and 1.

1. If the default value is used, the scores are all
mapped to floating point numbers between 0.0 and
1.0, with the maximum value found mapping to 1.0,
the minimum score found mapping to 0.0, and other
scores mapping between those values proportionately.
If the value is set to 0, results will not be normalized
and will be presented as Bad Rank computed them.

Outputs
Bad Rank produces a two-column intermediate result that can be thought of as a set of pairs. The first item in
each pair is the identifier of a vertex, whereas the second is the double-precision Bad Rank value of the vertex.

Built-in Graph Functions

S3014 68

7.6 Betweenness Centrality

URI and scalar arguments
<http://cray.com/graphAlgorithm.betweenness_centrality> (st_vx_ct, normalize)

In the above URI, st_vx_ct and normalize are used as examples.

Description
This is the CGE-specific implementation of the classical vertex-betweenness-centrality algorithm. This algorithm
assigns each vertex a numerical score. Take a given vertex V. In full generality, its betweenness score is defined
to be the sum (over all other pairs of vertices) of the ratio of the number of shortest paths between that pair that
go through V, over the total number of shortest paths between that pair. Thus it measures a sort of “importance” of
each vertex, in terms of the shortest paths to other vertices that pass through it.

Inputs and Default Values
● Vector inputs - None

● Scalar inputs - None

● Input Graph - The input graph to the Betweenness centrality function is expected to contain triples of the
form (vertex1, weight, vertex2) where weight is an integer. The following table describes the inputs that may
be provided to the INVOKE keyword to invoke the Betweenness Centrality function.

Parameter Description Default Value

st_vx_ct The st_vx_ct parameter can either be an integer or a
decimal.

● If the starting_vertex_ctl parameter is an integer,
it represents how many starting vertices should be used
when approximating the betweenness score of every
vertex in the graph.

● If the starting_vertex_ctl parameter is a decimal,
it should be between 0.0 and 1.0. If a decimal
argument is used, the decimal value will represent the
fraction of the graph's vertices, randomly chosen, that
will be used as starting vertices for approximating the
betweenness scores. A value of 1.0 (the default)
specifies that every vertex in the graph will be used as a
starting vertex.

1.0

normalize The normalize parameter specifies whether or not the
betweenness scores should be normalized. The acceptable
values for this parameter are 0 and 1, where 1 specifies that
betweenness scores should be normalized.

1

Built-in Graph Functions

S3014 69

Parameter Description Default Value

Normalizing the scores means to subtract from the
betweenness score of each vertex the minimum
betweenness score and then divide that partial result by the
difference between the maximum and minimum
betweenness scores found among all the vertices.
Normalized scores will be between 0.0 and 1.0.

Outputs
A call to the Betweenness Centrality function returns a two-column intermediate result set. The first column
contains the vertex identifier (URI), whereas the second column contains the centrality score of the vertex. In
other words, each row of the output result set pairs a vertex’s ID with a double-precision floating-point value
representing the centrality score for that vertex.

Example: Betweenness Centrality
PREFIX cray: <http://cray.com/>
SELECT ?vertices ?scores
WHERE {
 CONSTRUCT {
 ?sub ?pred ?obj .
 } WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.betweenness_centrality(.01,1)
 PRODUCING ?vertices ?scores
}
ORDER BY DESC(?scores)

7.7 Community Detection Label Propagation (LP)

URI
<http://cray.com/graphAlgorithm.community_detection_LP>

Description
The Label Propagation algorithm is used for detecting communities in networks and assigns vertices in the graph
to communities. Each vertex is initially assigned to its own community. At every step, each vertex looks at the
community affiliation of all its neighbors, and updates their state to the mode community affiliation. The mode
community affiliation takes into account the edge weights.

The Label Propagation algorithm is relatively inexpensive, but convergence is not guaranteed.

Built-in Graph Functions

S3014 70

Inputs and Default Values
The input graph to the Label Propagation function is expected to contain triples of the form (vertex1, weight,
vertex2), where weight is an integer.

Input Default Value

The number of steps that the algorithm executes.
Currently an early exit is not included if convergence is
detected. Therefore, the algorithm executes the number
of steps specified in the input.

20

Outputs
A call to the Label Propagation function returns an array of vertex IDs paired with an array of community IDs
These IDs can be used to identify which community each vertex was assigned to.

Example: Label Propagation
PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?vertex ?comm
WHERE{
CONSTRUCT {
 ?sub ?weight ?obj .
} WHERE {
 ?sub <http://wga/isLinked> ?obj .
 ?sub <http://wga/hasWeightLink> ?weightURI .
 ?obj <http://wga/hasWeightLink> ?weightURI .
 ?weightURI <http://wga/hasWeight> ?weight
}
INVOKE cray:graphAlgorithm.community_detection_LP(5)
PRODUCING ?vertex ?comm
}
ORDER BY ?comm

7.8 Page Rank

URI
<http://cray.com/graphAlgorithm.pagerank>

Description
Page Rank can be used to measure the relative importance of a vertex in a graph.

Inputs and Default Values
● Vector inputs - None.

● Scalar inputs - This algorithm accepts the following scalar inputs:

Built-in Graph Functions

S3014 71

○ delta - This is the convergence parameter. The default value of this parameter is 0.00001

○ dampen - This is the dampening factor. The default value of this parameter is 0.8

OutputsPage Rank produces a two-column intermediate result that can be thought of as a set of pairs. The first
item in each pair is the identifier of a vertex, whereas the second is the double-precision Page Rank value of the
vertex.

Example: Page Rank
The following example selects all of the edges from the default graph and calls S-T Set Connectivity on the
resulting graph.

PREFIX cray: <http://cray.com/>

 SELECT ?vertices ?pagerank
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 { ?sub ?pred ?obj . }
 }
 INVOKE cray:graphAlgorithm.pagerank(0.0005,0.85)
 PRODUCING ?vertices ?pagerank
 }
 ORDER BY DESC(?pagerank)

7.9 S-T (Source – Target) Connectivity

URI
<http://cray.com/graphAlgorithm.st_connectivity>

Description
The S-T Connectivity function calculates the length of the path between two vertices, if one exists.

Inputs and Default Values
● Vector inputs - None.

● Scalar inputs - The input graph to the S-T Connectivity function is expected to contain triples of the form
(vertex1, predicate, vertex2) where the value of predicate is ignored. The S-T Connectivity function requires
two scalar input arguments, which are the IRIs of the two vertices under consideration, source and target,
respectively. This is illustrated in the example below:

INVOKE <http://cray.com/graphAlgorithm.st_connectivity>
(<urn:mySourceVertex>, <urn:myTargetVertex>)

In the above example, <urn:mySourceVertex> and <urn:myTargetVertex> are the IRIs of the source
and target vertices, respectively.

Built-in Graph Functions

S3014 72

Outputs
The following example culls needed edges from the default graph and calls S-T Connectivity on the resulting
graph.

Example: S-T (Source Target) Connectivity
PREFIX cray: <http://cray.com/>

SELECT ?nHops
WHERE {
 CONSTRUCT {
 ?v1 ?p ?v2 .
 } WHERE {
 SELECT ?v1 ?v2 ?p
 WHERE {
 ?v1 <urn:hasLink> ?v2 .
 BIND(<urn:path> AS ?p)
 }
 }
 INVOKE cray:graphAlgorithm.st_connectivity(<http://ga.org/string#000/
vertex#00000001>,
 <http://ga.org/string#000/vertex#00200000>)
 PRODUCING ?nHops
}

7.10 S-T Set Connectivity

URI
<http://cray.com/graphAlgorithm.st_set_connectivity>

Inputs and Default Values
● Scalar inputs - None.

● Vector inputs - The S-T Set Connectivity function accepts input of a set of vertices designated as sources
and a set of vertices designated as targets. These are added to the constructed graph using the
<http:∕∕cray.com∕sourceVertex> and <http:∕∕cray.com∕targetVertex> URIs, as well as the
standard RDFS predicate <http:∕∕www.w3.org∕1999∕02∕22-rdf-syntax-ns#type>, which may be abbreviated as
“a” in a SPARQL query.

Subject Predicate Object

Source vertex identifier a <http:∕∕cray.com∕sourceVertex>

Target vertex identifier a <http:∕∕cray.com∕targetVertex>

Outputs
A call to the S-T Set Connectivity function returns an intermediate result set containing a single integer. The
values and meaning of this integer are described below:

Built-in Graph Functions

S3014 73

● If the integer’s value is 0, there is no path between any pair of vertices with the source vertex taken from the
source set and the target vertex taken from the target set.

● If the value is greater than 0, it represents the number of hops in the shortest path between any such pair of
vertices.

IMPORTANT: The S-T Set Connectivity function will return an error in the following cases:

1. Nonexistence of input source and/or target vertex

2. Invalid input source and/or target vertex

3. Nonexistence of input source and/or target vertex in the input edge list

Example: S-T Set Connectivity
The following example selects all of the edges from the default graph and calls S-T Set Connectivity on the
resulting graph.

PREFIX cray: <http://cray.com/>
SELECT ?distance
WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 ?srcNode a cray:sourceVertex .
 ?trgNode a cray:targetVertex .
 }
 WHERE{
 {
 ?sub ?pred ?obj .
 }
 UNION {
 VALUES ?srcNode
 {
 <http://bgf.org/c/03/i/000000>
 <http://bgf.org/c/05/i/000000>
 <http://bgf.org/c/08/i/000003>
 }
 }
 UNION {
 VALUES ?trgNode
 {
 <http://bgf.org/c/05/i/000001>
 <http://bgf.org/c/08/i/000007>
 }
 }
 }
 INVOKE cray:graphAlgorithm.st_set_connectivity()
 PRODUCING ?distance
}

Built-in Graph Functions

S3014 74

7.11 Triangle Counting

URI
<http://cray.com/graphAlgorithm.triangle_counting>

Description
Triangle Counting is used to count the total number of triangles in a graph.

Inputs and Default Values
● Vector inputs - None.

● Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be included in the count.

○ 0: Return a count of all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles

○ 1: Return a count of all the unique triangles in the graph, both cyclic and non-cyclic triangles

○ 2: Return a count of only the non-cyclic triangles

○ 3: Return a count of only the cyclic triangles (including rotations)

○ 4: Return a count of only the unique cyclic triangles

Outputs
This algorithm returns a single integer containing the number of triangles.

Example: Triangle Counting
PREFIX cray: <http://cray.com/>

 SELECT ?total_num_triangles
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.triangle_counting(1)
 PRODUCING ?total_num_triangles

7.12 Vertex Triangle Counting

URI
<http://cray.com/graphAlgorithm.vertex_triangle_counting>

Built-in Graph Functions

S3014 75

Description
The Vertex Triangle Counting algorithm is used to gather statistics on the vertices based on the triangles they
participate in and for non-cyclic triangles, their position in the triangle.

