
Cray® Graph Engine User Guide
(S-3010-1000)

Contents
About the Cray® Graph Engine User Guide..5

About the Cray Graph Engine (CGE)..6

Cray Graph Engine (CGE) Features...6

Concepts of Operation...6

What the Cray Graph Engine (CGE) is Not: a Relational Database...6

What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF..........................7

About SPARQL ...9

System Architecture Overview..9

Major Differences Between Urika-GD and the Cray Graph Engine (CGE)..10

RDF and SPARQL Resources...10

Cray Graph Engine (CGE) Quick Reference...11

Use the Cray Graph Engine (CGE) for a Hello World Example...14

Building a Database ..17

About Rules Files ...19

Create a Set of Inferencing Rules ..19

Sample RDFS Rules File ..21

Limitations to Jena Rules Syntax ...23

Mechanisms to Interact with the Cray Graph Engine (CGE) Database...24

Cray Graph Engine (CGE) Command Line Interface..24

Cray Graph Engine (CGE) Command Output...25

Cray Graph Engine (CGE) CLI Common Options...25

Cray Graph Engine (CGE) Properties File..28

The checkpoint Command..30

The compile Command...30

The echo Command...32

The fe Command...32

The keyword-lookup Command...33

The log-info Command..33

The log-lookup Command..34

The log-reconfigure Command...34

The nvp-info Command..35

The nvp-reconfigure Command...35

The output-info Command ...35

The output-reconfigure Command ..36

Contents

 2

The query Command...36

The shutdown Command..39

The sparql Command...39

The update Command...40

Cray Graph Engine (CGE) Graphical User Interface...41

Access the Cray Graph Engine (CGE) Graphical User Interface ...41

Execute SPARQL Queries...43

Execute SPARQL Updates..44

Create a Checkpoint..45

Cray Graph Engine (CGE) Advanced Options ...46

View Server Configurations...47

Edit Server Configurations..48

SPARQL Endpoints...49

Launch the Web Server ..51

Create and Use a Database..51

Built-in Graph Functions..53

Combining Graph Algorithms with SPARQL ...53

Invocation of a Graph Function ..54

Inputs to the Graph Function ..55

Sequence of Operators ..56

Betweenness Centrality...57

S-T Set Connectivity..59

S-T (Source – Target) Connectivity...60

Label Propagation Argument Descriptions..61

Bad Rank Argument Descriptions...62

Cray Graph Engine (CGE) Security Mechanisms..64

Grant Basic Access to Owned Query Engines ...64

Eliminating the Interactive Host Key Verification...66

Create a CGE Specific RSA/DSA Host Key..67

Grant Other Users Access to Owned Query Engine ..67

Grant Other Users Access to One of the Owned Data Sets ..69

Grant Other Users Access to All of the Owned Data Sets ...69

Cray Graph Engine (CGE) Extension Functions...70

Cray Graph Engine (CGE) Interval Analytics Functions..70

Cray Graph Engine (CGE) Haversine Functions...74

Cray Graph Engine (CGE) Square Root Function...74

Cray Graph Engine (CGE) Property Path Support..76

Logging and Troubleshooting..79

Contents

 3

Troubleshooting Common Cray Graph Engine (CGE) Issues...81

Contents

 4

About the Cray® Graph Engine User Guide
The Cray® Graph Engine User Guide contains information about using the Cray Graph Engine (CGE), its
Command Line Interface (CLI) and Graphical User Interface (GUI) to create and use RDF databases.

NOTE: This is a draft document.

Release Information
This publication version is a revision of the version that was released on July 31, 2015 and addresses the
software release 1.0UP00 of the Urika-GX system. Major changes include:

● Additional troubleshooting information

● Addition of a "Hello World" example

● Minor corrections

● Additional quick reference information

Typographic Conventions
Monospace Monospaced text indicates program code, reserved words, library functions,

command-line prompts, screen output, file names, path names, and other software
constructs.

Monospaced Bold Bold monospaced text indicates commands that must be entered on a command
line or in response to an interactive prompt.

Oblique or Italics Oblique or italicized text indicates user-supplied values in commands or
sytax definitions.

Proportional Bold Proportional bold text indicates a graphical user interface window or element.

\ (backslash) A backslash at the end of a command line is the Linux® shell line continuation
character; the shell parses lines joined by a backslash as though they were a single
line. Do not type anything after the backslash or the continuation feature will not
work correctly.

Alt-Ctrl-f Monospaced hyphenated text typically indicates a keyboard combination.

Scope and Audience
This publication does not include in-depth information about RDF and SPARQL. The intended audience of this
publication is users and system administrators. It is assumed that all the commands documented in this guide are
executed via the bash shell.

About the Cray® Graph Engine User Guide

 5

About the Cray Graph Engine (CGE)
CGE is a highly optimized software application designed by high-speed processing of interconnected data. It
features an advanced platform for searching very large, graph-oriented databases and querying for complex
relationships between data items in the database. It provides the tools required for capturing, organizing and
analyzing large sets of interconnected data. CGE enables performing real-time analytics on the largest and most
complex graph problems, and features highly optimized support for inference, deep graph analysis, and pattern-
based queries.

Cray Graph Engine (CGE) Features
CGE features include:

● Optimized query engine for high-speed parallel data analysis.

● Support for submitting queries, updates and creating checkpoints.

● A rich Command Line Interface (CLI).

● The CGE graphical user interface, which acts as a SPARQL 1.1 end point. This interface enables editing
SPARQL queries or SPARUL updates and submitting them to the CGE database. It also accepts a set of
commands that allow users to perform various tasks, such as creating a checkpoint on a database, setting
Name Value Pairs (NVPs) to control certain aspects of data preprocessing, and query processing etc.

● SPARQL query language extension via the INVOKE and PRODUCING operators, which allow a classical graph
algorithm to be passed an RDF graph and for the algorithm’s results to be returned as data that is compatible
with SPARQL 1.1. This enables graph algorithm library calls to be nested within a SPARQL query.

● Multi-user support.

● Compatibility with POSIX-compliant file systems.

● Database preprocessing to apply inference rules to the data, as well as to index the data.

Concepts of Operation
CGE's operational model is comprised of the follow major components:

● The graph oriented database

● Resource Description Framework (RDF)

What the Cray Graph Engine (CGE) is Not: a Relational Database
Most modern database systems use a relational representation of their data. This means that data items are
stored in tables, with each row of the table holding data items that are in some way related to each other. For
example, all of the data items in the same row might be associated with the same person, as shown in the
following table:

About the Cray Graph Engine (CGE)

 6

Employee ID Given Name Family Name Date Hired Job Position

29650 Georgia Smith 11/17/2001 Eng5

In practice, a relational row like the one above is contained in a table of many similar rows:

Employee ID Given Name Family Name Date Hired Job position

29650 Georgia Smith 11/17/2001 Eng5

10926 Alex Jones 2/5/2008 Mktng3

72219 Paul Anderson 8/21/2005 Admin2

....

One of these fields is called the "key" and is used as the basis for looking up data from any of the other fields. In
this example, “Employee ID” would probably be used as the key. The column labels, “Employee ID”, “Given name”
etc. are implicit. They are not stored with the table, but with a database schema that is associated with the table.
The schema defines each field in the relation.

The kind of information that may be associated with a scheme is shown below:

Field Name Datatype

0 Employee ID Integer, min 0, max 99999

1 Given name Character, String length < 30

2 Family name Character, String length < 30

3 Date hired Integer 1-12, Integer 1-31, Integer > 1985

4 Job position Character, String length < 10

NOTE: The database schema shown above is used as an example and is entirely conceptual. There are
typically many tables in a large relational database, each with its own defining scheme.

What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF
RDF is a data representation standard that allows data from different schemas to be merged. It accomplishes this
by extending the linking structure of the Web to use Uniform Resource Identifiers (URIs) in order to create triples
to name a subject, an object, and the relationship or predicate between the two.

Resource Description Framework Triples
An RDF triple contains three components:

● the subject, which is an RDF URI reference or a blank node

● the predicate, which is an RDF URI reference

● the object, which is an RDF URI reference, a literal or a blank node

Hence, data items in RDF are always represented as a trio of character strings, referred to as the “subject”,
“predicate” and “object” fields. Because they were originally intended to be unique across the Internet,
components of RDF triples use the generic URI / IRI syntax (RFCs 3986 and 3987).

About the Cray Graph Engine (CGE)

 7

A triple holding the same kind of information shown in the previous relational example might look like the
following:

<http://cray.com/example/employeeID#29650> (subject)
<http://cray.com/example/hasGivenName> (predicate)
“Georgia”^^<http://www.w3.org/2001/XMLSchema#string> (object)

NOTE: The above three statements should be entered on a single line and have been shown in separate
lines in this document due to lack of space. Furthermore, the text: (subject), (predicate) and (object) in the
above lines are shown in this document for clarity and are not part of an actual triple.

Note that the given name data item “Georgia” is expressed as an RDF literal: the value coupled with a URL-like
string identifying its data type. RDF triples are intended to be self-identifying in two ways, both of which can be
seen in this example:

1. The literal’s data type is attached to it.

2. The predicate identifies the class of data that the object belongs to, information that in the case of relational
data, is implicit in the schema and the data item’s position in the tuple. For RDF triples, there is no schema.
That type of identifying information is explicit, in the predicate of the triple.

As is illustrated below, any subject-predicate-object triple can also be viewed as a source vertex-edge-sink vertex
component of a directed graph:

<http://...ID#29650> <http://.../hasGivenName> “Georgia”^^<http://
www....#string>

NOTE: The statements shown above should be entered on a single line and have been shown on
separate lines due to lack of space.

Figure 1. RDF Triple Viewed as a Graph Component

CGE is designed to store and analyze datasets when the patterns of relationships and interconnections between
data items are at least as important as the data items themselves. The SPARQL query language is convenient in
the sense that it provides most of the same features as SQL for filtering, grouping, and updating database
information. Unlike SQL, however, SPARQL also provides a powerful mechanism for specifying (in a query) a
complex interconnection pattern to search for in the database. For indefinite-size patterns and aggregate
information that can’t be expressed in SPARQL,CGE supports the capability of nesting a call to a classical graph
analysis function within a SPARQL query.

Each subjectpredicateobject relationship is an RDF triple. In CGE, each element in the internal representation of
the database includes a graph field, which specifies the subset of the graph that the triple belongs to. If the graph
field is left blank, the triple becomes part of the default graph. Typically this default, or unnamed, graph is the main
data subset.

About the Cray Graph Engine (CGE)

 8

About SPARQL
SPARQL is an RDF query language developed for semantic database queries. SPARQL queries replace the table
and schema format of relational SQL queries with RDF triples and ontologies, which define predicates and
relationships.

Some SPARQL features are listed below:

● The ability to explore data by querying for unknown relationships.

● Implicit JOIN syntax, which reduces the overhead for processing a complex query with multiple JOINs to the
equivalent of traversing a graph.

● The GRAPH keyword allows data to be queried along with its source, returning both the data that matches the
query and the name of the graph that contains the data.

● Unlike the proprietary query languages used in many graph database systems, SPARQL is a standardized,
non-proprietary query language.

● Tools and APIs for interacting with RDF/SPARQL systems are widely and freely available for all major
programming languages and platforms

This release of the CGE software supports a subset of SPARQL 1.1. The following SPARQL 1.1 features are not
implemented:

● The SERVICE keyword, for querying remote data.

● The MD5, SHA1, SHA256, SHA384, and SHA512 encryption functions.

● The UCASE and LCASE functions, which return a string literal whose lexical form is the upper or lower case of
the lexical form of the argument, are implemented for ASCII characters only.

● The property paths feature, which extends the predicate portion of the query, allowing more extensive search
patterns without the overhead of additional OPTIONAL statements.

NOTE: Although CGE does not natively support the SPARQL 1.1 property paths feature, it does
support certain types of property paths. CGE’s property path support is currently experimental and
should be used with care. Contact Cray Support for additional information.

To learn more about SPARQL, visit http://jena.apache.org/tutorials/sparql.html

System Architecture Overview
CGE is designed to provide performance and scalability on large, complex, interconnected databases. Its query
engine is based on a data parallelism approach, in which the software strives to keep every processor busy on a
roughly equal fraction of the data. The query engine is serviced by a user interface and a command line interface.
See Cray Graph Engine (CGE) Graphical User Interface and Cray Graph Engine (CGE) Command Line Interface
for more information.

CGE uses the open-source Jena ARQ SPARQL parser to parse each query or update, and its parser auxiliary
software translates it into a lower-level representation that can drive the query engine. Query results are written to
the file system in a tab-separated-values (.tsv) format. For convenience, a pointer to the results file is returned to
the user when the query completes.

Extensive logging information is also written as the query or update progresses, as an aid to troubleshooting.

About the Cray Graph Engine (CGE)

 9

http://jena.apache.org/tutorials/sparql.html

Major Differences Between Urika-GD and the Cray Graph Engine (CGE)
The functionality of CGE is similar to Cray Urika-GD, with a few noticeable differences that are listed below:

● Unlike Urika-GD, CGE currently does not support a “replay” capability for updates. It is required to examine
the results and logs to resolve issues encountered and repeat any updates lost between user-initiated
checkpoints while using CGE. The CGE application will be terminated by an error that occurs repeatedly.

● In Urika-GD, INSERT operations may introduce duplicates in the database and need to be eliminated by
check-pointing the database. CGE does not allow duplicates to be inserted into the database and strips them
out, which conforms to the SPARQL specification.

● CGE's database creation procedure is different from that of Urika-GD. Urika-GD had a multistep procedure for
database creation which included importing data files, building the database and finally, loading the database.
CGE enables creating and building a database in a single step via the cge-launch command. For more
information on creating a database using CGE, see Create and Use a Database.

RDF and SPARQL Resources
Cray recommends the following resources for learning more about RDF and SPARQL:

RDF Resources
● RDF primer at http://www.w3.org/TR/rdf-primer

SPARQL Resources
● "SPARQL by Example”, available at http://www.cambridgesemantics.com, is an excellent introductory tutorial

written by Lee Feigenbaum of Cambridge Semantics and Eric Prud’hommeaux of W3C

● SPARQL Tutorial at http://jena.apache.org

● "Learning SPARQL", available at http://www.learningsparql.com by Bob DuCharme

● SPARQLer Query Validator at http://sparql.org/query-validator.html.

● SPARQL 1.1 query language tutorial at http://www.w3.org/TR/sparql11-query

Semantic Web Resources
"Semantic Web for the Working Ontologist", available at http://www.workingontologist.org by Dean Alleman and
James Hendler.

About the Cray Graph Engine (CGE)

 10

http://www.w3.org/TR/rdf-primer/
http://www.cambridgesemantics.com/
http://jena.apache.org/
http://www.learningsparql.com
http://sparql.org/query-validator.html
http://www.w3.org/TR/sparql11-query/
http://www.workingontologist.org

Cray Graph Engine (CGE) Quick Reference
The order in which CGE operations should be performed is:

Step 1: Set up SSH keys
If the following command:

$ ssh localhost

allows re-logging into the login node without a password, then the SSH keys are set up sufficiently for using CGE.
On the other hand, if the previous command fails and there are existing SSH keys that do not use pass-phrases
or have the ssh-agent defined, then try the following:

$ cat ~/.ssh/id_*.pub >> ~/.ssh/authorized_keys

At this point, if it is possible to run the aforementioned test and to re-log in to the login node without using a
password, pass-phrase, or ssh-agent, then this step can be considered to be complete. If, on the other hand, the
aforementioned test fails, there are no SSH keys defined yet, the following commands can be used to set them
up:

NOTE: Ensure that there are no existing SSH keys because this will overwrite any existing keys. Also, do
not specify a pass-phrase when running ssh-keygen

$ mkdir -p ~/.ssh
$ chmod 700 ~/.ssh
$ ssh-keygen
$ chmod 600 ~/.ssh/id_*
$
$ chmod 600 ~/.ssh/authorized_keys

If the existing SSH key(s) use pass-phrase(s) or the ssh-agent, or if a more complex SSH key configuration is
required, see Cray Graph Engine (CGE) Security Mechanisms on page 64. This section also contains
information about fine-tuning access to CGE instances.

Step 2: Start the CGE Server
The cge-launch command launches the CGE query engine and enables creating and building a database in a
single step.

The following is an example of using the cge-launch command:

$ cge-launch -o pathtoResultsDir -d path -l logfile

In the preceding example:

● -o - Specifies the path to a directory where you want the result files produced by queries to be placed.

NOTE: This path MUST be a directory.

Cray Graph Engine (CGE) Quick Reference

 11

● -d - Specifies the path to the directory containing the data set to be loaded into the server. This directory
must contain all input data files for the data set.

NOTE: This directory MUST contain either or both of the following if the data set is being built for the
first time with CGE:

○ dataset.nt - This file contains triples and must be named dataset.nt

○ dataset.nq - This file contains quads and must be named dataset.nq

● -l - Specifies a log file to capture the command output from the run. This is distinct from any explicit logging
performed by the database server. If the database server is logging to stderr, this log file will capture that
information as well. There are two special argument values for this: ':1' and ':2’, which refer to stdout and
stderr, respectively, so that the log can be directed to either of those.

NOTE: If the -l option is specified, the cge-launch command runs silently, producing no output to
the terminal stdout/stderr.

For more information, see The cge-launch Command and Building a Database on page 17.

Step 3: Execute CGE CLI Commands (Optional)
CGE CLI commands can be executed after the CGE query engine has been launched. Following is an example of
using the CGE nvp-info CLI command:

$ cge-cli nvp-info

CGE CLI features a number of commands, which are documented in the Cray Graph Engine (CGE) Command
Line Interface on page 24 section.

