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About the CS™ Series Urika®-CS Al and Analytics Applications Guide

1  About the CS™ Series Urika®-CS Al and Analytics
Applications Guide

The CS™ Series Urika®-CS Al and Analytics Applications Guide includes procedures for using the Urika®-CS
software stack on Cray CS systems. It provides an overview of the Urika-CS software stack, information about
using the various OSA components and the Cray PE ML plugin, as well as troubleshooting and quick reference
information.

Table 1. Record of Revision

Publication Title Date Release

cs™ series Urika®-CS Al and Analytics Applications Guide | July 2018 Urika-CS 1.0UPQ0

Scope and Audience

This publication is written for administrators and end users of the Urika®-CS software.

Typographic Conventions

Monospace Indicates program code, reserved words, library functions, command-line prompts,
screen output, file/path names, and other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

oliqueorltalics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a GUI Window, GUI element, cascading menu (Ctrl - Alt - Delete), or

key strokes (press Enter).

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line).

Trademarks

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, and YARCDATA. The following are trademarks of Cray Inc.. APPRENTICE2,
CHAPEL, CLUSTER CONNECT, ClusterStor, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX,
LIBSCI, NODEKARE. The following system family marks, and associated model number marks, are trademarks
of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a
sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.
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2

About Urika®-CS

Cray Urika®-CS is an optimized big data software stack, which is tuned for multiple work-flows and runs on Cray
CS systems. It features a comprehensive analytics software stack for performing machine and deep learning

tasks.

Features and Analytic Components

e Cray PE ML Plugin - This portable plugin leverages features of MPI as well as a novel "delayed
synchronization" variant of the Stochastic Gradient Descent (SGD) algorithm to allow scaling of deep learning
training without the normal convergence penalties. These capabilities improve scale, performance, and ease
of use of work loads.

e Support for Jupyter Notebook - Jupyter Notebook is a web application that enables creating and sharing
documents that contain live code, equations, visualizations, and explanatory text. For more information, visit
http://jupyter.org

e Support for GPUs - Urika®-CS enables running TensorFlow on Nvidia GPU nodes.

e Open Source Analytics (OSA) Images - Urika®-CS provides Open Source Analytics (OSA) OSA images
that run inside Singularity containers. Software provided in these images includes:

o

Apache™ Spark™ - Spark is a general data processing framework that simplifies developing big data
applications. It provides the means for executing batch, streaming, and interactive analytics jobs. In
addition to the core Spark components, Urika®-CS software ships with a number of Spark ecosystem
components. For more information, visit https://spark.apache.org

Anaconda® Python and R - Anaconda is a distribution of the Python and R programming languages for
large-scale data processing, predictive analytics, and scientific computing. It aims at simplifying package
management and deployment. For more information, visit https.//anaconda.org

Dask and Dask Distributed - Dask is a parallel programming library that combines with the Numeric
Python ecosystem to provide parallel arrays, data-frames, machine learning, and custom algorithms. For
more information, visit http://dask.pydata.org

Intel® BigDL - BigDL is a distributed deep learning library for Spark that can run directly on top of existing
Spark or Apache Hadoop clusters. Deep learning applications can be written as Scala or Python
programs. For more information, visit https.//www.intel.com

TensorFlow™ and TensorBoard - TensorFlow is a software library for dataflow programming across a

range of tasks. It is a Math library, which is also used for machine learning applications, such as neural

networks. TensorFlow provides a utility called TensorBoard that can display an interactive graphic of the
computational graph. For more information, visit https.//www.tensorflow.org

Urika®-CS's software stack is depicted in the following figure:
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Figure 1. Urika®-CS Analytic Software Stack
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2.1 About Open Source Analytics (OSA) Images

Urika®-CS OSA images contain software components required for running Spark, Dask Distributed, Anaconda
Python, TensorFlow and BigDL programs. The start_analytics command creates and runs containers on
allocated nodes of the CS system using OSA images.

Only OSA images can be used as part of Urika-CS software. Software packages, such as Spark and Dask, etc.
are available inside the OSA image to enable building distributed Al pipelines.

A CAUTION: Adding new containers or modifying the containers shipped with the Urika-CS software is
currently not supported. Similarly, Cray does not currently support customer modification to the Urika-CS
release. For more information, please contact a Cray service representative.

For more information, see the start_analytics man page.

2.2 Resource Allocation

Before an analytics cluster can be started, the desired number of nodes needs to be allocated using the system's
workload manager. If N number of nodes are allocated, one of them will be allocated as a master and one of them
will be allocated as an interactive node.

In addition, if the system uses:
e Slurm, N-2 worker containers will be launched.

e PBS Pro, N-2 worker containers will be launched.
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2.3  Apache Spark Support

Apache™ Spark™ is a fast and general engine for data processing. It provides high-level APIs in Java, R, Scala
and Python, and an optimized engine.

e Spark Core, DataFrames, and Resilient Distributed Datasets (RDDs) - Spark Core provides distributed
task dispatching, scheduling, and basic I/O functionalities.

e Spark SQL, DataSets, and DataFrames - The Spark SQL component is a layer on top of Spark Core for
processing structured data.

e Spark Streaming - The Spark Streaming component leverages Spark Core's fast scheduling capabilities to
perform streaming analytics.

e MLIib Machine Learning Library - MLlIib is a distributed machine learning framework on top of Spark.

e GraphX - GraphX is a distributed graph processing framework on top of Spark. It provides an API for
expressing graph computations.

This section provides a quick guide to using Apache Spark. Please refer to the official Apache Spark
documentation for detailed information about Spark, as well as documentation of the Spark APIs, programming
model, and configuration parameters.

Urika-CS ships with Spark 2.2.0.

Run Spark Applications
The Urika-CS software stack includes Spark configured and deployed to run in a Singularity container, with a per-
node cache for local temporary storage.

e spark-shell
e spark-submit
e spark-sqgl

e pyspark

e sparkR

e run-example

The Spark start up scripts will by default start up a Spark cluster using all worker nodes and cores of the Urika-CS
node allocation. To request a smaller or larger instance, pass the

--total -executor-cores No_of _Desired_cores command-line flag. Memory allocated to Spark
executors and drivers can be controlled with the —-driver-memory and --executor-memory flags. By
default, 32 Gigabytes are allocated to the driver, and 32 Gigabytes are allocated to each executor, but this will be
overridden if a different value is specified via the command-line, or if a property file is used.

Further details about starting and running Spark applications are available at http://spark.apache.org
Build Spark Applications
Spark 2.2.0 builds with Scala 2.11.8.

Urika-CS ships with Maven installed for building Java applications (including applications utilizing Spark’s Java
APIs), and Scala Build Tool (sbt) for building Scala Applications (including applications using Spark’s Scala APISs).
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To build a Spark application with these tools, add a dependence on Spark to the build file. For Scala applications
built with sbt, add this dependence to the .sbt file, such as in the following example:

scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark"™ %% 'spark-core'" % "2.2.0"

For Java applications built with Maven, add the necessary dependence to the pom.xml file, such as in the
following example:

<dependencies>
<dependency> <I-- Spark dependency -->
<groupld>org.apache.spark</groupld>
<artifactld>spark-core 2.11</artifactld>
<version>2.2._.0</version>
</dependency>
</dependencies>

For detailed information on building Spark applications, please refer to the current version of Spark's
programming guide at http://spark.apache.org.

Conda Environments

When the system is running in the default mode, PySpark on Urika-CS is aware of Conda environments. If there
is an active Conda environment (the name of the environment is prepended to the Unix shell prompt), the
PySpark shell will detect and utilize the environment's Python. To override this behavior, manually set the
PYSPARK_PYTHON environment variable to point to the preferred Python. For more information, see Enable
Anaconda Python and the Conda Environment Manager on page 14.

When the system is running in the secure mode, Spark jobs are not aware of Conda environments or user Python
versions.

Spark Configuration Differences
Spark’s default configurations on Urika-CS have a few differences from the standard Spark configuration:

e Changes to improve execution over a high-speed interconnect - The presence of the high-speed network
on the system changes some of the tradeoffs between compute time and communication time. Because of
this, the default settings of spark.shuffle.compress has been changed to false and that of
spark.locality._wait has been changed to 1. This results in improved execution times for some
applications. If an application is running out of memory or temporary space, try changing this back to true.

e Increases to default memory allocation - Spark’s standard default memory allocation is 1 Gigabyte to each
executor, and 1 Gigabyte to the driver. Due to large memory nodes, these defaults were changed to 32
Gigabytes for each executor and 32 Gigabytes for the driver.

2.3.1 Local Storage Options for Apache Spark

On Urika-CS, Spark in Singularity containers will default to looking for the /tmp directory on the local disk for
scratch space/local storage data.

It is important to note the following items when using Spark in Singularity containers:
e If local storage exists and is mapped to /tmp, then no change required to the Singularity configuration.

e If local storage exists but /tmp is not mapped to the local storage, administrators can create a local directory
and mount it onto the container at /tmp, using the bind path option in the container.
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e If local storage does not exist, use NFS or Lustre and mount it at /tmp in the container.

2.4 About Dask

Dask is a Python based parallel programming library that combines with the Numeric Python ecosystem to
provide parallel arrays, data-frames, machine learning, and custom algorithms. It supports multiple styles of task
scheduling, as well as multiple parallel data structures. The Dask distributed package for Python is a distributed
scheduler that allows Dask computations to be parallelized across multiple nodes. Dask Distributed requires
starting up a single scheduler process, in addition to one or more worker processes.

To learn more about Dask, visit http.//dask.pydata.org/en/latest/, https://dask.pydata.org/ and https://
distributed.readthedocs.io/.

Dask on Urika®-CS is supported with Anaconda Python versions 2.7, 3.5, and 3.6. It is currently not supported
with Python 3.4 as this version of Python does not support the Dask Scheduler files that Urika®-CS uses to
coordinate workers with the Client and Scheduler.

E CAUTION: Dask Distributed version 1.20 is hot compatible with Urika-CS. The incompatibilities in Dask
Distributed 1.20 may be worked around by adding "use-file-locking: false" to the end of the
user_home_directory/ .dask/config.yaml file. This issue has been resolved with Dask
Distributed 1.21 , therefore, it is recommended to use newer Dask Distributed versions.

