
Bull
AIX 4.3 System User’s Guide

OS & Devices

AIX

86 A2 97HX 02

ORDER REFERENCE

Bull
AIX 4.3 System User’s Guide

OS & Devices

AIX

Software

October 1999

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

86 A2 97HX 02

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America

and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and

making derivative works.

Copyright Bull S.A. 1992, 1999

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you

are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

Year 2000

The product documented in this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors

contained herein, or for incidental or consequential damages in connection with the use of this material.

Preface iii

About This Book

This book contains information for novice system users who want to acquire greater
expertise with the AIX operating system. It covers information such as running commands,
handling processes, handling files and directories, and printing. In addition, it introduces
system commands covering tasks such as securing files, using storage media, customizing
environment files (.profile, .Xdefaults, .mwmrc), and writing shell scripts. For DOS users,
this guide presents procedures on using DOS files in the AIX environment.

Users in a networked environment who are interested in learning more about the AIX
operating system communications commands should read the AIX 4.3 System User’s
Guide: Communications and Networks, 86 A2 98HX.

Note: You can find the online version of this book, which has been designed for viewing
with a Version 3.2 HTML–compatible web browser in the ”Hypertext Library for AIX
4.3” CD-ROM.

Who Should Use This Book
This book is intended for all system users.

How to Use This Book
The following information is an overview of the book’s contents and an explanation of the
highlighting conventions used to identify certain types of items.

Overview of Contents
This book contains the following chapters:

• Chapter 1, ”Login Names, System IDs, and Passwords,” introduces commands on
identifying users and systems. This chapter also describes logging in and off of your
system.

• Chapter 2, ”User Environment and System Information,” introduces commands on
identifying your user and system environment.

• Chapter 3, ”Commands and Processes,” provides overviews and some procedures
related to the fundamentals of the operating system, commands, and processes.

• Chapter 4, ”Input and Output Redirection,” provides overviews and some procedures
related to input and output handling.

• Chapter 5, ”File Systems and Directories,” provides overviews and introduces commands
on working with file systems and directories.

• Chapter 6, ”Files,” introduces commands used for working with files.

• Chapter 7, ”Printers, Print Jobs, and Queues,” provides overviews and some procedures
related to printing files.

• Chapter 8, ”Backup Files and Storage Media,” provides overviews and introduces
commands on backing up files and using diskettes and tapes.

• Chapter 9, ”File and System Security,” provides overviews and introduces commands on
keeping your files secure.

• Chapter 10, ”User Environment Customization,” provides overviews and introduces
commands on customizing your system. This chapter also introduces the system
initialization files.

AIX System User’s Guide – OS & Devicesiv

• Chapter 11, ”Shells,” provides overviews and introduces the Korn (also known as the
POSIX shell), Bourne, and C shells.

• Chapter 12, ”Miscellaneous Tools and Utilities,” introduces other miscellaneous
commands you may find useful.

• Chapter 13, ”Document Search Service,” introduces this service and provides information
about how to search online HTML documents.

• Appendix A, ”Accessing Information with InfoExplorer,” describes the different types of
documentation available in the Hypertext Information Base Library and how to access it.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other
items whose names are predefined by the system.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.

Monospace Identifies examples of specific data values, examples of text
similar to what you might see displayed, examples of
portions of program code similar to what you might write as
a programmer, messages from the system, or information
you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of
this product.

AIX Support for the X/Open UNIX95 Specification
Beginning with AIX Version 4.2.2, the operating system is designed to support the X/Open
UNIX95 Specification for portability of UNIX–based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Beginning with Version 4.2, AIX is even more open and portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per–system, per–user, or per–process basis.

To determine the proper way to develop a UNIX95–portable application, you may need to
refer to the X/Open UNIX95 Specification, which can be obtained on a CD–ROM by
ordering the printed copy of AIX Commands Reference, order number 86 A2 38JX to 86 A2
43JX, or by ordering Go Solo: How to Implement and Go Solo with the Single Unix
Specification, a book which includes the X/Open UNIX95 Specification on a CD–ROM.

Related Publications
The following books contain information about or related to using AIX products:

Order Number Bibliography

86 A2 71WE AIX and Related Products Documentation Overview

86 A2 75HX AIX 4.3 Quick Beginnings

86 A2 98HX AIX 4.3 System User’s Guide: Communications and
Networks

86 A2 99HX AIX 4.3 System Management Guide: Operating System and
Devices

86 A2 37JX AIX Guide to Printers and Printing

Preface v

Order Number Bibliography

86 A2 38JX to 86 A2 43JX AIX Commands Reference

86 A2 79AP AIX Files Reference

86 A2 84AT Common Desktop Environment 1.0: User’s Guide

Industry Documentation

Bibliography

Quercia, Valerie, and Tim O’Reilly. The Definitive Guides to the X Window System:
Volume 3, X Window System User’s Guide, Motif Edition. O’Reilly & Associates, 1993.

Garfinkel, Simson, and Gene Spafford. Practical UNIX and Internet Security. Sebastopol,
CA: O’Reilly & Associates, 1996.

Todino, Grace, and John Strang. Learning the UNIX Operating System. Sebastopol, CA:
O’Reilly & Associates, 1993.

Gilly, Daniel. UNIX in a Nutshell: A Desktop Quick Reference for System V and Solaris
2.0. Sebastopol, CA: O’Reilly & Associates, 1992.

Cutler, Ellie, Daniel Gilly, and Tim O’Reilly, ed. The Definitive Guides to the X Window
System: Desktop Quick Reference, The X Window System in a Nutshell for Version 11
Release 4 and Release 5 of the X Window System. O’Reilly & Associates, 1992.

Peek, Jerry, Mike Loukides, and Tim O’Reilly. UNIX Power Tools. O’Reilly & Associates,
1993.

Open Software Foundation. Introduction to OSF. Englewood Cliffs, NJ: Prentice–Hall,
1992.

Rosenblatt, Bill. Learning the Korn Shell. Sebastopol, CA: O’Reilly & Associates, 1993.

Hunter, Bruce H., and Karen Bradford Hunter. UNIX Systems Advanced Administration
and Management Handbook. New York: Macmillan, 1991.

Rosenberg, Barry. KornShell Programming Tutorial. Reading, MA: Addison–Wesley
Publishing Company, 1991.

X/Open Company, Ltd. and Prentice Hall, Inc. Go Solo: How to Implement and Go Solo
with the Single Unix Specification. United Kingdom: X/Open Company, Ltd., 1995.

Ordering Publications
You can order publications from your sales representative or from your point of sale. To
order additional copies of this book, use order number 86 A2 97HX. Use AIX and Related
Products Documentation Overview for information on related publications and how to obtain
them.