Inputs and Default Values
● Vector inputs- None.

● Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be included in the counting statistics.

○ 0: Return a count of all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles.

○ 1: Return a count of all the unique triangles in the graph, both cyclic and non-cyclic triangles

○ 2: Return a count of only the non-cyclic triangles

○ 3: Return a count of only the cyclic triangles (including rotations)

○ 4: Return a count of only the unique cyclic triangles

Outputs
Output is a four-column IRA. Each row in the IRA contains a vertex URI followed by a total count of the triangles
for which it participates as either a through_vertex, in_vertex, or out_vertex, respectively. The
PRODUCING clause should be interpreted as "vertexID","through_count", "in_count", "out_count", where
the counts refer to the number of triangles in which the vertex participates in that role.

Example: Vertex Triangle Counting
PREFIX cray: <http://cray.com/>
 SELECT ?id ?through ?in ?out
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.vertex_triangle_counting(0)
 PRODUCING ?id ?through ?in ?out
 }

7.13 Triangle Finding

URI
<http://cray.com/graphAlgorithm.triangle_finding>

Built-in Graph Functions

S3014 76

Description
The Triangle Finding algorithm is used to find all the triangles in the graph. The output can be customized to
return either all triangles, or only the cyclic or non-cyclic triangles. The number of triangles in a given region of a
graph is a good indicator of the density of that part of the graph.

Inputs and Default Values
● Vector inputs- None.

● Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be output..

○ 0 - Return all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles

○ 1: Return all the unique triangles in the graph, both cyclic and non-cyclic triangles

○ 2: Return only the non-cyclic triangles

○ 3: Return only the cyclic triangles (including rotations)

○ 4: Return only the unique cyclic triangles

Outputs
The code returns a four-column IRA . Each row in the IRA represents the three URIs of the vertices of a triangle
followed by a cyclic flag (set to 1 for cyclic, 0 for non-cyclic). The non-cyclic triangles are written out in the order of
through_vertex, in_vertex, out_vertex. The cyclic flag is considered optional in the PRODUCING clause in the case
where only the URIs of the vertices are needed.

Example: Triangle Finding
PREFIX cray: <http://cray.com/>

 SELECT ?vertexID1 ?vertexID2 ?vertexID3 ?cyc
 WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 }
 WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.triangle_finding(1)
 PRODUCING ?vertexID1 ?vertexID2 ?vertexID3 ?cyc

Built-in Graph Functions

S3014 77

8 Cray Graph Engine (CGE) Extension Functions
CGE provides a number of extension functions, including:

● Interval analytics functions. See Cray Graph Engine (CGE) Interval Analytics Functions on page 78 for more
information.

● Haversine functions. See Cray Graph Engine (CGE) Haversine Functions on page 82 for more information.

● Square root function. See Cray Graph Engine (CGE) Square Root Function on page 82 for more
information.

8.1 Cray Graph Engine (CGE) Interval Analytics Functions

Intervals
An interval is defined as the sequence between any two variables of compatible atomic types, where one defines
the start of the interval and the other defines the end of the interval. The interval is inclusive of the start and end.

Intersecting and Non-Intersecting Intervals
Two or more intervals are said to be intersecting if there is an interval in time during which all of the intervals
under consideration are present. More precisely, intersecting time intervals are those where the latest start time is
less than the earliest end time, i.e., no period has ended before the last period to begin, has started. This period is
termed as an intersection and starts at the beginning of the last interval to start and ends at the end of the first
interval to end.

On the other hand, non-intersecting time intervals are those where a period has ended before the last period to
begin has started, as illustrated in the following figure:

Cray Graph Engine (CGE) Extension Functions

S3014 78

Figure 9. Intersecting Intervals

Continuous and Non-Continuous Intervals
Two or more intervals are said to be “continuous” if there is at least one interval present during the complete span,
from the start of the first interval to start, to end of the last interval to end. In non-continuous intervals, at least one
gap (period within which no intervals are present) is present between the intervals under consideration. This is
illustrated in the following figure:

Figure 10. Continuous Period With Non-Intersecting Intervals

Cray Graph Engine (CGE) Extension Functions

S3014 79

Figure 11. Non-Continuous Period with Non-Intersecting Intervals

Using Interval Analytics Functions For Temporal Analysis
Interval functions can be used to gather fine-grained detail about intervals. For example, they can be used to:

● Determine if a time period that ends at the same time is contiguous with one that starts at the same time.

● Determine whether or not two or more time intervals intersect.

● Determine the continuity of a given time period.

Function Prefix
The prefix to use when using interval functions in queries is:

PREFIX arq: <http://jena.hpl.hp.com/ARQ/function#>

List of Interval Analytics Functions
NOTE: The names of all the CGE interval functions are case-sensitive. Interval functions work with any
type that has a < comparison, e.g., numerics and strings.

The list of CGE-specific interval analytics functions, their syntax and description is provided in the following table:

Table 12. List of CGE-specific Interval Functions

Function Description

listmin(element1, elementN) This function returns the smallest item in the comma-
separated list of items provided as arguments.

listmax(element1, elementN) This function returns the largest item in the list of
arguments.

iscontinuous(start1,end1,... startN, endN) This is a pairwise function that accepts a list of
comma-separated list of start and end times and
determines whether or not there is a gap between the
intervals under consideration.

Cray Graph Engine (CGE) Extension Functions

S3014 80

Function Description

● True when there is complete coverage from
earliest starting time to latest end time, i.e. there
are no gaps in the coverage.

● False if there is any gap in the coverage

isintersecting(start1, end1, startN,
endN)

This is a pairwise function that determines whether or
not there is a period within which all the intervals
under consideration are present. This function
returns:

● True when there is an interval where all intervals
are present.

● False if there is no interval when all intervals are
present

duration(startTime, endTime) This function uses the Unix epoch and time functions
to calculate the duration between the start and end
times, which are provided as arguments. This
function returns the xsd:dayTimeDuration between
startTime and endTime.

NOTE: This function only accepts dates
starting from July 5, 1776.

NOTE: Although the listmin(), listmax(), iscontinuous() and isintersecting() functions
support all SPARQL compatible types, the arguments provided to these function should all be of
compatible atomic types, otherwise an xsd_error will be returned. Furthermore, the duration()
function will return an xsd_error in the following cases:

● Either of the arguments are not of type xsd:dateTime

● The sum of (duration(xsdDate1, xsdDateTime2) - duration(xsdDateTime2, xsdDate1)) will not
be zero. This is because xsdDate is defined to span 24 hours (for standard days), and it is assumed
that the start time is at the beginning of the day, and the end time is at the end of the day

There are a few important items to note when using the interval analytics functions:

● The interval analytic functions do not fully support the xsd:date and xsd:time data types and may return
incorrect results; users should avoid these two types.

● Comparisons of xsd:date and xsd:dateTime within the same day may return unexpected results.
xsd:date and xsd:dateTime comparisons are supported outside of the 14 hour time zone range and the
24 hour day span of xsd:date.

● xsd:date results are now included when filtering on xsd:dateTime (outside the same day) and vice versa
(xsd:dateTime results when filter on xsd:date). If strict xsd:dateTime results (or xsd:date results) are
required, the appropriate data type filter should be added.

Cray Graph Engine (CGE) Extension Functions

S3014 81

● The duration() function supports combinations of xsd:date and xsd:dateTime. If an xsd:date result is
the start time, the duration will start at the beginning of the day. Similarly, if the xsd:date result is the end
time, the duration will end at the end of the day.

8.2 Cray Graph Engine (CGE) Haversine Functions
CGE supports the haversinemeters() and haversinemiles() functions to enable support for spatially aware
applications. These functions are based on the Haversine formula, which is an equation that calculates the great-
circle distance between two points on a sphere from the longitudes and latitudes of the two points. For more
information, visit http://en.wikipedia.org/wiki/Haversine_formula.

The syntax of CGE Haversine functions is shown below:

● afq:haversinemeters(latStart, longStart, latEnd, longEnd)
● afq:haversinemiles(latStart, longStart, latEnd, longEnd)

NOTE: The haversinemeters() and haversinemiles() functions are case sensitive.

Inputs
Both the CGE haversinemeters() and haversinemiles() functions accept the following inputs in
xsd:decimal, xsd:double and xsd:float formats:

● atStart – The starting position of the latitude (dimensions of the values in degrees)

● longStart – The starting position of the longitude (dimensions of the values in degrees)

● latEnd – The ending position of the latitude (dimensions of the values in degrees)

● longEnd – The ending position of the latitude (dimensions of the values in degrees)

Acceptable latitude values range from -90 to 90, whereas acceptable longitude values range from -180 degrees
to 180 degrees.

NOTE: Important: The functions will return an empty value if:

● Invalid position coordinates are provided

● Empty input values are provided

● Insufficient parameters are provided.

Output
The haversinemeters() function returns the distance between two points in meters, whereas the
haversinemiles() function returns the distance between two points in miles.

Function Prefix
The prefix to use when using CGE Haversine functions in queries is:

PREFIX afq: <http://jena.hpl.hp.com/ARQ/function#>

Cray Graph Engine (CGE) Extension Functions

S3014 82

http://en.wikipedia.org/wiki/Haversine_formula

8.3 Cray Graph Engine (CGE) Square Root Function
The square root function, sqrt() is used to retrieve the square root of the specified number

Syntax
The syntax of the square root function is:

sqrt(argument)

NOTE: The name of the sqrt()function is case sensitive.

Function Prefix
The prefix to use when using the sqrt()function in queries is:

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>

Table 13. CGE Square Root Function's Examples

Argument Type Example

Integer PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt("9223372036854775807"^^ <http://www.w3.org/2001/XMLSchema#integer) AS ?a) }

Decimal PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(4294967296.0) AS ?a) }

Float PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt ("3.4E38"^^xsd:float) AS ?a) }

Double PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt("1.797E308"^^xsd:double) AS ?a) }

Boolean PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(true) AS ?a) }

NOTE: Passing “true” as the Boolean argument returns 1, whereas
passing “false” as the Boolean argument returns 0.

NOTE: The sqrt() function will return an empty value if a negative number is provided as an argument.
Furthermore, the sqrt() function will return an empty value if arguments of certain types are used.
These argument types include:

● xsd:dateTime

● String

● IRI

● Arbitrary data type

You can also use derived data types as arguments to the sqrt()function, as shown in the following query:

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a{ BIND (afn:sqrt ("18446744073709551615"^^<http://www.w3.org/2001/XMLSchema#positiveInteger>) AS ?a) }

NOTE: Executing the sqrt() function when a negative derived type is used as an argument will result in
an empty value.

Cray Graph Engine (CGE) Extension Functions

S3014 83

9 Cray Graph Engine (CGE) Property Path Support
CGE does not natively support all the SPARQL 1.1 property paths features, however it does support certain types
of property paths.