Step 3: Start up the CGE Front End Server to Connect with the CGE Server (Optional)
The CGE graphical user interface and SPARQL endpoints can be accessed once the database has been
launched. This can be accomplished by launching the web server that provides the user interface on a login node
of the system where CGE is running.

$ cge-cli --ping fe

The --ping option in the preceding example is used to verify that the database can be connected to immediately
upon launch and that any failure is seen immediately. Not doing so may delay and hide failures. If the ping
operation does not succeed, and it is certain that the user executing this command is the only user running CGE,
and that everything else is set up correctly, the user should go back to the first step and make sure that the SSH
keys are set up right.

NOTE: The system may prompt to trust the host key when the fe command is run for the first time.

The default URL to access the UI is http://<hostname>:3756/dataset, where hostname is used as an example for
the web server's name. For more information, see The fe Command on page 32.

Alternatively, the following command can be used to have the web server continue running in the background with
its logs redirected, even if disconnected from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

Step 4: Access and Use the CGE Front End (Optional)
For more information, see Access the Cray Graph Engine (CGE) Graphical User Interface on page 41.

Cray Graph Engine (CGE) Quick Reference

 12

NOTE: The system may prompt to trust the host key when the fe command is run for the first time.

Shutdown the CGE Server
● Shut down the CGE server using the shutdown command, as shown in the following example:

$ cge-cli shutdown

For more information, see The shutdown Command on page 39.

● Shut down the CGE front end if it was started.

Cray Graph Engine (CGE) Quick Reference

 13

Use the Cray Graph Engine (CGE) for a Hello World
Example
Prerequisites
Ensure that the CGE application is running.

About this task
In this example, a tiny RDF triples database and query are created in such a way that it creates a sort of "Hello
World" output.

Procedure

1. Create a .nt file. This is the original, readable representation of the database

<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "World" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Home Planet" .
<http://cray.com/example/spaceObject> <http://cray.com/example/hasName> "Earth" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hello" .
<http://cray.com/example/greeting> <http://cray.com/example/text> "Hi" .

2. Store the .nt file in the directory that has been selected or created for it.

NOTE: This directory must be named “dataset.nt” if it contains triples or “dataset.nq” if it
contains quads.

3. Select or create another directory into which the query engine should write the results and then launch the
CGE server in a terminal window.
$ cge-launch -I 1 -N 1 -d /dirContainingExample/example -o /dirContainingExampleOutput -1 :2

For more information about the cge-launch command, and its parameters, see the cge-launch man page
or The cge-launch Command.

The server will output a few pages of log messages, as it starts up and converts the database to its internal
representation. When it finishes, the system will display a message similar to the following:

$ Serving queries on nid00057 16702

4. In another terminal window, launch the CGE front end:

$ cge-cli fe

When the CGE front end has been launched, a message similar to the following will be returned:

249 [main] INFO com.cray.cge.cli.commands.sparql.ServerCommand - CGE SPARQL Protocol Server has started and is
ready to accept HTTP requests on localhost:3756

NOTE: The CGE SPARQL protocol server listens at port 3756, which is the default port ID.

Now the browser can be started.

Use the Cray Graph Engine (CGE) for a Hello World Example

 14

5. Point the browser at the system the query engine is running on via (in the default case) port 3756. For
example, if the query engine is running on a system named my-machine, point the browser at: http://my-
machine:3756/dataset/. This will connect you to the CGE front end, and windows for editing queries or
updates.

Figure 2. CGE Front End

6. Execute a query against the dataset created by typing in the query and selecting the Run Query button.

Figure 3. CGE Hello World Query Example

Use the Cray Graph Engine (CGE) for a Hello World Example

 15

After the query finishes executing, the output file containing the query's results will be stored in the output
directory that was specified in the cge-launch command. This can be verified by listing the contents of that
directory and reviewing the contents of the output file, as shown in the following example:

$ cd /dirContainingExampleOutput
$ ls
queryResults.34818.2015-10-05T19.33.53Z000.tsv
$ cat queryResults.34818.2015-10-05T19.33.53Z000.tsv
?greeting ?object
“Hello” “Home Planet”
“Hi” “Home Planet”
“Hello” “World”
“Hi” “World”
“Hello” “Earth”
“Hi” “Earth”

Since the Excel application can read .tsv files, results can also be viewed in Excel, as shown in the following
figure:

Viewing CGE Output in Excel

Use the Cray Graph Engine (CGE) for a Hello World Example

 16

Building a Database
The Cray Graph Engine (CGE) is launched using the cge-launch command. When the CGE application is
launched, a database directory is specified using the -d option of the cge-launch command. Initially, this
directory contains RDF data in N-triples or N-quads format. When the application is first launched on a new
database directory, the database is compiled and stored in an internal format in the same directory. Subsequent
launches of the application using the cge-launch command with the same database directory will use the
compiled database. The update command can then be used to add to or update an existing database. For more
information about using the cge-launch and update commands, see Cray Graph Engine (CGE) Command
Line Interface and the cge-launch and update man pages.

Converting Data to RDF Triples
CGE reads RDF data in N-triples or N-quads format. There are many third party tools that may be used to convert
data into RDF. D2R is often used to extract data from an RDBMS into RDF format. The TopBraid Composer by
TopQuadrant™ can also be used to convert Excel, TSV, UML, or XML data. Conversion of data to RDF is beyond
the scope of this publication.

Building the Internal Representation
Once the data has been translated into RDF, it is required to place the data in a directory where CGE can build its
compiled database files. If the RDF is contained in a single file, the simplest method is to rename this file to
dataset.nt or dataset.nq. A dataset.nt has NTriples format, whereas a dataset.nq file has NQuads
format. On the other hand, if the RDF is found in more than one file, a file named graph.info will need to be
created. This file contains a list of RDF files, one file per line. Each file name in graph.info may optionally be
followed by a graph name. If a graph name is specified, the graph name is applied to any triples found in the
corresponding RDF file.

Following is a sample of a dataset.nt file:

<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Department14.University0.edu/GraduateCourse17> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#TeachingAssistant> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#teachingAssistantOf>
<http://www.Department14.University0.edu/Course6> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Department14.University0.edu/GraduateCourse18> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#GraduateStudent> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#name>
"GraduateStudent87" .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#emailAddress>
"GraduateStudent87@Department14.University0.edu" .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFr
om> <http://www.University843.edu <http://www.university843.edu/>> .
<http://www.Department14.University0.edu/GraduateStudent87>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor>
<http://www.Department14.University0.edu/AssistantProfessor6> .

Building a Database

 17

http://d2rq.org/d2rq-language
http://www.topquadrant.com
http://www.topquadrant.com

IMPORTANT: Each predicate must appear on its own line. Some predicates are shown on multiple lines
in the sample above due to lack of space.

The specification for NTriples can be found at http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples.

Following is a sample of a graph.info file:

example graph.info file

filenames can be absolute
/lustre/scratch/users/jdoe/database1/dbtriples1.nt

or they can be relative to the database directory, which is where the graph.info file resides
database2/dbtriples2.nt

they can specify a named subgraph with a URI
/lustre/scratch/users/jdoe/database3/dbquads3.nq <http://cray.com/namedGraphs/Graph3>

NOTE: Triples and quads are supported in both the .nt and .nq files. Quads in the RDF file are not
affected by the optional graph name specified in the graph.info file. Lines containing only white space
or lines beginning with the comment character (‘#’) are ignored. If the file is a mix of triples and quads, the
triples become part of the graph specified in the graph.info file.

As mentioned earlier, when the application is launched via the cge-launch command, the -d parameter
specifies the database directory, if it is included in the command. It is mandatory to specify this parameter, as
launching CGE without it will produce an error. This directory must already exist if it has been populated with
dataset.nt, dataset.nq, rules and/or a graph.info file. If a compiled database is not present, a database
is built using the graph.info, dataset.nt, or dataset.nq file in that directory.

When the database has been built, the following files are saved in the database directory:

● dbQuads

● string_table_chars

● string_table_chars.index

● graph.info file is created (if not already present), which is only used to load in a database from RDF files
and is not used once the database is compiled.

Once the database has been built, CGE can begin executing queries and updates. When the application is
subsequently launched via the cge-launch command specifying the same directory, the dbQuads file is
detected, and the compiled database is read rather than the RDF.

Memory Requirements
● Memory Requirement for reading a database from RDF - The amount of memory required to read a

database from RDF depends on the number of triples/quads in the database, the number of unique strings in
the dictionary, and the length of those strings. As a rule of thumb, however, the main memory should be 20
times the size of the RDF file(s). For example, for a 100 GiB triples file, at least 2000 GiB (20 * 100) should be
used.

● Memory Requirement for loading a compiled database - A compiled database consists primarily of the
dbQuads files, containing the compiled quads, and the string_table_chars files, containing the
dictionary. To enable CGE to load the database and execute meaningful queries, the main memory should be
20 times the sum of the sizes of dbQuads and the string_table_chars file. For example, if dbQuads is
32 GiB and string_table_chars is 256 GiB, at least (20 * (32 + 256)) GiB of memory should be used.

Building a Database

 18

About Rules Files
One way to greatly increase the knowledge contained in the database is to provide a set of inferencing rules.
These rules are used during the database builds and in subsequent data updates (whether by SPARQL updates
or by editing the database) to create new relationships between objects. Providing inferencing rules grants
SPARQL queries access to inferred data, in addition to the raw data that was imported into the system.

Forward vs. Backward Chaining
There are two types of chaining:

● Forward Chaining - In forward chaining, the inferencing rules are recursively applied to the database,
creating new quads and adding them to the database. If a implies b and a is in the database, we add b to the
database.

● Backward Chaining - Rather than pre-computing quads in the database as in forward chaining, with
backward chaining the queries are modified to support those rules. If a implies b and a query searches for b,
it is changed to search for (a UNION b).

NOTE: CGE does not support backward chaining.

Create a Set of Inferencing Rules
Inferencing can be performed to generate additional relationships once the Cray Graph Engine (CGE) builds a
database. CGE accomplishes this with a user defined rules file, which contains a set of rules specific to the data
being processed. The rules file format and semantics are based on the Jena rules, documented at http://
jena.apache.org/documentation/inference/index.html#rules. In this version of CGE there are certain limitations to
these rules, which are described in Limitations to Jena Rules Syntax .

The rules file has the form: one or more prefixes, followed by one or more rules

left-hand side quad(s) -> right-hand side quad(s)

Comments are denoted by a # character at the beginning of a line.

The quad, or quads, on the left-hand side of the -> are the quads that the inferencer will attempt to match to infer
the quad, or quads, on the right-hand side of the ->. All of the left-hand-side rules must be satisfied in order for the
inference to be made. Each rule must end with a period (.) and a newline character, and each rule must be on its
own line. The inferencer does not recognize the escape character (\).

A quad takes the form:

(subject predicate object [graph])

It is mandatory to specify the subject, predicate and object. The graph field is optional. If a graph is not specified,
the inferencer will use the default graph and the rule will apply only to triples in that graph. The subject, predicate
and object fields can be any valid form of these fields as specified by the N-Quads grammar, except as described
in Limitations to Jena Rules Syntax in CGE. The graph field in a quad has the same valid forms as an object. If a
rule contains a URI, that URI must have existed in at least one of the data files that were included in the
database. Alternatively, to apply a new ontology that was not in the original data files, create a new file that
contains any new objects and predicates, and add that file to the database. The fields of a quad in a rule can
also be variables, or shorthand versions of strings built from a specified prefix. A variable must begin with a ?
character, followed by a valid name. A name can contain any of the following characters:

name := [a-zA-Z][_a-zA-Z0-9]*

Building a Database

 19

http://jena.apache.org/documentation/inference/index.html#rules
http://jena.apache.org/documentation/inference/index.html#rules

To specify one or more prefixes at the beginning of a rules file, before any rules, use the following syntax:
@prefix prefix_name: <http://urlstring#>

A rules file does not have to use prefixes. However they can be used to simplify quads within rules. For example,
prefixes are useful for creating shorthand versions of URIs that will be used repeatedly in the rules statements.

As with rules, each prefix must end with a period (.) and a newline, and each prefix must be on its own line.

The following prefix and rule examples are from the rule set used for the LUBM data.

Inferencing a Database
When a database is built with inferencing enabled and a rules.txt file is found in the database directory, CGE
will start applying the forward chaining rules found in that file to the triples/quads read from the RDF. The inferred
quads are added to the in-memory database and stored in the compiled dbQuads file. If inferencing is enabled,
the rules.txt file is also used when updating a database using SPARUL commands. As with any other quads
added by the SPARUL commands, the inferred quads are added to the in-memory database but are not written to
disk until the database is check-pointed.

For more information, see About Rules Files

NOTE: Inferencing is enabled by default and may be disabled by setting the value of the
cge.serv.InferOnUpdate control parameter to 0. Control parameters are configuration keywords that
allow controlling server configuration settings. For more information, see Control Options.

Examples

A prefix statement
@prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

In this example the term rdf:type is shorthand for:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.

The inferencer expands the prefixed version of the string to the full string when creating the rules used during
inferencing. The rule in this example says that for a given triple ?x rdf:type ub:Course in the default graph,
infer a new triple ?x is-type ub:Work and add it to the default graph, as shown in the next example.

Inferring a new triple
Applying this rule:

(?x rdf:type ub:Course) -> (?x rdf:type ub:Work) .

to this triple in the data input:
<http://www.Department10.University0.edu/Course6> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Course>

infers (and adds) this new triple to the default graph:
<http://www.Department10.University0.edu/Course6> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#Work>

Building a Database

 20

A rule to establish a hierarchy of types
The following rule shows one way that ontology rules are used—to establish a hierarchy of data types.

(?x rdf:type ub:Faculty) -> (?x rdf:type ub:Employee) .
(?x rdf:type ub:Employee) -> (?x rdf:type ub:Person) .

A Faculty member is also an Employee, an Employee is also a Person, and so on. Such a rule eliminates the
need to explicitly including each desired type for each such item in the database. Note that this rule did not use
the graph field.

The following rule uses a variable for the graph field. This rule is excerpted from the RDFS rules file, which is
based on some of the Jena rules for RDFS and OWL. The complete rules file is reproduced in Sample RDFS
Rules File.

(?x ?a ?y ?g) (?a owl:inverseOf ?b ?g) -> (?y ?b ?x ?g) .

This rule is also an example of another way rules are used—to establish relationships between triples in the
database. This rule states that if two predicates A and B are defined to be inverses of each other, then if the triple
(X A Y) appears in the database, then the system can infer that the triple (Y B X) is also there, or should be
there.

Cross-database rules
Another use of a rules file is to establish a relationship between triples in two different databases. For example, if
one were extending a U.S.-based database with some additional data from France, it might streamline the
process to include such rules as:
(<x.cray.eg.france#personne> <x.cray.eg.france#nom> ?name <x.cray.eg.frenchdb>) -> (<x.cray.eg.us#person> <x.cray.eg.us#name> ?name <x.cray.eg.usdb>) .

By this rule the fields in the quads are translated into their English counterparts, consistent with the data that is
already in the U.S.-based database.

Sample RDFS Rules File
The following sample rules file is based on the Jena rules for RDFS and OWL. It is reproduced here courtesy of
w3.org.

These rules are based on the Jena rules for rdfs, plus some Jena rules
for OWL.
#Line breaks inserted into some of these rules for formatting purposes.
#This was done for readability within this document, but is not valid syntax.

Make a prefix for rdf:type. The IRI is defined by the SPARQL to be

http://www.w3.org/1999/02/22-rdf-syntax-ns#type, which we can
shorthand with rdf:type by defining a prefix for rdf:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Shorthand for rdfs

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Shorthand for owl

@prefix owl: <http://www.w3.org/2002/07/owl#> .

Skip this one.

Building a Database

 21

[rdf1and4: (?x ?p ?y) -> (?p rdf:type rdf:Property), (?x rdf:type
rdfs:Resource), (?y rdf:type rdfs:Resource)]
Add rule for rdfs 2:

[rdfs2: (?x ?p ?y), (?p rdfs:domain ?c) -> (?x rdf:type ?c)]
(?x ?p ?y ?g) (?p rdfs:domain ?c ?g) -> (?x rdf:type ?c ?g) .

[rdfs2a: (?x rdfs:domain ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:domain ?z)]
(?y rdfs:subClassOf ?z ?g) (?x rdfs:domain ?y ?g) -
> (?x rdfs:domain ?z ?g) .

Add rule for rdfs 3:

[rdfs3: (?x ?p ?y), (?p rdfs:range ?c) -> (?y rdf:type ?c)]
(?x ?p ?y ?g) (?p rdfs:range ?c ?g) -> (?y rdf:type ?c ?g) .

[rdfs3a: (?x rdfs:range ?y), (?y rdfs:subClassOf ?z) -> (?x rdfs:range ?z)]

(?y rdfs:subClassOf ?z ?g) (?x rdfs:range ?y ?g) -> (?x rdfs:range ?z ?g) .

Add rule for rdfs 5a:

[rdfs5a: (?a rdfs:subPropertyOf ?b), (?b rdfs:subPropertyOf ?c) ->
(?a rdfs:subPropertyOf ?c)]
(?a rdfs:subPropertyOf ?b ?g) (?b rdfs:subPropertyOf ?c ?g) -> (?a
rdfs:subPropertyOf ?c ?g) .

