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The Structure of Chapel’s Runtime

Chapel Runtime Support Libraries
(written in C)
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Chapel’s Tasking Layer

*Role: Responsible for parallelism/synchronization

*Main Focus:
— support begin/cobegin/coforall statements
— support synchronization variables

* Main Features:
— Startup/Teardown
— Singleton Tasks
— Task Lists
— Synchronization
— Control
— Queries
— ...serialization?
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The FIFO Tasking Implementation

*Work-queue model
—Function calls for work execution
—Centralized queue

*Pros: Cons:
—Simple, easy to debug —Task synchronization (sync) using thread
—Very portable synchronization (pthread_mutex_t)
—Uses native state - Compute/synch overlap requires
management oversubscribing (#threads > #cpus)
* stacks * Difficult to provide non-native (non-mutex)
» thread/task-specific data synchronization behavior

—#Task-to-#thread mismatch creates
unexpected deadlock potential

—Does not support work stealing
—Does not support CPU pinning
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Challenges in Highly-Threaded Runtimes

*Per-thread state
—State vs threads
*Locality
—An afterthought in standard threading models
—Communication and synchronization are expensive, easy to use accidentally
Synchronization
—Hard to make portable, maintain guarantees
Every Machine is Different
— Granularity of sharing (cacheline size)
—Optimal number of threads (PU count)
—Communication topology
—Cache structure
—Memory model
—Synchronization Primitives (CMPXCHG vs TNS vs CASXA vs LDARX/STWCX)
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Qthreads Highlights

eLightweight User-level Threading (Tasking)

*Platform portability
—|A32/64, AMD64, PPC32/64, SparcV9, SST, Tilera
—Linux, BSD, Solaris, MacOSX

*Locality awareness
—“Shepherd” as thread mobility domain & locality
*Fine-grained synchronization semantics
—Full/Empty Bits (64-bit & 60-bit)
—Mutexes
—Atomic operations (Incr & CAS)

L ocality-aware Workstealing Model
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Chapel Single Locale Challenges

eStartup & Teardown
—Functions with unspecified scope
—Synchronization primitives of unspecified scope

Unsupported Behavior
—Limit on OS Threads
 Default defined by hardware
—Forced serialization of tasks
—Task-local data
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Chapel Multi-Locale Challenges

sCommunication (via GASNet)

—Blocking system calls
* Dedicated OS thread
 Possibility for proxying internally
* Temporary solution: Forked initialization thread
 Future solution: explicit progress thread creation

—External Task Operations

 Task creation from outside the task library
—Memory management issue
—Also: synchronization issue...
» Task synchronization outside the task library
—Proxy-task using thread-level synchronization (pthread mutex_t)
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Future Work

*Synchronization
—Tasking interface assumes only mutex semantics
—MTA/Qthreads interface provide fast FEB semantics

—Implementing FEB semantics with a mutex implemented with FEB
operations is silly and slow

*Stack Space
—Problem common to all tasking interfaces
—Currently requires guess-and-check

—Potential directions:
* Technically possible to calculate stack requirements (e.g. gcc 4.6)

 Technically possible to move stack variables to heap
—Moves the memory management problem
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Performance: Raw Tasking

*QuickSort

—Nalve implementation (serial

partitioning)
—Uses recursive cobegin

—Serialization threshold

* For best comparison, set high

to avoid serialization
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Performance: Raw Tasking

*Tree Exploration
—Constructs binary tree
—Assigns Unique ID
—Computes sum of IDs
—Uses recursive cobegin
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Performance: Data Parallel

*HPCC RandomAccess

—GUPS (random integer
updates)

—Stresses Memory System
—Uses forall

ol

N
U

I
g

Ratio FIFO/Qt
o o
N O
Ul 1o

o

| 2 4 8 16 32 64 128

ATY™ o

Natwea! N wa e

' YA L =35
g -

1000
)
8 100
)
£
|_
c
<
S 10
X
L

Il 2 4 8 16 32 64

Number of Tasks

® Qthreads ® FIFO

i\

128

Sandia
National
Laboratories

Wednesday, May 18, 2011




Performance: Data Parallel

*HPCC STREAM (-EP) |

—Memory Bandwidth & Vector
Kernels
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Thank You!

Questions?

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
'Av' A" 3{;‘5 for the United States Department of Energy’s National Nuclear Security Administration m National
e e S under contract DE-AC04-94AL85000. Laboratories

Wednesday, May 18, 2011