AIX System User’s Guide – OS & Devicesvi

Contents vii

Table of Contents

About This Book iii.

Who Should Use This Book iii.

How to Use This Book iii.

Chapter 1. Login Names, System IDs, and Passwords 1-1.

Related Information 1-2.

Login and Logout Overview 1-3.

Logging In to the Operating System 1-3.

Logging in More Than One Time (login Command) 1-4.

Becoming Another User on a System (su Command) 1-4.

Suppressing Login Messages 1-4.

Logging Off the Operating System (exit and logout Commands) 1-5.

Stopping the Operating System (shutdown Command) 1-5.

Related Information 1-5.

User and System Identification 1-6.

Displaying Your Login Name (whoami and logname Commands) 1-6.

Displaying the Operating System’s Name (uname Command) 1-7.

Displaying Your System’s Name (uname Command) 1-7.

Displaying Who Is Logged In (who Command) 1-7.

Displaying User IDs (id Command) 1-7.

Passwords 1-8.

Password Guidelines 1-8.

Changing Your Password (passwd Command) 1-9.

Setting Your Password to Null (passwd Command) 1-10.

Command Summary for Login Names, System IDs, and Passwords 1-11.

Login and Logout Commands 1-11.

User and System Identification Commands 1-11.

Password Command 1-11.

Chapter 2. User Environment and System Information 2-1.

Listing the Devices in Your System (lscfg Command) 2-2.

Displaying the Name of Your Console (lscons Command) 2-3.

Displaying the Name of Your Terminal (tty Command) 2-3.

Listing Available Displays (lsdisp Command) 2-4.

Listing the Available Fonts (lsfont Command) 2-4.

Listing Keyboard Maps (lskbd Command) 2-4.

Listing Software Products (lslpp Command) 2-5.

Listing Control Key Assignments for Your Terminal (stty Command) 2-6.

Listing All Your Environment Variables (env Commands) 2-7.

Displaying the Value of an Environment Variable (printenv Command) 2-8.

Working with Bidirectional Languages (aixterm Command) 2-8.

Command Summary for User Environment and System Information 2-9.

viii AIX System User’s Guide – OS & Devices

Chapter 3. Commands and Processes 3-1.

Commands Overview 3-3.

Command Syntax 3-3.

Reading Syntax Diagrams 3-5.

Reading Usage Statements 3-7.

Using Web-based System Manager 3-7.

Using the smit Command 3-7.

Locating a Command or Program (whereis Command) 3-7.

Displaying Information about a Command (man Command) 3-8.

Displaying the Function of a Command (whatis Command) 3-8.

Listing Previously Entered Commands (history Shell Command) 3-8.

Repeating Commands Using the Shell history Command 3-10.

Substituting Strings Using the Shell history Command 3-10.

Editing the Command History 3-10.

Creating a Command Alias (alias Shell Command) 3-11.

Working with Text–Formatting Commands 3-12.

Processes Overview 3-14.

Foreground and Background Processes 3-14.

Daemons 3-14.

Zombie Process 3-15.

Starting a Process 3-15.

Checking Processes (ps Command) 3-15.

Setting the Initial Priority of a Process (nice Command) 3-17.

Changing the Priority of a Running Process (renice Command) 3-17.

Canceling a Foreground Process 3-18.

Stopping a Foreground Process 3-18.

Restarting a Stopped Process 3-18.

Scheduling a Process for Later Operation (at Command) 3-19.

Listing All Scheduled Processes 3-20.

Removing a Process from the Schedule 3-20.

Removing a Background Process (kill Command) 3-21.

Command Summary for Commands and Processes 3-23.

Commands 3-23.

Processes 3-23.

Chapter 4. Input and Output Redirection 4-1.

Standard Input, Standard Output, and Standard Error 4-2.

Redirecting Standard Output 4-2.

Redirecting Output to a File 4-2.

Redirecting Output and Appending It to a File 4-3.

Creating a Text File with Redirection from the Keyboard 4-3.

Concatenating (Join) Text Files 4-3.

Redirecting Standard Input 4-3.

Discarding Output with the /dev/null File 4-4.

Redirecting Standard Error and Other Output 4-4.

Inline Input (Here) Documents 4-5.

Pipes and Filters 4-5.

Displaying Program Output and Copying It to a File (tee command) 4-6.

Clearing Your Screen (clear Command) 4-6.

Sending a Message to Standard Output (echo Command) 4-7.

Appending a Single Line of Text to a File (echo Command) 4-7.

Copying Your Screen to a File (capture and script Commands) 4-7.

Displaying Text in Large Letters on Your Screen (banner Command) 4-8.

Command Summary for Input and Output Redirection 4-9.

Contents ix

Chapter 5. File Systems and Directories 5-1.

File Systems 5-2.

File System Types 5-2.

File System Structure 5-2.

Showing Space Available on File System (df Command) 5-4.

Directory Overview 5-5.

Types of Directories 5-5.

Directory Organization 5-6.

Directory Naming Conventions 5-6.

Directory Path Names 5-6.

Directory Abbreviations 5-7.

Directory Handling Procedures 5-8.

Creating a Directory (mkdir Command) 5-8.

Moving or Renaming a Directory (mvdir Command) 5-8.

Displaying Your Current Directory (pwd Command) 5-9.

Changing to Another Directory (cd Command) 5-9.

Copying a Directory (cp Command) 5-9.

Displaying Contents of a Directory (li and ls Commands) 5-10.

Deleting or Removing a Directory (rmdir Command) 5-12.

Comparing Contents of Directories (dircmp Command) 5-13.

Command Summary for File Systems and Directories 5-14.

File Systems 5-14.

Directory Abbreviations 5-14.

Directory Handling Procedures 5-14.

Chapter 6. Files 6-1.

Types of Files 6-2.

Regular Files 6-2.

Directory Files 6-2.

Special Files 6-2.

File Naming Conventions 6-3.

File Path Names 6-3.

Pattern Matching with Wildcards and Metacharacters 6-3.

Pattern Matching versus Regular Expressions 6-4.

File Handling Procedures 6-5.

Deleting Files (del and rm Commands) 6-5.

Moving and Renaming Files (mv Command) 6-6.

Copying Files (cp Command) 6-7.

Finding Files (find Command) 6-8.

Showing File Type (file Command) 6-8.

Displaying File Contents (pg, more, page, and cat Commands) 6-9.

Finding Strings in Text Files (grep Command) 6-10.

Sorting Text Files (sort Command) 6-10.

Comparing Files (diff Command) 6-11.

Counting Words, Lines, and Bytes in Files (wc Command) 6-11.