Add rule for rdfs 6:

[rdfs6: (?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)]
(?a ?p ?b ?g) (?p rdfs:subPropertyOf ?q ?g) -> (?a ?q ?b ?g) .

Skip this one.

[rdfs7: (?a rdf:type rdfs:Class) -> (?a rdfs:subClassOf ?a)]

Add rule for rdfs 8:

[rdfs8: (?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) ->
(?a rdfs:subClassOf ?c)]
(?a rdfs:subClassOf ?b ?g) (?b rdfs:subClassOf ?c ?g) -> (?a rdfs:subClassOf ?c ?
g) .

Add rule for rdfs 9:

[rdfs9: (?x rdfs:subClassOf ?y), (?a rdf:type ?x) ->
(?a rdf:type ?y)]
Put the quad with the most potential matches as the first quad to
try and improve performance since since the first quads are handled
in parallel.
(?a rdf:type ?x ?g) (?x rdfs:subClassOf ?y ?g) -> (?a rdf:type ?y ?g) .

Add rules for inverse property from owl.

[inverseOf1: (?P owl:inverseOf ?Q) -> (?Q owl:inverseOf ?P)]
[inverseOf2: (?P owl:inverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)]
We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent
potential performance problems.
(?a owl:inverseOf ?b ?g) -> (?b owl:inverseOf

Building a Database

 22

?a ?g) . (?x ?a ?y ?g) (?a owl:inverseOf ?b
?g) -> (?y ?b ?x ?g) .

Add rule for owl transitive property.

[transitivePropery1: (?P rdf:type owl:TransitiveProperty),
(?A ?P ?B), (?B ?P ?C) -> (?A ?P ?C)]
We again process the quad that most likely will have the largest number
of potential matches first (make it first quad in rule) to prevent
potential performance problems.
(?a ?p ?b ?g) (?p rdf:type owl:TransitiveProperty ?g) (?b ?p ?c ?g) -> (?a ?p ?
c ?g) .

Skip this one.

[rdfs10: (?x rdf:type rdfs:ContainerMembershipProperty) -> (?x
rdfs:subPropertyOf rdfs:member)]

NOTE: Each prefix and rule must appear on its own line. Some prefixes and rules and are shown on
multiple lines in the sample above due to lack of space.

Limitations to Jena Rules Syntax
This release of CGE does not support all aspects of Jena syntax and semantics for rules. Specifically:

● The @include construct is not supported.

● Calls to functions or built-in primitives, such as print, all, or max are not supported.

● The [...] syntax is not supported, including named rules.

● Backward chaining is not supported. Furthermore, backward syntax (<-) cannot be used to express forward
chaining.

● If multiple premises or conclusions (quads) are specified on either side of the -> in a single rule, each pair
must be separated by a space. The use of commas as separators is not supported.

● Native UTF-8 is not supported in rules files, however Unicode characters are supported within URIs, where
they are valid syntax.

NOTE: It is important to note that turning inferencing on/off is a database level setting. Turning
inferencing on can negatively impact performance. When this setting is set to true, the inferencer will run
during the first time that the database compiles and for subsequent updates. Since the whole database is
examined when inferencing occurs, turning this feature on after a period of time during which it was
turned off, will still affect the data that was loaded during the period when it was turned off. In other words,
if a user turns inferencing off and then adds or updates data, that data will also be inferenced once the
user turns the inferencing feature on again and performs another update. The current version of CGE
supports the 2004 RDF NTriples standard. The 2014 RDF 1.1 NTriples standard is not supported by
CGE.

Building a Database

 23

Mechanisms to Interact with the Cray Graph Engine (CGE)
Database
The following mechanisms can be used to interact with the CGE database:

● CGE Graphical User Interface (GUI)

● CGE Command Line Interface (CLI)

Cray Graph Engine (CGE) Command Line Interface
The CGE CLI provides access to all the core functionality of the database via the command line. This interface is
provided as part of the standard installation of CGE.

The list of available CGE CLI commands can be retrieved by executing the cge-cli help command without
any options, as shown below:

$ cge-cli help

cge-cli commands are listed in the following table:

Table 1. CGE CLI Commands

Command Description

cge-cli checkpoint Requests creation of a checkpoint

cge-cli echo Allows sending echo requests, which can be used to ping
CGE to check if it is up and responding

cge-cli fe Launches a web-based interface for accessing the server
via a browser and provides SPARQL endpoints, which can
be accessed via standard SPARQL APIs and tooling

cge-cli help Displays help information

cge-cli keyword-lookup Provides help with converting keywords between names
and indexes so that the log options for using with other
commands can be determined.

cge-cli log-info Retrieves the current logging setup of the server

cge-cli log-lookup Provides help with converting log levels between names
and values so that the log options to use with other
commands can be determined.

cge-cli log-reconfigure Reconfigures the default logging setup of the server. The
logging configuration changes persist until the server is
shut down.

cge-cli nvp-info Retrieves the current NVP setup of the server

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 24

Command Description

cge-cli nvp-reconfigure Reconfigures the default NVPs of the server. The NVP
configuration changes persist until the server is shut down.

cge-cli output-info Retrieves the current output directory for results from the
server.

cge-cli output-reconfigure Requests that the output directory for results be changed.
The changes made persist until the server is shut down.

cge-cli query Runs queries against the server, takes in SPARQL queries
from files or from stdin only when no other query options
are provided

cge-cli sparql Runs a mixture of queries and/or updates against the
server, takes in SPARQL queries/updates from files or from
stdin only when no other input options are provided

cge-cli update Runs updates against the server, takes in SPARQL updates
from files or from stdin only when no other update options
are provided

cge-launch Launches the CGE Query Engine

Where more specific help for an individual command may be obtained by running the cge-cli help command,
as shown in the following example:

$ cge-cli help checkpoint

Cray Graph Engine (CGE) Command Output
CGE CLI commands produce the following types of output:

● Logging - Provides diagnostic information about what a command is doing and is useful primarily for
diagnosing any issues that may occur. All logging output goes to standard error.

● Command Output - Provides actual informational output of the command's status, such as query results,
update success/failure etc. All command output is transmitted to the standard output.

As each type of output goes to a different output stream, output can easily be separated using standard shell
redirection e.g.

$ cge-cli query example.rq > results.txt 2> query-client.log

The above example redirects the command output to the results.txt file and the logging to
query-client.log file.

Cray Graph Engine (CGE) CLI Common Options
Certain options that are common to all commands and are provided by the CGE CLI are described in the following
table:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 25

Table 2. Common Command Line Options

Option Argument(s) Default
Value

Example Purpose

Communication Options

--db-host
--dbhost

Host Localhost --db-host machine Specifies the host on which
the database is running

--db-port
--dbport

Port 3750 --db-port 12345 Specifies the port on which
the database is running

--i
--identity

Identity
directory

~/.ssh -i /my/custom/identity Specifies the path to a SSH
identity directory to use for
authenticating to the server.
When omitted, the default
~/.ssh identity is used.

--trust-keys N/A N/A --trust-keys When this option is set, new
host keys will automatically
be trusted even when running
in non-interactive mode. This
is useful in environments
where the database port (and
thus the host and port
combination required to trust
the key for) may frequently
change. This option should
only be used when
connecting to trusted
database servers.

Client Logging Options

--debug
--verbose

N/A N/A --verbose Enables verbose mode which
increases the amount of
logging printed. All logging
output goes to stderr,
allowing it to be separated
from command output, which
goes to stdout.

If the --quiet option is also
specified, then the verbose
mode takes precedence.

--quiet N/A N/A --quiet Enables quiet mode, which
greatly decreases the amount
of logging printed. All logging
output is transmitted to
stderr, allowing it to be
separated from command
output, which is transmitted
to stdout.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 26

Option Argument(s) Default
Value

Example Purpose

If one of the verbose mode
options is also specified,
precedence is given to the
verbose mode.

--trace N/A N/A --trace Enables extra verbose mode,
which greatly increases the
amount of logging printed. All
logging output is transmitted
to stderr, allowing it to be
separated from the command
output, which is sent to
stdout.

If the --quiet option is also
specified, precedence is
given to the verbose mode

Server Configuration Options

--nvp Name and
value

N/A --nvp
cge.DoMemoryLeakDetection
1

Sets a NVP to send to the
server as part of the request,
usually necessary only if
asked by Cray support to
enable advanced options for
debugging an issue.

--log-disable N/A N/A --log-disable Disables all server side
logging for the request

--log-level Log_level N/A --log-level 16

Supported log levels include:

● 0=None
● 1=Off
● 2=Error
● 4=Warn
● 8=Info
● 16=Debug
● 32=Trace

Changes the server side
logging level for the request.

Supported values may be
obtained by using the log-
lookup command.

--log-string Log_string N/A --log-level Foo Specifies a string that will be
included in every server side
log line pertaining to the
request. This is useful if it is
required to isolate and extract
the log lines specific to a
request.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 27

Option Argument(s) Default
Value

Example Purpose

--log-
keyword-level

Keyword_levelN/A --log-keyword-level 41 32 Changes the server side
logging level for a specific
logging keyword. The
database server uses a
keyword-based system that
enables extracting log levels
specific to certain parts of the
request processing or
changing the log level for a
specific keyword.

Supported values may be
obtained by using the log-
lookup and keyword-
lookup commands.

--log-global-
keyword

Keyword N/A --log-global-keyword 41 Specifies that a given
keyword should be included
in all log lines.

Miscellaneous Options

-h command

--help command

N/A N/A --help checkpoint Prints the help information for
the command rather than
running the command

--batch
--non-
interactive

N/A N/A --non-interactive When set , this option
guarantees that the script will
never prompt the user for
input, i.e. it will never use
stdin. This may cause
some commands to fail if
they would require any user
input other than the provided
options. This is useful when
invoking the CLI in a non-
interactive context.

Cray Graph Engine (CGE) Properties File
A cge.properties file may be used in order to specify some options without having to explicitly state them with
every command invocation. This properties file may exist in either the working directory from which the CLI is
launched or under the $HOME/.cge directory. Where both files exist, the one in the working directory will take
precedence. Enabling the verbose mode enables viewing output detailing exactly which properties file (if any) is
used.

If present, the values from this file are used, unless these are specifically overridden with command line options.

Currently the following properties are supported:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 28

Table 3. CGE Property Files

Property Value Equivalent Command
Line Option

Description

cge.cli.db.host Host --db-host

--dbhost
Host name of a CGE server that the CLI
will connect to if the --dbhost option is
not used.

cge.cli.db.port Port --db-port

--dbport
Port number of a CGE server that the CLI
will connect to if the --dbport option is
not used.

cge.cli.trust-keys True /
False

--trust-keys Eliminates the need for a first-time
interactive CLI command each time you
start using a server on a new TCP/IP port
number combination.

NOTE: If a properties file that overrides the default value exists, the logging message will contain a
warning to indicate that it has been set in the properties file. This is because an out of date properties file
can interfere with correct communications with the database server without any obvious cause.

Defining Command Aliases
The properties file may also be used to define command aliases, these are essentially shortcuts to other
commands. An alias is defined in the following manner:

$ cge.cli.alias.algebra=compile -c algebra

This defines a new alias algebra which simply invokes the compile command passing in the -c Algebra option.
The CLI can then be invoked using the following command:

$ cge-cli algebra example.rq

This would compile the given query into algebra and is equivalent to running the following command:

$ cge-cli compile -c algebra example.rq

Command aliases are subject to the following restrictions:

● Aliases cannot override built-in commands.

● Aliases cannot be defined recursively, which means that an alias cannot be defined in terms of another alias.

Advanced Command Alias Definition
There are some more advanced functions that can be performed on aliases such as using positional parameters.
For example, consider the following definition:

$ cge.cli.alias.c=compile -c $1

This creates an alias 'c', which again invokes the compile command. However, this time it uses a positional
parameter for the value of the -c option. With this definition the CLI can be invoked in the following manner:

$ cge-cli c rpn example.rq

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 29

Here the first argument after the alias is injected into the expansion of the alias so this is equivalent to running the
following:

$ cge-cli compile -c rpn example.rq

NOTE: If a positional parameter receives no value, it will be passed through as-is, which will likely result
in parser errors.

The checkpoint Command
The checkpoint command is used to request the creation of the checkpoint, which is a dump to disk of the
current database state, optionally including a NQuads file that can be used to export the database to other tools.
A checkpoint is a compiled database consisting of a dbQuads, string_table_chars, and
string_table_chars.index file.

NOTE: This command simply takes in a path to a directory in which to create the checkpoint. This
directory must exist, be writable and within the directory tree of the data directory of the server.

An example of using the checkpoint command is shown below:

$ cge-cli checkpoint /lus/scratch/user/db/cp1

If it is required to retrieve a NQuads file for use with other RDF and SPARQL tools that are needed for using the -
q or --quads option of the checkpoint command, as shown below:

$ cge-cli checkpoint --quads /lus/scratch/user/db/cp1

Once the checkpoint has been created, the system will display a message saying: "Checkpoint creation
succeeded".

Overwriting Existing Checkpoints
Note that the checkpoint command allows overwriting existing checkpoints. However it will do so in such a way
that it guarantees that this is an atomic operation. This means that either the checkpoint is overwritten and
replaced, or the previous checkpoint will continue to exist.

For more information, see the cge-cli-checkpoint(1) man page.

The compile Command
The compile command is used to compile SPARQL commands into the logical and/or physical plans that the
database server will use to execute the command. This can be useful for understanding how the system is
interpreting and optimizing a query or update.

An example of using the compile command is shown below:

$ cge-cli compile -c algebra example.rq

The above example would compile the SPARQL command found in the example.rq file into the algebra form
outputting that to standard output. Multiple files can be specified in order to compile a large number of files at
once.

Compilation Modes
The -c/--compiler-mode option is used to specify the desired compilation output type, supported values are
as follows:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 30

Table 4. Compilation Modes

Compilation Mode Output Mode

algebra The optimized SPARQL algebra for the query/update as human
readable text in SPARQL Set Expression (SSE) format. This can
be thought of as the logical plan for the query.

raw-algebra The unoptimized SPARQL algebra for the query/update as
human readable text in SSE format. This is the unoptimized
logical plan for the query.

rpn The physical plan for the query/update in binary form. Primarily
intended for Cray developer use only.

rpn-string The physical plan for the query/update in human readable text.
Primarily intended for Cray developer use only.

all Produces all of the above.

This option may be specified multiple times to request multiple output formats, note that if the all option is also
specified, it would supersede any individual format requests. The -a/--all option can also be specified as a
shortcut to specifying the -c all option.

Compilation Output
By default, compilation output goes to standard out and can be redirected to a file as desired. However, if multiple
files need to be processed, or if more than one output type needs to be generated, then it is recommended to use
the -f/--files option, which outputs a file for each input and compilation mode combination in the directory
where the cge-cli command is being executed. The output file names are automatically generated based upon
the input file name by replacing the extension with the appropriate extension for the output type:

Table 5. Compilation Output

Output Type Output File Extension

algebra .algebra

raw-algebra .rawalgebra

rpn .rpn

rpn-string .rpnstring

For example, suppose that there is a file named getTenRows.rq that contains the following SPARQL query:

sparql query: select * {?s ?p ?o} limit 10

Now execute the compile command on the getTenRows.rq, as shown below:

$ cge-cli compile -c all getTenRows.rq --files
0 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Started Algebra to RPN message conversion
2 [main] INFO com.cray.cge.parser.sparql.algebra.OpAsRpnMessage - Finished Algebra to RPN message conversion (3 operations)

The above command would create the following four files:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 31

● getTenRows.rawalgebra

● getTenRows.rawalgebra

● getTenRows.rpn

● getTenRows.rpnstring

For more information, see the cge-cli-compile(1) man page.

The echo Command
The echo command is used to check that the database server is up and able to respond to requests.

As the name implies, the echo command simply sends some data to the database server and checks that the
server echoes it back correctly.

An example of using the echo command is shown below:

$ cge-cli echo Test data

The above command sends the data "Test data" to the server. If the data is sent successfully, the system
returns a messaging saying: "Echoed data received and validated successfully".

Generating Test Data
You can alternatively simply have the echo command generate some random data to send to the server. This can
be used to test much larger requests then you would want to manually type in. For example:

$ cge-cli echo -g 8000

If the data is sent successfully, the system returns a messaging saying: "Echoed data received and
validated successfully".

For more information, see the cge-cli-echo(1) man page.

The fe Command
The fe command is used to launch a web server that provides a user interface and SPARQL endpoints to CGE.

In order to stream query results over HTTP, this command must be running on a host that has access to the same
file system that the database server is writing results to. Typically, this means executing the fe command on a
login node of the system running CGE. It should be noted that since it is often required to have the user interface
available for a long period, it is recommended to launch it in the background so that is resistant to terminal
disconnects. See Launch the Web Server for more information.

For example:

$ nohup cge-cli fe > web-server.log 2>&1 &

When the CGE user interface server has started, the system returns a message indicating that the server has
started and is ready to accept HTTP requests.

Once the user interface has been launched, it is possible to access the SPARQL endpoints on the machine and
port displayed in the log message.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 32

Verifying the Server Connection
It may be useful to verify that the database server is up and running when starting the web server. In this case,
the --echo option can be used with the fe command, which makes the fe command check that the database
server is up and running before launching the web server:

$ cge-cli fe --echo

Running on a Different Port
Sometimes it may be necessary to run the web server on a different port. This can be achieved by using the --
server-port option with the fe command (whose default value is 3756) to supply an alternative port on which
to run the web server, as shown below:

$ cge-cli fe --server-port 12345

NOTE: If an alternative port is chosen to run the web server, it is important to modify the URLs
appropriately when accessing the user interface.