NOTE: CGE’s property path support should be used with care. This support is disabled by default and
must be explicitly enabled by the user. Contact Cray Support for additional information.

● Simple Property Paths - By default, simple property paths that are equivalent to simple fixed length Basic
Graph Patterns (BGPs) are supported. This means that property paths consisting of only the sequence / and
inverse ^ operators are permitted, since these can be written out as a simple BGP using blank node
variables. For example:

SELECT * WHERE
{
?s <urn:a>/<urn:b> ?o
}

Can be rewritten as follows:

SELECT * WHERE
{
?s <urn:a> _:p0 .
_:p0 <urn:b> ?o .
}

● Complex Property Paths Emulation - Some more complex property paths can be emulated through query
rewriting, which expands the property paths into an equivalent query form.

NOTE: It is important to be aware that this support is only emulation, and may not provide complete
answers that a SPARQL engine with native property path support would produce.

The following table details the additional operators, which may be emulated and the restrictions and limitations on
that emulation.

Table 14. Additional Operators that May be Emulated

Operator Example Description Additional Notes

*
?s <urn:a>*
?o

Finds paths of zero or
more steps between two
nodes in the graph

● Path to which the * operator applied
must be either a predicate or inverse
predicate

● Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

● Paths are evaluated only up to a
maximum length (default 5) which

Cray Graph Engine (CGE) Property Path Support

S3014 84

Operator Example Description Additional Notes

may be user configured on a per-
query basis

● Expands into a UNION that looks for
paths of each length up to the
specified maximum

+
?s <urn:a>+
?o

Finds paths of one or
more steps between two
nodes in the graph

● Path to which the + operator applied
must be either a predicate or inverse
predicate

● Paths are evaluated only up to a
maximum length (default being 5)
which may be user configured on a
per-query basis

● Expands into a UNION that looks for
paths of each length up to the
specified maximum

?
?s <urn:a>?
?o

Finds paths of zero or one
steps between two nodes
in the graph

● Path to which the ? operator applied
must be either a predicate or inverse
predicate

● Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

● Expands into a UNION that looks for
paths of length zero and one

|
?s <urn:a> |
<urn:b> ?o

Finds paths between two
nodes that use any of the
alternative paths given

● Paths to which the | operator applied
may themselves be complex but only
paths that are predicates or inverse
predicates are guaranteed to expand
into a valid query

● Expands into a UNION that considers
each alternative, where the
alternative is itself a property path it
may be further expanded as
necessary

!
(
property
)

?s ! <urn:a>
?o

Find paths between two
nodes that do not pass
through a given predicate

● The negated property set operator
only applies to predicates or inverse
predicates and thus can always be
expanded

● Expands into a MINUS that considers
all paths and then eliminates the
undesirable paths

Cray Graph Engine (CGE) Property Path Support

S3014 85

Enabling Emulation
CGE also provides the option to change the maximum length of paths (for the expansion of the * and +
operators), as shown in the following example:

% cge-cli query --opt-on optPathExpand --path-expansion 3 paths.rq

The above query would run the query with property path expansion enabled and a maximum path length of 3.

NOTE: This value can be set to any desired value, however it is important to note that the higher this
value is set to, the more complex the query that will be generated. This will result in slower performance
because the database server will need to search for longer paths. Therefore, it is recommended to set the
length of paths to the minimum possible value for optimal emulation performance. It is also important to
note that setting a maximum length of zero or less will result in disabling the expansion.

Cray Graph Engine (CGE) Property Path Support

S3014 86

10 Cray Graph Engine (CGE) Quick Reference
The order in which CGE operations should be performed is:

Step 1: Set up SSH keys
If the following command allows re-logging into the login node without a password, then the SSH keys are set up
sufficiently for using CGE.

$ ssh localhost

On the other hand, if the previous command fails and there are existing SSH keys that do not use pass-phrases
or have the ssh-agent defined, then try the following:

$ cat ~/.ssh/id_*.pub >> ~/.ssh/authorized_keys

At this point, if it is possible to run the aforementioned test and to re-log in to the login node without using a
password, pass-phrase, or ssh-agent, then this step can be considered to be complete. If, on the other hand, the
aforementioned test fails, there are no SSH keys defined yet, the following commands can be used to set them
up:

CAUTION: Ensure that there are no existing SSH keys because this will overwrite any existing keys.
Also, do not specify a pass-phrase when running ssh-keygen

$ mkdir -p ~/.ssh
$ chmod 700 ~/.ssh
$ ssh-keygen
$ chmod 600 ~/.ssh/id_*
$ chmod 600 ~/.ssh/authorized_keys

If the existing SSH key(s) use pass-phrase(s) or the ssh-agent, or if a more complex SSH key configuration is
required, see Cray Graph Engine (CGE) Security Mechanisms on page 56. This section also contains information
about fine-tuning access to CGE instances.

Step 2: Start the CGE Server
The cge-launch command launches the CGE query engine and enables creating and building a database in a
single step.

The following is an example of using the cge-launch command:

$ cge-launch -o pathtoResultsDir -d path -l logfile

In the preceding example:

● -o - Specifies the path to a directory where you want the result files produced by queries to be placed.

Cray Graph Engine (CGE) Quick Reference

S3014 87

CAUTION: This path MUST be a directory.

● -d - Specifies the path to the directory containing the data set to be loaded into the server. This directory
must contain all input data files for the data set.

NOTE: This directory MUST contain at least one of the following if the data set is being built for the
first time with CGE (only one of these will actually be used):

○ dataset.nt - This file contains triples and must be named dataset.nt

○ dataset.nq - This file contains quads and must be named dataset.nq

○ graph.info - This file contains a list of pathnames or URLs to files containing triples or quads
and must be named graph.info.

● -l - Specifies a log file to capture the command output from the run. If the database server is logging to
stderr, this log file will capture that information as well. There are two special argument values for this: ':1'
and ':2’, which refer to stdout and stderr, respectively, so that the log can be directed to either of those. If
the -l option is specified, the cge-launch command runs silently, producing no output to the terminal
stdout/stderr.

For more information, see Launch the CGE Server Using the cge-launch Command on page 20 and Building a
Database on page 12.

Step 3: Execute CGE CLI Commands (Optional)
CGE CLI commands can be executed after the CGE query engine has been launched. Following is an example of
using the CGE nvp-info CLI command:

$ cge-cli nvp-info

CGE CLI features a number of commands, which are documented in the Cray Graph Engine (CGE) Command
Line Interface on page 22 section.

Step 3: Start up the CGE Front End Server to Connect with the CGE Server (Optional)
The CGE graphical user interface and SPARQL endpoints can be accessed once the database has been
launched. This can be accomplished by launching the web server that provides the user interface on a login node
of the system where CGE is running.

$ cge-cli fe --ping

The --ping option in the preceding example is used to verify that the database can be connected to immediately
upon launch and that any failure is seen immediately. Not doing so may delay and hide failures. If the ping
operation does not succeed, and it is certain that the user executing this command is the only user running CGE,
and that everything else is set up correctly, the user should go back to the first step and make sure that the SSH
keys are set up right. The system may prompt to trust the host key when the fe command is run for the first
time.The default URL to access the UI is http://<hostname>:3756/dataset, where hostname is used as an
example for the web server's name. For more information, see Launch the CGE Web Server Using the fe
Command on page 34.

Alternatively, the following command can be used to have the web server continue running in the background with
its logs redirected, even if disconnected from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

Cray Graph Engine (CGE) Quick Reference

S3014 88

Step 4: Access and Use the CGE Front End (Optional)
For more information, see Access the Cray Graph Engine (CGE) Graphical User Interface on page 43.

Shutdown the CGE Server
● Shut down the CGE server using the shutdown command, as shown in the following example:

$ cge-cli shutdown

For more information, see Shutdown the CGE Server Using the shutdown Command on page 41.

● Shut down the CGE front end if it was started.

Additional Information
Cancelling a query - To cancel a query, hit CTRL-C on the window where the CGE server was launched or
locate the CGE server instance's PID on the login node and use kill -INT <PID>. After that, re-launch CGE.

Cray Graph Engine (CGE) Quick Reference

S3014 89

11 Use the Cray Graph Engine (CGE) for a Hello World
Example

About this task
In this example, a tiny RDF triples database and query are created in such a way that it creates a sort of "Hello
World" output.

Procedure

1. Create a .nt file. This is the original, readable representation of the database

<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "World" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Home Planet" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Earth" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hello" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hi" .

2. Store the .nt file in the directory that has been selected or created for it.

IMPORTANT: This directory must contain a file named dataset.nt if it contains triples or
dataset.nq if it contains quads.

3. Select or create another directory into which the query engine should write the results and then launch the
CGE server in a terminal window.

$ cge-launch -I 1 -N 1 -d /dirContainingExample/example -o \
/dirContainingExampleOutput -l :2

For more information about the cge-launch command, and its parameters, see the cge-launch man page
or Launch the CGE Server Using the cge-launch Command on page 20.

The server will output a few pages of log messages, as it starts up and converts the database to its internal
representation. When it finishes, the system will display a message similar to the following:

$ Serving queries on nid00057 16702

4. In another terminal window, launch the CGE front end:

$ cge-cli fe

When the CGE front end has been launched, a message similar to the following will be returned:

249 [main] INFO com.cray.cge.cli.commands.sparql.ServerCommand - CGE SPARQL Protocol Server has started and is
ready to accept HTTP requests on localhost:3756

NOTE: The CGE SPARQL protocol server listens at port 3756, which is the default port ID.

Now the browser can be started.

Use the Cray Graph Engine (CGE) for a Hello World Example

S3014 90

5. Point the browser at the system the query engine is running on via (in the default case) port 3756. For
example, if the query engine is running on a system named my-machine, point the browser at: http://my-
machine:3756/dataset/. This will connect you to the CGE front end, and windows for editing queries or
updates.

Figure 12. CGE Front End

6. Execute a query against the dataset created by typing in the query and selecting the Run Query button.

Figure 13. CGE Hello World Query Example

Use the Cray Graph Engine (CGE) for a Hello World Example

S3014 91

After the query finishes executing, the output file containing the query's results will be stored in the output
directory that was specified in the cge-launch command. This can be verified by listing the contents of that
directory and reviewing the contents of the output file, as shown in the following example:

$ cd /dirContainingExampleOutput
$ ls
queryResults.34818.2015-10-05T19.33.53Z000.tsv
$ cat queryResults.34818.2015-10-05T19.33.53Z000.tsv
?greeting ?object
“Hello” “Home Planet”
“Hi” “Home Planet”
“Hello” “World”
“Hi” “World”
“Hello” “Earth”
“Hi” “Earth”

Since the Excel application can read .tsv files, results can also be viewed in Excel, as shown in the following
figure:

Figure 14. Viewing CGE Output in Excel

7. To halt the CGE server, execute:

$ cge-cli shutdown

Use the Cray Graph Engine (CGE) for a Hello World Example

S3014 92

12 CGE Java API
The CGE Java API consists of four Java JAR files and a ReadMe file:

1. cge-java-api-vx.x.x-with-dependencies.jar - Contains executable Java classes. Using the
executable Java classes, users can write their own Java code to perform CGE actions like launching the
server, querying, updating, checkpointing, etc.

