
Brad Chamberlain, Sung-Eun Choi

Steve Deitz, Angeles Navarro

Cray Inc. / University of Málaga

PGAS 2011: October 17th, 2011

(Or perhaps: Partitioned Global Namespace Languages)

Concept:
 support a shared namespace

 “any parallel task can access any lexically visible variable”

 give each variable a well-defined affinity to a system node
 “local variables are cheaper to access than remote ones”

 founding members: UPC, Co-Array Fortran, Titanium

Strengths:
 permits users to specify what to transfer rather than how

 supports reasoning about locality/affinity to get scalability

Weaknesses (of traditional PGAS languages):
 restricted to SPMD programming and execution models

 limited support for distributed arrays

 Distinct concepts for parallelism vs. locality
 e.g., coforall loop creates tasks, locale type represents locality

 Rich set of array types

3

A

B

C
A

A

A

A

 General/dynamic/multithreaded parallelism

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

 What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

4

dynamically

…?

…?

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

 What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

5

dynamically

…?

…?
A: Chapel’s domain maps are designed to give the

user full control over such decisions

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

7

=

α·
+

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

8

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = [1..m]

dmapped Block(boundingBox=[1..m]);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

9

=

α·
+

const ProblemSpace = [1..m]

dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

10

=

α·
+

HotPAR’10: User-Defined Distributions and Layouts in Chapel
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers:

$CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

$CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

11

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

12

A B C

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;

forall c in C do c = 3.0;

 How many tasks? Where do they execute?

 How is the iteration space divided between the tasks?

13

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

 Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

A: Chapel’s leader-follower iterators (the topic of this
paper) are designed to give users full control over
such decisions

Background and Motivation

Quick Introduction to Chapel

 Leader-Follower Iterators

 Results and Summary

14

 An emerging parallel programming language

 Design and development led by Cray Inc.

 Started under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

15

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids, manycore, …)

16

General Parallel Programming
 “any parallel algorithm on any parallel hardware”

Multiresolution Parallel Programming

 lower levels for control

 higher levels for programmability, productivity

17

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

18

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

19

iter fibonacci(n) {

var current = 0,

next = 1;

for 1..n {

yield current;

current += next;

current <=> next;

}

}

for f in fibonacci(7) do

writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do

for ij in D[tile + base] do

yield ij;

}

const D = [1..n, 1..n];

for ij in tiledRMO(D, 2) do

write(ij);

(1,1)(1,2)(2,1)(2,2)

(1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

20

var A: [0..9] real;

for (i,j,a) in (1..10, 2..20 by 2, A) do

a = j + i/10.0;

writeln(A);

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0

21

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

22

coforall t in 0..#numTasks do

writeln(“Hello from task “, t, “ of “, numTasks);

writeln(“All tasks done”);

Hello from task 2 of 4

Hello from task 0 of 4

Hello from task 3 of 4

Hello from task 1 of 4

All tasks done

23

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Definition:
 Abstract unit of target architecture

 Supports reasoning about locality

 Capable of running tasks and storing variables
 i.e., has processors and memory

Typically: A multi-core processor or SMP node

24

 Specify # of locales when running Chapel programs

 Chapel provides built-in variables representing locales

 On-clauses support placement of computations:

25

% a.out --numLocales=8

config const numLocales: int = …;

const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale;

L0 L1 L2 L3 L4 L5 L6 L7

Locales

% a.out –nl 8

writeln(“on locale 0”);

on Locales[1] do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do

bigComputation(A);

on node.left do

search(node.left);

26

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

27

forall a in A do

writeln(“Here is an element of A: ”, a);

How many tasks?
• (That’s what we’re here to figure out!)
• In practice, typically 1 ≤ #Tasks << #Iterations)

forall (a, i) in (A, 1..n) do

a = i/10.0;

Forall-loops may be zippered, like for-loops
• Corresponding iterations must match up
• (But how?!)