For more information, refer to Use Dask to Run Python Programs on page 11

Urika®-CS automatically sets up Dask Distributed in the analytics cluster if start_analytics is executed with
certain options. For more information, see the start_analytics man page.

2.5 About Intel BigDL

The BigDL distributed deep learning library was developed for Apache Spark and is targeted at Spark users who
want to apply deep learning to data already available through Spark. BigDL also allows users to develop and run
deep learning applications from within Spark. BigDL leverages Spark to efficiently scale-out BigDL to run across
multiple nodes, but can also be run on a single node as a local Java or Scala program.

BigDL is modeled after Torch and provides support for adding deep learning (both training and inference) to Spark
applications and workflows. Users can also load pre-trained Caffe, Torch or TensorFlow models into Spark
programs using BigDL.

For more information, visit https://bigdl-project.github.io/0.5.0/ and review the section 'Getting Started' for an
introduction to BigDL. In addition, the section 'Programming Guide for BigDL' covers BigDL concepts and APlIs for
building deep learning applications.

BigDL on Urika®-CS
The version of BigDL used on Urika®-CS is 0.5.0. BigDL is built with MKL support and is pre-installed on Urika®-
CS. The BigDL distribution package is located under Zopt/bigdl-0.5.0/dist in the Urika®-CS software.

Use the following environment variables (which are set automatically) to perform deep learning tasks with the
BigDL toolkit:
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e BIGDL_DIR: Specifies the location of the BigDL files necessary to set up the environment and attach the
proper configuration and JAR files

e BIGDL_JAR: Specifies the location of the BigDL JAR file to be used when starting a Spark shell.

S3024 10



Perform Machine Learning Tasks

3  Perform Machine Learning Tasks

3.1 Execute Commands Inside Containers Using the
run_training Script

The run_training script executes commands inside a Singluarity container on each node. After receiving the
command, run_training sets up the run-time environment, such as for training applications that may have
been written to take advantage of the Cray ML PE plugin. By default, run_training will pass (to the user-
specified command) a comma-delimited list of the nodes that were allocated by the user through their workload
manager (WLM). This comma-delimited list of nodes will be appended to the end of the command-line arguments
of the user-specified command.

While using run_training:

e The -e option of the run_training script activates a Conda environment that is visible to the Conda
installed inside the image. This Conda environment can be either one of those provided inside the image or
one created by the user outside the image.

e |f the —e option is specified, and the training job involves TensorFlow, then the TensorFlow libraries expected
by Python in the environment are assumed to be installed in that environment.

For a full list of options and more information, refer to the run_training man page.

3.2 Use Dask to Run Python Programs

About this task

This procedure provides instructions for creating a Conda environment and running Dask in that environment.

Procedure
1. Log on to alogin node.

2. Skip this step if the system does not recognize modules/module files and the Urika-CS bin directory is
included in the PATH. If the system does use modules, load the analytics module.

$ module load analytics

3. Create a Conda environment with Dask, Dask Distributed packages, as well as any other Python packages
and versions to use with Dask.
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This can be done in the development mode as well

E CAUTION:

Dask Distributed version 1.20 is not compatible with Urika-CS. If Conda attempts to install this version
in the environment, users may force the earlier version by manually specifying "distributed=1.19
bokeh=0.12.7" while creating the Conda environment. Alternatively, the incompatibilities in Dask
Distributed 1.20 may be worked around by adding "use-file-locking: false" to the end of the
user_home_directory/ .dask/config.yaml file. This issue has been resolved with Dask
Distributed 1.21

bash-4.2% conda create --name nydaskenv dask distributed = 1.19 biopython python=3.5
bash-4.2% conda info --envs

conda environments:

nydaskenv /home/users/name/ .conda/envs/mydaskenv

bash-4.2$% exit

4. Allocate resources and start an analytics cluster, using the —-dask/-k option to start Dask and the —-dask-
env/-e option to specify the Conda environment.

Example for Slurm

$ salloc -N nunber of Nodes start _analytics -k -e nydaskenv
Analytics cluster ready. Type "spark-shell® for an interactive Spark shell.
(nydaskenv)

Example for PBS Pro

$ gsub -1 -Inodes=nunber of Nodes

$ module load analytics

$ module load openmpi/gcc/64/3.0.0

$ start_analytics -k -e nydaskenv

Analytics cluster ready. Type "spark-shell® for an interactive Spark shell.
(mydaskenv)

The path shown in the preceding example for loading the openMPI module depends on the system.

5. Run a Python program or start an interactive REPL.

To use Dask Distributed while running a Python program, specify the scheduler file location when initializing
the client. The scheduler file location can be found in $DASK_SCHED_FILE

(nydaskenv) python

Python 3.5.3 |Continuum Analytics, Inc.| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help™, "copyright”, "credits"™ or "license"™ for more information.
>>> import os

>>> from dask import bag

>>> from distributed import Client

>>> client = Client(scheduler_file=os.environ["DASK SCHED FILE"])

>>>
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3.3  Start an Analytics Cluster and Run OSA Jobs Using the
start_analytics Command

The start_analytics command starts an analytics cluster, which can be used to run Open Source Analytics
(OSA) components, including Spark, Anaconda, Dask, BigDL, TensorFlow, TensorBoard and Jupyter Notebook. It
can be considered as an entry point to the OSA components. The start_analytics command normally starts
an analytics cluster within the nodes of a user's job allocation.

The start_analytics command also accepts options that enable users to:

e Run commands in the analytics cluster and exit, instead of opening an interactive shell.

e Start a Dask distributed cluster.

e Launch Dask distributed with the specified memory limit, desired number of workers and/or cores.
e Start a single analytics container on the current login node.

e Specify a Conda environment to start the Dask workers and Dask scheduler with.

e Set up SSH tunnels for Uls.

Certain environment variables may be set before running the start_analytics command to modify the
behavior of the analytics cluster. Setting values for these variables is optional. Furthermore, these variables have
reasonable default values.

NOTE: If is it required to set these environment variables, they must be set prior to running
start_analytics. Setting them at a later point will have no effect.

e MINERVA_USE_LOGIN - If this environment variable is set, the interactive shell will run on the login rather
than a compute node. In some environments, this may allow better external connectivity for build and
environment tools that need to download new packages.

e SPARK_EVENT_DIR - Sets the location for Spark event logs.

The start_analytics script also features the —d option that starts a single analytics container on the current
login node. No job allocation is required in this case and Spark can still be used in local mode. This is useful for
performing development work, such as creating Conda environments, building applications, running single node
tests etc. In addition, the —d option enables performing development tasks with full access to the analytics
environment, without having to wait for a job allocation. Since this option may provide better access to the
external network in some environments, it can be useful for downloading new packages for builds.

Executing the start_analytics command presents a Bash shell on one of the cluster nodes, where Spark
and/or the analytic programming environment commands can be executed.

For more information, see the start_analytics man page.

3.4 Start Up an Analytics Cluster and the Analytic Programming
Environment

Prerequisites

This procedure assumes that the workload manager being used is either Slurm or PBS Pro. Contact a Cray
service representative if a different workload manager is being used.
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About this task

Procedure

1. Load the analytics module.
$ module load analytics

2. Optional: Set values for environment variables if needed. For more information, refer to Start an Analytics
Cluster and Run OSA Jobs Using the start_analytics Command on page 12

3. Allocate the desired number of nodes and execute the start_analytics command.

Example for Slurm:

$ salloc -N nunber of Nodes start_analytics

Example for PBS Pro:

$ gsub -1 -Inodes=nunber of Nodes

$ module load analytics

$ module load openmpi/gcc/64/3.0.0
$ start_analytics

The path shown in the preceding example for loading the openMPI module depends on the system.

Executing the start_analytics command presents a Bash shell on one of the cluster nodes, where Spark
and/or the analytic programming environment commands can be executed.

3.5 Enable Anaconda Python and the Conda Environment Manager

Prerequisites

This procedure assumes that Slurm or PBS Pro is being used as the workload manager. Contact Cray support if
using other workload managers.

About this task

Urika-CS OSA images come with the Anaconda Python distribution version 5.0.0, including the Conda package
and environment manager. This is the recommended Python distribution for running analytic jobs using Urika-CS.
If there is an active Conda environment, PySpark will automatically utilize Anaconda.

Procedure

1. Load the analytics module
$ module load analytics

2. Allocate resources, using workload management specific commands.

Example for allocating resources using Slurm.
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$ salloc -N nunber O Resour ces

Example for allocating resources using PBS Pro.

$ gsub -1 -Inodes=nunber O Resour ces
$ module load analytics
$ module load openmpi/gcc/64/3.0.0

The path shown in the preceding example for loading the openMPI module depends on the system.
3. Start an analytics cluster.

$ start_analytics
For more information, refer to the start_analytics man page.

This will place the user on a node running an interactive container. nid00030 is used as an example for an
interactive container node in this procedure.

4. Create a Conda environment.

The following example creates a Conda environment with scipy and all of its dependencies loaded:

[user @nid00030 ~]$ conda create --name sci pyEnv scipy

IMPORTANT: Use the conda config --add envs_dirs pat h_t o_di rect ory command if it is
required to set an alternate environments directory for Conda. path_to_direct ory must be a
directory that is mounted within the container. This is particularly useful when the home
directory space is limited.

5. Activate the Conda environment.

[user @nid00030 ~]$ source activate sci pyEnv

For more information about Anaconda, refer to https.//docs.anaconda.com. For additional information about
the Conda environment manager, please refer to http://conda.pydata.org/docs/

3.6 Create New Conda Environments with TensorFlow

Prerequisites

This procedure assumes that the workload manager being used is either Slurm or PBS Pro.

About this task

By default, two TensorFlow libraries of versions 1.6.0 built for Python 3.6 are installed in Zopt/tensorflow_cpu
and /opt/tensorflow_gpu. One version is for systems that use only CPUs, whereas the other can be used on
systems that have a combination of CPUs and GPUs.

The Urika-CS image contains two sample Conda environments with TensorFlow for Python 3.6:
e py36_tf _cpu for systems using CPUs only
e py36 tf gpu for systems using both CPUs and GPUs
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Users can activate these environments according to their platforms.

