EEEEEEEEEEEEEEEEEEEEEEE

User-Defined Parallel
Zippered Iterators in Chapel

Brad Chamberlain, Sung-Eun Choi
Steve Deitz, Angeles Navarro
Cray Inc. / University of Malaga
PGAS 2011: October 17t", 2011

- CRRANY
PGAS: Partitioned Global Address Space Languages

(Or perhaps: Partitioned Global Namespace Languages)

Concept:

e support a shared namespace
e “any parallel task can access any lexically visible variable”

e give each variable a well-defined affinity to a system node
e “local variables are cheaper to access than remote ones”

e founding members: UPC, Co-Array Fortran, Titanium

Strengths:
e permits users to specify what to transfer rather than how

* supports reasoning about locality/affinity to get scalability

Weaknesses (of traditional PGAS languages):
e restricted to SPMD programming and execution models
* limited support for distributed arrays

C=RA0Y

THE SUPERCOMPUTER COMPANY

Chapel: A Next-Generation PGAS Language

e General/dynamic/multithreaded parallelism

>|1>([>]|>

e Distinct concepts for parallelism vs. locality
e.g., coforall loop creates tasks, locale type represents locality

* Rich set of array types L
| |"lee”

S e b Sas H A | |"sung”

EEEERNN i ? R

i O o o o o _IJaCGb”

i 0 B O O o A FH .albert.

dense strided Spalrse |_1"brad®

Lnstructired dAsSocialive

C=RA0Y

THE SUPERCOMPUTER COMPANY

Array Implementation: Questions

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

——= > - = =7 | EIIEIJIEIIES
= b S [S ENIEJIEIIES 2
o e S ST T T =S IESIESIES e
——— ~ - 1Ze [Ly L =5 'y = =

How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)
What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?

Completely local to one locale? Or distributed?

If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

CRRANY

THE SUPERCOMPUTER COMPANY

Array Implementation: Questions

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

——t= > -z |7 |77 |=» nd | iInd | Imall | s
] e i NS4S 1113113 S
R s e i o = ¥ l> mdl | md | Ed | s =
w1 [| £ | | S ESIESIEIIES

How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)
What memories/memory types are used?

Q2: How are arrays distributed between locales/nodes?

Completely local to one locale? Or distributed?

If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Chapel's domain maps are designed to give the

user full control over such decisions

STREAM Triad in Chapel :

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

HEEEEEEEEEEEEEEEEEEEEEEE
CILTTTTITTTTTITTTITTITITITTTIT]
oo [ITTTTTTTTTTTTTTITTITTITTTT]

+

BB + alpha * C;

C ey
(cHareEL
=

C=RA0Y

THE SUPERCOMPUTER COMPANY

STREAM Triad in Chapel (multicore)

const ProblemSpace = [1..m];

var A, B, C: /[ProblemSpace] real;

No domain map specified => use default layout
* current locale owns all indices and values
@:;;1 e computation will execute using local processors only

C=RA0Y

THE SUPERCOMPUTER COMPANY

STREAM Triad in Chapel (multinode, blocked)

const ProblemSpace = [1..m]

dmapped Block (boundingBox=[1..m]) ;

var A, B, C: [ProblemSpace] real;
| , |
EEEEEEEEEENEEEEEEEN

+ 1l

BB + alpha * C;

STREAM Triad in Chapel (multinode, cyclic)

const ProblemSpace = [1..m]

LI—lJ——IJJ——LI—IJJJ—LEFFFEIEFI:'

dmapped Cyclic (startIdx=1l);
i
|

var A, B, C: [ProblemSpace] real;

Cot A o =

+
o

BB + alpha * C;

C=RA0Y

THE SUPERCOMPUTER COMPANY

SUPERCOMPUTER COM

For More Information on Domain Maps

HotPAR’10: User-Defined Distributions and Layouts in Chapel
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Technical notes detailing domain map interface for programmers:
SCHPL_HOME/doc/technotes/README.dsi
e Current domain maps:
SCHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl

C=RA0Y

THE SUPERCOMPUTER COMPANY

Motivating Questions for This Paper

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = 1/10.0;
forall ¢ in C do ¢ = 3.0; 1
How many tasks? Where do they execute?

