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(Or perhaps: Partitioned Global Namespace Languages)

Concept:
 support a shared namespace

 “any parallel task can access any lexically visible variable”

 give each variable a well-defined affinity to a system node
 “local variables are cheaper to access than remote ones”

 founding members: UPC, Co-Array Fortran, Titanium

Strengths:
 permits users to specify what to transfer rather than how

 supports reasoning about locality/affinity to get scalability

Weaknesses (of traditional PGAS languages):
 restricted to SPMD programming and execution models

 limited support for distributed arrays



 Distinct concepts for parallelism vs. locality
 e.g., coforall loop creates tasks, locale type represents locality

 Rich set of array types
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 General/dynamic/multithreaded parallelism



Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order?  Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

 What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?
 Completely local to one locale?  Or distributed?

 If distributed… In a blocked manner?  cyclically?  block-cyclically?  
recursively bisected?  dynamically rebalanced?  …?
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A: Chapel’s domain maps are designed to give the 

user full control over such decisions



const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;
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No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only



const ProblemSpace = [1..m]

dmapped Block(boundingBox=[1..m]);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;
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const ProblemSpace = [1..m]

dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;
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HotPAR’10: User-Defined Distributions and Layouts in Chapel
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers: 

$CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

$CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl
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Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks?  Where do they execute?

 How is the iteration space divided between the tasks?
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Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible 
distributions, memory layouts, and parallelization strategies
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Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible 
distributions, memory layouts, and parallelization strategies

A: Chapel’s leader-follower iterators (the topic of this 
paper) are designed to give users full control over 
such decisions



Background and Motivation

Quick Introduction to Chapel

 Leader-Follower Iterators

 Results and Summary
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 An emerging parallel programming language

 Design and development led by Cray Inc.

 Started under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress
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 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids, manycore, …)
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General Parallel Programming
 “any parallel algorithm on any parallel hardware”

Multiresolution Parallel Programming

 lower levels for control

 higher levels for programmability, productivity
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iter fibonacci(n) {

var current = 0,

next = 1;

for 1..n {

yield current;

current += next;

current <=> next;

}

}

for f in fibonacci(7) do

writeln(f);
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iter tiledRMO(D, tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do

for ij in D[tile + base] do

yield ij;

}

const D = [1..n, 1..n];

for ij in tiledRMO(D, 2) do

write(ij);

(1,1)(1,2)(2,1)(2,2)

(1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)
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var A: [0..9] real;

for (i,j,a) in (1..10, 2..20 by 2, A) do

a = j + i/10.0;

writeln(A);

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0 



21

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control



22

coforall t in 0..#numTasks do

writeln(“Hello from task “, t, “ of “, numTasks);

writeln(“All tasks done”);

Hello from task 2 of 4

Hello from task 0 of 4

Hello from task 3 of 4

Hello from task 1 of 4

All tasks done
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Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A multi-core processor or SMP node
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 Specify # of locales when running Chapel programs

 Chapel provides built-in variables representing locales

 On-clauses support placement of computations:
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% a.out --numLocales=8

config const numLocales: int = …;

const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale;

L0 L1 L2 L3 L4 L5 L6 L7

Locales

% a.out –nl 8

writeln(“on locale 0”);

on Locales[1] do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do

bigComputation(A);

on node.left do

search(node.left);
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forall a in A do

writeln(“Here is an element of A: ”, a);

How many tasks?
• (That’s what we’re here to figure out!)
• In practice, typically 1 ≤ #Tasks << #Iterations)

forall (a, i) in (A, 1..n) do

a = i/10.0;

Forall-loops may be zippered, like for-loops
• Corresponding iterations must match up
• (But how?!)



