p oo

I A R <

,.,,,/////ff
R
B < <
P R

G r e e s AP

i s e

N
R
4:/;4/,¢’¢¢'
R

cr s st p b

R
s e rppp

D I N :3 :! lJF)():!
P A A TP S) | | n
R R S T TN LN
Pytr e e +e et oyl
I P "“““k““"'
,l/l' '}Q'* “‘ . LN)
/I’l" “\‘\‘\\ NENESRE
RILN%50%2 04 + *O% D NN ,
t, 1,4 sl N
(p 0,4 L OE Bt IR o
y/l ““\‘\\\\\“
[Il 1 NSRS o
o SRS ‘s -
/{ LR ER S NN
{ L\ S E R B D NN
A P E R RN \
by 'y \\\\‘\‘\\
“ \\\\\‘ N
\\‘ R N
‘ ‘\\\\\\ \‘\\\
\\\\\\\ \\‘\ \
AR SN N
\\\\\\\\‘\\\‘)
\ \\\\ Y \ .
\\t\\\\\\\\\\ N \
\ LN
1S DN S NN
10 ST T P S S
\\\\\\\ \\‘ \ \ . N \
\ \\\ \\\ \ \ \ \
\\\ \\\ \\ \ \ \ \ \
\\ \ \ \ . \ \
AN wWh \\\\“‘\\
\\\ \\ \\ \ \ \ N
‘\\ v\ \ Vv » \
\\ VY \ \ \ N \
v\ \ \ \ . ' \
\\\\ \\ \ LI \ \ N

W O e e
W \ Vv Y \ \ '
AWrhawvh o R S)
\\ \\ \ s \ \ ' Y
NS AR N P T TR T :
AN \ Yooy . N)
: LA BB N T \
A\ NS N D S R T PR T
' \ \\ Voy oy A \ \ \
\\ A} \ \
) \\ AN v \ \ \
Wt v AR
\ \\ \\ \ \ \ \\ \\ \ ‘\‘
AL I T TR TR TR vy
ANE R IR DL TR vy '
\\ AR DERE U PR T Y
\\\\\\\\\\ (SRR PR ARE
R T 4 £\ 4 N

Contents

Contents

1 About the Cray® Graph ENgiNe USEI GUILE.........c.ccueiuieiiiieccie e et ettt ete ettt te et te et e eteesteestesveebeenseabeesreenes 6
2 About the Cray Graph ENQINE (CGE)......cuuiiiiiiiiiiiiitiee ettt ettt et e e e e e e e bbbt e et e e e e e e e e e s s s aanbbbsbeeeeaaaaeeeaeaaans 8
P R O] i T (U T O PRSP P PP PP PR 8
A2 @0 g [o1=T o1 (30 @] o 1T r- 4o) o 1 PSR 8
2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database.............ccccceeviiiieeeeiniieenenns 9
2.2.2 Differences Between CGE and Relational Database.............c..eueeiiiiioiiiiiiiiiee e 9
R B N o Lo U1] =Y = RSP ERR 11
2.4 SyStEM ArChITECIUIE OVEIVIEW......ciiiiiiiiiietee ettt et e e e e e et et e e e e e e e e e e e e s aanbbbbeeaeaeeaaaeeesaaaanas 11
2.5 RDF and SPARQL RESOUICES......cciiiieiiiiiiiiiiiieee et e e e e e e e e s s e e e e e e e e e e s s e st a e e e e e aaeeaessaasssrbsaaneaeaaaeeaaes 12
3 The CGE Database BUIld PrOCESS.........ciiiiiiiiiei ittt sttt et e sb bt e e e s anb bt e e e s st a e e e s annnneeas 13
3.1 ADOUL RUIES FlES ...ttt et e et e e e e e e e e e e e e et aeeereeaeeessssnnnssbanannenaaaeeessnannns 15
3.2 ADOUL INFErENCE RUIES FlES.....coi ittt e e e e e e e e e e e e et e e e eeaaaeeeeeeanns 15
3.3 SamPpPle RDFS RUIES FlEottt et e e e e et e et e e e e e e e e e s et b eaeeeeeeas 19
3.4 Limitations t0 JeNa RUIES SYNTAXcoiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e ib bbb e ae e e e e aaeeeeaaaanas 20
4 Launch the CGE Server Using the cge—l1aunch Command...........ccccceeieeiiiiiiiiiiiiiieeceee e 22
5 Mechanisms to Interact with the Cray Graph Engine (CGE) Database............ccuuviiiiiiiiiiiiiiiiiiiiiieeeeee e 24
LI O €1 o PSSP PRRO 24
5.1.1 Cray Graph Engine (CGE) Command OULPUL..........ceiereeeiiiiiiiiiiiiiiree e e e e e e sessivereeeereeee e e s e e ennenes 26
5.1.2 CGE CLI COMMON OPLIONS......uuuiiiiiiiiiiieeesesisiiiteieeeeresaeeessssssssstreereeeaaeeessassnsssssarerreeaeeessesannnsnes 26
LR I S 1S o I o 1= T PR 32
5.1.4 CGE Hadoop HDFS CONfIQUIALION........ceiiiiiiiiieeiiiiieee ettt e e e ninne e e e 32
5.1.5 Cray Graph Engine (CGE) Properties File........cooouiiiiiiiiiiiiee e 33
5.1.6 Create Checkpoints Using the CGE checkpoint Command................cccovviviiriiiiiiiiiiiicceeeen, 36
5.1.7 Compile SPARQL Commands Using the CGE compile Command...........ccccccoevvviieeeniiinneeenn. 37
5.1.8 Check the Database State Using the CGE echo Command.............cccccviiiiiiiieeee e, 38
5.1.9 Launch the CGE Web Server Using the fe Command.............cccoeeeriieeeei i 39
5.1.10 Search Configuration File Locations Using the get-configuration Command................. 39
5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the keyword-
 KoTo] (8] o I @2o] 0100t T o O PP P P OPPRRTP 40
5.1.12 Retrieve Default Server Logging Information Using the log-info Command....................... 41
5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names Using
the 1og—100KUP COMMANG.........c.ouiiiiiiiiiec e e e e e e e e e s s r e e e e eaeeeeeas 41
5.1.14 Change the Default Logging Configuration of the CGE Server Using the 1og-
recoONTIGUIE COMMEANT.......ooiiiiiiii ettt e e et e e s et e e e e sbbee e e e ennneeas 42
5.1.15 Retrieve the Default NVP Configurations Using the CGE nvp-info Command.................... 43

S3014 2

Contents

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure Command............ 43

5.1.17 Display Server Output Directory Information Using the output-info Command 43
5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure

(070] 1911 0= T [o [T TP PPPPRTPTR 43

5.1.19 Execute Queries Using the CGE query Command...........ccuuuiiiiiiiiieaaneniiiiiiiieeee e e e e e 44

5.1.20 Cray Graph Engine (CGE) Optimizer Configurationccccoiiurereeiniiieee e 46

5.1.21 Shutdown the CGE Server Using the shutdown Command............cccccceeeiiiiiiiiiiiiiiiecneneeeennne 46

5.1.22 Execute Sparqgl Queries and Updates Using the spargl Command.............cccceeeviiiieeennnnn. 47

5.1.23 Execute Updates on a Database Using the CGE update Command............cccccccevveeeeeiiinnnns 47

5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command............ 48

5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command............... 49

5.1.26 Create a Properties File Using the CGE generate properties Command....................... 50

I O] = 1 TP ROUPPRUPRTRPRN 52

5.2.1 Launch the CGE WED SEIVET ..ottt a e a e 56

5.2.2 Execute SPARQL Queries UsSiNg the CGE Ul...........uuuiiiiiiiiiiiieieeeeeeeeeecee e 56

5.2.3 Execute SPARQL Updates Using the CGE Update Interface.......ccccccceeevviiiiiiiniiiinieeee e 59

5.2.4 Create a Checkpoint Using the CGE Ul.........ccccuuiiiiiiieic e e a e e e 61

5.2.5 Cray Graph Engine (CGE) AdVanced OPLIONSocuuriieiiiiiiiie ittt 63

5.2.6 View Server Configurations Using the CGE Ul...........ccciiiiiiiiiii e 64

5.2.7 Edit Server Configurations Using the CGE Ul...........oooiiiiiiiiiii e 66

IR N @de] 11 0] W @] o)1 [o] 4 LSO P TP PP PPPTPPPPPPPPPP 68

IR Y o AN o (@ It o | o] 1) = SRR 70

5.4 Create and USE @ DAt@ase.ueiiiiiiiiiii e a e 73

S O8I VA @2 1 od= | - 1o PP PPPPPPPPPPN 75

6.1 Cancel a Query Using the CGE WED Ul.........uiiiiiiiiiiie ettt e e 76

6.2 Cancel a Request Running Under a CGE CLI QUETY.......coii ittt 80

O € ST = o1 | SRR 81

7.1 Cray Graph Engine (CGE) Security MEChaNISMS..........uuuiiiiiiiieiee i iiciiieeee e e e e e e e s ssssieereeereeeaee e e s snnanes 83

7.1.1 Create a CGE SpecCific RSA/DSA HOSt KEY.....coviiiiiiiiieeciiiieiie et e et ee e e e e s e 83

7.2 SELUP CGE SBCUNEY. ..ceiiiiitiiiee ettt oo e bt e e e e et bt e e e e bbbt e e e e aabbe e e e e anbbe e e e e anbbeeeeeanneee 84

7.2.1 Configure Server Side Identification and Authentication...............c.cocooiiiiiiiiin e, 84

7.2.2 Configure the ACL File USEr PermiSSIONS.cuiiiiiiiiiiiiiieiie et 86

7.2.3 Configure Web Ul Identification, Authentication and ENCryption...........cccccceveeeeniininiiiiiieeeeeeeenn. 91

7.2.4 Configure LDAP fOr CGE.........uuiiiiiiiiiieie ettt et e e e e e s s s s e e e e e e e e e e s s s asnababaneeeeeaaaeeesananns 92

7.2.5 Configure Private Authentication for CGE..........cooviiiiiiiiiiieecc e 93

7.2.6 CoNfIQUIE SSL fOr CGE.....iiiiiieiiiei et bbb e e e 94

7.2.7 Launch @ Secured WeD Ul........oo ettt e e e e e e e 96

7.3 ENAPOINT SECUILY ...ttt e ettt e e e e e e e oottt be et e e e e e e e e e s aaaaabbebeeeeeaaaaeeessaaannbbsbeaeeaaaaaaeseaanns 96

S3014 3

Contents

7.4 CGE USEr AULNENTICALION. ... eeiiiiieeeee ittt ettt et e e e e e e e s eb bbb ettt e e e aaeeeeessannbnbbsaeeeeaaaaaeeaaaanns 98

7.5 Grant Basic Access to Owned QUEIY ENQINESoooooiiiiiiiiiiieieee et e e e e e e e e 101

7.5.1 Eliminate Interactive Host Key VerifiCation............ccooiiiiiiiiiiiiiiiiceee e 104

7.6 Grant Other Users Access to Their CGE QUEIY ENQGINEuvviiiiiiiiiee e iccciiieeee e e e e e e s ee e e e 104

7.6.1 Grant Other Users Access to One of the Owned Data Setscccovvieeeiiiiiiee e 105

7.6.2 Grant Other Users Access to All of the Owned Data SEetscccoocvveeieiiiiiieieiiiiieee e 106

8 BUIIE-IN Graph FUNCHONS.ttt ettt e e e e e e e e e e bbb bttt e et e e e e e e e s aa s anbbbbeeeeeeaaaaeeeaaaannnnnes 107
8.1 Combine Graph Algorithms with SPARQLccoiiiiiiiiei e e e e e e e 107

8.2 Invocation of @ Graph FUNCLON ..o e e e e e e e s e s st eeeeaaaeaesaaaanes 108

8.2.1 The CONSTRUCT ClAUSEvviiiiirieeriiiee ittt ettt et sne e st e snre e e s e s nnre e e nneee e 108

8.2.2 THe INVOKE CIAUSE.......ceciutiieiitite ittt ettt ettt ettt ettt s e st e e st e e st et e e abb e e e bne e e snbeeesnneas 108

8.2.3 The PRODUC ING ClAUSE.......uuiiiiutiieiitieeitieeetee ettt e et e sttt e st e e ssbe e e sabeesabeeesbbeaessbeeaasbeeesnneeens 109

8.3 INPULS 10 the Graph FUNCHONueiiiiiiiieiie ettt e e rabeeae s 110

8.4 SEUUENCE Of OPEIALOIS. eiieiiitiiee e ettt ettt e e e ettt e e e bbbt e e e s st b e et e e s s kb et e e e s sabb et e e e aabbe e e e e e aabbeeeeesanbneeeenans 111

8.5 BAO RANK. ...ttt ettt e e e e e e e e e e bbb e et e e et e e e e e e e e e e bbabeeeeaaaaaaeeeeaaann 112

8.6 BEIWEENNESS CONIIANILY.eeiiiiiiieiiii ittt e e e e ettt e e e e e e e e s s e s bbb be e e e aaaaaeeeeeaaaann 113

8.7 Community Detection Label Propagation (LP)...........uueeiiiiieeiiii e e e e e e e e e e e e e e e snannenees 115

8.8 Community Detection Parallel Louvain Method (PLM).........coieeiiiiiiiiiiiieiee e e e e e 116

8.9 PAJE RANK......eiiiiieiii e e e e e e neee 117

8.10 S-T (Source — Target) CONNECHVILY.......cciiiiuiiiiei ittt e et e e st e e e s sibr e e e e s abbeeeaeeas 117

8.11 S-T SO CONNECHIVITY.....uteeiiiiiieie ettt e e e ettt ettt e e e e e e s e e a bbb be e et e e aaaeeeesaaannbbnbeeeeaaaaaaeasaaaannns 118

T D N =T o To | [@ o 18] 1] o To [P U TP O PPTPPPPPPTTN 120

8.13 VerteX Triangle COUNTING........cieeei ittt e e e e e e e e e e e e e e s e e s e e e e e e e e eaaaeeessssasasnrasareeeaaaeaesananans 121

S0 =V Vo | L= T [T Vo P 122

1S O € 1= 0 £y To] o TN U] 1 LS 124
9.1 Cray Graph Engine (CGE) Interval ANalytiCS FUNCHONS.........c.uvviiiiiiiiiee i 124

9.2 Cray Graph Engine (CGE) Haversing FUNCHONS.uuiiiiiiiiaiiaiiiiiieiie e e e e e e e e 126

9.3 Cray Graph Engine (CGE) Square ROOt FUNCLON...........ooiiiiiiiiiiiiiiie et 126

9.4 CUStOM AQQregate FUNCLONS.ciiii it e e e e e e e e e e e s s e e et e e e e e e s s s s nanabsranneeaeaeeeaens 127

10 Cray Graph Engine (CGE) Property Path SUPPOIL...........uuuiiiiiiiiee e e e s e e e e e e e e e e s nnnnrnnnees 130
11 Cray Graph Engine (CGE) QUICK REFEIENCE.........uiiiiiiiiiiie e 133
12 Get Started With USING CGE.........coiuiiiiiiiiiiit ettt e e s e e e e e aab b et e e s et e e e e anbreeeeeannnes 136
13 Support for SIMpPle GrapiML FlES........co ittt e e e e e e e s et bbb e e e e e aaaeaeeaaannes 140
14 LUSEre SHHPING ON CGE... ...ttt ettt e e e e e e oo bbb bt bt e et e e e e e e e s e s e s bbb beeeeeeaeeeeeeaaaannneenseees 143
L5 CGE APttt E LRt e Rt oR e e aR et e e Rt e e Rt e R e nr e e anre e 144
ST O] Y o V=T o] o SO S 144

15.2 Prepare the Environment for Using CGE Java APl 0n Urika-XC.........cooccviiiiiiiiiieeiniieee e 144

SR N Ol] N - Y= Y = P TRR PSRRI 145

S3014 4

Contents

15.3.1 Build CGE Java Applications USING MaAVEN...........eeiiiiiiaiiiiiiiiieiee e eiiieeeee e e e e e e 147
15.3.2 Build CGE Applications USING JDK........ccciiiiiiiiiiiiieiiee et ee e e e 149
15.3.3 Build CGE Applications Using Pre-built Main Entry PoOints.............cccccciiviiiiieee e, 150
15.3.4 Use Case: A Comprehensive Java Program..........eeeeioeicceiuieeireeeeeeeeesesssssnssneeeeeseseesessnnnnns 152
15.3.5 LiMitations Of CGE JAVA AP L.....eeiiiiiee ettt et e e e e e e e s st e e e e e e e e e e s e annnnnes 159

S Ol e i =1 T o 1A SRR 159
15.4.1 Use Case: A Comprehensive Python Program............oooiiiiiiiiiiii e 160
15.4.2 Run the CGE Python API as a Python Application...............cciiiiiiiiiieee e 163
15.4.3 Run a Python API from the Python INterpreter........oocvviiiieeiee e 164

15.5 CGE SPANK AP .ottt 168
15.5.1 Convert TSV Files to Spark DAataSeLS.coiuuiiiiiiiiiiiie it 169
15.5.2 SCheme DetermMINGLION.couiiie ettt e e e e e e e e e s sttt e e e e e aeeeeeeaaannnneeeeeees 171
15.5.3 Role of the Spark Schema in TSV TransIation.............coooiiiiiiiiee e 173
15.5.4 Example of Spark Scala to Spark Dataset CONVEIrSION.ceeiiieeeaiiiiiiiiiiieieeeee e e e e e eiiees 176
15.5.5 Errors and Exceptions Encountered while Using the CGE Spark APL.............ccccccvviveeeneeenn. 178
15.5.6 RUN CGE frOM SPArK......cuuuiiiiiiiieeei ittt e e e e e e e s s s e ae e e e e e e e e e e e s s e nnnnrnnneees 179
15.5.7 CGE Spark DataFrame to RDF Triples Data CONVEIEr........c.eeveiiiiiiieeiiiiieee et 183

16 Logging and TroUDIESROOTING.ccciitiiiieeiiie ittt e st e e et e e s et b e e e e e e nbn e e e e e annees 185
16.1 CGE Error Messages and Resolution INfOrmation..............oooiiiiiiiiiiiee e 186
16.2 Terminate Orphaned cge-Server JODS............u e 191
16.3 Diagnose CGE PYIhON API ISSUES.........ccii ittt ettt a e e e s e e s e e e e e e e e e e s s e s anabnareeeeaeaeas 192
S3014 5

About the Cray® Graph Engine User Guide

1 About the Cray® Graph Engine User Guide

The Cray® Graph Engine User Guide contains information about using the Cray Graph Engine (CGE), its
Command Line Interface (CLI) and Graphical User Interface (GUI) to create and use RDF databases.

Release Information

This publication version addresses the product version 3.2UP02 of the Cray® Graph Engine.

Record of Revision

Date Addressed Release
September 2018 3.2UP02

May 2018 3.2UP01

December 2017 3.1UPO02

November 2017 3.1UPO1

April 2017 3.0UP00

December 2016 2.5UP00

August 2016 2.0UPOO

March 2016 1.0UPOO

March 2015 Beta release

Record of Revision
Includes updates to Ul related sections and information about the output parameter that has been added with
this release.

Typographic Conventions

Monospace Monospaced text indicates program code, reserved words, library functions,
command-line prompts, screen output, file names, path names, and other software
constructs.

Monospaced Bold Bold monospaced text indicates commands that must be entered on a command

line or in response to an interactive prompt.

oliqueorltalics Ooliqueoritalicized textindicates user-supplied values in commands or
sytax definitions.

Proportional Bold Proportional bold text indicates a graphical user interface window or element.

S3014 6

About the Cray® Graph Engine User Guide

\ (backslash) A backslash at the end of a command line is the Linux® shell line continuation
character; the shell parses lines joined by a backslash as though they were a single
line. Do not type anything after the backslash or the continuation feature will not
work correctly.

Alt-Ctrl-f Monospaced hyphenated text typically indicates a keyboard combination.

Scope and Audience

This publication does not include in-depth information about RDF and SPARQL. The intended audience of this
publication is users and system administrators. It is assumed that all the commands documented in this guide are
executed via the bash shell.

Trademarks

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, Urika-XA, Urika-GD, and YARCDATA. The following are trademarks of Cray Inc.:
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX,
LIBSCI, NODEKARE. The following system family marks, and associated model number marks, are trademarks
of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a
sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

S3014 7

About the Cray Graph Engine (CGE)

2

About the Cray Graph Engine (CGE)

CGE is a highly optimized software application designed for high-speed processing of interconnected data. It
features an advanced platform for searching very large, graph-oriented databases and querying for complex
relationships between data items in the database. It provides the tools required for capturing, organizing and
analyzing large sets of interconnected data. CGE enables performing real-time analytics on the largest and most
complex graph problems, and features highly optimized support for inference, deep graph analysis, and pattern-
based queries.

2.1 CGE Features

Major features of CGE are listed below:

An optimized query engine for high-speed parallel data analysis.
Support for submitting queries, updates and creating checkpoints.
A rich CLI.

The CGE graphical user interface, which acts as a SPARQL 1.1 end point. This interface enables editing
SPARQL queries or SPARUL updates and submitting them to the CGE database. It also accepts a set of
commands that allow users to perform various tasks, such as creating a checkpoint on a database, setting
Name Value Pairs (NVPSs) to control certain aspects of data preprocessing, and query processing etc.

SPARQL query language extension via the INVOKE and PRODUCING operators, which allow a classical graph
algorithm to be passed an RDF graph and for the algorithm’s results to be returned as data that is compatible
with SPARQL 1.1. This enables graph algorithm library calls to be nested within a SPARQL query.

Support for SPARQL aggregate functions.

Multi-user support.

Capability to cancel queries.

Compatibility with POSIX-compliant file systems.

Database preprocessing to apply inference rules to the data, as well as to index the data.
CGE Python, CGE Java and CGE Spark APIs

Support for a number of built in graph algorithms.

2.2 Concepts of Operation

CGE's operational model is comprised of the following major components:

The graph oriented database

S3014 8

About the Cray Graph Engine (CGE)

e Resource Description Framework (RDF)

2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database

Most modern database systems use a relational representation of their data. This means that data items are
stored in tables, with each row of the table holding data items that are in some way related to each other. For
example, all of the data items in the same row might be associated with the same person, as shown in the
following table:

Employee ID Given Name Family Name Date Hired Job position
29650 Georgia Smith 11/17/2001 Eng5

10926 Alex Jones 2/5/2008 Mktng3
72219 Paul Anderson 8/21/2005 Admin2

One of these fields is called the "key" and is used as the basis for looking up data from any of the other fields. In
this example, Employee 1D would probably be used as the key. The column labels, Employee 1D, Given
name etc. are implicit. They are not stored with the table, but with a database schema that is associated with the
table. The schema defines each field in the relation.

The kind of information that may be associated with a scheme is shown below:

Field Name Datatype

0 Employee ID Integer, min 0, max 99999

1 Given name Character, String length < 30

2 Family name Character, String length < 30

3 Date hired Integer 1-12, Integer 1-31, Integer > 1985
4 Job position Character, String length < 10

The database schema shown above is used as an example and is entirely conceptual. There are typically many
tables in a large relational database, each with its own defining schema.

2.2.2 Differences Between CGE and Relational Database

Most modern database systems use a relational representation of their data. This means that data items are
stored in tables, with each row of the table holding data items that are in some way related to each other. For
example, all of the data items in the same row might be associated with the same person, as shown in the
following table:

Employee ID Given Name Family Name Date Hired Job position
29650 Georgia Smith 11/17/2001 Eng5

10926 Alex Jones 2/5/2008 Mktng3
72219 Paul Anderson 8/21/2005 Admin2

S3014

About the Cray Graph Engine (CGE)

One of these fields is called the "key" and is used as the basis for looking up data from any of the other fields. In
this example, Employee 1D would probably be used as the key. The column labels, Employee 1D, Given
name etc. are implicit. They are not stored with the table, but with a database schema that is associated with the
table. The schema defines each field in the relation.

The kind of information that may be associated with a scheme is shown below:

Field Name Datatype

0 Employee ID Integer, min 0, max 99999

1 Given name Character, String length < 30

2 Family name Character, String length < 30

3 Date hired Integer 1-12, Integer 1-31, Integer > 1985
4 Job position Character, String length < 10

As opposed to relational databases, CGE uses RDF to store data.

RDF is a data representation standard that allows data from different schemas to be merged. It accomplishes this
by extending the linking structure of the Web using Uniform Resource Identifiers (URIS) in order to create triples to
name a subject, an object, and the relationship or predicate between the two.

An RDF triple contains three components:

e the subject, which is an RDF URI reference or a blank node

e the predicate, which is an RDF URI reference

e the object, which is an RDF URI reference, a literal or a blank node

Hence, data items in RDF are always represented as a trio of character strings, referred to as the “subject”,
“predicate” and “object” fields. Because they were originally intended to be unique across the Internet,
components of RDF triples use the generic URI / IRI syntax (RFCs 3986 and 3987).

A triple holding the same kind of information shown in the previous relational example might look like the
following:

<http://cray.com/example/employeelD#29650> (subject)
<http://cray.com/example/hasGivenName> (predicate)
“Georgia”M<http://www.w3.0rg/2001/XMLSchema#string> (object)

The three statements within the preceding code block should be entered on a single line and have been shown in
separate lines in this publication due to lack of space. Furthermore, the text: (subject), (predicate) and
(object) in the above lines are shown in this document for clarity and are not part of an actual triple.

RDF triples are intended to be self-identifying in two ways, both of which can be seen in this example:

1. The literal’s data type is attached to it.

2. The predicate identifies the class of data that the object belongs to, information that in the case of relational
data, is implicit in the schema and the data item’s position in the tuple. For RDF triples, there is no schema.
That type of identifying information is explicit, in the predicate of the triple.

Any subject-predicate-object triple can also be viewed as a source vertex-edge-sink vertex component of a
directed graph:

<http://...ID#29650> <http://.../hasGivenName> “Georgia”<http://www. ... #string>

S3014 10

About the Cray Graph Engine (CGE)

Figure 1. RDF Triple Viewed as a Graph Component

hasGivenName
29650 "GenrgiD

CGE is designed to store and analyze datasets when the patterns of relationships and interconnections between
data items are at least as important as the data items themselves. The SPARQL query language provides most of
the same features as SQL for filtering, grouping, and updating database information. Unlike SQL, however,
SPARQL also provides a powerful mechanism for specifying (in a query) a complex interconnection pattern to
search for in the database. CGE supports the capability of nesting a call to a classical graph analysis function
within a SPARQL query for indefinite pattern sizes and aggregate information that can not be expressed in
SPARQL.

Each subject-predicate-object relationship is an RDF triple. In CGE, each element in the internal representation of
the database includes a graph field, which specifies the subset of the graph that the triple belongs to. If the graph
field is left blank, the triple becomes part of the default graph. Typically this default, or unnamed, graph is the main
data subset.

2.3 About SPARQL

SPARQL is an RDF query language developed for executing semantic database queries. SPARQL queries
replace the table and schema format of relational SQL queries with RDF triples and ontologies, which define
predicates and relationships.

This release of the CGE software supports a subset of SPARQL 1.1. The following SPARQL 1.1 features are not
implemented:

e The SERVICE keyword, for querying remote data.
e The MD5, SHA1, SHA256, SHA384, and SHA512 encryption functions.

e The UCASE and LCASE functions, which return a string literal whose lexical form is the upper or lower case of
the lexical form of the argument, are implemented for ASCII characters only.

e The property paths feature, which extends the predicate portion of the query, allowing more extensive search
patterns without the overhead of additional OPT IONAL statements.

Although CGE does not natively support the SPARQL 1.1 property paths feature, it does support certain types
of property paths. CGE’s property path support is currently experimental and should be used with care.
Contact Cray Support for additional information.

2.4 System Architecture Overview

CGE is designed to provide performance and scalability on large, complex, interconnected databases. Its query
engine is based on a data parallelism approach, in which the software strives to keep every processor busy on a
roughly equal fraction of the data. The query engine is serviced by a user interface and a command line interface.

S3014 11

About the Cray Graph Engine (CGE)

CGE uses the open-source Jena ARQ SPARQL parser to parse each query or update, and its parser auxiliary
software translates it into a lower-level representation that can drive the query engine. Query results are written to
the file system in a tab-separated-values (.tsv) format. For convenience, a pointer to the results file is returned to
the user when the query completes.

Extensive logging information is also written as the query or update progresses, as an aid to troubleshooting.

2.5 RDF and SPARQL Resources

Cray recommends the following resources for learning more about RDF and SPARQL:

RDF Resources
e RDF primer at https://www.w3.org/TR/rdf-primer/

SPARQL Resources

e "SPAROQL by Example”, available at http.//www.cambridgesemantics.com/, is an excellent introductory tutorial
written by Lee Feigenbaum of Cambridge Semantics and Eric Prud’hommeaux of W3C

e SPARQL Tutorial at http://jena.apache.org

e "Learning SPARQL", available at http://www.learningspargl.com by Bob DuCharme
e SPARQLer Query Validator at http://sparql.org/query-validator.html

e SPARQL 1.1 query language tutorial at https://www.w3.org/TR/sparql11-query/

Semantic Web Resources
"Semantic Web for the Working Ontologist", available at http.//www.workingontologist.org by Dean Allemang and
James Hendler.

S3014 12

https://www.w3.org/TR/rdf-primer/
http://www.cambridgesemantics.com/
http://jena.apache.org/
http://www.learningsparql.com
http://sparql.org/query-validator.html
https://www.w3.org/TR/sparql11-query/
http://www.workingontologist.org

The CGE Database Build Process

3 The CGE Database Build Process

CGE is launched using the cge-launch command. When the CGE application is launched, a database directory
is specified using the —-d option of the cge-launch command. Initially, this directory contains RDF data in N-
triples or N-quads format. When the application is first launched on a new database directory, the database is
compiled and stored in an internal format in the same directory. Subsequent launches with the same database
directory will use the compiled database. The update command can then be used to add data to an existing
database or to update it. For more information, see the cge-launch and update man pages.

Data must be presented in this directory in one of the following ways to enable CGE to recognize raw RDF data to
be built:

1. Inasingle file called dataset.nq (for N-Quads form data)
2. In asingle file called dataset.nt (for N-Triples form data)

3. In multiple files listed in a file called graph. info

Data to RDF Triples Conversion

CGE reads RDF data in N-triples or N-quads format. There are many third-party tools that may be used to convert
data into RDF. D2R is often used to extract data from an RDBMS into RDF format. The TopBraid Composer by
TopQuadrant® can also be used to convert Excel, TSV, UML, or XML data. Conversion of data to RDF is beyond
the scope of this publication.

Internal Representation

Once the data has been translated into RDF, the user must place the data in the directory where CGE builds its
compiled database files. If the RDF is contained in a single file, rename this file to dataset.nt or dataset.nq.
A dataset.nt has NTriples format, whereas a dataset.nq file has NQuads format. On the other hand, if the
RDF is found in more than one file, a file named graph. info will need to be created. This file contains a list of
RDF files, one file per line. Each file name in graph. info may optionally be followed by a graph name. If a
graph name is specified, the graph name is applied to any triples found in the corresponding RDF file.

Following is a sample of a dataset.nt file that has been extracted from the Lehigh University Benchmark
(LUBM) synthetic dataset:

<http://www.Departmentl4._UniversityO.edu/GraduateStudent87>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Departmentl4.UniversityO.edu/GraduateCoursel7> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#TeachingAssistant> .
<http://www.Departmentl4 . University0.edu/GraduateStudent87>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teachingAssistantOf>
<http://www.Departmentl4._UniversityO.edu/Course6> .
<http://www.Departmentl4_UniversityO.edu/GraduateStudent87>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Departmentl4.University0.edu/GraduateCoursel8> .
<http://www.Departmentl4._UniversityO.edu/GraduateStudent87>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#GraduateStudent> .
<http://www.Departmentl4.University0.edu/GraduateStudent87>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#name>
""GraduateStudent87" .

S3014 13

The CGE Database Build Process

<http://www.Departmentl4.University0.edu/GraduateStudent87>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#emai lAddress>
""GraduateStudent87@Departmentl4_UniversityO.edu™ .
<http://www.Departmentl4._University0.edu/GraduateStudent87>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFr
om> <http://www.University843.edu <http://www.university843.edu/>> .
<http://www.Departmentl4._University0.edu/GraduateStudent87>

<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor>
<http://www.Departmentl4._UniversityO.edu/AssistantProfessor6> .

Each predicate must appear on its own line. Some predicates are shown on multiple lines in the code block above
due to lack of space.

The specification for NTriples can be found at https://www.w3.org/TR/n-triples/
Following is a sample of a graph . info file:

example graph.info file

filenames can be absolute
/lustre/scratch/users/jdoe/databasel/dbtriplesl.nt

or they can be relative to the database directory, which is where the graph.info file resides
database2/dbtriples2.nt

they can specify a named subgraph with a URI
/lustre/scratch/users/jdoe/database3/dbquads3.nq <http://cray.com/namedGraphs/Graph3>

Triples and quads are supported in both the .nt and . nq files. Quads in the RDF file are not affected by the
optional graph name specified in the graph . info file. Lines containing only white space or lines beginning with
the comment character (‘#') are ignored. If the file is a mix of triples and quads, the triples become part of the
graph specified in the graph . info file. As mentioned earlier, when the application is launched via the cge-
launch command. The -d parameter specifies the database directory.

A WARNING: The -d parameter is mandatory. Launching CGE without specifying it will result in an error.

This directory must already exist if it has been populated with dataset.nt, dataset.nq, rules and/or a
graph_info file. If a compiled database is not present, a database is built using the graph. info,
dataset.nt, or dataset.nq file in that directory.

When the database has been built, the following files are saved in the database directory:
e dbQuads

e string_table_chars

e string_table chars.index

e graph.infofile is created (if not already present), which is only used to load in a database from RDF files
and is not used once the database is compiled.

CGE can begin executing queries and updates once the database has been built. When the application is
subsequently launched via the cge-launch command specifying the same directory, the dbQuads file is
detected, and the compiled database is read rather than the RDF.

CAUTION: If a user attempts to create a new database and the input data files do not contain any valid
triples, the database will exit with an error. The recommended way of creating an empty database is to
create a completely empty input file using the touch command and then starting the database.

CGE searches for a dataset in the following places when loading a dataset:

e If dbQuads exists, it will be used.

S3014 14

https://www.w3.org/TR/n-triples/

The CGE Database Build Process

If dbQuads does not exist, but graph . info exists, graph. info will be opened and read to obtain a list of
source data files, which will then be used to build a new dataset.

If neither dbQuads nor graph. info exist, but dataset.nt (or dataset.nq) exist, dataset.nt or
dataset.nqg will be used to build a new dataset.

If none of the above files exist, CGE will fail.

In each of these cases, if the file exists but is in some way invalid, CGE will fail.

Memory Requirements

Memory Requirement for reading a database from RDF - The amount of memory required to read a
database from RDF depends on the number of triples/quads in the database, the number of unique strings in
the dictionary, and the length of those strings. As a rule of thumb, however, the main memory should be 4
times the size of the RDF file(s). For example, for a 100 GiB triples file, at least 400 GiB (4 * 100) should be
used.

Memory Requirement for loading a compiled database - A compiled database consists primarily of the
dbQuads files, containing the compiled quads, and the string_table_chars files, containing the
dictionary. To enable CGE to load the database and execute meaningful queries, the main memory should be
20 times the sum of the sizes of dbQuads and the string_table_chars file. For example, if dbQuads is
32 GiB and string_table_chars is 256 GiB, at least (20 * (32 + 256)) GiB of memory should be used.

3.1 About Rules Files

One way to greatly increase the knowledge contained in the database is to provide a set of inferencing rules.
These rules are used during the database builds and in subsequent data updates (whether by SPARQL updates
or by editing the database) to create new relationships between objects. Providing inferencing rules grants
SPARQL queries access to inferred data, in addition to the raw data that was imported into the system.

Forward vs. Backward Chaining
There are two types of chaining:

Forward Chaining - In forward chaining, the inferencing rules are recursively applied to the database,
creating new quads and adding them to the database. If a implies b and a is in the database, we add b to the
database.

Backward Chaining - Rather than pre-computing quads in the database as in forward chaining, with
backward chaining the queries are modified to support those rules. If a implies b and a query searches for b,
it is changed to search for (a UNION b).

CGE's rules inference engine does not implement backward chaining, but it implements a highly parallel form of
forward chaining.

S3014 15

The CGE Database Build Process

3.2 About Inference Rules Files

Inferencing can be performed to generate additional relationships once the CGE builds a database. CGE
accomplishes this with a user defined rules file, which contains a set of rules specific to the data being processed.
The rules file format and semantics are based on Apache Jena rules.

In this version of CGE there are certain limitations to these rules:

e The @include construct is not supported.

e Calls to functions or built-in primitives, such as print, all, or max are not supported.
e The [...] syntax is not supported, including named rules.

e Backward chaining is not supported. Furthermore, backward syntax (<-) cannot be used to express forward
chaining.

e If multiple premises or conclusions (quads) are specified on either side of the -> in a single rule, each pair
must be separated by a space. The use of commas as separators is not supported.

e Native UTF-8 is not supported in rules files, however Unicode characters are supported within URIs, where
they are valid syntax.

A CAUTION: It is important to note that turning inferencing on/off is a database level setting. Turning
inferencing on can negatively impact performance. When this setting is set to true, the inferencer will run
during the first time that the database compiles and for subsequent updates. Since the whole database is
examined when inferencing occurs, turning this feature on after a period of time during which it was
turned off, will still affect the data that was loaded during the period when it was turned off. In other words,
if a user turns inferencing off and then adds or updates data, that data will also be inferenced once the
user turns the inferencing feature on again and performs another update.

Inference Rules File Format
The rules file has the form: one or more prefixes, followed by one or more rules:
left-hand side quad(s) -> right-hand side quad(s)

Comments are denoted by a # character at the beginning of a line. The quad, or quads, on the left-hand side of
the -> are the quads that the inferencer will attempt to match to infer the quad, or quads, on the right-hand side of
the ->. All of the left-hand-side rules must be satisfied in order for the inference to be made. Each rule must end
with a period (.) and a newline character, and each rule must be on its own line. The inferencer does not
recognize the escape character (\).

A quad takes the form:
(subject predicate object [graph])

It is mandatory to specify the subject, predicate and object. The graph field is optional. If a graph is not specified,
the inferencer will use the default graph and the rule will apply only to triples in that graph. The subject, predicate
and object fields can be any valid form of these fields as specified by the N-Quads grammar, except as described
in the list of limitations above. The graph field in a quad has the same valid forms as an object. If a rule contains
a URI, that URI must have existed in at least one of the data files that were included in the database. Alternatively,
to apply a new ontology that was not in the original data files, create a new file that contains any new objects and
predicates, and add that file to the database. The fields of a quad in a rule can also be variables, or shorthand
versions of strings built from a specified prefix. A variable must begin with a ? character, followed by a valid nhame.
A name can contain any of the following characters:

name := [a-zA-Z][_a-zA-Z0-9]*

S3014 16

The CGE Database Build Process

To specify one or more prefixes at the beginning of a rules file, before any rules, use the following syntax:
@prefix prefix_name: <http://urlstring#>

A rules file does not have to use prefixes. However they can be used to simplify quads within rules. For example,
prefixes are useful for creating shorthand versions of URIs that will be used repeatedly in the rules statements.

As with rules, each prefix must end with a period (.) and a newline, and each prefix must be on its own line.

Inferencing a Database

When a database is built with inferencing enabled and a rules. txt file is found in the database directory, CGE
will start applying the forward chaining rules found in that file to the triples/quads read from the RDF. The inferred
guads are added to the in-memory database and stored in the compiled dbQuads file. If inferencing is enabled,
the rules. txt file is also used when updating a database using SPARUL commands. As with any other quads
added by the SPARUL commands, the inferred quads are added to the in-memory database but are not written to
disk until the database is check-pointed.

NOTE: Inferencing is enabled by default and may be disabled by setting the value of the
cge.server. InferOnUpdate control parameter to 0. Control parameters are configuration keywords
that allow controlling server configuration settings.

Examples

The following prefix and rule examples are from the rule set used for the LUBM data.

A prefix statement

@prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench._owl#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

In this example the term rdf: type is shorthand for:
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>.

The inferencer expands the prefixed version of the string to the full string when creating the rules
used during inferencing. The rule in this example says that for a given triple ?x rdf:type
ub:Course in the default graph, infer a new triple ?x Is-type ub:Work and add it to the
default graph, as shown in the next example.

Inferring a new triple
Applying this rule:

(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

to this triple in the data input:

<http://www._Departmentl0.University0O.edu/Course6> <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#type> \
<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course>

infers (and adds) this new triple to the default graph:

S3014 17

The CGE Database Build Process

<http://www._Departmentl0.University0O.edu/Course6> <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#type> \
<http://www. lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Work>

A rule to establish a hierarchy of types

The following rule shows one way that ontology rules are used to establish a hierarchy of data
types.

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee) .
(?x rdf:type ub:Employee) -> (?x rdf:type ub:Person) .

A Faculty member is also an Employee, an Employee is also a Person, and so on. Such a rule
eliminates the need to explicitly including each desired type for each such item in the database.
Note that this rule did not use the graph field.

The following rule uses a variable for the graph field. This rule is excerpted from the RDFS rules
file, which is based on some of the Jena rules for RDFS and OWL. The complete rules file is
reproduced in Sample RDFS Rules File .

(?x ?a ?y ?g9) (?a owl:inverseOf ?b ?g9) -> (?y ?b ?x ?9) .

This rule is also an example of another way rules are used to establish relationships between
triples in the database. This rule states that if two predicates A and B are defined to be inverses of
each other and then if the triple (X A Y) appears in the database, then the system can infer that
the triple (Y B X) is also there, or should be there.

A rule to establish a hierarchy of types

The following rule shows one way that ontology rules are used to establish a hierarchy of data
types.

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee) .
(?x rdf:type ub:Employee) -> (?x rdf:type ub:Person) .

A Faculty member is also an Employee, an Employee is also a Person, and so on. Such a rule
eliminates the need to explicitly including each desired type for each such item in the database.
Note that this rule did not use the graph field. The following rule uses a variable for the graph
field. This rule is excerpted from the RDFS rules file, which is based on some of the Jena rules for
RDFS and OWL. The complete rules file is reproduced in Sample RDFS Rules File .

(?x ?a ?y ?g9) (?a owl:inverseOf ?b ?g9) -> (?y ?b ?x ?9) .

This rule is also an example of another way rules are used to establish relationships between
triples in the database. This rule states that if two predicates A and B are defined to be inverses of
each other and then if the triple (X A Y) appears in the database, then the system can infer that
the triple (Y B X) is also there, or should be there.

Cross-database rules

Another use of a rules file is to establish a relationship between triples in two different databases.
For example, if one were extending a U.S.-based database with some additional data from
France, it might streamline the process to include such rules as:

S3014 18

The CGE Database Build Process

(<x.cray.eg.france#personne> <x.cray.eg.france#nom> ?name <x.cray.eg.frenchdb>) -> \
(<x.cray.eg.us#person> <x.cray.eg.us#name> ?name <x.cray.eg.usdb>) .

By this rule the fields in the quads are translated into their English counterparts, consistent with
the data that is already in the American based database.

3.3 Sample RDFS Rules File

The following sample rules file is based on the Jena rules for RDFS and OWL. It is reproduced here courtesy of
wa3.org.

These rules are based on the Jena rules for rdfs, plus some Jena rules
for OWL.

#Line breaks inserted into some of these rules for formatting purposes.
#This was done for readability within this document, but is not valid syntax.
Make a prefix for rdf:type. The IRl is defined by the SPARQL to be

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type, which we can

shorthand with rdf:type by defining a prefix for rdf:

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

Shorthand for rdfs

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

Shorthand for owl

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

Skip this one.

[rdfland4: (?x ?p ?y) -> (?p rdf:type rdf:Property), (?x rdf:type
rdfs:Resource), (?y rdf:type rdfs:Resource)]

Add rule for rdfs 2:

[rdfs2: (?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type ?c)]
(?x ?p ?y ?9) (?p rdfs:domain ?c ?g) -> (?x rdf:type ?c ?g) -

[rdfs2a: (?x rdfs:domain ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:domain ?z)] (?
y rdfs:subClassOf ?z ?g) (?x rdfs:domain ?y ?g) -

> (?x rdfs:domain ?z ?9) .

Add rule for rdfs 3:

[rdfs3: (?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)]
x ?p ?y ?0) (?p rdfs:range ?c ?9) -> (?y rdf:type ?c ?9) .

[rdfs3a: (?x rdfs:range ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:range ?z)]
(?y rdfs:subClassOf ?z ?g) (?x rdfs:range ?y ?g) -> (?x rdfs:range ?z ?9) .
Add rule for rdfs 5a:

[rdfsba: (?a rdfs:subPropertyOf ?b), (?b rdfs:subPropertyOf ?c) ->
(?a rdfs:subPropertyOf ?c)]

S3014 19

The CGE Database Build Process

(?a rdfs:subPropertyOf ?b ?g) (?b rdfs:subPropertyOf ?c ?g) -> (?a
rdfs:subPropertyOf ?c ?g) .

Add rule for rdfs 6:

[rdfs6: (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)]
(?a ?p ?b ?29) (?p rdfs:subPropertyOf ?q ?g) -> (Pa ?q ?b ?9) -

Skip this one.
[rdfs7: (?a rdf:type rdfs:Class) -> (?a rdfs:subClassOf ?a)]
Add rule for rdfs 8:

[rdfs8: (?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) ->
(?a rdfs:subClassOf ?c)]
(?a rdfs:subClassOf ?b ?g) (?b rdfs:subClassOf ?c ?g) -> (?a rdfs:subClassOf ?c ?

g) -
Add rule for rdfs 9:

[rdfs9: (?x rdfs:subClassOf ?y), (?a rdf:type ?x) ->

(?a rdf:type ?y)]

Put the quad with the most potential matches as the first quad to
try and improve performance since since the first quads are handled
in parallel.

(?a rdf:type ?x ?9) (?x rdfs:subClassOf ?y ?g) -> (?a rdf:type ?y ?9) .

HHHHH

Add rules for inverse property from owl.

[inverseOfl: (?P owl:inverseOf ?Q) -> (?Q owl:inverseOf ?P)]

[inverseOf2: (?P owl:inverseOf ?Q), (?X ?P ?2Y) -> (?2Y ?2Q ?X)]

We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent

potential performance problems.

(?a owl:inverseOf ?b ?g) -> (?b owl:inverseOf

?a ?9) - (?x ?a ?y ?g) (?a owl:inverseOf ?b

?0) > (?y ?b ?x ?g) .

Add rule for owl transitive property.