For more information, see the cge-cli-fe(1) man page.

The keyword-lookup Command
The keyword-lookup command provides the means to lookup mappings between keyword IDs and user
friendly keyword names, in order to find the values that need to be passed to the log options when invoking other
commands. Unlike most of the other commands, the keyword-lookup command does not actually contact the
database.

For example, use the following command to lookup a specific keyword ID:

$ cge-cli log-lookup 28

Alternatively, a keyword ID can be looked up based upon the keyword name using the keyword-lookup
command, as shown in the following example:

$ cge-cli keyword-lookup QRY

The keyword-lookup command can be used without any arguments to display the full mapping of levels to
names, as shown below:

$ cge-cli keyword-lookup

For more information, see the cge-cli-keyword-lookup(1) man page.

The log-info Command
The log-info command retrieves information about the server's default logging configuration.

NOTE: The information returned by the log-info command does not necessarily reflect the logging
settings for individual requests since all commands may use the Cray Graph Engine (CGE) Command
Line Interface to change the log configuration for specific requests.

An example of using the log-info command is shown below:

$ cge-cli log-info

Example output of the above command is shown below:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 33

$ cge-cli log-info
0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand - Making
request...
Server Log Configuration:
Version 1 - Printing Enabled - Default Level Info (8) - Keyword Levels Set {0-42}

In the above example, we can see that the server is configured with the default settings, as indicated by the text:
Default Level Info (8). However, in other cases we might see different settings, as shown in the following
example output:

$ cge-cli log-info
0 [main] INFO com.cray.cge.cli.commands.AbstractSimpleCgeCommand - Making
request...
Server Log Configuration:
Version 1 - Printing Enabled - Default Level Warn (4) - Keyword Levels Set {0-42}
Keyword TCP (Index 41) = Debug (16)

In the second example above, we can see that the default level has been turned down to Warn, but the TCP
keyword is turned up to Debug. The server's default log configuration can be used via the The log-reconfigure
Command command if needed. For more information, see cge-cli-log-info(1) and cge-cli-log-
reconfigure(1) man pages.

The log-lookup Command
The log-lookup command provides the means to lookup mappings between log level values and user friendly
log level names in order to find the values that need to be passed to the log options, when invoking other
commands. It does so without contacting the database.

An example of using the log-lookup command for looking up the log level that has a value of 16 is shown
below:

$ cge-cli log-lookup 16

Look up a level based on the name, as shown below:

$ cge-cli log-lookup Warn

Alternatively, use the log-lookup command without any arguments to retrieve the full mapping of levels to
names, as shown in the following example:

$ cge-cli log-lookup

For more information, see the cge-cli-log-lookup(1) man page.

The log-reconfigure Command
The log-reconfigure command changes the default logging configuration of the server.

NOTE: The information returned by the log-info command does not necessarily reflect the logging
settings for individual requests since all commands may use the Cray Graph Engine (CGE) Command
Line Interface to change the log configuration for specific requests.

For example:

$ cge-cli log-reconfigure --log-level 16

The system will display a message if an incorrect value is speficied for the log-level.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 34

Upon successful execution of this command, the system returns the message: "Received success
response".

NOTE: It is recommended to verify that the log configuration changes have been implemented by using
the log-info command. It may also be helpful to use The log-lookup Command and The keyword-
lookup Command commands to determine the values that need to be passed the options, in order to
configure logging settings as desired.

WARNING: Do not set the server log levels to DEBUG or TRACE, especially, if the Cray Graph Engine
(CGE) server is running with a large number of images.

For more information, see the cge-cli-log-reconfigure(1) man page.

The nvp-info Command
The nvp-info command retrieves information about the default NVP configuration of the server.

NOTE: The information retrieved by nvp-info command does not necessarily reflect the NVP settings
for individual requests since commands may change the NVP configuration for specific requests.

An example of using the nvp-info command is shown below:

$ cge-cli nvp-info

If the server's default NVP configuration needs to be changed, use The nvp-reconfigure Command command.

For more information, see the cge-cli-nvp-info(1) man page.

The nvp-reconfigure Command
The nvp-reconfigure command is used to change the server's default NVP configuration.

Upon successful execution of this command, the system returns a message saying: "Received success
response".

NOTE: Configuration changes are not necessarily reflected in the NVP settings for individual requests
since commands may change the NVP configuration for specific requests. It is recommended to use The
nvp-info Command command to verify that the changes have taken effect, as shown below:

$ cge-cli nvp-info

NOTE: Most of the supported NVP have a defined range of acceptable values. Values specified outside
of those ranges will be normalised into the range for that NVP. Unsupported NVPs are simply ignored,
with a warning printed in the database logs and their values will not be stored by the server.

For more information, see the cge-cli-nvp-reconfigure(1) man page.

The output-info Command
The output-info command retrieves information about the current output directory of the server. This is the
directory to which the server writes query results to for later retrieval.

An example of using the output-info command is shown below:

$ cge-cli output-info

The The output-reconfigure Command command can be used if it is required to change the server's output
directory.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 35

For more information, see the cge-cli-output-info(1) man page.

The output-reconfigure Command
The output-reconfigure command is used to change the server's output directory, to which it writes query
results to for later retrieval.

An example of using the output-reconfigure is shown below:

$ cge-cli output-reconfigure /new/output/directory

NOTE:

After executing the output-reconfigure command, it is recommended to use the The output-info
Command command to verify that the changes have taken effect, as shown below:

$ cge-cli output-info
For more information, see the cge-cli-output-reconfigure(1) man page.

The query Command
The query command is used to execute queries against the running database. This command can be used to
execute a single query or a sequence of queries.

Queries that need to be executed may be specified in a number of ways:

● By providing a list of files, which contain lists of files containing queries to be executed

● By providing the names of query files directly

● Via stdin (only if no queries are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, those queries are executed before any queries are specified directly. This command may only be used
to execute SPARQL queries. To execute updates, use the update command or to execute mixtures of queries
and updates use the sparql command.

An example of using the query command is shown below:

$ cge-cli query --list queries.txt extra-query.rq

The above command will execute all the queries specified in the queries.txt file before executing the query
specified in the extra-query.rq file. Executing queries by default produces only information about where to
obtain the results and not the result itself.

An example of using the query command is shown below:

$ cge-cli query types.rq

Here we can see that the database returns the following results information:

0:28:1756:0:/lus/scratch/user/results//queryResults.22683.2014-12-09T11.58.36Z03.tsv::

This is a simple colon separated string with the fields shown in the following table:

Table 6. Status Descriptions

Column Index Information

0 Status - will be 0 for successful queries

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 36

Column Index Information

1 Result count - number of results returned

2 Result size - results size in bytes

3 Execution time - query execution time in seconds

4 Results location - path to the file containing the results

5 Error message - should be blank for successful queries

Results File Format
The file containing the results is in SPARQL Results TSV format and contains only the tabular results for the
query. This means that if an ASK/CONSTRUCT/DESCRIBE query has been created, the results file will not contain
the final results.

Printing Results
This simple format makes it easy to process with standard command line tools,. For example, the following
command can be used to show the results in the console:

$ cge-cli query --quiet types.rq | cut -d : -f 5 | xargs cat

As noted earlier, the results file contains only the tabular results for the query. If results of an ASK/CONSTRUCT/
DESCRIBE query are desired to be printed, see Streaming Results.

Streaming Results
As already seen, it is possible to use simple command line tools to extract and dump the query results to stdout.
However, this only works for SELECT queries, and when the results can be accepted in SPARQL Results TSV
format. If it is desired to retrieve the final results in an arbitrary format, the --stream option of the query
command will need to be used. This option may only be used when executing a single query and it takes the
MIME type of the desired results format.

$ cge-cli query --stream application/sparql-results+xml types.rq

Results are returned in SPARQL Results XML format. Supported formats include the following:

Table 7. Output Result Formats

Query Types MIME Types Output Format

ASK and SELECT application/sparql-results+xml SPARQL Results XML

application/sparql-results+json SPARQL Results JSON

text/csv SPARQL Results CSV

text/tab-separated-values SPARQL Results TSV

CONSTRUCT and
DESCRIBE

application/n-triples NTriples

text/turtle Turtle

application/rdf+xml RDF/XML

application/rdf+json RDF/JSON

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 37

Query Types MIME Types Output Format

application/ld+json JSON-LD

NOTE: Requesting a format that does not match the query type or is unknown will result in an error.

There are also three special values that may be passed to this option:

● Text

● JSON

● XML

When these values are specified, the CLI will automatically select an appropriate text (line-based), JSON or XML
output format in which to stream the results, while taking into account the type of query being evaluated. For
example providing --stream text might produce SPARQL results TSV for an ASK/SELECT query but produce
NTriples for a CONSTRUCT/DESCRIBE query. When these special values are used, the exact output format will not
be known in advance but will be guaranteed to fall into the general format given.

Making Multiple Queries
When multiple queries are executed, they are executed in the order specified (subject to the aforementioned
precedence of list files over individual files) and the command will print a results header for each query.

$ cge-cli query types.rq list-graphs.rq ask-types.rq

It can be seen that a results header is retrieved for each query run.

For more information, see the cge-cli-query(1) man page

Common Errors Encountered Using the Cray Graph Engine (CGE) query Command
There are a number of common errors that may be encountered when using the query command:

● Parser Errors - Parser errors occur when a query is not in valid SPARQL 1.1 format. The error message
details the unexpected token, along with what the parser was expecting at that stage of the parsing.

● Unsupported Features The system will also return an error message in cases where it is attempted to use
an unsupported SPARQL 1.1 feature.

● Communications Error - Communication errors occur when the CLI cannot connect to the database. There
are a variety of errors that can be encountered, depending on exactly what goes wrong with the
communications between the CLI and the database server. If the same error is consistently returned, it is
recommended to:

○ Add the --trace option to the command to get detailed information about the communications being
attempted.

○ Review the log messages carefully.

○ Reviewing the server logs if possible to, as there are some situations which will manifest as client side
communications errors that can be tracked down to the configuration of the server.

For more information, see Troubleshooting Common Cray Graph Engine (CGE) Issues on page 81

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 38

Cray Graph Engine (CGE) Optimizer Configuration
On rare occasions, it may be required to change the query optimizer configuration. This can be performed by
using the --opt-off and --opt-on options. Both of these options take the name of an optimizer flag to disable/
enable as desired.

The following example shows how to set the optimizer flag to off:

$ cge-cli query --opt-off optFilterPlacement types.rq

Executing the above statement would execute the query with the filter placement optimization disabled.

NOTE: If both the enabled and disabled flag options are specified, the flag will be considered as disabled.
There are some flags whose values cannot be changed regardless of the options given.

CAUTION: Changing optimizer configuration can adversely affect query performance. Therefore, it is
strongly recommend that the optimizer configuration be changed only when advised to do so by a Cray
support engineer.

The shutdown Command
The shutdown command is used to instruct the Cray Graph Engine (CGE) server instance to shut down.

An example of using the shutdown command is shown below:

$ cge-cli shutdown

The shutdown command simply requests that the server be shutdown gracefully. If this command is executed by
the user that owns the server process, the user will receive a success message indicating that the server has shut
down. On the other hand, if this command is executed by a user who does not own the server process, the
system will return an error message.

NOTE: If the server is in a bad state, then this command will not succeed. Standard Linux techniques for
killing an application process should be used in this case.

The sparql Command
The sparql command is used to execute queries and/or updates against the database. It can be used to
execute a single query/update or to execute a whole sequence of queries and/or updates.

Queries and updates to be executed may be specified in a number of ways:

● By providing list files which contain lists of query and/or update files to be executed

● By providing the names of query and/or update files directly

● Via stdin (only if no queries/updates are specified in other ways and the --non-interactive option is not
used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified, queries specified in those list files will be executed before any queries specified directly.

This command may be used to execute a combination of SPARQL queries and updates. To execute queries only,
the query command should be used, wheres to execute updates only, the update command should be used.

An example of using the sparql command is shown below:

$ cge-cli sparql --list commands.txt extra-command.ru

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 39

The above command will execute all the queries specified in the commands.txt file before executing the queries
specified in the extra-command.ru file.

An example of using the sparql command is shown below:

$ cge-cli sparql list-graphs.rq create-graph.ru list-graphs.rq

Executing queries/updates using the sparql command produces the corresponding results for the command.
This means that for queries it produces information about the results and for updates it produces a success/failure
message as appropriate. To change the query optimizer configuration, see Cray Graph Engine (CGE) Optimizer
Configuration .

For more information about the sparql command, see the cge-cli-sparql(1) man page.

Differences Between the sparql and query Commands
The major differences between the sparql and The query Command commands include:

● The sparql command can run a mixture of queries and updates, whereas the query command can run
queries only.

● The query command can stream results directly using the --stream option.

The update Command
The update command is used to execute updates on a database. This command can be used to execute a
single update or a sequence of updates. It supports all the common options described in Cray Graph Engine
(CGE) Command Line Interface.

Updates to be executed may be specified in a number of ways:

● By providing list files, which contain lists of update files to be run.

● By providing the names of update files directly

● Via stdin (only if no updates are specified in other ways and the --non-interactive option is not used)

The supported input methods have the precedence shown in the list above. This means that if any list files are
specified,updates contained within those files will be executed before any updates specified directly.

This command may only be used to execute SPARQL updates. If it is required to executed queries, use
the query command. To execute a combination of queries and updates, use the sparql command

An example of using the update command is shown below:

$ cge-cli update --list updates.txt extra-update.ru

The above statement will execute all the queries specified in updates.txt file before executing the query
specified in the extra-update.ru file. Executing an update returns a message indicating whether the update
succeeded or failed.

$ cge-cli update create-graph.ru

Running Multiple Updates
If multiple updates need to be executed, they will be executed in the order specified (subject to the
aforementioned precedence of list files over individual files) and the command will print a success or failure
message for each update.

For example:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 40

$ cge-cli update create-graph.ru drop-graph.ru

For more information, see the cge-cli-update(1) man page.

Cray Graph Engine (CGE) Graphical User Interface
CGE provides a simple interface for access via the browser and also provides SPARQL 1.1 protocol compliant
endpoints. The CGE user interface enables you to perform a number of tasks, including:

● Executing queries

● Executing updates

● Creating checkpoints on a database

● Using advanced options for viewing and editing server configurations, as well as for performing server NVP
and logging configuration changes.

Access the Cray Graph Engine (CGE) Graphical User Interface
To access the CGE user interface, point the browser at: http://machine:3756/dataset/, where machine is the host
name of the machine where the web server is hosted. Multiple instances of CGE can be launched on the same
node at different ports.

IMPORTANT: The firewall configuration of the host machine must allow for port 3756 to be accessed
externally or this will not work unless the browser is running on the same host. If the site's firewall
configuration does not permit this, SSH port forwarding can be used to forward the remote port to the
local machine, as shown in the following example:

$ ssh machine -L 3756:hostname:3756

In the above example, machine is the machine running CGE’s web server. The first 3756 is the local
host port to connect to, whereas hostname:3756 is the remote reference.

The CGE UI can then be accessed by pointing the browser at: http://localhost:3756/dataset/.

Upon successfully accessing the CGE user interface the following screen will be displayed:

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 41

Figure 4. Cray Graph Engine User Interface

Queries and/or updates can be executed directly from this page. Additional tasks can be performed using the
links at the top of this interface.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 42

Execute SPARQL Queries

About this task
The Cray Graph Engine (CGE) Query Interface allows executing SPARQL queries on an loaded RDF database
running within CGE.

Figure 5. Query Interface

Procedure

1. To access CGE's Query Interface, point the browser at http://machine:3756/dataset/query, or select the
Query Interface link from the list of links at the top of the UI.

2. To execute a SPARQL query, enter it in the SPARQL Query field. The check box under the SPARQL Query
field can be selected to specify that the server should return the query results with a Content-Type header
value of text/plain. This will force the browser to display the results in the browser, as many browsers will
download the results rather than display them by default.

3. To execute a query, simply select the Run Query button, which will submit the query to the server and deliver
the results to the browser. The user interface uses standard HTTP content negotiation to determine the format
in which to return the query results. Most browsers receive results in an XML/JSON format. The results of the
query are written to a results file on the Lustre file system. The name of the results file is displayed on the
CGE user interface. Permissions of the results file may not be correct if the user running the query and the
CGE process owner are not the same.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 43

The rest of the options seen in this interface are described in Cray Graph Engine (CGE) Advanced Options

Execute SPARQL Updates

About this task
The Cray Graph Engine (CGE) Update Interface allows you to execute SPARQL updates on a database.
SPARQL update is a language extension to SPARQL 1.1 that makes it possible to make updates to an active
RDF database, using SPARQL query syntax. You can use CGE Update Interface interface to perform a number
of tasks, including updating the default database to add or remove RDF triples and quads, copying or moving the
contents of one database to another, and performing multiple update operations in a single action.

Procedure

1. To access CGE's Update Interface interface, point your browser at http://machine:3756/dataset/update or
select the Update Interface link from the top on the main landing page of the CGE user interface.

Figure 6. CGE Update Interface

2. To execute a SPARQL update, enter the update statement into the SPARQL Update field.

3. Select the Run Update button to submit the update for processing. Once the system has finished executing
the update, it will send either a success/failure message as appropriate.

The rest of the options seen on this screen are described in Cray Graph Engine (CGE) Advanced Options

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 44

Create a Checkpoint

About this task
When a database is started for the first time its initial state is considered to be a checkpoint. When a change is
made to the database, the state of the database can be preserved by creating a checkpoint. This preserves a
copy of the previous in-memory database. Creating a checkpoint creates a persistent record of the database
state, which is written to the database directory in a file named export_dataset.nq.

