The Chapel Tasking Layer Over
Qthreads

Kyle B. Wheeler, Richard C. Murphy,
Dylan Stark, and Bradford L. Chamberlain

nr¥

W for the United States Department of Energy’s National Nuclear Security Administration iona
Y R
IV A A3 under contract DE-AC04-94AL85000. ! {uaal}:)mlms

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia

Wednesday, May 18, 2011

The Structure of Chapel’s Runtime

Chapel Runtime Support Libraries
(written in C)

2 || o
A o
@ 3 N n
= — - o+
3 [7) — = Q
c =3 = >
= o
= o 1 = L
Q) < ” a
-] 4 = o
—= - w
o =
Q
Q.
(7))
VYA T a2 |
NYSH

Sandia
National

Laboratories

Wednesday, May 18, 2011

Chapel’s Tasking Layer

*Role: Responsible for parallelism/synchronization

*Main Focus:
— support begin/cobegin/coforall statements
— support synchronization variables

* Main Features:
— Startup/Teardown
— Singleton Tasks
— Task Lists
— Synchronization
— Control
— Queries
— ...serialization?

NISSE Natoua
- Laboratories

Wednesday, May 18, 2011

The FIFO Tasking Implementation

*Work-queue model
—Function calls for work execution
—Centralized queue

*Pros: Cons:
—Simple, easy to debug —Task synchronization (sync) using thread
—Very portable synchronization (pthread_mutex_t)
—Uses native state - Compute/synch overlap requires
management oversubscribing (#threads > #cpus)
* stacks * Difficult to provide non-native (non-mutex)
» thread/task-specific data synchronization behavior

—#Task-to-#thread mismatch creates
unexpected deadlock potential

—Does not support work stealing
—Does not support CPU pinning

' W 4

\ A L)
S VAN

~d ?%H National

‘et Laboratories

Wednesday, May 18, 2011

Challenges in Highly-Threaded Runtimes

*Per-thread state
—State vs threads
*Locality
—An afterthought in standard threading models
—Communication and synchronization are expensive, easy to use accidentally
Synchronization
—Hard to make portable, maintain guarantees
Every Machine is Different
— Granularity of sharing (cacheline size)
—Optimal number of threads (PU count)
—Communication topology
—Cache structure
—Memory model
—Synchronization Primitives (CMPXCHG vs TNS vs CASXA vs LDARX/STWCX)

' W 4

v
IV A "3

Wednesday, May 18, 2011

Qthreads Highlights

eLightweight User-level Threading (Tasking)

*Platform portability
—|A32/64, AMD64, PPC32/64, SparcV9, SST, Tilera
—Linux, BSD, Solaris, MacOSX

*Locality awareness
—“Shepherd” as thread mobility domain & locality
*Fine-grained synchronization semantics
—Full/Empty Bits (64-bit & 60-bit)
—Mutexes
—Atomic operations (Incr & CAS)

L ocality-aware Workstealing Model

=) Sandia
TV IE%}"%B National
oantly Adaisse Laboratories

Notwwna! N wwa

Wednesday, May 18, 2011

Chapel Single Locale Challenges

eStartup & Teardown
—Functions with unspecified scope
—Synchronization primitives of unspecified scope

Unsupported Behavior
—Limit on OS Threads
 Default defined by hardware
—Forced serialization of tasks
—Task-local data

NISSE Natoua
- Laboratories

Wednesday, May 18, 2011

Chapel Multi-Locale Challenges

sCommunication (via GASNet)

—Blocking system calls
* Dedicated OS thread
 Possibility for proxying internally
* Temporary solution: Forked initialization thread
 Future solution: explicit progress thread creation

—External Task Operations

 Task creation from outside the task library
—Memory management issue
—Also: synchronization issue...
» Task synchronization outside the task library
—Proxy-task using thread-level synchronization (pthread mutex_t)

' W 4

v
IV A "3

Wednesday, May 18, 2011

Future Work

*Synchronization
—Tasking interface assumes only mutex semantics
—MTA/Qthreads interface provide fast FEB semantics

—Implementing FEB semantics with a mutex implemented with FEB
operations is silly and slow

*Stack Space
—Problem common to all tasking interfaces
—Currently requires guess-and-check

—Potential directions:
* Technically possible to calculate stack requirements (e.g. gcc 4.6)

 Technically possible to move stack variables to heap
—Moves the memory management problem

' WAL =35
IVA 5

Notwwna! N wwa

Wednesday, May 18, 2011

Performance: Raw Tasking

*QuickSort

—Nalve implementation (serial

partitioning)
—Uses recursive cobegin

—Serialization threshold

* For best comparison, set high

to avoid serialization

/.

N

Ratio FIFO/Qt

o

o — U N U1 W

| 4

A
TVA

wera! N -

>
Y

16

18 20 22 24 26 28

Execution Time (secs)

100

|10

o

0.0 7

0.001

14 16 18 20 22 24 26 128

Array Elements (power of 2)

® Qthreads

o FIFO

m

Sandia
National
Laboratories

Wednesday, May 18, 2011

Performance: Raw Tasking

*Tree Exploration
—Constructs binary tree
—Assigns Unique ID
—Computes sum of IDs
—Uses recursive cobegin

2.5
o 2
Q 15 St e et .oeee
L
o |
5 05
0
12 14 16 18 20 22 24 26 28

wera! N -

Execution Time (secs)

1000
100 /
10 /
I /
0.1
0.0l
0.001
12 14 16 18 20 22 24 26 28
Tree Elements (power of 2)
® Qthreads ® FIFO
m Ntioua

Laboratories

Wednesday, May 18, 2011

Performance: Data Parallel

*HPCC RandomAccess

—GUPS (random integer
updates)

—Stresses Memory System
—Uses forall

ol

N
U

I
g

Ratio FIFO/Qt
o o
N O
Ul 1o

o

| 2 4 8 16 32 64 128

ATY™ o

Natwea! N wa e

' YA L =35
g -

1000
)
8 100
)
£
|_
c
<
S 10
X
L

Il 2 4 8 16 32 64

Number of Tasks

® Qthreads ® FIFO

i\

128

Sandia
National
Laboratories

Wednesday, May 18, 2011

Performance: Data Parallel

*HPCC STREAM (-EP) |

—Memory Bandwidth & Vector
Kernels

%/

—EP version avoids g
communication g 0.6 \J
—Uses forall 'i K\ . e
o o S
—Synchronization surprisingly S 04 ‘\fj\t: :
. O
Important 5
L
2 0.2
Q s
2 F/‘_AZ:;::; ;
S - | 2 4 8 16 32 64 128
E » Number of Tasks
° ® Qthreads o FIFO
| 2 4 8 16 32 64 128 & Othreads EP o Ep
©® STREAM -

' YA L =35
g -

NYS#% ¢ STREAM-EP Ll

Wednesday, May 18, 2011

Thank You!

Questions?

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
'Av' A" 3{;‘5 for the United States Department of Energy’s National Nuclear Security Administration m National
e e S under contract DE-AC04-94AL85000. Laboratories

Wednesday, May 18, 2011