Displaying the First Lines of Files (head Command) 6-12.

Displaying the Last Lines of Files (tail Command) 6-12.

Cutting Sections of Text Files (cut Command) 6-12.

Pasting Sections of Text Files (paste Command) 6-13.

Numbering Lines in Text Files (nl Command) 6-14.

Removing Columns in Text Files (colrm Command) 6-14.

Linking Files and Directories 6-15.

Types of Links 6-15.

Linking Files (ln Command) 6-16.

Removing Linked Files 6-17.

x AIX System User’s Guide – OS & Devices

DOS Files 6-18.

Copying DOS Files to AIX Files 6-18.

Copying AIX Files to DOS Files 6-18.

Deleting DOS Files 6-19.

Listing Contents of a DOS Directory 6-19.

Command Summary for Files 6-20.

File Handling Procedures 6-20.

Linking Files and Directories 6-20.

DOS Files 6-20.

Chapter 7. Printers, Print Jobs, and Queues 7-1.

Printer Terminology 7-2.

Print Job 7-2.

Queue 7-2.

Queue Device 7-2.

qdaemon 7-2.

Print Spooler 7-2.

Real Printer 7-3.

Virtual Printer 7-3.

Local and Remote Printers 7-3.

Printer Backend 7-3.

Starting a Print Job (qprt Command) 7-4.

Prerequisites 7-4.

qprt Command 7-4.

smit Command 7-7.

Canceling a Print Job (qcan Command) 7-7.

Prerequisites 7-7.

Web-based System Manager Fast Path 7-7.

qcan Command 7-7.

smit Command 7-8.

Checking Print Job Status (qchk Command) 7-9.

Prerequisites 7-9.

Web-based System Manager Fast Path 7-9.

qchk Command 7-9.

smit Command 7-9.

Printer Status Conditions 7-10.

Prioritizing a Print Job (qpri Command) 7-11.

Prerequisites 7-11.

Web-based System Manager Fast Path 7-11.

qpri Command 7-11.

smit Command 7-11.

Holding and Releasing a Print Job (qhld Command) 7-12.

Prerequisites 7-12.

Web-based System Manager Fast Path 7-12.

qhld Command 7-12.

smit Command 7-12.

Moving a Print Job to Another Print Queue (qmov Command) 7-13.

Prerequisites 7-13.

Web-based System Manager Fast Path 7-13.

qmov Command 7-13.

smit Command 7-13.

Formatting Files for Printing (pr Command) 7-14.

Printing ASCII Files on a PostScript Printer 7-16.

Prerequisites 7-16.

Automating the Conversion of ASCII to PostScript 7-18.

Contents xi

Overriding Automatic Determination of Print File Types 7-18.

Command Summary for Printers, Print Jobs, and Queues 7-19.

Chapter 8. Backup Files and Storage Media 8-1.

Backup Policy 8-2.

Backup Media 8-3.

Formatting Diskettes (format or fdformat Command) 8-4.

Checking the Integrity of the File System (fsck Command) 8-5.

Copying to or from Diskettes (flcopy Command) 8-5.

Copying Files to Tape or Disk (cpio –o Command) 8-6.

Copying Files from Tape or Disk (cpio –i Command) 8-6.

Copying to or from Tapes (tcopy Command) 8-7.

Checking the Integrity of a Tape (tapechk Command) 8-7.

Compressing Files (compress and pack Commands) 8-7.

compress Command 8-8.

pack Command 8-8.

Expanding Compressed Files (uncompress and unpack Commands) 8-9.

uncompress Command 8-9.

unpack Command 8-9.

Backing Up Files (backup Command) 8-10.

backup Command 8-10.

smit Command 8-11.

Restoring Backed-Up Files (restore Command) 8-12.

restore Command 8-12.

smit Command 8-13.

Archiving Files (tar Command) 8-14.

Command Summary for Backup Files and Storage Media 8-15.

Related Information 8-15.

Chapter 9. File and System Security 9-1.

Security Threats 9-2.

Basic Security 9-2.

File Ownership and User Groups 9-4.

Changing File or Directory Ownership (chown Command) 9-4.

File and Directory Access Modes 9-4.

Displaying Group Information (lsgroup Command) 9-6.

Changing File or Directory Permissions (chmod Command) 9-8.

Access Control Lists 9-9.

Base Permissions 9-9.

Extended Permissions 9-9.

Access Control List Example 9-10.

Access Authorization 9-11.

Displaying Access Control Information (aclget Command) 9-12.

Setting Access Control Information (aclput Command) 9-12.

Editing Access Control Information (acledit Command) 9-12.

Locking Your Terminal (lock or xlock Command) 9-13.

 Testing Files for Viruses (virscan Command) 9-14.

Signature Files Format 9-14.

Adding Additional Virus Signatures 9-15.

Command Summary for File and System Security 9-16.

xii AIX System User’s Guide – OS & Devices

Chapter 10. Customizing the User Environment 10-1.

Related Information 10-1.

AIX Support for the X/Open UNIX95 Specification 10-2.

System Startup Files Overview 10-3.

/etc/profile File 10-3.

/etc/environment File 10-4.

.profile File 10-4.

.env File 10-5.

AIXwindows Startup Files Overview 10-6.

.xinitrc File 10-6.

.Xdefaults File 10-7.

.mwmrc File 10-8.

Customization Procedures 10-11.

Exporting Shell Variables (export Shell Command) 10-11.

Changing the Display’s Font (chfont Command) 10-11.

Changing Control Keys (stty Command) 10-12.

Changing Your System Prompt 10-12.

Customizing the InfoExplorer Windows Program 10-13.

Changing Defaults in the InfoExplorer Window Interface 10-13.

Changing Preferences in the InfoExplorer Window Interface 10-14.

Summary for User Environment Customization 10-16.

System Startup Files 10-16.

AIXwindows Startup Files 10-16.

Customization Procedures 10-16.

Chapter 11. Shells 11-1.

Shell Features 11-3.

Available Shells 11-4.

Shells Terms 11-5.

Creating and Running a Shell Script 11-7.

Specifying a Shell for a Script File 11-8.

Related Information 11-8.

Korn Shell or POSIX Shell 11-9.

Korn Shell Environment 11-10.

Shell Startup 11-10.

Korn Shell or POSIX ShellCommand History 11-11.

Quoting 11-12.

Reserved Words 11-14.

Command Aliasing in the Korn Shell or POSIX Shell 11-15.

Tracked Aliases 11-16.

Tilde Substitution 11-16.

Parameter Substitution in the Korn Shell or POSIX Shell 11-17.

Parameters in the Korn Shell 11-17.

Parameter Substitution 11-18.