[transitiveProperyl: (?P rdf:type owl:TransitiveProperty),

(?A ?P ?B), (?B ?P ?C) -> (?A ?P ?0)]

We again process the quad that most likely will have the largest number

of potential matches first (make it first quad in rule) to prevent

potential performance problems.

(?a ?p ?b ?g) (?p rdf:type owl:TransitiveProperty ?g) (?b ?p ?c ?g) -> (?a ?p ?c
9 -

Skip this one.

[rdfsl1l0: (?x rdf:type rdfs:ContainerMembershipProperty) -> (?x
rdfs:subPropertyOf rdfs:member)]

NOTE: Each prefix and rule must appear on its own line. Some prefixes and rules and are shown on
multiple lines in the sample above due to lack of space.

?

S3014

20

The CGE Database Build Process

3.4 Limitations to Jena Rules Syntax

This release of CGE does not support all aspects of Jena syntax and semantics for rules. Specifically:
e The @include construct is not supported.

e Calls to functions or built-in primitives, such as print, all, or max are not supported.

e The [...] syntax is not supported, including named rules.

e Backward chaining is not supported. Furthermore, backward syntax (<-) cannot be used to express forward
chaining.

e If multiple premises or conclusions (quads) are specified on either side of the -> in a single rule, each pair
must be separated by a space. The use of commas as separators is not supported.

e Native UTF-8 is not supported in rules files, however Unicode characters are supported within URIs, where
they are valid syntax.

NOTE: It is important to note that turning inferencing on/off is a database level setting. Turning
inferencing on can negatively impact performance. When this setting is set to true, the inferencer will run
during the first time that the database compiles and for subsequent updates. Since the whole database is
examined when inferencing occurs, turning this feature on after a period of time during which it was
turned off, will still affect the data that was loaded during the period when it was turned off. In other words,
if a user turns inferencing off and then adds or updates data, that data will also be inferenced once the
user turns the inferencing feature on again and performs another update.

S3014 21

Launch the CGE Server Using the cge-launch Command

4 Launch the CGE Server Using the cge-launch
Command

The cge-launch command launches the query engine and enables creating and building a database in a single
step. It handles the details of allocating batch resources, setting up the launch environment, and composing a
command line for the query engine on a given platform.

Following is an example of using cge-launch:

$ cge-launch -o pathtoResultsFile -d path -1 logfile

In the preceding statement:

e pat ht oResul t sFi | e - specifies the directory that will contain the results of queries and/or updates
e pat h - specifies the path to the database directory

e | ogfil e - specifies the log file that will contain the command and server output.

The following options of the cage-launch command must be specified when launching the server:

e The -d option that specifies the path to the directory where the data set resides.

e The -0 option that specifies the path to a directory where the result files produced by queries need to be
placed.

Both the —d and -0 options accept:
e UNIX style pathnames as naming files on a POSIX compliant file system
e URLs of the following forms:
o TFile:z//uni x_pat hname - This form is the equivalent of the Unix Style Pathname in URL form

o hdfs://nane-server-address[:nane-server-port-nunber J/HDFS pat hnane - This type of
format indicates that a Hadoop Distributed File System (HDFS) file or directory is known to the specified
name server and is located within that name-server's name space at HDFS_pat hnane.

Both the aforementioned forms must refer to a file/directory that is shared across and equally accessible from
all nodes. CGE will determine where to look for this file/directory based on recognizing one of the
aforementioned path formats.

When using checkpoints:

e If afull URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a file URL (i.e. Fi le:/path) will be written to the POSIX file system at
the pathname specified in the URL.

e If arelative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE start up.

e If a full pathname but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE start up, so, if CGE was started using an HDFS URL, the

S3014 22

Launch the CGE Server Using the cge-launch Command

checkpoint will be written at the specified path within HDFS, if CGE was started with a simple pathname or file
URL, the checkpoint will be written at the specified path within the POSIX file space.

TIP: Relaunch CGE if the system displays an error message saying, "Server failed to start up”
upon execution of the cge-launch command.

For more information, see the cge-launch(1) man page.

S3014 23

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5 Mechanisms to Interact with the Cray Graph Engine
(CGE) Datahase

The following mechanisms can be used to interact with the CGE database:
e CGE Graphical User Interface (GUI)
e CGE Command Line Interface (CLI)

51 CGECLI

The CGE CLI provides access to all the core functionality of the database via the command line. This interface is
provided as part of the standard installation of CGE. The default JVM’s maximum memory allocation when
launching cge-cli is 2GB.

The list of available CGE CLI commands can be retrieved by executing the cge-cli help command without
any options, as shown below:

$ cge-cli help
Table 1. CGE CLI Commands and Descriptions

Command Description

cge-cli checkpoint Requests checkpoint creation.

cge-cli echo Allows sending echo requests, which can be used to ping CGE.

cge-cli fe Launches a web-based interface for accessing the server and provides
SPARQL endpoints, which can be accessed via standard SPARQL APIs
and tooling.

cge-cli help Displays help information.

cge-cli get-configuration Determines the locations being searched for configuration files and
effective properties.

cge-cli keyword-lookup Provides help with converting keywords between names and indexes to
help determine the log options to use with other commands.

cge-cli log-info Retrieves the server's current logging setup.

cge-cli log-lookup Provides help with converting log levels between names and values to

help determine the log options to use with other commands.

cge-cli log-reconfigure Reconfigures the default logging setup of the server. The logging
configuration changes persist until the server is shut down.

S3014 24

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Command Description
cge-cli nvp-info Retrieves the current NVP setup of the server
cge-cli nvp-reconfigure Reconfigures the default NVPs of the server. The NVP configuration

changes persist until the server is shut down.

cge-cli output-info Retrieves the current output directory for results from the server.

cge-cli output-reconfigure |Requests that the output directory for results be changed. The changes
made persist until the server is shut down.

cge-cli query Runs queries against the server, takes in SPARQL queries from files or
from stdin only when no other query options are provided

cge-cli sparqgl Runs a mixture of queries and/or updates against the server, takes in
SPARQL queries/updates from files or from stdin only when no other
input options are provided

cge-cli update Runs updates against the server, takes in SPARQL updates from files or
from stdin only when no other update options are provided

cge-launch Launches the CGE Query Engine

cge-cli generate keystore Creates/inspects a Java keystore file, which is used to enable SSL
support for the fe command.

cge-cli generate Generates a Shiro configuration template that can be customized as
desired.

cge-cli generate properties |Creates a properties file that can be used to provide a variety of
configuration to commands, without needing to specify it directly at the
command line.

Use the cge-cli help command to retrieve help information for a specific CGE command, as shown in the
following example:

$ cge-cli help conmand

Command Output
CGE CLI commands produce the following types of output:

e Logging - Provides diagnostic information about what a command is doing and is useful primarily for
diagnosing any issues that may occur. All logging output goes to standard error.

e Command Output - Provides actual informational output of the command'’s status, such as query results,
update success/failure etc. All command output is transmitted to the standard output.

As each type of output goes to a different output stream. Output can easily be separated using standard shell
redirection, as shown in the following example:

$ cge-cli query example.rq > results.txt 2> query-client.log

The above example redirects the command output to the results. txt file and the logging to
query-client.logfile.

S3014 25

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.1 Cray Graph Engine (CGE) Command Output

CGE CLI commands produce the following types of output:

e Logging - Provides diagnostic information about what a command is doing and is useful primarily for
diagnosing any issues that may occur. All logging output goes to standard error.

e Command Output - Provides actual informational output of the command'’s status, such as query results,
update success/failure etc. All command output is transmitted to the standard output.

As each type of output goes to a different output stream, output can easily be separated using standard shell

redirection e.g.

$ cge-cli query example.rq > results.txt 2> query-client.log

The above example redirects the command output to the results. txt file and the logging to
query-client. log file.

5.1.2 CGE CLI Common Options

Certain options that are common to all commands and are provided by the CGE CLI are described in the following

table:

Table 2. Common Command Line Options

Option

Argument(s)

Default
Value

Example

Purpose

Communication Option

(7]

—--db-host
--dbhost

Host

localhost

—--db-host nachi ne

Specifies the host
on which the
database is
running

--db-port
--dbport

Port

3750

--db-port 12345

Specifies the port
on which the
database is
running

-—identity

Identity directory

~/.ssh

-1 /ny/cust on/identity

Specifies the path
to a SSH identity
directory to use
for authenticating
to the server.
When omitted,
several default
locations are tried
and the first valid
location is used

--keep-alive-
timeout

Seconds

60

--keep-alive-timeout 30

Configures the
connection keep
alive time out. As

S3014

26

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option Argument(s) Default Example Purpose
Value

of CGE 3.1UPO00,
connections are
cached and kept
alive. This results
in improved
performance,
especially in
situations that
require many
requests to be
issued to the
database.

--no-keep-alive N/A N/A --no-keep-alive Disables
connection keep
alive. This may be
useful in multi
user
environments,
where many users
are sharing the
same database

--trust-keys N/A N/A --trust-keys When this option
is set, new host
keys will
automatically be
trusted even when
running in non-
interactive mode.
This is useful in
environments
where the
database port
(and thus the host
and port
combination
required to trust
the key for) may
frequently change.
This option should
only be used
when connecting
to trusted
database servers.

--username Username alice --username alice When set, use this
username to
connect to the
database. In order
for this to work, it
is required to have

S3014 27

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

access to a key
pair which has
been authorized
for the given
username.
Therefore, this
does not permit
the user to
impersonate
arbitrary users,
instead it allows
the user to act as
another user only
if the user has an
appropriate key
pair.

Client Logging Options

--debug

--verbose

N/A

N/A

--verbose

Enables verbose
mode, which
includes setting
the log level to
debug. All logging
output goes to
stderr, allowing
it to be separated
from command
output, which
goes to stdout.

If the ——quiet
option is also
specified, then the
verbose mode
takes precedence.

--quiet

N/A

N/A

--quiet

Enables quiet
mode, which sets
the log level to
error, causes
little/no logging to
go stderr. All
logging output is
transmitted to
stderr, allowing
it to be separated
from command
output, which is
transmitted to
stdout.

S3014

28

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

If one of the
verbose mode
options is also
specified,
precedence is
given to the
verbose mode.

--trace

N/A

N/A

--trace

Enables trace
mode, which
includes setting
the log level to
trace. All logging
output is
transmitted to
stderr, allowing
it to be separated
from the
command output,
which is sent to
stdout.

If the ——quiet
option is also
specified,
precedence is
given to the
verbose mode

--reveal

--reveal

Reveals user data
in client side
logging output. By
default any
logging that
contains items
considered to be
user data e.g.
Queries, query
plans etc is
obscured to
prevent data
leakage. Enabling
this option
disables that
functionality.

Server Configuration O

ptions

--nvp

Name and value

N/A

--nvp
cge.DoMemorylLeakDetectio
nl

Sets a NVP to
send to the server
as part of the
request. Usually

S3014

29

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

necessary only if
asked by Cray
support to enable
advanced options
for debugging an
issue.

--log-disable

N/A

N/A

--log-disable

Disables all server
side logging for
the request

--log-level

Log | evel

N/A

--log-level 16
Supported log levels include:
e 0=None

e 1=0FfF

e 2=Error

e 4=Warn

e 8=Info

e 16=Debug

e 32=Trace

Changes the
server logging
level for the
request.

Supported values
may be obtained
by using the log-
lookup
command.

--log-string

Log_string

N/A

--log-level Foo

Specifies a string
that will be
included in every
server log line
pertaining to the
request. This is
useful if it is
required to isolate
and extract the log
lines specific to a
request.

--log-keyword-
level

Keywor d_| evel

N/A

--log-keyword-level 41
32

Changes the
server logging
level for a specific
logging keyword.
The database
server uses a
keyword-based
system that
enables extracting
log levels specific
to certain parts of
the request
processing or
changing the log

S3014

30

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Argument(s)

Default
Value

Example

Purpose

level for a specific
keyword.

Supported values
may be obtained
by using the log-
lookup and
keyword-
lookup
commands.

--log-global-
keyword

Keywor d

N/A

--log-global-keyword 41

Specifies that a
given keyword
should be
included in all log
lines.

Miscellaneous Options

-h command

--help command

N/A

N/A

--help checkpoint

Prints the help
information for the
command rather
than running the
command

--batch

--non-interactive

N/A

N/A

--non-interactive

When set, this
option guarantees
that the script will
never prompt the
user for input, i.e.
it will never use
stdin. This may
cause some
commands to fail
if they would
require any user
input other than
the provided
options. This is
useful when
invoking the CLI in
a non-interactive
context.

--configDir

--config-dir

Directory

N/A

--configDir/confi gpath

Sets the first
location to search
for configuration
files

N/A

N/A

Used to separate
the options from
the arguments to
the command.

S3014

31

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option Argument(s) Default Example Purpose
Value

This is useful if
arguments may
be mistaken for
options. Any
arguments seen
after the —- are
treated as
arguments even if
they could
otherwise be
considered as
options.

5.1.3 SSH Identities

SSH is used to encrypt communications with the database and to verify that a user has authorized access to the
database. Use the —-i or -—identity options to specify an identity directory or directories. The following
locations will be searched for keys in the absence of these options:

1. The $CGE_CONFIG_DIR_NAME environment variable $CGE_CONFI1G_DIR_NAME, if defined

2. The .cge directory, if present under a user's home directory and as defined by the $HOME environment
variable.

3. The .ssh directory, if present under a user's home directory and as defined by the $HOME environment
variable.

Only keys from the first directory found to contain keys will be used. Enabling verbose mode displays log output,
detailing which keys are being used.

5.1.4 CGE Hadoop HDFS Configuration

The CGE CLI requires access to HDFS configuration to retrieve data results and configuration files that may exist
there. As such, the value of the HADOOP_CONF_DIR environment variable is inspected and relevant
configurations files from this directory are used if this variable specifies a valid directory, otherwise the default
location /etc/hadoop/conf is searched. The system will display log output, which lists configurations files that
are used if the verbose mode is enabled.

HDFS and Lustre URL Path Locations

Specify a full URL to the Lustre file system when check-pointing to Lustre. The pathname specified is interpreted
relative to the scheme and authority of the data directory URL. To checkpoint to a different scheme, specify the
scheme's URL. While check-pointing to Lustre from HDFS, the following path will inform the checkpoint
command where to store the data:

file:/mnt/lustre/ny/data/di rectory

e The checkpoint is written exactly as specified by the URL if a full URL is used. This means that an HDFS URL
will cause the checkpoint to be written to the path specified in the URL on the HDFS file system described by

S3014 32

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

the rest of the URL, and a file URL (i.e. ¥ile:/path) will be written to the POSIX file system at the
pathname specified in the URL.

The checkpoint will be written in a directory relative to the data directory used at CGE start up if a relative
path (i.e., a simple path with no leading /' character) is used.

The pathname will be interpreted within the space specified by the URL of the data directory used at CGE
start up if a full pathname but no URL is specified. The checkpoint will be written at the specified path within
HDFS if CGE was started using an HDFS URL. The checkpoint will be written at the specified path within the
POSIX file space if CGE was started with a simple pathname or file URL.

5.1.5 Cray Graph Engine (CGE) Properties File

A cge.properties file can be used to specify some command options, thus eliminating the need to explicitly
state them with every command invocation.

The properties file can be:

A

specified via the --configDir option

specified via the $CGE_CONFIG_FILE_NAME environment variable

specified via the $CGE_CONFIG_D IR_NAME environment variable

located in the working directory from which the command-line interface is launched

located in the . cge directory, which in turn is located under the home directory, as defined by the $HOME
environment variable

Only the first properties file found will be used. Enabling verbose mode displays output detailing exactly which
properties file (if any) are used. If present, values from this file are used unless these are specifically overridden
using command line options. Use the get-configuration command to view additional detail, such as the
locations being searched, which file is used, and the effective properties. The following properties are currently
supported:

Table 3. CGE Property Files

Property Supported Values Equivalent Description
Command Line
Option
cge.cli.db.host Host --db-host Host name of a
CGE server that
--dbhost the CLI will
connect to if the
--dbhost option
is not used.
cge.cli.db.port Por t --db-port Port number of a
—_dbport CGE server that
P the CLI will
connect to if the
--dbport
option is not
used.
cge.cli.trust-keys True / False --trust-keys Eliminates the
need for a first-

S3014 33

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Property

Supported Values

Equivalent
Command Line
Option

Description

time interactive
CLI command
each time you
start using a
server on a new
TCP/IP port
number
combination.

cge.cli.server.host

ServerHost

--server-host

Sets the default
host on which the
front end
launched by the
Ffe Command will
accept HTTP
requests

cge. -server.port

cge.cli.server.port

--server-port

Sets the default
port number on
which the front
end launched by
the fe command
will accept HTTP
requests

cge.cli.server.security

ShiroConfiguration

--security

Sets the Apache
Shiro
configuration file
used to configure
user
authentication for
the front end.

cge.cli._server.ssl._enabled

True/False

--ssl

Sets whether SSL
is enabled for the
front end.

cge.cli._server.ssl._lax

True/False

--ssl-lax

Sets whether the
SSL configuration
for the front end
should permit
older cyphers and
protocols.

cge.cli._server.ssl_keystore

KeystoreFile

--keystore

Sets the location
of the Java key
store used to
provide the SSL
certificate for the
front en.

S3014

34

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Property Supported Values Equivalent Description
Command Line
Option
cge.cli.server.ssl.password KeystorePassword Sets the

password needed
to unlock the
Java key store
which provides
the SSL
certificate for the
front end.

cge.cli.server.ssl._key-password |CertificatePassword Sets the
password needed
to unlock the SSL
certificate within
the Java
keystore.

If there is a properties file that overrides the default value, it will be indicated in the logging and will contain a
warning to alert the user of the fact that they have set it in the properties file.

A CAUTION: Leaving an out of date properties file around can interfere with correct communications with
the database server with no clear reason.

Defining Command Aliases
The properties file may also be used to define command aliases. These are essentially shortcuts to other
commands. An alias is defined in the following manner:

$ cge.cli.alias.algebra=compile -c algebra

This defines a new alias algebra which simply invokes the compile command passing in the —c Algebra option.
The CLI can then be invoked using the following command:

$ cge-cli algebra example.rqg

This would compile the given query into algebra and is equivalent to running the following command:

$ cge-cli compile -c algebra example.rq

Restrictions
Command aliases are subject to the following restrictions:

e Aliases cannot override built-in commands.

e Aliases cannot be defined recursively, which means that an alias cannot be defined in terms of another alias.

Advanced Command Alias Definition
Certain advanced functions can be performed on aliases, such as using positional parameters. For example,
consider the following definition:

$ cge.cli.alias.c=compile -c $1

S3014 35

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

This creates the c alias, which invokes the compi le command. However, it uses a positional parameter for the
value of the —-c option. With this definition, the CLI can be invoked in the following manner:

$ cge-cli c rpn example.rq

Here, the first argument after the alias is injected into the expansion of the alias so this is equivalent to running
the following:

$ cge-cli compile -c rpn example.rq

CAUTION: A positional parameter that receives no value will be passed through as-is, which will likely
result in parser errors.

5.1.6 Create Checkpoints Using the CGE checkpoint Command

The checkpoint command is used to request checkpoint creation. A checkpoint is a dump to disk of the current
database state, optionally including a NQuads file that can be used to export the database to other tools. It is a
compiled database consisting of a dbQuads, string_table_chars, and string_table_chars. index file.

This command simply accepts a directory path to create the checkpoint in. The checkpoint directory is specified
as a URI, which may be a full path, such as file:// or hdfs:///URL. It can also be a relative URI, in which
case it will be resolved relative to the base URI on the server, which is the current database directory. If a relative
path is used, the path will be evaluated relative to the data directory of the running CGE instance.

By using that directory's path as the checkpoint's path, it is possible to checkpoint to the same data directory the
user started from. A successfully created checkpoint will overwrite the existing dbQuads, string_table_chars
and string_table_chars. index files, so that the new dataset is retrieved the next time the user starts from
that directory. Alternatively, it is also possible to checkpoint to another directory. If the directory already contains a
dataset, and the checkpoint succeeds, the dataset will be overwritten.

If the data directory is being moved to a different location, shutdown any instance of CGE that was launched
using that data directory before relaunching CGE.

While using the checkpoint command:

e If afull URL is used, the checkpoint is written exactly as specified by the URL, which means that an HDFS
URL will cause the checkpoint to be written to the path specified in the URL on the HDFS file system
described by the rest of the URL, and a FILE URL (i.e. File:/path) will be written to the POSIX file system
at the pathname specified in the URL.

e |[f arelative path (i.e. a simple path with no leading / character) is used, the checkpoint will be written in a
directory relative to the data directory used at CGE start up.

e If a full pathname, but not a URL is specified, the pathname will be interpreted within the space specified by
the URL of the data directory used at CGE start up. Therefore, if CGE was started using an HDFS URL, the
checkpoint will be written at the specified path within HDFS, otherwise if CGE was started with a simple
pathname or FILE URL, the checkpoint will be written at the specified path within the POSIX file space.

e The checkpoint command allows overwriting existing checkpoints. However it will do so in such a way that
it guarantees that this is an atomic operation. This means that either the checkpoint is overwritten and
replaced, or the previous checkpoint will continue to exist.

For more information, see the cge-cli-checkpoint(l) man page.

S3014 36

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Examples

Use a relative URL to a file

$ cge-cli checkpoint /lus/scratch/user/db/cpl

Use a HDFS URL

$ cge-cli checkpoint hdfs:///user/db/cpl

Use NQuads

If an NQuads file needs to be generated for use with other RDF and SPARQL tools, use the -q or
—-—quads option of the checkpoint command, as shown in the following example:

$ cge-cli checkpoint --quads /lus/scratch/user/db/cpl
Checkpoint creation succeeded

5.1.7 Compile SPARQL Commands Using the CGE compi e Command

The compi le command is used to compile SPARQL commands into the logical and/or physical plans that the
database server will use for command execution. This can be useful for understanding how the system is
interpreting and optimizing a query or update. Specify multiple files to compile a large number of files at the same

time.

Compilation Modes

The -c/--compi ler-mode option is used to specify the desired compilation output type. Supported values

include:

Table 4. Compilation Modes

Compilation Mode

Output Mode

algebra

The optimized SPARQL algebra for the query/update as text in
SPARQL Set Expression (SSE) format. This can be thought of as
the logical plan for the query.

raw-algebra

The unoptimized SPARQL algebra for the query/update as text in
SSE format. This is the unoptimized logical plan for the query.

rpn

The physical plan for the query/update in binary form. Primarily
intended for Cray developer use only.

rpn-string

The physical plan for the query/update in text. Primarily intended
for Cray developer use only.

all

Produces all of the above.

S3014

37

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

This option may be specified multiple times to request multiple output formats. It wil supersede any individual
format requests if the al I option is also specified. The -a or --al l options can also be specified as a shortcut
for specifying the -c al I option.

Compilation Output

By default, the compilation output is sent to standard output and can be redirected to a file if desired. It is
recommended to use the —-F or —-Fi les option if multiple files need to be processed, or if more than one output
type needs to be generated. This will output a file for each input and compilation mode combination in the
directory that the cge-cli command is being executed. The output file names are automatically generated,
based upon the input file name by replacing the extension with the appropriate extension for the output type:

Table 5. Compilation Output

Output Type Output File Extension
algebra .algebra
raw-algebra -.rawalgebra

rpn .rpn

rpn-string -rpnstring

For more information, see the cge-cli-compile(1) man page.

Examples

The following example will compile the SPARQL command found in the example. rq file into
algebraic form and display it to standard output.

$ cge-cli compile -c algebra example.rq

Suppose that there is a file named getTenRows. rq that contains the following SPARQL query:

spargl query: select * {?s ?p ?0} limit 10

Now execute the compi le command on getTenRows .qr

$ cge-cli compile -c all getTenRows.rq --files

0 [main] INFO com.cray.cge.parser.spargl.algebra.OpAsRpnMessage - Started Algebra to RPN message conversion

2 [main] INFO com.cray.cge.parser.spargl.algebra.OpAsRpnMessage - Finished Algebra to RPN message conversion (3
operations)

The above command would create the following files:
e getTenRows.rawalgebra

e getTenRows.rawalgebra

e getTenRows.rpn

e getTenRows.rpnstring

S3014 38

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.8 Check the Database State Using the CGE echo Command

The echo command checks whether or not the database server is up and able to respond to requests by sending
some data to the database server and verifying that the server echoes it back correctly. If the data is sent
successfully, the system returns a message saying: Echoed data received and validated
successftully.

For more information, see the cge-cli-echo(1) man page.

Example: Retrieve Database Status

The following command will send the data Test data to the server.

$ cge-cli echo Test data

5.1.9 Launch the CGE Web Server Using the fe Command

The fe command launches a web server that provides a user interface and SPARQL endpoints to CGE. In order
to stream query results over HTTP, this command must be running on a host that has access to the same file
system that the database server is writing results to. Typically, this means executing the fe command on a login
node of the system running CGE. Since it is often required to have the user interface available for a long period, it
is recommended to launch it in the background so that it is resistant to terminal disconnects.

For example:

$ nohup cge-cli fe > web-server.log 2>&1 &

When the CGE user interface server has started, the system returns a message indicating that the server has
started and is ready to accept HTTP requests. Once the user interface has been launched, it is possible to access
the SPARQL endpoints on the machine. The port used is displayed in the log message. The default port used is
3756. Use the —-server-port port to specify a different port, if needed, to run the web server on.

$ cge-cli fe --server-port 12345
If an alternative port is chosen to run the web server, it is important to modify the URLs appropriately when
accessing the user interface.

Server Connection Verification
Use the —-ping option of the fe command to verify that the database server is up and running when starting the
web server.

$ cge-cli fe --ping

For more information, see the cge-cli-fe(1) man page.

5.1.10 Search Configuration File Locations Using the get-configuration Command

The get-configuration command determines the locations of CGE configuration files and the effective
properties. This command does not communicate with the database. It inspects the user's local environment and
provides information to help understand how configuration is being discovered.

S3014 39

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

The output of this command includes relevant environment variables, the locations searched for configuration,
and whether a file was found. If a file was found, the path to that file is also displayed. Finally, all CGE related
properties from that file are listed along with their values, as part of the output.

Example: Search Locations of Configuration Files

$ cge-cli get-configuration

/opt/cray/cge/

2.5.1183 _r6061cOb_fe2.5.0_20160926.144651_1 2016101912/bin/cge-cli:
line 8: pushd: .: Permission denied

/opt/cray/cge/

2.5.1183_r6061c0Ob_fe2.5.0_20160926.144651_1 2016101912/bin/cge-cli:
line 11: popd: directory stack empty

0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled,
logs will obscure/omit user data. Set

cge.server .RevealUserDatalnLogs=1 in the in-scope cge.properties file
to disable this behaviour.

Environment Variables:

CGE_CONFI1G_FILE_NAME=

CGE_CONFI1G_DIR_NAME=

HOME=/home/crayusr

Searched Locations:

1 - /opt/cray/cge/
2.5.1183 r6061cOb_fe2.5.0 20160926.144651 1 2016101912/bin
2 - /home/crayusr/.cge

Properties File Found? No

Properties

5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the
keyword-lookup Command

The keyword-lookup command provides the means to lookup mappings between keyword IDs and user-
friendly keyword names. These can be used to find the values that need to be passed to the log options when
invoking other commands.

For more information, see the cge-cli-keyword-lookup(1) man page.

Examples

Use the keyword-l1ookup command to lookup a specific keyword ID

$ cge-cli log-lookup 28

/opt/cray/cge/2.5.1183_r6061cOb_fe2.5.0_20160926.144651_1 2016101912/bin/cge-cli: \
line 8: pushd: .: Permission denied
/opt/cray/cge/2.5.1183_r6061cOb_fe2.5.0_20160926.144651_1 2016101912/bin/cge-cli: \
line 11: popd: directory stack empty

0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled, \

logs will obscure/omit user data. Set cge.server.RevealUserDatalnLogs=1 \

in the in-scope cge.properties file to disable this behaviour.

28=0RDR

S3014 40

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Use the keyword-lookup command to lookup a keyword ID.

$ cge-cli keyword-lookup QRY

Use the keyword-l1ookup command without any arguments to display the full
mapping of levels to names

$ cge-cli keyword-lookup

5.1.12 Retrieve Default Server Logging Information Using the 1og-1nfo Command

The log-info command retrieves information about the server's default logging configuration. However, the
information returned by the log-info command does not necessarily reflect the logging settings for individual

requests since all commands may use the CGE command-line options to change the log configuration for specific
requests.

The server's default log configuration can be used via the log-reconfigure command, if needed.

For more information, see cge-cli-log-info(1) and cge-cli-log-reconfigure(l) man pages.

Examples

In the following example, the text: 'Default Level Info (8)'indicates that the serveris
configured with default settings.

$ cge-cli log-info

0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand -
Making request. ..

Server Log Configuration:

Version 1 - Printing Enabled - Default Level Info (8) - Keyword Levels
Set {0-42}

The following example indicates that the server is configured with non-default settings.

$ cge-cli log-info

O [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand -
Making request...

Server Log Configuration:

Version 1 - Printing Enabled - Default Level Warn (4) - Keyword Levels
Set {0-42}

Keyword TCP (Index 41) = Debug (16)

S3014

41

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names
Using the 1og-1ookup Command

The log-l1ookup command provides the means to lookup mappings between log level values and user-friendly
log level names. These can be used to find the values that need to be passed to the log options, when invoking
other commands.

An example of using the 1og-l1ookup command for looking up the log level that has a value of 16 is shown
below:

Examples

Look up the log level that has a value of 16

$ cge-cli log-lookup 16

Look up a level based on the name

$ cge-cli log-lookup Warn

Retrieve the full mapping of levels to names

$ cge-cli log-lookup

For more information, see the cge-cli-log-lookup(1) man page.

5.1.14 Change the Default Logging Configuration of the CGE Server Using the 10g-
reconfigure Command

The log-reconfigure command changes the default logging configuration of the server. The information
returned by the log-info command does not necessarily reflect the logging settings for individual requests since
all commands may use the CLI option to change the log configuration for specific requests.

The system will display a message if an incorrect value is specified for the log-level. Upon successful execution of
this command, the system returns the message: "Received success response".

TIP: It is recommended to verify that the log configuration changes have been implemented by using the
log-info command. It may also be helpful to use the log-l1ookup and keyword-lookup commands
to determine the values that need to be passed the options, in order to configure logging settings as
desired.

1 WARNING: Do not set the server log levels to DEBUG or TRACE, especially, if the CGE server is running
with a large number of images.

For more information, see the cge-cli-log-reconfigure(l) man page.

S3014 42

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Example: Change the Default Logging Configuration

$ cge-cli log-reconfigure --log-level 16

5.1.15 Retrieve the Default NVP Configurations Using the CGE nvp-i1nfo Command

The nvp-info command retrieves the default server NVP configuration. The information retrieved does not
necessarily reflect the NVP settings for individual requests, since commands may change the NVP configuration
for specific requests.

For more information, see the cge-cli-nvp-info(1) man page.

Example: Retrieve Default NVP Configurations

$ cge-cli nvp-info

5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure
Command
The nvp-reconfigure command modifies the server's default NVP configuration.

Upon successful execution of this command, the system returns a message saying: "Received success
response". Configuration changes are not necessarily reflected in the NVP settings for individual requests since
commands may change the NVP configuration for specific requests. It is recommended to use the nvp-info
command to verify that the changes have taken effect, as shown below:

$ cge-cli nvp-info

Most of the supported NPVs have a defined range of acceptable values. Values specified outside of those ranges
will be normalized into the range for that NVP. Unsupported NVPs are simply ignored, with a warning printed in
the database logs and their values will not be stored by the server.

For more information, see the cge-cli-nvp-reconfigure(l) man page.

5.1.17 Display Server Output Directory Information Using the output-info Command

The output-info command retrieves information about the current output directory of the server. This is the
directory that the server writes query results to.

For more information, see the cge-cli-output-info(1l) man page.

Example: Display Server Output Directory Information

$ cge-cli output-info

S3014 43

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure
Command

The output-reconfigure command modifies the server's output directory that it writes query results to. This
directory is specified as a URI. URLs of type file:// or hdfs:// may be used. If a relative URI is specified, it
will be resolved relative to the base URI of the server, which is the current database directory.

TIP: After executing the output-reconfigure command, it is recommended to use the output-info
command to verify that the changes have taken effect, as shown below:
$ cge-cli output-info

For more information, see the cge-cli-output-reconfigure(1l) man page.

Example: Modify the server's output directory

$ cge-cli output-reconfigure /new/out put /di rectory

5.1.19 Execute Queries Using the CGE query Command

The query command is used to execute queries against the running database. This command can be used to
execute a single query or a sequence of queries.

Queries that need to be executed may be specified in a number of ways:

e By providing a list of files, which contain lists of files containing queries to be executed

e By providing the names of query files directly

e Via stdin (only if no queries are specified in other ways and the —-—-non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, those queries are executed before any directly specified queries. This command may only be used to
execute SPARQL queries. To execute updates, use the update command or to execute mixtures of queries and
updates use the sparqgl command.

An example of using the query command is shown below:

$ cge-cli query --list queries.txt extra-query.rq

The above command will execute all the queries specified in the queries. txt file before executing the query
specified in the extra-query.rq file. Executing queries by default produces only information about where to
obtain the results and not the result itself.

An example of using the query command is shown below:

$ cge-cli query types.rq
0O 28 1756 0 fTile:///lus/scratch/rvesse/results/queryResults.
2016-06-13T13.47.227000.28889.tsv

Here we can see that the database returns a simple tab separated string with the following fields:

Table 6. quer y Command's Output Description

Column Index [Information

0 Status - will be O for successful queries

S3014 44

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Column Index |[Information

1 Result count - number of results returned

2 Result size - results size in bytes

3 Execution time - query execution time in seconds

4 Results location - path to the file containing the results
5 Error message - should be blank for successful queries

Results File Format

The file containing the results is in SPARQL Results TSV format and contains only the tabular results for the
guery. This means that if an ASK/CONSTRUCT/DESCRIBE query has been created, the results file will not contain
the final results.

Printing Results
This simple format makes it easy to process with standard command line tools. For example, the following
command can be used to display the results in the console:

$ cge-cli query --quiet types.rq | cut -d$"\t" -f 5 | xargs cat

As noted earlier, the results file contains only the tabular results for the query. If results of an ASK/CONSTRUCT/
DESCRIBE query are desired to be printed, see the 'Streaming Results' section below.

Streaming Results

As already seen, it is possible to use simple command line tools to extract and dump the query results to stdout.
However, this only works for SELECT queries, and when the results can be accepted in SPARQL Results TSV
format. Use the —-stream option of the query command if it is desired to retrieve the final results in an arbitrary
format. This option may only be used when executing a single query and it takes the MIME type of the desired
results format.

$ cge-cli query --stream application/sparqgl-results+xml types.rq

Results are returned in SPARQL Results XML format. Supported formats include the following:

Table 7. Output Result Formats

Query Types MIME Types Output Format

ASK and SELECT application/spargl-results+xml SPARQL Results XML
application/spargl-results+json SPARQL Results JSON
text/csv SPARQL Results CSV
text/tab-separated-values SPARQL Results TSV

CONSTRUCT and application/n-triples NTriples

DESCRIBE text/turtle Turtle
application/rdf+xml RDF/XML
application/rdf+json RDF/JSON

S3014 45

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Query Types MIME Types Output Format

application/ld+json JSON-LD

A CAUTION: Requesting a format that does not match the query type or is unknown will result in an error.

There are also three special values that may be passed to this option:

e text
e json
e xml

When these values are specified, the CLI will automatically select an appropriate text (line-based), JISON or XML
output format in which to stream the results, while taking into account the type of query being evaluated. For
example providing —--stream text might produce SPARQL results TSV for an ASK/SELECT query but produce
NTriples for a CONSTRUCT/DESCRIBE query. When these special values are used, the exact output format will not
be known in advance but will be guaranteed to fall into the general format given.

Execution of Multiple Queries

When multiple queries are executed, they are executed in the order specified (subject to the aforementioned
precedence of list files over individual files) and the command will print a results header for each query.

$ cge-cli query types.rq list-graphs.rg ask-types.rq

A results header is retrieved for each query run.

For more information, see the cge-cli-query (1) man page

5.1.20 Cray Graph Engine (CGE) Optimizer Configuration

Use the —--opt-off and --opt-on options to perform query optimizer configuration. Both of these options take
the name of an optimizer flag to disable/enable as desired.

The following example shows how to set the optimizer flag to off:
$ cge-cli query —-opt-off optFilterPlacement types.rq

The preceding example will execute the query with the filter placement optimization disabled. The flag will be
considered as disabled if both the enabled and disabled flag options are specified. Values of some flags cannot
be changed, regardless of the options specified.

A CAUTION: Turning optimization off may result in significantly increased memory usage and/or
performance degradation. Therefore, it is strongly recommended that the optimizer configuration be
changed only when advised to do so by a Cray support engineer.

S3014 46

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.21 Shutdown the CGE Server Using the shutdown Command

The shutdown command instructs the CGE server instance to shut down gracefully. If this command is executed
by the user that owns the server process, the user will receive a success message indicating that the server has
shut down.

This command will not succeed if the server is in a bad state. Standard Linux techniques for killing an application
process should be used in this case.

For more information, see the cge-cli-shutdown(1) man page.

Example: Shut down the CGE server

$ cge-cli shutdown

5.1.22 Execute Spargl Queries and Updates Using the sparqgl Command

The sparql command is used to execute queries and/or updates against the database. It can be used to
execute a single query/update or to execute a whole sequence of queries and/or updates.

Queries and updates to be executed may be specified in a number of ways:
e By providing list files which contain lists of query and/or update files to be executed
e By providing the names of query and/or update files directly

e Via stdin (only if no queries/updates are specified in other ways and the -—non-interactive option is not
used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, queries specified in those list files will be executed before any queries specified directly. This command
may be used to execute a combination of SPARQL queries and updates. Use the query command to execute
SPARQL queries. Use the update command to execute SPARQL updates. Executing queries/updates using the
spargl command produces the corresponding results for the command. It displays information about the results
for queries, whereas it displays a success/failure message as appropriate for updates.

Differences Between the sparql and query Commands

e The spargl command can run a mixture of queries and updates, whereas the query command can run
queries only.

e The query command can stream results directly using the —--stream option.

For more information about the sparqgl command, see the cge-cli-sparql (1) man page.

Execute all the queries specified in the commands . txt file before executing the
queries specified in the extra-command. ru file

$ cge-cli spargl --list commands.txt extra-command.ru

S3014 a7

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.1.23 Execute Updates on a Database Using the CGE update Command

The update command executes updates on a database. This command can be used to execute a single update
or a sequence of updates. Executing an update returns a message indicating whether the update succeeded or
failed.

Updates to be executed may be specified in a number of ways:

e By providing list files, which contain lists of update files to be run.

e By providing the names of update files directly

e Via stdin (only if no updates are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. Therefore, updates contained within
any specified list files will be executed before any directly specified updates.

This command may only be used to execute SPARQL updates. If it is required to executed queries, use
the query command. To execute a combination of queries and updates, use the spargl command.

Execution of Multiple Updates

If multiple updates need to be executed, they will be executed in the order specified, subject to the
aforementioned precedence of list files over individual files. The command will print a success or failure message
for each update.

For more information, see the cge-cli-update(1) man page.

Examples

Execute an Update

$ cge-cli update --list updates.txt extra-update.ru

The above statement will execute all the queries specified in updates. txt file before executing
the query specified in the extra-update. ru file.

Execute Multiple Updates

$ cge-cli update create-graph.ru drop-graph.ru

5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command

The generate keystore command is used to create/inspect a Java keystore file, which is used to enable SSL
support for the fe command.

This command supports three different modes of operation:
1. Importing an existing SSL certificate

2. Inspecting an existing key store

3. Generating a self signed SSL certificate

S3014 48

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Security Concerns

Key store files are protected by passwords so this command may prompt to either enter/create passwords as
necessary. As passwords must be entered interactively, this command may fail if run with the --non-
interactive option. The user will need to know and supply these passwords elsewhere in order for the key
store to be used. The related cge-cli generate properties command can be used to store the necessary
passwords in obfuscated form in the properties file.

Imported Certificates
This is the most frequently used mode. It allows an existing SSL certificate in possession to be imported into a

key store file for use by the fe command:

$ cge-cli generate keystore --importserver.cer
This imports the certificate from the server . cer file into a key store file in the default location.

CAUTION: In order for the imported certificate to be usable it must contain the private key as well as the
Digital signature from the certificate authority. Without the private key a certificate cannot be used for SSL

Key Store Inspection
This mode can be used to inspect an existing key store to see what certificate is present in it. For example:

$ cge-cli generate keystore --display

Self-signed Certificate Generation

CAUTION: This mode should only be used for testing purposes. Using a self-signed certificate in a
production environment is insecure and not recommended.

In this mode a self-signed certificate is generated and added to the key store. This can be used to test the use of
SSL without the need to first obtain a certificate from a recognised certificate authority. However the certificates
generated in this way are inherently insecure, may not be trusted by many other tools and should be avoided
wherever possible.

$ cge-cli generate keystore --self-signed

This will prompt the user to enter a variety of identifying information for their certificate, and adds the resulting
certificate to the key store ready for use.

5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command

The generate shiro command is part of the cge-cli generate command group and generates a Shiro
configuration template that can be customized as desired. It enables users to quickly create a configuration that
can be used with the fe command to provide user authentication.

Available templates
The following templates are available through the generate shiro command:

S3014 49

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Table 8. gener at e shi r o Templates

Template Description

Idap A template that can be customised to allow integration with a LDAP server, i.e. it allows
authentication to be deferred to an existing LDAP service

forms A template that has both locally defined user accounts and roles, it uses forms
authentication

simple A template that has locally defined user accounts and uses HTTP Basic authentication

anon A template that enables anonymous access, i.e. no user authentication

Example: Generate a Shiro Configuration

The following example will generate a Shiro configuration based upon the LDAP template to
standard output. The configuration is redirected to the example. ini file, where it can be edited
as needed.

$ cge-cli generate shiro Idap > example.ini

5.1.26 Create a Properties File Using the CGE generate properties Command

The generate properties command is part of the cge-cli generate command group and helps create a
properties file that can be used to provide a variety of configuration to commands, without needing to specify it
directly at the command-line. This command can either create/modify a properties file, so it can be used to create
an entirely new configuration, or use it to update an existing configuration.

The options supplied to this command are simply added/updated in the relevant properties file, instead of being
used for their normal function. Additionally, there are some options specific to this command that control which
properties file is created/modified, and whether modifications are merged with, or if they overwrite existing
properties in that file.

The default behaviour of this command is to modify existing properties. The returned properties file is the result of
reading the existing properties and applying any modifications requested by this command. If it is preferred to
create an entirely new set of properties, use the ——overwrite option to specify that existing properties are not
preserved. It is generally best to be explicit about which properties file needs to be modified using the -f or —-
File options, otherwise an incorrect properties file ma be modified. The logging output of this command will
explicitly note which properties file is being modified.

Setting values in the properties file does not guarantee that they will be used. Any property which can also be set
via a command-line option can be overridden by specifying that option. The logging output will indicate when a
property has been used and when a property has been overridden by a command line option.

Basic Usage

The following example generates a properties file in one of the default locations that cge-cl i will search for it:

$ cge-cli generate properties -f ~/.cge/cge.properties --db-port 1234

S3014 50

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Advanced Usage
The following example overwrites an existing properties file and specifies several properties, including one that
does not have a specific command-line option to set it:

$ cge-cli generate properties -f ~/.cge/cge.properties --overwrite \
--db-host example.mycompany.com --db-port 1234 -p cge.server.RevealUserDatalnLogs 1 --ssl-passwords

Table 9. Command specific options

Option

Value(s)

Example Usage

Description

PropertiesFile

-f ~/.cge/cge.properties

Provides the path to the
properties file that needs to
be created/modified.

overwrite

--overwrite

When set, indicates that
any existing properties file
at specified/automatically
discovered location should
be overwritten.

The default behaviour is to
first read in the file if it
exists meaning that any
existing properties not
being modified by this
command are left intact. If
you specify this option any
existing properties are lost.

-p
-—property

Key Value

-p
cge.server _RevealUserDatalnLogs
1

When set, indicates that the
given property and value
should be added to the
properties file. This can be
used to add any property
which does not have a
specific option for modifying
it.

--ssl-
passwords

--ssl-passwords

When set, will prompt for
passwords used to secure
the Java key store which
contains the SSL certificate
use by the cge-cli fe
command

These passwords will be
stored in the properties file
in obfuscated form to
provide some protection
from casual inspection. You
should apply appropriate

S3014

51

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Option

Value(s) Example Usage Description

permissions to the
properties file to fully
protect these.

5.2

CGE GUI

CGE provides a simple interface for access via a browser and also provides SPARQL 1.1 protocol compliant
endpoints. The CGE user interface enables you to perform a number of tasks, including:

e Executing queries

e Executing updates

e Creating checkpoints on a database

e Using advanced options for viewing and editing server configurations, as well as for performing server NVP

and

logging configuration changes.

To access the CGE user interface, point the browser at: http://machi ne:3756/dataset/, where machine is
the host name of the machine where the web server is hosted. Multiple instances of CGE can be launched on the
same node at different ports.

A

CAUTION: The firewall configuration of the host machine must allow for port 3756 to be accessed
externally or this will not work, unless the browser is running on the same host. If the site's firewall
configuration does not permit this, SSH port forwarding can be used to forward the remote port to the
local machine, as shown in the following example:

$ ssh nmachi ne -L 3756:host nanme:3756

In the above example, machi ne is the machine running CGE’s web server. The first 3756 is the local
host port to connect to, whereas host nane : 3756 is the remote reference.

The results format received in the browser is dictated by the HTTP Accept header that your browser
sends (or conversely that your programmatic HTTP client sends). The 'Force text/plain as the
response Content' option controls the Content-Type header that the front end responds with, which
affects how the browser interprets the response. Depending on the browser if this option is disabled (the
default) then this might mean that it downloads/offers to save the response to a file rather than displaying
it in the browser, enabling the aforementioned option changes the response Content-Type to always be
text/plain regardless of what format the front end actually outputs which forces the browser to display the
response in the browser itself. If it is needed to display the results in a different format, customise the
HTTP Accept header accordingly, most browsers have some means to configure this. For example in
Firefox navigate to About>Config. Click through the warning if it appears and then search for accept and
edit the value of the network_http.accept.default setting to add the desired content types. The
closest thing to plain text that the front end will produce is text/tab-separated-values. Most browsers
include application/xml in their default accept header, which mean you will typically get SPARQL
XML results by default (or RDF/XML if it were a CONSTRUCT query).

Logging on to the CGE Ul
The CGE Ul can then be accessed by pointing the browser at: http://localhost:3756/dataset/.