NOTE: Checkpoints can only be created on running databases. If there are any queries or updates
executing, it important to ensure that they finish executing before a checkpoint is created, otherwise the
state of the database in the checkpoint may not contain the desired updates to it.

Procedure

1. To access the Cray Graph Engine (CGE) Checkpoint Interface, point the browser at http://machine:3756/
dataset/checkpoint, where machine is the machine running CGE’s web server. This brings up the Checkpoint
Interface, as shown below:

Figure 7. Creating a Checkpoint

2. Specify a location for the checkpoint in the Checkpoint Location field. This is the directory where the
checkpoint will be saved. The server will generate an error if this directory does not exist or is unwritable.

NOTE: This directory must already exist and must be within the tree of the database currently
running. This prevents the checkpoint from accidentally overwriting other databases.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 45

The check box under the Checkpoint Location field can optionally be selected to request that the database
state be exported with the checkpoint. This is useful if it is required to import/export the current database state
for use with other RDF-aware tools.

3. Select the Create Checkpoint button to create the checkpoint. This will return a success/failure message as
appropriate, as shown in the following example output:

Checkpoint created at /lus/scratch/cge/datasets/lubm/0/temp

Cray Graph Engine (CGE) Advanced Options
CGE provides a number of advanced options that can be used to change the behaviour of the database server for
a specific request. Some of these options impact the server, whereas others impact individual requests. The user
interface for configuring advanced options is shown in the following figure:

Figure 8. Server Name Value Pairs

NOTE: Options provided in this section of the user interface are relevant only for the processing of the
request under consideration and should be updated for each individual request. If it is desired to change
the options for the database server as a whole, it will be required to use the interface described in the
Editing Server Configuration.

Server NVPs (Name Value Pairs)
In the Server NVPs section, NVPs can be specified to pass to the database server. These can be used to control
behaviour or enable additional debugging information.

IMPORTANT: In most cases, it will not be required to enter anything in the Server NVPs field, unless
specifically instructed to do so by a Cray representative for gathering information to aid in diagnosing
encountered issues.

Server Logging Configuration
The Server Logging Options section provides options that allow configuring the amount of logging the database
server will produce in the server side logs during the processing of a request. The desired logging level (i.e. log
verbosity) can be selected from the Server Log Level drop down, which is followed by the Server Log String
field, in which a log string can be entered. The log string can be up to 128 characters and will be included on
each log line pertaining to the request. This is often useful for extracting all the log lines pertaining to a specific
request.

Messages of types INFO, WARNING, and ERROR can be logged in the system, INFO being the default log level.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 46

This interface also provides the option to disable logging for the request entirely, though it is generally
recommended to avoid this option as it makes it difficult to monitor the status of the server while it processes
queries.

View Server Configurations

About this task
The Server Information interface allows you to view all the server configuration settings defined in the system.

IMPORTANT: In most cases you will never need to change server configuration settings, unless
specifically instructed to do so by a Cray representative in order to gather information for diagnosing
issues you may be experiencing.

Procedure

To access the Server Information interface, point your browser at http://machine:3756/dataset/info, where
machine is the machine running the Cray Gray Engine's (CGE’s) web server. This displays a screen similar
to the following:

Figure 9. Server Configurations

The information displayed on the Server Information interface includes information about the log and NVP
configurations of the server, as well as the results output directory.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 47

Edit Server Configurations

About this task
The Edit Server Configuration interface allows editing server configurations.

IMPORTANT: In most cases you will never need to change server configuration settings, unless
specifically instructed to do so by a Cray representative in order to gather information for diagnosing
issues you may be experiencing.

Procedure

1. To access the Cray Graph Engine (CGE) Edit Server Configuration interface, point the browser at http://
machine:3756/dataset/config, where machine is the machine running CGE’s web server. This presents the
following screen:

Figure 10. Editing Server Configurations

2. Select the desired serve NVP and logging options using the Server NVPs and Server Logging Options
sections of the UI. In addition to the Server NVPs and Server Logging Options, this interface also contains
a Server Output Directory field that allows changing the server output directory. This is the directory to
which the database writes results, and from which the web server reads in order to deliver query results over
HTTP.

CAUTION: It is best not to change server configuration settings, as doing so can adversely affect
performance (especially if it is changed to point to a relatively slow file system).

3. When the required changes have been made, select the Reconfigure Server button to attempt the
reconfiguration. Upon doing so, the system will return a response detailing the success/failures of the pieces
of configuration that were to be updated, as shown in the following example output:

Updated Server NVP Configuration successfully
Updated Server Logging Configuration successfully

NOTE: Unlike the Cray Graph Engine (CGE) Advanced Options presented in the other interfaces, the
values set from this interface persist for the lifetime of the server and become the new defaults.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 48

Control Options
In most cases it will not be needed to change server configuration settings, unless specifically a Cray support
represented specifically requests for doing so, in order to gather information for diagnosing issues. However,
there are two such settings that you may occasionally wish to change. Name Value Pairs (NVPs) that enable you
to modify these settings are listed in the following table:

Table 8. CGE NVPs

Parameter Description Default Value

cge.server.QueryTimeout This parameter sets the maximum runtime (within the
server) of a given query in seconds (wall clock time).
This timeout will be checked after every operation.
However, it does not interrupt operations. After the query
times out, the server will terminate that query and will be
immediately ready for subsequent queries. Acceptable
values for this parameter range from 0 seconds
(automatic termination at the start of the second
operation) to 100, 000 years expressed in seconds
(3153600000000). If a negative value is entered for this
field, it will be converted to 0.

31536000

cge.server.InferOnUpdate Causes inferencing to be enabled or disabled for a given
update. Has a value of either “0” or “1”. The default value
of this parameter is "1", which sets inferencing on for
updates. A rules.txt file must be present for
inferencing to take place. If no rules.text file exists,
inferencing will not be performed. If updates to the
database were made after inferencing was turned on,
triples added previously will stay saved in the database if
inferencing is turned off subsequently.

1

SPARQL Endpoints
Standard SPARQL tools can be used to interact with the Cray Graph Engine (CGE) by pointing them at the
relevant endpoint URLs, which are shown in the following table:

Table 9. SPARQL Endpoints

Service Endpoint URL

SPARQL Query http://machine:3756/dataset/query

SPARQL Update http://machine:3756/dataset/update

In the above examples, machine is used as an example for the name of the machine running CGE’s web server.

These endpoints are SPARQL 1.1 protocol compliant and provide all the standard parameters.

Supported Content Types
The SPARQL query endpoint uses standard HTTP content negotiation to determine how to return query results to
the SPARQL tool, depending on the Accept header that the tool sends.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 49

The following standard formats are supported by the query endpoint:

Table 10. Query Types and Supported Content Types

Query Type Supported Content Types

ASK and SELECT ● SPARQL Results XML

● SPARQL Results JSON

● SPARQL Results CSV

● SPARQL Results TSV

CONSTRUCT and DESCRIBE ● NTriples

● Turtle

● RDF/XML

● RDF/JSON

● JSON-LD

Standard HTTP behaviour of returning the message "406 Not Acceptable" will apply if the tool does not
include any formats the endpoint can produce in its Accept header.

Custom Parameters
CGE features endpoints that provide custom parameters, which can be used to configure the same advanced
options supported by the CGE user interfaces. These parameters are listed in the following table:

Table 11. Custom Parameters

Parameter Example Purpose

forcePlainText forcePlainText=true Used to force the returned Content-Type to be
text/plain regardless of the actual content type
being returned.

This is typically only useful for browser access to
the endpoints and may cause errors if used with
SPARQL tools.

nvps nvps=foo%3Dbar Specifies the NVPs to be passed to the database
and applied to the request.

These must be specified in Java properties file
style with one name=value pair per line

log-level log-level=16 Specifies the log level to use for database logging
of the request. This takes an integer value with
values interpreted as follows:

● 2 = Error

● 4 = Warn

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 50

Parameter Example Purpose

● 8 = Info

● 16 = Debug

● 32 = Trace

The log-lookup command can be used for
translating integer values to the desired log
levels.

log-string log-string=Foo Specifies a string to be included on every
database log entry pertaining to the request.

Maximum supported length is 128 characters and
longer strings will be truncated accordingly.

log-disable log-disable=true Can be set to disable all database logging for the
request

Launch the Web Server
Before using the Cray Graph Engine GUI, it is required to launch the database via the cge-launch command
and leave the default port setting of 3750 unchanged. If an alternative port has been used, then it will be required
to add the --db-port option to specify an alternative port. Once the database has been launched, the Cray
Graph Engine (CGE) graphical user interface and/or the SPARQL endpoints may be used. This can be
accomplished by launching the web server that provides the user interface on a login node of the system where
CGE is running, as shown below:

$ cge-cli fe

Alternatively, you can use the following command to have the web server continue running in the background with
its logs redirected, even if you disconnect from the terminal session:

$ nohup cge-cli fe > web-server.log 2>&1 &

NOTE: The web server is launched by the same script as the rest of the Command Line Interface tools,
and supports many of the same standard options detailed in Cray Graph Engine (CGE) Command Line
Interface.

Create and Use a Database

Prerequisites
If you need the Cray Graph Engine (CGE) to perform inferencing on your data, ensure that a valid rules.txt file
exists in the directory containing your data.

About this task
The instructions listed below can be used to create a database and execute queries and/or updates on the
database once it has been built.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 51

Procedure

1. If your data is not in RDF format, convert your data to RDF using the tools mentioned in Converting Data to
RDF Triples.

2. If your RDF data resides in a single file, save/rename that file to dataset.nt or dataset.nq. This is
required because CGE accepts ONLY files in .nt or .nq formats as input. All other formats should be
converted to either .nt or .nq (including .rdf. On the other hand, if you data resides in more than one file,
create a graph.info file and add the names of your RDF file to that file. An example of the graph.info file
is shown in Building the Internal Representation.

3. Build the database using the cge-launch command as shown below:

$ cge-launch -o pathtoResultsDir -d path -l logfile

In the above statement, pathtoResultsDir is used as an example for the path to the directory that will
contain the results of queries and/or updates, path is used as an example for the path to the database
directory and logfile is used as an example for the log file that will contain the command and server output.

NOTE: pathtoResultsDir MUST be a directory and MUST contain either a triples or quads file.
These files must be named dataset.nt or dataset.nq respectively.

For more information, see the cge-launch(1) man page.

NOTE: When the database has been built, the following files are saved in the database directory:

● dbQuads
● string_table_chars
● string_table_chars.index

Collectively, the aforementioned files are the disk representation of the binary version of the database
which can be reloaded into CGE. When you launch the CGE application again and specify the same
database directory, the dbQuads file will be detected and the compiled database will be read instead
of the RDF. Furthermore, if the database directory contains a rules.txt file, CGE will perform
inferencing on your data. This is because inferencing is turned on by default. It an be turned off by
setting the cge.server.InferOnUpdate NVP parameter to 0.

4. Execute the fe command to launch a web server that provides a user interface and SPARQL endpoints to
CGE.

$ nohup cge-cli fe > web-server.log 2>&1 &

For more information about the fe command, see The fe Command on page 32.

5. To execute a query or update on your database, you can use either the CGE UI or the CGE CLI.

a. To execute queries/updates via the CGE UI, follow the instructions listed below:

1. Launch the CGE UI by pointing your browser at: http://machine:3756∕dataset∕. This brings
up the CGE UI.

2. Select the Query Interface or Update Interface to execute queries and updates correspondingly. For
more information about using these interfaces, see Execute SPARQL Queries and Execute SPARQL
Updates. Optionally, server configuration parameters can also be specified to control your query/
update. See Cray Graph Engine (CGE) Advanced Options for more information.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 52

b. To execute queries/updates via the CGE CLI, use the query, update and sparql commands to
execute SPARQL queries, updates and/or combination of queries and updates correspondingly. For
usage information, see the associated man pages.

Built-in Graph Functions
SPARQL is intrinsically designed to find explicit patterns in graphs, using the basic graph patterns called out in
SPARQL specifications. Often these patterns themselves create a graph that needs to be analyzed in a way that
is not easily implemented with SPARQL’s basic graph patterns. One example of this in the Lehigh University
Benchmark (LUBM) ontology would be to find students who take courses from their advisers, and then find the
shortest path through a social network between specific pairs of those students. Another example is to use
betweenness centrality to find the most “central” (i.e., connecting the most entities not otherwise connected)
entities in a graph, often a social network.

To address this other type of processing, CGE’s SPARQL implementation has been extended to incorporate
graph-function capability. This means that the input to the graph function is a graph, not just a few scalars, such
as numbers or IRIs. This capability includes both the syntax that enables calling of graph functions, and a small
number of built-in graph functions (BGFs) that are callable by any CGE user.

The built-in graph functions included in this release of CGE are:

● Betweenness Centrality: Ranks each vertex by how frequently it is on the shortest path between vertices.

● S-T Connectivity: Finds the shortest path, if one exists, between two vertices in the graph.

● S-T Set Connectivity: Finds the shortest path, if one exists, between a set of vertices designated as sources
and a set of vertices designated as targets.

● Label Propagation: Detects communities in networks and assigns vertices in the graph to communities.

● BadRank: Assigns a “badness” score to all vertices in the graph based on their nearness to known bad
vertices.

Combining Graph Algorithms with SPARQL
CGE provides an infrastructure for calling graph algorithms from within SPARQL queries. A graph algorithm is
called via a CGE-specific SPARQL operator named INVOKE.

It is useful to note the following items:

1. The INVOKE operator cites the name of the graph algorithm being invoked, using an URI notation that is
similar to that used for representing built-in functions in SPARQL.

2. Scalar arguments can be input to the graph algorithm via a parenthesized argument list.

3. The INVOKE clause is always preceded by a SPARQL CONSTRUCT clause, whose function in this context is to
build the graph that is input to the graph algorithm. CGE provides the capability of nesting a CONSTRUCT/
INVOKE clause within a SELECT/WHERE clause. This enables a subquery within a SPARQL query to select or
produce a subgraph, which is used as input to the graph algorithm.

4. The INVOKE clause is immediately followed by a PRODUCING clause, whose function is to bind the results of
the graph algorithm to specific SPARQL variables.

5. While RDF graphs may define many different types of subjects and objects, the CGE graph algorithms treat
them all as homogeneous vertices and do not distinguish between them according to type, with the exception
of functions that explicitly expect some vertices to be distinguished.

6. The CONSTRUCT-INVOKE-PRODUCING combination needs to be nested within a SELECT-WHERE clause.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 53

7. For all CGE-specific built-in graph functions, if the query writer wants to specify a non-default value for an
argument, values for the preceding arguments also need to be specified, even if default values for those
arguments are to be used.

Invocation of a Graph Function
Four SPARQL constructs are involved while invoking graph functions. These include:

● CONSTRUCT
● INVOKE
● PRODUCING
● SELECT-WHERE

The CONSTRUCT Clause
There are three main differences between a standard SPARQL CONSTRUCT clause and the way it is used in CGE
in a CONSTRUCT-INVOKE-PRODUCING combination. These differences are described below:

1. As mentioned above, the CONSTRUCT-INVOKE-PRODUCING combination always appears nested within the
WHERE clause of a SELECT query.

2. While a standard SPARQL CONSTRUCT query returns an RDF graph to the user, the CONSTRUCT clause of a
CONSTRUCT-INVOKE-PRODUCING combination does not return anything to the user; instead the constructed
graph is passed to the graph algorithm as input, and then discarded after the graph algorithm completes
execution.

3. Because the output of the nested CONSTRUCT clause is eventually discarded, CGE relaxes some of the rules
for constructing RDF graphs. In particular, since some graph algorithms expect weighted edges. CGE allows
predicates to be literals inside a nested CONSTRUCT clause.

The INVOKE Clause
In CGE, graph functions are invoked using the CGE-specific INVOKE keyword with the CONSTRUCT query form.
The syntax of the INVOKE keyword is shown below:

INVOKE <http://cray.com/graphAlgorithm.graph_function> (arguments)

In the above example, graph_function is the name of the graph function to be invoked and arguments is a
comma-separated list of arguments to be provided to the graph function. The types and number of arguments in
this list are dependent on the function being invoked.

Using the INVOKE Keyword
SELECT *
 WHERE {
 CONSTRUCT {
 ?s ?p ?o .
 } WHERE {
 ?s ?p ?o .
 }
 INVOKE <http://cray.com/graphAlgorithm.graph_function> (42,0.19,“string”)
 PRODUCING ?varX ?varY
}

In the above example, the INVOKE keyword is used to invoke a graph function named "graph_function” with three
scalar arguments as well as the graph produced by the CONSTRUCT clause.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 54

The PRODUCING Clause
In the Cray Graph Engine (CGE), the invocation of a graph function results in an intermediate result set.
Ultimately, this is what enables graph functions to be composed with other SPARQL operators such as UNION,
ORDER BY, or FILTER, as they also output an intermediate result set. The PRODUCING keyword can be used to
bind the columns of the returned intermediate result set to SPARQL variables. The PRODUCING keyword accepts
a list of SPARQL variable names which will be bound to the columns of the intermediate result set returned by the
INVOKE keyword. Therefore, while using the PRODUCING keyword, it is required to know the following:

● How many columns will exist in the returned intermediate result set

● What set of values each column represents

The syntax of the PRODUCING keyword is shown below:

PRODUCING ?varA ?varB

In the above statement, ?varA and ?varB are the variables specified by the PRODUCING operator to be bound
to columns of the returned vectors of results.