Predefined Special Parameters 11-19.

Variables Set by the Korn Shell or POSIX Shell 11-20.

Variables Used by the Korn Shellor POSIX Shell 11-21.

Command Substitution in the Korn Shell or POSIX Shell 11-23.

Arithmetic Evaluation in the Korn Shell or POSIX Shell 11-24.

Field Splitting 11-25.

File Name Substitution in the Korn Shell or POSIX Shell 11-26.

Quote Removal 11-27.

Input and Output Redirection in the Korn Shell or POSIX Shell 11-28.

Coprocess Facility 11-29.

Exit Status 11-31.

Contents xiii

Korn Shell or POSIX Shell Commands 11-32.

Korn Shell Compound Commands 11-33.

Functions 11-35.

Korn Shell or POSIX Shell Built–In Commands 11-37.

Special Built–in Command Descriptions 11-37.

Regular Built–in Command Descriptions 11-44.

Conditional Expressions 11-49.

Job Control in the Korn Shell or POSIX Shell 11-51.

Signal Handling 11-52.

Inline Editing in the Korn Shell or POSIX Shell 11-53.

emacs Editing Mode 11-53.

vi Editing Mode 11-56.

List of Korn Shell or POSIX Shell Built–in Commands 11-60.

Special Built–in Commands 11-60.

Regular Built–in Commands 11-60.

List of Bourne Shell Built–in Commands 11-62.

List of C Shell Built–in Commands 11-63.

Korn Shell Related Information 11-65.

Bourne Shell Related Information 11-66.

C Shell Related Information 11-67.

Bourne Shell 11-68.

Bourne Shell Environment 11-68.

Restricted Shell 11-70.

Bourne Shell Commands 11-71.

Quoting Characters 11-72.

Signal Handling 11-72.

Bourne Shell Compound Commands 11-73.

Reserved Words 11-73.

Bourne Shell Built–In Commands 11-74.

Special Command Descriptions 11-75.

Command Substitution in the Bourne Shell 11-80.

Variable and File Name Substitution in the Bourne Shell 11-81.

Variable Substitution in the Bourne Shell 11-81.

User–Defined Variables 11-81.

Conditional Substitution 11-86.

Positional Parameters 11-87.

File Name Substitution in the Bourne Shell 11-87.

Character Classes 11-88.

Input and Output Redirection in the Bourne Shell 11-89.

C Shell 11-90.

C Shell Limitations 11-91.

Signal Handling 11-91.

C Shell Commands 11-92.

C Shell Built–In Commands 11-92.

C Shell Command Descriptions 11-93.

C Shell Expressions and Operators 11-100.

Command Substitution in the C Shell 11-102.

Nonbuilt–in C Shell Command Execution 11-102.

History Substitution in the C Shell 11-103.

History Lists 11-103.

Event Specification 11-104.

Quoting with Single and Double Quotes 11-105.

Alias Substitution in the C Shell 11-106.

Variable and File Name Substitution in the C Shell 11-107.

Variable Substitution in the C Shell 11-107.

xiv AIX System User’s Guide – OS & Devices

File Name Substitution in the C Shell 11-109.

File Name Expansion 11-109.

File Name Abbreviation 11-109.

Character Classes 11-110.

Environment Variables in the C Shell 11-111.

Input and Output Redirection in the C Shell 11-114.

Control Flow 11-115.

Job Control in the C Shell 11-116.

Chapter 12. Miscellaneous Tools and Utilities 12-1.

Locating a Command by Keyword (apropos Command) 12-1.

Displaying a Calendar (cal Command) 12-2.

Displaying Reminder Messages (calendar Command) 12-2.

Displaying Help Information for New Users (help Command) 12-3.

Starting Computer-Aided Instruction Courses (learn Command) 12-3.

Reminding Yourself When to Leave (leave Command) 12-4.

Factoring a Number (factor Command) 12-4.

Converting Units of Measure (units Command) 12-5.

Sending Messages to Another Logged-In User (write Command) 12-7.

Command Summary for Miscellaneous Tools and Utilities 12-9.

Chapter 13. Documentation Library Service 13-1.

Using the AIX Online Documentation 13-1.

Appendix A. Accessing Information with InfoExplorer A-1.

Using the InfoExplorer ASCII Interface A-1.

Using InfoExplorer Screens A-1.

Using Menus A-2.

Getting Help A-2.

Getting Started (InfoExplorer ASCII) A-3.

Starting the InfoExplorer ASCII Program A-3.

Recognizing Screen Types (InfoExplorer ASCII) A-3.

Selecting a Hypertext Link (InfoExplorer ASCII) A-4.

Scrolling Information (InfoExplorer ASCII) A-5.

Selecting a Menu Option (InfoExplorer ASCII) A-5.

Returning to a Previous Location (InfoExplorer ASCII) A-6.

Searching for Information (InfoExplorer ASCII) A-6.

Printing Information (InfoExplorer ASCII) A-8.

Accessing Help (InfoExplorer ASCII) A-9.

Using Special Keys and Key Sequences (InfoExplorer ASCII) A-10.

Starting an Alternate InfoExplorer Library (InfoExplorer ASCII) A-12.

Stopping the InfoExplorer ASCII Program A-13.

Customizing the InfoExplorer ASCII Program A-14.

Changing Defaults in the InfoExplorer ASCII Interface A-14.

Changing Preferences in the InfoExplorer ASCII Interface A-15.

X Resources Available for the InfoExplorer Program A-17.

Index X-1.

1-1 Login Names, System IDs, and Passwords

Chapter 1. Login Names, System IDs, and Passwords

The operating system must know who you are in order to provide you with the correct
environment. To identify yourself to the operating system, log in by entering your login name
(also known as your user ID or user name) and a password. Passwords are a form of
security. People who know your login name cannot log in to your system unless they know
your password.

If your system is set up as a multiuser system, each authorized user will have an account,
password, and login name on the system. The operating system keeps track of the
resources used by each user. This is known as system accounting. Each user will be given
a private area in the storage space of the system, called the file system. When you log in,
the file system appears to contain only your files, although there are thousands of other files
on the system.

It is possible to have more than one valid login name on a system. If you want to change
from one login name to another, you do not have to log off the system. Rather, you can use
the different login names simultaneously in different shells or consecutively in the same
shell without logging out. In addition, if your system is part of a network with connections to
other systems, you can log in to any of the other systems where you have a login name.
This is referred to as a remote login.

When you have finished working on the operating system, you log off to ensure that your
files and data are secure.