The run_training script has an option to automatically activate a Conda environment via the —e option. The
wheels for these TensorFlow builds are available inside the image. There are 2 additional wheels provided for
TensorFlow built for Python 2.7, one for systems using CPUs only and one for systems using both CPUs and
GPUs.

The locations of these four wheels are:
e \Versions for CPUs only: Zopt/tensorflow_cpu_build/wheel
e Version for CPUs and GPUs: Zopt/tensorflow_gpu_build/wheel

To run Python 2.7 TensorFlow inside the image, the user can create a new Python 2.7 Conda environment along
with pip and install one of the wheels provided in the image. The user can also activate their own environment by
specifying it via the —e option to the run_training script.

The following items should be kept under consideration while using the —e option:

e The -e option of the run_training script activates a Conda environment that is visible to the Conda
installed inside the image. This Conda environment can be either one of those provided inside the image or
one created by the user outside the image.

e If —e option is specified, and the training job involves TensorFlow, then the TensorFlow expected by the
Python in the environment is assumed to be installed in that environment.

Use the following instructions to create a new environment with TensorFlow for Python 2.7 for CPUSs.

Procedure

1. Log on to alogin node.
2. Load the analytics module
$ module load analytics

3. Obtain a job allocation and start the analytics cluster.

The following example is specific to Slurm

$ salloc -N nunber of Nodes start_analytics

The following example is specific to PBS Pro

$ gsub -1 -Inodes=nunber of Nodes

$ module load openmpi/gcc/64/3.0.0
$ module load analytics

$ start_analytics

The path shown in the preceding example for loading the openMPI module depends on the system.

4. Execute the following in the analytics shell.

$ conda create -n python2 python=2.7 pip
$ source activate python2
$ pip install /opt/tensorflow_cpu_build/wheel/tensorflow-1.6.0-cp27-cp27mu-linux_x86_64.whl

5. Exit the cluster.
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$ exit
6. Execute commands as needed in the new environment.

$ run_training -e python2 command

3.7 Visualize Statistics with TensorBoard

About this task

TensorBoard is a set of web applications that can be used for analyzing TensorFlow graphs. This procedure helps
getting starting with using TensorBoard.

For more information, visit https://www.tensorflow.org.

Procedure

1. Load the analytics module.
$ module load analytics

2. Allocate resources.
Example for Slurm:
$ salloc -N nunber O Nodes
Example for PBS Pro:

$ gsub -1 -Inodes=nunber O Nodes
$ module load analytics
$ module load openmpi/gcc/64/3.0.0

The path shown in the preceding example for loading the openMPI module depends on the system.

3. Start an analytics cluster using one of the following mechanisms.

e Slurm:

$ start_analytics --ssh-tunnel | ogi nPort :Ul Port

PBS Pro:

$ start_analytics --ssh-tunnel | oginPort :U Port --tunnel-host CS HOST_ NAME

This mechanism will automatically tunnel the Ul port of the interactive node to | ogi nPort on the login
node.

4. Run the TensorFlow or BigDL application with instrumented code to generate TensorBoard summary data and
store the summary data in a directory of choice.

In this procedure it is assumed that the summary data is stored in | ogDi r Nane.

5. Run TensorBoard after activating a sample TensorFlow Conda environment.
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$ tensorboard --logdir="1 ogDi r Name" --port=UlPort

TensorBoard can be started even when the application is running. The statistics can be visualized as the
training progresses. Another approach is to run TensorBoard after the training to perform post-run analysis.

6. Create a tunnel from the laptop being used to the login node port on the login node.

$ ssh -L localPort:localhost:loginPort CS HOST NAME

Here, loginPort should match the login port specified in step 3. localport is the port it is required to view
TensorBoard the Ul from on the user's machine. host nane is the login node that start_analytics was
run on in step 3.

For example, if 7801 is specified as the loginPort and it is required to view TensorBoard on the local
machine on port 7800, execute:

$ ssh -L 7800:l1ocalhost:7801 CS HOST NAME

7. Point a browser at localhost:| ocal Port to visualize TensorBoard.
For example, if the local port is 7800, point a browser at localhost: 7800

If multiple users are running TensorBoard, ensure that the ports being used are unique. For example, in
addition to the above run of TensorBoard, another user may be running another TensorFlow or BigDL
application and may want to run TensorBoard. Similarly, conflicts with users running Jupyter Notebook or
other web-based Uls need to be resolved as well. In such cases, it is important to ensure that the Ul Port is
forwarded to the host on interactive node.

This can be achieved by performing the following tasks:
1. Add additional ports to start_analytics

Pass a unique login port to start_analytics. For example, if the login port 7801 is busy, pass this
login port to start_analytics as follows:

$ start_analytics --login-port 7802 --ui-port 7800

To check if a port is in use, execute:

$ nc -z localhost PORT_NUMBER
$ echo $?

The port specified is available for use if the preceding command returns 1.

2. Run TensorBoard.

$ tensorboard --logdir="1 ogDi r Nane" --port=UlPort
3. Open another terminal window on the local machine and execute:

$ ssh -L localPort:localhost:loginPort host Nane
For example, if the local port is 7800 and login port is 7802, run:

$ ssh -L 7800:l1ocalhost:7802 host nane

4. Open TensorBoard, by pointing a local browser at localhost: 7800 to visualize statistics from the
second application.

For more information, refer to the start_analytics man page.
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3.8 Get Started with Intel BigDL

Intel® BigDL programs can be executed after launching a Spark shell. Use the following methods to get familiar
with using BigDL for performing deep learning tasks:

Run spark-shell with BigDL.

$ spark-shell --properties-file $BIGDL_DIR/conf/spark-bigdl.conf --jars $BIGDL_JAR
Use the BigDL Tensor API.

scala> import com.intel_analytics.bigdl.tensor.Tensor
import com.intel._analytics.bigdl.tensor.Tensor

scala> Tensor[Double](2,2)-Ffill(1.0)

resO: com.intel._analytics.bigdl.tensor.Tensor[Double] =
1.0 1.0

1.0 1.0

[com.intel _analytics.bigdl.tensor.DenseTensor of size 2x2]

Use the LeNet on MNIST "Hello World" deep learning example, which trains LeNet-5 on the MNIST data
using BigDL. For more information, visit https.//bigdI-project.github.io/0.5.0/ and see 'Training LeNet on
MNIST - The "hello world" for deep learning' in the 'Examples' section under the 'Scala User Guide'. The
MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000
examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and
centered in a fixed-size image.

Build complex deep learning models and applications using BigDL examples accessible at https://bigdl-
project.github.io/0.5.0/. These examples are pre-built with the BigDL distribution and demonstrate how to use
BigDL to train and evaluate several of the supported neural network models. Use the following bash script to
call one of these pre-built examples:

# Launch BigDL job
function launchBigbLJob() {
# echo "Entering function: launchBigDL"
local worker_nodes="expr $SLURM_JOB_NUM_NODES - 2~
local cores="expr $worker_nodes "** 20~
local batch_size="expr $cores "*" 4~
echo ""Number of Worker_nodes $worker_nodes™
echo "Running BigDL LeNet5 training with $cores cores with batch size $batch_size"

$ spark-submit --total-executor-cores $cores \

--conf spark.executor. instances=$worker_nodes --conf spark.executor.cores=20 \
--conf spark.shuffle.reducelLocality.enabled=false \

--class com.intel.analytics.bigdl.models.lenet.Train \
$BIGDL_DIR/1ib/bigdl-0.5.0-jar-with-dependencies.jar \

- /lus/snx11254/userName/mnist -b $batch_size -r 0.10 \

--checkpoint ./tests/log/model # echo "Exiting function: launchBigDLJob™

¥

3.9 RunIntel BigDL Programs Using spark-submit or spark-

shell

Prerequisites

This procedure assumes that the workload manager being used is either Slurm or PBS Pro.
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About this task

BigDL uses the Intel MKL library to achieve high performance. The LeNet on MNIST "Hello World" deep learning
example trains LeNet-5 on the MNIST data using BigDL. For more information, visit https://bigdl-project.github.io/
0.5.0/ and see the section titled 'Training LeNet on MNIST - The "hello world" for deep learning'. The MNIST
database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples. Itis a
subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size
image.

As an example, this is how the user would build the LeNet MNIST example.

Procedure

1.

2,

Log on to a login node.

Start up Spark and the analytics programming environment.

a. Load the analytics module.

$ module load analytics
b. Optional: Set values for environment variables if needed.

c. Allocate the desired number of nodes in the interactive mode and execute the start_analytics script.

The following example is specific to Slurm:

$ salloc -N nunber of Nodes start_analytics

The following example is specific to PBS Pro:

$ gsub -1 -1 nodes=nunber of Nodes

$ module load analytics

$ module load openmpi/gcc/64/3.0.0
$ start_analytics

The path shown in the preceding example for loading the openMPI module depends on the system.

Executing the start_analytics script presents a Bash shell on one of the cluster nodes, where Spark
and/or the analytic programming environment commands can be executed. For more information, refer to
the start_analytics man page.

Run the LeNet training as a standard Spark program using spark-submit

$ spark-submit --total-executor-cores 640 \

--conf spark.executor.instances=32 --conf spark.executor.cores=20 \
--conf spark.shuffle.reducelLocality._enabled=false \

--class com.intel_analytics.bigdl._models.lenet.Train \
$BIGDL_DIR/1ib/bigdl-0.5.0-jar-with-dependencies.jar \

-F /dir/username/mnist -b 2560 -r 0.10 --checkpoint ./tests/log/model

The parameters used in the preceding examples include:
e —T: Specifies where the MNIST data is placed.

e -—-checkpoint: Specifies where the model/train_state snapshot can be cached. Input a folder and
ensure the folder is created this example is run. The model snapshot will be hamed as
model .#i t erati on_nunber, and train state will be named as state.#it erati on_nunber. If there
are any files already existing in the folder, the old file(s) will not be overwritten for the safety of model files.
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e -b: Specifies the mini-batch size. It is expected that the mini-batch size is a multiple of node_nunber *
cor e_nunber, i.e., the product of the number of nodes and the number of cores-per-node.

3.10 Run Intel BigDL Programs Using PySpark

Prerequisites

This procedure assumes that the workload manager being used is either Slurm or PBS Pro.