Using the PRODUCING Clause
The community detection algorithm returns two columns of information. Information contained in these columns is
described below:

● The first column contains each of the vertex IDs of the graph that was sent to the algorithm.

● The corresponding entry in the second column contains an integer that represents the identity of the
community to which that vertex was assigned.

Thus the PRODUCING clause would specify variables that the query author chose to reflect the two vectors of data
being returned, as shown in the following query snippet:

…
INVOKE <http://cray.com/graphAlgorithm.community>()
PRODUCING ?vertexID ?communityID
…

Inputs to the Graph Function
Three types of inputs to a graph algorithm are possible:

1. The graph itself – Each graph function expects input to come from the output of the preceding CONSTRUCT
operator.

2. Scalar inputs – Scalar values can be passed to the graph algorithm via a parenthesized list in the INVOKE
clause.

3. Vector inputs – Sets of values can be input to the graph algorithm by adding them to the graph that the
CONSTRUCT operator builds. Generally these inputs are distinguished in the input graph by a triple with a type
predicate and a special type object.

In the following example, the Bad Rank algorithm expects to receive a set of vertex IDs of vertices considered to
be “spam” (it could represent some other undesirable attribute). Note that the WHERE clause associated with the
CONSTRUCT clause includes a VALUES clause, that names a set of vertices that are to be considered spam by the
Bad Rank algorithm. That set of vertices is added to the CONSTRUCT clause’s graph as a set of triples with a
rdf:type predicate and the special object “cray:spamNode”. The scalar argument list of the INVOKE clause also
specifies that this “cray:spamNode” object is to be used for identifying spam vertices. Similarly, a vector input to
the graph algorithm can already be present in the database.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 55

Using Vector Inputs for Graph Algorithm
PREFIX <cray: http://cray.com>
SELECT ?vertex ?ranking
{
 CONSTRUCT{
 ?sub ?pred ?obj .
 ?badNode a cray:spamNode .
 }
 WHERE {
 {
 ?sub ?pred ?obj .
 } UNION {
 VALUES ?badNode {
 <http://www.Department5.University0.edu/Course34>
 <http://www.Department6.University0.edu/GraduateCourse34>
 <http://www.Department14.University0.edu/GraduateCourse31>
 <http://www.Department5.University0.edu/Course34>
 <http://www.Department10.University0.edu/GraduateCourse25>
 <http://www.Department11.University0.edu/Course11>
 <http://www.Department13.University0.edu/GraduateStudent87>
 }
 }
 }
 INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01, cray:spamNode)
 PRODUCING ?vertex ?ranking
}
ORDER BY DESC (?ranking)
LIMIT 100

The above example shows the invocation of the Bad Rank algorithm with a set of spam vertices present in the
input graph.

Sequence of Operators
The PRODUCING operator needs to immediately follow the INVOKE operator, which in turn needs to immediately
follow the WHERE clause containing the CONSTRUCT operator. The CONSTRUCT-INVOKE-PRODUCING
combination should always appear as a nested subquery inside a SELECT clause’s associated WHERE clause.
Graph algorithms, like SELECT clauses themselves, can be nested arbitrarily deep in a query. Hence the
sequence of operators that are involved in calling a graph algorithm is:

1. CONSTRUCT-WHERE
2. INVOKE
3. PRODUCING
4. SELECT-WHERE

NOTE: As mentioned earlier, the graph that is created by the CONSTRUCT clause that is part of a
CONSTRUCT-INVOKE-PRODUCING combination is never produced as output of the query; it is thrown
away after it is used as input to the graph algorithm. If you want to see the graph that this CONSTRUCT
clause builds, you must write a separate CONSTRUCT query.

Example: Sequence of Operators
The following example illustrates the use of both spam and non-spam vertices with Bad Rank:

PREFIX cray: <http://cray.com>
SELECT ?vertex ?ranking {

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 56

 CONSTRUCT {
 ?sub ?pred ?obj .
 } WHERE{
 {
 ?sub <http://bgf/isLinked> ?obj .
 ?sub <http://bgf/hasWeightLink> ?weightURI .
 ?obj <http://bgf/hasWeightLink> ?weightURI .
 ?weightURI <http://bgf/hasWeight> ?pred
 } UNION {
 ?sub <http://bgf/hasClassification> <http://bgf/spam> .
 BIND (<http://bgf/hasClassification> as ?pred) .
 BIND (<http://bgf/spam> as ?obj)
 } UNION {
 ?sub <http://bgf/hasClassification> <http://bgf/nonspam> .
 BIND (<http://bgf/hasClassification> as ?pred) .
 BIND (<http://bgf/nonspam> as ?obj)
 }
 }
 INVOKE cray:graphAlgorithm.badrank (0.0001, .84, 0.01,
 <http://bgf/spam>, <http://bgf/nonspam>, <http://bgf/hasClassification>)
 PRODUCING ?vertex ?ranking
}
ORDER BY DESC (?ranking)
LIMIT 100

Betweenness Centrality

URI and scalar arguments
<http://cray.com/graphAlgorithm.betweenness_centrality> (st_vx_ct, normalize)

In the above URI, st_vx_ct and normalize are used as examples and are explained later in Inputs and
Default Values.

Description
This is the CGE-specific implementation of the classical vertex-betweenness-centrality algorithm. This algorithm
assigns each vertex a numerical score. Take a given vertex V. In full generality, its betweenness score is defined
to be the sum (over all other pairs of vertices) of the ratio of the number of shortest paths between that pair that
go through V, over the total number of shortest paths between that pair. Thus it measures a sort of “importance” of
each vertex, in terms of the shortest paths to other vertices that pass through it.

Inputs and Default Values
● Vector inputs - None

● Scalar inputs - None

● Input Graph - The input graph to the Betweenness centrality function is expected to contain triples of the
form (vertex1, weight, vertex2) where weight is an integer. The following table describes the inputs that may
be provided to the INVOKE keyword to invoke the Betweenness Centrality function.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 57

Parameter Description Default Value

st_vx_ct The st_vx_ct parameter can either be an integer or a
decimal.

● If the starting_vertex_ctl parameter is an integer,
it represents how many starting vertices should be used
when approximating the betweenness score of every
vertex in the graph.

● If the starting_vertex_ctl parameter is a decimal,
it should be between 0.0 and 1.0. If a decimal
argument is used, the decimal value will represent the
fraction of the graph's vertices, randomly chosen, that
will be used as starting vertices for approximating the
betweenness scores. A value of 1.0 (the default)
specifies that every vertex in the graph will be used as a
starting vertex.

1.0

normalize The normalize parameter specifies whether or not the
betweenness scores should be normalized. The acceptable
values for this parameter are 0 and 1, where 1 specifies that
betweenness scores should be normalized.

Normalizing the scores means to subtract from the
betweenness score of each vertex the minimum
betweenness score and then divide that partial result by the
difference between the maximum and minimum
betweenness scores found among all the vertices.
Normalized scores will be between 0.0 and 1.0.

1

Outputs
A call to the Betweenness Centrality function returns a two-column intermediate result set. The first column
contains the vertex identifier (URI), whereas the second column contains the centrality score of the vertex. In
other words, each row of the output result set pairs a vertex’s ID with a double-precision floating-point value
representing the centrality score for that vertex.

Example: Betweenness Centrality
PREFIX cray: <http://cray.com>
SELECT ?vertices ?scores
WHERE {
 CONSTRUCT {
 ?sub ?pred ?obj .
 } WHERE{
 ?sub ?pred ?obj .
 }
 INVOKE cray:graphAlgorithm.betweenness_centrality(.01,1)
 PRODUCING ?vertices ?scores
}
ORDER BY DESC(?scores)

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 58

S-T Set Connectivity

URI
http://cray.com/graphAlgorithm.st_set_connectivity

Inputs and Default Values
● Scalar inputs - None.

● Vector inputs - The S-T Set Connectivity function accepts input of a set of vertices designated as sources and
a set of vertices designated as targets. These are added to the constructed graph using the
<http:∕∕cray.com∕sourceVertex> and <http:∕∕cray.com∕targetVertex> URIs, as well as the
standard RDFS predicate <http:∕∕www.w3.org∕1999∕02∕22-rdf-syntax-ns#type>, which may be abbreviated as
“a” in a SPARQL query.

Subject Predicate Object

Source vertex identifier a <http:∕∕cray.com∕sourceVertex

Target vertex identifier a <http:∕∕cray.com∕targetVertex>

Outputs
A call to the S-T Set Connectivity function returns an intermediate result set containing a single integer. The
values and meaning of this integer are described below:

● If the integer’s value is 0, there is no path between any pair of vertices with the source vertex taken from the
source set and the target vertex taken from the target set.

● If the value is greater than 0, it represents the number of hops in the shortest path between any such pair of
vertices.

IMPORTANT: The S-T Set Connectivity function will return an error in the following cases:

1. Nonexistence of input source and/or target vertex

2. Invalid input source and/or target vertex

3. Nonexistence of input source and/or target vertex in the input edge list

Example: S-T Set Connectivity
The following example selects all of the edges from the default graph from the default graph and calls S-T Set
Connectivity on the resulting graph.

PREFIX cray: <http://cray.com/>
SELECT ?distance
WHERE {
 CONSTRUCT{
 ?sub ?pred ?obj .
 ?srcNode a cray:sourceVertex .
 ?trgNode a cray:targetVertex .
 }
 WHERE{
 {
 ?sub ?pred ?obj .
 }

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 59

 UNION {
 VALUES ?srcNode
 {
 <http://bgf.org/c/03/i/000000>
 <http://bgf.org/c/05/i/000000>
 <http://bgf.org/c/08/i/000003>
 }
 }
 UNION {
 VALUES ?trgNode
 {
 <http://bgf.org/c/05/i/000001>
 <http://bgf.org/c/08/i/000007>
 }
 }
 }
 INVOKE cray:graphAlgorithm.st_set_connectivity()
 PRODUCING ?distance
}

S-T (Source – Target) Connectivity

URI
<http://cray.com/graphAlgorithm.st_connectivity>

Description
The S-T Connectivity function calculates the length of the path between two vertices, if one exists.

Inputs and Default Values
● Vector inputs - None.

● Scalar inputs - The input graph to the S-T Connectivity function is expected to contain triples of the form
(vertex1, predicate, vertex2) where the value of predicate is ignored. The S-T Connectivity function requires
two scalar input arguments, which are the IRIs of the two vertices under consideration, source and target,
respectively. This is illustrated in the example below:

INVOKE <http://cray.com/graphAlgorithm.st_connectivity>
(<urn:mySourceVertex>, <urn:myTargetVertex>)

In the above example, <urn:mySourceVertex> and <urn:myTargetVertex> are the IRIs of the source
and target vertices, respectively.

Outputs
The following example culls needed edges from the default graph and calls S-T Connectivity on the resulting
graph.

Example: S-T Connectivity
PREFIX cray: <http://cray.com/>

SELECT ?nHops
WHERE {

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 60

 CONSTRUCT {
 ?v1 ?p ?v2 .
 } WHERE {
 SELECT ?v1 ?v2 ?p
 WHERE {
 ?v1 <urn:hasLink> ?v2 .
 BIND(<urn:path> AS ?p)
 }
 }
 INVOKE cray:graphAlgorithm.st_connectivity(<http://ga.org/string#000/
vertex#00000001>,
 <http://ga.org/string#000/vertex#00200000>)
 PRODUCING ?nHops
}

Label Propagation Argument Descriptions

URI
<http://cray.com/graphAlgorithm.label_propagation>

Description
The Label Propagation algorithm is used for detecting communities in networks and assigns vertices in the graph
to communities. Each vertex is initially assigned to its own community. At every step, each vertex looks at the
community affiliation of all its neighbors, and updates their state to the mode community affiliation. The mode
community affiliation takes into account the edge weights.

The Label Propagation algorithm is relatively inexpensive, but convergence is not guaranteed.

Inputs and Default Values
The input graph to the Label Propagation function is expected to contain triples of the form (vertex1, weight,
vertex2), where weight is an integer.

Input Default Value

The number of steps that the algorithm executes.
Currently an early exit is not included if convergence is
detected. Therefore, the algorithm executes the number
of steps specified in the input.

20

Outputs
A call to the Label Propagation function returns an array of vertex IDs paired with an array of community IDs
These IDs can be used to identify which community each vertex was assigned to.

Example: Label Propagation
PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?vertex ?comm
WHERE{
CONSTRUCT {

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 61

 ?sub ?weight ?obj .
} WHERE {
 ?sub <http://wga/isLinked> ?obj .
 ?sub <http://wga/hasWeightLink> ?weightURI .
 ?obj <http://wga/hasWeightLink> ?weightURI .
 ?weightURI <http://wga/hasWeight> ?weight
}
INVOKE cray:graphAlgorithm.label_propagation(5)
PRODUCING ?vertex ?comm
}
ORDER BY ?comm

Bad Rank Argument Descriptions

URI
<http://cray.com/graphAlgorithm.badrank>

Inputs and Default Values
● Scalar inputs - None.

● Vector inputs - The Bad Rank algorithm accepts input designation of a set of vertices that are known to be
“bad”, and optionally a set of vertices that are known to be "trusted", within the main input graph. This code
can take three scalar arguments of type double.

Input Default Value

The threshold of the maximum difference between per-
vertex Bad Rank results from successive iterations of
the algorithm below, which the algorithm will terminate.

0.0001

The probability that the next step in a (random) walk will
be followed.

0.84

The probability that a random walk will take a next step
to a bad vertex.

0.01

The URI that designates the object field of a triple that
identifies a spam vertex

<http://cray.com/spamVertex>

The URI that designates the object field of a triple that
identifies a non-spam, or trusted vertex.

<http://cray.com/nonspamVertex>

The URI that designates the predicate field of a triple
that identifies either a spam or a non-spam vertex.

Defaults to the standard RDFS type predicate, <http://
www.w3.org/1999/02/22-rdf-syntax-ns#type> The
above can be abbreviated in a SPARQL query as “a”.

The indicator that specifies whether or not
normalization should be applied to results. Acceptable
values for this parameter are 0 and 1.

1. If the default value is used, the scores are all
mapped to floating point numbers between 0.0 and
1.0, with the maximum value found mapping to 1.0,
the minimum score found mapping to 0.0, and other
scores mapping between those values proportionately.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 62

Input Default Value

If the value is set to 0, results will not be normalized
and will be presented as Bad Rank computed them.

Outputs
Bad Rank produces a two-column intermediate result that can be thought of as a set of pairs. The first item in
each pair is the identifier of a vertex, whereas the second is the double-precision Bad Rank value of the vertex.

Mechanisms to Interact with the Cray Graph Engine (CGE) Database

 63

Cray Graph Engine (CGE) Security Mechanisms
The CGE query engine protects the port on which it communicates with clients using an encrypted authentication
mechanism based on the Secure Shell (SSH) passwordless authentication mechanism. Before using the CGE
user interface query clients to make requests on data sets, authentication must be configured. If it is required to
set up the query engine to permit multiple users to execute requests, it will be required to configure public keys for
each user. This can be configured on a per-data set or all data sets basis.

Grant Basic Access to Owned Query Engines

About this task
The Cray Graph Engine (CGE) query engine and CGE CLI commands use your SSH configuration to obtain
public and private keys for use in authentication. Configuring basic query engine authentication is almost the
same as configuring SSH passwordless authentication to the localhost IP host for your login account. The steps
involved in granting basic access to your query engine are listed below:

Procedure

1. Ensure that you have a .ssh directory in your home directory and that the directory permissions are 700
(rwx------).

To find out whether you have a .ssh directory, and whether or not it is correctly protected, use the following
command:

$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

If this looks correct you can move on to the next step. If the directory does not exist at all, you will need to
create it, as shown below:

$ mkdir $HOME/.ssh
$ chmod 700 $HOME/.ssh
$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

If the directory does not have the correct permissions, you can simply change those. However, it is important
to ensure that the directory is writable only by you. As long as this requirement is met, you do not need to
change anything. The following command can be used if it is requried to set the permissions on the directory:

$ chmod 700 $HOME/.ssh
$ ls -ld $HOME/.ssh
drwx------ 6 username group 204 Nov 20 07:15 /users/username/.ssh

2. Create a public / private authentication key pair using ssh-keygen if the key pair does not currently exist.
Use the following command to find out whether or not you already have a public / private key pair configured.

Cray Graph Engine (CGE) Security Mechanisms

 64

NOTE: The following shows only key files (you will probably have other files as well unless this is a
brand new .ssh directory):

$ ls -l $HOME/.ssh
total 80
-rw------- 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id_dsa.pub
-rw------- 1 username group 883 Apr 8 2014 id_rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

In the above example you may have only an RSA key pair (id_rsa and id_rsa.pub) only a DSA key pair
(id_dsa and id_dsa.pub) or both. A file with ".pub" in its name is a public key file. A file without ".pub" in
its name is a private key file. All of your private key files should have -rw------- for their permissions as
shown above. Your public key files may be readable (not writable) by anyone, but do not need to be, so the
permissions shown above are okay, but not required. The minimum permission set that should be used is -
rw------- , this enables reading and modifying the file. The maximum permission set should have -rw-
r--r-- , which permits other users to read but not modify the public key. If there is not even a single public/
private key pair in the .ssh directory, it will be needed to generate an SSH key. This can be done using the
ssh-keygen command:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/users/username/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /users/username/.ssh/id_rsa.
Your public key has been saved in /users/username/.ssh/id_rsa.pub.
The key fingerprint is:
eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host
The key's randomart image is:
+--[RSA 2048]----+
| . . |
| + + * o |
| + + B = o . |
| o . + = . . |
| . . S + . |
| |
| E o |
| . o |
| . . |
+--[MD5]----------+
$ ls -l $HOME/.ssh
total 8
-rw------- 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

This produces a public / private key pair which can be used for passwordless authentication to localhost.