This section discusses the following:

• Login and Logout Overview, on page 1-3

– Logging In to the Operating System

– Logging In More Than One Time (login Command)

– Becoming Another User on a System (su Command)

– Suppressing Login Messages

– Logging Out of the Operating System

– Stopping the Operating System (shutdown Command)

• User and System Identification, on page 1-6

– Displaying Your Login Name

– Displaying the Operating System’s Name (name Command)

– Displaying Your System’s Name (uname Command)

– Displaying Who is Logged In (who Command)

– Displaying the System Identity of a Specified User (id Command)

• Passwords, on page 1-8

– Changing Your Password (passwd Command)

– Setting Your Password to Null (passwd Command)

• Command Summary for Login Names, System IDs, and Passwords, on page 1-11

1-2 AIX System User’s Guide – OS & Devices

Related Information
Commands and Processes

File and System Security

Customizing the User Environment and System Information

Customizing the User Environment

Shells Overview

Korn Shell or POSIX Shell

Bourne Shell

C Shell

1-3 Login Names, System IDs, and Passwords

Login and Logout Overview
To use the operating system, your system must be running and you must be logged in.
When you log in to the operating system, you identify yourself to the system and allow the
system to set up your environment.

For more detailed information about logging in or off your system, see Starting the System
in AIX 4.3 Quick Beginnings.

This section describes the following procedures:

• Logging In to the Operating System, on page 1-3

• Logging In More Than One Time (login Command), on page 1-4

• Becoming Another User on a System (su Command), on page 1-4

• Suppressing Login Messages, on page 1-4

• Logging Off the Operating System (exit and logout Commands), on page 1-5

• Stopping the Operating System (shutdown Command), on page 1-5

Logging In to the Operating System
You need to start a session on your system before beginning to work on your system. After
your system is turned on, just log in to the system to start a session.

Your system may be set up so that you can only log in during certain hours of the day and
on certain days of the week. If you attempt to log in at a time other than the time allowed,
your access will be denied. Your system administrator can verify what your login times are.

You log in at the login prompt. When you log in to the operating system, you are
automatically placed into your home directory (also called your login directory).

If Your Machine Is Not Turned On
1. Set the power switches of each attached device to On.

2. Set the key mode switch on the system unit to Normal.

3. Start the system unit by setting the power switch to On (I).

4. Look at the three–digit display. When the self–tests complete without error, the
three–digit display is blank.

If an error requiring attention occurs, a three–digit code remains, and the system unit stops.
Consult your system administrator or refer to the AIX Version 4.3 Problem Solving Guide
and Reference for more information about error codes and recovery.

When the self–tests complete successfully, a login prompt similar to the following appears
on your screen:

login:

If the login prompt does not display, see your system administrator, or go to the steps in
”Problem Determination” in the AIX Version 4.3 Problem Solving Guide and Reference.

If Your System Is Already Turned On
1. Enter your login name following the login: prompt:

login: LoginName

 For example, if your login name is denise:

login: denise

1-4 AIX System User’s Guide – OS & Devices

2. If the password: prompt appears, enter your password. (The screen does not display
your password as you type it in.)

password: [your password]

If the password prompt does not appear, you have no password defined; you can begin
working in the operating system.

After you have logged in, depending on how your operating system is set up, your system
will start up in a command line interface (shell) or a graphical interface (for example,
AIXwindows or CDE Desktop).

Logging in More Than One Time (login Command)
You can have more than one concurrent login. You do this by using the same login name or
by using different login names to log in to your system. This can be useful if you are working
on more than one project and want to maintain separate accounts.

Note: Each system has a maximum number of login names that can be active at any given
time. This number is determined by your license agreement and varies among
installations.

For example, if your other login name is denise2, at the prompt, enter:

login denise2

If the password: prompt appears, enter your password. (The screen does not display your
password as you type it in.)

You now have two logins running on your system.

See the login command in the AIX Commands Reference for the exact syntax.

Becoming Another User on a System (su Command)
The su (switch user) command enables you to change the user ID associated with a
session, if you know that user’s login name.

For example, if you want to switch and become user joyce, at the prompt enter:

su joyce

If the password: prompt appears, enter joyce’s password. If you don’t know the password,
the request is denied.

Your user ID is now joyce.

To verify that your user ID is joyce, use the id command. For more information on the id
command, see Displaying User IDs, on page 1-7.

See the su command in the AIX Commands Reference for the exact syntax.

Suppressing Login Messages
After a successful login, the login command displays the message of the day, the date and
time of the last successful and unsuccessful login attempts for this user, and the total
number of unsuccessful login attempts for this user since the last change of authentication
information (usually a password). These messages are suppressed if there is a .hushlogin
file in your home directory.

At the prompt in your home directory, enter:

touch .hushlogin

The touch command creates the empty file named .hushlogin if it doesn’t exist.

The next time you log in, all login messages will be suppressed. You can instruct the system
to retain the message of the day, while suppressing other login messages.

See the touch command in the AIX Commands Reference for the exact syntax.

1-5 Login Names, System IDs, and Passwords

Logging Off the Operating System (exit and logout Commands)
At the prompt, do one of the following:

Press the end–of–file control key–sequence (Ctrl–D keys).

OR

Type exit and press Enter.

OR

Type logout and press Enter.

After you log off, the system displays the login: prompt.

See the logout command in the AIX Commands Reference for the exact syntax.

Attention: Do not turn off the system. Turning off the system ends all processes running
on the system. If other users are working on the system, or if jobs are running in the
background, data may be lost. Perform proper shutdown procedures before you stop the
system.

Stopping the Operating System (shutdown Command)
If you have root user authority, you can use the shutdown command to stop the system. Do
not turn off the power to your system without using the shutdown command. This can result
in lost data. If you are not authorized to use the shutdown command, simply log off the
operating system and leave it running. For detailed information about shutting down or
rebooting your system, see ”Shutting Down” in AIX 4.3 Quick Beginnings.

At the prompt, enter:

shutdown

When the shutdown command completes and the operating system stops running, you
receive the following message:

....Shutdown completed....

See the shutdown command in the AIX Commands Reference for the exact syntax.

Related Information
Commands and Processes Overview

File and System Security

User Environment and System Information

Customizing the User Environment

Shells Overview

Korn or POSIX Shell

Bourne Shell

C Shell

1-6 AIX System User’s Guide – OS & Devices

User and System Identification
The following procedures describe different commands available for displaying information
that identifies users on your system and the system you are using.

• Displaying Your Login Name (whoami and logname Commands), on page 1-6

• Displaying the Operating System’s Name (uname Command), on page 1-7

• Displaying Your System’s Name (uname Command), on page 1-7

• Displaying Who is Logged In (who Command), on page 1-7

• Displaying User IDs (id Command), on page 1-7

Displaying Your Login Name (whoami and logname Commands)
When you have more than one concurrent login, it is often easy to lose track of the login
names or, in particular, the login name being used at the time.

whoami Command
To determine which login name is being used, at the prompt, enter:

whoami

The system displays information similar to the following:

denise

In this example, the login name is denise.

