~7

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

Chapel HyperGraph Library (CHGL)

MARCIN ZALEWSKI!

LOUIS JENKINS?, TANVEER BHUIYAN?, SARAH HARUN?, CHRISTOPHER
LIGHTSEY?, DAVID MENTGEN?, SINAN AKSOY?, TIMOTHY STAVENGER!, HUGH

MEDAL?, CLIFF JOSLYN!

1 Pacific Northwest National Laboratory, Seattle, Washington, USA.
2 Mississippi State University, Mississippi State, Mississippi, USA.

HPEC 2018

U.S. DEPARTMENT OF
EN ERGY B‘mt‘f December 3, 2018 1

What We’re Trying To Do :({
Northwest

AAAAAAAAAAAAAAAAAA

» Develop scalable parallel computation methodologies for complex high dimensional
graphical data objects
» Abstract Hypergraph Analytics:
B Graph HPC runtime for vertex and edge centric computation extended to support hypergraphs
B Mapping abstract hypergraph algorithms to families of efficient asynchronous parallel implementations

» Chapel HyperGraph Library (CHGL):
- Hypergraph generation Hypergraph Metrics
@ Scalable generation algorithms that preserve key properties of hypergraphs and Theory

B Hypergraph algorithms
® Metrics, S-Metrics, connected components, etc.

B Exploration of irregular applications in Chapel CHGL

B Exploration of abstract interfaces in Chapel Hypergraph Hypergraph
)) computational Co i

M Distributed, large-scale, and scalable out of the box methods

B Contribute back to Chapel

December 3, 2018 2

Hypergraphs Pacific

Northwest

AAAAAAAAAAAAAAAAAA

e A hypergraph H on a finite set of vertices V is a set H = {e1,...,em}
such that for e =1,...,m, we have e; C V and e; # J.

— A graph G is a hypergraph in which every edge has cardinality 2.

o Ex: H = {{a, b, c}, {b, c, d}, {d} } is a hypergraph on V = {a,b,c,d}.
. \/

All the same hypergraph...

€1 €2 €3

(9 —
O 1 1 0

0

L

b '@
G 0 1

O SR

December 3, 2018 3

Why Chapel \7/

Pacific
Northwest

NATIONAL LABORATORY

» Chapel...

B Has strong HPC abstractions and language constructs
@ Data-Parallelism and Data-Driven Locality

M [s a Partitioned Global Address Space (PGAS) language
@ But data structures provide seamless access to distributed data

B Has arich type system and generics

B Offers first-class support arrays, domains, and distributions such as global-arrays
» Multiresolution Philosophy

B High-level abstractions are implemented in terms of low-level abstractions

B Low-level abstractions can be configured to fine-tune performance of high-level abstractions
® Communication & Tasking Layer, Hierarchical Locale Models, global-view arrays

» Designed to work on a laptop or supercomputer N

B Chapel enables this ‘out-of-the-box’ g CH:;AE\\L
» Optimized for both shared memory and distributed memory st

December 3, 2018 4

CHGL Warmup

» Graph is created with a distribution

B Can be default (local), one of the Chapel-
provided distributions (Cyclic) here, or
custom

M Here, distribution is cyclic on locales 4, 6,
and 8 (4..8 by 2)
» Aggregation of messages can be turned on
and off

B Adding inclusions produces small messages,
SO aggregation improves performance

» Types are inferred where possible
B E.g., numVertices and numEdges are int

Pacific

Northwest

NATIONAL LABORATORY

10

11

const numVertices = 1024;
const numEdges = 2048;
const domainMap = new Cyclic(
startIdx=0, targetlLocales=Locales[4..8 by 2]);
var graph = new AdjListHyperGraph(numVertices,
numEdges, domainMap)
graph.startAggregation();
forall v in graph.getVertices() do
forall e in graph.getEdges() do
graph.addInclusion(v,e);
graph.stopAggregation() ;

B All types can and are inferred here, but they could be also specified explicitly

December 3, 2018 5

CHGL Warmup i ront

NATIONAL LABORATORY

var vertexDegrees : [graph.verticesDomain()] int;

> Simple task: collect all degrees > forall (degree, vertex) in zip(vertexDegrees,
B Create an array with the same domain as vertices 3 graph.getVertices()) {
. 4 degree = graph.numNeighbors(vertex);
M [terate through the array and degrees in parallel .1
B Assign the degrees to the array and reduce ¢ var totalVertexDegrees = + reduce vertexDegrees;