NOTE: At present, CGE does not support ssh-agent forwarding, so we do not recommend that you
specify a pass-phrase when creating your key.

3. Place your public authentication key in your .ssh/authorized_keys file. This will allow you to interact with
CGE query engines started by you on this machine (it does not allow other users to use your query engines).
Set this up as follows:

$ cat $HOME/.ssh/id_*.pub >> $HOME/.ssh/authorized_keys
$ chmod 644 $HOME/.ssh/authorized_keys
$ ls -l $HOME/.ssh
total 80
-rw-r--r-- 1 username group 2601 Jun 18 2014 authorized_keys
-rw------- 1 username group 668 Apr 8 2014 id_dsa
-rw-r--r-- 1 username group 601 Apr 8 2014 id_dsa.pub
-rw------- 1 username group 883 Apr 8 2014 id_rsa
-rw-r--r-- 1 username group 221 Apr 8 2014 id_rsa.pub

Cray Graph Engine (CGE) Security Mechanisms

 65

4. Test using ssh to log into localhost without a password. The simplest way to test this is to try connecting to
localhost through SSH. This will cause you to log in to the same host you are logged into currently again:
$ ssh localhost
The authenticity of host 'localhost (::1)' can't be established.
ECDSA key fingerprint is 0a:34:d6:d9:71:b4:6c:e6:1d:49:95:ea:7d:09:54:89 [MD5].
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.
Last login: Tue Jan 6 11:56:10 2015 from localhost

Message of the day...

$ exit

As you can see, the first time you do this, you will be prompted to verify that the key for localhost is correct.
You will also be prompted like this the first time you try to connect with a query engine with a new TCP/IP port
number, so it is a good idea to do an interactive query or other kind of front-end command before trying to use
a new query engine port from a script or other automated environment. Once you have verified the
authenticity of the host / port pair, this pair will be added automatically to your list of known hosts and you
should not need to do this again.

NOTE: To avoid the need for performing the interactive Host Key verification step, see Eliminating the
Interactive Host Key Verification

To show that this works, try a second attempt to use SSH to log into localhost:

$ ssh localhost
Last login: Tue Jan 6 11:56:10 2015 from localhost
--
-
Message of the day...
--
-
$ exit
$

5. Once you have set this up, you need to authenticate the localhost / <port number> pairs for all of your
query engine ports so that the clients can connect non-interactively. To do this, start CGE on each port you
intend to use and run an interactive request through CGE, once for each port. The cge-cli echo
command provides a simple way of doing so, as shown below:
$ cge-cli echo --db-port=73737
The authenticity of host 'localhost' can't be established.
RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.
Are you sure you want to continue connecting? [Yes/No]: yes
13835 [main] WARN com.cray.cge.cli.communications.client.ssh.LoggingBridge - Permanently added 'localhost' (RSA) to the list of
known hosts.
14110 [main] INFO com.cray.cge.cli.commands.debug.EchoCommand - Sending echo request...
14157 [main] INFO com.cray.cge.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated successfully

NOTE: To avoid the need for performing the interactive Host Key verification step, see Eliminating the
Interactive Host Key Verification

Eliminating the Interactive Host Key Verification
The SSH protocol uses the host key to authenticate the server to the client, which is of particular importance
when the client will be sending confidential data (passwords, for example) to the server. Since the SSH protocol
used by CGE does not permit the use of passwords, and the clients do not generally send other secrets to CGE,
there is no real need for the client (and the invoking user) to verify that the host key is the one that the user trusts.

By default, the CGE CLI commands require explicit first time verification of host keys, as you have seen in the
examples above. There is, however, a setting that you can set in your cge.properties file(s) that will
cause the CGE CLI commands to consider any host key as trusted. This eliminates the need for a first-time
interactive CLI command each time you start using a server on a new TCP/IP port number, and streamlines the
process of connecting to a new instance CGE.

Cray Graph Engine (CGE) Security Mechanisms

 66

To add this setting, make sure that all appropriate cge.properties files contain the following line:

cge.cli.trust-keys=true

The same behavior can be achieved by adding the --trust-keys option to any of the CGE CLI commands.

IMPORTANT: While implicitly trusting host keys for CGE is generally a safe practice, in the case where
your data set contains actual confidential data, and you are using the CGE CLI clients to update the data
set with new confidential data, you want to be certain that there is nothing other than CGE itself listening
to the contents of your updates. In that case, the host key is an important part of ensuring that there is
nothing between you and your CGE instance. This is not expected to be a common case among CGE
users, but if your use of CGE falls into this category, it is recommended not to use the mechanisms
described here.

Create a CGE Specific RSA/DSA Host Key

About this task
At some sites, site policy may dictate the use of a pass phrase with SSH keys used for logging into a system. If a
pass phrase is used when creating your SSH key, the CGE authentication mechanism will be unable to use your
SSH key(s) as its host key(s), so separate CGE specific host key(s) will need to be created. To do this, follow the
instructions listed below:

Procedure

Instead of creating the key in your .ssh directory, create the key in your .cge directory using ssh-
keygen(1) as before:

$ mkdir -p $HOME/.cge
$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/users/username/.ssh/id_rsa): /users/username/.cge/id_rsa
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /users/username/.cge/id_rsa.

Your public key has been saved in /users/username/.cge/id_rsa.pub.
The key fingerprint is:
eb:0d:10:cd:4f:4b:f1:2b:20:87:99:82:93:b5:8d:ee [MD5] username@host
The key's randomart image is:
+--[RSA 2048]----+
| . . |
| + + * o |
| + + B = o . |
| o . + = . . |
| . . S + . |
| |
| E o |
| . o |
| . . |
+--[MD5]----------+
$ ls -l $HOME/.cge
total 8
-rw------- 1 username group 1679 Jan 6 11:49 id_rsa
-rw-r--r-- 1 username group 391 Jan 6 11:49 id_rsa.pub

Once this has been done, CGE will use the keys in the .cge directory instead of the ones in the .ssh
directory and you should have no further problems with pass phrases.

Grant Other Users Access to Owned Query Engine
The Cray Graph Engine (CGE) can protect the contents of your data sets from view/modification by unauthorized
users via CGE instances that you run. Regardless of this protection, you must protect the raw data in your data
sets using traditional Linux file protection, otherwise users who have access to your data can start their own query
engine, using your data without your knowledge. To ensure that only users you authorize gain access to your

Cray Graph Engine (CGE) Security Mechanisms

 67

data, it is best to set the permissions on each directory containing a data set to permit access (read, write and
execute/search) only by its owner, and then to set the permissions on the files in the directory to permit access
(read and write) only to their owners.

As the owner of a running instance of a CGE, you can control the list of users to whom you grant access. There
are two modes of granting access to other users:

● Access to a single data set

● Access to any data set you provide

A key first step to any of this is protecting your data sets from being used under some other user's instance of
CGE. If a user can run her own instance of CGE using your data, then you have no further control. So, if you
want to control access to your data sets, make sure they are protected against access by users other than you.
By setting the permissions on the data directory for the data set to rwx------ you achieve this by preventing
other users from looking in that directory for files. If you don't care about other users running their own instances
of CGE using your data, you may set these permissions any way you like.

Assuming you have protected your data sets against other users, now you can grant individual users access to
them. Regardless of whether you want to grant access to one or all data sets, you need the contents of each
user's public key file from that user's .ssh directory. The user can follow the steps for setting up keys shown
above if she does not have them yet. It is okay for the user to send you the public key(s) via e-mail, or any other
method (including letting you copy them from the files yourself). What you will do with them is append them to an
appropriate authorized_keys file (as described below).

IMPORTANT: Remember that any user trying to connect with your server will need to authenticate your
server as described in Grant Basic Access to Owned Query Engines or configure the CLI to trust Host
Keys as described in Eliminating the Interactive Host Key Verification.

Ask your users to do the following after you have granted them access:

$ cge echo --db-port=73737
The authenticity of host localhost' can't be established.
RSA key fingerprint is d2:b4:ad:70:f1:44:d3:8a:f5:16:db:db:76:07:19:47.
Are you sure you want to continue connecting? [Yes/No]: yes
13835 [main] WARN com.cray.cge.communications.client.ssh.LoggingBridge - Permanently added 'localhost' (RSA) to the
list of known hosts.
14110 [main] INFO com.cray.cge.sparql.cli.lightweight.commands.debug.EchoCommand - Sending echo request...
14157 [main] INFO com.cray.cge.sparql.cli.lightweight.commands.debug.EchoCommand - Echoed data received and validated
successfully

NOTE: It is important to note that you should NEVER add another user's public key to your
$HOME/.ssh/authorized_keys file. Doing so will allow the user to login as you.

In the following example, it is assumed that /lus/scratch/username/lubm0 contains one of your data sets:

$ ls -ld /lus/scratch/username/lubm0
drwxr-xr-x 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubm0
$ chmod og-rwx /lus/scratch/username/lubm0
$ ls -ld /lus/scratch/username/lubm0
drwx------ 2 username group 4096 Oct 20 14:23 /lus/scratch/username/lubm0
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ chmod og-rwx /lus/scratch/username/lubm0/*
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw------- 1 username group 221 Jan 6 13:13 authorized_keys
-rwx------ 1 username group 3321856 Oct 9 11:52 dbQuads
-rwx------ 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw------- 1 username group 8192 Oct 9 11:52 string_table_chars.index

Now this data set can only be used by instances of the query engine that you start yourself. Other users wanting
access will need to connect with a client and will be subject to client authentication.

Cray Graph Engine (CGE) Security Mechanisms

 68

Grant Other Users Access to One of the Owned Data Sets
To grant a user access to one of your data sets, all you need to do is put the user's public key in the
anauthorized_keys file in the same directory where your data set resides, as shown in the following example:
$ ls -l /lus/scratch/username/lubm0/
total 4792
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ cat my_friend_id_rsa.pub >> /lus/scratch/username/lubm0/authorized_keys
$ ls -l /lus/scratch/username/lubm0/
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
-rwxr-xr-x 1 username group 3321856 Oct 9 11:52 dbQuads
-rwxr-xr-x 1 username group 1568768 Oct 9 11:52 string_table_chars
-rw-r--r-- 1 username group 8192 Oct 9 11:52 string_table_chars.index
$ cat /lus/scratch/username/built_lubm0/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAxp7+CpYHL44jmuWeGXEMy+ijE/
X72f70YL8neITsR5gotXCIZh9V0G9ar8mNDlkoshN7Jp1qiRrQjYNy93hs9BBCz9kA5V9PhGC59qypEhNovYRo48lsUvTmHK0RWOVLfIZKNCkLVmbQubmEzM0FfUoY/ifNbTfrV4yGH2PNA4k= my_friend@myhost

Once you have done this, the user 'my_friend' will have access to this data set only and not to all of your data
sets. You can copy the authorized_keys file to any other data set you want to grant access to, and edit it as
needed.

Grant Other Users Access to All of the Owned Data Sets
If you do not need to restrict access to specific data sets to a particular user, it is simpler to grant that user access
to all of your data sets in one authorized_keys file. CGE uses a directory located at $HOME/.cge that allows
you to set up configuration files that apply to all of your data sets. By creating an authorized_keys file in this
directory and putting authorized public keys in that file, you can grant access to all of your data sets, as shown in
the following example:
% mkdir -p $HOME/.cge
$ chmod o-w,g-w $HOME/.cge
$ cat my_friend_id_rsa.pub >> $HOME/.cge/authorized_keys
$ ls -l $HOME/.cge
total 4796
-rw-r--r-- 1 username group 221 Jan 6 13:13 authorized_keys
$ cat $HOME/.cge/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAxp7+CpYHL44jmuWeGXEMy+ijE/
X72f70YL8neITsR5gotXCIZh9V0G9ar8mNDlkoshN7Jp1qiRrQjYNy93hs9BBCz9kA5V9PhGC59qypEhNovYRo48lsUvTmHK0RWOVLfIZKNCkLVmbQubmEzM0FfUoY/ifNbTfrV4yGH2PNA4k= my_friend@myhost

Now the user my_friend will have access to all of your data sets.

Cray Graph Engine (CGE) Security Mechanisms

 69

Cray Graph Engine (CGE) Extension Functions
CGE provides a number of extension functions, including:

● Interval analytics functions. See Cray Graph Engine (CGE) Interval Analytics Functions on page 70 for more
information.

● Haversine functions. See Cray Graph Engine (CGE) Haversine Functions on page 74 for more information.

● Square root function. See Cray Graph Engine (CGE) Square Root Function on page 74 for more
information.

Cray Graph Engine (CGE) Interval Analytics Functions

Intervals
An interval is defined as the sequence between any two variables of compatible atomic types, where one defines
the start of the interval and the other defines the end of the interval. The interval is inclusive of the start and end.

Intersecting and Non-Intersecting Intervals
Two or more intervals are said to be intersecting if there is an interval in time during which all of the intervals
under consideration are present. More precisely, intersecting time intervals are those where the latest start time is
less than the earliest end time, i.e., no period has ended before the last period to begin, has started. This period is
termed as an intersection and starts at the beginning of the last interval to start and ends at the end of the first
interval to end.

On the other hand, non-intersecting time intervals are those where a period has ended before the last period to
begin has started, as illustrated in the following figure:

Cray Graph Engine (CGE) Extension Functions

 70

Figure 11. Intersecting Intervals

Continuous and Non-Continuous Intervals
Two or more intervals are said to be “continuous” if there is at least one interval present during the complete span,
from the start of the first interval to start, to end of the last interval to end. In non-continuous intervals, at least one
gap (period within which no intervals are present) is present between the intervals under consideration. This is
illustrated in the following figure:

Figure 12. Continuous Period With Non-Intersecting Intervals

Cray Graph Engine (CGE) Extension Functions

 71

Figure 13. Non-Continuous Period with Non-Intersecting Intervals

Using Interval Analytics Functions For Temporal Analysis
Interval functions can be used to gather fine-grained detail about intervals. For example, they can be used to:

● Determine if a time period that ends at the same time is contiguous with one that starts at the same time.

● Determine whether or not two or more time intervals intersect.

● Determine the continuity of a given time period.

Function Prefix
The prefix to use when using interval functions in queries is:

PREFIX arq: <http://jena.hpl.hp.com/ARQ/function#

List of Interval Analytics Functions
NOTE: The names of all the CGE interval functions are case-sensitive. Interval functions work with any
type that has a < comparison, e.g., numerics and strings.

The list of CGE-specific interval analytics functions, their syntax and description is provided in the following table:

Table 12. List of CGE-specific Interval Functions

Function Description

listmin(element1, elementN) This function returns the smallest item in the comma-
separated list of items provided as arguments.

listmax(element1, elementN) This function returns the largest item in the list of
arguments.

iscontinuous(start1,end1,... startN, endN) This is a pairwise function that accepts a list of
comma-separated list of start and end times and
determines whether or not there is a gap between the
intervals under consideration.

Cray Graph Engine (CGE) Extension Functions

 72

Function Description

● True when there is complete coverage from
earliest starting time to latest end time, i.e. there
are no gaps in the coverage.

● False if there is any gap in the coverage

isintersecting(start1, end1, startN,
endN)

This is a pairwise function that determines whether or
not there is a period within which all the intervals
under consideration are present. This function
returns:

● True when there is an interval where all intervals
are present.

● False if there is no interval when all intervals are
present

duration(startTime, endTime) This function uses the Unix epoch and time functions
to calculate the duration between the start and end
times, which are provided as arguments. This
function returns the xsd:dayTimeDuration between
startTime and endTime.

NOTE: This function only accepts dates
starting from July 5, 1776.

NOTE: Although the listmin(), listmax(), iscontinuous() and isintersecting() functions
support all SPARQL compatible types, the arguments provided to these function should all be of
compatible atomic types, otherwise an xsd_error will be returned. Furthermore, the duration()
function will return an xsd_error in the following cases:

● Either of the arguments are not of type xsd:dateTime

● The sum of (duration(xsdDate1, xsdDateTime2) - duration(xsdDateTime2, xsdDate1)) will not
be zero. This is because xsdDate is defined to span 24 hours (for standard days), and it is assumed
that the start time is at the beginning of the day, and the end time is at the end of the day

There are a few important items to note when using the interval analytics functions:

● The interval analytic functions do not fully support the xsd:date and xsd:time data types and may return
incorrect results; users should avoid these two types.

● Comparisons of xsd:date and xsd:dateTime within the same day may return unexpected results.
xsd:date and xsd:dateTime comparisons are supported outside of the 14 hour time zone range and the
24 hour day span of xsd:date.

● xsd:date results are now included when filtering on xsd:dateTime (outside the same day) and vice versa
(xsd:dateTime results when filter on xsd:date). If strict xsd:dateTime results (or xsd:date results) are
required, the appropriate data type filter should be added.

Cray Graph Engine (CGE) Extension Functions

 73

● The duration() function supports combinations of xsd:date and xsd:dateTime. If an xsd:date result is
the start time, the duration will start at the beginning of the day. Similarly, if the xsd:date result is the end
time, the duration will end at the end of the day.

Cray Graph Engine (CGE) Haversine Functions
CGE supports the haversinemeters() and haversinemiles() functions to enable support for spatially aware
applications. These functions are based on the Haversine formula, which is an equation that calculates the great-
circle distance between two points on a sphere from the longitudes and latitudes of the two points. For more
information, visit http://en.wikipedia.org/wiki/Haversine_formula.