See the whoami command in the AIX Commands Reference for the exact syntax.

who am i Command
A variation of the who command, the who am i command, displays the login name, terminal
name, and time of the login.

At the prompt, enter:

who am i

The system displays information similar to the following:

denise pts/0 Jun 21 07:53

In this example, the login name is denise, the name of the terminal is pts/0, and this user
logged in at 7:53 a.m. (AIX uses a 24-hour clock) on June 21.

See the who command in the AIX Commands Reference for the exact syntax.

logname Command
Another variation of the who command, the logname command, displays the same
information as the who command.

At the prompt, enter:

logname

The system displays information similar to the following:

denise

In this example, the login name is denise.

See the logname command in the AIX Commands Reference for the exact syntax.

1-7 Login Names, System IDs, and Passwords

Displaying the Operating System’s Name (uname Command)
The uname command displays the name of the operating system that you are using.

For example, at the prompt, enter:

uname

The system displays information similar to the following:

AIX

In this example, the operating system name is AIX.

See the uname command in the AIX Commands Reference for the exact syntax.

Displaying Your System’s Name (uname Command)
The uname command used with the –n flag displays the name of your system if you are on
a network. Your system name identifies your system to the network, it is not the same as
your login ID.

For example, at the prompt, enter:

uname –n

The system displays information similar to the following:

barnard

In this example, the system name is barnard.

See the uname command in the AIX Commands Reference Book for more information and
the exact syntax.

Displaying Who Is Logged In (who Command)
The who command displays information about all users currently on the local system. The
following information is displayed: login name, workstation name, and date and time of
login.

Note: This command only identifies users on the local node.

To display information about who is using the local system node, enter:

who

The system displays information similar to the following:

joe lft/0 Jun 8 08:34

denise pts/1 Jun 8 07:07

In this example, the user joe, on terminal lft/0, logged in at 8:34 a.m. on June 8.

See the who command in the AIX Commands Reference for the exact syntax.

Displaying User IDs (id Command)
The id command displays the system identifications (ID) for a specified user. The system
IDs are numbers that identify users and user groups to the system. The id command
displays the following information, when applicable:

• User name and real user ID

• Name of the user’s group and real group ID

• Name of user’s supplementary groups and supplementary group IDs, if any.

1-8 AIX System User’s Guide – OS & Devices

For example, at the prompt, enter:

id

The system displays information similar to the following:

uid=1544(sah) gid=300(build) euid=0(root) egid=9(printq)

groups=0(system),10(audit)

In this example, the user has user name sah with an ID number of 1544; a primary group
name of build with an ID number of 300; an effective user name of root with an ID
number of 0; an effective group name of printq with an ID number of 9; and two
supplementary group names of system and audit, with ID numbers 0 and 10,
respectively.

For example, at the prompt, enter:

id denise

The system displays information similar to the following:

uid=2988(denise) gid=1(staff)

In this example, the user denise has an ID number of 2988 and only has a primary group
name of staff with an ID number of 1.

See the id command in the AIX Commands Reference for the exact syntax.

Passwords
Your system associates a password with each account. A unique password provides some
system security for your files. System use and data are valuable resources that require
protection. Security is an important part of computer systems because it keeps unauthorized
people from gaining access to the system and from tampering with other users’ files.
Security can also allow some users exclusive privileges to which commands they can use
and which files they can access. For protection, some system administrators only permit the
users access to certain commands or files.

This section describes the following procedures:

• Password Guidelines, on page 1-8

• Changing Your Password (passwd Command), on page 1-9

• Setting Your Password to Null (passwd Command), on page 1-10

Password Guidelines
You should have a unique password. Passwords should not be shared. Protect passwords
as any other company asset. When creating passwords, make sure they are difficult to
guess, but not so difficult that you have to write them down to remember them.

Using obscure passwords keeps your user ID secure. Passwords based on personal
information, such as your name or birthday, are poor passwords. Even common words can
be easily guessed.

Good passwords have at least six characters and include nonalphabetic characters.
Strange word combinations and words purposely misspelled are also good.

Note: If your password is so hard to remember that you have to write it down, it is not a
good password.

Use the following guidelines when selecting a password:

• Do not write passwords down. However, if you must write them down, place them in a
physically secure place, such as a locked cabinet.

• Do not use your user ID as a password. Do not use it reversed, doubled, or otherwise
modified.

1-9 Login Names, System IDs, and Passwords

• Do not reuse passwords. The system may be set up to deny the reuse of passwords.

• Do not use any person’s name as your password.

• Do not use words that can be found in the online spelling-check dictionary as your
password.

• Do not use passwords shorter than six characters.

• Do not use obscene words; they are some of the first ones checked when guessing
passwords.

• Do use passwords that are easy to remember, so you won’t have to write them down.

• Do use passwords that use both letters and numbers and that have both lowercase and
uppercase letters.

• Do use two words, separated by a number, as a password.

• Do use pronounceable passwords. They are easier to remember.

Changing Your Password (passwd Command)
Use the passwd command to change your password.

1. At the prompt, enter:

passwdIf you do not have a password, skip step 2.

2. The following prompt appears:

Changing password for UserID

UserID’s Old password:

This request keeps an unauthorized user from changing your password while you are
away from your system. Enter your current password.

3. The following prompt appears:

UserID’s New password:

Enter the new password you want.

4. The following prompt appears, asking for you to reenter your new password.

Enter the new password again:

This request protects you from setting your password to a mistyped string that you can
not recreate.

Examples

1. To change the password of the user denise, enter:

passwd

The system displays information similar to the following:

Changing password for ”denise”

denise’s Old password:

denise’s New password:

Enter the new password again:

$

2. The following example enters the current password incorrectly:

$ passwd

Changing password for ”denise”

denise’s Old password:

Your entry does not match the old password.

You are not authorized to change ”denise’s” password.

$

1-10 AIX System User’s Guide – OS & Devices

3. The following example reenters the new password incorrectly:

$ passwd

Changing password for ”denise”

denise’s Old password:

denise’s New password:

Enter the new password again:

The password entry does not match, please try again.

denise’s New password:

Enter the new password again:

$

See the passwd command in the AIX Commands Reference for the exact syntax.

Setting Your Password to Null (passwd Command)
If you do not want to enter a password each time you login, set your password to null.

To set your password to NULL (blank), enter:

passwd

When prompted for the new password, press Enter or Ctrl–D.

