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The Structure of Chapel’s Runtime

Chapel Runtime Support Libraries
(written in C)

Tasks
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Chapel’s Tasking Layer

•Role: Responsible for parallelism/synchronization
•Main Focus:

– support begin/cobegin/coforall statements
– support synchronization variables

•Main Features:
– Startup/Teardown
– Singleton Tasks
– Task Lists
– Synchronization
– Control
– Queries
– ...serialization?
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The FIFO Tasking Implementation

•Work-queue model
–Function calls for work execution
–Centralized queue

•Cons:
–Task synchronization (sync) using thread 

synchronization (pthread_mutex_t)
• Compute/synch overlap requires 
oversubscribing (#threads > #cpus)

• Difficult to provide non-native (non-mutex) 
synchronization behavior

–#Task-to-#thread mismatch creates 
unexpected deadlock potential

–Does not support work stealing
–Does not support CPU pinning

•Pros:
–Simple, easy to debug
–Very portable
–Uses native state 

management
• stacks
• thread/task-specific data
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Challenges in Highly-Threaded Runtimes

•Per-thread state
–State vs threads

•Locality
–An afterthought in standard threading models
–Communication and synchronization are expensive, easy to use accidentally

•Synchronization
–Hard to make portable, maintain guarantees

•Every Machine is Different
–Granularity of sharing (cacheline size)
–Optimal number of threads (PU count)
–Communication topology
–Cache structure
–Memory model
–Synchronization Primitives (CMPXCHG vs TNS vs CASXA vs LDARX/STWCX)
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Qthreads Highlights

•Lightweight User-level Threading (Tasking)
•Platform portability

–IA32/64, AMD64, PPC32/64, SparcV9, SST, Tilera
–Linux, BSD, Solaris, MacOSX

•Locality awareness
–“Shepherd” as thread mobility domain & locality

•Fine-grained synchronization semantics
–Full/Empty Bits (64-bit & 60-bit)
–Mutexes
–Atomic operations (Incr & CAS)

•Locality-aware Workstealing Model
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Chapel Single Locale Challenges

•Startup & Teardown
–Functions with unspecified scope
–Synchronization primitives of unspecified scope

•Unsupported Behavior
–Limit on OS Threads

•Default defined by hardware
–Forced serialization of tasks
–Task-local data
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Chapel Multi-Locale Challenges

•Communication (via GASNet)
–Blocking system calls

•Dedicated OS thread
•Possibility for proxying internally
•Temporary solution: Forked initialization thread
•Future solution: explicit progress thread creation

–External Task Operations
•Task creation from outside the task library

–Memory management issue
–Also: synchronization issue…

•Task synchronization outside the task library
–Proxy-task using thread-level synchronization (pthread_mutex_t)
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Future Work

•Synchronization
–Tasking interface assumes only mutex semantics
–MTA/Qthreads interface provide fast FEB semantics
–Implementing FEB semantics with a mutex implemented with FEB 

operations is silly and slow
•Stack Space

–Problem common to all tasking interfaces
–Currently requires guess-and-check
–Potential directions:

•Technically possible to calculate stack requirements (e.g. gcc 4.6)
•Technically possible to move stack variables to heap

–Moves the memory management problem
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Performance: Raw Tasking

•QuickSort
–Naïve implementation (serial 

partitioning)
–Uses recursive cobegin
–Serialization threshold

•For best comparison, set high 
to avoid serialization
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Performance: Raw Tasking

•Tree Exploration
–Constructs binary tree
–Assigns Unique ID
–Computes sum of IDs
–Uses recursive cobegin
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Performance: Data Parallel

•HPCC RandomAccess
–GUPS (random integer 

updates)
–Stresses Memory System
–Uses forall
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Performance: Data Parallel

•HPCC STREAM (-EP)
–Memory Bandwidth & Vector 

Kernels
–EP version avoids 

communication
–Uses forall
–Synchronization surprisingly 

important
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Thank You!

Questions?
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