The syntax of CGE Haversine functions is shown below:

● afq:haversinemeters(latStart, longStart, latEnd, longEnd)
● afq:haversinemiles(latStart, longStart, latEnd, longEnd)

NOTE: The haversinemeters() and haversinemiles() functions are case sensitive.

Inputs
Both the CGE haversinemeters() and haversinemiles() functions accept the following inputs in
xsd:decimal, xsd:double and xsd:float formats:

● atStart – The starting position of the latitude (dimensions of the values in degrees)

● longStart – The starting position of the longitude (dimensions of the values in degrees)

● latEnd – The ending position of the latitude (dimensions of the values in degrees)

● longEnd – The ending position of the latitude (dimensions of the values in degrees)

Acceptable latitude values range from -90 to 90, whereas acceptable longitude values range from -180 degrees
to 180 degrees.

NOTE: Important: The functions will return an empty value if:

● Invalid position coordinates are provided

● Empty input values are provided

● Insufficient parameters are provided.

Output
The haversinemeters() function returns the distance between two points in meters, whereas the
haversinemiles() function returns the distance between two points in miles.

Function Prefix
The prefix to use when using CGE Haversine functions in queries is:

PREFIX afq: <http://jena.hpl.hp.com/ARQ/function#>

Cray Graph Engine (CGE) Square Root Function
The square root function, sqrt() is used to retrieve the square root of the specified number

Cray Graph Engine (CGE) Extension Functions

 74

http://en.wikipedia.org/wiki/Haversine_formula

Syntax
The syntax of the square root function is:

sqrt(argument)

NOTE: The name of the sqrt()function is case sensitive.

Function Prefix
The prefix to use when using the sqrt()function in queries is:

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>

Table 13. CGE Square Root Function's Examples

Argument Type Example

Integer PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt("9223372036854775807"^^ <http://www.w3.org/2001/XMLSchema#integer) AS ?a) }

Decimal PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(4294967296.0) AS ?a) }

Float PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt ("3.4E38"^^xsd:float) AS ?a) }

Double PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt("1.797E308"^^xsd:double) AS ?a) }

Boolean PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a { BIND (afn:sqrt(true) AS ?a) }

NOTE: Passing “true” as the Boolean argument returns 1, whereas
passing “false” as the Boolean argument returns 0.

NOTE: The sqrt() function will return an empty value if a negative number is provided as an argument.
Furthermore, the sqrt() function will return an empty value if arguments of certain types are used.
These argument types include:

● xsd:dateTime

● String

● IRI

● Arbitrary data type

You can also use derived data types as arguments to the sqrt()function, as shown in the following query:

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?a{ BIND (afn:sqrt ("18446744073709551615"^^<http://www.w3.org/2001/XMLSchema#positiveInteger>) AS ?a) }

NOTE: Executing the sqrt() function when a negative derived type is used as an argument will result in
an empty value.

Cray Graph Engine (CGE) Extension Functions

 75

Cray Graph Engine (CGE) Property Path Support
CGE does not natively support the SPARQL 1.1 property paths feature, however it does support certain types of
property paths.

NOTE: CGE’s property path support should be used with care. This support is disabled by default and
must be explicitly enabled by the user. Contact Cray Support for additional information.

● Simple Property Paths - By default simple property paths that are equivalent to simple fixed length Basic
Graph Patterns (BGPs) are supported, this means that property paths consisting of only the sequence / and
inverse ^ operators are permitted since these can be written out as a simple BGP using blank node variables.
For example:

SELECT * WHERE
{
?s <urn:a>/<urn:b> ?o
}

Can be rewritten as follows:

SELECT * WHERE
{
?s <urn:a> _:p0 .
_:p0 <urn:b> ?o .
}

● Complex Property Paths Emulation - Some more complex property paths can be emulated through query
rewriting, which expands the property paths into an equivalent query form.

NOTE: It is important to be aware that this support is only emulation, and may not provide complete
answers that a SPARQL engine with native property path support would produce.

The following table details the additional operators, which may be emulated and the restrictions and limitations on
that emulation.

Table 14. Additional Operators that May be Emulated

Operator Example Description Additional Notes

*
?s <urn:a>*
?o

Finds paths of zero or
more steps between two
nodes in the graph

● Path to which the * operator applied
must be either a predicate or inverse
predicate

● Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

● Paths are evaluated only up to a
maximum length (default 5) which
may be user configured on a per-
query basis

Cray Graph Engine (CGE) Property Path Support

 76

Operator Example Description Additional Notes

● Expands into a UNION that looks for
paths of each length up to the
specified maximum

+
?s <urn:a>+
?o

Finds paths of one or
more steps between two
nodes in the graph

● Path to which the + operator applied
must be either a predicate or inverse
predicate

● Paths are evaluated only up to a
maximum length (default being 5)
which may be user configured on a
per-query basis

● Expands into a UNION that looks for
paths of each length up to the
specified maximum

?
?s <urn:a>?
?o

Finds paths of zero or one
steps between two nodes
in the graph

● Path to which the ? operator applied
must be either a predicate or inverse
predicate

● Evaluating the zero length portion of
the path may be very expensive
particularly if both variables are
unbound

● Expands into a UNION that looks for
paths of length zero and one

|
?s <urn:a> |
<urn:b> ?o

Finds paths between two
nodes that use any of the
alternative paths given

● Paths to which the | operator applied
may themselves be complex but only
paths that are predicates or inverse
predicates are guaranteed to expand
into a valid query

● Expands into a UNION that considers
each alternative, where the
alternative is itself a property path it
may be further expanded as
necessary

!
(
property
)

?s ! <urn:a>
?o

Find paths between two
nodes that do not pass
through a given predicate

● The negated property set operator
only applies to predicates or inverse
predicates and thus can always be
expanded

● Expands into a MINUS that considers
all paths and then eliminates the
undesirable paths

Enabling Emulation
CGE also provides the option to change the maximum length of paths (for the expansion of the * and +
operators), as shown in the following example:

Cray Graph Engine (CGE) Property Path Support

 77

% cge-cli query --opt-on optPathExpand --path-expansion 3 paths.rq

The above query would run the query with property path expansion enabled and a maximum path length of 3.

NOTE: This value can be set to any desired value, however it is important to note that the higher this
value is set to, the more complex the query that will be generated. This will result in slower performance
because the database server will need to search for longer paths. Therefore, it is recommended to set the
length of paths to the minimum possible value for optimal emulation performance. It is also important to
note that setting a maximum length of zero or less will result in disabling the expansion.

Cray Graph Engine (CGE) Property Path Support

 78

Logging and Troubleshooting
CGE produces a text log, which is a trace of program execution during query or update processing. Users can
view the log with a text editor (such as vi), or typically the Linux less command. The log can be searched using
the grep command for text messages of interest.

INFO messages will be deposited into the log during normal operation. CGE can also generate ERROR and WARN
messages. All of these messages can yield information about activity that takes place during command
execution.

System error message can be present in the log under conditions where CGE exits or improperly shuts down.

When queries or updates are executed, INFO messages with “now starting query #” are written to the log.
For example:
2015-Feb-10 19:34:26.513 CST INFO [][7720] 0x43 parser/parseAndBuildSM.cpp@374 allocQueryGlobals [] [QRY] <OT> now starting query # 1

Many other INFO messages will also be deposited to the log during normal operation. For example, long
processing times can be seen in the log from one INFO message to the next:
2015-Feb-13 14:44:45.500 CST INFO [][9448] 0xb utils/malloc/cqe_malloc.cpp@901 LogRequest [] [QRY |MEM] image 0 : request by "file: parser/qengine/database.cpp,
func: readFromDisk line: 989" of 69.849 MiB (0x45d9688) was filled. (0x10005200c80)
2015-Feb-13 14:49:31.099 CST INFO [][9448] 0xc parser/qengine/database.cpp@1141 readFromDisk [] [QRY |STRT] time to read in db of size 139.698 GiB (0x22ecb28000):
285.679279

When large datasets are used, the INFO message for the total start up time can be long, as shown in the
following example:
2014-Dec-18 14:40:37.428 CST INFO [][25977] 0x5b parser/dbServer.cpp@1259 main [] [QRY |STRT|PERF] Total startup time: 1434.489315 seconds

The following are examples of ERROR messages that CGE can produce when query or update processing has
failed:

1. No such file or directory
2. No space left on device
3. Exiting because malloc of
4. Lookup failure for HURI
5. Invalid graph algorithm name
6. Exiting with status
7. Bad entry
8. Short read
9. Assertion
10. Realloc of
11. Error detected in Dispatcher

It is recommend to search the log for the text: "ERROR" and contact Cray Support if problems are encountered in
query or update processing.

The following are samples of WARN messages that can be produced. WARN messages are subjective in preceding
errors in processing:

1. huri was not found

Logging and Troubleshooting

 79

2. directory not specified
3. not found in IRA
4. No valid quads in database
5. Invalid object for quad
6. Number of warnings found
7. Unsupported datatype
8. not in the dictionary
9. IRA huris not allocated

Search the log for WARN messages and contact Cray Support if problems in query or update processing are
suspected.

The following are examples of system error messages that CGE can produce when query or update processing
has failed. Search the log for the last INFO messages and contact Cray Support if any of these follow:

1. DUE TO TIME LIMIT
2. terminate called without an active exception
3. srun: error
4. Segmentation fault
5. Bus error
6. free invalid pointer
7. Out of memory
8. Unable to terminate gracefully
9. Floating point exception
10. Aborted
11. Killed
12. Unable to allocate resources
13. Exited with exit code
14. Requested nodes are busy
15. transaction completed with an error state
16. LIBDMAPP ERROR
17. IRI Resolution Error
18. rpn not found for
19. Trapped with SIGINT

Logging and Troubleshooting

 80

Troubleshooting Common Cray Graph Engine (CGE)
Issues
The most common errors that are likely to be encountered while using CGE involve failure to connect to a
database server successfully. There are a variety of different errors that can occur depending on exactly what
goes wrong with the communications between the CLI and the database server. Common error messages that
are likely to be encountered along with troubleshooting techniques are documented in the following table.

NOTE: The mono-spaced text in the error messages column represents environment specific values that
will be displayed in the error messages.

Table 15. CGE Error Messages and Troubleshooting Information

Error Message Description Resolution

Unable to establish a
connection to the database
server at host:port as it
does not appear to be
running

The CLI tried to connect to a
database server running on the
given host and port combination but
was unable to establish a
connection. This typically means
one of two things:

1. There is no database server
running on that host and port

2. Firewall rules are preventing
access to that host and port

● Verify that you have passed the
correct host and port to the CLI

● Verify that there is a database
server running on that host and
port

● Verify that there are no firewall
rules that are preventing access
to the host and port. Contact a
system administrator for
additional information.

Unable to authenticate to
the database server at
host:port. You do not have
any SSH keys present in
your configured identity
idDirectory

The CLI tried to connect to a
database server running on the
given host and port combination. A
connection was established
successfully, but authentication to
the database server failed because
there are no SSH keys configured.

Create at least one SSH key and
place it in the appropriate directory.
For more information, see Cray
Graph Engine (CGE) Security
Mechanisms on page 64.

Unable to authenticate to
the database server at
host:port. Your SSH key(s)
from your configured
identity directory are not
in the authorized_keys
file of the database or
its owner

The CLI tried to connect to a
database server running on the
given host and port combination. A
connection was established
successfully but authentication to
the database server failed because
none of the SSH keys were in the
authorized_keys file that the
database is using.

● Review the database logs (if
possible) to see which
authorized_keys file was in-
use:

○ If the database server was
launched, then this is either
in the database directory
itself or in the ~/.cge
directory

Troubleshooting Common Cray Graph Engine (CGE) Issues

 81

Error Message Description Resolution

○ If another user launched the
database server, contact
them to find out which
authorized_keys file is
in-use

● Add the public key to the
relevant authorized_keys
file, or ask the relevant user to
do so.

Host key for host
host:port is not trusted,
please run in interactive
mode and trust this key or
manually add the host key
to your known_hosts file
in your configured
identity idDirectory

The CLI tried to connect to a
database server running on the
given host and port combination. A
connection was successfully
established but the database server
was unable to prove its identity to
the CLI because the host key
provided by the database server
was not trusted.

This error is usually only seen the
first time when a connection to a
specific server instance is
established. Once the key is trusted
(see resolution steps) this error
should no longer be seen for this
host and port combination.

● If CGE is being run in
interactive mode, the system
will prompt to trust the host key.
Enter Yes to do so.

● If it is required to use CGE non-
interactively, adding the --
trust-keys option to
commands will automatically
trust previously unknown host
keys

Timed out attempting to
establish a database
connection (waited N
seconds), database server
may be too busy to service
your request currently

The CLI tried to connect to a
database server running on the
given host and port combination but
was unable to establish a
connection within the timeout
interval. This means that the
database server is currently busy
processing another request and
cannot accept the request at this
time.

● Check the database logs to see
what the database is currently
doing

○ If the last log message
states: "Trying to read
RPN message from
network..." then the
database is ready,
otherwise the database is
busy

● If the database is busy, there
are a number of options that
can be used to troubleshoot the
issue:

○ Execute the request again
later

○ Increase the timeout with
the --timeout option to
wait for longer

Troubleshooting Common Cray Graph Engine (CGE) Issues

 82

Error Message Description Resolution

○ Disable the timeout by
setting --timeout 0 to
wait indefinitely until the
database server is ready to
process the next request

● In rare cases, the database may
have become hung (if it is busy
and you have not see any new
log messages for long periods
of time then this is most likely
the problem) in which case you
should kill and restart the
database server and then retry
your commands

If you are consistently receiving the same error even after following the suggested fixes in this section we
recommend that you add the --trace option to your command in order to get detailed information about the
communications being attempted and review the log messages carefully both on the front end and server side to
try and understand what is going wrong. It is also worth reviewing the server logs if you are able as there are
some situations which will manifest as client side communications errors that can be down to the configuration of
the server. For example if running the CLI in secure mode you may get client side errors that state a secure
connection could not be established, reviewing the server logs might show you that your public key is not
authorised for the database server or that the server is not running in secure more. If you are still unable to
resolve the issue please contact Cray support providing logs from both the CLI and the Database Server to aid in
diagnosis of the issue.

Troubleshooting Common Cray Graph Engine (CGE) Issues

 83

	Contents
	About the Cray® Graph Engine User Guide
	About the Cray Graph Engine (CGE)
	Cray Graph Engine (CGE) Features
	Concepts of Operation
	What the Cray Graph Engine (CGE) is Not: a Relational Database
	What the Cray Graph Engine (CGE) is: a Graph-Oriented Database that Uses RDF

	About SPARQL
	System Architecture Overview
	Major Differences Between Urika-GD and the Cray Graph Engine (CGE)
	RDF and SPARQL Resources

	Cray Graph Engine (CGE) Quick Reference
	Use the Cray Graph Engine (CGE) for a Hello World Example
	Building a Database
	About Rules Files
	Create a Set of Inferencing Rules
	Sample RDFS Rules File
	Limitations to Jena Rules Syntax

	Mechanisms to Interact with the Cray Graph Engine (CGE) Database
	Cray Graph Engine (CGE) Command Line Interface
	Cray Graph Engine (CGE) Command Output
	Cray Graph Engine (CGE) CLI Common Options
	Cray Graph Engine (CGE) Properties File
	The checkpoint Command
	The compile Command
	The echo Command
	The fe Command
	The keyword-lookup Command
	The log-info Command
	The log-lookup Command
	The log-reconfigure Command
	The nvp-info Command
	The nvp-reconfigure Command
	The output-info Command
	The output-reconfigure Command
	The query Command
	Common Errors Encountered Using the Cray Graph Engine (CGE) query Command
	Cray Graph Engine (CGE) Optimizer Configuration

	The shutdown Command
	The sparql Command
	The update Command

	Cray Graph Engine (CGE) Graphical User Interface
	Access the Cray Graph Engine (CGE) Graphical User Interface
	Execute SPARQL Queries
	Execute SPARQL Updates
	Create a Checkpoint
	Cray Graph Engine (CGE) Advanced Options
	View Server Configurations
	Edit Server Configurations
	Control Options

	SPARQL Endpoints

	Launch the Web Server
	Create and Use a Database
	Built-in Graph Functions
	Combining Graph Algorithms with SPARQL
	Invocation of a Graph Function
	The CONSTRUCT Clause
	The INVOKE Clause
	The PRODUCING Clause

	Inputs to the Graph Function
	Sequence of Operators
	Betweenness Centrality
	S-T Set Connectivity
	S-T (Source – Target) Connectivity
	Label Propagation Argument Descriptions
	Bad Rank Argument Descriptions

	Cray Graph Engine (CGE) Security Mechanisms
	Grant Basic Access to Owned Query Engines
	Eliminating the Interactive Host Key Verification

	Create a CGE Specific RSA/DSA Host Key
	Grant Other Users Access to Owned Query Engine
	Grant Other Users Access to One of the Owned Data Sets
	Grant Other Users Access to All of the Owned Data Sets

	Cray Graph Engine (CGE) Extension Functions
	Cray Graph Engine (CGE) Interval Analytics Functions
	Cray Graph Engine (CGE) Haversine Functions
	Cray Graph Engine (CGE) Square Root Function

	Cray Graph Engine (CGE) Property Path Support
	Logging and Troubleshooting
	Troubleshooting Common Cray Graph Engine (CGE) Issues