Other languages have supported zippered iteration… 

…but have either been serial
(e.g., Python, Ruby, …)

…or parallel, yet only supporting a small number of 

built-in zipperable types/parallelization strategies
(e.g., NESL, HPF, ZPL, …)
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 Chapel defines all zippered forall loops in terms of  
leader-follower iterators:
 leader iterators: create parallelism, assign iterations to tasks

 follower iterators: serially execute work generated by leader

 Given…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…A is defined to be the leader

…A, B, and C are all defined to be followers
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 Conceptually, the Chapel compiler translates:
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

into:

inlined A.lead() iterator, which yields work…

for (a,b,c) in (A.follow(work),

B.follow(work)

C.follow(work)) do

a = b + alpha * c;



Leader iterators are defined using task/locality features:
iter BlockArr.lead() {

coforall loc in Locales do

on loc do

coforall tid in here.numCores do

yield computeMyChunk(loc.id, tid);

}

Follower iterators simply use serial features:
iter BlockArr.follow(work) {

for i in work do

yield accessElement(i);

}

34

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control



35

 Given the previous leader iterators…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…would get rewritten by the Chapel compiler as:
coforall loc in Locales do

on loc do

coforall tid in here.numCores {

const work = computeMyChunk(loc.id, tid);

for (a,b,c) in (A.follow(work), 

B.follow(work)

C.follow(work)) do

a = b + alpha * c;        }

=

α·
+

=

α·
+



…permit the user to write high-level parallel loops…
 …without tripping over all of the low-level details

 while still able to reason about them semantically

…provide clear answers to our motivating questions:
 Chapel semantics define a leader for each data parallel loop

 Leader iterators decide…
 how many tasks to use

 where the tasks execute

 what work each task owns

 Followers are responsible for yielding corresponding 
iterations – even if they aren’t local
 gives them control over communication granularity/approach
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Q: “What if I don’t like the approach implemented by 
an array’s leader iterator?”

A: Several possibilities…
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forall (b,a,c) in (B,A,C) do

a = b + alpha * c;

38

Make something else the leader.



const ProblemSize = [1..n] dmapped BlockCyclic(start=1, 

blocksize=64);

var A, B, C: [ProblemSize] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * C;
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Change the array’s default leader by changing its  
domain map (perhaps to one that you wrote yourself).



forall (a,b,c) in (dynamic(A, chunk=64), B, C) do

a = b + alpha * c;

40

Invoke some other leader iterator explicitly 
(perhaps one that you wrote yourself).



 Statically-blocked leaders and followers
 local and distributed (single- and multi-locale)

 OpenMP-style dynamic leader iterators
 dynamic (deal out fixed chunk size)

 guided (deal out varying chunk sizes)

 Adaptive work-stealing leader 

 Pseudo-random number stream follower

(The paper also covers coding conventions and 
implementation details in more detail than the talk)
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Shared Memory: Chapel vs. OpenMP
 Chapel dynamic vs. OpenMP dynamic

 Chapel guided vs. OpenMP guided

 Chapel adaptive vs. OpenMP guided

Distributed Memory: HPCC Benchmarks
 STREAM: multi-locale static block leader & followers

 RA: multi-locale static block leader + random follower
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 Leader-follower iterators permit users to write their 
own recipes for parallel iteration in Chapel
 Control over granularity, locality, work mapping

 Shared- or distributed-memory execution

 Without need to modify compiler or runtime

 Initial performance results support the approach
 Shared-memory comparable to OpenMP

 Distributed-memory scales, albeit with loop startup 
overhead when written in global-view style
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 Break leader into two steps to permit amortization of 
overheads
 creation of parallelism vs. assignment of work

 Improve support for multidimensional iteration
 works today, but produces suboptimal loop nests

 Support option to write standalone forall iterators
 today, they use leader-follower interface which is overkill


 And several other things…
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 Cray:

 External

Collaborators:

 Interns:

5050

Brad Chamberlain Sung-Eun Choi Greg Titus Vass Litvinov

Albert Sidelnik Jonathan Turner Angeles Navarro

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You?  Your

Friend/Student/

Colleague?

Tom Hildebrandt



 Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

 Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

 General Questions/Info:
chapel_info@cray.com (or SourceForge chapel-users list)

 Upcoming Events:
SC11 (November, Seattle WA):

Monday, Nov 14th: full-day comprehensive Chapel tutorial

Wednesday, Nov 16th: BoF: Chapel Lightning Talks

Friday, Nov 18th: half-day outreach Chapel tutorial

throughout: PGAS booth
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