2. cge-java-api-examples-vx.x.x-sources.jar - Contains sample source code. Users can build their
own Java programs referring to these examples.

3. cge-java-api-vx.x.x-javadocs.jar - Contains documentation of Java classes that the CGE API is
comprised of.

4. cge-java-examples-vx.x.x-with-dependencies.jar - Contains executable sample source code.
Samples provided with the CGE API can also be executed, as their entry points are included in the
executable sample source code

5. ReadMe_JavaAPI.txt - Contains commands and scripts documented in this guide. These commands and
scripts are suitable for copying and pasting for execution.

Where vx.x.x is the version code, the initial version being v1.0.0.

This section describes how to utilize these .jar files.

Extracting the source code
To extract the Java source code, run the following command:

$ jar -xf PATH_TO_JAR/cge-java-api-examples-v1.0.0-sources.jar

A directory structure similar to the following should appear:

./META-INF

./META-INF/MANIFEST.MF

./com

./com/cray

./com/cray/cge

./com/cray/cge/api

./com/cray/cge/api/examples

./com/cray/cge/api/examples/ExampleUtils.java

./com/cray/cge/api/examples/Checkpoint.java

./com/cray/cge/api/examples/LaunchAndShutdown.java

./com/cray/cge/api/examples/Shutdown.java

./com/cray/cge/api/examples/LaunchAndTerminateOnJvmExit.java

./com/cray/cge/api/examples/Status.java

./com/cray/cge/api/examples/ComprehensiveExample.java

./com/cray/cge/api/examples/UpdateExisting.java

./com/cray/cge/api/examples/IsRunning.java

./com/cray/cge/api/examples/StatusExisting.java

./com/cray/cge/api/examples/QueryExisting.java

CGE Java API

S3014 93

./com/cray/cge/api/examples/CheckpointExisting.java

./com/cray/cge/api/examples/Update.java

./com/cray/cge/api/examples/Query.java

./com/cray/cge/api/examples/Config.java

./com/cray/cge/api/examples/hooks

./com/cray/cge/api/examples/hooks/InheritIOHook.java

./com/cray/cge/api/examples/LaunchOnly.java

The .java files are source-code examples that users can refer to when building their own Java programs. These
are also included in the executable Java classes, so users can execute them directly if desired.

Extracting the API Class Documentation
To extract the API class documentation, run the following command:

$ $ jar -xf PATH_TO_JAR/cge-java-api-v1.0.0-javadocs.jar

A directory structure similar to the following should appear. Please note that there is an extensive directory
structure that exists under the ./com directory, but it is not displayed in the following.

./META-INF

./META-INF/MANIFEST.MF

./resources

./resources/titlebar.gif

./resources/tab.gif

./resources/titlebar_end.gif

./resources/background.gif

./com

./allclasses-frame.html

./overview-frame.html

./overview-summary.html

./package-list

./deprecated-list.html

./serialized-form.html

./index.html

./help-doc.html

./index-all.html

./allclasses-noframe.html

./constant-values.html

./stylesheet.css

./overview-tree.html

This file system is meant to be run with a web-browser.

● To view on Windows systems, right-click on overview-summary.html and then select the open with menu
option to open the file using the web-browser of interest, such as Internet Explorer or Chrome.

● To execute on Linux systems, ensure that an X-Windows server is running on the target computer, and that
the $DISPLAY environment variable is set appropriately. Then execute with the web-browser of interest, for
example using firefox help-doc.html&.

In either case, the documentation should appear for point-and-click viewing.

Using API Executables
There are several ways to utilize the executable Java classes .jar files, as illustrated by the following:

● Use Java API via Maven

CGE Java API

S3014 94

● Use Java API via Java Development Kit (JDK)

● Use Java API via pre-built main entry points

● Use Java API Comprehensive Example program

12.1 Use CGE Java API via Maven

About this task
The following procedure illustrates a use-case for using Maven to develop a Java application program to execute
the cge-launch command. This sample program will utilize the LaunchOnly.java sample file.

Procedure

1. Create an application framework.

$ mvn archetype:generate -DgroupId=com.mycompany.launchonly \
-DartifactId=my-launchonly -DarchetypeArtifactId=maven-archetype-quickstart \
-DinteractiveMode=false

This is a standard Maven command to make a framework for developing a Java application; in this case, a
framework is created in the new my-launchonly area.

2. Switch to the my-launchonly directory.

$ cd my-launchonly

3. Install executable classes as a local jar file

$ mvn install:install-file \
-Dfile=./cge-java-examples-v1.0.0-with-dependencies.jar \
-DgroupId=com.cray.cge.api \
-DartifactId=cge-user-apis \
-Dversion=1.0.0 \
-Dpackaging=jar

This is a standard Maven command for creating a directory structure for an executable .jar file.

4. Copy the LaunchOnly.java file into this area of the new mycompany directory.

$ cp .../LaunchOnly.java \
./src/main/java/com/mycompany/launchonly/LaunchOnly.java

5. Develop a pom.xml file for the application or overwrite the default pom.xml file. There can be many
variations of this file, the following is shown as a suggestion for the contents of this file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.cray.cge.api.examples</groupId>

CGE Java API

S3014 95

 <artifactId>my-launchonly</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>my-launchonly</name>
 <url>http://maven.apache.org</url>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>attached</goal>
 </goals>
 <phase>package</phase>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>com.cray.cge.api.examples.LaunchOnly</mainClass>
 </manifest>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.cray.cge.api</groupId>
 <artifactId>cge-user-apis</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>
</project>

6. Build the package.

Users can first delete all files in their ~/.m2 directory, as Maven will download what it needs to build the
package into this area.

$ mvn clean package

7. Execute the code using one of the following:

● $ java -jar ./target/my-launchonly-1.0.0-jar-with-dependencies.jar /path-to-dataset ./

● $ java -cp ./target/my-launchonly-1.0.0-jar-with-dependencies.jar
com.cray.cge.api.examples.LaunchOnly /path-to-dataset ./

CGE Java API

S3014 96

● $ export CLASSPATH=./target/my-launchonly-1.0.0-jar-with-dependencies.jar;
java com.cray.cge.api.examples.LaunchOnly /path-to-dataset ./

Note the following items:

● The ./ argument specifies where the program will place the result files.

● /path-to-dataset is the directory path to the user;s dataset area,
e.g. /lus/scratch/ripple/mkdb/sp2b/25k

● Outputs are the cge_launcher.log and cge_runtime.log files.

Outputs to stdout from execution should be similar to the following:

Launcher arguments are:
cge-launch -d /path-to-dataset -o my-launchonly/. -l cge_runtime.log -p
12345 --nodeCount 1 --imagesPerNode 1 --sessionTimeout 900
Starting CGE...
CGE not yet ready (1 seconds elapsed)
CGE not yet ready (2 seconds elapsed)
CGE not yet ready (3 seconds elapsed)
CGE ready in 7 seconds
CGE is running

8. Shut down the CGE CLI

$ cge-cli shutdown --db-port 22334

12.2 Use CGE API via Java Development Kit (JDK)

About this task
This procedure illustrates a use-case where programmers utilize the JDK directly for Java program development.

Procedure

1. Create a program

$ mkdir jdk_is_running
$ cd jdk_is_running

This sample program will determine if the CGE server is running.

2. Create a directory to put the .jar files into and move to that directory

$ mkdir cray_jars

3. Copy the cge-java-examples-v1.0.0-with-dependencies.jar file to this area.

$ cp /opt/cray/cge/default/lib/java/cge-java-examples-v1.0.0-with-
dependencies.jar cray_jars

4. Create a file called Manifest.txt

CGE Java API

S3014 97

$ touch Manifest.txt

5. Edit the Manifest.txt file to contain the following lines.

Main-Class: com.cray.cge.api.examples.IsRunning
Class-Path: cray_jars/cge-java-examples-v1.0.0-with-dependencies.jar
<blank_line>

IMPORTANT: The file containing the above lines must have a blank line (press Enter/Return to
create a blank line) the end of the file. in the preceding example, <blank_line> is used to indicate
a line with no characters.

6. Make a directory to locate the source file

$ mkdir -p com/cray/cge/api/examples
$ cp IsRunning.java com/cray/cge/api/examples

7. Copy the IsRunning.java sample code into the new directory.

NOTE: The directory name must match the package name in the source code.

See 'Extracting the Source Code' for the location of IsRunning.java.

8. Build the package

$ javac -classpath cray_jars/cge-java-examples-v1.0.0-with-dependencies.jar \
com/cray/cge/api/examples/IsRunning.java

9. Run via the Java interpreter

$ java -cp cray_jars/cge-java-examples-v1.0.0-with-dependencies.jar: \ com/
cray/cge/api/examples/IsRunning

The output from execution will indicate that either CGE is running or CGE is not running .

10. Build executable JAR file

$ jar cvfm0 out.jar Manifest.txt com/cray/cge/api/examples/IsRunning.class

11. Run the executable JAR file

$ java -jar out.jar

Output from execution should be either CGE is running or CGE is not running.

12.3 Use CGE API via Pre-built Main Entry Points

About this task
This procedure illustrates a use-case where developers can run the main entry points in the
cge-java-examples-v1.0.0-with-dependencies.jar file directly. These correspond with the example
Java files containing the source line public static void main(String[] args), of which there are

CGE Java API

S3014 98

several, for example: ./com/cray/cge/api/examples/Shutdown.java. See Extracting the source code on
page 93 for the location of Shutdown.java.

From any directory that contains cge-java-examples-v1.0.0-with-dependencies.jar. The following
examples show actual paths to datasets and repositories.

Procedure

1. Launch the CGE server

$ java -cp cge-java-examples-v1.0.0-with-dependencies.jar \
com.cray.cge.api.examples.LaunchOnly /lus/scratch/ripple/mkdb/sp2b/25k ./

NOTE: The ./ argument specifies where the program will place the result files. In this example,
the /lus/scratch..." area contains a typical sp2b test dataset.