S3014

52

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

If you have configured the server to perform user authentication, the first thing you will see is one of the following

screens, depending on what authentication method has been configured. For more information, see CGE Security

on page 81.

e When configured for forms authentication you will see you the following screen:

Cray Graph Engine & Login

Login Required

User Name

Password

When configured for basic authentication, the browser will prompt for credentials like so:

To view this page, you must log in to localhost: f
3756.

Your password will be sent unencrypted.

Mame: |

Password:

Remember this password in my keychain

Cancel | (HETIN

The exact format of this dialogue will depend upon the browser you're using, this example is from Safari. Either
way the user will need to enter their credentials in order to log in.

Upon successfully accessing the CGE user interface the following screen will be displayed:

S3014

53

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 2. Cray Graph Engine User Interface

Cray Graph Engine 8 dataset (example.mycompany.com:1234) @Data Access~ |/ Configuration Management » | L rvesse ~

Query Interface
SPARQGL Query

" Force text/plain as the response Content-Type (forces results to be displayed in browser)

Server NVPs

Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemoryLeakDetection=1

#

Lines beginning with a # are comments

#

Server Logging Options
Server Log Level | Use Server Default)

At the top of the page you will find the navigation bar:

S3014 54

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 3. CGE Ul Navigation Bar

Cray Graph Engine B dataset (example.mycompany.com:1234) = [@Data Access~ |/ Configuration Management ~ | & rvesse ~

This provides a number of useful pieces of information. Firstly it indicates the underlying database server that the

fr
1

ont end will be connecting to. In this example the underlying database server is on exanpl e.nyconpany.com:
234

There are then three menus which provide access to the various functionalities of the server. The data access
menu contains the following:

Figure 4. Data Access Menu Options

@Data Access~ | / Confi

Q, SPARQL Query

2 Export Query Results
+ SPARQL Update

M Checkpoint

The options in the menu include:

e SPARQL Query enables making queries

e Export Query Results allows you to make a query but only returns meta data about where the results have

been saved to disk

e SPARQL Update enables making updates

e Checkpoint enables checkpointing the database to disk

The configurations management menu contains the following options:

Figure 5. Configuration Management Menu Options

/ Configuration Management ~

@l Database Information
£ Edit Database Configuration

e Database Information provides access to the current configuration of the server

e Edit Database Configuration allows you to edit that configuration

Finally the user menu shows the currently logged in username and provides access to logout functionality:

Figure 6. User Menu options

2 rvesse ~

q

$30% Logout

55

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

If you have not configured user authentication, the system will instead display the following warning:

Figure 7. Insecure Mode Warning

A Insecure Mode

5.2.1 Launch the CGE Web Server

Before using the Cray Graph Engine GUI, it is required to launch the database via the cge-launch command
and leave the default port setting of 3750 unchanged. If an alternative port has been used, then it will be required
to add the —-db-port option to specify an alternative port. Once the database has been launched, the Cray
Graph Engine (CGE) graphical user interface and/or the SPARQL endpoints may be used. This can be
accomplished by launching the web server that provides the user interface on a login node of the system where
CGE is running, as shown below:

$ cge-cli fe

Alternatively, you can use the following command to have the web server continue running in the background with
its logs redirected, even if you disconnect from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

NOTE: The web server is launched by the same script as the rest of the Command Line Interface tools,
and supports many of the same standard options detailed in CGE CLI.

5.2.2 Execute SPARQL Queries Using the CGE Ul

About this task

The Cray Graph Engine (CGE) Query Interface allows executing SPARQL queries on a loaded RDF database
running within CGE. The main feature of this interface is the text field for entering queries to execute. Secondly,
there is a check box that enables specifies that the server returns the query results with a

Content-Type header value of text/plain, which will force the browser to display the results as many
browsers will download the results rather than display them by default. The rest of the options seen in this
interface are described later in the Advanced Options section.

The browser interface uses standard HTTP content negotiation to determine the format in which to return the
guery results, most browsers out of the box will receive results in an XML/JSON format:

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

S3014 56

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Cray Graph Engine i Login

Login Required

User Mame

Password

2. Access the CGE Query Interface using one of the following mechanisms:

Point the browser at http://machine:3756/dataset/query
Select the Query Interface link from the Data Access drop down on the CGE Query Interface Ul.

S3014

57

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 8. Query Interface

Cray Graph Engine B gatasst (example.mycompany.com:1234 @Data Access ~ | / Configuration Management ~ = & rvesse »

Query Interface

SPARQGL Query

Force text/plain as the response Content-Type (forces results to be displayed in browser)

Server NVPs

Enter NVPs one per line in properties file format e.g.
#cge.server. DoMemoryLeakDetection=1

#

Lines beginning with a # are comments

#

Server Logging Options

Server Log Level | Use Server Default 5

3. Execute a SPARQL query,by entering it in the SPARQL Query field. The check box under the SPARQL
Query field can be selected to specify that the server should return the query results with a Content-Type
header value of text/plain. This will force the browser to display the results in the browser, as many browsers
will download the results rather than display them by default.

4. Select the Run Query button, which will submit the query to the server and deliver the results to the browser.
The user interface uses standard HTTP content negotiation to determine the format in which to return the
query results. Most browsers receive results in an XML/JSON format.

5.2.2.1 Get Query Metadata

Sometimes it may not be desired to get all the results delivered over HTTP. Instead, it may be needed to simply
submit a query whose results will be processed later. To do this, use the export query results endpoint accessed
at: http://machi ne:3756/dataset/export-results, where machi ne is used as an example for the machine name.

This interface is functionally identical to the Query interface. The endpoints differ only in the format of the
response. The export results endpoint return only the meta data about query results. This is similar to the default

S3014 58

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

behaviour of the query command. The meta data is returned in one of three formats, where the response format
to use is determined by content negotiation.

Table 10. Query Metadata

Format Example Response Content Types

Tab separated values (TSV) 0 100 0 2 /tmp/results.tsv |, text/plain

e text/tab-separated-
values

XML <?xml version="1.0" application/xml
encoding="UTF-8"?> <cge-
results> <query><!
[CDATA[SELECT * WHERE

{ } 11></query>
<count>100</count>
<size>0</size> <time>2</
time> <status>0</status>
<location>/tmp/
results.tsv</location> </
cge-results>

JSON { "query" : "“SELECT * application/json
\nNnWHERE\n { }\n" ,
"count" : 100 , "size" :
0o, "time" : 2 ,
“status™ - 0 ,
"location" : "/tmp/
results.tsv" }

This interface only supports SELECT queries. Any other queries will be rejected, this is because the meta data is
only accurate and complete for SELECT queries.

5.2.3 Execute SPARQL Updates Using the CGE Update Interface

About this task

The Cray Graph Engine (CGE) Update Interface enables executing SPARQL updates on a database. SPARQL
update is a language extension to SPARQL 1.1 that makes it possible to make updates to an active RDF
database, using SPARQL query syntax. Use the CGE Update Interface to perform a number of tasks, including
updating the default database to add or remove RDF triples and quads, copying or moving the contents of one
database to another, and performing multiple update operations in a single action.

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured.

S3014 59

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Cray Graph Engine i Login

Login Required

User Mame

Password

2. Access CGE's Update Interface by selecting one of the following mechanism:
e Point a browser at http://machine:3756/dataset/update
e Select Spargl Update from the Data Access drop down on the CGE UL.

S3014 60

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 9. CGE Update Interface

Update Interface

SPARQL Update

Server NVPs

Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemoryleakDetection=1
#
Lines beginning with a # are comments
#
Server Logging Options

Server Log Level Use Server Default | <]
Server Log String (Printed on each server log line for this request)

Disable all server logging for this request

Run Update

3. To execute a SPARQL update, enter the update statement into the SPARQL Update field.

4. Select the Run Update button to submit the update for processing. Once the system has finished executing
the update, it will send either a success/failure message as appropriate.

5.24 Create a Checkpoint Using the CGE Ul

About this task

When a database is started for the first time its initial state is considered to be a checkpoint. When a change is
made to the database, its state can be preserved by creating a checkpoint. This preserves a copy of the previous
in-memory database. Creating a checkpoint creates a persistent record of the database state, which is written to
the database directory in a file named export_dataset.nq.

NOTE: Checkpoints can only be created on running databases. If there are any queries or updates
executing, it important to ensure that they finish executing before a checkpoint is created, otherwise the
state of the database in the checkpoint may not contain the desired updates to it.

S3014 61

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

Cray Graph Engine & Login

Login Required

User Name

Password

2. Access the Checkpoint Interface using one of the following mechanisms:

e Point the browser at http://machine:3756/dataset/checkpoint, where machine is the machine
running CGE'’s web server.

e Select Checkpoint from the Data Access drop down.

This brings up the Checkpoint Interface, as shown below:

S3014 62

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 10. Creating a Checkpoint

Cray Graph Engine B dataset (localhost:3770) @¥Data Access v /# Configuration Management w 2 snawaz «

Checkpoint Interface

Checkpoint Location

Include a quads dump (NQuads) with the checkpoint?

Server NVPs
Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemoryLeakDetection=1
#

Lines beginning with a # are comments
#

Server Logging Options

Server Log Level Use Server Default | <]
Server Log String (Printed on each server log line for this request)

Disable all server logging for this request
Create Checkpoint

3. Specify a location for the checkpoint in the Checkpoint Location field. This is the directory where the
checkpoint will be saved. The server will generate an error if this directory does not exist or is read-only.

4. Select the Create Checkpoint button to create the checkpoint. This will return a success/failure message as
appropriate, as shown in the following example output:

Checkpoint created at /lus/scratch/cge/datasets/lubm/0/temp

5.25 Cray Graph Engine (CGE) Advanced Options

CGE provides a number of advanced options that can be used to change the behavior of the database server for
a specific request. Some of these options impact the server, whereas others impact individual requests. To access
this interface, select Edit Database Configuration from the Data Access drop down. The user interface for
configuring advanced options is shown in the following figure:

S3014 63

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 11. Server Name Value Pairs

Server NVPs

Enter NVPs one per line in properties file format e.q.
#cge.server.DoMemoryLeakDetection=1

B

Lines beginning with a # are comments

#

Server Logging Options

Server Log Level Use Server Default a

Server Log String (Printed on each server log line for this request)

Disable all server logging for this request

NOTE: Options provided in this section of the user interface are relevant only for the processing of the
request under consideration and should be updated for each individual request. If it is desired to change
the options for the database server as a whole, it will be required to use the interface described in the
‘Edit Server Configurations Using the CGE Ul topic of this publication.

Server NVPs (Name Value Pairs)
In the Server NVPs section, NVPs can be specified to pass to the database server. These can be used to control
behavior or enable additional debugging information.

IMPORTANT: In most cases, it will not be required to enter anything in the Server NVPs field, unless
specifically instructed to do so by a Cray representative for gathering information to aid in diagnosing
encountered issues.

Server Logging Configuration

The Server Logging Options section provides options that allow configuring the amount of logging the database
server will produce in the server side logs during the processing of a request. The desired logging level (i.e. log
verbosity) can be selected from the Server Log Level drop down, which is followed by the Server Log String
field, in which a log string can be entered. The log string can be up to 128 characters and will be included on
each log line pertaining to the request. This is often useful for extracting all the log lines pertaining to a specific
request.

Messages of types INFO, WARNING, and ERROR can be logged in the system, INFO being the default log level.

This interface also provides the option to disable logging for the request entirely, though it is generally
recommended to avoid this option as it makes it difficult to monitor the status of the server while it processes
queries.

5.2.6 View Server Configurations Using the CGE Ul

About this task

The Server Information interface enables viewing all the server configuration settings defined in the system.

S3014 64

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

Cray Graph Engine i Login

Login Required

User Name

Password

2. Access the Database Information interface using one of the following mechanisms:

e Point a browser at http://machi ne:3756/dataset/info, where machi ne is the machine running
the CGE web server.

e Select Database Information from the Configuration Management drop down on the CGE Ul

Figure 12. Server Configurations

Server Defaults (Query Dependent)

Plain Text
|Server NVF i

JSON

Enter NVR 1o0.ier Result Formats (ASK/SELECT Queries,
ficge.server, SPARQL-Results-XML
4 SPARQL-Results-JSON
| SV
In [
Lines beg! cEv
SPARGL-Results-Thrift

Graph Result Formats (CONSTRUCT/DESCRIBE Queries

Server Log = e

N-Triples
Server Log L¢ JSON-LD

RDF/JSON

ROF-THRIFT
Server Log St ROF/XML

N3

The information displayed on the Server Information interface includes information about the log and NVP
configurations of the server, as well as the results output directory.

Here you can select how you would like to receive your query results. The Generic Formats section at the
top of the list enables specifying the general form of the desired output with the server automatically selecting
a suitable output format depending on the type of query being made. It is also possible to select a specific
tabular or graph results format from those supported. Note that if a specific format is selected, it must be
compatible with the type of query being submitted, otherwise the system will return the following error:

S3014 65

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 13. Error Example

Incompatible Content and Query Types
Query is an ASK/SELECT which has tabular results but user requested output format Turtle (text/turtle) which is not a tabular results
resubmit your query and request a tabular results format.

If the system returns this error, select an alternative output format that is compatible with the type of query
being executed.

To run the query simply, select the Run Query button, which will send the gquery to the server and then deliver
the results to the browser. The browser interface uses the selected Output Format above or standard HTTP
content negotiation to determine the output format in which to return the query results. Most browsers out of
the box will receive results in an XML/JSON format:

Figure 14. JSON format Example

localhass-B0E0/ dataset /query

y Projects T Bulld Servers T Email T Banking T Stk Oveeflow SemWeb Answers Ars Techried Tools T Specs T Be
3 focalhose: 80807 datasol fquery

| <?xml veraion="1.0"7?>
| <sparql smlns="htep: //wwme.wi.org/2005/spargl-resul tak">
<head>
<variable nama="a"/>
<variable mames"type” >
<fhead>
| <resaleas
<resules
<hinding name-"s">
<aEi>nbtp: /v Dep 9 y0. ecdn a</uri>
</binding>
<binding name="type‘>
<ari>hbbp: //vane. Lehigh_eda/-zhp? /2004 /0401 /univ-bench.owl#lescarchhaniatante/uris
</binding>
</results
<reaule>
<binding name="s">
<urixhbtps /S Department] . Dniverai dua/Under
</binding>
<binding name="type’>
<urixhbtps /v . Lahioh. adu/ ~shp? /2004 /0401 /univ-bench. owl#Tndergraduatebtudents/ur i>
</binding>
</freaults
<reault>
<binding names"3">
ishttpr /e

13</uri>

eduU 3 Suris

</binding>
<binding name="type>
<arizhttpi//www. lehigh.edus~zhpl /2004 /0401 /univ-bench.owl#studente/usi>
</binding>
</resalt>
crssult>
<binding name="g">
<arizheep: /e Dep 13.Oniversityd.eda udentsiciuri>
</binding>
<binding pamo="type’>
carishttp: / fwns. Lohigh . edn/-zhp2 /2004 /0401 funiv-bench . owlécraduatestudente furi>
</binding>
</renale>
<result>
“<binding name="s">
<ari>hkbp: / /v Dopartmant1l.Univaral tyd.adu/AassclakeDrofonnor? /Publ leat Long< /uri>
</binding>
“binding name="type'>
<arishbep: /v Lohigh edo/-zhp? /2004 /0401 /univ-bench . owl#Publicat ion< /url>
</binding>
</result>
<reaults
<binding name="s">
<arixhbtps //vww 12.Uni ityd.edu/Rescei wri>
</binding>
“binding name="type">
<uri=https/fww . lehigh. odu/~zhp2 (2004 /0401 /univ-bench. owl#Tacultys/uri=

</binding>
</results
<reaults
<binding name="2">
i 1, 12.00i d Bo=/uzin
</binding>

| <hinding names"types
<arishttps //www. lehigh.edu/~zbpl /2004 /0401 /univ-bench.owléPersone/uri>
</binding>

5.2.7 Edit Server Configurations Using the CGE Ul

About this task

The Edit Server Configuration interface allows editing server configurations.

A CAUTION: Modifying server configuration settings can adversely affect performance, especially if it is
changed to point to a relatively slow file system. Therefore, it is recommended not to change server
configuration settings, unless specifically instructed to do so by a Cray representative in order to gather

information for diagnosing issues.

S3014 66

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Procedure

1. Optional: Log on to the CGE Ul by pointing a browser at http://machine-loginl:3756/1ogin, entering
credentials and then selecting the Login button.

This step is optional, depending on how the interface has been configured

Cray Graph Engine & Login

Login Required

User Name

Password

2. Access the CGE Edit Server Configuration interface, by using one of the following mechanisms:

e Point a browser at http://nmachi ne:3756/dataset/config, where nachi ne is the machine
running CGE'’s web server.

e Select Edit Database Configuration from the Configuration Management drop down on the CGE UI.

S3014 67

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Figure 15. Editing Server Configurations

Cray Graph Engine B dataset (localhost:3770) = @@Data Access~ | /* Configuration Management ~ | A& snawaz ~

il Database Information

Edlt Server Configuration # Edit Database Configuration

Use this form to change configuration for the server for the remainder of the lifetime of the server, note that the changes made are not persistent beyond the lifetime of the server.

Server NVPs

Enter NVPs one per line in properties file format e.g.
#cge.server.DoMemoryLeakDetection=1

#

Lines beginning with a # are comments

#

Server Logging Options
Server Log Level Use Server Default [

Server Log String (Printed on each server log line for this request)
Disable all server logging for this request

Server Output Directory:
Reconfigure Server

3. Select the desired server NVP and logging options using the Server NVPs and Server Logging Options
sections of the Ul. In addition to the Server NVPs and Server Logging Options, this interface also contains
a Server Output Directory field that allows changing the server output directory. This is the directory to
which the database writes results, and from which the web server reads in order to deliver query results over
HTTP.

4. Select the Reconfigure Server button when the changes have been made.

Unlike the options presented in the other interfaces, the values set from this interface persist for the lifetime of
the server and become the new defaults.

Upon doing so, the system will return a response detailing the success/failures of the pieces of configuration
that were to be updated, as shown in the following example output:

Updated Server NVP Configuration successfully
Updated Server Logging Configuration successfully

5.2.8 Control Options

In most cases it will not be needed to change server configuration settings, unless a Cray support representative
specifically requests, in order to gather information for diagnosing issues. However, there are some settings that
you may occasionally wish to change. Name Value Pairs (NVPs) that enable you to modify these settings are
listed in the following table:

S3014 68

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Table 11. CGE NVPs

Parameter Description Default Value

cge.server.QueryTimeout This parameter sets the maximum 31536000
runtime (within the server) of a given
guery in seconds (wall clock time). This
timeout will be checked after every
operation. However, it does not
interrupt operations. After the query
times out, the server will terminate that
guery and will be immediately ready for
subsequent queries. Acceptable values
for this parameter range from O
seconds (automatic termination at the
start of the second operation) to 100,
000 years expressed in seconds
(3153600000000). If a negative value
is entered for this field, it will be
converted to O.

cge.server. InferOnUpdate Causes inferencing to be enabled or 1
disabled for a given update. Has a
value of either “0” or “1". The default
value of this parameter is "1", which
sets inferencing on for updates. A
rules._txt file must be present for
inferencing to take place. If no

rules. text file exists, inferencing will
not be performed. If updates to the
database were made after inferencing
was turned on, triples added previously
will stay saved in the database if
inferencing is turned off subsequently.

cge.server .BuddyMaxGBs Sets the upper limit on the amount of 128 GB
memory used by the big buddy
allocator. The value of BuddyMaxGBs
must be a non-negative integer value
and is used to specify the maximum
number of gigabytes allocated for the
big buddy allocator. For example,
setting the value to 50 will set the upper
limit on the memory allocated for the
big buddy allocator to 50 GB. By
default, the limit is set to 128 GB and
the maximum is 1 TB. Setting this
parameter to 0 will disable the limit.

cge.server.LittleBuddyMaxGBs Sets the upper limit on the amount of 16 GB
memory used by the little buddy
allocator. The value of
LittleBuddyMaxGBs must be a non-
negative integer value and is used to
specify the maximum number of

S3014 69

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Parameter

Description

Default Value

Gigabytes allocated for the little buddy
allocator. For example, setting the value
to 8 will set the upper limit on the
memory allocated for the little buddy
allocator to 8 GB. By default, the limit is
set to 16 GB and the maximum is 128
GB. Setting this parameter to 0 will
disable the limit.

cge.server.RevealUserDatalnLogs

Specifies whether or not to obscure
user data output to logs. If log data is
obscured for the given application run,
CGE issues the warning: "User data
obscurred. set

cge.server ._RevealUserDatalnLo
gs=1 to show". Setting the value of
this parameter to 1 informs CGE to not
obscure user data output to logs.

By default,
obscures user
data that is
output to the
logs.

cge.server .BuddyMemPercent Set the percentage of node memory 35
used for the large persistent allocators.
cge.server _PersistBuddyMemPercent set the percentage of node memory 25
used for the large non-persistent
allocators.
NVPs for GraphML Support
cge.server .ExportGMLRDFEnable Setting this NVP to 1 will cause CGE to | Off
export the quads generated for a given
GraphML file to an nt file of the same
name as the input GraphML file but with
the nt extension
cge.server.GMLInsertPrefix Setting this to 1 will cause CGE to On

insert the urn: prefix when converting
identifiers for graphs, nodes, and edges
to URls.

cge.server .GMLCheckPrefix

Setting this to 1 will cause CGE to
check an identifier for a known prefix
before inserting the urn: default prefix.

CGE inserts the
urn: prefix by
default.

cge.server.BCmaxActivelLevels

Used for handling graphs of large
diameter while using the Betweenness
Centrality graph algorithm.

100

S3014

70

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

5.3 SPARQL Endpoints

CGE provides standards compliant SPARQL endpoints via the cge-cli fe command. When run this command
launches an embedded Jetty web server that provides SPARQL 1.1 protocol compliant endpoints that may be
used by any SPARQL aware tools to make queries and updates against CGE.

These endpoints are SPARQL 1.1 protocol compliant and provide all the standard parameters.

Web Server

The web server is a standard Java servlets based web application, for ease of deployment and usage we host
this in an embedded Jetty server. The web application consists of a bunch of Java servlets defined in the cge-
sparqgl-server module with one for each service provided by the CGE SPARQL server. Additionally there is
some static HTML content, each piece of HTML content actually represents only a small portion of a page of the
browser interface. These pieces are served and combined dynamically by a simple templating engine, this allows
for easily tweaking portions of the browser interface and having those be automatically reflected on all pages of
the interface.

Standard SPARQL tools can be used to interact with the Cray Graph Engine (CGE) by pointing them at the
relevant endpoint URLSs, which are shown in the following table:

Table 12. SPARQL Endpoints

Service Endpoint URL
SPARQL Query http://machi ne:3756/dataset/query
SPARQL Update http://machi ne:3756/dataset/update

In the above examples, machi ne is used as an example for the name of the machine running CGE's web server.

Supported Content Types
The SPARQL query endpoint uses standard HTTP content negotiation to determine how to return query results to
the SPARQL tool, depending on the Accept header that the tool sends.

NOTE: The results format received in the browser is dictated by the HTTP Accept header that your
browser sends (or conversely that your programmatic HTTP client sends). The 'Force text/plain as
the response Content' option controls the Content-Type header that the front end responds with,
which affects how the browser interprets the response. Depending on the browser if this option is disabled
(the default) then this might mean that it downloads/offers to save the response to a file rather than
displaying it in the browser, enabling the aforementioned option changes the response Content-Type to
always be text/plain regardless of what format the front end actually outputs which forces the browser to
display the response in the browser itself. If it is needed to display the results in a different format,
customise the HTTP Accept header accordingly, most browsers have some means to configure this. For
example in Firefox navigate to About>Config. Click through the warning if it appears and then search for
accept and edit the value of the network.http.accept.default setting to add the desired content
types. The closest thing to plain text that the front end will produce is text/tab-separated-values. Most
browsers include application/xml in their default accept header, which mean you will typically get
SPARQL XML results by default (or RDF/XML if it were a CONSTRUCT query).

The following standard formats are supported by the query endpoint:

S3014 71

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Table 13. Query Types and Supported Content Types

Query Type Supported Content Types

ASK and SELECT e SPARQL Results XML
e SPARQL Results JSON
e SPARQL Results CSV
e SPARQL Results TSV
e SPARQL Results Thrift

CONSTRUCT and DESCRIBE e NTriples
e Turtle
e RDF/XML
e RDF/JSON
e RDF/Thrift
e JSON-LD

Standard HTTP behavior of returning the message "406 Not Acceptable” will apply if the tool does not
include any formats the endpoint can produce in its Accept header.

Custom Parameters

CGE features endpoints that provide custom parameters, which can be used to configure the same advanced
options supported by the CGE user interfaces. These parameters are listed in the following table:

Table 14. Custom Parameters

Parameter Example Purpose

forcePlainText forcePlainText=true Used to force the returned Content-Type to be
text/plain regardless of the actual content type
being returned.

This is only useful for browser access to the
endpoints and may cause errors if used with
SPARQL tools.

nvps nvps=foo%3Dbar Specifies the NVPs to be passed to the database
and applied to the request.

These must be specified in Java properties file
style with one nanme=val ue pair per line

log-level log-level=16 Specifies the log level to use for database logging
of the request. This takes an integer value with
values interpreted as follows:

e 2 = Error

S3014 72

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Parameter Example Purpose
e 4 = Warn
e 8 = Info
e 16 = Debug
e 32 = Trace

The log-l1ookup command can be used for
translating integer values to the desired log
levels.

log-string log-string=Foo Specifies a string to be included on every
database log entry pertaining to the request.

Maximum supported length is 128 characters and
longer strings will be truncated accordingly.

log-disable log-disable=true Can be set to disable all database logging for the
request
output output=json Used to specify the desired output format without
OR needing to modify the Accept header. It allows
forcing a specific output format to be used
output=text/turtle provided it is compatible with the query being

submitted.

It accepts default, XML, text, and json,
which will select the servers preferred default
output or a suitable XML, plain text or JSON
representation for the query type. Any other value
is treated as a MIME type for the output format,
only MIME types that the server knows how to
return can be used. The list of acceptable values
is the list of MIME types associated with the
aforementioned supported output formats.

5.4 Create and Use a Database

Prerequisites
If the Cray Graph Engine (CGE) is needed to perform inferencing on data, ensure that a valid rules. txt file

exists in the directory containing the data.

About this task
The following instructions can be used to create a database and execute queries and/or updates on the database
once it has been built.

S3014 73

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

Procedure

1.

2,

If the data is not in RDF format, convert the data to RDF.

If the RDF data resides in a single file, save/rename that file to dataset.nt or dataset.ng. Thisis
required because CGE accepts ONLY files in .nt or .nq formats as input. All other formats should be
converted to either _nt or .nq (including .rd¥). On the other hand, if the data resides in more than one file,
create a graph. info file and add the names of the RDF file to that file.

Build the database using the cge-launch command as shown below:

$ cge-launch -0 pathtoResultsDir -d path -1 logfile

In the above statement, pat ht oResul t sDi r is used as an example for the path to the directory that will
contain the results of queries and/or updates. pat h is used as an example for the path to the database
directory and | ogf i | e is used as an example for the log file that will contain the command and server output.
pat ht oResul t sDi r MUST be a directory and MUST contain either a triples or quads file. These files must
be named dataset.nt or dataset.nq respectively. For more information, see the cge-launch(1) man

page.
NOTE: When the database has been built, the following files are saved in the database directory:

e dbQuads
e string table chars
e string_table chars.index

Executing multiple update commands at a time is not supported currently. Updates should be split into
separate files and/or submissions.Collectively, the aforementioned files are the disk representation of the
binary version of the database which can be reloaded into CGE. When the CGE application is launched again
and the same database directory is specified, the dbQuads file will be detected and the compiled database
will be read instead of the RDF. Furthermore, if the database directory contains a rules. txt file, CGE will
perform inferencing on the data. This is because inferencing is turned on by default. It can be turned off by
setting the cge.server. InferOnUpdate NVP parameter to 0.

Execute the fe command to launch a web server that provides a user interface and SPARQL endpoints to
CGE.

$ nohup cge-cli fe > web-server.log 2>&1 &

5. To execute a query or update on the database, use either the CGE Ul or the CGE CLI.

a. To execute queries/updates via the CGE UlI, follow the instructions listed below:

1. Connect to the CGE Ul by pointing the browser at: http://machi ne:3756/dataset/. This brings
up the CGE UL.

2. Select the Query Interface or Update Interface to execute queries and updates respectively.
Optionally, server configuration parameters can also be specified to control the query/update.

b. To execute queries/updates via the CGE CLI, use the query, update and spargl commands to
execute SPARQL queries, updates and/or combination of queries and updates correspondingly. For
usage information, see the associated man pages.

S3014 74

Query Cancellation

6 Query Cancellation

The CGE Server will cancel a request any time the client making the request disconnects from the server, or if the
request exceeds an NVP configurable timeout value. Request cancellation can occur between operations within a
guery, inside the merge operation, inside the filter operation or inside the group-by operation. The first two of
these will always recognize request cancellation, while cancellation must be explicitly enabled for the filter and
group-by operations. Some of this optimization is disabled when cancellation is enabled, resting in slower
operation. Set the server.LooplInterruptGranularitySeconds NVP value to a nhon-zero value (1 is a good
choice) to enable cancellation in filter and group-by operations. This value can be set either in the
cge.properties file or in the NVPs sent with a specific query. The maximum number of seconds defaults to 1
in merge operations, but can be increased by increasing this setting.

Wait for the memory allocation process to complete if query cancellation is taking longer than several minutes.
Restart the CGE server on additional nodes to provide additional memory, thus preventing queries from slowing
down frequently.

Process and Request Termination

The CGE CLI acts as a client to the database server. When a command requiring a connection to the database is
executed, the control flow is as follows:

Command performs any client side validation and processing that is necessary for the requested action
A request to the database is prepared

A connection to the database is established

The request is submitted to the database

The client waits until it receives a response from the database

The response is processed as necessary

N o g ke DNPE

Command returns results, if any, and exits with an appropriate exit code or continues on to the next requested
action

If the process is terminated during steps four and five, CGE will make a best effort to terminate the submitted
request by forcibly disconnecting the active connection. The database server will spot the disconnection and will
terminate request processing at the next cancellation point. Cancellation may not be immediate and may take a
long time to occur, depending on the current operation. When running the CGE SPARQL server, use the active
connections interface to explicitly cancel requests submitted via HTTP.

Therefore after submitting a cancellation request for terminating a long running query, it may not be possible to
submit further requests until the database has either cancelled/completed the previous request. Typically when
this happens the system will return an error stating that the command line timed out trying to connect to the
database. If query cancellation takes more than several minutes to complete, restart the CGE server on a larger
block of nodes to provide additional memory and prevent queries from slowing down due to lack of memory.
Restarting the database will lose any in-memory changes that were not yet checkpointed to disk. For databases
with read/write workloads, checkpoint regularly prior to executing long running queries.

S3014 75

Query Cancellation

Query Cancellation Using a Timeout

Setting the server .QueryTimeout NVP value while submitting a query is another way of cancelling long
running queries. The query will time out when the number of specified is reached, causing it to fail and send back
a failure message. This can be useful when developing queries or when the duration of execution is unknown.
Configure this setting either in the cge . properties file or specify it with the submitted query.

NVPs Associated with Query Cancellation
e server.QueryTimeout - Set a timeout value in seconds for a given query or all queries

e server.LooplnterruptGranularitySeconds - When non-zero, enables cancellation in the filter
operation. When greater than 1 increases the interval, at which cancellation will be checked in merge and
filter operations.

In addition to these user NVPs, there are three NVPs provided for internal testing purposes. These are listed here
because setting them will cause a dramatic performance degradation for queries.

& WARNING: The default value for NVPs is 0. Do not modify this value unless advised by Cray Support for
debugging purposes.

e server.TestCancellationDispatcherPauseSeconds

e server.TestCancellationFilterPauseSeconds

e server.TestCancel lationMakemergePauseSeconds

e server.TestCancellationGrouplnitHurisPauseSeconds

e server.TestCancellationGroupEvalArgPauseSeconds

6.1 Cancel a Query Using the CGE Web Ui

About this task

If a user has submitted a query using the CGE web Ul (which is launched via the cge-cli fe command), the
sytsem will present a web-browser similar to the following:

S3014 76

Query Cancellation

Figure 16. CGE Query Submitted Using the Ul

Cray Graph Engine # dataset (localhost:16563) ~ W@Data Access » |/ Configuration Management ~ A Insecure Mode

Query Interface
SPAROQL Query

SELECT 7x 7y ?z WHERE {
7x <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401 /univ-bench.owl#Student> .
7y <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Faculty> .
7z <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course> .
?x <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor> 7y .
x <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owi#takesCourse> 7z .
Ty <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teacherOf> 7z

Force text/plain as the resy Co -Type (fi results to be displayed in browser)

Procedure

Terminate a CGE query using one of the following options

e Use the server.QueryTimeout NVP to cancel the query.

This option can be used for cancelling a query by setting a timeout on a query by editing the NVPs to be

sent with the query.

1. Scroll down to the Server NVPs and set the value of server.QueryTimeout to the number of

seconds the query should to be allowed to run before it times out.

S3014

77

Query Cancellation

Figure 17. Change the Query Timeout Value

A IR TV YL IS T 1S £ ([€A AP |7 L 1L Pt LYY IS 5 Y
?x <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse> ?z .
?y <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teacherOf> 7z

Force plain as the Content-Type (forces results to be displayed in browser)

Server NVPs

Lines beginning with a # are comments
#

Server Logging Options
Server Log Level Use Sarver Default g

When a query runs more than that number of seconds specified via the server.QueryTimeout
paramter , it will time-out, in which case, the Ul will look similar to the following:

Figure 18. CGE Query Execution Error Pop Up

Cray Graph Engine B dataset (localhost:16563) = @WData Access ~ |/ Configuration Management ~ 4k Insecure Mode

Query Execution Error

Failed to execute the given query successfully
Error —1: Request timed out at user threshold

e Canel a query using the Active DataBase Connections screen.

This option can be used for cancelling a query if a timeout was not specified via the
server .QueryTimeout parameter.

1. Select Configuration Management menu at the top of the window:

S3014 78

Query Cancellation

Cray Graph Engine 8 dataset (localhost:16563) = ‘@Data Access » | / Configuration Management » | A Insecure Mode

i Database Information
#* Edit Database Configuration

Query Interface e .
+« Active Connections

SPARQL Query

SELECT ?x ?y 7z WHERE {
x <http://www.w3.org/1999/02/22 -rdf-syntax-nsitype> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Students .
Py <http://www. w3.0rg/1999/02/22-rdf-syntax-ns#type> <http.//www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Faculty> .
7z <http://www.w3.0rg/1989/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course> .
x <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor> 7y .
M <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse> 7z .
Py <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teacherOf> 7z

Force text/plain as the response Content-Type (forces results to be displayed in browser)

2. Select the Active Connections menu option.
The query under consideration will be displayed on this page as an active request.

Figure 19. CGE Active Database Connections Screen
Cray Graph Engine B dataset {localhost:16563) ~ @#Data Access »~ | /* Configuration Management » A Insecure Mode

Active Database Connections
Database User State Active Request? Actions

localhost: 16563 erl CONNECTED Yes Cancel Active Request Terminate Connection

3. Select Cancel Active Request next to the currently running request.

S3014

79

Query Cancellation

Figure 20. CGE Query Cencelled Pop Up

Cray Graph Engine B gataset (localhost:16563) @Data Access = |/ Configuration Management = A Insecure Mode

Request Cancelled

Active request successfully cancelled

The query under consideration will be cancelled and the server will become available for other requests,
usually within a few seconds.

6.2 Cancel a Request Running Under a CGE CLI Query

Queries submitted using the cge-cli query command can be terminated by using the --nvp option and
specifying a timeout interval.

$ cge-cli query --db-port=16563 --nvp server.QueryTimeout 10 --quiet Query09.sparqgl
Error -1: Request timed out at user threshold

Queries can also be terminated at any time by simply killing the CGE CLI process by using CTRL-C or other
signal:

$ cge-cli query --db-port=16563 --quiet mytests/lubmO/query/Query09.sparqgl; sleep 1; cge-cli echo --db-
port=16563

~CO [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled, logs will obscure/omit user
data. Set cge.server._RevealUserDatalnLogs=1 \

in the in-scope cge.properties file to disable this behaviour.

1756 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Sending echo request...

1943 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Echoed data received and validated
successfully

S3014 80

CGE Security

7 CGE Security

CGE security starts at the entry point to the request handling in the CGE server and extends outward to the web
Ul and the CGE CLI commands. CGE Security is comprised of the following mechanisms:

e Server side user identification and authentication
e User permissions and access control

e User accountability

e Client side user identification and authentication

Server Side User Identification and Authentication

Users on the server side of CGE are identified by user names, which are character strings that name the user.
User names within CGE are not necessarily tied to any specific user known to the Linux platform on which the
CGE server is running, though there are scenarios in which it is practical to configure CGE users using their Linux
login usernames. This freedom from the Linux platform permits a database owner to set up a CGE instance that is
web accessible (more on this later) and has a user community completely defined by the database owner without
respect to ability to log into the Linux platform on which the CGE Instance is running. This is similar to other web-
based frameworks that permit the owner of the framework to set up the user community without needing to be
able to create user logins on the host platform.

The CGE Server handles requests in the context of a client connection. Each connection establishes a context in
which one or more sequential requests may be issued. While each connection may present a sequence of
requests, these connections are not persistent in the sense that they represent an open ended logged in
relationship with the client. The most common scenario is a connection that presents one or two requests and
handles the responses, then disconnects.

Each connection is made without context preserved from any previous connection. Because of this, each time a
client connects to submit requests, the client submits the user name (identity) of the user making the request. The
CGE server uses the SSH public-key authentication protocol to verify that the client submitting the user name has
the authorization to present that user name.

Normally, authentication strives to verify that the user presenting an identity actually /s the user who owns that
identity. In the case of the CGE server, the expectation is that this level of authentication has already been done
on the client side. The CGE server needs to know that it is talking to a client that is authorized to present work on
behalf of the specified user.

User Permissions and Access Control
The CGE server handles work as a sequence of requests. Each request has a particular type, such as

e Query
e Update
e Checkpoint

e Shutdown

S3014 81

CGE Security

Each request type has an associated permission that determines whether a client making that request is allowed
to make that request or not. Permissions can be associated with individual users or groups of users by making
permission assignments in an Access Control List (ACL) located in the directory where the CGE dataset is found.

When a request arrives, the username presented by the request is authenticated and then the permissions
associated with that username are looked up. If the permission associated with the incoming request type is
present in the user's permission set, the request is allowed to proceed. If not, the user is notified of the request
failure and the request is not allowed to proceed.

This mechanism allows the owner of a CGE database to establish coarse grained protections against
unauthorized actions by otherwise authorized user.

User Accountability
When a user submits a request, the CGE Server runs that request on behalf of that user. The owner of the CGE

database may want to review the operations that have been executed by a given user. To this end, from the
moment a request arrives to the moment that the request completes processing and reports its result (successful
or not) the username of the client making the request is recorded with each log entry written by the CGE server
into its operational log. Even if the user has the permission to turn off all logging for the duration of the request,
CGE server records log entries at the beginning of the request indicating that the user has turned off logging.
Those log entries are tagged with the requesting user's username.

Client Side Identification and Authentication

Client side identification and authentication is responsible for assuring that a user making a request actually is the
purported user. There are two different kinds of client seen by CGE:

e logged in Linux users running CGE CLI commands and APIs as clients
e Web-based clients

The identification and authentication for these two different kinds of clients differs, so each are explored
separately.

e Logged In Linux users as clients - A logged in Linux user has already been identified and authenticated by
Linux, and the user's credentials have been established by Linux. If there were a simple trustworthy way to
transmit those credentials directly to the CGE Server, this would be sufficient and the client would simply
assert the user's logged in Linux identity with every request. Because requests are transmitted outside of a
trusted context, however, the CGE Server authenticates the requested username using SSH public-key
authentication as described above.

Within the category of Logged In Linux users, a client may be either a normal client or a super client. The
distinction is between clients that can only present a single username to the CGE server and clients that may
present some larger set of usernames (constrained by the CGE server configuration) to the CGE server.

o Normal clients - A normal logged in Linux user client presents the username of the Linux user with each
request. The server side authentication of a logged in Linux user uses that user's public SSH key for
public-key authentication of the user. Since Linux is a trusted repository for user identity, once the user
has logged into Linux the user's identity can be trusted (by the client) at all times. The degree to which the
client is trusted by the CGE Server hinges on the ability of the SSH protocol to match the requested
username with a working public key.

o Super clients - A super client is a logged in Linux user whose private SSH key matches with more than
one public-key/username pair in the CGE Server configuration. Generally, the owner of the CGE
Database will be a super client, allowing him or her to run the Web Ul and enable user authentication, but
any user can be set up by the database owner as a super client. In the case of a super client, an arbitrary

S3014 82

CGE Security

username is presented with each request (generally corresponding to a user who has been authenticated
using some higher level mechanism). If the username matches a public key that works with the super
client user's private SSH key, the supplied username will be used by the CGE server. If not, the request
will fail to authenticate at the CGE server and will not proceed.

It is worth noting that the use of the same public key for multiple users while keeping the associated private
key private to the owner of that key does not constitute SSH key sharing, since there is only one user (the
super client user) who owns the key pair. In the case of key sharing, all users sharing the key have access to
the same key pair. In this case, only the super client has access to the private key and the public key is used
to allow the super client to authenticate as 'authorized to present' the specified username.

e Web Ul clients - The Web Ul, CGE CLI front end is also capable of authenticating clients. It supports
authentication using either an enterprise LDAP server or a user private authentication mode. The Web-UI also
permits encryption of web transactions using SSL, to protect secrets (both authentication secrets and data
secrets) in transit. When a user logs into the Web Ul, the Web Ul presents the logged in user name instead of
the username of the Linux user who started the Web Ul. For this to work, the user who starts the Web-UlI
needs to be the super client who has the correct private SSH key for all of the Web based users authorized to
use the CGE Instance.

Notice that Web Ul clients are separated from logged in Linux clients by the keys used to log them in. A Linux
user who has Web Ul username/key pair on the CGE Server but no Linux username/key pair cannot use the
Linux command line CGE CLI command. By the same token, if the user has no Web Ul username/key pair,
that user cannot use CGE through the Web Ul. This allows the CGE Database owner to control both the form
of access (via permissions) and the mode of access (command-line or web or both).

7.1 Cray Graph Engine (CGE) Security Mechanisms

The CGE query engine protects the port on which it communicates with clients using an encrypted authentication
mechanism based on the Secure Shell (SSH) passwordless authentication mechanism. Before using the CGE
user interface query clients to make requests on data sets, authentication must be configured. If it is required to
set up the query engine to permit multiple users to execute requests, it will be required to configure public keys for
each user. This can be configured on a per-data set or all data sets basis.

7.1.1 Create a CGE Specific RSAIDSA Host Key

About this task

At some sites, site policy may dictate the use of a pass phrase with SSH keys used for logging into a system. If a
pass phrase is used when creating your SSH key, the CGE authentication mechanism will be unable to use your
SSH key(s) as its host key(s), so separate CGE specific host key(s) will need to be created. To do this, follow the
instructions listed below:

Procedure

Create the key in the .cge directory using ssh-keygen(1) instead of creating the key in the _ssh directory:

$ mkdir -p $HOME/.cge

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/users/username/.ssh/id_rsa): /users/username/.cge/id_rsa
Enter passphrase (empty for no passphrase):

S3014 83

CGE Security

Enter same passphrase again:
Your identification has been saved in /users/username/.cge/id_rsa.

Your public key has been saved in /users/username/.cge/id_rsa.pub.

The key fingerprint is:

eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host

The key"s randomart image is:

+--[RSA 2048]----+
. . I

%)
+

+--[MD5]--———————- +
$ Is -1 $HOME/.cge
total 8

—rW-=————== 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

NOTE: While this example shows creation of keys under $HOME/ . cge, it can be used to place keys
in any directory. If $HOME/ . cge is not a convenient place to put the keys, follow the above procedure
to generate the keys in some other (suitably protected) directory, then use the —-—configDi r option
to cge-launch or the $CGE_CONFIG_DIR_NAME environment variable to point to that directory. If it
is required to use CGE specific keys that are stored on HDFS, create them in a temporary directory
using this procedure, then copy them onto HDFS in the location of your choice (appropriately
protecting them). Then use an HDFS URL as the value of $CGE_CONFIG_DIR_NAME or the
argument to the ——-configDir option to the cge-launch command to select that directory instead
of $HOME/ . cge as the key directory.

Once this has been done, CGE will use the keys in the .cge directory instead of the ones in the .ssh
directory and there should be no further problems with pass phrases.

7.2 Setup CGE Security

Setting up security for a given instance of CGE involves the following steps:

Configure authorized logged in Linux users (including the database owner) in an appropriate
authorized_keys file

Configure any super client authorized users using the public SSH key of the Super Client and the usernames
of the various users in the appropriate authorized_keys file

Configure user permissions in the database ACL file

Optionally create an SSL configuration for cge-cli fe

Create an authentication configuration (private or LDAP, simple or forms based) for cge-cli fe
Start the CGE Web Ul using cge-cli fe with appropriate security options

7.2.1 Configure Server Side Identification and Authentication

Configuring server side identification and authentication includes setting up both authorized Linux logged In (i.e.
command-line) users, and setting up any super client authorized users that are needed for Web Ul access or
other purposes. The database owner needs to make decisions about the following:

Is it required to allow command line clients to access the dataset?

Is it required to grant Web-UI clients access to the dataset?

S3014

84

CGE Security

e At what scope (single dataset or all the datasets) is it required to authorize each given user, both the Web-UI
identity and the Linux identity?

The authorized_keys File

The CGE Server searches the file named authorized_keys in each of the following directories for a username that
matches the username presented with a given request:

e the database data directory

e the CGE configuration directory (either by default: $HOME/ . cge, or the value of $CGE_CONFIG_DIR_NAME
which can be set using the -—configDir=URL option to cge-launch)

e $HOME/ .ssh

Each username match is tested in turn until the public key associated with that match works for public-key
authentication. Once a match is found, the user has successfully authenticated and becomes an authorized user
for the duration of that request. Subsequent permission checks determine what that user is authorized to do.

