
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

The Chapel Tasking Layer Over 
Qthreads

Kyle B. Wheeler, Richard C. Murphy, 
Dylan Stark, and Bradford L. Chamberlain

Wednesday, May 18, 2011



The Structure of Chapel’s Runtime

Chapel Runtime Support Libraries
(written in C)

Tasks

C
o

m
m

u
n

icatio
n

M
em

o
ry

T
im

ers

L
au

n
ch

ers

S
tan

d
ardT

h
read

s
Wednesday, May 18, 2011



Chapel’s Tasking Layer

•Role: Responsible for parallelism/synchronization
•Main Focus:

– support begin/cobegin/coforall statements
– support synchronization variables

•Main Features:
– Startup/Teardown
– Singleton Tasks
– Task Lists
– Synchronization
– Control
– Queries
– ...serialization?

Wednesday, May 18, 2011



The FIFO Tasking Implementation

•Work-queue model
–Function calls for work execution
–Centralized queue

•Cons:
–Task synchronization (sync) using thread 

synchronization (pthread_mutex_t)
• Compute/synch overlap requires 
oversubscribing (#threads > #cpus)

• Difficult to provide non-native (non-mutex) 
synchronization behavior

–#Task-to-#thread mismatch creates 
unexpected deadlock potential

–Does not support work stealing
–Does not support CPU pinning

•Pros:
–Simple, easy to debug
–Very portable
–Uses native state 

management
• stacks
• thread/task-specific data

Wednesday, May 18, 2011



Challenges in Highly-Threaded Runtimes

•Per-thread state
–State vs threads

•Locality
–An afterthought in standard threading models
–Communication and synchronization are expensive, easy to use accidentally

•Synchronization
–Hard to make portable, maintain guarantees

•Every Machine is Different
–Granularity of sharing (cacheline size)
–Optimal number of threads (PU count)
–Communication topology
–Cache structure
–Memory model
–Synchronization Primitives (CMPXCHG vs TNS vs CASXA vs LDARX/STWCX)

Wednesday, May 18, 2011



Qthreads Highlights

•Lightweight User-level Threading (Tasking)
•Platform portability

–IA32/64, AMD64, PPC32/64, SparcV9, SST, Tilera
–Linux, BSD, Solaris, MacOSX

•Locality awareness
–“Shepherd” as thread mobility domain & locality

•Fine-grained synchronization semantics
–Full/Empty Bits (64-bit & 60-bit)
–Mutexes
–Atomic operations (Incr & CAS)

•Locality-aware Workstealing Model

Wednesday, May 18, 2011



Chapel Single Locale Challenges

•Startup & Teardown
–Functions with unspecified scope
–Synchronization primitives of unspecified scope

•Unsupported Behavior
–Limit on OS Threads

•Default defined by hardware
–Forced serialization of tasks
–Task-local data

Wednesday, May 18, 2011



Chapel Multi-Locale Challenges

•Communication (via GASNet)
–Blocking system calls

•Dedicated OS thread
•Possibility for proxying internally
•Temporary solution: Forked initialization thread
•Future solution: explicit progress thread creation

–External Task Operations
•Task creation from outside the task library

–Memory management issue
–Also: synchronization issue…

•Task synchronization outside the task library
–Proxy-task using thread-level synchronization (pthread_mutex_t)

Wednesday, May 18, 2011



Future Work

•Synchronization
–Tasking interface assumes only mutex semantics
–MTA/Qthreads interface provide fast FEB semantics
–Implementing FEB semantics with a mutex implemented with FEB 

operations is silly and slow
•Stack Space

–Problem common to all tasking interfaces
–Currently requires guess-and-check
–Potential directions:

•Technically possible to calculate stack requirements (e.g. gcc 4.6)
•Technically possible to move stack variables to heap

–Moves the memory management problem

Wednesday, May 18, 2011



Performance: Raw Tasking

•QuickSort
–Naïve implementation (serial 

partitioning)
–Uses recursive cobegin
–Serialization threshold

•For best comparison, set high 
to avoid serialization

0.001

0.01

0.1

1

10

100

14 16 18 20 22 24 26 28

Ex
ec

ut
io

n 
T

im
e 

(s
ec

s)

Array Elements (power of 2)

Qthreads FIFO
0

0.5
1

1.5
2

2.5
3

14 16 18 20 22 24 26 28

R
at

io
 F

IF
O

/Q
t

Wednesday, May 18, 2011



Performance: Raw Tasking

•Tree Exploration
–Constructs binary tree
–Assigns Unique ID
–Computes sum of IDs
–Uses recursive cobegin

0.001

0.01

0.1

1

10

100

1000

12 14 16 18 20 22 24 26 28

Ex
ec

ut
io

n 
T

im
e 

(s
ec

s)

Tree Elements (power of 2)

Qthreads FIFO
0

0.5
1

1.5
2

2.5

12 14 16 18 20 22 24 26 28

R
at

io
 F

IF
O

/Q
t

Wednesday, May 18, 2011



Performance: Data Parallel

•HPCC RandomAccess
–GUPS (random integer 

updates)
–Stresses Memory System
–Uses forall

1

10

100

1000

1 2 4 8 16 32 64 128

Ex
ec

ut
io

n 
T

im
e 

(s
ec

s)

Number of Tasks

Qthreads FIFO
0

0.25
0.5

0.75
1

1.25
1.5

1 2 4 8 16 32 64 128

R
at

io
 F

IF
O

/Q
t

Wednesday, May 18, 2011



Performance: Data Parallel

•HPCC STREAM (-EP)
–Memory Bandwidth & Vector 

Kernels
–EP version avoids 

communication
–Uses forall
–Synchronization surprisingly 

important

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128

Ex
ec

ut
io

n 
T

im
e 

(s
ec

s)

Number of Tasks
Qthreads FIFO
Qthreads EP FIFO EP

0

0.5

1

1.5

2

1 2 4 8 16 32 64 128

R
at

io
 F

IF
O

/Q
t

STREAM
STREAM-EP

Wednesday, May 18, 2011



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Thank You!

Questions?

Wednesday, May 18, 2011