Output includes the files cge_launcher.log and cge_runtime.log. Outputs that appear on stdout
should be similar to the following:

Launcher arguments are:
cge-launch -d /lus/scratch/ripple/mkdb/sp2b/25k \
-o /ufs/home/users/$USER/my_repository/. \
-l /ufs/home/users/$USER/my_repository/cge_runtime.log \
-p 22334 --nodeCount 1 --imagesPerNode 1 --sessionTimeout 900
Starting CGE...
CGE not yet ready (1 seconds elapsed)
CGE not yet ready (2 seconds elapsed)
CGE ready in 5 seconds
CGE is running

2. Check if the CGE server is running

$ java -cp cge-java-examples-v1.0.0-with-dependencies.jar
com.cray.cge.api.examples.IsRunning

The following will be displayed on stdout:

CGE is running

3. Execute a query

$ $ java -cp cge-java-examples-v1.0.0-with-dependencies.jar
 com.cray.cge.api.examples.QueryExisting \
/home/users/$USER/cge-benchmark/cge_queries/sp2b/2.txt > query_results.out >
SELEC(COUNT(?s) as ?CNT) {?s ?p ?o}

In the preceding example, 2.txt is a pre-defined query meant for the sp2b-25k dataset. It is also possible to
create a 2.txt file with SELECT(COUNT(?s) as ?CNT) {?s ?p ?o} as the only line.

The query results will by default go to stdout and a .tsv file. In this example, the query results are extensive
so we redirect the default output to a file named query_results.out. The generated file
queryResults.2016-05-12T16.07.46Z000.12512.tsv is also shown:

$ ls -l query_results.out
-rw-r--r-- 1root 292653May 1211:07query_results.out
$ ls -l queryResults.2016-05-12T16.07.46Z000.12512.tsv
-rw-r--r-- 1root 299154May 1211:07queryResults.2016-05-12T16.07.46Z000.12512.tsv

CGE Java API

S3014 99

4. Update

$ java -cp cge-java-examples-v1.0.0-with-dependencies.jar \
com.cray.cge.api.examples.UpdateExisting > updates.log

This update to the dataset is the simple default INSERT DATA {<urn:s> <urn:p> <urn:o>}, found in
the Update.java sample file. See Extracting the source code on page 93 for the location of Update.java.
An argument such as .examples.UpdateExisting ./path-to-file can be used to specify a more
complex update command contained in a file.

The update output will by default go to stdout and consists of CGE log entries. In this example, the results are
redirected to a file updates.log:

$ ls -l updates.log
-rw-r--r-- 1 root 8056 May 12 11:09 updates.log

5. Create a checkpoint

$ java -cp cge-java-examples-v1.0.0-with-dependencies.jar \
com.cray.cge.api.examples.CheckpointExisting chkpt.sp2b.25k

This will checkpoint the dataset to a subdirectory in the dataset area, which in this example is
named ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016. Files in this directory
consist of:

● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/string_table_chars.index
● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/export_dataset.nq
● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/string_table_chars
● ./checkpoints/chkpt.sp2b.25k_Thu_May_12_12:00:10_CDT_2016/dbQuads

The following will be displayed on stdout:

Checkpoint successful - see directory ./checkpoints

6. Shutdown the CGE server

$ java -cp cge-java-examples-v1.0.0-with-dependencies.jar \
com.cray.cge.api.examples.Shutdown > shutdown.log

The shutdown output will by default go to stdout and consists of CGE log entries. In this example, the results
are redirected to a file shutdown.log.

$ ls -l shutdown.log
-rw-r--r-- 1 root 663 May 12 12:05 shutdown.log

12.4 Use Case: A Comprehensive Java Program

About this task
This procedure illustrates a use-case where Java programmers create a Java program that will execute several
features of the Java API, namely:

1. Launching the CGE server

CGE Java API

S3014 100

2. Running query and update commands

3. Checkpointing the dataset

4. Shutting down the CGE server.

This case utilizes the cge-java-api-v1.0.0-with-dependencies.jar file.

Procedure

1. Create an application framework:

mvn archetype:generate \
-DgroupId=com.myapp.runcge \
-DartifactId=my-run-cge \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DinteractiveMode=false

This is a standard Maven command to make a framework for developing a java application; in this case, a
framework is created in the new my-run-cge directory area.

2. Install executable classes as a local JAR file

mvn install:install-file \
-Dfile=/opt/cray/cge/default/lib/java/cge-java-api-v1.0.0-with-dependencies.jar
\
-DgroupId=com.cray.cge.api \
-DartifactId=cge-user-apis \
-Dversion=1.0.0 \
-Dpackaging=jar

This is a standard Maven command to install an executable .jar file. A directory structure similar to the
following should appear in the user's .m2/repository directory:

./com

./com/cray

./com/cray/cge

./com/cray/cge/api

./com/cray/cge/api/cge-user-apis

./com/cray/cge/api/cge-user-apis/maven-metadata-local.xml

./com/cray/cge/api/cge-user-apis/1.0.0

./com/cray/cge/api/cge-user-apis/1.0.0/cge-user-apis-1.0.0.pom

./com/cray/cge/api/cge-user-apis/1.0.0/cge-user-apis-1.0.0.jar

3. Switch to my-run-cge directory and then copy the file to ./src/main/java/com/myapp/runcge.

$ cd my-run-cge
$ cp ../com/cray/cge/api/examples/ComprehensiveExample.java \
./src/main/java/com/myapp/runcge

4. Write the Java source code. Following is the source code for the proposed Java program used in this
example. This can be copied into the ./src/main/java/com/myapp/runcge framework area:

package com.myapp.runcge;

// for standard java processing
import java.io.File;
import java.io.IOException;

CGE Java API

S3014 101

import java.util.Collections;
import java.util.concurrent.TimeUnit;
import java.util.Date;
import org.apache.commons.lang3.StringUtils;

// for prepare cge launcher
import com.cray.cge.api.CgeConnection;
import com.cray.cge.api.CgeLauncher;
import com.cray.cge.api.builders.CgeConnectionBuilder;
import com.cray.cge.api.builders.CgeLauncherBuilder;
import com.cray.cge.api.builders.JobOptionsBuilder;
import com.cray.cge.communications.messaging.exceptions.CommunicationsException;

// for query execution
import org.apache.jena.atlas.io.IO;
import com.hp.hpl.jena.query.QueryExecution;
import com.hp.hpl.jena.query.ResultSet;
import com.hp.hpl.jena.query.ResultSetFormatter;
import com.hp.hpl.jena.sparql.resultset.ResultsFormat;
import com.cray.cge.sparql.engine.results.ResultsMetadata;

// for update execution
import com.hp.hpl.jena.update.UpdateProcessor;

// for log4j initialization
import org.apache.log4j.Level;

/**
 * Example that demonstrates launching CGE, run query, update, checkpoint and
shutdown.
 */
public class ComprehensiveExample
{
 /**
 * Default sparql commands run by this example
 */
 public static final String DEFAULT_QUERY = "SELECT ?type (COUNT(?s) AS ?
usages) WHERE { ?s a ?type } GROUP BY ?type";
 public static final String DEFAULT_UPDATE = "INSERT DATA { <urn:s> <urn:p>
<urn:o> }";

 // default runtime values the user can override with command line args.
 public static String dataset_area = "./";
 public static String output_area = "./";
 public static String checkpoint_area = "./";
 public static int NODE_COUNT=1;
 public static int IMAGE_COUNT=1;
 public static String query = DEFAULT_QUERY;
 public static String update = DEFAULT_UPDATE;
 public static String query_filename = null;
 public static String update_filename = null;
 public static File queryFile=null;
 public static File updateFile=null;
 public static int RUNTIME_TIMEOUT = 10; // minutes
 public static int STARTUP_TIMEOUT = 15; // seconds
 public static int CGE_CONNECTION_TIMEOUT = 3; // seconds
 public static int SERVER_PORT = 56789; // valid port number range: 1-65535
(1-1023 may require superuser privileges)

 private static void showUsage()
 {

CGE Java API

S3014 102

 System.out.println("\nExercises CGE by launching the server, run query,
update, checkpoint, and shutdown");
 System.out.println("Usage:");
 System.out.println(" -c CGE server-connect timeout (seconds)
(default: 3)");
 System.out.println(" -d Directory containing dataset
(default: ./)");
 System.out.println(" -k Checkpoint dataset directory
(default: ./)");
 System.out.println(" -n Number of nodes to run CGE on (default:
1)");
 System.out.println(" -i Number of images to run CGE on (default:
1)");
 System.out.println(" -o Outputs directory (created if does not
exist) (default: ./)");
 System.out.println(" -p CGE server port (default: " + SERVER_PORT
+ ") range: 1024-65535 (1-1023 as su)");
 System.out.println(" -q File with sparql query (default: '" +
DEFAULT_QUERY + "')");
 System.out.println(" -r Runtime timeout (minutes) (default: 10)");
 System.out.println(" -s Startup timeout (seconds) (default: 15)");
 System.out.println(" -u File with sparql update (default: '" +
DEFAULT_UPDATE + "')");
 System.out.println("\n");
 }

 /**
 * Expects a next argument, prints an error and exists if none present
 * @param i Current Argument Index
 * @param argv Arguments
 * @param arg Current Argument for which we expect a value as the next
argument
 */
 private static void expectNextArg(int i, String[] argv, String arg)
 {
 if (i >= argv.length - 1)
 {
 System.err.println("Unexpected end of arguments, expected a value to
be specified after the " + arg + " option");
 System.exit(1);
 }
 }

 /**
 * Parses Arguments
 * @param argv Arguments
 */
 private static void parseArgs(String[] argv)
 {
 for (int i = 0; i < argv.length; i++)
 {
 try
 {
 String arg = argv[i];
 if (arg.equals("-h"))
 {
 // Show Usage Summary and exit
 showUsage();
 System.exit(1);
 }
 // we have one or more name-value-pair ("NVP") args

CGE Java API

S3014 103

 // (e.g., "-n 4").
 expectNextArg(i, argv, arg); // exits if "value" of the NVP is
absent
 if (arg.equals("-d")) {
 dataset_area = argv[++i];
 } else if (arg.equals("-o")) {
 output_area = argv[++i];
 } else if (arg.equals("-k")) {
 checkpoint_area = argv[++i];
 } else if (arg.equals("-n")) {
 NODE_COUNT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-p")) {
 SERVER_PORT = Integer.parseInt(argv[++i]);
 if ((SERVER_PORT > 65535) || (SERVER_PORT < 1)) {
 System.out.println("Error: arg '-p server port " +
SERVER_PORT + "' value out of range");
 System.exit(1);
 } else if (SERVER_PORT < 1024) {
 System.out.println("Notice: arg '-p server port " +
SERVER_PORT + "' may require su privileges");
 }
 } else if (arg.equals("-c")) {
 CGE_CONNECTION_TIMEOUT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-r")) {
 RUNTIME_TIMEOUT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-i")) {
 IMAGE_COUNT = Integer.parseInt(argv[++i]);
 } else if (arg.equals("-q")) {
 query_filename = argv[++i];
 queryFile = new File(query_filename);
 if (!queryFile.isFile()) {
 System.out.println("Problem with " + query_filename + " -
does not exist or not a file");
 System.exit(1);
 }
 } else if (arg.equals("-u")) {
 update_filename = argv[++i];
 updateFile = new File(update_filename);
 if (!updateFile.isFile()) {
 System.out.println("Problem with " + update_filename + " -
does not exist or not a file");
 System.exit(1);
 }
 } else {
 System.err.println("Illegal Option " + arg);
 showUsage();
 System.exit(1);
 }
 }
 catch (NumberFormatException numEx)
 {
 //Occurs when a numeric parameter is expected but not received
 System.err.println("Illegal value '" + argv[i] + "' encountered
after option " + argv[i-1] + " when an integer value was expected");
 System.exit(1);
 }
 }
 }