One important decision the database owner needs to make is where to put a given user authorization. The choice
of the authorized_keys file to store a given username/key combination depends on the breadth of
authorization the owner of one or more databases wants to grant to the user. This breadth has three scopes:

e authorization to use only one database

e authorization to use all databases configured from the same configuration directory (typically all owned
databases)

e authorization to use all owned databases and, likely, to log into the Linux host using the self identity

By placing a user's authorization in the authorized_keys file in the database data directory, the user is granted
the most limited scope of authorization. This is appropriate for users that need to be granted access to that
specific database, or if the database owner owns multiple databases with multiple potentially overlapping lists of
authorized users and wants local control over each user authorization. By placing the user's authorization in the
CGE Configuration directory, the user is granted intermediate scope of authorization. This is appropriate if the
database owner owns multiple databases with a core set of users who are authorized on all of the databases.
Placing a user in the $HOME/ . ssh/authorized_keys file can potentially permit that user to log in as the
database owner, which is a serious security threat. Never put any username/key combination that is not
specifically your own SSH key (for login) in the $HOME/ . ssh/authorized_keys file. This file is included in the
search solely to make using CGE as the owner of the database simpler.

Authorized Keys for Command Line/API Use of the CGE Database

Users who are authorized to log into the server where the CGE database resides and use the cge-cli command
or one of the CGE APIs to interact with your CGE Database need to have the public SSH key corresponding to
their private SSH key stored in one of the authorized_keys files. Users may communicate their public SSH
keys to you using whatever means (E-mail, publicly readable files, etc.) is mutually convenient. The user's public
key can be generated using the ssh-keygen command and usually resides in the user's $HOME/ . ssh directory
in one of the following files:

e id_rsa.pub (RSA based public key)
e id dsa.pub (DSA based public key)

When adding a command line/API key to the authorized_keys file, make sure that the key is a single line
comprised of three parts (separated by spaces):

e the signing scheme used by the key (RSA or DSA)

S3014 85

CGE Security

e the key itself
e the username@host identifying the user

and that the username part of the username@host part matches the logged in user name of the requesting
user. The host part is ignored, so it can be anything. Here is an example entry. Note that the content, which is a
single line, is split up into multiple lines due to lack of space:

ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQDOVYLTKwz/RANgMegeTST20wO0IMwFea9qQC6R7en7A+BcslaNt2m
+9Vh/AocMfaruwpyHr26\
epsdpC8Thw4+9NIUToUoJyKC6TMZcntF7e3RiY1lyZt6uvKUIlgs75zS4TqZMAtHE i uvgLHkZwypKF1vsscu
SSYCMKNxXUaOE38UcPVmH\

+zEGWpc9yyOb 1+7Ae4PuK I jw6gpOtX8Wwawz/

Eb5UAWF56pCR0O45i1 zZBWRe7y9anHe3+XtluFU9zU1 180aeRHg64KmMS3 § CNhG I FOwmW\

081 YmxHXyChei fxdYpCgl+jN+jQ6CgbFe40rbkbuP/e lAmFY I5BHMWi 7LmYVWEYP user@nid00030

This will authorize the user user with the corresponding private SSH key to use your database.

Authorized Keys for Web-Ul Users

The Web-Ul uses the Super Client key of the user running the cge-cli fe command to submit requests on behalf
of logged-in Web-UI clients. Normally, the user running the cge-cli fe command is the owner of the database, so
examples of adding users are shown using your public SSH key as the authorizing key for Web-Ul users in the
authorized_keys file.

Assuming you are the user who will be running the cge-ci fe command for your database, the following command
adds the user david as an authorized Web-Ul user of your CGE Database:

$ $ sed -e "s/ SUSER@/ david@/''< $HOME/.ssh/id_rsa.pub >> \
authorized_keys

This replaces your username from your 1d_rsa. pub public key file (a similar command will work with an
id_dsa.pub file as well) with david creating a user named david that you are authorized to authenticate for your
CGE Database instance. Do this for all the Web-UI users you want to authorize. You will also need to make sure
they are able to log into your Web-UI.

7.2.2 Configure the ACL File User Permissions
By default, in the absence of an ACL file, users of the CGE database file will fall into one of two categories:

e the instance owner (a user who's username matches that of the Linux username of the user who started the
CGE Server)

e everyone else

As the instance owner, you have all permissions when interacting with the CGE Server. All other authorized users
are permitted only to query the database.

This section explains how to set up an ACL file that allows more precise control of access to the database on a
per-user basis.

CGE Permissions

CGE uses a hierarchical set of permissions to control the types of requests an authorized user is permitted to
make. The following lists the permissions and the requests or actions they control:

S3014 86

CGE Security

e data.query - permission to query (read only) the data set
e data.update - permission to update (write only) the data set
e data.checkpoint - permission to checkpoint (save to storage) the data set

e request.nvp - permission to set one or more configuration NVP settings to be effective for the duration of
an individual request, if not present, specifying NVP settings causes the request to fail

e request.log - permission to modify logging behavior for the duration of an individual request, if not present,
logging is unchanged but the request proceeds normally

e server.config.nvp.get - permission to read the NVP configuration in effect in the running server

e server.config.nvp.set - permission to alter the NVP configuration in effect in the running server for all
subsequent requests

e server.config.log.get - permission to read the logging configuration in effect in the running server

e server.config.log.set - permission to alter the logging configuration in effect in the running server for
all subsequent requests

e server.config.output.get - permission to read the name of the output directory used by the server to
store result files

e server.config.output.set - permission to change the output directory used by the server to store result
files for all subsequent requests

e server._shutdown - permission to shut down the running server

Permissions may be named individually or may be named using a wildcard character (*') at any level of the
hierarchy. A wildcard character all by itself signifies all permissions. Here are some examples of permission sets
and their equivalent wild card definitions:

e All Permissions : *
e data.query,data.update,data.checkpoint:data.*

e server.config.nvp.get,server.config.log.get,server.config.output.get:
server.*_get or server._config.*.get

e server.config.nvp.get,server.config.nvp.set:server.*.nvp.*or*.nvp.*, or
server.config.nvp.*

Notice that various more or less specific forms of wildcarding produce the same result with the current set of
permissions. In future releases, new permissions might be added that might match one of the less specific
wildcard specifications and grant unexpected rights to a given user. It is generally best to use the most specific
wildcard form possible to achieve the desired set of permissions so that you do not experience permission creep
from release to release. It is also a good idea to review you ACLs with respect to the permissions available in a
given release to ensure that no new permissions are being unexpectedly granted.

The ACL File

The ACL file is a file named user_perms.cfg in the data directory of your database. This file, if present, contains
the permission assignments for authorized users using your database. For your convenience, this file allows you
to group permissions and users using roles, each of which is a named set of permissions containing the
permissions needed to carry out a specific related set of database responsibilities, and groups, each of which is a
named set of users to be assigned a common set of permissions or roles. The ACL also permits you to specify

S3014 87

CGE Security

permissions or roles for individual users by name, and to specify a default set of permissions using the default
user name (*). Here is a sample ACL that illustrates all of these elements:

[roles]
An administrator has all permissions
admin = *

An auditor has the ability to adjust the logging
behavior of the running CGE Server
auditor = server.config.log.*

A consumer of data is allowed to query the CGE Database
and provide per-request NVPs because some NVPs impact the
efficiency / practicality of certain queries.

consumer = data.query,request.nvp

A producer of data is allowed to query, update, and

checkpoint the CGE Database, and is allowed to set

per-request NVPs because some NVPs impact the efficiency
or practicality of certain queries, and some options on
checkpointing are controlled by NVPs.

producer = data.*,request.nvp

[groups]

admins = joe,mary,abdul
auditors = phyllis, jodi,allan
producers = anne,grace,william

i+

A group of users to whom no access is permitted. This is
a useful way of temporarily disabling a user while keeping
that user®s authorized keys active. The group is defined
here with its member list, but is never assigned any roles
or permissions. This prevent®s these users from being

treated as default users (allowing default users to have
more permissions) while ensuring they have no access.
denied_users = wilbur,ginger,ava

[permissions]

group:admins = role:admin

group:auditors = role:auditor

group:producers = role:producer

The user "david®" is an auditor who also needs to be able to
see what is in the database, so he needs both the auditor and
consumer role.

david = role:auditor,role:consumer

The user "fred®™ needs to be able to query, but we don"t trust
him with changing per-request NVPs, so he can"t do that.

fred = role:auditor,data.query

Everyone else who is not specifically mentioned either by name
or by group is allowed to be a "consumer*
* = role:consumer

There are a few things to notice about the above sample ACL. First of all, it is divided into sections of three types:
e The roles section contains role definitions

e the groups section contains group definitions

S3014 88

CGE Security

e the permissions section contains permission assignments to both groups (where the group name is
qualified by the group: prefix), and users.

There may be any number of sections of a given type. The aggregate effect of multiple sections of the same type
is the same as having one large section of that type containing all of the content of the smaller sections.

The second thing to notice is that comments are permitted in an ACL file. Comments take the form of a '#'
character followed by any arbitrary text up to a newline. The comment ends at the newline.

The third thing is not obvious from the example, but the sections, definitions and assignments do not need to be
presented in any particular order. As long as the definitions and assignments take place within the appropriate
sections and convey an unambiguous intent, the CGE Server will figure out any necessary ordering.

There are some rules about what constitutes unambiguous intent:

e Arole or group may have at most one definition in the ACL

e A group or user may have at most one permission assignment in the ACL
e A user may belong to at most one group

e A user may not both belong to a group and have a permission assignment

e The list of permissions and roles in a permission assignment may contain any arbitrary list of permissions and
roles, even repeated permissions or repeated roles

e The default (*) user is a default user, not a wildcard user, so assigning permissions or roles to it, at most once,
does not violate any of the above rules regarding explicitly named users

If an ACL file is changed while the CGE Server is running, its contents will take effect upon receipt of the next
request. This permits on-the-fly changes to the ACL, but it also opens up the possibility of creating a malformed
interim ACL while editing or in the process of copying a new ACL into position. In order to replace an ACL safely,
it is a good practice to make a copy of the ACL that needs to be edited, then edit the copy and verify it using the
cge-test-permissions command, before moving it into place using the mv(1) Linux command. The
advantage of using the mv(1) command instead of the cp(1) command is that the rename of the file performed
by mv(2) is atomic, so no request can come in while the file is being copied. The risk of a race condition here is
tiny, but it could produce surprising effects that cannot be reproduced.

For more information, see the cge-test-permissions(1) and CGE-PERMISSIONS(5) man pages.

ACL File Verification

The cge-test-permissions command allows you to verify the correctness of an ACL without needing to read
through the CGE Server log for errors. While an ACL file may reside on any file system accessible by the CGE
Server for its ultimate use (e.g. HDFS) , the cge-test-permissions command only has access to files on
POSIX compliant (i.e. Linux native) file systems. Since you are most likely to edit your ACL files on a native file
system and then copy them to, for example, an HDFS file system, this should not be too much of an
inconvenience, but it is important to note that specifying a URL for an ACL filename to cge-test-permissions
will result in an error.

Here are a few examples of common uses of cge-test-permissions using the example ACL file shown
above:

Check that the ACL file is correctly formed and unambiguous,
expecting a silent exit (the exit value will be 0) on success
$ cge-test-permissions perms_example.cfg

Check the definition of the "auditor® role

S3014 89

CGE Security

$ cge-test-permissions -r auditor perms_example.cfg
Role "auditor”:
Permissions: server.config.log.get, server.config.log.set

Check the definition and permissions assigned to the “auditors®" group
$ cge-test-permissions -g auditors perms_example.cfg
Group "auditors”:
Roles:
auditor [server.config.log.get, server.config.log.set]
Assigned Permissions: <none>
Effective Permissions: server.config.log.get, server.config.log.set
Members: phyllis, jodi, allan

Check the definition of the user "jodi"
$ cge-test-permissions -u jodi perms_example.cfg
User "jodi":
Member of group auditors [server.config.log.get, server.config.log.set]
Roles: <none>
Assigned Permissions: <none>
Effective Permissions: server.config.log.get, server.config.log.set

Check the definition of the user "fred®
$ cge-test-permissions -u fred perms_example.cfg
User "fred":
Member of no group
Roles:
auditor [server.config.log.get, server.config.log.set]
Assigned Permissions: data.query
Effective Permissions: data.query, server.config.log.get,
server.config.log.set
Check the definition of the denied user “"ava“
$ cge-test-permissions -u ava example_acl
User "ava":
Member of group denied _users []
Roles: <none>
Assigned Permissions: <none>
Effective Permissions: <none>

If any of the above commands were run using an ACL with errors or ambiguity in it, the command would have
reported errors as it found them, allowing you to correct the errors and re-run the command.

The first example is simple. If no options are given, the command simply verifies that the specified file is
acceptable and exits silently if it is okay.

The second example displays the contents of the single role named auditor. Here the name of the role and the
permissions that make up that role are displayed.

The third example displays both the definition and the permissions of the group auditors. In this case, the name
of the group and the users making up that group are displayed. In addition to that, though, the group also may be
assigned some set of roles, and may be assigned some set of explicit permissions. Any roles assigned to this
group are displayed, and two different kinds of permissions are displayed. The first set of permissions is the
Assigned Permissions these are the permissions that were explicitly assigned to the group by name. The
second set of permissions is the Effective Permissions. These are the permissions that result from
combining the permissions derived from roles with any permissions explicitly assigned by name. They are the
permissions that will actually be used to make an access decision when a member of this group issues a request
to the CGE Server.

S3014 90

CGE Security

The fourth example displays information about the user jodi. A user may belong to a group, or be assigned
permissions and / or roles explicitly, so all of this is displayed. Here we see that jodi is a member of the group
auditors which contributes a set of permissions, but has no explicitly assigned permissions or roles. The
Effective Permissions here are the permissions derived from group membership, role assignment and
explicit permission assignment. In the case of jodi the effective permissions are derived from the group
auditors so they are the same as that group.

The fifth example displays information about fred who has an explicit role assignment and an explicit permission
assignment but is not a member of any group. Here we see the role auditor contributes a set of permissions,
and there is one permission explicitly assigned to fred. The Effective Permissions in fred's case are the
combination of the role permissions and the explicit permissions (no permissions are contributed by a group).

The last example displays information about ava who has had all permission explicitly denied to her by placing
her in a group of users who are denied permissions. Notice that she is a member of the group denied_users
which has no permissions assigned to it. She has no explicit permissions and no effective permissions.

It is also possible to dump out the complete state (all roles, groups and users) defined by an ACL file using
thecge-test-permissions -a command. This produces a lot of output, so it is not shown here, but the output
is formatted the way it is shown above.

Once you are satisfied with your ACL file, place it in your data directory and it will take immediate effect.

7.2.3 Configure Web Ul Identification, Authentication and Encryption

After setting up the web Ul users and their permissions, the web Ul needs to be configured to identify and
authenticate users who want to use the database through the web Ul. The cge-cli fe command searches the
working directory from which it is launched followed by the CGE configuration directory (either by default:
$HOME/ . cge, or the value of $CGE_CONFI1G_DIR_NAME which can be set using the ——configDi r=URL option
to cge-launch) to find its configuration files. Any configuration that is put in the CGE configuration directory will
be shared by any web Ul that is launched using that directory. This can be convenient when running multiple web
Ul instances using the same configuration.

There are three major elements of this configuration:

e The identification and authentication mechanism to be used (private or LDAP) and the form in which the
credentials are presented to the CGE web Ul (forms or HTTP basic).

e The list of users and passwords to use (or, in the case of LDAP, the particulars of the LDAP server interaction)

e SSL Encryption to protect the content of communications (including credentials) and to assure the web Ul
user of the authenticity of the web Ul service.

Choose and Configure an Identification and Authentication Mechanism

The web Ul uses the Apache Shiro Security Framework to implement Identification and authentication of users.
This framework permits the user to configure one or more security realms as the basis for Authentication. An
example of a realm is LDAP authentication, in which an enterprise or cluster based LDAP directory is used for
authentication decisions. Another example is a simple private text based user / password list stored in the
configuration (.ini) file. Which of these you choose depends on how you want to define your user base for your
instance of CGE.

In addition to this, there are two different mechanisms for collecting the user's identity and authentication
credentials: HTTP Basic and Forms based. In the HTTP basic approach, HTTP issues an authentication
challenge to the browser or application attempting to access your web Ul and the browser or application prompts
the user for an identity and a password. From that, the browser generates and remembers a set of authentication

S3014 91

CGE Security

credentials and attaches them to every subsequent request. This is useful for programmatic access to the web Ul,
but can be a bit cumbersome for user interactive use. In the Forms based approach, the user is presented with a
login page on first contact with the web Ul. The user fills out a username and password, and the web Ul
establishes a session with the user. This is very convenient for interactive use of the web Ul but awkward for
programmatic use, where the program will have trouble interacting with the login page. Which of these you
choose depends on the mix of user interactive and programmatic access you expect your web Ul to support.

CGE offers a tool, cge-cli generate shiro, that allows you to generate template configuration files for
HTTP Basic with private authentication data, Forms based with private authentication data, and Forms based with
LDAP authentication. To use HTTP Basic with LDAP you need to make a minor change to the Forms based with
LDAP configuration.

More complex and expressive Shiro configurations are also supported by CGE, but cge-cli generate shiro
does not offer tools to generate templates for them. Templates and advice may be found in the open-source Shiro
community. For more information, see http://shiro.apache.org/documentation.htm| .

Choose the Mechanism

The first choice that needs to be made is the kind of authentication the CGE Instance web Ul needs. If the user is
setting up an independent instance of CGE where the user wants to fully control the security environment of the
instance, or the user does not have access to an LDAP server that fully expresses the range of users the user will
be interacting with, then the private approach to storing authentication data makes sense for the CGE Instance.
An example of this might be some kind of moderated public access to a CGE Database, where the user does not
want other users to be configured as part of the user's LDAP directory. If the user is setting up an enterprise wide
CGE server, where the authentication data for all users is already stored in an enterprise LDAP server, and it is
required to allow those users selective access to the CGE Instance, the LDAP approach makes the most sense.
The ability to log into the web Ul does not necessarily impart the ability to interact with the database. The user
must also be authorized as a web Ul client (i.e. have the web Ul Super Client public key associated with his or her
username in an authorized_keys file).

The next decision is whether to use the HTTP or Forms based login mechanism. If it is expected to have a mix of
user interactive and programmatic use of the web Ul, then HTTP Basic makes the most sense, even though it is a
bit more cumbersome for interactive users. If only user interactive use is anticipated, then the Forms based
approach makes the most sense.

7.24 Configure LDAP for CGE

To set up an LDAP based Apache® Shiro template configuration file, issue the following command on the login
node of the system where it is intended to run CGE:

$ cge-cli generate shiro ldap > $HOME/.cge/shiro.ini

This command will create a template configuration that you can edit to work with your specific site LDAP server. If
running CGE on a Urika-GX system, Cray recommends to have a centrally configured LDAP server for the Urika-
GX cluster running on the login node in order to use that LDAP server as a forwarding agent to the site's
enterprise LDAP. To use this approach for configuring LDAP for CGE, change the following line in the
configuration to include the name of the login node instead of host-loginl:

ldapRealm.contextFactory.url = ldap://host-loginl:389

S3014 92

http://shiro.apache.org/documentation.html

CGE Security

For example:
IdapRealm.contextFactory.url = ldap://nmachi ne-loginl:389

In the preceding example, machi ne is used as an example for the name of the machine. This tells Apache Shiro
where to look for the Urika-GX LDAP server, which resides on your Urika-GX loginl node as Urika-GX is shipped.

The configuration that results here will be Forms-based. To use an HTTP basic configuration with LDAP, change
the following line:

/** = authc
to:
/** = authcBasic

This will make the default requirement for accessing Web-Ul pages be HTTP basic authentication (authcBasic)
instead of Forms authentication (authc).

CGE web Ul can be directly integrated with the site's LDAP server, in which case, the configuration will need to
match what the site’'s LDAP expects. To enable this, edit the part of the template that looks like:

Define a LDAP realm
IdapRealm = org.apache.shiro.realm.ldap.JndiLdapRealm

Configure the template for User lookups

You will need to ask a system administrator what the format should be here
The following is the default on Urika-GX systems as shipped but your system
may be differently configured

IdapRealm.userDnTemplate = uid={0},ou=People,ou=external,dc=local

Configure to point to LDAP server of choice

The LDAP server resides on the loginl node on Urika-GX systems as shipped
389 is the normal default port for LDAP servers
IdapRealm.contextFactory.url = ldap://host-loginl:389

Only uncomment and change this if your server needs a specific auth mechanism.
By default the client should negotiate this automatically with the server
#1dapRealm.contextFactory.authenticationMechanism = DIGEST-MD5

1T your LDAP server needs credentials to access it set them here
In most cases this should be unnecessary

#ldapRealm.contextFactory.systemUsername
#1dapRealm.contextFactory.systemPassword

Idap-admin
lIdap-admin-password

7.2.5 Configure Private Authentication for CGE

About this task

Use this procedure to set up private authentication for the CGE instance web UI.

Procedure

1. Execute one of the following commands on the login node of the system where CGE is intended to run.

S3014 93

CGE Security

e $ cge-cli generate shiro simple > $HOME/.cge/shiro. ini
e $ cge-cli generate shiro forms > $HOME/.cge/shiro.ini

The first command will produce an HTTP Basic configuration template, the second command will produce
a forms-based configuration template.

2. Add users.

a. Look for the users section of the configuration template.

[users]

Define two users
admin = admin

user = password

b. Edit users as needed.

For example, to have three users: phyllis, jodi and al lan, set up the users as follows:

[users]

Define two users

phyllis = PasswordForPhyllis
jJjodi = PasswordForJodi

allan = PasswordForAllan

These examples show the passwords stored as clear-text. Refer to http://shiro.apache.org/
documentation.html for examples related to using one-way encryption to make passwords less
accessible .

7.2.6 Configure SSL for CGE

SSL provides three types of protection for data and users. The first protection it affords is assurance that the user
is interacting with a web Ul that is, in fact, the web Ul for your CGE instance. By providing an SSL certificate that
is correctly signed, your web Ul tells users (and their browsers) that they are talking to the right web Ul. To the
user, that means that it is safe to present a username and password to the web Ul, that the user can safely
present sensitive information to the web Ul without concern that an impostor web Ul will steal it, and that any data
coming from the web Ul is trustworthy, since it comes from a verified web Ul. This means that the user can trust
the data for decision making and trust the database with new data. The second protection SSL affords is
encryption of authentication secrets so that the user can present a username and password without fear of these
secrets being intercepted in-flight to the web Ul. The third protection SSL affords is encryption of query and
update data so that the user can query and update the database without fear of sensitive query results or
sensitive update data being either intercepted or modified in flight to and from the web Ul.

There are two kinds of SSL certificates that may be used to provide SSL protection of the web Ul:

e \Verified - A verified SSL certificate is purchased from a third party Certificate Authority (CA). The CA provides
a secure verification service. Certificates from that authority can be verified securely by any web browser or
SSL enabled application with no user intervention.

e Self-signed - A self-signed certificate is one that the owner of the web Ul can generate for themselves, but
which has no third-party verification. Users are prompted by their browsers to accept or reject self-signed
certificates, and are usually advised not to accept them. In some cases, where users know for sure what your
certificate looks like and that you are trustworthy, they might be willing to accept a self-signed certificate. In
general, self-signed certificates are used for prototyping and debugging of web Ul deployments. When it
comes time to go live with data, it is a good idea to obtain a verified certificate and replace the self-signed

S3014 94

http://shiro.apache.org/documentation.html
http://shiro.apache.org/documentation.html

CGE Security

certificate with it. CGE provides the cge-cli generate keystore command to help with creation and
importation of SSL certificates.

e Using a Verified SSL Certificate - Obtaining a verified SSL certificate is outside the scope of this discussion,
but once you have an SSL Certificate downloaded to your site and want to install it, installation is simple. The
following command will import the certificate into your keystore for you to use:

$ cge-cli generate keystore --import your.cer --keystore ~/.cge/keystore

This will produce a file named keystore in the .cge directory in the home directory. This is the default place
that CGE looks for CGE configuration files. The keys in the keystore file will be found by CGE by default by
looking in this file. If a different directory is used (or, for example, a directory on HDFS) for CGE's
configuration, it is possible to choose the path or URL of that directory as the argument to the --keystore
option. The SSL certificate will be imported from the file user . cer which is the verified certificate
downloaded from the certificate authority.

A CAUTION: In order for the imported certificate to be usable it must contain the private key as well as
the Digital signature from the certificate authority. Without the private key a certificate cannot be used
for SSL

e Using a Self-Signed SSL Certificate - To use a self-signed certificate, execute the following command:

$ cge-cli generate keystore --self-signed --keystore ~/.cge/keystore

The system will be prompt for a bunch of information about the self-signed certificate and then it will be
created in the .cge directory in the home directory. This is the default place that CGE looks for CGE
configuration files. The keys in the keystore file will be found by CGE by default by looking in this file. If
using a different directory (or, for example, a directory on HDFS) for CGE's configuration, it is possible to
choose the path or URL of that directory as the argument to the --keystore option

e Giving Your Web-Ul Access to Your SSL Keystore - In addition to file protections, both the SSL keystore
and certificates can be password protected. In this case, cge-cli fe needs to know these passwords to
access the certificate. These passwords need to be stored in the CGE properties file (by default
$HOME/ .cge/cge . properties) as follows:

cge.cli.server.ssl._password = MyKeyStorePassword
cge.cli.server.ssl._key-password = MyCertificatePassword

By default these passwords are stored in clear text. If you want them stored in an obfuscated (one-way
hashed) form, you can use the following command to set up these passwords:

$ cge-cli generate properties --ssl-passwords

The system will prompt for these two passwords, obfuscate them, and add them to the cge.properties
file.

e Securing Your SSL Certificate - The SSL certificate contains sensitive information and should be properly
secured. With it, it is possible for an impostor to impersonate the SSL protected web-site. While the
information in the SSL keystore is somewhat obfuscated, it is best not to treat it as secured simply by those
means. Using Linux file permissions you can further secure the keystore to help prevent unauthorized use. If
a user needs to run the Web-UI (i.e. invoking the cge-cli fe command) the user can simply make the file
mode readable only by themself. For example:

$ Is -1 keystore

-rw-r--r-- 1 erl criemp 2222 Sep 26 10:56 keystore
$ chmod 600 keystore

$ Is -1 keystore

-rw——————- 1 erl criemp 2222 Sep 26 10:56 keystore

S3014 95

CGE Security

Take similar steps to protect the cge . properties file and any verified certificate files, since these contain
similarly sensitive data.

7.2.7 Launch a Secured Web UI

Prerequisites
Set up the CGE authentication and SSL encryption

About this task

After setting up the authentication and SSL encryption in the desired way, launch the Web Ul using the configured
security features.

Procedure

Launch the CGE web Ul

e If the filenames used in the security section examples of this publication are used, and the CGE database
instance is running on the default port, the following command will start a secure version of the Web Ul
with both authentication and SSL encryption enabled:
$ cge-cli fe --security=/data/directory/shiro.ini --ssl

e If not using SSL, then the following command will enable authentication without SSL.

A CAUTION: There is a chance of credential leakage when not using SSL, so this is not really a
secure way to run a web Ul.

$ cge-cli fe --security=/data/directory/shiro.ini

7.3 Endpoint Security

The CGE server you provides two mechanisms for endpoint security:
1. SSL encryption
2. User authentication

Both of these features are off by default as they require additional user provided configuration.

SSL Encryption

When enabled, SSL provides encryption of communications between the client and the SPARQL server. Note that
Communications between the SPARQL server and the database server are always encrypted regardless of
whether this is enabled. By enabling this feature you gain complete end to end encryption from the client all the
way to the database server.

SSL Certificates and the Key Store

In order to enable this feature you will need to provide a suitable SSL certificate. Obtaining an SSL certificate is
covered elsewhere in the documentation and you should refer to that for more detail.

S3014 96

CGE Security

To use a certificate, import it into a Java key store, which can be done using the Java keytool utility:

$ keytool -import-v -trustcacerts -alias cge -file server.cer -keystore ~/.cge/keystore
In this example we import a certificate from the server .cer file to the key store located at ~/ .cge/keystore.

Note that each certificate must have a unique alias within the key store. Key stores are protected by a password
for which the user will be prompted. If the key store does not yet exist, the user will be prompted for a new
password and a new file will be created.

In order for the server to pick up the correct certificate, the key store file should ideally contain only the certificate
to be used for SSL. If it contains multiple certificates, the SSL may fail to function.

The cge-generate keystore command provides a simple wrapper around some common keytool
commands. For example, the above could also be execute as:

$ cge-cli generate keystore --alias cge —--importserver.cer --keystore ~/.cge/
keystore

Locating the key store

For the server to access the key store, it must be provided with the location of the key store and the password to
access it. The location can be provided explicitly using the —-keystore option. if this is not specified, then it tries
to locate a key store as follows:

1. If the located configuration file contains a cge.cli.server._ssl _keystore property, use the file specified
by that.

2. Otherwise search for a file named keystore in any of the specified configuration directories. As with other
configurations files only the first one found will be used.

If the key store and/or the certificate itself require passwords then these must be provided in the configuration
file using the following properties:

Table 15. Key store Properties

Property Description
cge.cli.server.ssl _password Password for the key store
cge.cli._server.ssl_key-password Password for the certificate

To avoid storing the password in plain text it may be stored in obfuscated form as supported by Jetty.

Enabling SSL
Assuming the appropriate certificate is in place in the key store, and the properties file is configured with any
necessary passwords then, enable SSL using the --ss| option, as shown in the following example:

$ cge-cli fe --ssl

This will start the server configured for SSL Communications i.e. It will only respond to https:// URLs.
Communication with the server will not be possible without an appropriate certificate.

Enabling Lax SSL
The default configurations for SSL only permits strong cipher suites and cryptographic protocols to be used.
Some older tools may encounter difficulties when trying to communicate with the server if they do not support

S3014 97

CGE Security

appropriate cipher suites and/or cryptographic protocols. In this case you may want to enable Lax SSL mode. For
example:

$ cge-cli fe --ssl --ssl-lax

A CAUTION: In this mode, the server will permit the use of cipher suites and cryptographic protocols that
have known flaws, are considered weak and/or may be susceptible to widely published and easily
reproducible attacks. Therefore, we strongly recommend that you only use this mode when absolutely
necessary.

7.4 CGE User Authentication

User authentication allows you to configure the server such that users accessing it must first authenticate
themselves. This means that the server knows the identity of the user and can provide this information to the
database server meaning that only users authorised to access the database can perform actions against it. This
provides for a strong audit trail that logs user activity on a database.

When not enabled the server runs in anonymous access mode. This allows anybody to access the server and all
actions are carried out using the identity of the process owner.

Apache Shiro configuration

The server relies upon Apache Shiro to provide the authentication layer, this allows for a wide range of
configurations that can be tailored to your requirements. Note that authentication does not imply authorisation, it is
perfectly possible to create A configuration where a user can authenticate themselves but does not have the
authorisation to actually perform actions against the database.

In order to enable authentication you must provide a valid Shiro configuration file, which is beyond the scope of
this publication.

For more information, see Generate a Shiro Configuration Template Using the generate shiro Command on page
49 and visit http://shiro.apache.org/configuration.html and http://shiro.apache.org/web.html. As many users may
not be familiar with this framework the command line interface includes a helper command that will generate
templates for the most common configurations.

Enabling user authentication

Once the appropriate Shiro configuration has been put in place, the user can start the server with authentication
enabled, as shown in the following example:

$ cge-cli fe --security example.ini

This will start the server with Shiro configured according to the given file.

A CAUTION: In the event that the configuration is invalid the server will fail to start.

User Authorization
Authentication does not imply authorization. Regardless of what Shiro authentication realm is chosen, individual

users must still be authorized to access the database. Authorizing users to access the database via the SPARQL
server is a little different from authorizing them to access the database directly. In this scenario, the SPARQL

S3014 98

http://shiro.apache.org/configuration.html
http://shiro.apache.org/web.html

CGE Security

server will be running as the user who launched the process, therefore all requests to the database will use that
users key pair. As a result that user will need to have their key pair authorised for use by other users, as shown in
the following example:

$ cat ~/.ssh/id_rsa.pub | sed "s/my-name/other-user/">> /my/db/authorized keys

In this example the user is authorizing their public key to be used by other-user. This does not grant that user
the ability to connect to the database directly with this key as they would not have access to the corresponding
private key. Essentially, the user delegates the ability for a process owned by themselves to use a key pair owned
by themselves, on behalf of another user.

Login Mechanisms

Apache Shiro supports two login mechanisms which can be used as desired. Firstly it supports HTTP Basic
authentication, in this mode any attempt to access the server that requires authentication Will send a HTTP
authentication challenge back to the client. In a web browser this will typically result in the browser presenting a
login prompt to the user. When the user enters their credentials this is submitted back to server for the server to
verify against the configured authentication realm. In this mode every request to the server requires credentials to
be presented, however most browsers will remember credentials for the life of the browser session and
automatically submit them with subsequent requests.

Secondly it supports forms authentication, in this mode any attempts to access the server that requires
authentication will redirect the user to the login page. The server provides a login page at /login so Shiro
configurations should use that as the login URL. The user can then enter their credentials in a form in the browser
before submitting them back to the server for the verification. In this mode the server will use cookies to identify
the user, it checks the cookie against its record of logged in users to determine if the user has previously
authenticated. This means that the user need only present their credentials once and thereafter need only present
the cookie.

Which login mechanism is selected to be sued will depend on how the user intends to use the server. If you
primarily use the server to provide SPARQL endpoints for access by SPARQL tools and libraries then you are
better off using basic authentication as many tools and libraries do not support forms authentication. On the other
hand if you are primarily using the server for the browser interface then forms authentication is more user-friendly.

NOTE: With both mechanisms, credentials are sent unencrypted to the server and therefore are subject
to interception by a malicious user/application. In order to ensure secure deployments, use the user
authentication features in conjunction with the SSL features.

LDAP Integration

Apache Shiro can be configured to integrate with the system LDAP server or a central LDAP server as desired.
An example configuration for this can be obtained using the cge-cli generate shiro command, as shown in
the following example:

$ cge-cli generate shiro Idap > example.ini

Here we output the template to the file example.ini which will look something like the following:

[main]
Define a LDAP realm
ldapRealm = org.apache.shiro.realm.ldap.JndiLdapRealm

Configure the template for User lookups
You will need to ask a system administrator what the format should be here

S3014 99

CGE Security

The following is the default on Urika-GX systems as shipped but your system
administrator may have
IdapRealm.userDnTemplate = uid={0},ou=People,ou=external,dc=local

Configure to point to LDAP server of choice

The LDAP server resides on the loginl node on Urika-GX systems as shipped
389 is the normal default port for LDAP servers
IdapRealm.contextFactory.url = ldap://host-loginl:389

Only uncomment and change this if your server needs a specific auth mechanism.
By default the client should negotiate this automatically with the server
#1dapRealm.contextFactory.authenticationMechanism = DIGEST-MD5

IT your LDAP server needs credentials to access it set them here
In most cases this should be unecessary
#1dapRealm.contextFactory.systemUsername
#1dapRealm.contextFactory.systemPassword

Idap-admin
Idap-admin-password

Associate the realm with the security manager
securityManager.realms = $ldapRealm

Enable auth caching, reduces load on the LDAP server

Comment this out to disable caching

cacheManager = org.apache.shiro.cache.MemoryConstrainedCacheManager
securityManager.cacheManager = $cacheManager

Configure the login page, /login is the page provided by the CGE SPARQL Server
authc.loginUrl = /login

[urls]
Enable logouts
/logout = logout

Require authentication for all paths, comment this out and uncomment the
subsequent line

1T you prefer to use HTTP Basic Authentication rather than Forms Authentication
/** = authc

#/** = authcBasic

On most LDAP servers, the user will only need to change two lines. Firstly the user will need to set the URL for
the server

IdapRealm.contextFactory.url = ldap://host-loginl:389

To use the system LDAP server provided on a Urika-GX System this should be set to the loginl node of the
system. For example if your system was nhamed machine then the URL should be Idap://machine-
loginl:389. If it is required to use a central LDAP server, contact the IT department to determine the correct
URL to use.

The other setting that you will need to change is the search template which is used to build the full LDAP
distinguished name for a user:

IdapRealm.userDnTemplate = uid={0},ou=People,ou=external,dc=local

The example given here is the distinguished name format used by default on Urika-GX Systems. However your
system administrator and/or IT department may use a very different format. If this setting is incorrect, all attempts
to authenticate will fail. Please contact the system administrator and/or IT department to determine the correct
distinguished name format.

S3014 100

CGE Security

There are a variety of other LDAP related settings seen in the generated template but these are all commented
out as they should not be needed for most common LDAP setups. If the two aforementioned settings are correctly
configured and you are still unable to authenticate successfully please contact the System administrator and/or IT
department to enquire whether any advanced settings are needed.

Configuration properties

Once the preferred configuration has been put in place, it may be helpful to specify all the relevant options directly
in the cge . properties file, instead of having to remember all the command line options. Doing this will help
specify a default configuration, which is automatically picked up and applied. The following table details all the
available properties that can be used to change the configuration of the SPARQL server.

Command Line option Property Description

--server-host cge.cli.server.host Sets the hostname upon which the server
listens for requests

--server-port cge.cli.server.port Sets the port number upon which the server
listens for requests

--security cge.cli.server.security Sets the Apache Shiro configuration file
used to configure user authentication

--ssl cge.cli.server.ssl._enabled Enables SSL when set to true enable SSL

--ssl-lax cge.cli._server.ssl.lax When set to true, permit SSL protocols and
ciphers known to be insecure

--keystore cge.cli.server.ssl _keystore |Sets the location of the Java key store file
that contains the certificate to use for SSL

cge.cli._server.ssl_password |Sets the password used to access the Java

key store
cge.cli.server.ssl _key- Sets the password used to access the SSL
password certificate within the Java key store

7.5 Grant Basic Access to Owned Query Engines

About this task

The Cray Graph Engine (CGE) query engine and CGE CLI commands use your SSH configuration to obtain
public and private keys for use in authentication. Configuring basic query engine authentication is almost the
same as configuring SSH passwordless authentication to the localhost IP host for your login account. The steps
involved in granting basic access to your query engine are listed below:

Procedure

1. Ensure that you have a .ssh directory in your home directory and that the directory permissions are 700

S3014 101

CGE Security

To find out whether you have a .ssh directory, and whether or not it is correctly protected, use the following
command:

$ Is -1d $HOME/ .ssh
drwx--—-—- 6 username group 204 Nov 20 07:15 /users/username/.ssh

If this looks correct you can move on to the next step. If the directory does not exist at all, you will need to
create it, as shown below:

$ mkdir $HOME/.ssh

$ chmod 700 $HOME/.ssh

$ Is -Id $HOME/ .ssh

drwx--—-—- 6 username group 204 Nov 20 07:15 /users/username/.ssh

If the directory does not have the correct permissions, you can simply change those. However, it is important
to ensure that the directory is writable only by you. As long as this requirement is met, you do not need to
change anything. The following command can be used if it is required to set the permissions on the directory:

$ chmod 700 $HOME/.ssh
$ Is -Id $HOME/.ssh
drwx----—- 6 username group 204 Nov 20 07:15 /users/username/.ssh

2. Create a public / private authentication key pair using ssh-keygen if the key pair does not currently exist.
Use the following command to find out whether or not a public / private key pair has been configured.

NOTE: The following shows only key files (there will probably be other files as well unless this is a
brand new .ssh directory):

$ Is -1 $HOME/ .ssh

total 80

-rw——————- 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id _dsa.pub
—-rw-——————— 1 username group 883 Apr 8 2014 id_rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

In the above example, there may be only an RSA key pair (id_rsa and id_rsa.pub), only a DSA key pair
(1d_dsa and 1d_dsa.pub) or both. A file with ".pub” in its name is a public key file. A file without ".pub” in
its name is a private key file. All of your private key files should have -rw—---—-- for their permissions as
shown above. Your public key files may be readable (not writable) by anyone, but do not need to be, so the
permissions shown above are okay, but not required. The minimum permission set that should be used is -
rw-——————-— , this enables reading and modifying the file. The maximum permission set should have -rw-
r--r-- , which permits other users to read but not modify the public key. If there is not even a single public/
private key pair in the _ssh directory, an SSH key will need to be generated . This can be done using the
ssh-keygen command:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (Zusers/username/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /users/username/.ssh/id_rsa.

Your public key has been saved in /users/username/.ssh/id_rsa.pub.

The key fingerprint is:

eb:0d:10:cd:4F:4b:¥1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host

The key"s randomart image is:

+--[RSA 2048]----+
- - |

|

e}
o+
I

S3014 102

CGE Security

| .

+--[MD5]-----—--—- +

$ Is -1 $HOME/.ssh

total 8

—rW——————— 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

This produces a public / private key pair which can be used for passwordless authentication to localhost.

NOTE: At present, CGE does not support ssh-agent forwarding, so it is not recommended to
specify a pass-phrase when creating a key.

3. Place the public authentication key in the .ssh/authorized_keys file. This will enable interacting with
CGE query engines started by the user on this machine (it does not allow other users to use the user's query
engines). Set this up as follows:

$ cat $HOME/ .ssh/id_*._.pub >> $HOME/.ssh/authorized_keys
$ chmod 644 $HOME/.ssh/authorized keys
$ Is -1 $HOME/ .ssh

total 80

-rw-r--r--— 1 username group 2601 Jun 18 2014 authorized_keys
-rw——————-— 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id_dsa.pub
-rW—-———-—- 1 username group 883 Apr 8 2014 id _rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

4. Test using ssh to log into localhost without a password. The simplest way to test this is to try connecting to
localhost through SSH. This will have the effect of logging on to the same host the the user is currently logged
on to:

$ ssh localhost

The authenticity of host "localhost (::1)" can"t be established.

ECDSA key fingerprint is 0a:34:d6:d9:71:b4:6c:e6:1d:49:95:ea:7d:09:54:89 [MD5].
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added "localhost™ (ECDSA) to the list of known hosts.

Last login: Tue Jan 6 11:56:10 2015 from localhost

Message of the day. ..

$ exit

As you can see, the first time you do this, you will be prompted to verify that the key for localhost is correct.
The user will also be prompted like this the first time the user tries to connect with a query engine with a new
TCP/IP port number, so it is a good idea to do an interactive query or other kind of front-end command before
trying to use a new query engine port from a script or other automated environment. Once authenticity of the
host / port pair has been verified, this pair will be added automatically to your list of known hosts and the user
should not need to do this again. To avoid the need for performing the interactive Host Key verification step,
see Eliminate Interactive Host Key Verification To show that this works, try a second attempt to use SSH to
log into localhost:

$ ssh localhost
Last login: Tue Jan 6 11:56:10 2015 from localhost

5. Once this has been set up, it is required to authenticate the localhost / <port number> pairs for all
guery engine ports so that the clients can connect non-interactively. To do this, start CGE on each port you
intend to use and run an interactive request through CGE, once for each port. The cge-cli echo
command provides a simple way of doing so, as shown in the following example:

S3014 103

CGE Security

$ cge-cli echo --db-port=73737

The authenticity of host "localhost® can®t be established.

RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.

Are you sure you want to continue connecting? [Yes/No]: yes

13835 [main] WARN com.cray.cge.cli.communications.client.ssh.LoggingBridge - Permanently added "localhost™ (RSA) to the list of known
hosts.

14110 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Sending echo request..

14157 [main] INFO com.cray.cge.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated successfully

To avoid the need for performing the interactive Host Key verification step, see Eliminate Interactive Host Key
Verification

7.5.1 Eliminate Interactive Host Key Verification

The SSH protocol uses the host key to authenticate the server to the client, which is of particular importance
when the client will be sending confidential data (passwords, for example) to the server. Since the SSH protocol
used by CGE does not permit the use of passwords, and the clients do not generally send other secrets to CGE,
there is no real need for the client (and the invoking user) to verify that the host key is the one that the user trusts.

By default, the CGE CLI commands require explicit first time verification of host keys, as you have seen in the
examples above. There is, however, a setting that you can set in your cge . properties file(s) that will cause the
CGE CLI commands to consider any host key as trusted. This eliminates the need for a first-time interactive CLI
command each time you start using a server on a new TCP/IP port number, and streamlines the process of
connecting to a new instance CGE.

To add this setting, make sure that all appropriate cge . properties files contain the following line:
cge.cli.trust-keys=true
The same behavior can be achieved by adding the --trust-keys option to any of the CGE CLI commands.

IMPORTANT: While implicitly trusting host keys for CGE is generally a safe practice, in the case where
your data set contains actual confidential data, and you are using the CGE CLI clients to update the data
set with new confidential data, you want to be certain that there is nothing other than CGE itself listening
to the contents of your updates. In that case, the host key is an important part of ensuring that there is
nothing between you and your CGE instance. This is not expected to be a common case among CGE
users, but if your use of CGE falls into this category, it is recommended not to use the mechanisms
described here.

7.6 Grant Other Users Access to Their CGE Query Engine

The Cray Graph Engine (CGE) can protect the contents of user-owned data sets from view/modification by
unauthorized users via CGE instances that you run. Regardless of this protection, it is required to protect the raw
data in user-owned data sets using traditional Linux file protection, otherwise users who have access to their data
can start their query engine, using their data without knowledge. To ensure that only authorized users gain access
to user-owned data, it is best to set the permissions on each directory containing a data set to permit access
(read, write and execute/search) only by its owner, and then to set the permissions on the files in the directory to
permit access (read and write) only to their owners.

As the owner of a running instance of a CGE, it is possible to control the list of users to whom access is granted.
There are two modes of granting access to other users:

e Access to a single data set
e Access to any provided data set

A key first step to any of this is protecting owned data sets from being used under some other user's instance of
CGE. If a user can run her own instance of CGE using your data, then you have no further control. So, if it is

S3014 104

CGE Security

required to control access to owned data sets, make sure they are protected against access by users other than
you. By setting the permissions on the data directory for the data set to rwx------ you achieve this by
preventing other users from looking in that directory for files. If other users can be allowed to run their own
instances of CGE using user-owned data, these permissions may be set any way desired.

Assuming data sets have been protected against other users, now individual users can be granted access.
Regardless of whether you want to grant access to one or all data sets, you need the contents of each user's
public key file from that user's .ssh directory. The user can follow the steps for setting up keys shown above if she
does not have them yet. It is okay for the user to send you the public key(s) via e-mail, or any other method
(including letting you copy them from the files yourself). They need to be appended to an appropriate
authorized_keys file.

For more information, see Configure the ACL File User Permissions on page 86.

IMPORTANT: Remember that any user trying to connect with the server will need to authenticate the
server as described in Grant Basic Access to Owned Query Engines or configure the CLI to trust Host
Keys as described in Eliminate Interactive Host Key Verification.

Ask users to do the following after granting them access:

$ cge echo --db-port=73737

The authenticity of host localhost™ can"t be established.

RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.

Are you sure you want to continue connecting? [Yes/No]: yes

13835 [main] WARN com.cray.cge.communications.client.ssh.LoggingBridge - Permanently added "localhost®™ (RSA) to the
list of known hosts.

14110 [main] INFO com.cray.cge.sparqgl.cli.lightweight.commands.debug.EchoCommand - Sending echo request...