About this task

This procedure enables users to run PySpark applications on Urika®-CS images using Intel® BigDL. In the
following procedure, the bigdl . sh script is used with the spark-submit and spark-shell options for
executing the Textclassification example with the GloVe and News20 datasets. The text classification test
requires the GloVe (Global vectors for Word Representation) dataset, which is approximately 823 MB. Since job
allocation may timeout if this dataset is downloaded at runtime, the dataset should be downloaded before running
any tests. The tests need to be modified to access datasets from a local directory. To modify the text classification
example, change the function calls in textclassification.py from:

news20.get_news20()
new20.get _glove w2(dim=embedding_dim)

to:
news20.get_news20(source_dir="pathto/dataset’)

news20.get_glove w2v(source_dir="pathto/dataset”,dim=embedding_dim)

Procedure
1. Log on to alogin node.

2. Start up Spark and the analytics programming environment.

a. Load the analytics module.

$ module load analytics
b. Optional: Set values for environment variables if needed.

c. Allocate the desired number of nodes in the interactive mode and execute the start_analytics
script.

Example for Slurm:

$ salloc -N nunber of Nodes start_analytics

Example for PBS Pro:

$ gsub -1 -1 nodes=nunber of Nodes
$ module load analytics
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$ module load openmpi/gcc/64/3.0.0
$ start_analytics

The path shown in the preceding example for loading the openMPI module depends on the system.

Executing the start_analytics script presents a Bash shell on one of the cluster nodes, where Spark
and/or the analytic programming environment commands can be executed. For more information, refer to
the start_analytics man page.

Create a variable for Python libraries.

$ export PYTHON_API_ZIP_PATH=${BIGDL_DIR}/lib/bigdl-0.5.0-python-api.zip
Set the Python path.

$ export PYTHONPATH=${PYTHON_AP1_ZIP_PATH}:$PYTHONPATH

Use the spark-submit command to execute the pyspark test.

In the preceding, -b: Specifies the mini-batch size. It is expected that the mini-batch size is a multiple of
node_nunber * cor e_nunber, i.e., the product of the number of nodes and the number of cores-per-node

$ spark-submit --total-executor-cores 640 --conf spark.executor.instances=32 \
--conf spark.executor.cores=20 --py-files ${PYTHON_API_ZIP_PATH},\
./tests/py_files/v0.5.0 py3/textclassifier.py --jars ${BIGDL_JAR} \

--conf spark.executorEnv.PYTHONHASHSEED=123 \

-/tests/py fTiles/v0.5.0 py3/textclassifier._.py -b 2560 --max_epoch 3 --model cnn

3.11 Run Intel BigDL Programs as Local Java or Scala Programs

Prerequisites

This procedure assumes that the workload manager being used is either Slurm or PBS Pro.

About this task

Intel® BigDL can be run on a single node as a local Java or Scala program outside of Spark, as described in the
following procedure.

Procedure

1.

Load the analytics module.

$ module load analytics

If using a PBS Pro based system, also load the openMPI module as show in the following example:

$ module load openmpi/gcc/64/3.0.0

The path shown in the preceding example for loading the openMPI module depends on the system.

Start the analytics cluster.
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$ start_analytics -d
Optional: Set values for environment variables if needed.

Set DL_CORE_NUMBER to the desired number of cores and set BIGDL_LOCAL_MODE to true to indicate that
BigDL needs to run locally or outside of Spark.

$ export BIGDL_LOCAL_MODE=true

$ export DL_CORE_NUMBER=8

$ scala -cp my_bigdltests 2.11-1.0.jar:$BIGDL_JAR MyLeNetTrainLocal -f \
/lus/scratch/datasets/mnist

Depending on the language, use the following format for executing this code:
e Java:

java -cp fileName.jar:/opt/scala-2.11.8/1ib/scala-reflect.jar user sMai nCl assNanme
e Scala:
scala -cp fileName.jar user sMai nC assNane

In the preceding examples, i leName represents the name of JAR file(s) containing the user's main class,
as well as all the associated dependencies.

3.12 Set up Connectivity to User Interfaces

About this task

An SSH tunnel can be useful for connecting to a Ul running on the interactive node from a different machine. One
or more SSH tunnels can be set up from the host login node to the interactive node using the —-ssh-tunnel
option of the start_analytics command.

In the following instructions:

| ocal Port is a port on the user’'s machine, such as a laptop, that will be used to view the Ul locally.
| ogi nPort is the login node of the system.

Ul port is the port on the interactive node that the web Ul runs on.

Procedure

1. Log on to alogin node.

2. Loadthe analytics module.
$ module load analytics

3. Allocate resources.

Example for Slurm:

$ salloc -N nunber of Nodes
Example for PBS Pro:
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$ gsub -1 -1 nodes=nunber of Nodes

$ module load analytics

$ module load openmpi/gcc/64/3.0.0

The path shown in the preceding example for loading the openMPI module depends on the system.
4. Start up an analytics cluster with an SSH tunnel from the interactive node to the system's login node.

Example for Slurm:

$ start_analytics --ssh-tunnel | ogi nPort: Ul Port

Example for PBS Pro:

$ start_analytics --ssh-tunnel | oginPort :U Port --tunnel-host host name

Multiple —-ssh-tunnel options can be passed to the start_analytics command to start up more than
one SSH tunnels, as shown in the following example:

$ start_analytics --ssh-tunnel |oginPort1: U Portl --ssh-tunnel | ogi nPort2: U Port 2
In the above example, Ul Port and | ogi nPort are used as examples for ports that the Ul under
consideration is running on the interactive node, and forwarded to on the login node, respectively. This
mechanism can be used to launch TensorBoard and Jupyter Notebook at the same time.

5. Create an SSH tunnel from the localhost to the login node in a new terminal window.

$ ssh -N -F -L | ocal Port :localhost:l ogi nPort CS_STORM HOSTNAME

Here, | ogi nPor t should match the login port specified in step 4. | ocal Port is the port to use to view the
Ul from on the local machine. host nane is the login node that start_analytics was run on.

3.13 Execute a Simple Jupyter NoteBook

About this task

This procedure provides instructions for executing Jupyter Notebooks on the system.

Procedure

1. Log on to a login node.

CS_STORM HOSTNAME is used as an example for the login node's name in the following example:
$ ssh CS_Syst em Host Nane

2. Load the analytics module
$ module load analytics

3. Obtain a job allocation.

Example for Slurm:
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$ salloc -N nunber of Nodes

Example for PBS Pro:

$ gsub -1 -Inodes=nunber of Nodes
$ module load analytics
$ module load openmpi/gcc/64/3.0.0

The path shown in the preceding example for loading the openMPI module depends on the system.
4. Create an SSH tunnel from the localhost to the login node in a new terminal window.

$ ssh -N —-F -L | ocal Port :localhost:l ogi nPort host nane

Here, | ogi nPort should match the login port specified in step 4. | ocal Port is the port to use to view the
Ul from on the local machine. host nane is the login node that start_analytics was run on.

5. Execute the start_analytics command, specifying the login and Ul ports.

Running with the -—login-port and —-ui-port options also automatically sets the
JUPYTER_RUNTIME_DIR environment variable. If this variable is not set to a writeable directory, Jupyter will
not run.

Example for Slurm:

$ start_analytics --ssh-tunnel | ogi nPort :Ul Port

Example for PBS Pro:

$ start_analytics --ssh-tunnel | oginPort :Ul Port --tunnel-host host nane
Here:

e | ogi nPort isthe portto use on the login node.
e Ul Port is the port that the Ul runs on.

6. Start the Jupyter Notebook application.

The following example assumes that Jupyter Notebook is not being used with a Conda environment.

$ jupyter notebook --port Ul Port --notebook-dir=./ --no-browser

[1 20:23:57.376 NotebookApp] Serving notebooks from local directory: /home/users/
username

[1 20:23:57.376 NotebookApp] O active kernels

[1 20:23:57.376 NotebookApp] The Jupyter Notebook is running at: http://
localhost:9100/?token=6aact7f9e13c412921a4tdel10ae51d638065¥60839114193

[1 20:23:57.376 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

[W 20:23:57.380 NotebookApp] No web browser found: could not locate runnable
browser.

[C 20:23:57.381 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
http://localhost:9100/?
token=6aacf7f9e13c412921a4fdel0ae51d638065160839114193

7. Copy and paste this URL into a browser when connecting for the first time.
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To login with a token, point a browser at http://l1ocalhost:| ocal Port /?. Enter the received token
when prompted.

Alternatively, set the password in the Jupyter Notebook server.

8. Shut down the Jupyter Notebook server by killing the Jupyter process on the interactive node.
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4  Cray PE ML Plugin - Cray Distributed Training
Framework

Deep Learning (DL) with neural networks can be used as a critical tool for academia because of its transformative
potential for a wide variety of problems. The amount of computational resources needed to train sufficiently
complex networks can limit the use of DL, however. High Performance Computing (HPC), in particular efficient
scaling to large numbers of nodes, is ideal for addressing this problem. This section describes the Cray PE ML
plugin, a portable distributed training framework for scaling deep learning training workloads.

Distributed Deep Learning

Stochastic gradient descent (SGD) is the optimization technique most commonly used to train deep neural
networks. The training process requires a large training dataset labeled with information about each sample that
the network needs to learn. One of the SGD steps uses a random subset of that data, called the mini-batch, to
compute partial derivatives for each tunable parameter in the network. These derivatives/gradients measure the
difference between the output of the network and the correct result given by the labels. Each sample in the
random subset produces its own gradients. The gradients from each sample are averaged together, after which
the average is used to update the network parameters for the next SGD step. Modifications to SGD typically
involve new optimizers. This is the method used to update the model given a set of gradients.

SGD can be parallelized by subdividing a sufficiently large mini-batch evenly among a set of processes. Each
process computes gradients locally, and then communicates them to produce globally averaged gradients. The
neural network parameters (model) are then updated with these gradients. This technique is called synchronous
data parallel SGD (SSGD).