How is the iteration space divided between the tasks?

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do
a = b + alpha * c¢;

Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

............ > Azl = =2 1_
................ P ' Z‘.b :: > QF
------- =1 a2 2 A
....... h - ’ z‘> Z(} -
| | | |

Motivating Questions for This Paper

Q3: How are data parallel loops implemented?
forall i in B.domain do B[i] = i/10.0;
forall ¢ in C do ¢ = 3.0; 1
How many tasks? Where do they execute?
How is the iteration space divided between the tasks?

Q4: How are parallel zippered loops implemented?
forall (a,b,c) in (A,B,C) do 1

a = b + alpha * c¢;

Particularly given that the iterands might have incompatible
distributions, memory layouts, and parallelization strategies

Chapel’s leader-follower iterators (the topic of this
paper) are designed to give users full control over

such decisions

owtine sEa
Outline " -

——— e

v'Background and Motivation
» Quick Introduction to Chapel
e Leader-Follower Iterators

e Results and Summary

CRANY
What is Cha pe |? e ST TR

e An emerging parallel programming language
e Design and development led by Cray Inc.
e Started under the DARPA HPCS program

e Overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

e A work-in-progress

CRANY
Cha pells I m ple me ntation THE SUPERCOMPUTER COMPANY

e Being developed as open source at SourceForge
e Licensed as BSD software

e Target Architectures:
e multicore desktops and laptops
e commodity clusters
e Cray architectures
e systems from other vendors
* (in-progress: CPU+accelerator hybrids, manycore, ...)

C=RA0Y

THE SUPERCOMPUTER COMPANY

A few of Chapel’s Motivating Themes

General Parallel Programming
“any parallel algorithm on any parallel hardware”

Multiresolution Parallel Programming
lower levels for control
higher levels for programmability, productivity

Chapel language concepts

C Y

Domain Maps

Base Language
Locality Control

Target Machine

Base Language Features

C

P E—

Domain Maps
Data Parallelism

Base Language
Locality Control

Target Machine

)

CRRANY

THE SUPERCOMPUTER COMPANY

N
(=]
—

terators

var current =
next = 1;
for 1..n {
yield current;
current += next;
current <=> next;

iter fibonacci(n) { ‘\\
0,

iter tiledRMO (D, tilesize) {)
const tile = [0..#tilesize,
O..#tilesize];
for base in D by tilesize do
for 1ij in D[tile + base] do
yield 173;

e
APEL

CRRANY

THE SUPERCOMPUTER COMPANY

for £ in fibonacci(7) do
writeln (f) ;

write (i7j);

const D = [1..n, 1..n];
for ij in tiledRMO(D, 2)

do

(1,1)(1,2) (2,1) (2,2)
(1,3)(1,4) (2,3) (2,4)
(1,5) (1,6) (2,5) (2,6)

(3,1)(3,2) (4,1) (4,2)

Zippered lteration

var A: [0..9] real;

for (i,3,a) in (1..10,

a= 73 + 1/10.0;

writeln (A) ;

2..20 by 2, A) do

~

2.1 4.2 6.3 8.4 10.5

12.6

14.7 16.8

18.9 21.0

CRRANY

THE SUPERCOMPUTER COMPANY

Task Parallel Features

C
—)

Domain Maps
Data Parallelism

Base Language
Locality Control

Target Machine

)

CRRANY

THE SUPERCOMPUTER COMPANY

CRRANY

THE SUPERCOMPUTER COMPANY

Coforall Loops

coforall t in 0. .#numTasks do)

writeln (“Hello from task %, t, ™ of Y, numTasks);

writeln (“All tasks done”) ;

Hello from task 2
Hello from task O

Hello from task 3
Hello from task 1
All tasks done

\ =Ry
cHAPEL
=

Locality Features

C

P E—

Domain Maps
Data Parallelism

Base Language
Locality Control

Target Machine

)

CRRANY

THE SUPERCOMPUTER COMPANY

The Locale Type

Definition:
e Abstract unit of target architecture
e Supports reasoning about locality

e Capable of running tasks and storing variables
e j.e., has processors and memory