14157 [main] INFO com.cray.cge.spargl.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated
successfully

NOTE: It is important to note that a user should NEVER add another user's public key to the user-owned
$HOME/ .ssh/authorized_keys file. Doing so will allow the user to login as the user who owns that
file.

In the following example, it is assumed that /lus/scratch/username/lubmO directory contains one of user-
owned data sets:

$ Is -1d /lus/scratch/username/lubmO

drwxr-xr-x 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubmO
$ chmod og-rwx /lus/scratch/username/lubmO

$ Is -1d /lus/scratch/username/lubmO

drwx------ 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubmO
$ Is -1 /lus/scratch/username/lubm0/

total 4796

-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads

-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ chmod og-rwx /lus/scratch/username/lubm0/*

$ Is -1 /lus/scratch/username/lubm0/

total 4796

-rw--—-—-———-— 1 username group 221 Jan 6 13:13 authorized_keys
—rWX-----—-— 1 username group 3321856 Oct 9 11:52 dbQuads

—rwWX-—---- 1 username group 1568768 Oct 9 11:52 string_table_chars
—rwW-—-—————- 1 username group 8192 Oct 9 11:52 string_table_chars.index

Now this data set can only be used by instances of the query engine that the user starts. Other users wanting
access will need to connect with a client and will be subject to client authentication.

7.6.1 Grant Other Users Access to One of the Owned Data Sets

To grant a user access to one of your data sets, all you need to do is put the user's public key in the
authorized_keys file in the same directory where your data set resides, as shown in the following example:

$ Is -1 /lus/scratch/username/lubm0/

total 4792

-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads

-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars. index
$ cat my_friend_id_rsa.pub >> /lus/scratch/username/lubm0/authorized_keys
$ Is -1 /lus/scratch/username/lubm0/

total 4796

S3014 105

CGE Security

-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys

-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads

-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars

-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index

$ cat /lus/scratch/username/built_lubmO/authorized_keys

ssh-rsa AAAAB3NzaClyc2EAAAABIWAAATEAXp7+CpYHLA4jmulieGXEMy+i JE/

X72F70YL8ne 1 TsR5gotXC1Zh9V0G9ar8mNDlkoshN7Jp1qiRrQjYNy93hs9BBCz9kA5VIPhGC59qypEhNoVYR048 I sUVTMHKORWOVLFIZKNCKLVMbQUbmEZMOFfUoY/ i fNbTFrv4yGH2PNA4k= my_friend@myhost

Once you have done this, the user 'my_friend' will have access to this data set only and not to all of your data
sets. You can copy the authorized_keys file to any other data set you want to grant access to, and edit it as
needed.

7.6.2 Grant Other Users Access to All of the Owned Data Sets

If it is not required to restrict access to specific data sets to a particular user, it is simpler to grant that user access
to all the data sets in one authorized_keys file. CGE uses a directory located at $HOME/ . cge that allows
setting up configuration files that apply to all the data sets. Users can grant access to all of their data sets by
creating an authorized_keys file in this directory and putting authorized public keys in that file, as shown in the
following example:

% mkdir -p $HOME/.cge

$ chmod o-w,g-w $HOME/.cge

$ cat my_friend_id_rsa.pub >> $HOME/.cge/authorized_keys

$ Is -1 $HOME/.cge

total 4796

-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys

$ cat $HOME/.cge/authorized_keys

ssh-rsa AAAAB3NzaClyc2EAAAABIWAAAIEAXp7+CpYHL44 jmuWeGXEMy+ijE/

X72F70YL8ne I TSR5gOtXC1Zh9V0G9arsmND IkoshN7Jp1qiRrQj YNy93hs9BBCZOKA5VIPhGC59qypERNOVYR048 I SUVTMHKORWOVL I ZKNCKLVmbQubmEZM
OFfUoY/

ibe?frV4yGH2PNA4k= my_friend@myhost

While this example shows placement of the global authorized_keys file in $HOME/ . cge, it can be used to
place the authorized_keys file in any directory. If $SHOME/ . cge is not a convenient place to put the
authorized_keys file, follow the above procedure to place it in some other (suitably protected) directory, then
use the --configDir option to cge-launch or the $CGE_CONFIG_DIR_NAME environment variable to point to
that directory. If a global authorized_keys file needs to be stored on HDFS, create the file using this procedure,
then copy it onto HDFS in the location of choice (appropriately protecting it). Then use an HDFS URL as the value
of $CGE_CONFIG_DIR_NAME or the argument to the --conFfigDir option to cge-launch to select that

directory instead of $HOME/ . cge.

Now the user my friend will have access to all of your data sets.

S3014 106

Built-in Graph Functions

8 Built-in Graph Functions

SPARQL is intrinsically designed to find explicit patterns in graphs, using the basic graph patterns called out in
SPARQL specifications. Often these patterns themselves create a graph that needs to be analyzed in a way that
is not easily implemented with SPARQL’s basic graph patterns. One example of this in the Lehigh University
Benchmark (LUBM) ontology would be to find students who take courses from their advisers, and then find the
shortest path through a social network between specific pairs of those students. Another example is to use
betweenness centrality to find the most “central” (i.e., connecting the most entities not otherwise connected)
entities in a graph, often a social network.

To address this other type of processing, CGE’s SPARQL implementation has been extended to incorporate
graph-function capability. This means that the input to the graph function is a graph, not just a few scalars, such
as numbers or IRIs. This capability includes both the syntax that enables calling of graph functions, and a small
number of built-in graph functions (BGFs) that are callable by any CGE user.

The built-in graph functions included in this release of CGE are:

e BadRank: Assigns a “badness” score to all vertices in the graph based on their nearness to known bad
vertices.

e Betweenness Centrality: Ranks each vertex by how frequently it is on the shortest path between vertices.
e Page Rank: Measures the relative importance of a vertex in a graph.

e Community Detection Label Propagation (LP): Detects communities in networks and assigns vertices in
the graph to communities.

e Community Detection Parallel Louvain Method (PLM): Detects communities in networks and assigns
vertices in the graph to communities. This method is a distributed memory implementation using CoarrayC+ +
and is inspired by the shared-memory Parallel Louvain Method in NetworKit.

e S-T Connectivity: Finds the shortest path, if one exists, between two vertices in the graph.

e S-T Set Connectivity: Finds the shortest path, if one exists, between a set of vertices designated as sources
and a set of vertices designated as targets.

e Triangle Counting: Counts the total number of triangles in a graph.
e Triangle Finding: Finds all the triangles in the graph.

e \Vertex Triangle Counting: Gathers statistics on the vertices based on the triangles they participate in and for
non-cyclic triangles, their position in the triangle.

8.1 Combine Graph Algorithms with SPARQL

CGE provides an infrastructure for calling graph algorithms from within SPARQL queries. A graph algorithm is
called via a CGE-specific SPARQL operator named INVOKE.

It is useful to note the following items:

S3014 107

Built-in Graph Functions

1. The INVOKE operator cites the name of the graph algorithm being invoked, using an URI notation that is
similar to that used for representing built-in functions in SPARQL.

Scalar arguments can be input to the graph algorithm via a parenthesized argument list.

The INVOKE clause is always preceded by a SPARQL CONSTRUCT clause, whose function in this context is to
build the graph that is input to the graph algorithm. CGE provides the capability of nesting a CONSTRUCT/
INVOKE clause within a SELECT/WHERE clause. This enables a subquery within a SPARQL query to select or
produce a subgraph, which is used as input to the graph algorithm.

4. The INVOKE clause is immediately followed by a PRODUCING clause, whose function is to bind the results of
the graph algorithm to specific SPARQL variables.

5. While RDF graphs may define many different types of subjects and objects, the CGE graph algorithms treat
them all as homogeneous vertices and do not distinguish between them according to type, with the exception
of functions that explicitly expect some vertices to be distinguished.

The CONSTRUCT-INVOKE-PRODUCING combination needs to be nested within a SELECT-WHERE clause.

For all CGE-specific built-in graph functions, if the query writer wants to specify a non-default value for an
argument, values for the preceding arguments also need to be specified, even if default values for those
arguments are to be used.

8.2 Invocation of a Graph Function

Four SPARQL constructs are involved while invoking graph functions. These include:
e CONSTRUCT

e INVOKE

e PRODUCING

e SELECT-WHERE

8.2.1 The CONSTRUCT Clause

There are three main differences between a standard SPARQL CONSTRUCT clause and the way it is used in CGE
in a CONSTRUCT- INVOKE-PRODUCING combination. These differences are described below:

1. As mentioned above, the CONSTRUCT - INVOKE-PRODUCING combination always appears nested within the
WHERE clause of a SELECT query.

2. While a standard SPARQL CONSTRUCT query returns an RDF graph to the user, the CONSTRUCT clause of a
CONSTRUCT-INVOKE-PRODUCING combination does not return anything to the user; instead the constructed
graph is passed to the graph algorithm as input, and then discarded after the graph algorithm completes
execution.

3. Because the output of the nested CONSTRUCT clause is eventually discarded, CGE relaxes some of the rules
for constructing RDF graphs. In particular, since some graph algorithms expect weighted edges. CGE allows
predicates to be literals inside a nested CONSTRUCT clause.

S3014 108

Built-in Graph Functions

8.2.2 The INVOKE Clause

In CGE, graph functions are invoked using the CGE-specific INVOKE keyword with the CONSTRUCT query form.
The syntax of the INVOKE keyword is shown below:

INVOKE <http://cray.com/graphAlgorithm.gr aph_f uncti on> (ar gunent s)

In the above example, gr aph_f unct i on is the name of the graph function to be invoked and arguments is a
comma-separated list of arguments to be provided to the graph function. The types and number of arguments in
this list are dependent on the function being invoked.

Using the INVOKE Keyword

SELECT *
WHERE {
CONSTRUCT {
?s ?p ?0 .
} WHERE {
?s ?p 70 .

}
INVOKE <http://cray.com/graphAlgorithm.graph_function> (42,0.19,‘“string”)
PRODUCING ?varX ?varY

}

In the above example, the INVOKE keyword is used to invoke a graph function named "graph_function” with three
scalar arguments as well as the graph produced by the CONSTRUCT clause.

8.2.3 The PRODUCING Clause

The invocation of a graph function results in an intermediate result set. Ultimately, this is what enables graph
functions to be composed with other SPARQL operators such as UNION, ORDER BY, or FILTER, as they also
output an intermediate result set. The PRODUCING keyword can be used to bind the columns of the returned
intermediate result set to SPARQL variables. The PRODUCING keyword accepts a list of SPARQL variable names
which will be bound to the columns of the intermediate result set returned by the INVOKE keyword. Therefore,
while using the PRODUCING keyword, it is required to know the following:

e How many columns will exist in the returned intermediate result set
e What set of values each column represents

The syntax of the PRODUCING keyword is shown below:

PRODUCING ?var A ?varB

In the above statement, ?varA and ?var B are variables that will be bound to columns of the returned vectors of
results.

Using the PRODUCING Clause
The community detection algorithm returns two columns of information. Information contained in these columns is
described below:

e The first column contains each of the vertex IDs of the graph that was sent to the algorithm.

e The corresponding entry in the second column contains an integer that represents the identity of the
community to which that vertex was assigned.

S3014 109

Built-in Graph Functions

Thus the PRODUCING clause would specify variables that the query author chose to reflect the two vectors of data
being returned, as shown in the following query snippet:

iNVOKE <http://cray.com/graphAlgorithm.community>()
PRODUCING ?vertexID ?communitylD

8.3 Inputs to the Graph Function

Three types of inputs to a graph algorithm are possible:

1. The graph itself — Each graph function expects input to come from the output of the preceding CONSTRUCT
operator.

2. Scalar inputs — Scalar values can be passed to the graph algorithm via a parenthesized list in the INVOKE
clause.

3. Vector inputs — Sets of values can be input to the graph algorithm by adding them to the graph that the
CONSTRUCT operator builds. Generally these inputs are distinguished in the input graph by a triple with a type
predicate and a special type object.

In the following example, the Bad Rank algorithm expects to receive a set of vertex IDs of vertices considered to
be spam, i.e, it could represent some other undesirable attribute. Note that the WHERE clause associated with the
CONSTRUCT clause includes a VALUES clause, that names a set of vertices that are to be considered spam by the
Bad Rank algorithm. That set of vertices is added to the CONSTRUCT clause’s graph as a set of triples with a
rdf:type predicate and the special object cray:spamNode. The scalar argument list of the INVOKE clause also
specifies that this cray :spamNode object is to be used for identifying spam vertices. Similarly, a vector input to
the graph algorithm can already be present in the database.

Using Vector Inputs for Graph Algorithm

PREFIX cray: <http://cray.com/>
SELECT ?vertex ?ranking

CONSTRUCT{
?sub ?pred ?obj .
?badNode a cray:spamNode .

}
WHERE {

?sub ?pred ?obj .
} UNION {

VALUES 7?badNode {
<http://www.Department5.University0.edu/Course34>
<http://www.Department6.University0.edu/GraduateCourse34>
<http://www.Departmentl4d_University0.edu/GraduateCourse31>
<http://www.Department5._University0.edu/Course34>
<http://www.Departmentl0.University0.edu/GraduateCourse25>
<http://www.Departmentll.UniversityO.edu/Coursell>
<http://www.Departmentl3.University0.edu/GraduateStudent87>

}
}

}
INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01, cray:spamNode)

S3014 110

Built-in Graph Functions

PRODUCING ?vertex ?ranking

}
ORDER BY DESC (?ranking)
LIMIT 100

The above example shows the invocation of the Bad Rank algorithm with a set of spam vertices present in the
input graph.

8.4 Sequence of Operators

The PRODUCING operator needs to immediately follow the INVOKE operator, which in turn needs to immediately
follow the WHERE clause containing the CONSTRUCT operator. The CONSTRUCT-INVOKE-PRODUCING
combination should always appear as a nested subquery inside a SELECT clause’s associated WHERE clause.
Graph algorithms, like SELECT clauses themselves, can be nested arbitrarily deep in a query. Hence the
sequence of operators that are involved in calling a graph algorithm is:

1. CONSTRUCT-WHERE
2. INVOKE

3. PRODUCING

4. SELECT-WHERE

NOTE: As mentioned earlier, the graph that is created by the CONSTRUCT clause that is part of a
CONSTRUCT-INVOKE-PRODUCING combination is never produced as output of the query; it is thrown
away after it is used as input to the graph algorithm. If you want to see the graph that this CONSTRUCT
clause builds, you must write a separate CONSTRUCT query.

Example: Sequence of Operators
The following example illustrates the use of both spam and non-spam vertices with Bad Rank:

PREFIX cray: <http://cray.com/>
SELECT ?vertex ?ranking {
CONSTRUCT {
?sub ?pred ?0bj
} WHERE{

?sub <http://bgf/isLinked> ?0bj .
?sub <http://bgf/hasWeightLink> ?weightURI
?0bj <http://bgf/hasWeightLink> ?weightURI
?weightURI <http://bgf/hasWeight> ?pred
} UNION {
?sub <http://bgf/hasClassification> <http://bgf/spam> .
BIND (<http://bgf/hasClassification> as ?pred) .
BIND (<http://bgf/spam> as ?obj)
} UNION {
?sub <http://bgf/hasClassification> <http://bgf/nonspam> .
BIND (<http://bgf/hasClassification> as ?pred) .
BIND (<http://bgf/nonspam> as ?0bj)
}

}

INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01,
<http://bgf/spam>, <http://bgf/nonspam>, <http://bgf/hasClassification>)
PRODUCING ?vertex ?ranking

}

S3014 111

Built-in Graph Functions

ORDER BY DESC (?ranking)
LIMIT 100

8.5 Bad Rank

URI

<http://cray.com/graphAlgorithm.badrank>

Description

The Bad Rank algorithm assigns a “badness” score to all vertices in the graph based on their nearness to known

bad vertices.

Inputs and Default Values

to a bad vertex.

Input Default Value
The threshold of the maximum difference between per- |0.0001
vertex Bad Rank results from successive iterations of

the algorithm below, which the algorithm will terminate.

The probability that the next step in a (random) walk will | 0.84

be followed.

The probability that a random walk will take a next step |0.01

The URI that designates the object field of a triple that
identifies a spam vertex

<http://cray.com/spamVertex>

The URI that designates the object field of a triple that
identifies a non-spam, or trusted vertex.

<http://cray.com/nonspamVertex>

The URI that designates the predicate field of a triple
that identifies either a spam or a non-spam vertex.

Defaults to the standard RDFS type predicate, <http://
www.w3.0rg/1999/02/22-rdf-syntax-ns#type> The
above can be abbreviated in a SPARQL query as “a”.

The indicator that specifies whether or not
normalization should be applied to results. Acceptable
values for this parameter are 0 and 1.

1. If the default value is used, the scores are all
mapped to floating point numbers between 0.0 and
1.0, with the maximum value found mapping to 1.0,
the minimum score found mapping to 0.0, and other
scores mapping between those values proportionately.
If the value is set to 0, results will not be normalized
and will be presented as Bad Rank computed them.

S3014

112

Built-in Graph Functions

Outputs
Bad Rank produces a two-column intermediate result that can be thought of as a set of pairs. The first item in
each pair is the identifier of a vertex, whereas the second is the double-precision Bad Rank value of the vertex.

8.6 Betweenness Centrality

URI and scalar arguments
<http://cray.com/graphAlgorithm.betweenness centrality> (st_vx_ct, nornalize)

In the above URI, st _vx_ct and nor nal i ze are used as examples.

Description

This is the CGE specific implementation of the classical vertex-betweenness-centrality algorithm. This algorithm
assigns each vertex a numerical score. Take a given vertex V. In full generality, its betweenness score is defined
to be the sum (over all other pairs of vertices) of the ratio of the number of shortest paths between that pair that
go through V, over the total number of shortest paths between that pair. Thus it measures a sort of “importance” of
each vertex, in terms of the shortest paths to other vertices that pass through it.

Inputs and Default Values

Parameter Description Default Value
st_vx_ct The st _vx_ct parameter can either be an integer or a 1.0
decimal.

e |Ifthestarting_vertex_ctl parameter is an integer,
it represents how many starting vertices should be used
when approximating the betweenness score of every
vertex in the graph.

e |Ifthestarting_vertex_ctl parameteris a decimal,
it should be between 0.0 and 1.0. If a decimal
argument is used, the decimal value will represent the
fraction of the graph's vertices, randomly chosen, that
will be used as starting vertices for approximating the
betweenness scores. A value of 1.0 (the default)
specifies that every vertex in the graph will be used as a
starting vertex.

normal i ze The nor mal i ze parameter specifies whether or not the 1
betweenness scores should be normalized. The acceptable
values for this parameter are O and 1, where 1 specifies that
betweenness scores should be normalized.

Normalizing the scores means to subtract from the
betweenness score of each vertex the minimum
betweenness score and then divide that partial result by the

S3014 113

Built-in Graph Functions

Parameter Description Default Value

difference between the maximum and minimum
betweenness scores found among all the vertices.
Normalized scores will be between 0.0 and 1.0.

Outputs

A call to the Betweenness Centrality function returns a two-column intermediate result set. The first column
contains the vertex identifier (URI), whereas the second column contains the centrality score of the vertex. In
other words, each row of the output result set pairs a vertex's ID with a double-precision floating-point value
representing the centrality score for that vertex.

Example: Betweenness Centrality

PREFIX cray: <http://cray.com/>
SELECT ?vertices ?scores
WHERE {
CONSTRUCT {
?sub ?pred ?obj .
} WHERE{
?sub ?pred ?obj .

INVOKE cray:graphAlgorithm.betweenness_centrality(.01,1)
PRODUCING ?vertices ?scores

}
ORDER BY DESC(?scores)

Special Consideration for Graphs with Very Large Diameter

The value of the cge . server _.BCmaxActivelLevels NVP parameter can be used to better handle graphs with
large diameters. The default setting for this parameter is 100 and can be increased if needed.

If the value of this parameter is set to a value that is too low, the database will remain up and running, but the
query will be halted, and the system will return a message indicating that the
cge.server ._BCmaxActivelevels parameter's value (i.e. the allocation size) needs to be increased.

The error message is written to a CGE log file as well as to the front end.

The message written to the CGE log file will be similar to the following:

Warning, graph diameter is larger than current allocation for LevelSet data
structure.

Use NVP parameter BCmaxActivelLevels to increase the size of the allocation
currently set to X levels.

Here X is used as an example for the current value of the BCmaxActivelLevels parameter.

Similarly, the following message will be returned to the CGE front end:

graph diameter is larger than current allocation for LevelSet data structure.
Use NVP parameter BCmaxActivelLevels to increase the size of the allocation

S3014 114

Built-in Graph Functions

8.7 Community Detection Label Propagation (LP)

URI

<http://cray.com/graphAlgorithm.community_detection LP>

Description
The Label Propagation algorithm is used for detecting communities in networks and assigns vertices in the graph

to communities. Each vertex is initially assigned to its own community. At every step, each vertex looks at the
community affiliation of all its neighbors, and updates their state to the mode community affiliation. The mode
community affiliation takes into account the edge weights.

The Label Propagation algorithm is relatively inexpensive, but convergence is not guaranteed.

Inputs and Default Values
The input graph to the Label Propagation function is expected to contain triples of the form (vert ex1, wei ght ,

vert ex2), where wei ght is an integer.

Input Default Value

The number of steps that the algorithm executes. 20
Currently an early exit is not included if convergence is
detected. Therefore, the algorithm executes the number
of steps specified in the input.

Outputs

A call to the Label Propagation function returns an array of vertex IDs paired with an array of community IDs
These IDs can be used to identify which community each vertex was assigned to.

Example: Label Propagation

PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

SELECT ?vertex ?comm

WHERE{

CONSTRUCT {
?sub ?weight ?obj

} WHERE {
?sub <http://wga/isLinked> ?0obj .
?sub <http://wga/hasWeightLink> ?weightURI
?0bj <http://wga/hasWeightLink> ?weightURI
?weightURI <http://wga/hasWeight> ?weight

}
INVOKE cray:graphAlgorithm.community_ detection_ LP(5)
PRODUCING ?vertex ?comm

by
ORDER BY ?comm

S3014 115

Built-in Graph Functions

8.8 Community Detection Parallel Louvain Method (PLM)

URI

<http://cray.com/graphAlgorithm.community_detection_ PLM>

Description

The Parallel Louvain Method is used for detecting communities in networks and assigns vertices in the graph to
communities. The community_dection_PLM method is a distributed memory implementation using CoarrayC+
+ and is inspired by the shared-memory Parallel Louvain Method in NetworKit, an open-source package (https://
networkit.iti.kit.edu), and corresponding paper “Engineering Parallel Algorithms for Community Detection in
Massive Networks” by Christian L. Staudt and Henning Meyerhenke. The algorithm can take up to two input
parameters. The first parameter controls the maximum number of PLM steps taken. The second parameter is
number of initial Label Propagation steps to take to initialize the starting communities before running the PLM
steps. If the number of Label Propagation steps is set to 0, each vertex is initially assigned to its own community.

If no vertices are moved during a PLM step, the routine will exit early, returning the community assignments
corresponding to the largest computed modularity score found up to this point.

Inputs and Default Values
The input graph to the Label Propagation function is expected to contain triples of the form (vertex1, weight,

vertex2), where weight is an integer.

Input Default Value

Maximum number of PLM steps. An early exit is 20
included if convergence is detected (if no vertices are
moved during a PLM step, the process has converged).

Number of Label Propagation steps to be run to (Input number of PLM steps)/2
initialize the starting community assignments prior to
running the PLM steps.

Outputs

A call to the function returns an array of vertex IDs paired with an array of community IDs These IDs can be used
to identify which community each vertex was assigned to.

Example: Parallel Louvain

PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
SELECT ?vertex ?comm
WHERE{
CONSTRUCT {
?sub ?weight ?obj .
} WHERE {
?sub <http://wga/isLinked> ?0obj .
?sub <http://wga/hasWeightLink> ?weightURI .

S3014 116

Built-in Graph Functions

?0bj <http://wga/hasWeightLink> ?weightURI
?weightURI <http://wga/hasWeight> ?weight

}
INVOKE cray:graphAlgorithm.community_detection_PLM(25,5)
PRODUCING ?vertex ?comm

by
ORDER BY ?comm

8.9 Page Rank

URI

<http://cray.com/graphAlgorithm.pagerank>

Description

Page Rank can be used to measure the relative importance of a vertex in a graph.
Inputs and Default Values

Outputs
Page Rank produces a two-column intermediate result that can be thought of as a set of pairs. The first item in
each pair is the identifier of a vertex, whereas the second is the double-precision Page Rank value of the vertex.

Example: Page Rank
The following example selects all of the edges from the default graph and calls S-T Set Connectivity on the
resulting graph.

PREFIX cray: <http://cray.com/>

SELECT ?vertices ?pagerank
WHERE {
CONSTRUCT{
?sub ?pred 7?obj

}
WHERE{
{ ?sub ?pred ?0bj . }

INVOKE cray:graphAlgorithm.pagerank(0.0005,0.85)
PRODUCING ?vertices ?pagerank

}
ORDER BY DESC(?pagerank)

S3014 117

Built-in Graph Functions

8.10 S-T (Source - Target) Connectivity

URI

<http://cray.com/graphAlgorithm.st_connectivity>

Description
The S-T Connectivity function calculates the length of the path between two vertices, if one exists.

Inputs and Default Values
e Vector inputs - None.

e Scalar inputs - The input graph to the S-T Connectivity function is expected to contain triples of the form
(vertexl, predicate, vertex2) where the value of predicate is ignored. The S-T Connectivity function requires
two scalar input arguments, which are the IRIs of the two vertices under consideration, source and target,
respectively. This is illustrated in the example below:

INVOKE <http://cray.com/graphAlgorithm.st _connectivity> (<urn:mySourceVertex>,
<urn:myTargetVertex>)

In the above example, <urn:mySourceVertex> and <urn:myTargetVertex> are the IRIs of the source
and target vertices, respectively.

Outputs
The following example culls needed edges from the default graph and calls S-T Connectivity on the resulting
graph.

Example: S-T (Source Target) Connectivity

PREFIX cray: <http://cray.com/>

SELECT ?nHops
WHERE {
CONSTRUCT {
?vl ?p ?v2 .
} WHERE {
SELECT ?vl ?v2 ?p
WHERE {
?vl <urn:hasLink> ?v2 .
BIND(<urn:path> AS ?p)

INVOKE cray:graphAlgorithm.st _connectivity(<http://ga.org/string#000/
vertex#00000001>,
<http://ga.org/string#000/vertex#00200000>)
PRODUCING ?nHops

}

S3014 118

Built-in Graph Functions

8.11 S-T Set Connectivity

URI

<http://cray.com/graphAlgorithm.st_set_connectivity>

Inputs and Default Values
e Scalar inputs - None.

e Vector inputs - The S-T Set Connectivity function accepts input of a set of vertices designated as sources
and a set of vertices designated as targets. These are added to the constructed graph using the
<httpz=Cray.comSourceVertex> and <httpz=Cray.comtargetVertex> URIs, as well as the
standard RDFS predicate <httpAvww.w3.0rg’19990222-rdf-syntax-ns#type>, which may be abbreviated as
“a” in a SPARQL query.

Subject Predicate Object

Source vertex identifier [a <httpz=Cray.comSourceVertex>

Target vertex identifier |a <httpz=Cray.comtargetVertex>
Outputs

A call to the S-T Set Connectivity function returns an intermediate result set containing a single integer. The
values and meaning of this integer are described below:

e If the integer’s value is 0, there is no path between any pair of vertices with the source vertex taken from the
source set and the target vertex taken from the target set.

e If the value is greater than O, it represents the number of hops in the shortest path between any such pair of
vertices.

IMPORTANT: The S-T Set Connectivity function will return an error in the following cases:
1. Nonexistence of input source and/or target vertex
2. Invalid input source and/or target vertex

3. Nonexistence of input source and/or target vertex in the input edge list

Example: S-T Set Connectivity

The following example selects all of the edges from the default graph and calls S-T Set Connectivity on the
resulting graph.

PREFIX cray: <http://cray.com/>
SELECT ?distance
WHERE {
CONSTRUCT{
?sub ?pred ?obj .
?srcNode a cray:sourceVertex .
?trgNode a cray:targetVertex .

}
WHERE{

?sub ?pred ?obj .

S3014 119

Built-in Graph Functions

UNION {
VALUES ?srcNode

<http://bgf.org/c/03/i/000000>
<http://bgf.org/c/05/i/000000>
<http://bgf.org/c/08/i/000003>

}

}
UNION {
VALUES ?trgNode

<http://bgf.org/c/05/i/000001>
<http://bgf.org/c/08/i/000007>
}
}

}
INVOKE cray:graphAlgorithm.st_set_connectivity()
PRODUCING ?distance

}

8.12 Triangle Counting

URI

<http://cray.com/graphAlgorithm.triangle_counting>

Description

Triangle Counting is used to count the total number of triangles in a graph.

Inputs and Default Values

e Vector inputs - None.

e Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be included in the count.

o

O

(e]

O

(@]

0: Return a count of all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles
1: Return a count of all the unique triangles in the graph, both cyclic and non-cyclic triangles

2: Return a count of only the non-cyclic triangles

3: Return a count of only the cyclic triangles (including rotations)

4: Return a count of only the unique cyclic triangles

Outputs

This algorithm returns a single integer containing the number of triangles.

S3014

120

Built-in Graph Functions

Example: Triangle Counting

PREFIX cray: <http://cray.com/>

SELECT ?total_num_triangles
WHERE {
CONSTRUCT{
?sub ?pred ?obj .

}
WHERE{
?sub ?pred ?obj .

}
INVOKE cray:graphAlgorithm.triangle_counting(1)
PRODUCING ?total _num_triangles

8.13 Vertex Triangle Counting

URI

<http://cray.com/graphAlgorithm.vertex_triangle counting>

Description

The Vertex Triangle Counting algorithm is used to gather statistics on the vertices based on the triangles they
participate in and for non-cyclic triangles, their position in the triangle.

Inputs and Default Values
e Vector inputs- None.

e Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be included in the counting statistics.

o 0: Return a count of all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles.
o 1: Return a count of all the unique triangles in the graph, both cyclic and non-cyclic triangles

o 2:Return a count of only the non-cyclic triangles

o 3: Return a count of only the cyclic triangles (including rotations)

o 4: Return a count of only the unique cyclic triangles

Outputs

Output is a four-column intermediate result. Each row in the intermediate results contains a vertex URI followed
by a total count of the triangles for which it participates as either a through_vertex, in_vertex, or
out_vertex, respectively. The PRODUCING clause should be interpreted as "vertexID","through_count",

"in_count", "out_count", where the counts refer to the number of triangles in which the vertex participates in
that role.

S3014 121

Built-in Graph Functions

Example: Vertex Triangle Counting

PREFIX cray: <http://cray.com/>
SELECT ?id ?through ?in ?out
WHERE {

CONSTRUCT{
?sub ?pred ?obj

}
WHERE{
?sub ?pred 7?obj

INVOKE cray:graphAlgorithm.vertex_triangle_counting(0)
PRODUCING ?id ?through ?in ?out

8.14 Triangle Finding

URI

<http://cray.com/graphAlgorithm.triangle_finding>

Description

The Triangle Finding algorithm is used to find all the triangles in the graph. The output can be customized to
return either all triangles, or only the cyclic or non-cyclic triangles. The number of triangles in a given region of a
graph is a good indicator of the density of that part of the graph.

Inputs and Default Values
e Vector inputs- None.

e Scalar inputs - This algorithm accepts a single integer scalar argument. The value of this integer ranges from
0 to 4 and specifies which types of triangles are to be output..

o 0 - Return all the triangles in the graph, both cyclic (including rotations) and non-cyclic triangles
o 1: Return all the unique triangles in the graph, both cyclic and non-cyclic triangles

o 2: Return only the non-cyclic triangles

o 3: Return only the cyclic triangles (including rotations)

o 4: Return only the unique cyclic triangles

Outputs

The cF:)ode returns a four-column IRA . Each row in the IRA represents the three URIs of the vertices of a triangle
followed by a cyclic flag (set to 1 for cyclic, O for non-cyclic). The non-cyclic triangles are written out in the order of
through_vertex, in_vertex, out_vertex. The cyclic flag is considered optional in the PRODUCING clause in the case
where only the URIs of the vertices are needed.

S3014 122

Built-in Graph Functions

Example: Triangle Finding
PREFIX cray: <http://cray.com/>

SELECT ?vertexIDl1l ?vertexID2 ?vertexID3 ?cyc
WHERE {
CONSTRUCT{
?sub ?pred ?obj

}
WHERE{
?sub ?pred 7?obj

}
INVOKE cray:graphAlgorithm.triangle_finding(l)
PRODUCING ?vertexID1l ?vertexID2 ?vertexID3 ?cyc

S3014 123

CGE Extension Functions

9 CGE Extension Functions

CGE provides a number of extension functions, including:
e Interval analytics functions.
e Haversine functions.

e Square root function.

9.1 Cray Graph Engine (CGE) Interval Analytics Functions

Intervals
An interval is defined as the sequence between any two variables of compatible atomic types, where one defines

the start of the interval and the other defines the end of the interval. The interval is inclusive of the start and end.

CGE interval analytic functions can be used to gather fine-grained detail about intervals. For example, they can
be used to:

e determine if a time period that ends at the same time is contiguous with one that starts at the same time.
e determine whether or not two or more time intervals intersect.

e determine the continuity of a given time period.

Function Prefix
The prefix to use when using interval functions in queries is:

PREFIX arq: <http://jena.hpl_hp.com/ARQ/function#>

List of Interval Analytics Functions
CGE interval functions are case-sensitive and work with any type that has a < comparison, e.g., numerics and

strings.

Table 16. List of CGE-specific Interval Functions

Function Description

listmin(elementl, elementN) This function returns the smallest item in the comma-
separated list of items provided as arguments.

listmax(elementl, elementN) This function returns the largest item in the list of
arguments.

S3014 124

CGE Extension Functions

Function Description

iscontinuous(startl,endl, ... startN, endN) | Thisis a pairwise function that accepts a list of

comma-separated list of start and end times and
determines whether or not there is a gap between the
intervals under consideration.

e True when there is complete coverage from
earliest starting time to latest end time, i.e. there
are no gaps in the coverage.

e False if there is any gap in the coverage

isintersecting(startl, endl, startN, |[Thisis a pairwise function that determines whether or
endN) not there is a period within which all the intervals

under consideration are present. This function
returns:

e True when there is an interval where all intervals
are present.

e False if there is no interval when all intervals are
present

duration(startTime, endTime) This function uses the Unix epoch and time functions

to calculate the duration between the start and end
times, which are provided as arguments. This
function returns the xsd:dayTimeDuration between
startTime and endTime.

NOTE: This function only accepts dates
starting from July 5, 1776.

The arguments provided to the Tistmin(), listmax(), iscontinuous() and isintersecting() functions
should all be of compatible atomic types, otherwise an xsd_error will be returned. Furthermore, the
duration() function will return an xsd_error in the following cases:

Either of the arguments are not of type xsd:dateTime

The sum of (duration(xsdDatel, xsdDateTime2) - duration(xsdDateTime2, xsdDatel)) will
not be zero. This is because xsdDate is defined to span 24 hours (for standard days), and it is assumed that
the start time is at the beginning of the day, and the end time is at the end of the day

When using the interval analytics functions:

The interval analytic functions do not fully support the xsd:date and xsd: time data types and may return
incorrect results; users should avoid these two types.

Comparisons of xsd:date and xsd:dateTime within the same day may return unexpected results.
xsd:date and xsd:dateTime comparisons are supported outside of the 14 hour time zone range and the
24 hour day span of xsd:date.

xsd:date results are now included when filtering on xsd:dateT ime (outside the same day) and vice versa
(xsd:dateTime results when filter on xsd:date). If strict xsd :dateTime results (or xsd:date results) are
required, the appropriate data type filter should be added.

S3014 125

CGE Extension Functions

e The duration() function supports combinations of xsd:date and xsd:dateTime. If an xsd:date
result is the start time, the duration will start at the beginning of the day. Similarly, if the xsd:date result is
the end time, the duration will end at the end of the day.

9.2 Cray Graph Engine (CGE) Haversine Functions

CGE supports the haversinemeters() and haversinemiles() functions to enable support for spatially aware
applications. These functions are based on the Haversine formula, which is an equation that calculates the great-
circle distance between two points on a sphere from the longitudes and latitudes of the two points. For more
information, visit http.://en.wikipedia.org/wiki/Haversine_formula.

The syntax of CGE Haversine functions is shown below:
e afqg:haversinemeters(latStart, longStart, latEnd, longEnd)
e afqg:haversinemiles(latStart, longStart, latEnd, longEnd)

NOTE: The haversinemeters() and haversinemiles() functions are case sensitive.

Inputs
Both the CGE haversinemeters() and haversinemiles() functions accept the following inputs in
xsd:decimal, xsd:-double and xsd: float formats:

e atStart - The starting position of the latitude (dimensions of the values in degrees)

e longStart — The starting position of the longitude (dimensions of the values in degrees)
e latEnd - The ending position of the latitude (dimensions of the values in degrees)

e longEnd — The ending position of the latitude (dimensions of the values in degrees)

Acceptable latitude values range from -90 to 90, whereas acceptable longitude values range from -180 degrees
to 180 degrees.

NOTE: Important: The functions will return an empty value if:
e Invalid position coordinates are provided
e Empty input values are provided

e Insufficient parameters are provided.

Output

The haversinemeters() function returns the distance between two points in meters, whereas the
haversinemiles() function returns the distance between two points in miles.

Function Prefix
The prefix to use when using CGE Haversine functions in queries is:

PREFIX afq: <http://jena.hpl_hp.com/ARQ/function#>

S3014 126

http://en.wikipedia.org/wiki/Haversine_formula

CGE Extension Functions

9.3 Cray Graph Engine (CGE) Square Root Function

The square root function, sqrt() is used to retrieve the square root of the specified number

Syntax

The syntax of the square root function is:

sgrt(argument)

NOTE: The name of the sqrt() function is case sensitive.

Function Prefix

The prefix to use when using the sqrt()function in queries is:

PREFIX afn: <http://jena_hpl_hp.com/ARQ/function#>

Table 17. CGE Square Root Function's Examples

Argument Type Example
I nteger PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(''9223372036854775807""" <http://www.w3.0rg/2001/XMLSchema#integer) AS ?a) }
Decimal PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(4294967296.0) AS ?a) }
F l Oat PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt (“'3.4E38"~xsd:float) AS ?a) }
Double PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt('1.797E308" xsd:double) AS ?a) }
BOO l ean PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>

SELECT ?a { BIND (afn:sqrt(true) AS ?a) }

NOTE: Passing “true” as the Boolean argument returns 1, whereas
passing “False” as the Boolean argument returns 0.

NOTE: The sqrt() function will return an empty value if a negative number is provided as an argument.
Furthermore, the sqrt() function will return an empty value if arguments of certain types are used.
These argument types include:

e Xxsd:dateTime

e String
e IRI

e Arbitrary data type

You can also use derived data types as arguments to the sqrt()function, as shown in the following query:

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a{ BIND (afn:sqrt ('18446744073709551615"M<http://www.w3.0rg/2001/XMLSchema#positivelnteger>) AS ?a) }

NOTE: Executing the sqrt() function when a negative derived type is used as an argument will result in

an empty value.

S3014

127

CGE Extension Functions

9.4 Custom Aggregate Functions

CGE supports the following custom aggregate functions:
e Vvariance

e standard deviation

e geometric mean

e mode

e median

Table 18. Custom Aggregate Functions

Function Purpose

variance Returns the variance of an expression.

standard deviation Calculates the standard deviation of a set of numeric values. Requires
at least two values.

geometric mean Calculates the nth root of the product of the numbers, where n is the
count of numbers.

mode Returns the most frequently occurring number in a group of supplied
arguments.

median Calculate the median, which is the value separating the higher half of a
data sample, a population, or a probability distribution, from the lower
half.

Examples

e variance

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#variance>(?0) AS ?RESULT)

WHERE
{ ?s ?p 7?0}
GROUP BY 7?p

e geometric mean

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#geometric_mean>(?0) AS ?

RESULT)
WHERE

{ ?s ?p ?0}
GROUP BY ?p

e standard deviation

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#standard_deviation>(?0) AS ?

RESULT)
WHERE

{ ?s ?p 2?0}
GROUP BY ?p

S3014 128

CGE Extension Functions

mode

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#mode>(?0) AS ?RESULT)
WHERE

{ ?s ?p 7?0}
GROUP BY ?p
median

SELECT ?p (AGG<http://www.dotnetrdf.org/leviathan#median>(?0) AS ?RESULT)
WHERE

{ ?s ?p ?0}
GROUP BY ?p

Custom aggregate functions can be freely mixed together or with standard SPARQL aggregate functions, such as:

SUM

MIN

MAX

SAMPLE

AVG
GROUPCONCAT

For example:

A\

SELECT ?p

(AGG<http://www.dotnetrdf.org/leviathan#variance>(?0) AS ?RESULT1)

(SUM (?0) AS ?RESULT2)
(AGG<http://www.dotnetrdf.org/leviathan#median>(?0) AS ?RESULT3)

CAUTION: The DISTINCT flavors of custom aggregates are currently not supported.

Geometric Mean
Geometric mean is defined as the nth root of the product of n values. The product’s absolute value is used under

the radical sign to avoid negative numbers. The result in this case will be zero. The product’s absolute value is
used under the radical sign to avoid negative numbers. In other words, if the product happens to be negative, that
value is negated to make it positive and then its root is retrieved.

S3014 129

Cray Graph Engine (CGE) Property Path Support

10 Cray Graph Engine (CGE) Property Path Support

CGE does not natively support all the SPARQL 1.1 property paths features, however it does support certain types
of property paths.

NOTE: CGE's property path support should be used with care. This support is disabled by default and
must be explicitly enabled by the user. Contact Cray Support for additional information.

e Simple Property Paths - By default, simple property paths that are equivalent to simple fixed length Basic
Graph Patterns (BGPs) are supported. This means that property paths consisting of only the sequence / and
inverse ~ operators are permitted, since these can be written out as a simple BGP using blank node

variables. For example:

SELECT * WHERE

{

?s <urn:a>/<urn:b> ?o

}

Can be rewritten as follows:

SELECT * WHERE

{

?s <urn:a> _:p0 .
_:p0 <urn:b> ?0 .

e Complex Property Paths Emulation - Some more complex property paths can be emulated through query
rewriting, which expands the property paths into an equivalent query form.

NOTE: It is important to be aware that this support is only emulation, and may not provide complete
answers that a SPARQL engine with native property path support would produce.

The following table details the additional operators, which may be emulated and the restrictions and limitations on
that emulation.

Table 19. Additional Operators that May be Emulated

Operator

Example

Description

Additional Notes

*

?s <urn:a>*
?0

Finds paths of zero or
more steps between two
nodes in the graph

e Path to which the * operator applied
must be either a predicate or inverse
predicate

e Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

e Paths are evaluated only up to a
maximum length (default 5) which

S3014

130

Cray Graph Engine (CGE) Property Path Support

Operator

Example

Description

Additional Notes

may be user configured on a per-
query basis

Expands into a UNION that looks for
paths of each length up to the
specified maximum

?s <urn:a>+
?0

Finds paths of one or
more steps between two
nodes in the graph

Path to which the + operator applied
must be either a predicate or inverse
predicate

Paths are evaluated only up to a
maximum length (default being 5)
which may be user configured on a
per-query basis

Expands into a UNION that looks for
paths of each length up to the
specified maximum

?s <urn:a>?
?0

Finds paths of zero or one
steps between two nodes
in the graph

Path to which the ? operator applied
must be either a predicate or inverse
predicate

Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

Expands into a UNION that looks for
paths of length zero and one

?s <urn:a> |
<urn:b> ?0

Finds paths between two
nodes that use any of the
alternative paths given

Paths to which the | operator applied
may themselves be complex but only
paths that are predicates or inverse
predicates are guaranteed to expand
into a valid query

Expands into a UNION that considers
each alternative, where the
alternative is itself a property path it
may be further expanded as
necessary

1
(
property
)

?s 1 <urn:a>
?0

Find paths between two
nodes that do not pass
through a given predicate

The negated property set operator
only applies to predicates or inverse
predicates and thus can always be
expanded

Expands into a MINUS that considers
all paths and then eliminates the
undesirable paths

S3014

131

Cray Graph Engine (CGE) Property Path Support

Enabling Emulation
CGE also provides the option to change the maximum length of paths (for the expansion of the * and +

operators), as shown in the following example:

% cge-cli query --opt-on optPathExpand --path-expansion 3 paths.rq
The above query would run the query with property path expansion enabled and a maximum path length of 3.

NOTE: This value can be set to any desired value, however it is important to note that the higher this
value is set to, the more complex the query that will be generated. This will result in slower performance
because the database server will need to search for longer paths. Therefore, it is recommended to set the
length of paths to the minimum possible value for optimal emulation performance. It is also important to
note that setting a maximum length of zero or less will result in disabling the expansion.

S3014 132

Cray Graph Engine (CGE) Quick Reference

11 Cray Graph Engine (CGE) Quick Reference

The order in which CGE operations should be performed is:

Step 1: Set up SSH keys

If the following command allows re-logging into the login node without a password, then the SSH keys are set up
sufficiently for using CGE.

$ ssh localhost

On the other hand, if the previous command fails and there are existing SSH keys that do not use pass-phrases
or have the ssh-agent defined, then try the following:

$ cat ~/.ssh/id_*_.pub >> ~/_ssh/authorized_keys

At this point, if it is possible to run the aforementioned test and to re-log in to the login node without using a
password, pass-phrase, or ssh-agent, then this step can be considered to be complete. If, on the other hand, the
aforementioned test fails, there are no SSH keys defined yet, the following commands can be used to set them
up:

A CAUTION: Ensure that there are no existing SSH keys because this will overwrite any existing keys.
Also, do not specify a pass-phrase when running ssh-keygen

mkdir -p ~/.ssh

chmod 700 ~/.ssh

ssh-keygen

chmod 600 ~/.ssh/id_*

chmod 600 ~/.ssh/authorized keys

LA PHHB B

If the existing SSH key(s) use pass-phrase(s) or the ssh-agent, or if a more complex SSH key configuration is
required, see Cray Graph Engine (CGE) Security Mechanisms on page 83. This section also contains information
about fine-tuning access to CGE instances.

Step 2: Start the CGE Server

The cge-launch command launches the CGE query engine and enables creating and building a database in a
single step.

The following is an example of using the cge-launch command:
$ cge-launch -0 pathtoResultsDir -d path -1 logfile

In the preceding example:

e -0 - Specifies the path to a directory where you want the result files produced by queries to be placed.

S3014 133

Cray Graph Engine (CGE) Quick Reference

A CAUTION: This path MUST be a directory.

e -d - Specifies the path to the directory containing the data set to be loaded into the server. This directory
must contain all input data files for the data set.