It is possible to reduce DL training time to accuracy with SSGD by increasing the global mini-batch size (sum
across all processes) and increasing the SGD step size, also referred to as the learning rate. The errors on
globally averaged gradients decrease as more samples are used to compute them. Lower errors allow for larger
updates to the model at each step, potentially leading to faster convergence. There are limitations to how far the
global mini-batch size can be increased before slow convergence or lack of convergence is observed. More
sophisticated optimizers must then be used to overcome these training difficulties. Adaptive optimizers such as
Adam and LARS are proven examples for certain classes of networks.

Distributed TensorFlow

Many parallelization frameworks for DL, such as gRPC in TensorFlow, consist of two classes of processes:
Parameter Servers (PS) and workers.

Parameter Server (PS) processes gather gradients from worker processes, compute the globally averaged
gradients, update the network parameters, and send the new parameter values to workers. Typically the user can
select the number of PS processes. A single or limited number of PS processes with a large number of workers
will encounter performance issues and limited scaling. This configuration establishes a many-to-few
communication pattern, which causes congestion on most networks. It is also difficult for a limited number of PS
processes to send out updated parameter values fast enough to keep up with worker demand. Increasing the
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number of PS processes can reduce the communication and parameter update bottlenecks. Using too many PS
processes, however, results in many-to-many communication patterns, which will not scale to large numbers of
nodes. Determining the optimal number of PS processes is very cumbersome for users. For gRPC in TensorFlow,
users must also provide node names and port numbers, adding to usability issues.

Cray PE ML Plugin - Cray Distributed Training Framework

The Cray PE ML plugin addresses the scaling performance and usability issues in TensorFlow and other similar
DL frameworks. There are no PS processes when using the Cray PE ML plugin. Every process is a worker, and a
custom global reduction operation replaces the gradient aggregation work of PS processes. Every worker then
redundantly computes network parameter updates, which is typically a small fraction of the execution time. The
Cray PE ML plugin has a custom reduction for gradient aggregation, specifically optimized for DL workloads. In
addition to improved communication performance at scale, the custom reduction implementation also offers
excellent computation/communication overlap. The ability to hide the communication costs of the average
gradient computation phase plays a key role in improving the time to accuracy of distributed training.

No modifications to TensorFlow are required to use the Cray PE ML plugin for parallelization. The TensorFlow
custom Op feature is used to add the necessary communication steps to the execution graph in an optimal way.
Users can start with a serial TensorFlow or other framework client script and add the required calls for
initialization, communication, and finalization. For situations where multiple gradient reductions are needed, such
as GANSs, teams of reduction threads can be used to accelerate each independently with a few simple calls. C/C+
+ and Python 2 or Python 3 interfaces are available with the Cray PE ML plugin.

High Performance Parallel SGD Algorithm

The Cray PE ML plugin has advanced parallelization algorithm features that enable even higher parallel efficiency
over that provided for pure SSGD. This advanced algorithm uses non-blocking communication and pipelining to
hide communication behind gradient computation with exceptional efficiency. The primary algorithm, referred to as
Delayed Synchronous SGD (DSSGD) has two paths to select from; warm-up and cool-down. The warm-up path is
preferred for simple optimizers, such as SGD or momentum SGD. The cool-down path is preferred for
sophisticated optimizers like Adam. DSSGD is described by the following psuedo-code, where M_step are the
model values at the current step:

DSSGD Algorithm with Warm-up

for 0 <= step < K do
B local,step local mini-batch
G_local,step compute_gradients(M_step, B _local,step)
G_global,step = allreduce_blocking(G_local,step)
M_step+1l = apply_gradients(G_global,step)

if step = K-1 then
start_allreduce _nonblocking(G_local,step)
end if
end for

for K <= step < max_steps do
B_local,step = local mini-batch
G_local,step = compute_gradients(M_step, B local,step)
G_global,step = end_allreduce_nonblocking()

iT step < max_steps-1 then
start_allreduce_nonblocking(G_local,step)
end if
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M _step+1l = apply_gradients(G_global,step)
end for

DSSGD Algorithm with Cool-down

for 0 <= step < K do
B_local ,step local mini-batch
G_local,step compute_gradients(M_step, B local,step)

if step > 0 then
G_global,step = end_allreduce_nonblocking()
else
G_global,step
end if

allreduce_blocking(G_local,step)

if step < max_steps-1 then
start_allreduce_nonblocking(G_local,step)
end if

M _step+l = apply_gradients(G_global,step)
end for

for K <= step < max_steps do
B_local ,step local mini-batch
G_local,step compute_gradients(M_step, B local,step)

if step = K then
G_global ,step
else
G_global,step = allreduce_blocking(G_local,step)
end if

end_allreduce nonblocking()

M _step+1l = apply_gradients(G_global,step)
end for

DSSGD consist of two phases:

e Blocking communication phase - The blocking communication phase exactly replicates pure SSGD and has
identical convergence behavior.

e Non-blocking communication phase - The non-blocking communication phase is a unique form of
asynchronous SGD where every process has identical models (as in SSGD) but gradients are derived from
model parameters one step out of date. This has a slight drag on convergence, but when properly tuned
these algorithms can converge in close to the same number of mini-batch steps as SSGD but with even
higher parallel efficiency.

In addition to the algorithm selection described earlier, users must tune the value of parameter K, which defines
the mini-batch step where a transition between blocking and non-blocking communication phases occurs. The
non-blocking communication phase can be used for approximately 10-90% of the training run depending on the
exact nature of the model being trained and optimizer in use. Users should start with K set to the total number of
mini-batch steps to train to tune optimizers and hyper-parameters at the chosen job size. This forces pure SSGD
to be used for the duration of training. Once other hyper-parameters are set, a coarse bi-section search of K can
be used to find the optimal setting for both performance and accuracy.
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4.1 Port Scripts to Use the Cray Programming Environment Machine
Learning Plugin

Prerequisites

This procedure requires Urika-CS software installed on a Cray CS system.

About this task

To port a TensorFlow training script to use the Cray PE ML plugin, it is recommended to start with a training that
executes serially, i.e., it does not use distributed TensorFlow. With that script, the following modifications are
necessary to use the plugin:

1. |Initializing the Cray PE ML plugin, specifying the number of teams, threads, model size
2. Broadcasting initial model parameter values

3. Using the Cray PE ML plugin to communicate gradients after gradient computation and before the model
update

4. Finalizing the Cray PE ML plugin
Modifications that are not required by the Cray PE ML plugin, yet common for parallelization, include:
e Correcting the definition of an epoch for the global mini-batch size (all processes)
e Correcting the learning rate:
o Linear or square root scaling rule
o Adding a learning rate decay schedule
e Average performance metrics using Cray PE ML plugin helper functions
Only a single rank produces the desired prints. In addition, either a single rank writes checkpoints or each
rank writes to a unique location

The following code excerpts (from the MNIST example provided with the release) review the required
modifications for using the Cray PE ML plugin.

Procedure

1. Initialize the Cray PE ML plugin.
This is done by first importing the ml_comm module and calling its init() function as follows:

Example of initializing the Cray PE ML plugin

# 1mport the Cray PE ML Plugin module
import ml_comm as mc

def main():

# Build the model
model=build_model (n_in, n_layer, n_hid, n_out)

# 1f the Plugin is enabled initialize it
if (flags.enable ml_comm == 1):
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# determine the model size
totsize = sum([v for v in tf_trainable_variables(Q)])

# initialize the Cray PE ML Plugin
mc.init(nthread per_team=2, nteams=1, msglen=totsize, "tensorflow')

Note the call to mc . init() includes the additional argument of tensorflow, which indicates that
TensorFlow is the training framework. There are two effects from specifying tensorflow. First, calls to the
Cray PE ML plugin operations for broadcasting initial model parameters (mc.broadcast()) and gradient
aggregation (mc.gradients()) switch from expecting NumPy array data buffers to native TensorFlow
Tensor buffers. Second, TensorFlow operations for both broadcast and gradient aggregation get loaded,
which allows those calls to be added to the execution graph.

The next initialization step is to configure the single thread team to be aware of the total number of training
steps. Users first decide on the number of training epochs and number of samples in a mini-batch per
process. The total number of training steps M, eps IS then given by:

M =n k b N
steps= train/(“ranks* I ocal ) X “epochs

where Nepochs is the number of training epochs, "4, is the number of samples in training dataset, ¥, 4k is
the number of workers (MPI ranks or processes), and ?, .o is the local batch size.

The configuration step is shown below with multiples suggestions about how to modify the configuration,
continuing from the previous code block:

Example of configuration the Cray PE ML plugin initialization parameters

# use the CPE ML Plugin to get our rank and
# the number of processes

myrank mc.get_rank()

numworkers = mc.get_nranks(Q)

# num_train_samps is the number of samples in

# our training data set

max_steps = int(math.ceil(flags.train_epochs * (num_train_samps) / (numworkers
* batch_size)))

# configure the single thread team and have rank O print out communication
performance metrics

# every 100 steps

mc.config_team(0, 0, max_steps, max_steps, 1, 100)

# The above configuration can be modified as needed. For example, to configure
the team to complete

# a blocking warm-up phase for the first 10% of training without a smooth
transition:

# mc.config_team(0, 0, Int(0.10 * max_steps), max_steps, 1, 100)

#

# To instead use a smooth transition:

# mc.config_team(0, 1, int(0.10 * max_steps), max_steps, 1, 100)

#

# To perform a cool-down blocking phase for the final 10% of training, make
the following change:
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# mc.config_team(0, 1, -1*int(0.90 * max_steps), max_steps, 1, 100)

Broadcast initial model parameters.

With Tensorflow, it is ideal to use a SessionRunHook to manage the broadcast and any desired averaging of
metrics. Session hooks can be passed to convenience classes, such as Estimator, to be run at specific points
in session management. A typical SessionRunHook for broadcasting initial model parameters is defined as
follows:

Example of broadcasting initial parameters in the SessionRunHook class

class BcastTensors(tf.train.SessionRunHook):

def __init_ _(self):
self.bcast = None

def begin(self):
if not self._bcast:
new_vars = mc.broadcast(tf.trainable variables(),0)
self.bcast = tf.group(*[tf.assign(v,new_vars[k]) for k,v in
enumerate(tf.trainable variables(Q)])

def after_create_session(self, session, coord):
session.run(self._bcast)

This SessionRunHook broadcasts the model parameters from rank 0 to all other MPI ranks and then
assigns the new values. The actual operation is performed after the session is created. This
SessionRunHook must be provided to the Estimator instance as follows:

Example of supplying SessionRunHook to the Estimator instance

train_hooks = None

# 1f the Cray PE ML Plugin is enabled add the hook
if (mlcomm == 1):
train_hooks = [BcastTensors()]

cnf = tf_estimator._EstimatorSpec(mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
training_hooks=train_hooks,
eval _metric_ops=metrics)

classifier = tf._estimator.Estimator(model_fn=cnfT)
classifier.train(input_fn=input_fn_train, steps=tsteps,

max_steps=flags.max_train_steps)

Perform gradient aggregation.