The passwd command does not prompt again for a password entry. A message verifying
the NULL password is displayed.

See the passwd command in the AIX Commands Reference Book for more information and
the exact syntax.

1-11 Login Names, System IDs, and Passwords

Command Summary for Login Names, System IDs, and
Passwords

Login and Logout Commands

login Initiates your session.

logout Stops all your processes.

shutdown Ends system operation.

su Changes the user ID associated with a session.

touch Updates the access and modification times of a file, or creates an
empty file.

User and System Identification Commands

id Displays the system identifications of a specified user.

logname Displays login name.

uname Displays the name of the current operating system.

who Identifies the users currently logged in.

whoami Displays your login name.

Password Command

passwd Changes a user’s password.

1-12 AIX System User’s Guide – OS & Devices

2-1 User Environment and System Information

Chapter 2. User Environment and System Information

Each login name has its own system environment. The system environment is an area
where information common to all processes running in a session is stored. There are also
commands you can use to display information about your system.

This section discusses the following procedures for displaying information about your
environment.

• Listing the Devices in Your System (lscfg Command), on page 2-2

• Displaying the Name of Your Console (lscons Command), on page 2-3

• Displaying the Name of Your Terminal (tty Command), on page 2-3

• Listing Available Displays (lsdisp Command), on page 2-4

• Listing the Available Fonts (lsfont Command), on page 2-4

• Listing Keyboard Maps (lskbd Command), on page 2-4

• Listing Software Products (lslpp Command), on page 2-5

• Listing Control Key Assignments for Your Terminal (stty Command), on page 2-6

• Listing All Your Environment Variables (env Command), on page 2-7

• Displaying the Value of an Environment Variable (printenv Command), on page 2-8

• Working with Bidirectional Languages (aixterm Command), on page 2-8

• Command Summary for User Environment and System Information, on page 2-9

2-2 AIX System User’s Guide – OS & Devices

Listing the Devices in Your System (lscfg Command)
You use the lscfg command to display the name, location, and description of each device
found in the current configuration. The list is sorted by device location.

For example, to list the devices configured in your system, at the prompt, enter:

lscfg

The system displays a message similar to the following:

INSTALLED RESOURCE LIST

The following resources are installed on your machine.

+/– = Added/Deleted from Diagnostic Test List.

* = NOT Supported by Diagnostics.

+ sysplanar0 00–00 CPU Planar

+ fpa0 00–00 Floating Point Processor

+ mem0 00–0A Memory Card

+ mem1 00–0B Memory Card

+ ioplanar0 00–00 I/O Planar

* f2bus0 00–00 Micro Channel Bus

+ rs2320 00–01 RS232 Card

+ tty0 00–01–0–01 RS232 Card Port

– tty1 00–01–0–02 RS232 Card Port

 ..

 ..

 ..

To display information about a specific device, you can use the –l flag. For example, to list
the information on device sysplanar0, at the prompt, enter:

lscfg –l sysplanar0

The system displays a message similar to the following:

DEVICE LOCATION DESCRIPTION

sysplanar0 00–00 CPU Planar

You can also use the lscfg command to display vital product data (VPD), such as part
numbers, serial numbers, and engineering change levels. For some devices, the vital
product data is collected automatically and added to the system configuration. For other
devices, the VPD information is entered manually. An ME preceding the data signifies that
the data was entered manually.

For example, to list the devices configured in your system with vital product data, at the
prompt, enter:

lscfg –v

2-3 User Environment and System Information

The system displays a message similat to the following:

INSTALLED RESOURCE LIST WITH VPD

The following devices are installed in your system.

sysplanar0 00–00 CPU Planar

 Part Number.........342522

 EC Level............254921

 Serial Number.......353535

fpa0 00–00 Floating Point Processor

mem0 00–0A Memory Card

 EC Level............990221

.

.

.

See the lscfg command in the AIX Commands Reference for the exact syntax.

Displaying the Name of Your Console (lscons Command)
The lscons command writes the name of the current console device to standard output,
usually your screen.

For example, at the prompt, enter:

lscons

The system displays a message similar to the following:

/dev/lft0

See the lscons command in the AIX Commands Reference for the exact syntax.

Displaying the Name of Your Terminal (tty Command)
The tty command displays the name of your terminal.

For example, at the prompt, enter:

tty

The system displays information similar to the following:

/dev/tty06

In this example, tty06 is the name of the terminal, and /dev/tty06 is the device file that
contains the interface to this terminal.

See the tty command in the AIX Commands Reference for the exact syntax.

2-4 AIX System User’s Guide – OS & Devices

Listing Available Displays (lsdisp Command)
The lsdisp command lists the displays currently available on your system, providing a
display identification name, slot number, display name, and description of each of the
displays.

For example, to list all available displays, enter:

lsdisp

Following is an example of the displayed list showing the display identification name, slot
number, display name, and description. The list displays in ascending order according to
slot number.

Name Slot Name Description

ppr0 00–01 POWER_G4 Midrange Graphics Adapter

gda0 00–03 colorgda Color Graphics Display Adapter

ppr1 00–04 POWER_Gt3 Midrange Entry Graphics Adapter

See the lsdisp command in the AIX Commands Reference for the exact syntax.

Listing the Available Fonts (lsfont Command)
The lsfont command displays a list of the fonts available to your display.

For example, to list all fonts available to the display in list format, enter:

lsfont –l

Following is an example of the displayed list showing the font identifier, font type, and
number of characters per screen:

ID Name Style Weight Encoding Col X Lines

0 Normal–R–N Roman Normal PC850 80 X 251

1 Normal–I–N Italic Normal PC850 120 X 35

2 Bold–R–Bol Roman Bold PC850 120 X 35

See the lsfont command in the AIX Commands Reference for the exact syntax.

Listing Keyboard Maps (lskbd Command)
The lskbd command lists the keyboard maps currently available, displaying a predefined
keyboard identifier name and number.

For example, to list all keyboard maps, enter:

lskbd

The following list is displayed showing the predefined keyboard number and name:

0 USA

See the lskbd command in the AIX Commands Reference for the exact syntax.

2-5 User Environment and System Information

Listing Software Products (lslpp Command)
The lslpp command displays information about software products available for your system.

For example, to list all the software products in your system, at the system prompt, enter:

lslpp –l –a

Following is an example of the displayed list:

Name Fix Id State Description

–––––––––––––––––––– ––––––– –––––––– –––––––––––––––––

Path: /usr/lib/objrepos

 INed.obj APPLIED INed Editor

 X11_3d.gl.dev.obj APPLIED AIXwindows/3D GL

 Development Utilities Fonts

 X11fnt.oldX.fnt APPLIED AIXwindows Miscellaneous

 X Fonts

X11mEn_US.msg APPLIED AIXwindows NL Message files

.