» What if we just want the total number of inclusions?,

B Simple, just reduce on the fly 1 var numInclusions : int; _
B Reduction is built in and parameterized by a binary R graph'get\.’ertlceso with
operation 3 (+ reduce numInclusions) do
P _ _ _ _ 4 numInclusions += graph.numNeighbors(v);
B Reduction can be used just like a variable
» What if we did Somethmg wrong’? 1 inline proc numNeighbors(other) {
B Chapel allows us to explicitly signal errors 2 compilerError(” ';mmNeighborS(", Ogheritype
. N . 3 : string, "') is not supported...\n",
B We provide a "catch all” overload that produces a \ "Require argument of type ", vDescType
useful error message 5 : string, " or ", eDescType : string);
6

B This is simple example, but this is a general method

December 3, 2018 6

CHGL Philosophy P;fiﬁc
Northwest

AAAAAAAAAAAAAAAAAA

Genericity Performance Usability
» Abstract interfaces that » Enable performance at scale » Provide simple interfaces
describe classes of data B Distributed memory » Provide multiple interfaces
structures | B Scalability » Allow customization for
® Well-thought out interfaces » Rely on Chapel for the basics advanced users
® Durable » Design efficient data » Modern feel
® Minimal structures and algorithms B Use language features
- Performance_guarantees B Efficient but elegant B Fit the expected language
» Reusable algorithms B Explore what is possible style
B Write once today » Drive development by user
B Use with many data B Low-level implementation if expectations rather than by
structures necessary with forward implementation needs

B Avoid implementation details looking design

December 3, 2018 7

API

» CHGL: Chapel-flavored
generic hypergraph interface
» Use-case driven

B Make sure that interfaces are
necessary for some
algorithms

B Do not overdevelop
» Currently used for graph
generation
» This is observable interface

B Implementation "under the
hood” may be more complex

Pacific

Northwest

NATIONAL LABORATORY

10

11

12

13

iter
iter
proc
proc
proc
proc
proc
proc
proc
iter
iter
proc
proc

getVertices() : vDescType;

getEdges() : eDescType;

verticesDomain : vDomainType;

edgesDomain : eDomainType;

startAggregation() : void;

stopAggregation() : void;

addInclusion(v : vDescType, e : eDescType) : void;
removeInclusion(v : vDescType, e : eDescType) : void;
hasInclusion(v : vDescType, e : eDescType) : bool;
neighbors(v : vDescType) : eDescType;

neighbors(e : eDescType) : vDescType;
numNeighbors(v : vDescType) : int;

numNeighbors(e : eDescType) : int;

December 3, 2018 8

CHGL AdjListHyperGraph :{

Northwest
» Adjacency list hypergraph AdjListHyperGraph
B CSR storage for edges and vertices o
B Very much like a bipartite graph storage a »00.--0| 5
» Both inner and outer containers are implemented with Chapel S} —»-N0--O %
arrays ;" B E
B We want to reuse one of Chapel’s strongest abstractions $-{00...0| 3
B We can build on distributions functionality — -
@ Outer lists are distributed (1D) "
@ In the future, inner lists may be distributed for some vertices (1.5D) o |, - -1 00.--0 _é
» Currently, traversal is based on inclusions] 000 2
B We will be extending our generic interface with s-walk concepts 'Lﬁ—‘--g-- - E
@ Not strictly necessary for graph generation yet Ono...0 S
— g

December 3, 2018 9

Privatization

Pacific

Northwest

NATIONAL LABORATORY

» A shallow clone of the data structure is maintained on each locale
B All accesses to data structure are forwarded to per-locale clone
B Clone can have locale-private decentralized data fields
B Clone can have wide pointers to centralized data fields

» Eliminates fine-grained communication
associated with accessing a remote objects

B Lightens network bottleneck
Erdos Renyi (Distributed Variants)

180

I I T I

1
160 F Privatization + Ag&gﬁgg{:g; _
140 [Naive
120 -
100 -
80
60
40
20
0 1 |
8oecembp@s, 20182
Locales

Time (seconds)

10 64

© o0 ~ (=] o - w [N -

=
N [o

=

3

L
oo ~ =] wt L

-
©

pragma "always RVF"
record AdjListHyperGraph {

}

var instance; var pid = -1;

proc _value {
return chpl_getPrivatizedCopy(instance.type, pid);

}

proc init(numVertices = 0, numEdges = 0, map) {
instance = new AdjListHyperGraphImpl(numVertices, numEdges, map) ;
pid = instance.pid;

h

forwarding _value;

class AdjListHyperGraphImpl {

}

var _vertices : [_verticesDomain] NodeData(eDescType);

var _privatizedVertices = _vertices._value;

proc init(numVertices = 0, numEdges = 0, map) {
this.pid = _newPrivatizedClass(this);

}

Aggregation

» Chapel Aggregation Library

B To Appear in PAW-ATM, an SC’18 Workshop
» Each privatized instance manages its own

aggregation buffer

Time (seconds)

B Currently only used in ‘addInclusion’
B Further reduces the network bottleneck

180
160
140
120
100
80
60
40
20
0

Erdos Renyi (Distributed Variants)