The communication and performance intensive operation that is highly optimized in the Cray PE ML plugin is
gradient aggregation. This is placed between gradient computation and model update as follows:

Example of gradient aggregation and communication

def train(model_function, train_samp, eval_samp,
batch_size)
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# often a serial code will use the
# optimizer minimize() method
it (mlcomm 1= 1):

minimize_op = optimizer.minimize(loss, global_step)

else:
# for the Cray PE ML Plugin
# we need to split out the minimize call below
# so we can communicate/average gradients
grads_and vars = optimizer.compute gradients(loss)

grads
gs_and_vs

mc.gradients([gv[0] for gv in grads and_vars], 0)
[(g,v) for (_,Vv), g in zip(grads_and_vars, grads)]

minimize _op = optimizer.apply gradients(gs_and vs, global_ step)

It is common for a serial training script to use the minimize() method of an optimizer. This method
computes gradients and updates the model with those gradients. The global reduction of local gradients must
be done between those steps for data parallel training, however. In the code block above, minimize() is
splitinto compute_gradients() and apply_gradients() so that the mc.gradients() call can be
added. This operation is added to the execution graph and will have direct access to gradient Tensors,
located in CPU or GPU memory, without additional buffering.

4. Finalize the plugin.

The final required step for porting a serial training script is to finalize the Cray PE ML plugin, similar to
finalizing MPI. This call should be added after training is complete and the session is closed. Often this is at
the end of the main() function.

Example of finalizating the Cray PE ML plugin

def main():

# training is complete and we"re ready to exit
mc.finalize()

Cray provides several examples with the Cray PE ML plugin package for users to reference. MNIST and
tf_cnn_benchmarks examples are provided as part of this release. The tf_cnn_benchmarks example is
commonly used to benchmark the performance across a set of standard CNNs.

4.2 Run TensorFlow Inside Urika-CS Containers Using the Cray PE
ML Plugin

Prerequisites

This procedure requires:
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e Urika®-CS software with Cray programming environment machine learning plugin for using run_training
examples.

e The CuDNN library is required for running TensorFlow on GPU nodes. Users may need to download CuDNN
from NVIDIA if their site does not already have it installed.

About this task

The Cray PE ML plugin enables scaling and significantly higher productivity to deep learning (DL) frameworks.
This capability is intended for users needing faster time to accuracy and is based on data-parallel DL training.
TensorFlow users on Urika®-CS start with a serial (non-distributed) Python training script, include a few simple
lines for the Cray PE ML plugin, and are then able to train across many nodes at very high performance. User that
already have distributed gRPC-based Python training script can also use the Cray PE ML plugin to obtain better
performance by by-passing gRPC setup. The Cray PE ML plugin has both C and Python interfaces for the
communication needs of DL training.

About MNIST and tf_cnn_benchmarks

e MNIST- This is an example of modifying a serial training script to use the CPE ML plugin. The script is
available in Zopt/cray/pe/craype-ml-plugin-py3/1.1.1/examples/tf _mnist/mnist.py. The
script is documented with any modifications, and the
file Zopt/cray/pe/craype-ml-plugin-py3/1.1._1/examples/tf _mnist/README also describes the
modifications.

e tf _cnn_benchmarks - This is an example of modifying a script already able to run across multiple nodes
through gRPC to instead use the CPE ML plugin. Both capabilities (QRPC and the Cray PE ML plugin) are
available as options in this script, and the script can be used to benchmark scaling and performance of
various CNNs using either gRPC or Cray PE ML plugin. The source files for this benchmark are located
in: /opt/cray/pe/craype-ml-plugin-py3/1.1.1/examples/tf_cnn_benchmarks. Any
modifications are documented inside the source files, and the
file Zopt/cray/pe/craype-ml-plugin-py3/1.1.1/examples/tf _cnn_benchmarks/README
describes the changes in detail.

Tuning Recommendations for CPU and GPU Nodes

For CPU and single GPU nodes, the best performance is typically achieved with one MPI rank per node. The
Cray PE ML plugin should be configured to use 2-4 communication threads with the mc.config_team()
interface. In some cases with GPU nodes, performance can be improved using up to 8 threads. For training with
MKL and MKL-DNN, it is important to not set OMP_NUM_THREADS too high, lest cores become oversubscribed.
For example, if there are 36 physical cores on a node, optimal performance is achieved with
OMP_NUM_THREADS=34 while leaving two cores/threads for communication with the Cray PE ML plugin.
Additionally, with TensorFlow and the tf_cnn_benchmarks example, num_intra_threads should be set to
match the value of OMP_NUM_THREADS, and num_inter_threads can typically be set to 1-3 threads depending
on the number of HyperThreads available per core. For KNL CPUs, it is typically best to leave one HyperThread
free on each core. The KMP_BLOCKT IME environment variable may yield slightly improved performance if set to 0
or 30.

For GPU nodes, the number of CUDA streams used to buffer data to the host can be modified via the
ML_COMM_NUM_CUDA_STREAMS environment variable, and the number of copies each of those streams performs
is changed with the ML_COMM_CPY_PER_CUDA_STREAM environment variable. The default settings, 2 and 8,
respectively, have empirically been found to be best for nearly all situations.

When executing on multi-GPU nodes such as CS Storm 500GT or CS Storm 500NX nodes, best performance
may be achieved in different manners for single node and multi-node execution. For single node execution, the
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Cray PE ML plugin typically runs best with 1 rank per GPU, i.e.: 8 ranks on the node. In that case, two
communication threads provide good performance. With multi-node execution and depending on the model being
trained, running 2 ranks per node, i.e.: 4 GPUs per rank, may be more optimal, while continuing to use 2
communication threads per rank.

This also requires changes to be made to the TensorFlow training script such that each MPI rank only sees the
number of GPUs it is allowed to use. This is handled via TensorFlow's tf.ConfigProto():

Masking GPUs from TensorFlow

# To execute a multi-node job, where two ranks execute on a node and each use 4
GPUs
config = tf.ConfigProto()
if (nc.get rank %2 == 0):
config.gpu_options.visible _device_list = *0,1,2,3"
else:
config.gpu_options.visible_device_list = "4,5,6,7"

# IT running a single node training job, you may want to launch 8 MPI ranks with
each using a GPU. In that case,

# the visible device list could be changed like so:

# config.gpu_options.visible _device_list = str(mc.get_rank())

About the run_training script

The run_training script allows the user to execute a distributed job using MPI or the Cray programming
environment machine learning plugin. The user specifies the number of processes to run on each allocated node
via the —-ppn argument, and also specifies how many processes to run across all allocated nodes via the -n
argument, as shown in this procedure.

Procedure

1. Load the analytics module.
$ module load analytics

2. Load the OpenMPI module. Check the installation instructions for details on OpenMPI module file.
$ module load openmpi/gcc/3.0.0

3. Allocate the desired number of nodes in interactive mode or as part of a SLURM or PBS job submission
script.

If the CS system being used has GPUs, and it is required to use them for TensorFlow, be sure to add options
for requesting nodes with GPUs.

An example of SLURM using an interactive session requesting two NVIDIA P100 nodes is shown below
(users should refer to documentation provided by their site for exact allocation syntax):

$ salloc --nodes=2 --exclusive --gres=gpu -C P100

For PBS, a similar request may look like:

$ gsub -1 -1 nodelist=GPUNodelDs -1 nodes=2
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4. Switch to the current working directory to copy the contents
of /opt/cray/pe/craype-ml-plugin-py3/1.1.1/examples/tf_cnn_benchmarks/* (which are the
TensorFlow examples packaged with the plug-in) to the current working directory if it is required to run the
tf_cnn_benchmark example provided with the CPE ML plug-in.

$ cd wor ki ngDir
$ cp -r /opt/cray/pe/craype-ml-plugin-py3/1.1._1/examples/tf_cnn_benchmarks/* .

5. Submit a TensorFlow command to the run_training script.

Submit a TensorFlow command to the run_training command. If the Cray PE machine learning plugin is
installed on the system, it can be used as a test case in this step. This procedure assumes the plugin is
installed. GPU example using 2 nodes with one process per node with user's CuDNN v7.1.2 library located
at /home/users/user /CubDNN/cudnn-9.0-v7.1.2/cuda/1ib64

$ run_training -n 2 --ppn 1 --craype-plugin --cudnn-libs \

/home/users/user /CuDNN/cudnn-9.0-v712/cuda/lib64 \

--no-node-list "python tf cnn_benchmarks.py --num gpus=1 \

--batch_size=64 --model=inception3 --train_dir=/home/users/user/tf _cnn_train \
--data_name=imagenet --variable_update=ps_ml_comm --local_parameter_device=gpu"’

num_intra_threads should be set to the number of cores available on the Xeon or Xeon Phi node. On
Xeon Phi users should set num_inter_threads to 2 to use additional hyper threads. Users can obtain
cudnn libraries from https.//developer.nvidia.com.