Other languages have supported zippered iteration…

…but have either been serial
(e.g., Python, Ruby, …)

…or parallel, yet only supporting a small number of

built-in zipperable types/parallelization strategies
(e.g., NESL, HPF, ZPL, …)

28

Background and Motivation

Quick Introduction to Chapel

Leader-Follower Iterators

 Results and Summary

31

32

 Chapel defines all zippered forall loops in terms of
leader-follower iterators:
 leader iterators: create parallelism, assign iterations to tasks

 follower iterators: serially execute work generated by leader

 Given…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…A is defined to be the leader

…A, B, and C are all defined to be followers

33

 Conceptually, the Chapel compiler translates:
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

into:

inlined A.lead() iterator, which yields work…

for (a,b,c) in (A.follow(work),

B.follow(work)

C.follow(work)) do

a = b + alpha * c;

Leader iterators are defined using task/locality features:
iter BlockArr.lead() {

coforall loc in Locales do

on loc do

coforall tid in here.numCores do

yield computeMyChunk(loc.id, tid);

}

Follower iterators simply use serial features:
iter BlockArr.follow(work) {

for i in work do

yield accessElement(i);

}

34

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

35

 Given the previous leader iterators…
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

…would get rewritten by the Chapel compiler as:
coforall loc in Locales do

on loc do

coforall tid in here.numCores {

const work = computeMyChunk(loc.id, tid);

for (a,b,c) in (A.follow(work),

B.follow(work)

C.follow(work)) do

a = b + alpha * c; }

=

α·
+

=

α·
+

…permit the user to write high-level parallel loops…
 …without tripping over all of the low-level details

 while still able to reason about them semantically

…provide clear answers to our motivating questions:
 Chapel semantics define a leader for each data parallel loop

 Leader iterators decide…
 how many tasks to use

 where the tasks execute

 what work each task owns

 Followers are responsible for yielding corresponding
iterations – even if they aren’t local
 gives them control over communication granularity/approach

36

Q: “What if I don’t like the approach implemented by
an array’s leader iterator?”

A: Several possibilities…

37

forall (b,a,c) in (B,A,C) do

a = b + alpha * c;

38

Make something else the leader.

const ProblemSize = [1..n] dmapped BlockCyclic(start=1,

blocksize=64);

var A, B, C: [ProblemSize] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * C;

39

Change the array’s default leader by changing its
domain map (perhaps to one that you wrote yourself).

forall (a,b,c) in (dynamic(A, chunk=64), B, C) do

a = b + alpha * c;

40

Invoke some other leader iterator explicitly
(perhaps one that you wrote yourself).

 Statically-blocked leaders and followers
 local and distributed (single- and multi-locale)

 OpenMP-style dynamic leader iterators
 dynamic (deal out fixed chunk size)

 guided (deal out varying chunk sizes)

 Adaptive work-stealing leader

 Pseudo-random number stream follower

(The paper also covers coding conventions and
implementation details in more detail than the talk)

41

Background and Motivation

Quick Introduction to Chapel

Leader-Follower Iterators

Results and Summary

42

Shared Memory: Chapel vs. OpenMP
 Chapel dynamic vs. OpenMP dynamic

 Chapel guided vs. OpenMP guided

 Chapel adaptive vs. OpenMP guided

Distributed Memory: HPCC Benchmarks
 STREAM: multi-locale static block leader & followers

 RA: multi-locale static block leader + random follower

43

44

46

 Leader-follower iterators permit users to write their
own recipes for parallel iteration in Chapel
 Control over granularity, locality, work mapping

 Shared- or distributed-memory execution

 Without need to modify compiler or runtime

 Initial performance results support the approach
 Shared-memory comparable to OpenMP

 Distributed-memory scales, albeit with loop startup
overhead when written in global-view style

47

 Break leader into two steps to permit amortization of
overheads
 creation of parallelism vs. assignment of work

 Improve support for multidimensional iteration
 works today, but produces suboptimal loop nests

 Support option to write standalone forall iterators
 today, they use leader-follower interface which is overkill


 And several other things…

48

 Cray:

 External

Collaborators:

 Interns:

5050

Brad Chamberlain Sung-Eun Choi Greg Titus Vass Litvinov

Albert Sidelnik Jonathan Turner Angeles Navarro

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You? Your

Friend/Student/

Colleague?

Tom Hildebrandt

 Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

 Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

 General Questions/Info:
chapel_info@cray.com (or SourceForge chapel-users list)

 Upcoming Events:
SC11 (November, Seattle WA):

Monday, Nov 14th: full-day comprehensive Chapel tutorial

Wednesday, Nov 16th: BoF: Chapel Lightning Talks

Friday, Nov 18th: half-day outreach Chapel tutorial

throughout: PGAS booth
51

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel-info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