Typically: A multi-core processor or SMP node

CRANY

THE SUPERCOMPUTER COMPANY

C=RA0Y

THE SUPERCOMPUTER COMPANY

Coding with Locales

e Specify # of locales when running Chapel programs

$ a.out ——numLocales=8] $ a.out —nl 8]

e Chapel provides built-in variables representing locales

config const numlocales: int = ..;
const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale; Locales

e On-clauses support placement of computations:

writeln (“on locale 07); b on A[i,j] do ‘\
on Locales[1l] do bigComputation (A) ;
writeln (“‘now on locale 1”);
writeln (“on locale 0 again”); on node.left do
search (node.left) ;

Data Parallel Features

Domain Maps
Data Parallelism

Base Language
Locality Control

Target Machine

)

CRRANY

THE SUPERCOMPUTER COMPANY

C=RA0Y

THE SUPERCOMPUTER COMPANY

Forall Loops

forall a in A do
\writeln(“Here is an element of A: 7, a);

\

How many tasks?

* (That’s what we’re here to figure out!)
* In practice, typically 1 < #Tasks << #lterations)

forall (a, i) in (A, 1..n) do]

a = 1/10.0; /

Forall-loops may be zippered, like for-loops

* Corresponding iterations must match up
* (But how?!)

Previous Work

Other languages have supported zippered iteration...

...but have either been serial
(e.g., Python, Ruby, ...)

...or parallel, yet only supporting a small number of

built-in zipperable types/parallelization strategies
(e.g., NESL, HPF, ZPL, ...)

owtine sEa
Outline ’

i —
i———t
— I
I

v'Background and Motivation
v'Quick Introduction to Chapel
» Leader-Follower Iterators

e Results and Summary

CCRRASY

THE SUPERCOMPUTER COMP,

Leader-Follower Iterators: Definition

e Chapel defines all zippered forall loops in terms of
leader-follower iterators:

e leader iterators: create parallelism, assign iterations to tasks
» follower iterators: serially execute work generated by leader

e Given...
forall (a,b,c) in (A,B,C) do

a = b + alpha * c;
...A is defined to be the leader
...A, B, and C are all defined to be followers

C=RA0Y

THE SUPERCOMPUTER COMPANY

Leader-Follower Iterators: Rewriting

e Conceptually, the Chapel compiler translates:
forall (a,b,c) in (A,B,C) do A
a = b + alpha * c;

into:

inlined A.lead () iterator, which yields work..
for (a,b,c) in (A.follow(work),
B.follow(work)
C.follow(work)) do
a = b + alpha * c¢;

C=RA0Y

THE SUPERCOMPUTER COMPANY

Writing Leaders and Followers

Leader iterators are defined using task/locality features:
iter BlockArr.lead() { I
coforall loc in Locales do

on loc do
coforall tid in here.numCores do

yield computeMyChunk (loc.1id, tid);

) C Domain Maps D

L =) Task Parallelism

L
i Locality Control

Target Machine

Follower iterators simply use serial features:
iter BlockArr.follow (work) {)
for 1 in work do

yield accessElement (1) ;

C=RA0Y

THE SUPERCOMPUTER COMPANY

Leader-Follower Iterators: Rewriting

e Given the previous leader iterators...

S
forall (a,b,c) in (A,B,C) do I I T I T T I T —

+

a = b + alpha * c; o -

..would get rewritten by the Chapel compiler as:

coforall loc in Locales do ﬂ\\
on loc do

coforall tid in here.numCores {
const work = computeMyChunk (loc.id, tid);
for (a,b,c) in (A.follow(work),
B.follow (work)
C.follow(work)) do
a = b + alpha * c; }

+ |l

CRANY

THE SUPERCOMPUTER COMPANY

Leader-Follower Iterators...

...permit the user to write high-level parallel loops...
e ..without tripping over all of the low-level details
e while still able to reason about them semantically

...provide clear answers to our motivating questions:

e Chapel semantics define a leader for each data parallel loop

e Leader iterators decide...
e how many tasks to use
e where the tasks execute
e what work each task owns
* Followers are responsible for yielding corresponding
iterations — even if they aren’t local
e gives them control over communication granularity/approach

Controlling Data Parallelism

Q: “What if | don’t like the approach implemented by
an array’s leader iterator?”