Intel Xeon example for Broadwell dual socket 18 core nodes:

$ $ run_training -n 2 --ppn 1 --craype-plugin \
--no-node-list "python tf cnn_benchmarks.py \
--device=cpu --num_intra_threads=36 --mkl=True --batch_size=64 \
—-—train_dir=/home/users/alice/tf_cnn_train --data_name=imagenet --
variable_update=ps_ml_comm \
--data_format=NHWC --local_ parameter_device=cpu"

Intel Xeon Phi example for KNL single socket 64 core nodes:

To use the CuDNN library inside containers interactively via the start_analytics command, specify the CUDNN
libraries via the --cudnn-11ibs option, as shown in the following example:

$ start_analytics --craype-plugin --cudnn-libs /home/users/username/CuDNN/cudnn-9.0-v712/cuda/lib64
To run the plugin on a single node using interactive shell on a CPU node:

$ salloc -N 2 -p bdw

$ start_analytics --craype-plugin

This starts an interactive session inside the container.

prod-001 $ export PYTHONPATH=/opt/tensorflow_cpu:$PYTHONPATH

prod-001 $ python tf _cnn_benchmarks.py \

--device=cpu --num_intra_threads=36 --mkl=True --batch_size=64 \
—-—train_dir=/home/users/alice/tf _cnn_train --data name=imagenet --

variable_update=ps_ml_comm \
--data_format=NHWC --local_parameter_device=cpu

For more information, refer to the start_analytics and run_training man pages.
Additional Help and Tuning Options

To access more information about using and tuning the CPE plugin users can load the following module:
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$ module load craype-ml-plugin-py3

The intro_ml_plugin describes the C interface and environment variables for tuning performance. The
Python interface is documented in the Python module. To view this information after load the module

$ python
>>> import ml_comm as mc
>>> help(mc)
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5 Urika-CS Troubleshooting Information

Module Considerations

e If a module is not available and module files are not recognized by the system, skip the module load
analytics command in the following sections.

e If a module is not available and Urika-CS is already installed on the system, set the PATH to point to Urika-CS
installation directory as described in Install Urika-CS Software.

Consideration for Running on PBS Pro Based Systems

On PBS Pro run the following commands after allocating and loading the required modules.

For example:

$ gsub —1 —Inodes=4
$ module load analytics
$ module load openmpi/gcc/64/3.0.0

The path shown in the preceding example for loading the openMPI module depends on the system.

After executing the preceding commands, execute start_analytics or run_training, specifying the
required options.

5.1 Resolve I/0 Related Issues while Using the Cray PE ML Plugin

Users running trainings on a large number of nodes should consider the associated potential I/O bottlenecks.
TensorFlow provides the Dataset API, which has features for dedicating threads to reading training samples
from disk asynchronously behind gradient computation. Users are strongly encouraged to use the Dataset API
for best 1/0 performance. However, at large node counts, subsystems may not be able to deliver the required read
bandwidth to prevent sample starvation for workers. The issue may at first appear as limited scaling efficiency but
not be due to communication performance. Users are encouraged to include a method for training with dummy
data in their training script, so that it does not require any 1/0. This capability can be used to identify if I/O is a
performance bottleneck.
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5.2 Resolve Convergence Related Issues Encountered while Using
the Cray PE ML Plugin

About this task

Data parallel training with very large global mini-batch sizes can result in slow convergence or lack of
convergence without additional tuning of hyperparameters or the selected optimizer. It is recommended that users
observing poor convergence try out the following procedure to improve performance:

Procedure

1. Configure the Cray PE ML plugin to use pure SSGD by setting the K parameter to mc.config_team() to
the maximum number of training steps

2. Increase the learning rate following either the sqrt() or linear scaling rules. The sqrt() rule states that for
an increase of Nworkers, the learning rate should increase by sqrt(N). The linear rule states that for an
increase of Nworkers, the learning rate should increase by N. The linear rule is preferred for faster
convergence but potentially less stable.

3. Add a learning rate decay schedule to reduce the learning rate from a large initial value based on step (2) to a
small value as training finds a desirable local minimum. Examples are a linear decay or polynomial decay
both supported by TensorFlow.

More sophisticated optimizers are required for extremely large global mini-batch sizes. The exact mini-batch
size where this occurs is model and dataset dependent. Examples of sophisticated optimizers are Adam,
LARS, and LARC with Adam as the base optimizer. Users may have to implement such optimizers manually
in TensorFlow.

5.3 Troubleshoot NVIDIA, CUDA and CuDNN Related Issues

Execute the following commands on GPU nodes to verify the Singularity configuration settings with respect to
GPU libraries:

$ module load analytics
$ salloc -N 2
$ run_training -n 2 --cudnn-libs path_to_cudnn “python -c "import tensorflow as tf; print(tf._ version_ )""
1.6.0
/opt/anaconda/lib/python3.6/site-packages/h5py/__init__ _.py:34: FutureWarning: \
Conversion of the second argument of issubdtype from ~float™ to “np.floating™ \
is deprecated. In future, it will be treated as “np.float64 == np.dtype(float).type .
from ._conv import register_converters as _register_converters

Use the following table to resolve issues encountered while executing the preceding command:
Table 2. NVIDIA, CUDA and CuDNN Related Issues and Resolutions

Error Message Resolution

ImportError: libcublas.s0.9.0: cannot Check if CUDA toolkit is mounted per the installation instructions.
open shared object file: No such file or

directory
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Error Message Resolution

libcuda.so.1: cannot open shared object | Ensure that the Nvidia drivers for GPU - libcuda.so.1 are located
file: No such file or directory under Zusr/1i1b64 on the compute nodes. If this is not the location,
pass the --gpu-libs as an additional argument to the
run_training command

ibcudnn.so.7: cannot open shared object | Ensure that CuDNN version used is v7.1.2 for CUDA toolkit 9.0.
file: No such file or directory

For more information, refer to installation of Nvidia, CUDA, and CUDA toolkit in Install Supporting Software

5.4 Troubleshoot Cray PE ML Plugin and TensorFlow Related Issues
on ACE Based Systems

Execute the following commands to verify that functionality of the Cray PE ML plugin with TensorFlow.

$ module load analytics

$ module load openmpi/gcc/3.0.0

$ salloc -N 2

$ run_training -n 2 --craype-plugin --no-node-list \

“python $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_cnn_benchmarks/tf_cnn_benchmarks.py \

--num_gpus=1 --data_format=NHWC --batch_size=32 --model=trivial --train_dir=$HOME/tf cnn_train \

--data_name=imagenet --variable_update=ps_ml_comm --local_parameter_device=cpu*
Step Img/sec loss

1 images/sec: 3.2 +/- 0.0 (jJitter = 0.0) 10.681

1 images/sec: 3.3 +/- 0.0 (Jitter = 0.0) 10.681

If there are issues running TensorFlow using the Cray PE ML plugin, check if openmpi has been installed. If the
module file already includes settings for the OPAL_PREFIX and OMP1_DIR variables, setting them again is not
required.

Use the following table to troubleshoot any errors returned by executing the preceding commands:

Table 3. Cray PE ML Plugin and TensorFlow Related Issues and Resolutions

Error Resolution

e Sorry! You were supposed to get help Mount the OpenMPI installation if it is not installed in a standard
about: opal_init:startup:internal-failure But | location. For example in the first example on the left, use the --
| couldn't open the help file: /global/opt/ mount option with the run_training command, as shown in

ompi/share/openmpi/help-opal- the following example:
runtime.txt: No such file or directory. ) )
Sorry! --mount /gloabal/opt/ompi:/global/opt/ompi

e Sorry! You were supposed to get help Alternatively, add it to the Singularity configuration as the bind

about: orte_init:startup:internal-failure But | path.
I couldn't open the help file: /global/opt/
ompi/share/openmpi/help-orte-runtime:
No such file or directory. Sorry!

e Sorry! You were supposed to get help
about: mpi_init:startup:internal-failure But
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Error

Resolution

| couldn't open the help file: /global/opt/
ompi/share/openmpi/help-mpi-runtime.txt:
No such file or directory. Sorry!

e Sorry! You were supposed to get help
about: mpi_init:startup:internal-failure But
| couldn't open the help file: /global/opt/
ompi/share/openmpi/help-mpi-runtime.txt:
No such file or directory. Sorry!

e *** An error occurred in MPI_Init_thread
*** on a NULL communicator ***
MPI_ERRORS_ARE_FATAL (processes
in this communicator will now abort, ***
and potentially your MPI job)
[prod-0077:80273] Local abort before
MPI_INIT completed completed
successfully, but am not able to aggregate
error messages, and not able to
guarantee that all other processes were
killed!

We encountered issues with Slurm and OMPI
inter-dependency.

Ensure that OpenMPI dependent libraries are available
at Zusr/1ib64. In addition, ensure that this directory is
mounted in the Singularity configuration at /opt/hostlib

ibibverbs: Warning: couldn't load driver 'librxe-
rdmav2.so": \ librxe-rdmav2.so: cannot open
shared object file: No such file or directory
libibverbs: Warning: couldn't load driver
'libgedr-rdmav2.so0": \ libgedr-rdmav2.so:
cannot open shared object file: No such file or
directory
mca_base_component_repository_open:
unable to open mca_btl_openib:
\librdmacm.so.1: cannot open shared object
file: No such file or directory

Ensure that the 1ibibverbs dependent libraries are available
at /usr/1ib64 on all the nodes.

e On Slurm based systems, execute:
$ ompi_info
Configure command line: \

" —-prefix=/global/opt/openmpi/3.0.0/gcc*"
"—-with-pmi=/opt/local/slurm/defaul t*

e On PBS Pro based systems, execute:

For more information, refer to installation of OpenMPI in Install Supporting Software

5.5 Troubleshoot Apache Spark Related Issues

Execute the following command to verify that Spark is working as expected:

$ module load analytics
$ salloc —N 2

$ start_analytics

>> run-example SparkPi

e Example result of a successful execution:
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Pi is roughly 3.1433757168785843
e Example result of failure:

/opt/rt_scripts/bin/setup_rt env.sh: line 347: /root/.urikacs/startuplogs/job.
26/

master.log: No such file or directory

Running the 2 worker images (/opt/cray/analytics-singularity-images/
1.01.0000.201806061400_0108/analytics-urikacs-1.0.0000-1atest.simg) -
Logging to /root/.urikacs/startuplogs/job.26/workers.log. \
/opt/rt_scripts/bin/setup_rt env.sh: line 347: \

/root/ .urikacs/startuplogs/job.26/ workers.log: \

No such file or directory

/opt/rt_scripts/bin/setup_rt _env.sh: \

line 347: /root/.urikacs/startuplogs/job.26/ workers.log:\

No such file or directory

18/06/08 20:21:08 ERROR \

SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: \

Invalid master URL: spark://:7077

The preceding result indicates that the directory /root/.urikacs is not
writable from within the container. \

Rerun the command as a non-root user to resolve the issue

The preceding result indicates that the directory /root/ .urikacs is not writable from within the container.
Rerun the command as a non-root user to resolve the issue.