 // main entry point

CGE Java API

S3014 104

 public static void main(String[] args) throws IOException,
CommunicationsException, InterruptedException {

 // suppress "log4j WARN" messages
 org.apache.log4j.Logger.getRootLogger().setLevel(org.apache.log4j.Level.OFF);

 parseArgs(args);

 String DB_LOG = "cge_runtime.log";
 String LAUNCHER_LOG = "cge_launcher.log";

 // show the runtime selections
 System.out.println("CgeLauncherBuilder - start ... ");
 System.out.println("... dataset " + dataset_area);
 System.out.println("... output area " + output_area);
 System.out.println("... checkpoint area " + checkpoint_area);
 System.out.println("... query file " + query_filename);
 System.out.println("... update file " + update_filename);
 System.out.println("... node count " + NODE_COUNT);
 System.out.println("... image count " + IMAGE_COUNT);
 System.out.println("... server port " + SERVER_PORT);
 System.out.println("... run timeout " + RUNTIME_TIMEOUT);
 System.out.println("... start timeout " + STARTUP_TIMEOUT);
 System.out.println("... connect timeout " + CGE_CONNECTION_TIMEOUT);

 // Prepare the launcher
 CgeLauncher launcher = new CgeLauncherBuilder()
 .forExistingDatabase(dataset_area)
 .usingOutputDirectory(output_area)
 .usingDatabaseLogFile(DB_LOG)
 .usingLauncherLogFile(LAUNCHER_LOG)
 .onPort(SERVER_PORT)
 .withJobOptions(new JobOptionsBuilder()
 .withNodes(NODE_COUNT)
 .withImagesPerNode(IMAGE_COUNT)
 .withMaximumRuntime(RUNTIME_TIMEOU
T, TimeUnit.MINUTES)
 .build())
 .build();

 System.out.println("CgeConnectionBuilder - start ...");

 CgeConnection cge = new CgeConnectionBuilder()
 .usingLauncher(launcher)
 .withConnectionTimeout(CGE_CONNECTION_TIMEOUT,
TimeUnit.SECONDS)
 .onHost("localhost")
 .onPort(SERVER_PORT)
 .build();

 System.out.println("CgeConnectionBuilder - done!");

 // Start CGE
 startCge(cge, STARTUP_TIMEOUT, false);
 if (cge.isRunning()) {
 System.out.println("CGE is running");
 } else {
 System.err.println("CGE failed to start");
 }

CGE Java API

S3014 105

 // run query
 if (cge.isRunning()) {
 System.out.println("start query... ");
 if (queryFile != null) {
 query = IO.readWholeFileAsUTF8(queryFile.getAbsolutePath());
 }
 System.out.println("running query:\n\n" + query + "\n");

 ResultsMetadata results = cge.querySummary(query);
 if (results.wasSuccessful()) {
 System.out.println("query complete - see results in " +
results.getLocation());
 } else {
 System.out.println("Error: query failed with: " +
results.getError());
 }
 } else {
 System.err.println("CGE appears to not be running");
 }

 // run update
 if (cge.isRunning()) {
 System.out.println("start update... ");
 if (updateFile != null) {
 update = IO.readWholeFileAsUTF8(updateFile.getAbsolutePath());
 }
 System.out.println("running update:\n\n" + update + "\n");
 // Updates are evaluated via the Apache Jena ARQ UpdateProcessor API
 UpdateProcessor up = cge.update(update);
 up.execute();
 System.out.println("update complete - see " + DB_LOG + " for log
entries.");
 } else {
 System.err.println("CGE does not appear to be running");
 }

 // run checkpoint
 if (cge.isRunning()) {
 System.out.println("start checkpoint... ");
 // Checkpoint the database currently in use by cge-server.
 Date curr_date = new Date();
 String clean_date = curr_date.toString();
 File cpDir = new File(checkpoint_area, "checkpoint" + File.separator +
dataset_area.replace('/','_') + "_" + clean_date.replace(' ', '_'));
 cge.checkpoint(cpDir, true);
 System.out.println("Checkpoint successful - see directory " +
checkpoint_area + "/checkpoint");
 } else {
 System.err.println("CGE failed to start");
 }

 // Shutdown
 if (cge.isRunning()) {
 System.out.println("start shutdown... ");
 cge.stop();
 cge.getProcess().waitFor();
 System.out.println("...shutdown complete");

CGE Java API

S3014 106

 }

 System.out.println("exiting...");
 System.exit(0);
 }

 /**
 * Starts the CGE instance represented by the given connection
 *
 * @param cge
 * CGE connection
 * @param maxWaitSeconds
 * Maximum number of seconds to wait for start up
 * @param returnOnInterrupt
 * Whether to return if interrupted while waiting
 * @throws IOException
 * Thrown if there is a problem starting CGE
 */
 public static void startCge(CgeConnection cge, int maxWaitSeconds, boolean
returnOnInterrupt) throws IOException {

 System.out.println("Starting CGE...");
 cge.start();

 long startTime = System.currentTimeMillis();
 while (TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() -
startTime) < maxWaitSeconds)
 {
 try
 {
 Thread.sleep(1000);
 }
 catch (InterruptedException e)
 {
 // Ignore or return as appropriate
 if (returnOnInterrupt)
 {
 System.out.println(String.format("Interrupted while waiting for
CGE to ready (%d seconds elapsed)",

TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - startTime)));
 return;
 }
 }
 if (cge.isRunning())
 {
 System.out.println(String.format("CGE ready in %d seconds",

TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - startTime)));
 return;
 }
 System.out.println(String.format("CGE not yet ready (%d seconds
elapsed)",

TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - startTime)));
 }
 }
}

CGE Java API

S3014 107

5. Use the following pom.xml file, which is developed for building application code:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.myapp.runcge</groupId>
 <artifactId>my-run-cge</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>my-run-cge</name>
 <url>http://maven.apache.org</url>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <goals>
 <goal>attached</goal>
 </goals>
 <phase>package</phase>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>com.myapp.runcge.ComprehensiveExample</mainClass>
 </manifest>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.cray.cge.api</groupId>
 <artifactId>cge-user-apis</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>
</project>

6. Build

$ mvn clean package

CGE Java API

S3014 108

Users can first delete all files in their ~/.m2 directory, as Maven will download what it needs to build the
package into this area.

7. Execute the help command. This will show the help menu for the application, defining the optional runtime
arguments (note that all have default values):

system:~/comprehensive_test/my-run-cge> java -jar target/my-run-cge-1.0.0-jar-
with-dependencies.jar -h
 Exercises CGE by launching the server, run query, update, checkpoint, and
shutdown
Usage:
 -c CGE server-connect timeout (seconds) (default: 3)
 -d Directory containing dataset (default: ./)
 -k Checkpoint dataset directory (default: ./)
 -n Number of nodes to run CGE on (default: 1)
 -i Number of images to run CGE on (default: 1)
 -o Outputs directory (created if does not exist) (default: ./)
 -p CGE server port (default: 56789) range: 1024-65535 (1-1023 as su)
 -q File with sparql query (default: 'SELECT ?type (COUNT(?s) AS ?
usages) WHERE { ?s a ?type } GROUP BY ?type')
 -r Runtime timeout (minutes) (default: 10)
 -s Startup timeout (seconds) (default: 15)
 -u File with sparql update (default: 'INSERT DATA { <urn:s> <urn:p>
<urn:o> }')

8. Execute. The following is a sample execution command and resulting output:

system:~/comprehensive_test/my-run-cge> java -jar target/my-run-cge-1.0.0-jar-
with-dependencies.jar -d \
/lus/scratch/ripple/mkdb/sp2b/25k -p 12345 -r 2 -i 4 -n 3 -k /lus/scratch/
temp -q sp2b_query_9.txt
CgeLauncherBuilder - start ...
... dataset /lus/scratch/ripple/mkdb/sp2b/25k
... output area ./
... checkpoint area /lus/scratch/temp
... query file sp2b_query_9.txt
... update file null
... node count 3
... image count 4
... server port 12345
... run timeout 2
... start timeout 15
... connect timeout 3
CgeConnectionBuilder - start ...
CgeConnectionBuilder - done!
Starting CGE...
CGE not yet ready (1 seconds elapsed)
CGE not yet ready (2 seconds elapsed)
CGE not yet ready (3 seconds elapsed)
CGE ready in 7 seconds
CGE is running
start query...
running query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?predicate
WHERE {
 {

CGE Java API

S3014 109

 ?person rdf:type foaf:Person .
 ?subject ?predicate ?person
 } UNION {
 ?person rdf:type foaf:Person .
 ?person ?predicate ?object
 }
}

query complete - see results in file: /lus/scratch/comprehensive_test/my-run-
cge/queryResults.<YEAR-DAY-TIME>.tsv
start update...
running update:

INSERT DATA { <urn:s> <urn:p> <urn:o> }

update complete - see cge_runtime.log for log entries.
start checkpoint...
Checkpoint successful - see directory /lus/scratch/temp/checkpoint
start shutdown...
...shutdown complete
exiting...

The dataset being referenced in this example is sp2b-25k, and resides in
the /lus/scratch/ripple/mkdb/sp2b/25k directory. Three nodes and four images were specified for
the CGE server to execute on. Two minutes were allowed for the execution, 15 seconds for the startup, and
three seconds to connect to the server, which should have been started at port 12345. The CGE server began
executing within seven seconds of the initial command. The query being run was in the local file
sp2b_query_9.txt, the content of which is shown following the "running query" banner. The output area for
the query results was the local directory ./. An update command file is not specified and so the default was
used. The checkpointed dataset went into the /lus/scratch/temp/checkpoint directory under a sub-
directory that in this case was named
_lus_scratch_ripple_mkdb_sp2b_25k_DAY_MONTH_DATE_TIME_ZONE_YEAR. The shutdown would
have removed all processes started by the Java execution, as could be verified by running ps aux |grep
$USER from a command line after the "exiting..." message appeared.

12.5 Limitations of CGE Java API

Network access requirements
Connecting to the database requires network access from the machine running the API to the node where the
database is running. If there is no such access, no operations can be carried out.

Launching the database
Launching a database relies upon being able to use the cge-launch command, this imposes two key limitations:

1. The command must be visible on the user's $PATH or the $PATH of the execution environment in order to
launch a database, where $PATH refers to the $PATH environment variable.