NOTE: This directory MUST contain at least one of the following if the data set is being built for the
first time with CGE (only one of these will actually be used):

o dataset.nt - This file contains triples and must be named dataset.nt
o dataset.nq - This file contains quads and must be named dataset.nq

o graph.info - This file contains a list of pathnames or URLS to files containing triples or quads
and must be named graph. info.

e -1 - Specifies a log file to capture the command output from the run. If the database server is logging to
stderr, this log file will capture that information as well. There are two special argument values for this: 'z 1'
and ':2’, which refer to stdout and stderr, respectively, so that the log can be directed to either of those. If
the -1 option is specified, the cge-launch command runs silently, producing no output to the terminal
stdout/stderr.

For more information, see Launch the CGE Server Using the cge-launch Command on page 22 and The CGE
Database Build Process on page 13.

Step 3: Execute CGE CLI Commands (Optional)

CGE CLI commands can be executed after the CGE query engine has been launched. Following is an example of
using the CGE nvp-info CLI command:

$ cge-cli nvp-info

CGE CLI features a number of commands, which are documented in the CGE CLI on page 24 section.

Step 3: Start up the CGE Front End Server to Connect with the CGE Server (Optional)

The CGE graphical user interface and SPARQL endpoints can be accessed once the database has been
launched. This can be accomplished by launching the web server that provides the user interface on a login node
of the system where CGE is running.

$ cge-cli fe --ping

The --ping option in the preceding example is used to verify that the database can be connected to immediately
upon launch and that any failure is seen immediately. Not doing so may delay and hide failures. If the ping
operation does not succeed, and it is certain that the user executing this command is the only user running CGE,
and that everything else is set up correctly, the user should go back to the first step and make sure that the SSH
keys are set up right. The system may prompt to trust the host key when the fe command is run for the first
time.The default URL to access the Ul is http://<host nane>:3756/dataset, where hostname is used as an
example for the web server's name. For more information, see Launch the CGE Web Server Using the fe
Command on page 39.

Alternatively, the following command can be used to have the web server continue running in the background with
its logs redirected, even if disconnected from the terminal session:

$ nohup cge-cli fe > web-server.log 2>8&1 &

S3014 134

Cray Graph Engine (CGE) Quick Reference

Step 4: Access and Use the CGE Front End (Optional)

For more information, see CGE GUI on page 52.

Shutdown the CGE Server

e Shut down the CGE server using the shutdown command, as shown in the following example:

$ cge-cli shutdown

For more information, see Shutdown the CGE Server Using the shutdown Command on page 46.
e Shut down the CGE front end if it was started.

Additional Information

Cancelling a query - To cancel a query, hit CTRL-C on the window where the CGE server was launched or
locate the CGE server instance's PID on the login node and use kill —INT <Pl D>. After that, re-launch CGE.

S3014 135

Get Started with Using CGE

12 Get Started with Using CGE

Prerequisites

This procedure requires CGE to be installed on the system.

About this task

This procedure can be used to get started with using CGE and can be considered as a "Hello World" program. In
this procedure, a simple query is executed on a small RDF triples database. This procedure provides instructions
for executing queries and viewing the results via the CGE CLI and the front end.

Use the cge-cli help command to view a full range of CGE CLI commands. Use the —h option of any
command to view detailed help information about any specific command.

For a full set of CGE features, built in functions, graph algorithms, CGE API, troubleshooting and logging
information, review the Cray Graph Engine (CGE) Users guide at https./pubs.cray.com.

Procedure

Authentication Setup
1. Setup SSH keys.

$ ssh localhost

If the preceding command allows re-logging into the login node without a password, then the SSH keys are
set up sulfficiently for using CGE. If the previous command fails and there are existing SSH keys that do not
use pass-phrases or have the ssh-agent defined, then try the following

$ cat ~/.ssh/id_*.pub >> ~/_ssh/authorized_keys

At this point, if it is possible to run the aforementioned text and to re-log in to the login node without using a
password, pass-phrase, or ssh-agent, then this step can be considered to be complete. On the other hand, if
the aforementioned text fails, there are no SSH keys defined yet. The following commands can be used to set
them up.

A CAUTION: Before executing the following commands, ensure that there are no existing SSH keys
because this will overwrite any existing keys. Also, do not specify a pass-phrase when running ssh-

keygen

$ mkdir -p ~/.ssh

$ chmod 700 ~/.ssh

$ ssh-keygen

$ chmod 600 ~/.ssh/id_*

$ chmod 600 ~/.ssh/authorized_keys

Dataset Creation

S3014 136

https://pubs.cray.com

Get Started with Using CGE

2. Create afile named dataset.nt and store it in a directory that has been selected or created for it.

This directory must be a new directory and contain at least one of the following if the data set is being built for
the first time with CGE (only one of these will actually be used):

e dataset.nt - This file contains triples and must be named dataset.nt
e dataset.nq - This file contains quads and must be named dataset.nq

e graph.info - This file contains a list of pathnames or URLSs to files containing triples or quads and must
be named graph. info.

This is the original, human readable representation of the database. The following example data, which
should be added to dataset.nt, can be used for this procedure.

<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "World" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "'Home Planet" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Earth' .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hello" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hi"

Results Directory Creation and CGE Server Start-up
3. Load the CGE module.
$ module load cge

4. Select or create another directory into which the query engine should write the results and then launch the
CGE server in a terminal window.

$ cge-launch -1 1 -N 1 -d /dirContainingExample/example —o \
/dirContainingExampleOutput -1 :2

For more information about the cge-launch command and its parameters, see the cge-launch man page.

The server will output a few pages of log messages as it starts up and converts the database to its internal
representation. When it finishes, the system will display a message similar to the following:

Serving queries on nid00057 16702

Query Execution via CGE CLI

5. Execute a query using the CGE CLI.

$ cge-cli query example.rq

0 [main] WARN com.cray.cge.cli.CgeCli - User data hiding is enabled, logs will obscure/omit user
data. Set cge.server.RevealUserDatalnLogs=1 in the in-scope cge.properties file to disable this
behaviour.

5 [main] INFO com.cray.cge.cli.commands.queries.QueryCommand - Received 1 queries to execute

13 [main] INFO com.cray.cge.cli.commands.queries.QueryCommand - Running Query 1 of 1

0 6 123 0 file:///mnt/central/user/results/
queryResults.2017-07-04T13.59.572000.18232_tsv

688 [main] INFO com.cray.cge.cli.commands.queries.QueryCommand - Query 1 of 1 succeeded

In the preceding example, the example. rq file contains the following query:

SELECT 7?greeting ?object
WHERE

<http://cray.com/example/greeting> <http://cray.com/example/text> ?greeting -
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> ?object .

}
Use the following query to print just "Hello World" as the output:

S3014 137

Get Started with Using CGE

SELECT ?greeting ?object
WHERE

<http://cray.com/example/greeting> <http://cray.com/example/text> ?greeting .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> ?object .
FILTER(?greeting = "Hello"™ && ?object = "World™)

Results Review

6. List the contents of the results directory and review the contents of the output file to verify that the query’s
results are stored in the output directory specified in the cge-launch command.

$ cd /dirContainingExampleOutput

$ Is

queryResults.34818.2015-10-05T19.33.53Z000.tsv

$ cat queryResults.34818.2015-10-05T19.33.53Z000. tsv

?greeting ?object
“Hello” “Home Planet”
“Hi” “Home Planet”
“Hello” “World”
llHi,’ “World,’
“Hello” “Earth”
“Hi” “Earth”

CGE Front End Launch
7. Launch the CGE front end in another terminal window.

$ cge-cli fe --ping

The --ping option in the preceding example is used to verify that the database can be connected to
immediately upon launch and that any failure is seen immediately. Not doing so may delay and hide failures. If
the ping operation does not succeed, and it is certain that the user executing this command is the only user
running CGE, and that everything else is set up correctly, the user should go back to the first step and make
sure that the SSH keys are set up right. The system may prompt to trust the host key when the fe command
is run for the first time.

Alternatively, the following command can be used to have the web server continue running in the background
with its logs redirected, even if disconnected from the terminal session:
$ nohup cge-cli fe > web-server.log 2>&1 &

8. Point a browser at http://1 ogi nNode :3756 to launch web Ul, where | ogi nNode is the name of the login
node the front end is launched from.
The CGE SPARQL protocol server listens at port 3756, which is the default port ID.
When the CGE front end has been launched, a message similar to the following will be returned on the

command-line:

49 [main] INFO com.cray.cge.-cli.commands.sparqgl.ServerCommand -
CGE SPARQL Protocol Server has started and is ready to accept HTTP
requests on localhost:3756

Query Execution via the CGE Front End

9. Execute a query against the dataset created by typing in the query and selecting the Run Query button.

S3014 138

Get Started with Using CGE

10.

11.

Figure 21. CGE Query Interface

Cray Graph Engine & gataset (example.mycompany.com:1234) W Data Access» |/ Configuration Management ~ = L rvesse »

Query Interface
SPARQL Query

Force text/plain as the response Content-Type (forces results to be displayed in browser)

Server NVPs

Enter NVPs one per line in properties file format e.g.
#cge.server. DoMemoryLeakDetection=1

#

Lines beginning with a # are comments

#

Server Logging Options

Server Log Level Use Server Default |

The following example query will match the data and example output shown in the next step:

SELECT ?greeting ?object
WHERE

<http://cray.com/example/greeting> <http://cray.com/example/text> ?greeting -
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> ?object .

After the query finishes executing, the output file containing the query's results will be stored in the output
directory that was specified in the cge-launch command.

CGE Front End Termination
Quit the terminal using the CTRL+C keyboard shortcut.
CGE Server Shutdown
Execute the following command to halt the CGE server, if needed.

$ cge-cli shutdown

S3014

139

Support for Simple GraphML Files

13 Support for Simple GraphML Files

CGE enables importing simple GraphML files and generating the corresponding quads for the given graph(s). To
enable importing a GraphML file, the user can either list a GraphML file in a graph. info file as part of a
database build, or load a GraphML file. When CGE processes an input file, any file that ends with the _.graphml
extension will be treated as a GraphML file.

The syntax supported for GraphML files is based on the DTD specification provided at: http:/
graphml.graphdrawing.org/

The following is a sample GraphML file that represents a simple graph:

<?xml version="1.0" encoding="UTF-8"7?>
<graphml xmlns="http://graphml_graphdrawing.org/xmlns"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""http://graphml .graphdrawing.org/xmlns
http://graphml .graphdrawing.org/xmlns/1.0/graphml . xsd">
<graph id="G" edgedefault="undirected'>
<node id="n0"/>
<node id="nl"/>
<node id="n2"/>
<node 1d="n3"/>
<node id="n4"/>
<edge id="el" source='"n0" target='"n2"/>
<edge id="e2" source='"nl" target='"n2"/>
<edge i1d="e3" source='"n2" target=''n3"/>
<edge i1d="e4" source='"n3" target="'n4"/>
</graph>
</graphml>

Limitations
There are multiple limitations in the current support for GraphML files, including the following:

e The xml and graphml elements are parsed, but otherwise ignored.

e [Edge data is currently ignored.

e Default edge direction for a graph is ignored.

e Edge direction attribute is ignored.

e Default values for data are ignored.

e Elements in a graph are limited to descriptions, data, nodes and edges.
e Nodes and edges can only contain descriptions or data as subelements.
e Nested graphs are not supported.

CGE will report warning or error messages to the log file for any incorrect syntax or unsupported features.

S3014 140

http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/

Support for Simple GraphML Files

When translating an edge to a quad, CGE will convert the edge identifier as well as the source and target
identifiers to URIs.

For example, given the following edge from the example above:
<edge id="el" source="n0" target='"n2"/>

CGE would generate the following quad:
<urn:n0> <urn:e2> <urn:n2> <urn:G> .

Note that when converting the identifier to a URI, CGE will insert the urn: prefix by default. Also, if any error is
found when parsing an edge no quad will be generated for that edge. For example, if a node referred to by an
edge does not exist in the given graph, or if there was an error when parsing the node declaration, these errors
will prevent a quad from being generated for an edge.

NVPs for GraphML Support

e cge.server .ExportGMLRDFEnable - Setting this NVP to 1 will cause CGE to export the quads generated
for a given GraphML file to an nt file of the same name as the input GraphML file but with the nt extension.
For example, if a graph. info file includes the line:

/my/path/to/file_name.graphml
The given NVP is set to 1 then CGE will write the quads produced by the GraphML file to an nt file named:
/my/path/to/file_name.nt

Exporting the quads to an nt file can be useful if the quads will be loaded multiple times since loading quads is
faster and uses less memory than loading from a GraphML file. This NVP is off by default.
e cge.server.GMLInsertPrefix - Setting this to 1 will cause CGE to insert the urn: prefix when converting
identifiers for graphs, nodes, and edges to URIs. For example, the following edge:
<edge i1d="el" source="n0" target=""n2"/>
would result in URIs of <urn:zel>, <urn:n0> and <urn:n2> for the edge, source and target identifiers,
respectively. This NVP is on by default.

e cge.server ._GMLCheckPrefix - Setting this to 1 will cause CGE to check an identifier for a known prefix
before inserting the urn: default prefix. The prefixes that CGE will check for are:

o urn:
o http:
o https:

If a graph, node or edge identifier starts with one of these prefixes and this NVP is set, CGE will not insert the
urn: prefix. For example, given the following edge:

<edge i1d=""http://www.mysite.com/el” source="n0" target="n2"/>

and having this NVP set will result in the following URIs:

o <http://www.mysite.com/el>

S3014 141

Support for Simple GraphML Files

o <urn:n0>
o <urn:n2>

Notice that since the source and target identifiers did not include a known prefix, CGE will insert the urn:
prefix by default.

S3014 142

Lustre Striping on CGE

14 Lustre Striping on CGE

Striping a Lustre directory can help achieve better parallel I/O performance. When loading input NT/NQ files into
CGE from Lustre, it is important that the files use the optimal striping settings for the given Lustre file system. For
larger files, load performance can be improved if the input dataset(s) have a larger stripe count. Use the 1fs
getstripe command to determine the striping information for a directory and the files contained within it.

For example, the following will get the striping information for the current directory:

$ Ifs getstripe .

The striping information for a file must be set before it is created. An easy way to do this is to set the striping
information on a directory and then copy the files into that directory because files will inherit striping information
from their parent directory. For example, the following command can be used to set the stripe count to 16 and the
stripe size to 16 MB on the current directory:

$ Ifs setstripe -c 16 -S 16m .

Striping is also important for performance when writing a large file to Lustre. For CGE, directory striping can
significantly improve performance when writing a compiled database to Lustre, checkpointing a database, or
writing a large results file from a query.

A CAUTION: It may not always be possible to change the striping on a directory that contains (or has
contained) files. Therefore, it is safer to set striping on a newly created directory.

S3014 143

CGE API

15 CGE API

15.1 CGE API Versioning

CGE API file versioning consists of filename subtext "vX. Y. Z", where X, Y, and Z represent integers. The
following table correlates versions of CGE with API version numbers:

CGE Java API Python API
2.0UPOO v1.0.0 none
2.5UP00 v1.1.0 v1.0.0
3.0UPOO v1.3.0 v1.0.1
3.1UPOO vi4.l v1.0.1

The CGE user guide sections describing each type of API use vX. Y. Z for file versioning. Users are expected to
replace this with the appropriate version of interest from the table.

15.2 Prepare the Environment for Using CGE Java API on Urika-XC

Prerequisites

This procedure requires CGE to be installed on the Urika-XC system.

About this task

When using the CGE Java API on Urika-XC systems,certain settings need to be put in place before using the
CGE Java API on Urika-XC systems.

Procedure

1. Load the analytics module and allocate resources.

In the following example, X is the number of compute nodes to utilize.

$ module load analytics
$ salloc -N X start_analytics

S3014 144

CGE API

2. Copy the CGE Java API JAR file from the installed directory to the user's local directory.

$ cp /opt/cray/cge/default/lib/java/cge-java-api-vX Y. Z-with-dependencies. jar\
/home/users/$USER

All references to this JAR file in this publication must be made to the users local copy.

15.3 CGE Java API

This feature is currently supported fully on Urika-GX and partially on Urika-XC. Specifically, launching CGE is
currently only supported on Urika-GX, whereas all other CGE Java API features are supported on Urika-XC.

The CGE Java API consists of four Java JAR files and a ReadMe file:

1. cge-java-api-vX Y. Z-with-dependencies. jar - Contains executable Java classes. Using the
executable Java classes, users can write their own Java code to perform CGE actions like launching the
server, querying, updating, checkpointing, etc.

2. cge-java-api-examples-vX Y. Z-sources. jar - Contains sample source code. Users can build their
own Java programs referring to these examples.

3. cge-java-api-vX Y. Z-javadocs. jar - Contains documentation of Java classes that the CGE APl is
comprised of.

4. cge-java-examples-vX Y. Z-with-dependencies. jar - Contains executable sample source code.
Samples provided with the CGE API can also be executed, as their entry points are included in the
executable sample source code

5. ReadMe_JavaAPI .txt - Contains commands and scripts documented in this guide. These commands and
scripts are suitable for copying and pasting for execution.

Where vX. Y. Z is the version code documented in CGE API Versioning on page 144.

This section describes how to utilize these . jar files.

Source Code Extraction

To extract the Java source code, run the following command:
$ jar -xf PATH TO JAR/cge-java-api-examples-vX. Y. Z-sources. jar
A directory structure similar to the following should appear:

-/com/cray/cge/api/examples/hooks/InheritlOHook. java
-/com/cray/cge/api/examples/Checkpoint. java
-/com/cray/cge/api/examples/CheckpointExisting. java
-/com/cray/cge/api/examples/ComprehensiveExample. java
./com/cray/cge/api/examples/Config. java
./com/cray/cge/api/examples/ExampleUtils. java
-/com/cray/cge/api/examples/IsRunning. java
-/com/cray/cge/api/examples/LaunchAndShutdown. java
-/com/cray/cge/api/examples/LaunchAndTerminateOnJvmExit. java
-/com/cray/cge/api/examples/LaunchOnly. java
./com/cray/cge/api/examples/Query. java
./com/cray/cge/api/examples/QueryExisting. java
-/com/cray/cge/api/examples/Shutdown. java
-/com/cray/cge/api/examples/Status. java

S3014 145

CGE API

./com/cray/cge/api/examples/StatusExisting. java
./com/cray/cge/api/examples/Update. java
-/com/cray/cge/api/examples/UpdateExisting. java
-/com/cray/cge/api/examples/QueryWithNVP. java

The . java files are source-code examples that users can refer to when building their own Java programs. These
are also included in the executable Java classes, so users can execute them directly if desired.

Extraction of APl Class Documentation

To extract the API class documentation, run the following command:

$ jar -xf PATH TO JAR/cge-java-api-vX. Y. Z-javadocs.jar

A directory structure similar to the following should appear. Please note that there is an extensive directory
structure that exists under the ./com directory, but it is not displayed in the following.

-/META-INF
-/META-INF/MANIFEST .MF
./resources
./resources/titlebar.gif
-/resources/tab.gif
-/resources/titlebar_end._gif
-/resources/background.gif
-/com
-/allclasses-frame.html
./overview-frame.html
-/overview-summary .html
-/package-list
-/deprecated-list_html
-/serialized-form_html
-/index.html
-/help-doc.html
-/index-all _html
-/allclasses-noframe._html
-/constant-values._html
./stylesheet.css
-/overview-tree.html

This file system is meant to be run with a web-browser.

e To view on Windows systems, right-click on overview-summary.html and then select the open with menu
option to open the file using the web-browser of interest, such as Internet Explorer or Chrome.

e To execute on Linux systems, ensure that an X-Windows server is running on the target computer, and that
the $DISPLAY environment variable is set appropriately. Then execute with the web-browser of interest, for
example using Firefox help-doc.html&.

In either case, the documentation should appear for point-and-click viewing.

How to Use API Executables

There are several ways to utilize the executable Java classes . jar files, as illustrated by the following:
e Use Java API via Maven

e Use Java API via Java Development Kit (JDK)

e Use Java API via pre-built main entry points

S3014 146

CGE API

Use Java APl Comprehensive Example program

15.3.1 Build CGE Java Applications Using Maven

About this task
The following procedure illustrates a use-case for using Maven to develop a Java application program to execute
the cge-launch command. This sample program will utilize the LaunchOnly . java sample file.

Procedure

1.

Create an application framework.

$ mvn archetype:generate -Dgroupld=com.mycompany.launchonly \
-Dartifactld=my-launchonly -DarchetypeArtifactld=maven-archetype-quickstart \
-DinteractiveMode=false

This is a standard Maven command to make a framework for developing a Java application; in this case, a
framework is created in the new my-launchonly area.

Switch to the my-launchonly directory.
$ cd my-launchonly
Install executable classes as a local jar file.

$ mvn install:install-file \
-Dfile=_/cge-java-examples-vX Y. Z-with-dependencies.jar \
-Dgroupld=com.cray.cge.api \

-Dartifactld=cge-user-apis \

-Dversion=1.0.0 \

-Dpackaging=jar

This is a standard Maven command for creating a directory structure for an executable . jar file.
Copy the LaunchOnly . java file into this area of the new mycompany directory.

$ cp .../LaunchOnly.java \
./src/main/java/com/nyconpany/launchonly/LaunchOnly. java

Develop a pom.xml file for the application or overwrite the default pom.xml file.
There can be many variations of this file, the following is shown as a suggestion for the contents of this file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>com.cray.cge.api.examples</groupld>
<artifactld>my-launchonly</artifactld>
<packaging>jar</packaging>
<version>1.0.0</version>
<name>my-launchonly</name>
<url>http://maven.apache.org</url>
<bui ld>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-assembly-plugin</artifactld>
<version>2.6</version>
<executions>
<execution>

S3014 147

CGE API

<goals>
<goal>attached</goal>
</goals>
<phase>package</phase>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>com.cray.cge.api.examples.LaunchOnly</mainClass>
</manifest>
</archive>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupld>com.cray.cge.api.spark</groupld>
<artifactld>cge-user-apis</artifactld>
<version>1.0.0</version>
</dependency>
</dependencies>
</project>

6. Build the package.

Users can first delete all files in their ~/ .m2 directory, as Maven will download what it needs to build the

p

ackage into this area.

$ mvn clean package

7. Execute the code using one of the following:

$ java -jar ./target/my-launchonly-1.0.0-jar-with-dependencies.jar /path-to-dataset ./

$ java -cp ./target/my-launchonly-1.0.0-jar-with-dependencies.jar
com.cray.cge.api.examples.LaunchOnly /path-to-dataset ./

$ export CLASSPATH=./target/my-launchonly-1.0.0-jar-with-dependencies.jar;

java com.cray.cge.api.examples.LaunchOnly /path-to-dataset ./

Note the following items:

The ./ argument specifies where the program will place the result files.

/ pat h-t 0- dat aset is the directory path to the user's dataset area,
e.g. /lus/scratch/ripple/mkdb/sp2b/25k

Outputs are the cge_launcher . log and cge_runtime. log files.

Outputs to stdout from execution should be similar to the following:

Launcher arguments are:

cge-launch -d /path-to-dataset -o my-launchonly/. -1 cge_runtime.log -p 12345 --nodeCount 1 --imagesPerNode 1 --

sessionTimeout 900

Starting CGE...

CGE not yet ready (1 seconds elapsed)
CGE not yet ready (2 seconds elapsed)
CGE not yet ready (3 seconds elapsed)
CGE ready in 7 seconds

CGE is running

8. Shut down the CGE CLI.

$

cge-cli shutdown --db-port 22334

S3014

148

CGE API

15.3.2 Build CGE Applications Using JDK

About this task

This procedure illustrates a use-case where programmers utilize JDK directly for Java program development.

Procedure

1. Create a program.

$ mkdir jdk_is_running
$ cd jdk_is_running

This sample program will determine if the CGE server is running.
2. Create a directory to put the . jar files into and move to that directory
$ mkdir cray_jars

3. Copy the cge-java-examples-vX. Y. Z-with-dependencies. jar file to this area.

$ cp /opt/cray/cge/default/lib/java/cge-java-examples-vX. Y. Z-with-dependencies.jar cray_jars
4. Create afile called Manifest. txt.

$ touch Manifest.txt
5. Editthe Manifest. txt file to contain the following lines.

Main-Class: com.cray.cge.api.examples. IsRunning
Class-Path: cray_jars/cge-java-examples-vX Y. Z-with-dependencies. jar
<blank_line>

IMPORTANT: The file containing the above lines must have a blank line (press Enter/Return to
create a blank line) the end of the file. in the preceding example, <blank_line> is used to indicate
a line with no characters.

6. Make a directory to locate the source file.

$ mkdir -p com/cray/cge/api/examples
$ cp IsRunning.java com/cray/cge/api/examples

7. Copy the IsRunning. java sample code into the new directory.
NOTE: The directory name must match the package name in the source code.

See Source Code Extraction on page 145 for the location of IsRunning. java.
8. Build the package.

$ javac -classpath cray_ jars/cge-java-examples-vX. Y. Z-with-dependencies.jar \
com/cray/cge/api/examples/IsRunning. java

9. Run via the Java interpreter.

S3014 149

CGE API

10.

11.

$ java -cp cray_jars/cge-java-examples-vX. Y. Z-with-dependencies.jar: \
com/cray/cge/api/examples/IsRunning

The output from execution will indicate that either CGE is running or CGE is not running .

Build executable JAR file.

$ jar cvfmO out.jar Manifest.txt com/cray/cge/api/examples/IsRunning.class
Run the executable JAR file.

$ java -jar out.jar

Output from execution should be either CGE is running or CGE is not running.

15.3.3 Build CGE Applications Using Pre-built Main Entry Points

About this task

This procedure illustrates a use-case where developers can run the main entry points in the
cge-java-examples-v1.0.0-with-dependencies. jar file directly. These correspond with the example
Java files containing the source line public static void main(String[] args), of which there are
several, for example: ./com/cray/cge/api/examples/Shutdown. java. See Source Code Extraction on
page 145 for the location of Shutdown. java

From any directory that contains cge-java-examples-vX. Y. Z-with-dependencies. jar. The following
examples show actual paths to datasets and repositories.

Procedure

1.

Launch the CGE server

$ java -cp cge-java-examples-vX. Y. Z-with-dependencies.jar \
com.cray.cge.-api.examples.LaunchOnly /lus/scratch/ripple/mkdb/sp2b/25k ./

NOTE: The ./ argument specifies where the program will place the result files. In this example,
the /lus/scratch..." area contains a typical sp2b test dataset.

Output includes the files cge_launcher. log and cge_runtime. log. Outputs that appear on stdout
should be similar to the following:

Launcher arguments are:

cge-launch -d /lus/scratch/ripple/mkdb/sp2b/25k \

-0 /ufs/home/users/$USER/my_repository/. \

-1 /ufs/home/users/$USER/my_repository/cge runtime.log \

-p 22334 --nodeCount 1 --imagesPerNode 1 --sessionTimeout 900
Starting CGE. ..

CGE not yet ready (1 seconds elapsed)

CGE not yet ready (2 seconds elapsed)

CGE ready in 5 seconds

CGE 1is running

Check if the CGE server is running

$ java -cp cge-java-examples-vX. Y. Z-with-dependencies.jar com.cray.cge.api.examples. IsRunning

S3014 150

CGE API

The following will be displayed on stdout:
CGE is running

3. Execute a query

$ $ java -cp cge-java-examples-vX. Y. Z-with-dependencies.jar com.cray.cge.api.examples.QueryExisting \
/home/users/$USER/cge-benchmark/cge_queries/sp2b/2.txt > query_results.out > SELECT(COUNT(?s) as ?CNT) {?s ?p 2?0}

In the preceding example, 2_txt is a pre-defined query meant for the sp2b-25k dataset. It is also possible to
create a 2. txt file with SELECT(COUNT(?s) as ?CNT) {?s ?p 7?0} as the only line.

The query results will by default go to stdout and a - tsv file. In this example, the query results are extensive
so we redirect the default output to a file named query_results.out. The generated file
queryResults._2016-05-12T16.07.462000.12512_tsv is also shown:

$ Is -1 query_results.out

-rw-r--r-- 1lroot 292653May 1211:07query_results.out

$ Is -1 queryResults.2016-05-12T16.07.46Z000.12512.tsv

-rw-r--r-- lroot 299154May 1211:07queryResults.2016-05-12T16.07.46Z000.12512.tsv

4. Update

$ java -cp cge-java-examples-vX Y. Z-with-dependencies.jar \
com.cray.cge.api.examples.UpdateExisting > updates.log

This update to the dataset is the simple default INSERT DATA {<urn:s> <urn:p> <urn:o>}, found in
the Update. java sample file. See Source Code Extraction on page 145 for the location of Update. java.
An argument such as .examples._UpdateExisting ./path-to-fil e can be used to specify a more
complex update command contained in a file.

The update output will by default go to stdout and consists of CGE log entries. In this example, the results are
redirected to a file updates. log:

$ Is -1 updates.log
-rw-r--r-- 1 root 8056 May 12 11:09 updates.log

5. Create a checkpoint
$ java -cp cge-java-examples-vX Y. Z-with-dependencies.jar \
com.cray.cge.-api.examples.CheckpointExisting chkpt.sp2b.25k

This will checkpoint the dataset to a subdirectory in the dataset area, which in this example is
named ./checkpoints/chkpt.sp2b.25k Thu May 12 12:00:10_CDT_2016. Files in this directory
consist of:

e _/checkpoints/chkpt.sp2b.25k Thu_May 12 12:00:10_CDT_2016/string_table_chars. index
e _/checkpoints/chkpt.sp2b.25k_Thu May 12 12:00:10_CDT_2016/export_dataset.nq

e _/checkpoints/chkpt.sp2b.25k Thu May 12 12:00:10 CDT_2016/string_table chars

e _/checkpoints/chkpt.sp2b.25k Thu May 12 12:00:10 CDT_2016/dbQuads

The following will be displayed on stdout:
Checkpoint successful - see directory ./checkpoints

6. Shutdown the CGE server

S3014 151

CGE API

$ java -cp cge-java-examples-vX. Y. Z-with-dependencies.jar \
com.cray.cge.api.examples.Shutdown > shutdown.log

The shutdown output will by default go to stdout and consists of CGE log entries. In this example, the results
are redirected to a file shutdown. log.

$ Is -1 shutdown.log
-rw-r--r-- 1 root 663 May 12 12:05 shutdown.log

15.3.4 Use Case: A Comprehensive Java Program

About this task
This procedure illustrates a use-case where Java programmers create a Java program that will execute several
features of the Java API, namely:

1.
2.
3.
4,

Launching the CGE server

Running query and update commands
Checkpointing the dataset

Shutting down the CGE server.

This case utilizes the cge-java-api-vX. Y. Z-with-dependencies. jar file.

Procedure

1.

Create an application framework:

mvn archetype:generate \
-Dgroupld=com.cray.cge.api.examples \
-Dartifactld=my-run-cge \
-DarchetypeArtifactld=maven-archetype-quickstart \
-DinteractiveMode=false

This is a standard Maven command to make a framework for developing a java application; in this case, a
framework is created in the new my-run-cge directory area.

Install executable classes as a local JAR file

mvn install:install-file \
-Dfile=/opt/cray/cge/default/lib/java/cge-java-api-vX. Y. Z-with-dependencies.jar \
-Dgroupld=com.cray.cge.api \

-Dartifactld=cge-user-apis \

-Dversion=1.0.0 \

-Dpackaging=jar

This is a standard Maven command to install an executable . jar file. A directory structure similar to the
following should appear in the user's .m2/repository directory:

-/com

-/com/cray

-/com/cray/cge

-/com/cray/cge/api

./com/cray/cge/api/cge-user-apis
./com/cray/cge/api/cge-user-apis/maven-metadata-local . xml
./com/cray/cge/api/cge-user-apis/1.0.0

S3014 152

CGE API

-/com/cray/cge/api/cge-user-apis/1.0.0/cge-user-apis-1.
-/com/cray/cge/api/cge-user-apis/1.0.0/cge-user-apis-1.

0.0.pom
0.0.jar

Switch to my-run-cge directory and then copy the file to ./src/main/java/com/myapp/runcge

$ cd my-run-cge

$ cp -./com/cray/cge/api/examples/ComprehensiveExample.java \

-/src/main/java/com/myapp/runcge

Write the Java source code. Following is the source code for the proposed Java program used in this
example. This can be copied into the ./src/main/java/com/myapp/runcge framework area:

package com.cray.cge.api.examples;

// for standard java processing

import java.io.File;

import java.io.lOException;

import java.util._Collections;

import java.util._concurrent.TimeUnit;

import java.util_Date;

import org.apache.commons.lang3.StringUtils;

// for prepare cge launcher

import com.cray.cge.api.CgeConnection;

import com.cray.cge.api.CgelLauncher;

import com.cray.cge.api.builders.CgeConnectionBuilder;
import com.cray.cge.api.builders.CgeLauncherBuilder;
import com.cray.cge.api.builders.JobOptionsBuilder;

import com.cray.cge.communications.messaging.exceptions.CommunicationsException;

// for query execution

import org.apache.jena.atlas.i10.10;

import com.hp.hpl.jena.query.QueryExecution;

import com.hp.hpl.jena.query.ResultSet;

import com.hp.hpl.jena.query.ResultSetFormatter;

import com.hp.hpl.jena.sparql.resultset.ResultsFormat;
import com.cray.cge.sparqgl.engine.results.ResultsMetadata;

// for update execution
import com.hp.hpl.jena.update.UpdateProcessor;

// for log4j initialization
import org.apache.log4j.Level;

e
/: Example that demonstrates launching CGE,
puglic class ComprehensiveExample

/>

:/Default spargl commands run by this example

public static final String DEFAULT_QUERY =

type™;
public static final String DEFAULT_UPDATE =

run query, update, checkpoint and shutdown.

"SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP BY ?

"INSERT DATA { <urn:is> <urn:ip> <urn:o> };

// default runtime values the user can overrlde with command line args.

public static String dataset_area = "./";

public static String output_area = "./";

public static String checkpoint_area = "./";

public static int NODE_COUNT=1;

public static int IMAGE_COUNT=1;

public static String query = DEFAULT_QUERY;

public static String update = DEFAULT_UPDATE;

public static String query_filename = null;

public static String update_filename = nuII

public static File queryFile=null;

public static File updateFile= nuII

public static int RUNTIME_TIMEOUT = 10; // minutes

public static int STARTUP_TIMEOUT = 15; // seconds

public static int CGE_CONNECTION_TIMEOUT = 3; // seconds

public static int SERVER_PORT =
privileges)

private static void showUsage()

System.out.printIn(C"\nExercises CGE by launching the server,
System.out.printIn('Usage:");

56789; // valid port number range: 1-65535 (1-1023 may require superuser

run query, update, checkpoint, and shutdown™);

System.
System.
System.

out.

out.
out.

printin("

printin("
printin("

-C
-d
-k

CGE server-connect timeout (seconds) (default: 3)");

Directory containing dataset (default:
Checkpoint dataset directory (default:

/)15
-/

S3014

153

CGE API

System.out.printin(*” -n Number of nodes to run CGE on (default: 1)");
System.out.printin(*” - Number of images to run CGE on (default: 1)");
System.out.printin(*” -0 Outputs directory (created if does not exist) (default: ./)");
System.out.printin(” -p CGE server port (default: " + SERVER_PORT + ') range: 1024-65535 (1-1023 as
su)™);

System.out.printin(” -q File with sparqgl query (default: "' + DEFAULT_QUERY + "")");
System.out.printin(” -r Runtime timeout (minutes) (default: 10)™);
System.out.printin(” -s Startup timeout (seconds) (default: 15)");
System.out.printin(” -u File with sparqgl update (default: """ + DEFAULT_UPDATE + "")");
System.out.printin(’*\n");

3

/**

* Expects a next argument, prints an error and exists if none present

* @param i Current Argument Index

* @param argv Arguments

* @param arg Current Argument for which we expect a value as the next argument
*/

private static void expectNextArg(int i, String[] argv, String arg)

if (i >= argv.length - 1)

System.err.printIn(""'Unexpected end of arguments, expected a value to be specified after the "

option™);
System.exit(1);

}

/**

* Parses Arguments

* @param argv Arguments
*/

private static void parseArgs(String[] argv)
for (int 1 = 0; 1 < argv.length; i++)
try

String arg = argv[i];

if (arg.equals(’'-h™))

{
// Show Usage Summary and exit
showUsage(Q);
System.exit(l);

// we have one or more name-value-pair ('NVP'™) args
// (e.g-, "-n 4").
expectNextArg(i, argv, arg); // exits if "value" of the NVP is absent
if (arg.equals('-d™)) {
dataset_area = argv[++i];
} else if (arg.equals('-0")) {
output_area = argv[++i];
} else if (arg.equals('-k™)) {
checkpoint_area = argv[++i];
} else if (arg.equals('-n")) {
NODE_COUNT = Integer.parselnt(argv[++il);
} else if (arg.equals('-p™)) {
SERVER_PORT = Integer.parselnt(argv[++il);
if ((SERVER_PORT > 65535) || (SERVER_PORT < 1)) {
System.out.printIn("Error: arg *
System.exit(l);
} else if (SERVER_PORT < 1024) {
System.out.printIn("'Notice: arg "
3
} else if (arg.equals('-c™)) {
CGE_CONNECTION_TIMEOUT = Integer.parselnt(argv[++il);
} else if (arg.equals('-r')) {
RUNTIME_TIMEOUT = Integer.parselnt(argv[++il);
} else if (arg.equals('-i")) {
IMAGE_COUNT = Integer.parselnt(argv[++i]);
} else if (arg.equals('-q'™)) {
query_filename = argv[++i];
queryFile = new File(query_filename);
if (lqueryFile.isFile(Q)) {
System.out.printIn(""Problem with " + query_filename +
System.exit(l);

3

} else if (arg.equals('-u™)) {
update_filename = argv[++i];
updateFile = new File(update_filename);
iT (lupdateFile.isFile(Q)) {

+arg + "

-p server port " + SERVER_PORT + "" value out of range");

- does not exist or not a file™);

System.out.printIn("'Problem with " + update_filename + " - does not exist or not a file");
System.exit(l);
3
} else {
System.err.printin("1llegal Option " + arg);
showUsage() ;

-p server port " + SERVER_PORT + "" may require su privileges™);

S3014

154

CGE API

}
catch (NumberFormatException numgEx)

System.exit(1);

//0ccurs when a numeric parameter is expected but not received
System.err.printin(C'lIllegal value
integer value was expected™);

System.exit(l);

// main entry point

public static void main(String[] args) throws I0Exception, CommunicationsException,

// suppress "log4j WARN" messages
org.apache.log4j .Logger.getRootLogger() .setLevel (org.apache.log4j.Level .OFF);

parseArgs(args);

String DB_LOG = *‘cge_runtime.log";

String LAUNCHER_LOG = "cge_launcher.log";

// show the runtime selections

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

// Pre

out

out

pare

out.
out.
_printIn("...
out.
out.
out.
out.
printin(. ..
out.
out.
out.
out.

printIn('CgeLauncherBuilder -

printIn(’...

printIn("...
printIn("...
printIn(". ..
printIn("...

printIn("...
printIn(’...
printIn(’...
printIn(’...

the launcher

CgeLauncher launcher =

dataset

output area
checkpoint area
query file
update file
node count
image count
server port

run timeout
start timeout
connect timeout

st

+
+
+
+

"+
+
+
+
+
+

+ argv[i] + "

art ... ");
dataset_area);

+

output_area)

encountered after option "

checkpoint_area);
query_fFilename);

update_filen
NODE_COUNT) ;
IMAGE_COUNT)
SERVER_PORT)
RUNTIME_TIME
STARTUP_T IME!
CGE_CONNECTI

new CgelLauncherBuilder()

ame) ;

ouT) ;
ouTy
ON_TIMEOUT) ;

.forExistingDatabase(dataset_area)
-usingOutputDirectory(output_area)
.usingDatabaselLogFile(DB_LOG)
-usingLauncherLogFile (LAUNCHER_LOG)

-onPort(SERVER_PORT)

-withJobOptions(new JobOptionsBuilder()
-withNodes(NODE_COUNT)
-withImagesPerNode (IMAGE_COUNT)
-withMaximumRuntime (RUNTIME_TIMEOUT, TimeUnit.MINUTES)

-buildQ;

-bl

uildQ)

System.out.printIn(‘'CgeConnectionBuilder - start ...");

CgeConnection cge = new CgeConnectionBuilder()

-usingLauncher (launcher)

-withConnectionTimeout(CGE_CONNECTION_TIMEOUT, TimeUnit.SECONDS)

.onHost(""localhost')
-onPort(SERVER_PORT)

buildQ;

System.out.printIn(‘‘CgeConnectionBuilder - done!');

// Start CGE
startCge(cge, STARTUP_TIMEOUT, false);
ifT (cge.isRunning()) {

System.out.printIn("’'CGE is running™);

} else

System.err.printIn("'CGE failed to start');

{

// run query
if (cge.isRunning()) {

System.out.printin(“start query... ");

if (queryFile = null) {
query = 10.readWholeFileAsUTF8(queryFile.getAbsolutePath());

System.out.printIn("'running query:\n\n" + query + '"\n");

ResultsMetadata results = cge.querySummary(query);
if (results.wasSuccessful()) {
System.out.printIn(*"query complete - see results in " + results.getLocation());

} else {

System.out.printIn("Error: query failed with: "

+ results.getError());

+ argv[i-1] + ™

when an

InterruptedException {

S3014

155

CGE API

3
} else {

System.err.printIn(""CGE appears to not be running™);

// run update
iT (cge.isRunning()) {
System.out.printin(’'start update... ");
if (updateFile != null) {
update = 10.readWholeFileAsUTF8(updateFile.getAbsolutePath());

System.out.printIn(*'running update:\n\n" + update + "\n");
// Updates are evaluated via the Apache Jena ARQ UpdateProcessor API
UpdateProcessor up = cge.update(update);
up.execute();
System.out.printIn("'update complete - see " + DB_LOG + " for log entries.™);
} else {
System.err.printIn(""CGE does not appear to be running');

// run checkpoint
if (cge.isRunning(Q)) {

System.out.printIn(“start checkpoint... ");

// Checkpoint the database currently in use by cge-server.

Date curr_date = new Date();

String clean_date = curr_date.toString();

File cpDir = new File(checkpoint_area, *checkpoint"” + File.separator + dataset area.replace(*/","_") + " " +

clean_date.replace(" ", "_"));

cge.checkpoint(cpDir, true);

System.out.printIn(’'Checkpoint successful - see directory " + checkpoint_area + "/checkpoint™);
} else {

System.err.printIn("'CGE failed to start');

// Shutdown

it (cge.isRunning(Q)) {
System.out.printin('start shutdown... ");
cge.stop(Q);
cge.getProcess() -waitFor(Q);
System.out.printIn(’'...shutdown complete™);

System.out.printIn("exiting...");
System.exit(0);
}

/**
* Starts the CGE instance represented by the given connection

@param cge

CGE connection
@param maxWaitSeconds

Maximum number of seconds to wait for start up
@param returnOninterrupt

Whether to return if interrupted while waiting
@throws 10Exception

Thrown if there is a problem starting CGE

Ok ok k% X ok o ¥

*/
public static void startCge(CgeConnection cge, int maxWaitSeconds, boolean returnOnlnterrupt) throws
10Exception {

System.out.printIn(’'Starting CGE...");
cge.start();

long startTime = System.currentTimeMillisQ);
while (TimeUnit_MILLISECONDS.toSeconds(System.currentTimeMillis() - startTime) < maxWaitSeconds)

{
try

Thread.sleep(1000);
b
catch (InterruptedException e)

// lgnore or return as appropriate
if (returnOninterrupt)

{
System.out.printIn(String.format("Interrupted while waiting for CGE to ready (%d seconds elapsed)",

TimeUnit.MILLISECONDS. toSeconds(System.currentTimeMillis() - startTime)));
return;

3
%f (cge.isRunning())

S3014 156

CGE API

System.out.printIn(String.format("'CGE ready in %d seconds",
TimeUnit.MILLISECONDS. toSeconds(System.currentTimeMillis() - startTime)));
return;

¥
System.out.printIn(String.format("'CGE not yet ready (%d seconds elapsed)",
TimeUnit.MILLISECONDS. toSeconds(System.currentTimeMillis() - startTime)));
b
¥
s

5. Use the following pom.xml file, which is developed for building application code:

<project xmlns="http://maven.apache.org/POM/4._0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>com.cray.cge.api.examples</groupld>
<artifactld>my-run-cge</artifactld>
<packaging>jar</packaging>
<version>1.0.0</version>
<name>my-run-cge</name>
<url>http://maven.apache.org</url>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-assembly-plugin</artifactld>
<version>2.6</version>
<executions>
<execution>
<goals>
<goal>attached</goal>
</goals>
<phase>package</phase>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>com.cray.cge.api.examples.ComprehensiveExample</mainClass>
</manifest>
</archive>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupld>com.cray.cge.api .spark</groupld>
<artifactld>cge-user-apis</artifactld>
<version>1.0.0</version>
</dependency>
</dependencies>
</project>

6. Build

$ mvn clean package

Users can first delete all files in their ~/ .m2 directory, as Maven will download what it needs to build
package into this area.

the

7. Execute the help command. This will show the help menu for the application, defining the optional runtime

arguments (note that all have default values):

system:~/comprehensive_test/my-run-cge> java -jar target/my-run-cge-1.0.0-jar-with-dependencies.jar -h
Exercises CGE by launching the server, run query, update, checkpoint, and shutdown

Usage:
-Cc CGE server-connect timeout (seconds) (default: 3)
-d Directory containing dataset (default: ./)
S3014 157

CGE API

-k Checkpoint dataset directory (default: ./)

-n Number of nodes to run CGE on (default: 1)

-1 Number of images to run CGE on (default: 1)

-0 Outputs directory (created if does not exist) (default: ./)

-p CGE server port (default: 56789) range: 1024-65535 (1-1023 as su)

-q File with sparql query (default: "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP
BY ?type”)

-r Runtime timeout (minutes) (default: 10)

-s Startup timeout (seconds) (default: 15)

-u File with sparqgl update (default: "INSERT DATA { <urn:s> <urn:p> <urn:o> }")

8. Execute the code.
The following is a sample execution command and resulting output:

system:~/comprehensive_test/my-run-cge> java -jar target/my-run-cge-1.0.0-jar-with-dependencies.jar -d \
/lus/scratch/ripple/mkdb/sp2b/25k -p 12345 -r 2 -i 4 -n 3 -k /lus/scratch/temp -q sp2b_query_9.txt
CgeLauncherBuilder - start ...
... dataset /lus/scratch/ripple/mkdb/sp2b/25k
.. output area V4
. checkpoint area /lus/scratch/temp

... query file sp2b_query_9.txt
.. update file null
.. node count 3
... image count 4
.. server port 12345
. run timeout 2

. start timeout 15
... connect timeout 3
CgeConnectionBuilder - start ...
CgeConnectionBuilder - done!
Starting CGE...
CGE not yet ready (1 seconds elapsed)
CGE not yet ready (2 seconds elapsed)
CGE not yet ready (3 seconds elapsed)
CGE ready in 7 seconds
CGE is running
start query. ..
running query:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?predicate
WHERE {
{

?person rdf:type foaf:Person .
?subject ?predicate ?person
} UNION {
?person rdf:type foaf:Person .
?person ?predicate ?object
¥
¥

query complete - see results in file: /lus/scratch/comprehensive_test/my-run-cge/queryResults.<YEAR-DAY-TIME>.tsv
start update...
running update:

INSERT DATA { <urn:s> <urn:p> <urn:o> }

update complete - see cge_runtime.log for log entries.

start checkpoint. ..