5.6 Troubleshoot gPRC and TensorFlow Related Issues

Execute the following command to verify that gPRC and TensorFlow are working as expected:

$ module load analytics
$ salloc -N 2
$ run_training -n 2 --no-node-list "python $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_cnn_benchmarks/tf_cnn_benchmarks.py \

—--num_gpus=1 --batch_size=32 --model=trivial --variable_update=parameter_server"
Step Img/sec loss

1 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 30.208

1 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 30.208

10 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 96.949

10 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 96.949

20 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 147.888

20 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 147.888

30 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 238.592

30 images/sec: 2.7 +/- 0.0 (Jitter = 0.0) 238.592

The preceding result indicates that GPRC and TensorFlow are working as expected. However, if the preceding
command returns an error, verify that the Singularity configuration and Cray PE ML plugin directory are mounted
properly, as specified in the configuration

5.7 Troubleshoot Issues Related to Accessibility and User
Commands

e Accessibility Checks
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Ensure that Urika-CS is accessible from all the nodes that it needs to be used on.

$ module load analytics

If executing the preceding command indicates that the analytics module is not available, check if the
module has been installed and accessible from that node.

User Command Checks

Execute the following command to verify that user commands are working as expected:

$ module load analytics

$ salloc -N 2

$ run_training -n 2 --no-node-list "hostname*®

prod-0078

prod-0077

$ start_analytics

The default Spark event log directory /lus/scratch/sparkHistory does not exist.
Using /home/users/alice/.urikacs/sparkHistory instead. To choose an alternate
location, set SPARK_EVENT_DIR.

Using default per-node loopback filesystem for Spark per-node local temporary
storage (controlled by SPARK LOCAL DIRS).

WARNING: Too few nodes allocated. Running a local spark instance instead.
Running the interactive image (/opt/cray/analytics-singularity-images/
1.01.0000.201805291754 0106/analytics-urikacs-1.0.0000-latest.simg) .

preparing Spark interactive worker

“/usr/spark/conf/docker .properties.template” -> “/tmp/alice/spark/conf/

docker .properties.template’

“/usr/spark/conf/fairscheduler.xml.template® -> “/tmp/alice/spark/conf/
fairscheduler.xml._template”

“/usr/spark/conf/log4j .properties.template” -> “/tmp/alice/spark/conf/

log4j -properties.template”

“/usr/spark/conf/metrics.properties.template” -> “/tmp/alice/spark/conf/
metrics.properties.template”

“/usr/spark/conf/slaves.template’ -> “/tmp/alice/spark/conf/slaves.template’
“/usr/spark/conf/spark-defaults.conf._template’ -> “/tmp/alice/spark/conf/spark-
defaults.conf._template’

“/usr/spark/conf/spark-env.sh._template’ -> “/tmp/alice/spark/conf/spark-
env.sh_template”’

adding test data to home directory

Analytics cluster ready. Type "spark-shell® for an interactive Spark shell.

If the preceding command returns an error message, check if Urika-CS is installed correctly with PATH being
set to include Urika-CS installation directory. The Urika-CS installation directory should be available on all the
nodes.

5.8 Troubleshoot Singularity Related Issues

Installation Checks

Use the following commands to check if Singularity has been installed correctly. These commands need to be
run on the nodes that Urika-CS needs to be used on.

$ salloc -N 2
$ module load singularity
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Executing the preceding command may cause the system to return the following message if the module file
has not have been created in the correct directory.

ModuleCmd_Load.c(244):ERROR:105: Unable to locate a modulefile for “singularity”

Ensure that the module file is installed at Zopt/cray/modulefiles/analytics and then execute the
following to ensure Singularity has been installed correctly:

$ module load singularity

$ singularity --version

2.5

$ singularity selftest

+ sh -c test -f /global/opt/singularity/2.5.0/etc/singularity/singularity.conf (retval=0) OK
+ test -u /global/opt/singularity/2.5.0/1ibexec/singularity/bin/action-suid (retval=0) OK
+ test -u /global/opt/singularity/2.5.0/1ibexec/singularity/bin/mount-suid (retval=0) OK
+ test -u /global/opt/singularity/2.5.0/1ibexec/singularity/bin/start-suid (retval=0) OK

Accessibility Checks

Execute the following command to ensure that no error is returned, which indicates that all the compute
nodes can access Singularity:

$ salloc -N 4
$ module load singularity
$ srun which singularity

Miscellaneous Checks
Check if Singularity can open a shell inside an image:

$ module load singularity
$ singularity shell /opt/cray/analytics-singularity-images/default/analytics-urikacs-1.0.0000-latest.simg

Executing the preceding command may cause the system to return one of the following errors:

o ERROR : Failed to resolve path to /usr/local/var/singularity/mnt/container
o ABORT : Retval = 255

o ERROR : Failed invoking the NEWUSER namespace runtime: Invalid argument

o ERROR : No valid /bin/sh in container

o ABORT : Retval = 255

If any of the preceding errors is returned, check if Singularity has been installed on the NFS mounted drive.
Ensure that Singularity is installed on each node and is accessible from all the nodes that Urika-CS needs to
run on.

For more information, refer to installation of Singularity in Install Supporting Software

5.9 Urika-CS Log File Locations

Log files for a given Urika®-CS service are located on the node(s) that the respective service is running on.

Spark - Default Spark log levels are controlled by the /tmp/spark/conf/l1og4j .properties file. Default
Spark settings are used when the system is installed, but can be customized by creating a new

log4j -properties file. A template for this customization can be found in the

log4j -properties.template file. The Spark service does not need to be restarted if the log level is
changed.

o Spark event Logs - Urika-CS stores Spark event logs in per-user directories. By default, the location
is /lus/scratch/sparkHistory/ if it is available, or $HOME/ .urikacs/sparkHistory if it is not.
Users may override this and select their own event log directory by setting the environment variable
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SPARK_EVENT_DIR prior to running start_analytics. Users may copy these event logs to their local
machines, and locally execute the Spark History Server or any other tools which parse event logs.

o Spark worker logs - Spark worker logs - These logs reside in the $HOME/ .urikacs/sparkHistory
directory on the local nodes they run on.

5.10 BigDL Logging

BigDL implements a method named redirectSparklnfolLogs, which is used in many BigDL examples to
redirect logs of org, akka, and breeze to bigdl . log with a log setting of INFO, except
org.apache.spark.SparkContext. This method returns error messages to the console. By default, the
bigdl . log log file will be generated under the current directory or workspace from where spark-submit is
launched.

The following import and call to redirectSparklnfoLogs() will be seen in the example codes.

import com.intel.analytics.bigdl.utils.LoggerFilter
LoggerFilter.redirectSparkinfoLogs()

Set the value of the -Dbigdl .utils.LoggerFilter._disable Java property to true to disable the
redirection of these logs to bigdl . 1og, as shown in the following example:

-Dbigdl .utils.LoggerFilter.disable=true

By default, all the examples and models in the code will be redirected. Specify where the bigdl . 1og file will be
generated by setting the value of the Dbigdl .utils.LoggerFilter.logFile parameter to the desired
location, as shown in the following example:

Dbigdl .utils.LoggerFilter.logFile=path

By default, it will be generated under current workspace. Extra Java properties are passed into spark-submit
using the spark.driver ._extraJavaOptions and spark.executor.extraJdavaOptions configuration
parameters.

For example, to run the LeNet5 Training example and have the bigdl . 1og file stored in a different directory than
the current working directory, include the -—conf spark.driver.extraJavaOptions=""-
Dbigdl.utils.LoggerFilter.logFile=/lus/scratch/my_bigdl_logs/bigdl.log" setting, as
shown in the following example:

Use logging messages to easily track the epoch/iteration/loss/throughput directly from the log file when
running Training with BigDL.

For example use the grep Epoch bigdl.logorgrep Iteration bigdl.log commands to monitor
training progress. Similarly, use the grep Accuracy bigdl.log command to monitor model convergence.
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6 Urika®-CS Quick Reference Information

Major Software Versions

Table 4. Urika®-CS Software Component Versions

Software Component Version
Apache Spark 2.2.0
Anaconda Distribution of Python 5.0.0

Dask

0.14.3 and later

Dask Distributed

1.16.3 and later

Intel BigDL

0.5.0

Analytics Programming Environment

Python 3.6 as part of Anaconda 5.0.0. Anaconda also supports
creating python environments with 2.7, 3.4, and 3.5

Java 1.8

Scala 2.11.8

R 3.5.0

Maven 3.3.9

SBT 0.13.9

ANT 19.2

TensorFlow 1.6.0

TensorBoard 1.6.0

Jupyter NoteBook 4.3.0

Urika-CS CLI Commands

Table 5. CLI Command Reference

Command

Description

start_analytics

Starts an analytics cluster, which can be used to run Spark and/or the
analytic programming environment commands. For more information, refer
to the start_analytics man page.
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Command

Description

run_training

Runs a command in a Urika-CS container. For more information, refer to the
run_training man page

Environment Variables

Table 6. Environment Variables and Mappings

Environment Variable

Mapping

ANACONDA_DIR

/opt/anaconda

JAVA HOME /usr/lib/jvm/java-1.8.0
MAVEN_HOME /usr/share/apache-maven
SPARK_VERSION 2.2.0
SPARK_HADOOP_VERSI0 |2.7

N

SPARK_DIR /usr/spark
BIGDL_VERSION 0.5.0

BIGDL_DIR /opt/bigdl-0.5.0/dist

BIGDL_JAR /opt/bigdl-0.5.0/dist/1lib/bigdl-0.5.0-jar-with-dependencies. jan
SPARK_WORKER_PORT 8888

DASK_WORKER_PORT 19866

DASK_NANNY_PORT 19868

DASK_BOKEH_PORT 19870

BAZEL_PATH

/opt/bazel-0.11.1

LD_LIBRARY_PATH

/opt/cudnn:/usr/local/lib:/usr/1ib/x86_64-1inux-gnu:/usr/local/lib:/usr/spark/mathlibs

PATH

/opt/rt_scripts/bin:/opt/anacondasbin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
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