A: Several possibilities...

Controlling Data Parallelism

forall (b,a,c) in (B,A,C)

a = b + alpha * c;\\\\

d01

Make something else the leader.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Controlling Data Parallelism

C=RA0Y

THE SUPERCOMPUTER COMPANY

var A, B, C: [ProblemSize] real;

forall (a,b,c) in (A,B,C) do
a = b + alpha * C;

const ProblemSize = [1l..n] dmapped BlockCyclic(start=i7\
blocksize=64) ;

Change the array’s default leader by changing its

domain map (perhaps to one that you wrote yourself).

Controlling Data Parallelism

C=RA0Y

THE SUPERCOMPUTER COMPANY

forall (a,b,c) in (dynamic (A, chunk=64),

a = b + alpha * c; \\\\\\\

B, C) dol

Invoke some other leader iterator explicitly

(perhaps one that you wrote yourself).

Example Leader-Follower Iterators in the Paper

e Statically-blocked leaders and followers
* |ocal and distributed (single- and multi-locale)

e OpenMP-style dynamic leader iterators
e dynamic (deal out fixed chunk size)
» guided (deal out varying chunk sizes)

e Adaptive work-stealing leader
e Pseudo-random number stream follower

(The paper also covers coding conventions and
implementation details in more detail than the talk)

=D

Outline it

v'Background and Motivation
v'Quick Introduction to Chapel
v Leader-Follower Iterators

» Results and Summary

EEEEEEEEEEEEEEEEEEEEEEE

Experimental Results

Shared Memory: Chapel vs. OpenMP

Chapel dynamic vs. OpenMP dynamic
» Chapel guided vs. OpenMP guided
e Chapel adaptive vs. OpenMP guided

Distributed Memory: HPCC Benchmarks
> STREAM: multi-locale static block leader & followers
RA: multi-locale static block leader + random follower

Chapel vs. OpenMP Guided

Guided scheduling Speedups

28 O Base
' W Chapel
B OpenMP

16 32 16 32 16 32 16 32

fine coarse triangular random
=N

cRas
CHAPEL

C=RA0Y
STREAM Triad HE SUPERCOMPUTER COMPANY

Efficiency of HPCC STREAM Triad

100% I

)
8
2 80% .
[17]
2 8
Q-
=
E 7
o 3
X3 «#=Chapel Stream
w 60% —
g =$=Chapel Stream EP
= «@=Reference (OpenMP)
“.FReference
40% | | | | | |

1 2 4 3 16 32 64 128 256 512 1024 2048
Number of Locales

CRANY

THE SUPERCOMPUTER COMPANY

Summary

e Leader-follower iterators permit users to write their
own recipes for parallel iteration in Chapel
e Control over granularity, locality, work mapping
e Shared- or distributed-memory execution
e Without need to modify compiler or runtime

e |nitial performance results support the approach
e Shared-memory comparable to OpenMP

e Distributed-memory scales, albeit with loop startup
overhead when written in global-view style

Next Steps

* Break leader into two steps to permit amortization of
overheads
e creation of parallelism vs. assignment of work

e Improve support for multidimensional iteration
e works today, but produces suboptimal loop nests

e Support option to write standalone forall iterators
* today, they use leader-follower interface which is overkill

e And several other things...

C=RA0Y

THE SUPERCOMPUTER COMPANY

Our Team

e Cray:

Brad Chamberlain ~ Sung-Eun Choi Greg Titus

e External

000 «—

Collaborators:

__ , B You? Your
Albert Sidelnik Jonathan Turner Angeles Navarro Friend/Student/

e |Interns:

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner
000

e
CHAPEL
=

For More Information on Chapel

e Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

e Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

e General Questions/Info:
chapel info@cray.com (or SourceForge chapel-users list)

* Upcoming Events:
SC11 (November, Seattle WA):
Monday, Nov 14": full-day comprehensive Chapel tutorial
Wednesday, Nov 16%": BoF: Chapel Lightning Talks
Friday, Nov 18": half-day outreach Chapel tutorial

throughout: PGAS booth

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com

CRANY

THE SUPERCOMPUTER COMPANY

c=RAaYY
AﬂEI_

ray.com chapel-info

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