Checkpoint successful - see directory /lus/scratch/temp/checkpoint

start shutdown. ..

. . -shutdown complete

exiting...

The dataset being referenced in this example is sp2b-25k, and resides in

the /lus/scratch/ripple/mkdb/sp2b/25k directory. Three nodes and four images were specified for
the CGE server to execute on. Two minutes were allowed for the execution, 15 seconds for the startup, and
three seconds to connect to the server, which should have been started at port 12345. The CGE server began
executing within seven seconds of the initial command. The query being run was in the local file
sp2b_query_9.txt, the content of which is shown following the "running query" banner. The output area for
the query results was the local directory ./. An update command file is not specified and so the default was
used. The checkpointed dataset went into the /lus/scratch/temp/checkpoint directory under a sub-
directory that in this case was named

_lus_scratch_ripple_mkdb_sp2b 25k DAY MONTH DATE Tl ME_ZONE_ YEAR The shutdown would

S3014 158

CGE API

have removed all processes started by the Java execution, as could be verified by running ps aux |grep
$USER from a command line after the "exiting. . ." message appears.

15.3.5 Limitations of CGE Java API

Following are some limitations that should be kept under consideration when using the CGE Java API.

Network access requirements

Connecting to the database requires network access from the machine running the API to the node where the
database is running. If there is no such access, no operations can be carried out.

Database Launch
Launching a database relies upon being able to use the cge-launch command, this imposes two key limitations:

1. The command must be visible on the user's $PATH or the $PATH of the execution environment in order to
launch a database, where $PATH is an environment variable.

2. Launching a database can only be carried out on the system i.e., if a user is running code that uses the API
on a remote system, the user will not be able to launch databases.

3. Launching a database cannot be done from inside a pre-existing resource allocation since cge-launch
expects to obtain the resource allocation itself. Launching a database should only be done from code running
on a login node

Accessing query results

When executing queries, the database writes the results to the configured file system. In order to retrieve those
results from the API, access is required to the same file system and sufficient privileges are required to read those
result files.

If queries are being executed on a machine without access to the configured file system, the user will only be able
to access meta data about the results, not the results themselves.

Log capture

The log capture functionality of the API relies upon access to the database log file. If that file is not known or not
accessible (for example if the user is running on a remote machine), it will not be possible to retrieve log entries.

Note that the API will inject a unique identifier into the logs for each operation carried out via the API. Therefore it
is possible to extract the log entries at a later date because the API will still be able to indicate the unique
identifier used, which can be stored for later reference.

15.4 CGE Python API

This feature is currently supported on Urika-GX only.

The CGE Python API allows users to run CGE operations from their python applications on login nodes. The
Python API can start the CGE server, run a query, update, checkpoint, and shutdown. Python users will indirectly
utilize the CGE Java API in a Java Virtual Machine (JVM) - the 'py4j' component provides the gateway to that
JVM. Essentially, a user's python application will function as a front end Ul - users can be as spare or elaborate

S3014 159

CGE API

as desired in their python applications for starting the CGE server, managing their queries, updates and
checkpoints, and displaying query results.

CGE Python APl Components

CGE Python API components and their locations on the Urika-GX system are listed below:

e /usr/share/py4j/py4j0.10.3._jar - Thisis version 0.10.3 of the py4j package which implements a
python to Java bridge.

e /usr/lib/python2.7/site-packages/py4j/ - This is the py4j python code that executes under python
version 2.7

e /usr/lib/python3.4/site-packages/py4j/ - This is the py4j python code that executes under python
version 3.4

e /opt/cray/cge/default/lib/java/cge-java-api-vX. Y. Z-with-dependencies. jar - Thisis
the CGE Java API.

e /opt/cray/cge/default/lib/python/cge python_api-vX Y. Z_py - This is an APl example that
can run as a python application or in the python interpreter.

The py4j Package

The 'py4j' component of the Python API is an open-source package that enables python programs running in a
python interpreter to dynamically access Java objects running in a Java Virtual Machine (JVM). The Python API
utilizes this package to access the CGE Java API to build Job Options, launch the CGE server, setup runtime
locations for CGE logs and query output, execute queries and updates, etc. It consists of a Java .jar file, and . py
files that can execute under the two python versions shown.

Although the py4] package is located at /usr/share/py4j/py4j0.10.3._jar on the system, the location of
py4j used in the examples of this guide can be tailored according to site requirements. Moreover, users can
specify any version of the py4j JAR file that they wish to utilize. The sample code provided in this guide implies
this by showing an explicit path to the py4j JAR file, the implication being that users can use a different py4]j
JAR file at a different location at their discretion.

Detailed documentation of this package can be found at https.//www.py4j.org

15.4.1 Use Case: A Comprehensive Python Program

This is the cge_python_api-vX.Y.Z.py component of the Python API that shows how to interact with CGE.
This sample will start CGE, run a query, an update, checkpoint, and shutdown.

Copyright 2016 Cray Inc. All Rights Reserved.

#
(c) Cray Inc. All Rights Reserved. Unpublished Proprietary

Information. This unpublished work is protected by trade secret,
copyright and other laws. Except as permitted by contract or

express written permission of Cray Inc., no part of this work or
1ts content may be used, reproduced or disclosed in any form.

""" CGE Python APl allows users to run CGE from their python applications.
Python users will transparently utilize the CGE Java APl in a JVM (Java
Virtual Machine) - the "py4j" package referenced here provides the gateway
to that JVM. Essentially, a user®"s python application will function as a
front-end Ul - users can be as spare or elaborate as desired in their python
applications for starting the cge-server, managing their queries updates

S3014 160

https://www.py4j.org

CGE API

and checkpoints, and interpreting and displaying query results. This
example shows how to start cge-server, run a query, update, checkpoint, and
shutdown. It is meant to form the basis for more elaborate user python apps.

__version__ = "0.1°
__revision__ = "$Revision:$"
_all__ = ["Server®, " version__", " revision_ "]

bring in standard objects
import time
import os

#-—-- bring in the py4j JVM gateway objects
from py4j.java_gateway import JavaGateway
from py4j.java_gateway import java_import

#--- start the Java GatewayServer in a JVM (explicit paths to the jar files)
gateway = JavaGateway.launch_gateway(
jJarpath="/share/py4j/py4j0.10.3.jar",
classpath="/opt/cray/cge/default/lib/java/cge-java-api-vl.1_0-with-
dependencies.jar")

#---— bring in some commonly used items
Java_import(gateway. jvm, "com.cray.cge.api.builders.*")
my_timeunit = gateway.jvm.java.util_concurrent.TimeUnit

#--- these can be modified as desired for different port,
#--- node count and images per node.

MY_CGE_SERVER_PORT = 23239

MY_NODE_COUNT = 2

MY_IMAGE_COUNT = 6

#-—- build the JobOptions

my_cge_joboptions_builder =

gateway. jvm.com.cray.cge.api.builders.JobOptionsBuilder()
my_cge_joboptions_builder._.withNodes(MY_NODE_COUNT)
my_cge_joboptions_builder.withlmagesPerNode(MY_IMAGE_COUNT)

#--- runtime timeout can be changed as desired

RUNTIME_T IMEOUT_MINUTES = 60
my_cge_joboptions_builder.withMaximumRuntime (RUNTIME_TIMEOUT_MINUTES,
my_timeunit.MINUTES)

#--- get the job options
my_cge_joboptions = my_cge_joboptions_builder_build()

#--- read back and show the options

readback nodes = my_cge joboptions.getNodes()

print "read back: nodes=",readback nodes

readback imagesPerNode = my cge joboptions.getlmagesPerNode()
print "read back: images per node=",readback_imagesPerNode
readback totallmages = my cge_ joboptions.getTotal Images()
print "read back: total images=", readback totallmages

#--— build the launcher-builder
my_cge_ launcher_builder =
gateway. jvm.com.cray.cge.api -builders.CgelLauncherBuilder()

#--- specify dataset location (sample shown)
my_cge_launcher_builder.forExistingDatabase("/mnt/lustre/ripple/mkdb/sp2b/25k™)
#-—-- place query output Files into current working dir.

cwd = os.getcwd()

S3014 161

CGE API

my_cge_launcher_builder.usingOutputDirectory(cwd)

#-—- the cge runtime and launcher log will go into the current working dir.
my_cge_launcher_builder.usingDatabaselLogFile(*'cge_runtime.log"™)
my_cge_launcher_builder.usingLauncherLogFile(*'cge_launcher.log")
my_cge_launcher_builder.onPort(MY_CGE_SERVER_PORT)
my_cge_launcher_builder.withJobOptions(my_cge joboptions)

#-—- build the launcher-builder and get the launcher
my_cge_launcher = my_cge launcher_builder.build()

#--- build the connection-builder

my_cge_conn_builder = gateway.jvm.com.cray.cge.api.builders.CgeConnectionBuilder()
#-—- allow 15 second startup timeout (make larger if desired)
my_cge_conn_builder.withConnectionTimeout(15, my_ timeunit.SECONDS)
my_cge_conn_builder.onHost(**'localhost™)
my_cge_conn_builder._.onPort(MY_CGE_SERVER_PORT)
my_cge_conn_builder.nonlnteractive()

my_cge_conn_builder.trustHostKeys()

#--- make the connection
my_cge_conn_builder.usingLauncher(my_cge launcher)
my_conn = my_cge_conn_builder_build(Q)

#--- read back and show the options
readback port = my conn.getPort()
print "read back port=",readback port
readback _host = my conn.getHost()
print "read back host=",readback host

#-—- time stamp the start time
CGE_STARTUP_TIMEOUT_SECONDS = 1000
ONE_SECOND = 1

start = time.time()

#--- start cge
my_conn.start()

#-—- poll "isRunning()" for the signal that cge has started
#-—- (sleep a second between polls to minimize processing)
while True:
time.sleep(ONE_SECOND)
delta = time.time() - start
if delta >= CGE_STARTUP_TIMEOUT_SECONDS:
print "CGE did not start"
#-—- kill the Java JVM
gateway . shutdown()
exit()
it my_conn.isRunning() == True:
print "CGE started ok!"
break

#-—-- look at cge status another way
Java_import(gateway. jvm, "com.cray.cge.api.status.*")
my CgeStatus = my_conn.status()

runtime_status = my_CgeStatus.toString()

print "runtime status=",runtime_status

#--- a simple query
DEFAULT_QUERY = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP
BY ?type”

print DEFAULT_QUERY

S3014 162

CGE API

#--- run the query against the dataset specified above
my_query_results = my conn.querySummary(DEFAULT_QUERY)

#-—-- wait for query completion
my_query_results.wasSuccessful ()

#-—-- get name of results file
my_query_results._getLocation()

#--- a simple update command
DEFAULT _UPDATE = "INSERT DATA { <urn:s> <urn:p> <urn:o> }"
print DEFAULT_UPDATE

#--- run the update
my_update_cmd = my_conn.update(DEFAULT_UPDATE)
my_update_cmd.execute()

#-—-- run checkpoint, place in current working dir.
my_conn.checkpoint(cwd, False)

#--- shutdown cge
my_conn.stop()

#-—-- wait for cge to shutdown
my_conn.getProcess() .waitFor()

#--- kill the Java JVM
gateway . shutdown()

Although the code can be run as-is, or with a more complex query and update defined in place of the simple
guery and update shown, the program is meant to be a guide to more elaborate code development specific to the
user's requirements. For example, at the point where the "DEFAULT_QUERY" is defined and printed, users could
develop a more sophisticated query management technique for acquiring complex queries from files and looping
through their execution. Similarly for updates and checkpoints. The selection of MY_NODE_COUNT and
MY_IMAGE_COUNT could incorporate a Ul for more interactive selection of those values. And so forth for other
sections of the code.

In general, the use of gateway.jvm.com.cray.cge.api and the functions referenced must be invoked in the order
shown and with equivalent arguments. In between those function invocations, users can be as elaborate or spare
as their applications require. When running under Python-3, the arguments to "print" statements need to be
placed in parenthesis. For example: print "read back: nodes=", readback nodes, should be changed to
print ("read back: nodes=", readback_nodes)

15.4.2 Run the CGE Python API as a Python Application

To run this code as a python application on a login node, enter the command python cge_ python_api-
vX. Y. Z.py, replacing X. Y. Z with the corresponding version number. The current version number of the Python
APlis 1.0.0

Here is an example of output that will appear:

[userid@nid00030~]$ python cge_python_api-v1.0.0.py
read back: nodes= 2

read back: images per node= 6

read back: total images= 12

read back port= 23239

S3014 163

CGE API

read back host= localhost

CGE started ok!

runtime status= Process: Running - CGE: Running

SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP BY ?type
INSERT DATA { <urn:s> <urn:p> <urn:o> }

[userid@nid00030 ~]%

e The read back values show the user's selections

e The total images is computed by CGE and shown. The print, "CGE started ok!"indicates that the
CGE server started successfully on the specified dataset, within the timeout argument values, with the given
node and image count.

e The runtime status is shown as Running.
e The program's sample query command is shown in the print of the SELECT statement.
e The program's sample update command is shown in the print of the INSERT statement.

Example file outputs from the program:

[userid@nid00030 ~]$ Is -1t

total 2256

-rw-r--r-- 1 userid hw 1473 Sep 27 15:54 cge_launcher.log
-rw-r--r-- 1 userid hw 129254 Sep 27 15:54 cge_runtime.log
-rw-r--r-- 1 userid hw 3675 Sep 27 15:54 rules.txt

-rw-r--r-- 1 userid hw 1413120 Sep 27 15:54 string_table_chars
-rw-r--r-- 1 userid hw 8192 Sep 27 15:54 string_table chars.index
-rw-r--r-- 1 userid hw 671208 Sep 27 15:54 dbQuads

-rw-r--r-- 1 userid hw 769 Sep 27 15:54 queryResults.

2016-09-27T20.54.597000.8006. tsv
e The *_log files are produced by CGE.

e The rules.txt, string_table*, and dbQuads file are the files of the checkpointed example dataset.
e The queryResults*.tsv file is the output of the SELECT query.

The following are user processes active when running the Python program:

[userid@nidO00030 ~]$ top -u $USER

top - 16:09:17 up 47 days, 1:22, 39 users, load average: 0.08, 0.09, 0.38
Tasks: 789 total, 2 running, 787 sleeping, 0 stopped, 0 zombie

% Cpu(s): 0.0 us, 0.0 sy, 0.0 ni, 99.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 52914899+total, 33347744+free, 9836832 used, 18583470+buff/cache

KiB Swap: 0 total, 0 free, 0 used. 49864905+avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
57794 userid 20 0 273696 8148 3508 S 0.3 0.0 0:00.02 cge-launch
57796 userid 20 0 249036 37280 4032 S 0.0 O. 0:00.65 mrun
57732 userid 20 0O 344940 11368 3580 S 0.0 O. 0:00.05 python
57733 userid 20 0 35.916g 126492 15576 S 0.0 O. 0:01.98 java

ooOo

The Python process launched the Java JVM process with the gateway =
JavaGateway . launch_gateway(. .) command. The Java JVM process is exited with the
gateway . shutdown() command.

The cge-launch and mrun processes are the runtime signature of CGE, which was launched with the
my_conn.start() command. These processes are exited with the my_conn.stop() command.

S3014 164

CGE API

15.4.3 Run a Python API from the Python Interpreter

The Python API can be run from the python interpreter by copy-paste of the program into the interpreter.
Processes started and outputs produced are the same as shown above. For example, here is a sample run of the
code from the python interpreter, with the interpreter's responses shown:

[userid@nid00030 ~]$ python
Python 2.7.5 (default, Nov 20 2015, 02:00:19)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-4)] on linux2
Type "help™, "copyright”, "credits"™ or "license"™ for more information.
>>>
>>>
>>> # bring in standard objects
... Import time
>>> import os
>>>
>>>
>>> #--- bring in the py4j JVM gateway objects
... from py4j.java gateway import JavaGateway
>>> from py4j.java gateway import java_ import
>>>
>>>
>>> #--- start the Java GatewayServer in a JVM (explicit paths to the jar Ffiles)
. gateway = JavaGateway.launch_gateway(
Jarpath="/usr/share/py4j/py4j0.10.3_jar",
S classpath="/opt/cray/cge/default/lib/java/cge-java-api-vl.1.0-with-
dependencies.jar®)
>>>
>>>
>>> #--- bring in some commonly used items
... jJjava_import(gateway.jvm, "com.cray.cge.api.builders.*")
>>> my_ timeunit = gateway.jvm.java.util.concurrent.TimeUnit
>>>
>>>
>>> #--- these can be modified as desired for different port,
.. #-—-- node count and images per node.
... MY_CGE_SERVER_PORT = 23239
>>> MY_NODE_COUNT = 2
>>> MY_IMAGE_COUNT = 6
>>>
>>>
>>> #-—- build the JobOptions
. my _cge_joboptions builder =
gateway. jvm.com.cray.cge.api.builders.JobOptionsBuilder()
>>>
>>> my_cge_joboptions_builder.withNodes(MY_NODE_COUNT)
JavaObject id=01
>>> my_cge_joboptions_builder.withlmagesPerNode(MY_IMAGE_COUNT)
JavaObject id=02
>>> #--- runtime timeout can be changed as desired
- RUNTIME_TIMEOUT_MINUTES = 60
>>> my_cge_joboptions_builder.withMaximumRuntime (RUNTIME_TIMEOUT_MINUTES,
my_timeunit.MINUTES)
JavaObject id=04
>>>
>>> #--- get the job options
- my_cge_joboptions = my_cge_ joboptions_builder_build()
>>>
>>> #--- read back and show the options
. readback nodes = my_cge_ joboptions.getNodes()

S3014 165

CGE API

>>> print "read back: nodes=",readback nodes

read back: nodes= 2

>>> readback_imagesPerNode = my cge joboptions.getlmagesPerNode()
>>> print "read back: images per node=",readback imagesPerNode
read back: images per node= 6

>>> readback_totallmages = my cge_joboptions.getTotal Images()

>>> print "read back: total images=", readback totallmages

read back: total images= 12

>>>

>>> #--- build the launcher-builder

... my_cge_launcher_builder =

gateway. jvm.com.cray.cge.api .builders.CgelLauncherBuilder()

>>> #--- specify dataset location (sample shown)

... my _cge_ launcher_builder.forExistingDatabase("'/mnt/lustre/ripple/mkdb/sp2b/
25k™)

#--- place query output Ffiles into current working dir.

cwd = os.getcwd()
my_cge_launcher_builder.usingOutputDirectory(cwd)

#-—- the cge runtime and launcher log will go into the current working dir.
my _cge_launcher_builder.usingDatabaselLogFile(*'cge_runtime.log™)
my_cge_launcher_builder.usingLauncherLogFile(*'cge_launcher.log')
my_cge_ launcher_builder.onPort(MY_CGE_SERVER_PORT)
my_cge_launcher_builder.withJobOptions(my_cge_ joboptions)
JavaObject id=07

>>> #--- place query output Files into current working dir.

... cwd = os.getcwd()

>>> my_cge_launcher_builder_usingOutputDirectory(cwd)

JavaObject i1d=08

>>> #--- the cge runtime and launcher log will go into the current working dir.
... my _cge launcher_builder.usingDatabaselLogFile(‘'cge_runtime.log™)
JavaObject i1d=09

>>> my_cge_launcher_builder._usinglLauncherLogFile(*'cge_launcher.log™™)
JavaObject 1d=010

>>> my_cge_launcher_builder.onPort(MY_CGE_SERVER_PORT)

JavaObject id=011

>>> my_cge_launcher_builder.withJobOptions(my_cge joboptions)
JavaObject i1d=012

>>>

>>>

>>> #-—- build the launcher-builder and get the launcher
... my _cge launcher = my cge launcher_builder.build()
>>>

>>>

>>> #--- build the connection-builder

--.. my_cge_conn_builder =

gateway. jvm.com.cray.cge.api.builders.CgeConnectionBuilder()

>>> #-—- allow 15 second startup timeout (make larger if desired)
... my _cge_conn_builder.withConnectionTimeout(15, my_timeunit.SECONDS)
JavaObject 1d=016

>>> my_cge_conn_builder.onHost(*'localhost')

JavaObject i1d=017

>>> my_cge_conn_builder.onPort(MY_CGE_SERVER_PORT)
my_cge_conn_builder.nonlnteractive()

JavaObject i1d=018

>>> my_cge_conn_builder.noninteractive()
my_cge_conn_builder.trustHostKeys()

JavaObject 1d=019

>>> my_cge_conn_builder.trustHostKeys()

JavaObject 1d=020

>>>

S3014 166

CGE API

>>>
>>>

#--- make the connection
my_cge_conn_builder.usingLauncher(my_cge launcher)

JavaObject i1d=021

>>>
>>>
>>>

>>>

my_conn = my_cge_conn_builder.build(Q)

#--- read back and show the options
readback port = my conn.getPort()
print "read back port=",readback port

read back port= 23239

>>>
>>>

readback host = my conn.getHost()
print "read back host=",readback_host

read back host= localhost

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

CGE
>>>
>>>
>>>
>>>
>>>
>>>

#-—- time stamp the start time
CGE_STARTUP_TIMEOUT_SECONDS = 1000
ONE_SECOND = 1

start = time.time()

#--- start cge
my_conn.start()

#-—- poll "isRunning()" for the signal that cge has started
#-—- (sleep a second between polls to minimize processing)

while True:

time.sleep(ONE_SECOND)

delta = time.time() - start

if delta >= CGE_STARTUP_TIMEOUT_SECONDS:
print "CGE did not start"”
#--- kill the Java JVM
gateway.shutdown()
exit()

it my_conn.isRunning() == True:
print "CGE started ok!"
break

started ok!

#--- look at cge status another way
Java_import(gateway. jvm, "com.cray.cge.api.status.*")
my CgeStatus = my_conn.status()

runtime_status = my_CgeStatus.toString()

print "runtime status=",runtime_status

runtime status= Process: Running - CGE: Running

>>>
>>>

- .. DEFAULT_QUERY = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type }

#--- a simple query

GROUP BY ?type"

>>> print DEFAULT_QUERY

SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP BY ?type
>>>

>>>

>>>

>>> #--- run the query against the dataset specified above
--.- my_query results = my conn.querySummary(DEFAULT_QUERY)
>>>

>>> #--- wait for query completion

-.. my query results.wasSuccessful()

True

S3014

167

CGE API

>>>

>>> #--- get name of results file

--. my_query results._getLocation()
u“file:///home/users/userid/queryResults.2016-09-27T21.59.357000.31323.tsv"
>>>

>>>

>>> #--- a simple update command

... DEFAULT_UPDATE = "INSERT DATA { <urn:s> <urn:p> <urn:o> }"
>>> print DEFAULT_UPDATE

INSERT DATA { <urn:s> <urn:p> <urn:o> }

>>>

>>> #--- run the update

... my update _cmd = my conn.update(DEFAULT_UPDATE)

>>> my_update cmd.execute()

>>>

>>>

>>> #--- run checkpoint, place in current working dir.
... my_conn.checkpoint(cwd, False)
>>>

>>>

>>> #--- shutdown cge

--.. my_conn.stop()

>>>

>>> #--- wait for cge to shutdown
... my _conn.getProcess() .waitFor()
0

>>>

>>>

>>> #--- kill the Java JVM

- .. gateway.shutdown()
>>>
>>>

15.5 CGE Spark API

CGE works with RDF and generates its results files in the form of an array of tab-separated values, that are either
identifiers or literals. This allows Spark programmers to convert CGE results files in tab-separated-values format
("-tsv" files) into Spark datasets. Spark programmers can write a schema in the corresponding Spark language
(Scala, Java, R, Python) that represents the columns present in the TSV file, and then invoke a function in the
CGE Java API with the schema and path to the TSV file as arguments. The function returns a Spark dataset
conforming to the schema. From there, the Spark programmer can perform Spark queries and transformations on
the dataset in Spark context.

Alternatively, the Spark programmer may elect to convert the TSV file to a Spark dataset where all the column
entries of the TSV file will be interpreted as strings. This produces a Spark dataset, where all the columns exactly
reproduce the content of the TSV file as string columns. The CGE Spark API feature allows Spark programmers
to save the contents of their Spark DataFrame in RDF format. After reading in a TSV file, a Spark programmer
can process the DataFrame using Spark facilities and then save the data in RDF format. The saved data can then
be read into CGE for further processing.

S3014 168

CGE API

Spark Execution Command

The CGE Spark API is a set of Java functions built into the CGE Java API. To use the API, Spark users need to
launch their Spark sessions referencing the CGE Java API jar file, where the "vX.Y.Z" is to be replaced by the
current version number of the CGE Java API.

Examples:
In the following, X. Y. Z is used as an example for the CGE Java API version and should be replaced with the

actual version number. Similarly, pat h should be replaced with the actual paths when using these examples.

Spark Scala

$ spark-shell --jars pat h/cge-java-api-vX. Y. Z-with-dependencies.jar --conf
"'spark.debug.maxToStringFields=38"

Spark Python (for Urika-GX only)

$ pyspark --jars pat h/cge-java-api-vX. Y. Z-with-dependencies.jar

Spark R

$ sparkR --jars pat h/cge-java-api-vX Y. Z-with-dependencies.jar

Spark Java

$ spark-submit --class "user .class.path™ user_executable.jar optional _program argunments

In the preceding example, user _executable . jar must be built with a dependency on the
CGE Java API, for example:

<dependencies>
<dependency>
<groupld>com.cray.cge.api.spark</groupld>
<artifactld>cge-user-apis</artifactld>
<version>X. Y. Z</version>
</dependency>
</dependencies>

15.5.1 Convert TSV Files to Spark Datasets
The CGE Spark API enables converting TSV files to Spark datasets.

Conversion of TSV Files to Spark Datasets with All Strings Columns
Spark programmers can convert a TSV file to a Spark dataset by invoking the getSparkDataset() API routine.

Each column of the resultant Spark dataset will be a 1-to-1 mapping of columns from the TSV file, where all the
entries in the columns are strings taken verbatim from the TSV file.

The syntax of the getSparkDataset() function is:
getSparkDataset(String tsv-fil e-path, Boolean showProgress)
Where:

S3014 169

CGE API

e tsv
(@]

o

-fil e- pat h is the path to the TSV file to convert:
Local filespace: ("File:///pat h/fi | enane.tsv")
HDFS filespace: ("/pat h/f i | enane _tsv")

e showProgr ess: Setting this to true=enable will display statements in the API to show progress messages

during the conversion, whereas setting it to false=si lent will not display and messages during the

conversion.

Examples

Spark Scala

val df = com.cray.cge.api.spark.SparkCgeApi .getSparkDataset(*'/path/file.tsv", true)

Spark Python (for Urika-GX only)

from py4j.java _gateway import java import

from pyspark import SparkContext

Jjvm = sc._gateway.jvm

Java_import(jJvm, ‘‘com.cray.cge.api.spark.SparkCgeApi.*")

éhow_progress = True

local_tsv_fTile = "file:///path/file._tsv"”

ds =

Jjvm.com.cray.cge.api.spark.SparkCgeApi .getSparkDataset(local_tsv_file
,Show_progress)

Spark R

show_progress = True

local_tsv_file = "file:///path/file.tsv"

ds 1 =
sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi", "'getSparkDatas
et”,local_tsv_file, TRUE)

Spark Java:

import org.apache.spark.sql.*;
import com.cray.cge.api.spark.*;

// make an instance of the SparkCgeApi .

SparkCgeApi the_api = new SparkCgeApi();

show_progress = true;

Dataset<Row> df = the_api.getSparkDataset(*'/path/file.tsv",
show_progress);

S3014

170

CGE API

Conversion of TSV Files to Spark Datasets with Parsed Columns

Spark programmers can convert a TSV file to Spark dataset by Invoking the
getSparkDatasetUsingSchema() API routine. Each column of the resultant dataset will be a 1-to-1 mapping
of columns from the TSV file, where all the entries in the columns are parsed according to a schema written by
the Spark programmer.

The syntax of the getSparkDatasetUsingSchema() function is:
getSparkDatasetUsingSchema(String tsv-file-path, StructType schema, Boolean retainQri ginal Col ums)
Where:
e tsv-file-path isthe path to the TSV file to convert:

o Local filespace: (File:///pat h/fi | enane.tsv)

o HDFS filespace: (/pat h/fi | ename_tsv
e schemm defines the column entries to expect in the TSV-to-dataset conversion

e retainOriginalColumns - Setting the value of this option to true copies the columns of the TSV file into
the resultant dataset in their original string format, whereas setting it to fal se discards the original columns.

The retainOriginalColumns argument, when set true, will cause all the original columns from the TSV file
to be retained in the resultant dataset. This for use, for example, in the event that a TSV column contains mixed

literal types, which will produce null column entries for types that do not match the type expected by the schema.
Using Spark select statements on the resultant dataset, the Spark programmer can examine the original TSV

data next to the translated data to see the effect of their schema on the resultant dataset.

15.5.2 Scheme Determination

The Spark programmer first needs to examine the CGE results TSV file that needs to be transformed in order to
write the schema that will direct the TSV-to-Spark-dataset transformation. The Spark programmer also needs to
know the number of columns the TSV file contains, and what the columns might contain, i.e., either URL strings,
literal types or mixed combinations.

Number of Columns in the TSV file
All CGE results TSV files contain a heading in the first line of the file. For example:

?0s ?pub ?dept ?profl ?crs

This heading line identifies five columns in the TSV file, column names shown. The heading line will always
consist of tab-separated values, the number of which correspond with the number of columns in the file, but will
not indicate the type of data in each column.

URL Lines

These type of column entries can contain any text. For example:
e <http://www.Department4_University4614_edu>
e “GraduateStudent99@Departmentl2_UniversityO.edu”

e '""AssociateProfessor3"

S3014 171

CGE API

Literal Types

Column entries of literal types always contain the following text:
http://www._.w3.0rg.2001/XMLSchema#

Here are some example literal types the Spark programmer can expect to find in tsv file columns:
o "ll1"M<http://www.w3.0rg/2001/XMLSchema#integer>

o 9. 1"M<http://www.w3.0rg/2001/XMLSchema#float>

o '"-3E2"M<http://www.w3.0rg/2001/XMLSchema#double>

e '12345678"M<http://www.w3.0rg/2001/XMLSchema#long>

e ‘'cafe"M<http://www.w3.0rg/2001/XMLSchema#hexBinary>

o -6"M<http://www.w3.0rg/2001/XMLSchema#negativelnteger>

e "2006-08-27T09:00:00+03:00"M<http://www.w3.0rg/2001/XMLSchema#dateTime>
e 'now is"M<http://www.w3.0rg/2001/XMLSchema#string>

A full discussion of literal types is beyond the scope of this document. For more information, see https:/
www.w3.0rg/TR/xmischema-2/. The important aspect, however, is that when literal types are present in the CGE
results TSV file, the Spark programmer can write schema's identifying the literal type they wish to parse to its
base type in each resultant dataset column. For example, when a column contains a "float" literal type such as
"9 1" M<http://www.w3.0rg/2001/XMLSchema#float>, the quoted string containing the float value
("9.1") will, under direction by the schema, be parsed into a column of float values. The API will attempt to parse
ALL entries of that particular column as float literal types. A discussion of what the API will do with a column of
mixed, or inconsistent literal types, follows.

Mixed Types

This refers to columns of mixed URL and literal types, as described above. When a column of a tsv file consists of
mixed types, the Spark programmer must simply choose a single literal type to declare in the schema, or declare
the column a StringType. The former will result in the TSV column being parsed according to the data type
chosen, where all other non-conforming types in the column will result in null column entries in the resultant
dataset column. In the latter case, ALL literal-type entries in the column will be parsed to strings, with non-literal
types retaining their string content verbatim. The best case for specifying that literals should be converted to a
Spark literal type is when the user knows that all or most of the XML Schema literals in a column are of the same

type.
Here is an example of a mixed-type column parsed as "StringType":

R N R S B N +
| ?mixedtypes Imixedtypes |
e A +
|<http://www.Departmentl0.University0.edu> I<http://www._Departmentl0.University0.edu>|
"5678"M<http://www.w3.0rg/2001/XMLSchema#integer> 15678
"'5.678"M<http://www.w3.0rg/2001/XMLSchema#float> 15.678

""tobeornot. " M<http://www.w3.0rg/2001/XMLSchema#string> |tobeornot.
"'2001-99-99"M<http://www.w3.0rg/2001/XMLSchema#date> 12001-99-99
"somelong"M<http://www._w3.0rg/2001/XMLSchema#long> |somelong

e S e +

Observe the URL in the first column entry, along with various literal types that follow. The URL is parsed to the
new column verbatim, while the various literal types are all parsed as strings. All non-XMLSchema literal type
column entries in the TSV-to-dataset translation will be formatted into the dataset as strings.

S3014 172

https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/

CGE API

Here is an example of the same mixed-type column parsed as a FloatType:

e Fommm e +
| ?mixedtypes Imixedtypes |
e e e e +
<http://www.Departmentl0.University0.edu> Inull
"5678"M<http://www.w3.0rg/2001/XMLSchema#integer> Inull
"'5.678" M<http://www.w3.0rg/2001/XMLSchema#float> 15.678

|
I
"tobeornot. " M<http://www.w3.0rg/2001/XMLSchema#string> |null |
"'2001-99-99"M<http://www.w3.0rg/2001/XMLSchema#date> Inull |

|

| "somelong"M<http://www.w3.0rg/2001/XMLSchema#long> Inull
o o o +

Note that the new mixedtypes column is intended for float values only, and only the one XMLSchema#float
type is parsed to its base type (Float), and all other entries of the resultant dataset column are set to null.

15.5.3 Role of the Spark Schema in TSV Translation

Spark programmers must write a schema to specify the TSV-to-dataset translation by the API. The API uses the
schema to convert literal types from the TSV file into columns of their base types, such as integer, float, double,
etc. The translated values are placed in columns in the resultant dataset with new column names as supplied by
the schema, where any new column names supplied by the schema must differ from column names in the TSV
file. If schema column name(s) are null or ", the API will derive new column names from the original TSV column
names minus the first character. When TSV columnar data does not conform to the supplied schema, null values
will be inserted in the translated column in the dataset. The number of StructField specifiers in the schema
must equal the number of columns in the TSV file being parsed. The third argument to the StructField is
always true, which allows for nullable column entries.

Sample Scala Schema
Below is a sample schema written in Scala.

//--- bring in necessary components for making schemas.

import org.apache.spark.sql.types._

//--- make a schema to use in directing the conversion of a tsv file to a dataset.
//--- String names for the schema StructFields (eg., "x-name') are used by

//--- the getSparkDatasetUsingSchema() APl to name the new columns it will create when
//--- parsing XML literal types to base types. When "™ or null are used in the schema,
//--- the APl will derive the new column name from the tsv file column name.

val mySchema = StructType(Array(
StructField("'x-theurl™,StringType, true),
StructField('x-theinteger', IntegerType, true),
StructField('x-thefloat",FloatType, true),
StructField(*",StringType, true),
StructField("'x-thedate" ,DateType, true),
StructField(null,TimestampType, true),
StructField("'x-thelong",LongType, true),
StructField(""",Decimal Type(38,10), true)
)

This schema will direct the API to parse a TSV file to a Spark dataset that will consist of the following columns
and their entry types, in the order shown:

e non-literal type, string column name: x-theurl
e integer literal-type, column name: x-theinteger
e float literal-type, column name: x-thefloat

e string, column name: blank, thus defaulting to the TSV column name. This column can be a literal-type as
well.

e date literal-type, column name: x-thedate

e timestamp literal-type, null column name thus defaulting to the tsv column name

S3014 173

CGE API

long literal-type, column name: x-thelong

decimal literal-type, column name: blank thus defaulting to the TSV column name

View the schema from a Spark Scala shell like this:

scala> mySchema.printTreeString

root
1--
1--
1--
I-- :
1--

x-theurl:
Xx-theinteger:
x-thefloat: float (nullable = true)
string (nullable = true)
x-thedate: date (nullable = true)

string (null
integer

able = true)
(nullable = true)

|-- null: timestamp (nullable = true)
|-- x-thelong: long (nullable = true)
|-- : decimal(38,10) (nullable = true)

Important points to note:

if a column consists of mixed literal types, defining that column in the schema as "StringType" will result in all

the literals in the column being parsed to their respective string values.

Sample Java Schema
Here is the same sample schema written in Java:

decimal types are supported up to 38 digits of precision, with at most 10 digits to the right of the decimal point.

StructType customSchema = DataTypes createStructType(new StructField[] {});

customSchema =
customSchema
customSchema
customSchema
customSchema
customSchema
customSchema
customSchema

customSchema.
customSchema.
customSchema.
customSchema.
customSchema.
customSchema.
customSchema.
customSchema.

add("'x-theurl™,StringType, true);
add(""x- thelnteger , IntegerType, true);
add("x—thefloat",FIoatType,true);
add(*""",StringType, true);
add(*'x-thedate" ,DateType, true);
add(null, TimestampType, true);
add('x-thelong",LongType, true);
add("""",Decimal Type(38,10), true;

View the schema from a Java program like this:

customSchema.printTreeString();

Sample Python Schema (Urika-GX ONLY)

Here is the same sample schema written in Python:

from py4j.java_gateway import java_import
from pyspark import SparkContext
from pyspark.sqgl.types import *
Jjvm = sc._gateway.jvm

Java_import(jvm,

-com.
-com
-com.
-com.
-com
-com.
-com.
-com.
-com.

cray.
.cray.
cray.
cray.
.cray.
cray.
cray.
cray.
cray.

cge.
cge.
cge.
cge.
cge.
cge.
cge.
cge.
cge.

‘‘com.cray.

api
api
api
api
api
api
api
api
api

-spark.
-spark.
-spark.
-spark.
-spark.
-spark.
-spark.
.spark.
.spark.

cge.api.spark.SparkCgeApi . *")

SparkCgeApi
SparkCgeApi
SparkCgeApi
SparkCgeApi
SparkCgeApi
SparkCgeApi
SparkCgeApi
SparkCgeApi
SparkCgeApi

-makeNewSchemaTemplate()

.addFieldToSchemaTemplate(""x-theurl™,StringType() -simpleString(),True)
.addFieldToSchemaTemplate("'x-theinteger™, IntegerType() -simpleString(),True)
.addFieldToSchemaTemplate("*x-thefloat",FloatType() -simpleString(),True)
.addFieldToSchemaTemplate(*'*,StringType() -simpleString(),True)
.addFieldToSchemaTemplate(‘'x-thedate",DateType() -simpleString(),True)
.addFieldToSchemaTemplate(*"*, TimestampType() .simpleString(),True)
.addFieldToSchemaTemplate(‘'x-thelong",LongType() -simpleString(),True)
.addFieldToSchemaTemplate("""",DecimalType(38,10).simpleString(),True)

View the schema from a Python program like this:

Jjvm_com.cray.cge.api.-spark.SparkCgeApi .printSchemaTemplate()

S3014

174

CGE API

Sample R Schema

Here is the same sample schema written in R:

library(SparkR)
sc <- sparkR.session(appName="SparkR-example')

sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi', " 'makeNewSchemaTemplate')

sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi', " addFieldToSchemaTemplate', " "x-theurl',""STRING", TRUE)
sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi*,"addFieldToSchemaTemplate", " x-theinteger"," INT", TRUE)
sparkR.callJStatic(‘'com.cray.cge.api.spark.SparkCgeApi',"addFieldToSchemaTemplate", " x-thefloat", " FLOAT", TRUE)

sparkR.callJStatic(‘'com.cray.cge.api.spark.SparkCgeApi',"addFieldToSchemaTemplate","","STRING",TRUE)
sparkR.callJStatic(*'com.cray.cge.api.spark.SparkCgeApi',"addFieldToSchemaTemplate", ' x-thedate","'DATE", TRUE)
sparkR.callJStatic(‘'com.cray.cge.api.spark.SparkCgeApi',"addFieldToSchemaTemplate™,"" ,"TIMESTAMP" , TRUE)

sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi","addFieldToSchemaTemplate', ' x-thelong",""BIGINT", TRUE)
sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi',"addFieldToSchemaTemplate',"",""DECIMAL(38,10)",TRUE)

View the schema from an R program like this:

sparkR.callJStatic(‘'com.cray.cge.api.spark.SparkCgeApi",printSchemaTemplate'™)

Data types in Spark R
Data types in Spark R are identified using the strings, like DATE, INT, FLOAT, etc. This is because Spark R

context (unlike Spark Scala, Python and Java) does not have built-in-type encoding that will yield those strings.

Here is the complete set of available data types:

Spark Datatype base type
FLOAT" ————————————— float
"STRING" ————————————- string
TINT —mmemmmmmee e integer
HDATE™ —=—=——————— Date
"TIMESTAMP"" —————————— Datetime
"BIGINT" —————— - long
"BINARY" —————m—m long
"BOOLEAN" ———————————— boolean
"TINYINT" ——— - ——— byte
"DOUBLE" --——-———————- double
“SMALLINT" ——————————- short
“"DECIMAL(38,10)" ----- decimal
"TIME" ——————————————— Time

Scala and Java cases can use these strings as well, in place of the built-in-types shown in their cases. For
example, the FLOAT string could replace the Scala or Java reference to FloatType, as well as the Python
reference to FloatType() .simpleString().

Literal type to Data Types mapping
When writing a schema for parsing literal types to their base types, Spark programmers must use the correct
Spark data type in the schema to match the literal type to parse for a given column. Here is the mapping:

""XMLSchema#"" Spark schema Spark column Spark R
literal type DataType primitive type Datatype ID
1) anyURl-———————————————— StringType---—-—————-——- String---—-—--—-—————- "String"

2) base64Binary------—-——-——- StringType---————————- String----———-—-—-—-—- "'String”

3) date-———-------c—- DateType---————-—-————- Date--------—————- “DATE"

4) dateTime--—-—---————————-— TimestampType------—-- Timestamp----—---- "TIMESTAMP""
5) dateTimeStamp------—-—--—- TimestampType--------—- Timestamp--------—- “TIMESTAMP*
6) dayTimeDuration----—---- StringType--—————————- String-------—-—-—-—-—- "String”

7) decimal---————————————— DecimalType(38,10)----BigDecimal ---—---- ""DECIMAL(38,10)"
8) duration-----—-————--—-——- StringType--—————————-— String--—-—-——-————-—- "'String"

9) ENTITIES--————————————- StringType--—————————- String------—-—-—-—-—-—- "String”
10) ENTITY-————————m o ——— StringType----————-——- String---—-—--—-—————- "String"
11) gbhay-------—-—-—-—-——————- StringType---————————- String----—-—-—-—-—-——- "'String”
12) gMonth------—————————- StringType--—————————- String-------—-—-—-——- "String”
13) gMonthDay---------—-——- StringType---—-————-——- String---—-—---—————- "String"
14) gYear--—-—-—-—-——————————— StringType---————————- String-----———-—-—-—-—- "String”

S3014

175

CGE API

15) gYearMonth------————-——- StringType-——————————- String-----———————- "String”
16) hexBinary---————-—-————- BinaryType---—-———————— Long----—-—-———————- "BINARY""
17) ID-—————————— StringType--—-————————-— String---——-—-——————- "String"
18) IDREF----------—————— StringType--——————————- String-----———————- "String”
19) IDREFS-----——————ee StringType----—————-——— String---—---—-—————- "String"
20) integer----—-—————————- IntegerType--——————-—- Integer---—-——————- "INT™

21) language----————————-——-— StringType--———————-———- String-----———————- "String”
22) Name----—————————————— StringType----—————-——— String---—---—-—————- "String"
23) NCName------—-——-————— StringType--—————————-— String---—-——-——————- "String"
24) negativelnteger----—-—-—- IntegerType--————————- Integer--————————- TINT™

25) NMTOKEN---———————————— StringType----—————-——— String---—---—-—————- "String"
26) NMTOKENS------———-————— StringType--—————————-— String---—-——-——————- "String"
27) nonNegativelnteger----IntegerType--——————--—- Integer—————————— "INT™

28) nonPositivelnteger----IntegerType---———-—---—— Integer----—————-—- INT™

29) normalizedString------ StringType--—-————————-— String----——-——————- "String"
30) NOTATION--———————————- StringType--——————————- String-----———————- "String”
31) positivelnteger------- IntegerType-——-—--—-————- Integer----—————-—- INT™

32) QName---—-————-————————— StringType--—————————-— String----——-——————- "String"
33) time-—————---————— TimestampType---——--—- Time—————————————- “TIME™
34) token----————————————— StringType---——————-——— String---—----—————- "String”
35) unsignedByte----———-—- ByteType--—-——————————- Byte-————————————— "TINYINT"
36) unsignedint--————————- IntegerType--————————- Integer--————————- TINT™

37) unsignedLong---------- LongType--—-—-—--———————— Long----—-————————- "BIGINT"
38) unsignedShort--------- ShortType--——————————-— Short-———————————- ""SMALLINT™
39) boolean---———————————- BooleanType-——————--—- Boolean--—————-—-——- ""BOOLEAN"
40) byte--——-—————————————- ByteType---—-—————————- Byte--——-—————————- "TINYINT™
41) double---————-————————— DoubleType--——--—-—————- Double---————————- ""DOUBLE"
42) float-————-—-----—————- FloatType--—-—————————- Float---—————————- "FLOAT"
43) Int-———————— IntegerType-——-—--—-————- Integer----—————-—- "INT™

44) long---—-————————————— LongType--——-—-————————- Long---——————————- "BIGINT"
45) short---—-—-—-—-—————————— ShortType--——————————- Short---——————————- “"SMALLINT™
46) string-------————————- StringType----—————-——— String---—---—-—————- "String"
47) yearMonthDuration----- StringType---————————-— String---—-——-——————- "String"

The first column shows the possible literal types that can appear in CGE TSV results files. The second column
shows the data types that can be written into Spark schema's for the Scala, Java, and Python cases when
converting TSV files to Spark datasets. The third column shows the base-type (aka., "primitive data type") used in
resultant Spark dataset columns that are created when the API parses the given literal type (first column) using
the schema data type (in the second column) into a Spark dataset column (third column). The fourth column

shows the data types that can be written into Spark schema'’s for the R case.