1 T T
Clvatization + Aggregation —

I"rIVdIIZ'dIIIOI'l
Naive

o

Pacific

Northwest
T
+BAAS 8w, L
‘ {8'8_0""_351]{1
| .
P BUf2 .
|
4—BD Buf3 Tn
[
0 Buf, I—3
B \(T)
Qoo _
~EE sk
EB_E_D““EL]f_S T,
. d

December 3, 2018 11

Go

l: End-to- End Hypergraph Analytlcs Tool \ﬁ/

Efcﬁﬁf
\N!%$’ | = orthwest

NATIONAL LABORATORY

Hypergraph
Dataset

Repo Hypergraph

/O

GraphStats GraphStats

Module Module
Generation

Module

Core hypergraph
engine

Hypergraph
/O

iterate

—
December 3, 2018 12

Metamorphosis Coefficient for Clustering %

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

» 4-cycle = smallest units of social cohesion in a bipartite graph

Caterpillar 3-path 4-cycle Butterfly

How often does a 3-path close into a 4-cycle?, i.e.
How frequently are shared affiliations repeated?

Citation: Measuring and modeling bipartite graphs with community structure, Sinan G. Aksoy Tamara G. Kolda Ali Pinar, Journal of December 3, 2018 13
Complex Networks, Volume 5, Issue 4, 1. August 2017, Pages 581-603.

Counting Caterpillars and Butterflies i

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

» Iterate through caterpillars and through butterflies in a hypergraph
» This code works in shared and in distributed memory
» Works for any graph

1 iter caterpillars(graph) {

2 forall w in graph.getVertices() do

3 forall x in graph.neighbors(w) do

4 forall y in graph.neighbors(x) do

5 if y !'= w then forall z in graph.neighbors(y) do
6

7

8

9

if z !'= x then yield (w,x,y,2);
}

iter butterflies(graph) {
10 forall (w,x,y,z) in caterpillars(graph) do
11 if graph.hasInclusion(w,z) then yield (w,x,y,z);

December 3, 2018 14

Evaluation

Count

Vertex Degree Distribution Comparison

T

Pacific
Northwest

NATIONAL LABORATORY

Metamorphosis Coeflicient Comparison

104 w w 5 0.6 w w
I e Original| - ~e Original
o ° * kR] 2 0.5 o CL]
103+ ® e CL] S o BTER
; .o 1 <
e o
® = 0.4
o O
io.‘ %
102 ¢ ° &] © 0.3
[\ =
50 0.2
10" ° u’o ; g |
i >
ogle <C 0.1
o a»
(]] L
100 L GEENEDY e 0
10° 10’ 10 10°
Vertex Degree Vertex Degree

December 3, 2018 15

Performance

Time (seconds)

Time (seconds)

250

200

150

100

50

90
80

Erdos Renyi (SMP)

1

SMP ——

4

8

Threads

16 32

Chung Lu (SMP)

SMP ——

Threads

Time (seconds)

Time (seconds)

60

Erdos Renyi (Distributed)

Distributed —

300
250
200
150
100

50

Locales

Chung Lu (Distributed)

I Distrit;uted

Locales

Time (seconds)

= N Wk OO~ 0 © O

Pacific
Northwest

NATIONAL LABORATORY

BTER (SMP)

SMP ——

Threads

December 3, 2018 16

o

Conclusions Pacific

Northwest

AAAAAAAAAAAAAAAAAA

» One of the few software packages specifically targeted at hypergraphs
» Provides a good initial set of methods and data structures

M 1-D distributed hypergraph

B Hypergraph metrics

B 3 hypergraph generation algorithms
» Generic design: high-level, conceptual, write once

» Ease of use is one of the main goals

» Efficient
B Privatization, aggregation, other low level features CH G L

» Collaboration between PNNL and Cray
B Chapel is not designed for irregular algorithms

B Chapel improves as CHGL exposes flaws ha pe ,

® CHGL improves as Chapel improves
B Many issues opened in the Chapel issue tracker

December 3, 2018 17

Pacific

AAAAAAAAAAAAAAAAAA

eeeeeeeeeeeeeeee

. PN | g Pacific
| \ N e Ll

The First Exascale Hypergraph Generator

Hypergraph
Dataset
Repo

vaergra ph Iterate
/O

Core Hypergraph GraphStats Generation GraphStats Hypergraph
Engine Module Module Module 1/O

December 3, 2018 29

User-Provided

The First Exascale Metrics senerator x

Hypergraph
Dataset
Repo

Hypergraph Iterate
/O

Core Hypergraph j Generation GraphSta’ { Hypergraph
Engine Module Modul I/O

o

Pacific
Northwest

NATIONAL LABORATORY

December 3, 2018 30