2. Launching a database can only be carried out on the system i.e., if a user is running code that uses the API
on a remote system, the user will not be able to launch databases.

CGE Java API

S3014 110

Accessing query results
When executing queries, the database writes the results to the configured file system. In order to retrieve those
results from the API, access is required to the same file system and sufficient privileges are required to read those
result files.

If queries are being executed on a machine without access to the configured file system, the user will only be able
to access meta data about the results, not the results themselves.

Log capture
The log capture functionality of the API relies upon access to the database log file. If that file is not known or not
accessible (for example if the user is running on a remote machine), it will not be possible to retrieve log entries.

Note that the API will inject a unique identifier into the logs for each operation carried out via the API. Therefore it
is possible to extract the log entries at a later date because the API will still be able to indicate the unique
identifier used, which can be stored for later reference.

CGE Java API

S3014 111

13 Logging and Troubleshooting
CGE produces a text log, which is a trace of program execution during query or update processing. Users can
view the log with a text editor (such as vi), or typically the Linux less command. The log can be searched using
the grep command for text messages of interest.

INFO messages will be deposited into the log during normal operation. CGE can also generate ERROR and WARN
messages. All of these messages can yield information about activity that takes place during command
execution.

System error message can be present in the log under conditions where CGE exits or improperly shuts down.

When queries or updates are executed, INFO messages with “now starting query #” are written to the log.
For example:
2015-Feb-10 19:34:26.513 CST INFO [][7720] 0x43 parser/parseAndBuildSM.cpp@374 allocQueryGlobals [] [QRY] <OT> now starting query # 1

Many other INFO messages will also be deposited to the log during normal operation. For example, long
processing times can be seen in the log from one INFO message to the next:
2015-Feb-13 14:44:45.500 CST INFO [][9448] 0xb utils/malloc/cqe_malloc.cpp@901 LogRequest [] [QRY |MEM] image 0 : request by "file: parser/qengine/database.cpp,
func: readFromDisk line: 989" of 69.849 MiB (0x45d9688) was filled. (0x10005200c80)
2015-Feb-13 14:49:31.099 CST INFO [][9448] 0xc parser/qengine/database.cpp@1141 readFromDisk [] [QRY |STRT] time to read in db of size 139.698 GiB (0x22ecb28000):
285.679279

When large datasets are used, the INFO message for the total start up time can be long, as shown in the
following example:
2014-Dec-18 14:40:37.428 CST INFO [][25977] 0x5b parser/dbServer.cpp@1259 main [] [QRY |STRT|PERF] Total startup time: 1434.489315 seconds

The following are examples of ERROR messages that CGE can produce when query or update processing has
failed:

1. No such file or directory
2. No space left on device
3. Exiting because malloc of
4. Lookup failure for HURI
5. Invalid graph algorithm name
6. Exiting with status
7. Bad entry
8. Short read
9. Assertion
10. Realloc of
11. Error detected in Dispatcher

It is recommend to search the log for the text: "ERROR" and contact Cray Support if problems are encountered in
query or update processing.

The following are samples of WARN messages that can be produced. WARN messages are subjective in preceding
errors in processing:

Logging and Troubleshooting

S3014 112

1. huri was not found
2. directory not specified
3. not found in IRA
4. No valid quads in database
5. Invalid object for quad
6. Number of warnings found
7. Unsupported datatype
8. not in the dictionary
9. IRA huris not allocated

Search the log for WARN messages and contact Cray Support if problems in query or update processing are
suspected.

The following are examples of system error messages that CGE can produce when query or update processing
has failed. Search the log for the last INFO messages and contact Cray Support if any of these follow:

1. DUE TO TIME LIMIT
2. terminate called without an active exception
3. srun: error
4. Segmentation fault
5. Bus error
6. free invalid pointer
7. Out of memory
8. Unable to terminate gracefully
9. Floating point exception
10. Aborted
11. Killed
12. Unable to allocate resources
13. Exited with exit code
14. Requested nodes are busy
15. transaction completed with an error state
16. LIBDMAPP ERROR
17. IRI Resolution Error
18. rpn not found for
19. Trapped with SIGINT

13.1 Troubleshooting Common Cray Graph Engine (CGE) Issues
The most common errors that are likely to be encountered while using CGE involve failure to connect to a
database server successfully. There are a variety of different errors that can occur, depending on exactly what

Logging and Troubleshooting

S3014 113

goes wrong. Common error messages that are likely to be encountered along with troubleshooting techniques are
documented in the following table.

Table 15. CGE Error Messages and Troubleshooting Information

Error Message Description Resolution

Unable to establish a connection
to the database server at
host:port as it does not appear
to be running

The CLI tried to connect to a
database server running on
the given host and port
combination but was unable
to establish a connection. This
typically means one of two
things:

1. There is no database
server running on that
host and port

2. Firewall rules are
preventing access to that
host and port

● Verify that you have passed
the correct host and port to the
CLI

● Verify that there is a database
server running on that host
and port

● Verify that there are no firewall
rules that are preventing
access to the host and port.
Contact a system
administrator for additional
information.

Unable to authenticate to the
database server at host:port.
You do not have any SSH keys
present in your configured
identity idDirectory

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was established successfully,
but authentication to the
database server failed
because there are no SSH
keys configured.

Create at least one SSH key and
place it in the appropriate directory.

Unable to authenticate to the
database server at host:port.
Your SSH key(s) from your
configured identity directory
are not in the authorized_keys
file of the database or its
owner

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was established successfully
but authentication to the
database server failed
because none of the SSH
keys were in the
authorized_keys file that
the database is using.

This may also be caused by
the CLI selecting the wrong
SSH identity. As described in
the SSH identities section, the
first identity found by
searching several default
locations is used, but this may
not always be the desired
identity.

● Review the database logs (if
possible) to see which
authorized_keys file was
in-use:

○ If the database server was
launched, then this is
either in the database
directory itself or in the
~/.cge directory

○ If another user launched
the database server,
contact them to find out
which authorized_keys
file is in-use

● Add the public key to the
relevant authorized_keys
file, or ask the relevant user to
do so.

Logging and Troubleshooting

S3014 114

Error Message Description Resolution

● Use the --identity option
to specify the desired identity
directory to use

Host key for host host:port is
not trusted, please run in
interactive mode and trust this
key or manually add the host key
to your known_hosts file in your
configured identity idDirectory

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was successfully established
but the database server was
unable to prove its identity to
the CLI because the host key
provided by the database
server was not trusted.

This error is usually only seen
the first time when a
connection to a specific server
instance is established. Once
the key is trusted (see
resolution steps) this error
should no longer be seen for
this host and port
combination.

● If CGE is being run in
interactive mode, the system
will prompt to trust the host
key. Enter Yes to do so.

● If it is required to use CGE
non-interactively, adding the
--trust-keys option to
commands will automatically
trust previously unknown host
keys

Timed out attempting to
establish a database connection
(waited N seconds), database
server may be too busy to
service your request currently

The CLI tried to connect to a
database server running on
the given host and port
combination but was unable
to establish a connection
within the timeout interval.
This means that the database
server is currently busy
processing another request
and cannot accept the request
at this time.

● Check the database logs to
see what the database is
currently doing

○ If the last log message
states: "Trying to read
RPN message from
network..." then the
database is ready,
otherwise the database is
busy

● If the database is busy, there
are a number of options that
can be used to troubleshoot
the issue:

○ Execute the request again
later

○ Increase the timeout with
the --timeout option to
wait for a longer period of
time.

○ Disable the timeout by
setting --timeout 0 to

Logging and Troubleshooting

S3014 115

Error Message Description Resolution

wait indefinitely until the
database server is ready
to process the next
request

● In rare cases, the database
may have become hung (if it is
busy and you have not see
any new log messages for
long periods of time then this
is most likely the problem) in
which case you should kill and
restart the database server
and then retry your commands

Server failed to start up One or more of the CGE job
steps failed to launch because
CGE was not found.

Try relaunching CGE if the system
displays this message. In addition,
it is recommended to ensure that
all compute nodes are correctly
configured. In particular verify the
following:

● The same version of CGE is
installed on all compute nodes
and the login nodes

● All shared file systems are
mounted and mounted in the
same place on all compute
nodes and the login nodes

● The munged process is
running on all compute nodes

If any of the preceding is not true
and if relaunching the CGE CLI
does not correct the problem,
contact Cray Support.

Not enough symmetric heap for
new sorting keys

There is not enough
symmetric heap for new
sorting keys

use the -H option to cge-launch
to set the symmetric heap value to
a larger value. Try doubling what
shows up by default near the top of
the log for a start.

Symmetric heap is a boundary
value on a resource that is
allocated as needed, so using a
larger than necessary value does
not mean that this value will be
allocated. It only means that no
more than this value will be
allocated. It is better to
overestimate by a bit than to
underestimate.

Logging and Troubleshooting

S3014 116

Error Message Description Resolution

[PE_64]:inet_listen_socket_setup
:inet_setup_listen_socket: bind
failed port 20219 listen_sock =
5 Address already in use

This may be due to leftover
cge-server processes

Follow the instructions
documented in Terminate
Orphaned cge-server Jobs on
page 119

Error: Timed out waiting for the
server to start running

When a computational loop
during a database build takes
an extremely long time
without producing any
indication of forward progress
(generally some kind of output
in the log), cge-launch may
decide that the start up
sequence has hung and
terminate it with this message.

Change the interval used to detect
a start up hang from its default
setting of 300 seconds (5 minutes)
to some longer interval. If you
know the problem is just that a
dataset is very computationally
intensive to build and is prone to
such timeouts, setting this timeout
value to 3600 seconds (an hour) is
almost certain to eliminate any
chance of this failure at the
expense of causing you to take a
very long time to detect an actual
hang in start up. To change this,
use the --
startupTimeout=seconds
option to cge-launch.

HTTP Errors are reported by a
tool or API

A request submitted to the
HTTP Interface provided by
the cge-cli fe command
was not successful. If the
request was submitted via a
tool or API then only minimal
error details may be reported
directly to you. However
please see the resolutions for
ways to find more detailed
error information.

● Submit the same request
using a browser. The browser
window may contain additional
error messages which indicate
the underlying error. Please
review these carefully since
they may indicate one of the
other common errors detailed
in this table.

● Please review the front end
logging as this will have
logged the HTTP error and
associated error details. These
may indicate one of the other
common errors detailed in this
table.

● If there is no obvious cause or
additional error messages in
the browser/front end logs
then please review the
database logs for error
messages that may indicate if/
why the request failed on the
database server.

● In rare cases, the offending
request may have caused the
database server to crash in

Logging and Troubleshooting

S3014 117

Error Message Description Resolution

which case, it will be
necessary to relaunch it before
making further requests

○ If a crash has occurred
please report this to your
Cray support
representative

:inet_listen_socket_setup :inet_
setup_listen_socket : bind
failed port 1371 listen_sock = 5
Address already in use

A previous cge-launch or
HPC/mrun job failed or was
killed, and the inet_listen
socket is likely in the
TIME_WAIT state on one or
more of the compute nodes.