15.5.4 Example of Spark Scala to Spark Dataset Conversion

While the full range of Spark operations on datasets is beyond the scope of this section, here are a few examples

of the simpler operations Spark programmers can use.

Following is a simple Spark Scala program to convert a two column TSV file to a dataset, and execute simple

Spark commands on the dataset:

//--- Produce an instance of the "Hello from CGE Java API!" return text,
val the_str = com.cray.cge.api.spark.SparkCgeApi.helloWorld(false)

//--- bring in necessary components for making schemas.
import org.apache.spark.sql.types._

//--- make a schema to use in directing the conversion of a tsv file to a Spark dataset.
val schema3 = StructType(Array(
StructField('x-theurl",StringType, true),
StructField('x-theinteger", IntegerType, true)

// look at the schema
schema3.printTreeString

//--- Run the APl to parse a tsv file and create new columns according to the schema.
val retainOrigCols = false

val this_df_2 = com.cray.cge.api.spark.SparkCgeApi.getSparkDatasetUsingSchema("'file:///queryResults.

2016-11-02T16.45.33Z000.12520.tsv", schema3, retainOrigCols)

//--- these statements show that we converted the CGE tsv file to a Spark dataset
if (this_df_2 != null) {

S3014

176

CGE API

//--- look at the schema of the resultant dataset, count number of rows, and dump the first 2 rows.
this_df_2.printSchema()

this_df_2.count()

this_df_2_show(2,false)

//--- isolate and display the columns of the resultant dataset: the original tsv-file column + parsed column.

if (retainOrigCols) {
val urlcols = this_df_2.select(""?type",""x-theurl™)
urlcols.show(99, false)
val intcols = this_df_2.select("'?usages","x-theinteger")
intcols.show(99, false)

} else {
//--- isolate and display the columns of the resultant dataset.
val urlcols = this_df_2.select(''x-theurl')
urlcols.show(99, false)
val intcols = this_df_2.select("'x-theinteger'™)
intcols.show(99, false)

3

¥

In the following, queryResults.2016-11-02T16.45.332000.12520.tsvV in local file space is being
converted to dataset:

?type ?usages
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Bag> 11" M<http://www.w3.0rg/2001/XMLSchema#integer>
<http://localhost/vocabulary/bench/Article> 2077 M<http://www.w3.0rg/2001/XMLSchema#integer>
<http://localhost/vocabulary/bench/Inproceedings> 621" M<http://www.w3.0rg/2001/XMLSchema#integer>
<http://localhost/vocabulary/bench/Incollection> 33" M<http://www.w3.0rg/2001/XMLSchema#integer>
<http://localhost/vocabulary/bench/Proceedings> 18" M<http://www.w3.0rg/2001/XMLSchema#integer>
<http://xmlns.com/foaf/0.1/Document> "'2806""M<http://www.w3.0rg/2001/XMLSchema#integer>
<http://localhost/vocabulary/bench/Journal> 56" M<http://www.w3.0rg/2001/XMLSchema#integer>
<http://xmlns.com/foaf/0.1/Person> "'2162"M<http://www.w3.0rg/2001/XMLSchema#integer>

Following are the outputs of running the code:

[user@nid00030 user nane]$ spark-shell --jars /home/users/$USER/cge-java-api-v1.3.0-with-dependencies.jar --conf
"'spark.debug.maxToStringFields=38"

Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLoglLevel(newLevel).

Spark context Web Ul available at http://192.168.0.31:4040
Spark context available as "sc" (master = mesos://zk://z001:2181,z002:2181,z003:2181/mesos, app id = f55c6778-
a4ce-4995-9el1f-daf47efb9d37-0034) .
Spark session available as "spark”.
Welcome to
/__
"/

/ _/ 7
\N\/ _\/ _ "~/ _7/
/__/ ._/_, / / /_/_\ version 2.1.0

/ /

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_111)
Type in expressions to have them evaluated.
Type :help for more information.

scala>
scala>

scala> :load simple.scala
Loading simple.scala...

the_str: String = SparkCgeApi.helloWorld - Hello from Java CGE Spark API!

import org.apache.spark.sql.types._

schema3: org.apache.spark.sql.types.StructType = StructType(
StructField(x-theurl,StringType, true),
StructField(x-theinteger, IntegerType, true

)

root
|-- x-theurl: string (nullable = true)
|-- x-theinteger: integer (nullable = true)

retainOrigCols: Boolean = false
this_df_2: org.apache.spark.sql .Dataset[org.apache.spark.sql .Row] = [x-theurl: string, x-theinteger: int]

root
|-- x-theurl: string (nullable = true)

S3014 177

CGE API

|-- x-theinteger: integer (nullable = true)

e e e +
| x-theurl | x-theinteger]
o Fomm e +
|<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Bag>|11 |
|<http://localhost/vocabulary/bench/Article> 12077 |
e e +

only showing top 2 rows

|<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Bag> |
|<http://localhost/vocabulary/bench/Article>

|<http://l1ocalhost/vocabulary/bench/Inproceedings>|
|<http://localhost/vocabulary/bench/Incollection> |
|<http://localhost/vocabulary/bench/Proceedings> |
|<http://xmlns.com/foaf/0.1/Document> |
|<http://localhost/vocabulary/bench/Journal> |
|<http://xmlns.com/foaf/0.1/Person> |

|
|
|
133 |
|
|
|
|

Following is an example of a Spark Scala select and show statements on a dataset containing a float type
column named x-thefloat in the schema, along with the original column of literal-type floats that appeared
as ?thefloat column in the TSV file and was brought into the resultant dataset by setting the
retainOriginalColumn argument to true:

val floatcols = df.select(""?thefloat","x-thefloat')
floatcols.show(8, false)

S S R +
| ?thefloat | x-thefloat |
e e +
|"9.1"M<http://www.w3.0rg/2001/XMLSchema#float>]9.1 |
|""-3E2"#misformed_float> Jnull |
|""4268.22752E11"M<http://www.w3.0rg/2001/XMLSchema#float>]4.26822743E14 |
|""+24 _3e-3" M<http://www.w3.0rg/2001/XMLSchema#float>]10.0243 |
|"+5.5"M<http://www.w3.0rg/2001/XMLSchema#Ffloat> 15.5 |
|- INF"M<http://www.w3.0rg/2001/XMLSchema#float> |-Infinity |
| "NaN"" <http://www.w3.0rg/2001/XMLSchema#float> |NaN |
]"-0.123"M<http://www.w3.0rg/2001/XMLSchema#float>]-0.123 |
e S R +

The misformed float literal type in the ?thefloat column of the original TSV file adds a nul I entry in the x-
thefloat column

15.5.5 Errors and Exceptions Encountered while Using the CGE Spark API

Following are a list of potential errors and exceptions the Spark programmer may encounter when working with
the CGE Spark API.

Errors

Most errors will occur when specifying a schema that does not match the number of columns or types in the TSV
file to convert:

e Mistakenly parsing a StringType column as any numeric type (IntegerType, DecimalType, etc.) will result in
the column entries coming back null.

S3014 178

CGE API

e Specifying more columns in the schema than exist in the TSV file will result in the API giving a message
"ERROR! df column count does not match schema column count"

e Attempting to convert a TSV file that does not exist will result in an error message
"SparkCgeApi .getSparkDataset[UsingSchema] - error with file ...
jJava.lang.NullPointerException”

e Attempting to execute the Spark select command on non-existing column will produce an error
"org.apache.spark.sqgl .AnalysiskException: cannot resolve " colum_nanme™""

e Specifying a column name in a schema that exactly matches the same column name in the TSV file will result
in that column's literal type not being parsed into the resultant dataset. Subsequent attempts to do spark
"select" commands on that column name will result in the org.apache.spark.sql .AnalysisException
described earlier.

Exceptions

A general rule for some numeric types: if the literal value is out range, a Java exception may be thrown. For
example, if a column element "'0"*M<http://www_w3.0rg/2001/XMLSchema#negativelnteger> is
present in a TSV file, it will result in the Java exception "Lexical form '0' is not a legal instance of
Datatype[http://www.w3.0rg/2001/XMLSchema#negativelnteger]".

Another general rule for some numeric types is that if the literal value is out of range, the resultant column
element value will be the minimum for the type. For example, if a column element ""OxXAB""M<http://

www .w3.0rg/2001/XMLSchema#long> is present in a TSV file, the resultant parsed column value will be
-9223372036854775808, the minimum for "long" types. For out of range "integer" types, the resultant column
value will be -2147483648.

15.5.6 Run CGE from Spark

This feature is currently supported on Urika-GX only.

Spark programmers can start, stop, and run queries on CGE from Spark context. The following are code samples
showing how to do this.

Spark Scala
// Start CGE

// Any valid port number
val cge port = 23239

// Path to dataset to start CGE on
val dataset_dir = "/mnt/lustre/ripple/mkdb_1.0/1ubm/0"

// Path to directory CGE should send results

val output dir = "_/"
// CGE log filenames
val database log = 'database log.txt"
val launcher_log = "launcher_log.txt"

// number of nodes and images per node to start CGE on
val node _count = 4
val image_count = 2

S3014 179

CGE API

// Timeouts
val run_time_min = 3
val startup_timeout_sec = 20

val show_progress = true

val started = com.cray.cge.api.spark.SparkCgeApi.startCgeServer(cge port,
dataset _dir, output dir, database log, launcher_log, node count, image count,
run_time_min, startup_timeout _sec, show_progress)

// Send CGE a query and receive the output tsv Ffile

val the query = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP
BY ?type™

val tsv_results = com.cray.cge.api.spark.SparkCgeApi .queryRunningCGE(cge port,
the_query, show_progress)

// Convert the tsv file output to a Spark dataset
val df = com.cray.cge.api.spark.SparkCgeApi .getSparkDataset(tsv_results,
show_progress)

// work with the new dataset
it (df = null) {
df _printSchema()
df.count()

// Stop CGE
val connection_timeout_sec = 20
com.cray.cge.api.spark.SparkCgeApi .stopCge(cge_port, connection_timeout sec)

Spark Java

package com.cge.spark.api.test.app;
import org.apache.spark.sql.*;
import com.cray.cge.api.-spark.>;

// make an instance of the SparkCgeApi .
SparkCgeApi the_api = new SparkCgeApi();

// Start CGE

int cge port = 22334;

boolean started = false;

int runtime = 3; // CGE runtime limit, minutes

int startup_timeout = 20; // CGE Startup timeout limit, seconds.

String launcher_log "launcher_log.txt";

String database log = "database log.txt";

val show_progress = true;

started = the_api.startCgeServer(cge_port, dataset dir, output dir, database log,
launcher_log, node count, image count, runtime, startup_timeout, true);

if (started) {

// Run a query on CGE

String DEFAULT_QUERY = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?
type } GROUP BY ?type™;

String tsv_results = the_api.queryRunningCGE(cge_port, DEFAULT_QUERY,
show_progress);

Dataset<Row> df = the_api.getSparkDataset(tsv_results, show_progress);

S3014 180

CGE API

// work with the new dataset
if (df) {
df._printSchema();
df.count()

}

// Stop CGE
int connect _timeout = 20; // connection timeout, seconds.
the_api.stopCge(cge_port, connect_timeout);

}

Spark Python

from py4j.java_gateway import java_import
from pyspark import SparkContext
sc = SparkContext(appName=""my_python')
Jjvm = sc. _gateway.jvm
Java_import(Jvm, "com.cray.cge.api.spark.SparkCgeApi.*")
#-—-- simple test of the SparkCgeApi - returns a "hello world™ string.
#--- (note the "True/False™ argument to "helloWorld®" enables banners showing
progress in the Spark CGE API)
the_str = jvm.com.cray.cge.api.spark.SparkCgeApi.helloWorld(False)
print(the_str)
#-—-- Test APl by starting CGE
cge_port = 23239
dataset_dir = "/mnt/lustre/ripple/mkdb_1.0/1ubm/0"
output dir = "_/"
database log "database log.txt"
launcher_log "launcher_log.txt"
node_count =
image_count = 2
run_time _min = 3
startup_timeout_sec = 30
started =
Jvm.com.cray.cge.api.spark.SparkCgeApi .startCgeServer(cge port,dataset dir,output
dir,database_log, launcher_log,node_ count, image_count,run_time_min,startup_timeout
sec,True)
print(started)
#--- setup a local tsv file (ok to overwrite with newer file below)
tsv_results = "file:///some_path/queryResults.2017-05-08T19.58.197000.66015. tsv"
if started:
#-—-- Test APl by sending query to the running CGE, get back path to tsv
results file ("'True™ = show progress).
the query = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP
BY ?type"
tsv_results = jvm.com.cray.cge.api.spark.SparkCgeApi .queryRunningCGE(cge port,
the _query, True)
print(tsv_results)
#
#-—-- Test APl by converting the tsv file from above to a Spark dataset ("True"
= show progress).
ds = jvm.com.cray.cge.api.spark.SparkCgeApi .getSparkDataset(tsv_results,True)
#
#--- take a look at the resultant dataset
if ds = None:
ds.printSchema()
ds.count()
ds.show(4,False)

[l LI

S3014 181

CGE API

#

#-—-- Test APl by stopping CGE

connection_timeout = 30

jvm.com.cray.cge.api.spark.SparkCgeApi .stopCge(cge_port, connection_timeout)

Spark R

library(SparkR)
sc <- sparkR.session(appName="SparkR-example'™)
#--— simple test of the SparkCgeApi
test_string =
sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi"',"helloWorld",TRUE)
print(test_string)
#--- setup a local tsv file (ok to overwrite with newer file below)
local_tsv_file = "fFile:///home/users/schema_test/test/Rtest/queryResults.
2017-05-08T19.58.197000.66015 . tsv""
#--— Test APl by starting CGE
#--- note the "L'" qualifyer on numbers is important here in R context - won"t be
seen as an
#-—- iInteger in the JVM without it!
cge_port = 23239L
dataset_dir = "/mnt/lustre/ripple/mkdb_1.0/1ubm/0"
output dir = "_/"
database log = "'database log.txt"
launcher_log = "launcher_log.txt"
node_count = 1L
image_count = 2L
run_time_min = 3L
startup_timeout_sec = 30L
started =
sparkR.callJStatic(‘'com.cray.cge.api.spark.SparkCgeApi","startCgeServer',cge port,
dataset_dir,output_dir,database_log, launcher_log,node_count, image_count,run_time_m
in,startup_timeout_sec,TRUE)
print(started)
if (started) {

#-—- Test APl by sending a query to an already running CGE. Convert the
resultant tsv file to a dataframe.

#--- (note the "TRUE/FALSE™ argument should enable banners showing progress in
the API)

the _query = "SELECT ?type (COUNT(?s) AS ?usages) WHERE { ?s a ?type } GROUP
BY ?type”

print(the_query)
local _tsv _file =
sparkR.callJStatic(‘'com.cray.cge.api.spark.SparkCgeApi',"queryRunningCGE"™,cge_port
,the_query,FALSE)
print(local_tsv_file)
#-—- Test APl by converting the CGE tsv results file to a Spark dataset.
ds_1 =
sparkR.callJStatic(‘'com.cray.cge.api.spark.SparkCgeApi","'getSparkDataset”, local_ts
v_file, TRUE)
#--— peculiar step you have to take in R to work with datasets.
df_1 <- new(''SparkDataFrame™, ds_1, FALSE)
#-—-- these statements show that we got the CGE tsv output and converted it to
a Spark "R" dataframe
if (Mis.null(df_1)) {
printSchema(df_1)
count(df_1)
showDF(df_1, numRows = 4, FALSE)

S3014 182

CGE API

#-—-- Test APl by stopping CGE
connection_timeout = 20L

sparkR.callJStatic(''com.cray.cge.api.spark.SparkCgeApi', "stopCge™,cge_port,connect
ion_timeout)

15.5.7 CGE Spark DataFrame to RDF Triples Data Converter

Scala and Java methods can be used to write RDF files from Spark. The Spark user would create a three-column
dataframe to pass to the dataframe-to-RDF converter. These columns would, respectively, represent the subject,
predicate and object fields of the RDF triples to be generated. In particular, saveAsRDF(name: DataFrame,
path: String, objectlisURI: Boolean) when called from Spark will write one or more files containing
triples in RDF format from an existing dataframe. Name is the name of the DataFrame which is assumed to have
been built in advance. The path specifies the directory the files are to be written to. For non HDFS the path must
begin with "File://<path_name>". ObjectlIsURI is a flag that controls how the user wants to modify the
object. The dataframe must contain values in the first three columns that conform to the specified criteria;
successive columns are ignored. The first three columns correspond to Subject, Predicate and Object,
respectively.

It is anticipated that the DataFrame to be written out will have been created in advance. The saveAsRDF()
method will write two or more files to the directory specified by path. The resulting files found in the specified
directory is a single graph . info file along with one or more RDF triples files. The graph. info file lists all files
constituting the set of output triples. CGE can read the graph. info file and its accompanying files that it lists
and build a CGE internal database, dbQuads, from it. The subject and predicate columns are expected to be
strings.

e if the string looked like a URL, i.e., starts with "//http:" etc., it will be converted into a URI, simply by
enclosing it in angle brackets "<. . .>".

e if the string looked like any other type of string, such as a variable name, the sting would be converted by
prepending "urn:" and enclosing the resulting string in angle brackets.

The object column could be a string, or it could contain one of the basic data types that can be stored in a
dataframe: integer, float, double, and so on. If the object is a numerical data type, it is to be converted to the
XMLSchema equivalent string. For example, the integer 439 would be converted to "439"'M<http://

www .w3.0rg/2001/XMLSchema#integer> . Information about the data type of the column would be expected
to be found in the schema associated with the dataframe.

If the object column is a string, it can be handled either of two ways:

e The user wants it treated as a URI, in which case the column is treated the same way as the subject and
predicate columns are, as described above.

e The user wants it treated a string literal of data type XMLSchema string, in which case, for example, the string
xXyyzz would be converted to the XLMSchema literal "xxyyzz"~<http://www.w3.0rg/2001/
XMLSchema#string> . Since there is no way for the conversion interface code to tell from the dataframe
schema, which of these choices the user desires, the user will need to state their preference via the Boolean
argument, the ObjectlsURI flag, to the dataframe-to-RDF conversion function.

If saveAsRDF () succeeds it returns 0; otherwise a negative integer indicating an error code is returned. At
present the only error code is -1, signifying that an unexpected type was detected.

S3014 183

CGE API

Usage

Because saveAsRDF() is a member function of the class rdfWriter it is necessary to first create an
rdfWriter object before using its method. For example:

val tempWriter = new rdfWriter; val result = tempWriter.saveAsRDF(thisDF, "Ffile:///mnt/lustre/myFile", false)

Limitations

Because the datatype is specified per column in the schema, it is not possible to write out triples that have non-
uniform object datatypes. Currently, handling object literals of the following types:

DateTimeDuration
Date

Time

DateTime
TypedString

StringlLang or unsigned numerics, including Unsigned Long, Unsigned Int, Unsigned Short,
Unsigned Byte

S3014 184

Logging and Troubleshooting

16 Logging and Troubleshooting

CGE produces a text log, which is a trace of program execution during query or update processing. Users can
view the log with a text editor (such as vi), or typically the Linux less command. The log can be searched using
the grep command for text messages of interest.

INFO messages will be deposited into the log during normal operation. CGE can also generate ERROR and WARN
messages. All of these messages can yield information about activity that takes place during command
execution.

System error message can be present in the log under conditions where CGE exits or improperly shuts down.

When queries or updates are executed, INFO messages with “now starting query #" are written to the log.
For example:

2015-Feb-10 19:34:26.513 CST INFO [][7720] 0x43 parser/parseAndBuildSM.cpp@374 allocQueryGlobals [] [QRY] <OT> now starting query # 1

Many other INFO messages will also be deposited to the log during normal operation. For example, long
processing times can be seen in the log from one INFO message to the next:

2015-Feb-13 14:44:45.500 CST INFO [][9448] Oxb utils/malloc/cqe_malloc.cpp@901 LogRequest [] [QRY [MEM] image O : request by "file: parser/gengine/database.cpp, func:
readFromDisk line: 989" of 69.849 MiB (0x45d9688) was filled. (0x10005200c80)

2015-Feb-13 14:49:31.099 CST INFO [][9448] Oxc parser/gengine/database.cpp@1141 readFromDisk [] [QRY |STRT] time to read in db of size 139.698 GiB (0x22ech28000):
285.679279

When large datasets are used, the INFO message for the total start up time can be long, as shown in the
following example:
2014-Dec-18 14:40:37.428 CST INFO [][25977] Ox5b parser/dbServer.cpp@1259 main [] [QRY |STRT|PERF] Total startup time: 1434.489315 seconds

The following are examples of ERROR messages that CGE can produce when query or update processing has
failed:

1. No such file or directory

2. No space left on device

3. Exiting because malloc of

4. Lookup failure for HURI

5. Invalid graph algorithm name
6. Exiting with status

7. Bad entry

8. Short read

9. Assertion

10. Realloc of
11. Error detected in Dispatcher

It is recommend to search the log for the text: "ERROR" and contact Cray Support if problems are encountered in
query or update processing.

The following are samples of WARN messages that can be produced. WARN messages are subjective in preceding
errors in processing:

S3014 185

Logging and Troubleshooting

huri was not found
directory not specified
not found in IRA

No valid quads in database
Invalid object for quad
Number of warnings found
Unsupported datatype

not in the dictionary

© ® N o g e DdP

IRA huris not allocated

Search the log for WARN messages and contact Cray Support if problems in query or update processing are
suspected.

The following are examples of system error messages that CGE can produce when query or update processing
has failed. Search the log for the last INFO messages and contact Cray Support if any of these follow:

1. DUE TO TIME LIMIT

terminate called without an active exception
srun: error

Segmentation fault

Bus error

free invalid pointer

Out of memory

Unable to terminate gracefully

© ® N o g~ wDN

Floating point exception
. Aborted
. Killed
. Unable to allocate resources

R OR R R
W N R O

. Exited with exit code

=
»

. Requested nodes are busy

=
(3]

. transaction completed with an error state
. LIBDMAPP ERROR
. IRl Resolution Error

B R R
® N O

. rpn not found for
. Trapped with SIGINT

=
©

16.1 CGE Error Messages and Resolution Information

The most common errors that are likely to be encountered while using CGE involve failure to connect to a
database server successfully. There are a variety of different errors that can occur, depending on exactly what

S3014 186

Logging and Troubleshooting

goes wrong. Common error messages that are likely to be encountered along with troubleshooting techniques are
documented in the following table.

Table 20. CGE Error Messages and Troubleshooting Information

Error Message

Description

Resolution

Unable to establish a connection

to the database server at
host:port as it does not appear
to be running

The CLI tried to connect to a
database server running on
the given host and port
combination but was unable
to establish a connection. This
typically means one of two
things:

1. There is no database
server running on that
host and port

2. Firewall rules are
preventing access to that
host and port

Verify that you have passed
the correct host and port to the
CLI

Verify that there is a database
server running on that host
and port

Verify that there are no firewall
rules that are preventing
access to the host and port.
Contact a system
administrator for additional
information.

Unable to authenticate to the
database server at host:port.
You do not have any SSH keys
present in your configured
identity Directory

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was established successfully,
but authentication to the
database server failed
because there are no SSH
keys configured.

Create at least one SSH key and
place it in the appropriate directory.

Unable to authenticate to the
database server at host:port.
Your SSH key(s) from your
configured identity directory
are not in the authorized keys
file of the database or its
owner

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was established successfully
but authentication to the
database server failed
because none of the SSH
keys were in the
authorized_keys file that
the database is using.

This may also be caused by
the CLI selecting the wrong
SSH identity. As described in
the SSH identities section, the
first identity found by
searching several default
locations is used, but this may
not always be the desired
identity.

Review the database logs (if
possible) to see which
authorized_keys file was
in-use:

o If the database server was
launched, then this is
either in the database
directory itself or in the
~/ . cge directory

o If another user launched
the database server,
contact them to find out
which authorized_keys
file is in-use

Add the public key to the
relevant authorized keys
file, or ask the relevant user to
do so.

S3014

187

Logging and Troubleshooting

Error Message

Description

Resolution

Use the —--identity option
to specify the desired identity
directory to use

Host key for host host:port is
not trusted, please run in
interactive mode and trust this
key or manually add the host key
to your known_hosts file in your
configured identity idDirectory

The CLI tried to connect to a
database server running on
the given host and port
combination. A connection
was successfully established
but the database server was
unable to prove its identity to
the CLI because the host key
provided by the database
server was not trusted.

This error is usually only seen
the first time when a
connection to a specific server
instance is established. Once
the key is trusted (see
resolution steps) this error
should no longer be seen for
this host and port
combination.

If CGE is being run in
interactive mode, the system
will prompt to trust the host
key. Enter Yes to do so.

If it is required to use CGE
non-interactively, adding the
-—trust-keys option to
commands will automatically
trust previously unknown host
keys

Timed out attempting to
establish a database connection
(waited N seconds), database
server may be too busy to
service your request currently

The CLI tried to connect to a
database server running on
the given host and port
combination but was unable
to establish a connection
within the timeout interval.
This means that the database
server is currently busy
processing another request
and cannot accept the request
at this time.

Check the database logs to
see what the database is
currently doing

o If the last log message
states: "Trying to read
RPN message from
network. . ." then the
database is ready,
otherwise the database is
busy

If the database is busy, there
are a number of options that
can be used to troubleshoot
the issue:

o Execute the request again
later

o Increase the timeout with
the ——timeout option to
wait for a longer period of
time.

o Disable the timeout by
setting —-timeout Oto
wait indefinitely until the

S3014

188

Logging and Troubleshooting

Error Message

Description

Resolution

database server is ready
to process the next
request

e Inrare cases, the database
may have become hung (if it is
busy and you have not see
any new log messages for
long periods of time then this
is most likely the problem) in
which case you should kill and
restart the database server
and then retry your commands

Server failed to start up

One or more of the CGE job
steps failed to launch because
CGE was not found.

Try relaunching CGE if the system
displays this message. In addition,
it is recommended to ensure that
all compute nodes are correctly
configured. In particular verify the
following:

e The same version of CGE is
installed on all compute nodes
and the login nodes

e All shared file systems are
mounted and mounted in the
same place on all compute
nodes and the login nodes

e The munged process is
running on all compute nodes

If any of the preceding is not true
and if relaunching the CGE CLI
does not correct the problem,
contact Cray Support.

Not enough symmetric heap for

new sorting keys

There is not enough
symmetric heap for new
sorting keys

use the -H option to cge-launch
to set the symmetric heap value to
a larger value. Try doubling what
shows up by default near the top of
the log for a start.

Symmetric heap is a boundary
value on a resource that is
allocated as needed, so using a
larger than necessary value does
not mean that this value will be
allocated. It only means that no
more than this value will be
allocated. It is better to
overestimate by a bit than to
underestimate.

S3014

189

Logging and Troubleshooting

Error Message

Description

Resolution

[PE_64]:inet_listen_socket_setup
sinet_setup_listen_socket: bind

failed port 20219 listen_sock =

5 Address already in use

This may be due to leftover
Ccge-Server processes

Follow the instructions
documented in Terminate
Orphaned cge-server Jobs on
page 191

Error: Timed out waiting for the
server to start running

When a computational loop
during a database build takes
an extremely long time
without producing any
indication of forward progress
(generally some kind of output
in the log), cge-launch may
decide that the start up
sequence has hung and
terminate it with this message.

Change the interval used to detect
a start up hang from its default
setting of 900 seconds to some
longer interval. If you know the
problem is just that a dataset is
very computationally intensive to
build and is prone to such
timeouts, setting this timeout value
to 3600 seconds (an hour) is
almost certain to eliminate any
chance of this failure at the
expense of causing you to take a
very long time to detect an actual
hang in start up. To change this,
use the --
startupTimeout=seconds
option to cge-launch.

HTTP Errors are reported by a
tool or API

A request submitted to the
HTTP Interface provided by
the cge-cli fe command
was not successful. If the
request was submitted via a
tool or API then only minimal
error details may be reported
directly to you. However
please see the resolutions for
ways to find more detailed
error information.

e Submit the same request
using a browser. The browser
window may contain additional
error messages which indicate
the underlying error. Please
review these carefully since
they may indicate one of the
other common errors detailed
in this table.

e Please review the front end
logging as this will have
logged the HTTP error and
associated error details. These
may indicate one of the other
common errors detailed in this
table.

e |If there is no obvious cause or
additional error messages in
the browser/front end logs
then please review the
database logs for error
messages that may indicate
iffwhy the request failed on the
database server.

e Inrare cases, the offending
request may have caused the
database server to crash in

S3014

190

Logging and Troubleshooting

Error Message

Description

Resolution

which case, it will be
necessary to relaunch it before
making further requests

o Ifacrash has occurred
please report this to your
Cray support
representative

inet_listen_socket_setup :inet_
setup_listen_socket : bind
failed port 1371 listen_sock = 5
Address already in use

A previous cge-launch or
HPC/mrun job failed or was
killed, and the inet_listen
socket is likely in the
TIME_WAIT state on one or
more of the compute nodes.

Wait 60-90 seconds for the
inet_listen_socket (port
1371) to clear up from TIME_WAIT
state. If the problem persists, the
likely cause is some other program
has an active socket connection to
port 1371 on one (or more)
compute nodes. That application
must release port 1371 on the
affected node(s) before new cge-
launch or HPC/mrun jobs can be
run on that node(s).

User user does not have
permission to perform operation
operation

An action was requested for
which the requesting user did
not have the appropriate
permissions

e Submit the request as a user
who does have the appropriate
permissions

e Contact the database owner
and ask if you can be granted
the appropriate permissions

16.2 Terminate Orphaned cge-server Jobs

Prerequisites
This procedure requires root privileges.

About this task

Follow the instructions listed in this procedure to track orphaned cge-server jobs down and terminate them.
The examples shown in this procedure can be used for a system with 3 sub-racks.

Procedure

1. Log on to the System Management Workstation (SMW) as root

2. Execute the following to find out if there are stray cge-server processes.

pdsh -w "nidO00[00-47]" "ps -ef|grep "cge-serve[r]"lgrep -v grep | awk "{print \$2}";true"|wc -w

S3014

191

Logging and Troubleshooting

3. Terminate the stray cge-server processes

pdsh -w nidOO0O[00-30,32-46] "ps -ef|grep "cge-serve[r]"|awk "{print \$2}"|xargs kill"
4. Rerun the preceding command to ensure all stray cge-server processes have been terminated.

5. Verify that all the stray cge-server processes have been terminated by executing the following command:

pdsh -w "nidO00[00-47]" "ps -ef|grep "cge-serve[r]"|grep -v grep | awk "{print \$2}";true”|wc -w
0

This output indicates that everything has been cleared.

16.3 Diagnose CGE Python API Issues

Exceptions
The Java JVM will pass exception information back to the python interpreter. Here are examples of common

runtime and programming errors that produce exceptions:

e Starting CGE with a reference to a nonexistent dataset - An exception will occur if the dataset referenced
in the ForExistingDatabase() invocation does not exist.

>>>
>>> my_cge_launcher_builder.forExistingDatabase(""/mnt/lustre/xxx/ripple/mkdb/sp2b/25k™)

Traceback (most recent call last):

File "test.py", line 66, in <module>
my_cge_launcher_builder.forExistingDatabase("'/mnt/lustre/xxx/ripple/mkdb/sp2b/25k™)

File "/usr/lib/python2.7/site-packages/py4j/java_gateway.py', line 1133, in _ call__
answer, self.gateway client, self.target_id, self.name)

File "/usr/lib/python2.7/site-packages/py4j/protocol.py", line 319, in get_return_value
format(target_id, ".", name), value)

py4j .protocol .Py4JJavaError: An error occurred while calling o6.forExistingDatabase.

: java.lang.lllegalArgumentException: Database directory /mnt/lustre/xxx/ripple/mkdb/sp2b/25k must be an existing directory
at com.cray.cge.api.builders.CgeLauncherBuilder.forExistingDatabase(CgeLauncherBuilder.java:65)
at com.cray.cge.api.-builders.CgeLauncherBuilder.forExistingDatabase(CgeLauncherBuilder.java:95)
at sun.reflect.NativeMethodAccessorImpl.invokeO(Native Method)
at sun.reflect.NativeMethodAccessor Impl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl. invoke(DelegatingMethodAccessorimpl.java:43)
at java.lang.reflect.Method. invoke(Method. java:498)
at py4j-reflection.MethodlInvoker. invoke(Methodlnvoker.java:237)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway. invoke(Gateway . java:280)
at py4j .commands.AbstractCommand . invokeMethod(AbstractCommand. java:132)
at py4j.commands.Cal ICommand.execute(Cal ICommand. java:79)
at py4j .GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)

e Running a query against a connection where the cge-server has already exited - The my_conn object is
still valid, but the call to querySummary () generates an exception because the CGE server is not running.

>>> my_conn. isRunning()
False
>>>
>>>
>>> my_query_results = my_conn.querySummary(DEFAULT_QUERY)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/site-packages/py4j/java_gateway.py', line 1133, in _ call__
answer, self.gateway client, self.target_id, self.name)
File "/usr/lib/python2.7/site-packages/py4j/protocol.py", line 319, in get_return_value
format(target_id, ".", name), value)
py4j .protocol .Py4JJavaError: An error occurred while calling 025.querySummary.
: com.hp.hpl.jena.query.QueryExecException: There was an error communicating with the remote server
at com.cray.cge.spargl.engine.CgeQueryEngine.eval (CgeQueryEngine.java:157)
at com.hp.hpl._jena.spargl.engine.QueryEngineBase.evaluateNoMgt(QueryEngineBase. java:142)
at com.hp.hpl.jena.spargl.engine.QueryEngineBase.createPlan(QueryEngineBase.java:110)
at com.hp.hpl.jena.spargl.engine.QueryEngineBase.getPlan(QueryEngineBase. java:88)
at com.cray.cge.api.builders.CgeConnectionlmpl.querySummary(CgeConnectionlmpl.java:628)
at sun.reflect.NativeMethodAccessorImpl.invokeO(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessoriImpl.java:62)
at sun.reflect.DelegatingMethodAccessorimpl.invoke(DelegatingMethodAccessorimpl.java:43)
at java.lang.reflect._Method. invoke(Method. java:498)
at py4j.reflection.Methodlnvoker. invoke(MethodlInvoker.java:237)
at py4j.reflection.ReflectionEngine. invoke(ReflectionEngine.java:357)

S3014 192

Logging and Troubleshooting

at py4j .Gateway. invoke(Gateway . java:280)

at py4j -commands.AbstractCommand. invokeMethod (AbstractCommand. java:132)

at py4j.commands.CallCommand.execute(CallCommand. java:79)

at py4j -GatewayConnection.run(GatewayConnection.java:214)

at java.lang.Thread.run(Thread.java:745)
Caused by: com.cray.cge.communications.messaging.exceptions.CommunicationsSecurityException: \
Unable to establish a connection to the database server at localhost:23239 as it does not appear to be running

at com.cray.cge.communications.client.ssh.SshClient.connect(SshClient.java:484)

at com.cray.cge.communications.client.AbstractClient.connect(AbstractClient.java:61)

at com.cray.cge.spargl.engine.CgeQueryEngine.eval (CgeQueryEngine.java:102)

... 15 more Caused by: com.jcraft.jsch.JSchException: java.net.ConnectException: Connection refused

at com.jcraft. jsch.Util.createSocket(Util.java:394)

at com.jcraft.jsch.Session.connect(Session.java:215)

at com.cray.cge.communications.client.ssh.SshClient.connect(SshClient.java:439)

... 17 more Caused by: java.net.ConnectException: Connection refused

at java.net.PlainSocketlImpl.socketConnect(Native Method)

at java.net.AbstractPlainSocketlImpl.doConnect(AbstractPlainSocketImpl.java:350)

at java.net.AbstractPlainSocketlImpl.connectToAddress(AbstractPlainSocketimpl.java:206)

at java.net.AbstractPlainSocketlImpl.connect(AbstractPlainSocketImpl.java:188)

at java.net.SocksSocketlImpl.connect(SocksSocketlImpl.java:392)

at java.net.Socket.connect(Socket.java:589)

at java.net.Socket.connect(Socket.java:538)

at java.net.Socket.<init>(Socket.java:434)

at java.net.Socket.<init>(Socket.java:211)

at com.jcraft. jsch.Util$l.run(Util.java:362)

e Invoking withJobOptions() more than once - This shows how the withJobOptions() function can
only be invoked once for a given instance of the CgeLauncherBui lder.

>>>
>>> my_cge_launcher_builder.withJobOptions(my_cge_joboptions)
>>>
>>> my_cge_launcher_builder.withJobOptions(my_cge_joboptions)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/site-packages/py4j/java_gateway.py', line 1133, in _ call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/lib/python2.7/site-packages/py4j/protocol _py', line 319, in get_return_value
format(target_id, ".", name), value)
py4j -protocol .Py4JJavaError: An error occurred while calling o7.withJobOptions.
: java.lang.lllegalStateException: Cannot set job options as they have already been set
at com.cray.cge.api.builders.CgeLauncherBuilder.withJobOptions(CgeLauncherBuilder.java:144)
at sun.reflect.NativeMethodAccessoriImpl.invokeO(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorlimpl.java:62)
at sun.reflect.DelegatingMethodAccessoriImpl.invoke(DelegatingMethodAccessorimpl.java:43)
at java.lang.reflect.Method. invoke(Method. java:498)
at py4j.reflection.MethodInvoker . invoke(Methodlnvoker.java:237)
at py4j.reflection.ReflectionEngine. invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway . java:280)
at py4j .commands.AbstractCommand. invokeMethod(AbstractCommand. java:132)
at py4j.commands.Cal ICommand.execute(Cal ICommand. java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)

Errors

e Attempt to access gateway that has been shutdown - This error shows a legitimate shutdown of the JVM,
but then an attempt to utilize the previously active connection.

>>>
>>> gateway .shutdown()
>>>
>>> my_conn.getPort()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "py4j/java_gateway.py', line 1131, in _ call
answer = self._gateway client.send_command(command)
File "py4j/java_gateway.py', line 881, in send_command
connection = self._get_connection()
File "py4j/java_gateway.py', line 825, in _get connection
raise Py4JNetworkError(‘'Gateway is not connected.')
py4j .protocol .Py4JNetworkError: Gateway is not connected.
>>>
>>>

S3014 193

Logging and Troubleshooting

e Shutting down the gateway before stopping the connection- This error shows a legitimate shutdown of
the JVM, then an attempt to stop the CGE server.

>>>
>>>
>>>
>>>

gateway .shutdown()

my_conn.stop()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "py4j/java_gateway.py', line 1131, in _ call__
answer = self._gateway client.send_command(command)

File "py4j/java_gateway.py', line 881, in send command
connection = self._get_connection()

File "py4j/java_gateway.py', line 825, in _get connection
raise Py4JNetworkError(*'Gateway is not connected.'™)

py4j -protocol .Py4JNetworkError: Gateway is not connected.

e Not enough CPUs available to launch CGE - After starting the connection and waiting a suitable start up

time, the call to isRunning() returns False, and the call for status() returns Fai led and NotRunning.
>>> my_conn.start()

>>>

>>> my_conn.isRunning()

False

>>>

>>> my_CgeStatus = my conn.status()

>>> my_CgeStatus.toString()

u“Process: Failed - CGE: NotRunning~

The error can be seen in the cge_runtime.log

Tue Sep 20 2016 16:28:38.336870 CDT[][mrun]:ERROR:Not enough CPUs for exclusive access. Available: 1 Needed: 2

e Exiting python without explicitly running gateway . shutdown() - This leaves the Java JVM process as
a still-active orphan process.

[use
Pl
6446

rid@nido0030 ~]$ top -u $USER
D USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 userid 20 0 35.778g 36304 14640 S 0.0 0.0 0:00.42 java

in which case the user should kill the process explicitly

[use

rid@nido0o030~]$ kill -964461

S3014

194

	Contents
	1 About the Cray® Graph Engine User Guide
	2 About the Cray Graph Engine (CGE)
	2.1 CGE Features
	2.2 Concepts of Operation
	2.2.1 What the Cray Graph Engine (CGE) is Not: a Relational Database
	2.2.2 Differences Between CGE and Relational Database

	2.3 About SPARQL
	2.4 System Architecture Overview
	2.5 RDF and SPARQL Resources

	3 The CGE Database Build Process
	3.1 About Rules Files
	3.2 About Inference Rules Files
	3.3 Sample RDFS Rules File
	3.4 Limitations to Jena Rules Syntax

	4 Launch the CGE Server Using the cge-launch Command
	5 Mechanisms to Interact with the Cray Graph Engine (CGE) Database
	5.1 CGE CLI
	5.1.1 Cray Graph Engine (CGE) Command Output
	5.1.2 CGE CLI Common Options
	5.1.3 SSH Identities
	5.1.4 CGE Hadoop HDFS Configuration
	5.1.5 Cray Graph Engine (CGE) Properties File
	5.1.6 Create Checkpoints Using the CGE checkpoint Command
	5.1.7 Compile SPARQL Commands Using the CGE compile Command
	5.1.8 Check the Database State Using the CGE echo Command
	5.1.9 Launch the CGE Web Server Using the fe Command
	5.1.10 Search Configuration File Locations Using the get-configuration Command
	5.1.11 Display keyword ID and User Friendly Keyword Name Mappings Using the keyword-lookup Command
	5.1.12 Retrieve Default Server Logging Information Using the log-info Command
	5.1.13 Lookup Mappings Between Log level Values and User Friendly Log Level Names Using the log-lookup Command
	5.1.14 Change the Default Logging Configuration of the CGE Server Using the log-reconfigure Command
	5.1.15 Retrieve the Default NVP Configurations Using the CGE nvp-info Command
	5.1.16 Change Default NVP Configurations Using the CGE nvp-reconfigure Command
	5.1.17 Display Server Output Directory Information Using the output-info Command
	5.1.18 Change the Server's Output Directory Using the CGE output-reconfigure Command
	5.1.19 Execute Queries Using the CGE query Command
	5.1.20 Cray Graph Engine (CGE) Optimizer Configuration
	5.1.21 Shutdown the CGE Server Using the shutdown Command
	5.1.22 Execute Sparql Queries and Updates Using the sparql Command
	5.1.23 Execute Updates on a Database Using the CGE update Command
	5.1.24 Create or Inspect a Java Keystore File Using the CGE generate keystore Command
	5.1.25 Generate a Shiro Configuration Template Using the generate shiro Command
	5.1.26 Create a Properties File Using the CGE generate properties Command

	5.2 CGE GUI
	5.2.1 Launch the CGE Web Server
	5.2.2 Execute SPARQL Queries Using the CGE UI
	5.2.2.1 Get Query Metadata

	5.2.3 Execute SPARQL Updates Using the CGE Update Interface
	5.2.4 Create a Checkpoint Using the CGE UI
	5.2.5 Cray Graph Engine (CGE) Advanced Options
	5.2.6 View Server Configurations Using the CGE UI
	5.2.7 Edit Server Configurations Using the CGE UI
	5.2.8 Control Options

	5.3 SPARQL Endpoints
	5.4 Create and Use a Database

	6 Query Cancellation
	6.1 Cancel a Query Using the CGE Web UI
	6.2 Cancel a Request Running Under a CGE CLI Query

	7 CGE Security
	7.1 Cray Graph Engine (CGE) Security Mechanisms
	7.1.1 Create a CGE Specific RSA/DSA Host Key

	7.2 Setup CGE Security
	7.2.1 Configure Server Side Identification and Authentication
	7.2.2 Configure the ACL File User Permissions
	7.2.3 Configure Web UI Identification, Authentication and Encryption
	7.2.4 Configure LDAP for CGE
	7.2.5 Configure Private Authentication for CGE
	7.2.6 Configure SSL for CGE
	7.2.7 Launch a Secured Web UI

	7.3 Endpoint Security
	7.4 CGE User Authentication
	7.5 Grant Basic Access to Owned Query Engines
	7.5.1 Eliminate Interactive Host Key Verification

	7.6 Grant Other Users Access to Their CGE Query Engine
	7.6.1 Grant Other Users Access to One of the Owned Data Sets
	7.6.2 Grant Other Users Access to All of the Owned Data Sets

	8 Built-in Graph Functions
	8.1 Combine Graph Algorithms with SPARQL
	8.2 Invocation of a Graph Function
	8.2.1 The CONSTRUCT Clause
	8.2.2 The INVOKE Clause
	8.2.3 The PRODUCING Clause

	8.3 Inputs to the Graph Function
	8.4 Sequence of Operators
	8.5 Bad Rank
	8.6 Betweenness Centrality
	8.7 Community Detection Label Propagation (LP)
	8.8 Community Detection Parallel Louvain Method (PLM)
	8.9 Page Rank
	8.10 S-T (Source – Target) Connectivity
	8.11 S-T Set Connectivity
	8.12 Triangle Counting
	8.13 Vertex Triangle Counting
	8.14 Triangle Finding

	9 CGE Extension Functions
	9.1 Cray Graph Engine (CGE) Interval Analytics Functions
	9.2 Cray Graph Engine (CGE) Haversine Functions
	9.3 Cray Graph Engine (CGE) Square Root Function
	9.4 Custom Aggregate Functions

	10 Cray Graph Engine (CGE) Property Path Support
	11 Cray Graph Engine (CGE) Quick Reference
	12 Get Started with Using CGE
	13 Support for Simple GraphML Files
	14 Lustre Striping on CGE
	15 CGE API
	15.1 CGE API Versioning
	15.2 Prepare the Environment for Using CGE Java API on Urika-XC
	15.3 CGE Java API
	15.3.1 Build CGE Java Applications Using Maven
	15.3.2 Build CGE Applications Using JDK
	15.3.3 Build CGE Applications Using Pre-built Main Entry Points
	15.3.4 Use Case: A Comprehensive Java Program
	15.3.5 Limitations of CGE Java API

	15.4 CGE Python API
	15.4.1 Use Case: A Comprehensive Python Program
	15.4.2 Run the CGE Python API as a Python Application
	15.4.3 Run a Python API from the Python Interpreter

	15.5 CGE Spark API
	15.5.1 Convert TSV Files to Spark Datasets
	15.5.2 Scheme Determination
	15.5.3 Role of the Spark Schema in TSV Translation
	15.5.4 Example of Spark Scala to Spark Dataset Conversion
	15.5.5 Errors and Exceptions Encountered while Using the CGE Spark API
	15.5.6 Run CGE from Spark
	15.5.7 CGE Spark DataFrame to RDF Triples Data Converter

	16 Logging and Troubleshooting
	16.1 CGE Error Messages and Resolution Information
	16.2 Terminate Orphaned cge-server Jobs
	16.3 Diagnose CGE Python API Issues