Wait 60-90 seconds for the
inet_listen_socket (port
1371) to clear up from TIME_WAIT
state. If the problem persists, the
likely cause is some other program
has an active socket connection to
port 1371 on one (or more)
compute nodes. That application
must release port 1371 on the
affected node(s) before new cge-
launch or HPC/mrun jobs can be
run on that node(s).

2016-Jul-26 08:50:23.949 CDT
WARN [][30526] 0x4e2 dictionary/
cqe_literals_info.cc@935
get_expr_result [] [QRY |DICT]
unexepected type 31 in
get_expr_result

This may be caused by the
YEAR() function when a user
enters literals with two dashes
for the date
("--"^^xsd:date).

Change the log level ad shown
below:#0="leave at default", 1=Off
(no output), 2=Error, 3=Warn,
4=Info, 5=Debug, 6=Trace
cge.server.DefaultLogLevel=4
cge.server.SetErrorKeywordsOn=0
x7FFFFFFFFFFFFFFF # Turn
OFF QRY and DICT WARNings
cge.server.SetWarnKeywordsOn=
0x7FFFFFFFFFFDFFFE
cge.server.SetInfoKeywordsOn=0x
7FFFFFFFFFFFFFFF

If the same error is encountered even after following the suggested fixes in this section it is recommended to add
the --trace option to the command in order to get detailed information about the communications being
attempted and review the log messages carefully both on the front end and server side to try and understand
what is going wrong. It is also worth reviewing the server logs if you are able as there are some situations, which
will manifest as client side communications errors caused by an error on the serve. Reviewing the server logs
may provide additional information about why you are encountering an error. If you are still unable to resolve the
issue, please contact Cray support providing logs from both the CLI and the database server to aid in diagnosis of
the issue.

The results format received in the browser is dictated by the HTTP Accept header that your browser sends (or
conversely that your programmatic HTTP client sends). The Force text/plain as the response
Content option controls the Content-Type header that the front end responds with, which affects how the
browser interprets the response. Depending on the browser if this option is disabled (the default) then this might
mean that it downloads/offers to save the response to a file rather than displaying it in the browser, enabling the
aforementioned option changes the response Content-Type to always be text/plain regardless of what format
the front end actually outputs which forces the browser to display the response in the browser itself. If the results

Logging and Troubleshooting

S3014 118

need to displayed in a different format, customize the HTTP Accept header accordingly. Most browsers have
some means to configure this. For example, in Firefox, navigate to About>Config. Click through the warning if it
appears, and then search for accept and edit the value of the network.http.accept.default setting to add
the desired content types. The closest thing to plain text that the front end will produce is text/tab-separated-
values. Most browsers include application/xml in their default accept header, which means you will typically
get SPARQL XML results by default (or RDF/XML if it were a CONSTRUCT query).

Additional Important Information
● If the same error is encountered even after following the suggested fixes in this section it is recommended to

add the --trace option to the command in order to get detailed information about the communications being
attempted and review the log messages carefully both on the front end and server side to try and understand
what is going wrong. It is also worth reviewing the server logs if you are able as there are some situations,
which will manifest as client side communications errors caused by an error on the serve. Reviewing the
server logs may provide additional information about why you are encountering an error. If you are still unable
to resolve the issue, please contact Cray support providing logs from both the CLI and the database server to
aid in diagnosis of the issue.

● The results format received in the browser is dictated by the HTTP Accept header that your browser sends (or
conversely that your programmatic HTTP client sends). The Force text/plain as the response
Content option controls the Content-Type header that the front end responds with, which affects how the
browser interprets the response. Depending on the browser if this option is disabled (the default) then this
might mean that it downloads/offers to save the response to a file rather than displaying it in the browser,
enabling the aforementioned option changes the response Content-Type to always be text/plain regardless
of what format the front end actually outputs which forces the browser to display the response in the browser
itself. If the results need to displayed in a different format, customize the HTTP Accept header accordingly.
Most browsers have some means to configure this. For example, in Firefox, navigate to About>Config. Click
through the warning if it appears, and then search for accept and edit the value of the
network.http.accept.default setting to add the desired content types. The closest thing to plain text
that the front end will produce is text/tab-separated-values. Most browsers include application/xml in
their default accept header, which means you will typically get SPARQL XML results by default (or RDF/XML
if it were a CONSTRUCT query).

● Writing a large dataset to a Lustre directory when there is insufficient free space on the Lustre file system may
produce a segmentation fault. To resolve this issue, free up some more space on the file system.

● When an input triple or quad data file does not end with a newline character, the system will return an issue.
Therefore, it is important to ensure that the .nt/.nq file ends with a newline.

13.2 Terminate Orphaned cge-server Jobs

Prerequisites
This procedure requires root privileges.

About this task
Follow the instructions listed in this procedure to track orphaned cge-server jobs down and terminate them.
The examples shown in this procedure can be used for a system with 3 sub-racks.

Logging and Troubleshooting

S3014 119

Procedure

1. Log on to the System Management Workstation (SMW) as root

2. Execute the following to find out if there are stray cge-server processes.

pdsh -w 'nid000[00-47]' "ps -ef|grep 'cge-serve[r]'|grep -v grep | awk '{print \$2}';true"|wc -w

3. Terminate the stray cge-server processes

pdsh -w nid000[00-30,32-46] "ps -ef|grep 'cge-serve[r]'|awk '{print \$2}'|xargs kill"

4. Rerun the preceding command to ensure all stray cge-server processes have been terminated.

5. Verify that all the stray cge-server processes have been terminated by executing the following command:

pdsh -w 'nid000[00-47]' "ps -ef|grep 'cge-serve[r]'|grep -v grep | awk '{print \$2}';true"|wc -w
0

This output indicates that everything has been cleared.

Logging and Troubleshooting

S3014 120

	Contents
	1 About the Cray® Graph Engine User Guide
	2 About the Cray Graph Engine (CGE)
	2.1 Cray Graph Engine (CGE) Features
	2.2 Concepts of Operation
	2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database
	2.2.2 What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF

	2.3 About SPARQL
	2.4 System Architecture Overview
	2.5 RDF and SPARQL Resources

	3 Building a Database
	3.1 About Rules Files
	3.2 Create a Set of Inferencing Rules
	3.3 Sample RDFS Rules File
	3.4 Limitations to Jena Rules Syntax

	4 Launch the CGE Server Using the cge-launch Command
	5 Mechanisms to Interact with the Cray Graph Engine (CGE) Database
	5.1 Cray Graph Engine (CGE) Command Line Interface
	5.1.1 Cray Graph Engine (CGE) Command Output
	5.1.2 Cray Graph Engine (CGE) CLI Common Options
	5.1.3 SSH Identities
	5.1.4 CGE Hadoop HDFS Configuration
	5.1.5 Cray Graph Engine (CGE) Properties File
	5.1.6 Create Checkpoints Using the CGE checkpoint Command
	5.1.7 Compile SPARQL Commands Using the CGE compile Command
	5.1.8 Check the Database State Using the CGE echo Command
	5.1.9 Launch the CGE Web Server Using the fe Command
	5.1.10 Determine How Locations Are Being Searched Using the get-configuration Command
	5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the keyword-lookup Command
	5.1.12 Retrieve Default Server Logging Information Using the log-info Command
	5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names Using the log-lookup Command
	5.1.14 Change the Default Logging Configuration of the CGE Server Using the log-reconfigure Command
	5.1.15 Display Information About the Default NVP Configurations Using the CGE nvp-info Command
	5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure Command
	5.1.17 Display Server Output Directory Information Using the output-info Command
	5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure Command
	5.1.19 Execute Queries Using the CGE query Command
	5.1.19.1 Common Errors Encountered Using the Cray Graph Engine (CGE) query Command
	5.1.19.2 Cray Graph Engine (CGE) Optimizer Configuration

	5.1.20 Shutdown the CGE Server Using the shutdown Command
	5.1.21 Execute Sparql Queries and Updates Using the sparql Command
	5.1.22 Execute Updates on a Database Using the CGE update Command

	5.2 Access the Cray Graph Engine (CGE) Graphical User Interface
	5.2.1 Execute SPARQL Queries Using the CGE UI
	5.2.2 Execute SPARQL Updates Using the CGE Update Interface
	5.2.3 Create a Checkpoint Using the CGE UI
	5.2.4 Cray Graph Engine (CGE) Advanced Options
	5.2.5 View Server Configurations Using the CGE UI
	5.2.6 Edit Server Configurations Using the CGE UI
	5.2.6.1 Control Options

	5.3 SPARQL Endpoints
	5.4 Launch the CGE Web Server
	5.5 Create and Use a Database

	6 Cray Graph Engine (CGE) Security Mechanisms
	6.1 Grant Basic Access to Owned Query Engines
	6.1.1 Eliminating the Interactive Host Key Verification

	6.2 Create a CGE Specific RSA/DSA Host Key
	6.3 Grant Other Users Access to Their CGE Query Engine
	6.3.1 Grant Other Users Access to One of the Owned Data Sets
	6.3.2 Grant Other Users Access to All of the Owned Data Sets

	7 Built-in Graph Functions
	7.1 Combining Graph Algorithms with SPARQL
	7.2 Invocation of a Graph Function
	7.2.1 The CONSTRUCT Clause
	7.2.2 The INVOKE Clause
	7.2.3 The PRODUCING Clause

	7.3 Inputs to the Graph Function
	7.4 Sequence of Operators
	7.5 Bad Rank
	7.6 Betweenness Centrality
	7.7 Community Detection Label Propagation (LP)
	7.8 Page Rank
	7.9 S-T (Source – Target) Connectivity
	7.10 S-T Set Connectivity
	7.11 Triangle Counting
	7.12 Vertex Triangle Counting
	7.13 Triangle Finding

	8 Cray Graph Engine (CGE) Extension Functions
	8.1 Cray Graph Engine (CGE) Interval Analytics Functions
	8.2 Cray Graph Engine (CGE) Haversine Functions
	8.3 Cray Graph Engine (CGE) Square Root Function

	9 Cray Graph Engine (CGE) Property Path Support
	10 Cray Graph Engine (CGE) Quick Reference
	11 Use the Cray Graph Engine (CGE) for a Hello World Example
	12 CGE Java API
	12.1 Use CGE Java API via Maven
	12.2 Use CGE API via Java Development Kit (JDK)
	12.3 Use CGE API via Pre-built Main Entry Points
	12.4 Use Case: A Comprehensive Java Program
	12.5 Limitations of CGE Java API

	13 Logging and Troubleshooting
	13.1 Troubleshooting Common Cray Graph Engine (CGE) Issues
	13.2 Terminate Orphaned cge-server Jobs