.

.

If the listing is very long, the top portion scrolls off the screen. To prevent this from
happening, use the lslpp command piped to the pg command. At the prompt, enter:

lslpp | pg

See the lslpp command in the AIX Commands Reference for the exact syntax.

2-6 AIX System User’s Guide – OS & Devices

Listing Control Key Assignments for Your Terminal (stty
Command)

The stty command displays your terminal settings. Most of these settings you can ignore,
but the important information is what keys your terminal uses for control keys.

For example, at the prompt, enter:

stty –a

The system displays information similar to the following:

.

.

.

intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D;

eol = ^@ start = ^Q; stop = ^S; susp = ^Z; dsusp = ^Y;

reprint = ^R discard = ^O; werase = ^W; lnext = ^V

.

.

.

In this example, lines such as intr = ^C; quit = ^\; erase = ^H; are your control
key settings. The ^H key is the Backspace key, and erase is the function it is set to perform.
For detailed information about control keys, see ”Control Keys” in AIX 4.3 Quick Beginnings.

If the listing is very long, the top portion scrolls off the screen. To prevent this from
happening, use the stty command piped to the pg command. At the prompt, enter:

stty –a | pg

See the stty command in the AIX Commands Reference for the exact syntax.

2-7 User Environment and System Information

Listing All Your Environment Variables (env Commands)
The env command allows you to display your current environment variables. An
environment variable that is accessible to all your processes is called a global variable.

All variables (with their associated values) known to a command at the beginning of its
execution constitute its environment. This environment includes variables that a command
inherits from its parent process and variables specified as keyword parameters on the
command line that calls the command. The shell interacts with the environment in several
ways. When started, the shell scans the environment and creates a parameter for each
name found, giving the parameter the corresponding value and marking it for export.
Executed commands inherit the environment.

For more information on environment variables, see:

• Korn Shell Environment, on page 11-10

• Bourne Shell Environment, on page 11-68

For example, to list all environment variables, enter:

env

Following is an example of the displayed list:

TMPDIR=/usr/tmp

myid=denise

LANG=En_US

UNAME=barnard

PAGER=/bin/pg

VISUAL=vi

PATH=/usr/ucb:/usr/lpp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/de

nise/bin:/u/bin1

MAILPATH=/usr/mail/denise?denise has mail !!!

MAILRECORD=/u/denise/.Outmail

EXINIT=set beautify noflash nomesg report=1 showmode showmatch

EDITOR=vi

PSCH=>

HISTFILE=/u/denise/.history

LOGNAME=denise

MAIL=/usr/mail/denise

PS1=denise@barnard:${PWD}>

PS3=#

PS2=>

epath=/usr/bin

USER=denise

SHELL=/bin/ksh

HISTSIZE=500

HOME=/u/denise

FCEDIT=vi

TERM=lft

MAILMSG=**YOU HAVE NEW MAIL. USE THE mail COMMAND TO SEE YOUR

PWD=/u/denise

ENV=/u/denise/.env

If the listing is very long, the top portion scrolls off the screen. To prevent this from
happening, use the env command piped to the pg command. At the prompt, enter:

env | pg

See the env command in the AIX Commands Reference for the exact syntax.

2-8 AIX System User’s Guide – OS & Devices

Displaying the Value of an Environment Variable (printenv
Command)

The printenv command displays the values of environment variables. If you specify the
Name parameter, the system only prints the value associated with the parameter you
requested. If you do not specify the Name parameter, the printenv command displays all
current environment variables, showing one Name =Value sequence per line.

For example, to find the current setting of the MAILMSG environment variable, enter:

printenv MAILMSG

The command returns the value of the MAILMSG environment variable. For example:

YOU HAVE NEW MAIL

See the printenv command in the AIX Commands Reference for the exact syntax.

Working with Bidirectional Languages (aixterm Command)
The aixterm command supports Arabic and Hebrew, which are bidirectional languages.
Bidirectional languages have the ability to be read and written in two directions, such as
from left to right, and from right to left. You can work with Arabic and Hebrew applications by
opening a window specifying an Arabic or Hebrew locale.

See the aixterm command in the AIX Commands Reference for the exact syntax.

2-9 User Environment and System Information

Command Summary for User Environment and System
Information

aixterm Enables you work with bidirectional languages.

env Displays the current environment or sets the environment for the
execution of a command.

lscfg Displays diagnostic information about a device.

lscons Displays the name of the current console.

lsdisp Lists the displays currently available on the system.

lsfont Lists the fonts available for use by the display.

lskbd Lists the keyboard maps currently loaded in the system.

lslpp Lists software products.

printenv Displays the values of environment variables.

stty Displays system settings.

tty Displays the full path name of your terminal.

2-10 AIX System User’s Guide – OS & Devices

3-1 Commands and Processes

Chapter 3. Commands and Processes

A command is a request to perform an operation or run a program. You use commands to
tell the operating system what task you want it to perform. When commands are entered,
they are deciphered by a command interpreter (also known as a shell) and that task is
processed.

A program or command that is actually running on the computer is referred to as a process.
The operating system can run many different processes at the same time.

The operating system allows you to manipulate the input and output (I/O) of data to and
from your system by using specific I/O commands and symbols. You can control input by
specifying the location from which to gather data. For example, you can specify to read
input as data is entered on the keyboard (standard input) or to read input from a file. You
can control output by specifying where to display or store data. For example, you can
specify to write output data to the screen (standard output) or to write it to a file.

This section discusses the following:

• Commands Overview, on page 3-3

– Command Syntax, on page 3-3

– Reading Syntax Diagrams, on page 3-5

– Reading Usage Statements, on page 3-7

– Using Web-based System Manager, on page 3-7

– Using the smit Command, on page 3-7

– Locating a Command or Program (whereis Command), on page 3-7

– Displaying the Function of a Command (whatis Command), on page 3-8

– Listing Previously Entered Commands (history Command), on page 3-8

– Repeating Commands Using the Command History, on page 3-10

– Substituting Strings Using the Command History, on page 3-10

– Editing the Command History, on page 3-10

– Creating a Command Alias (alias Command), on page 3-11

– Working with Text-Formatting Commands, on page 3-12

• Processes Overview, on page 3-14

– Foreground and Background Processes, on page 3-14

– Daemons, on page 3-14

– Zombie Process, on page 3-15

– Starting a Process, on page 3-15

– Checking Processes (ps Command), on page 3-15

– Setting the Initial Priority of a Process (nice Command), on page 3-17

– Changing the Priority of a Running Process (renice Command), on page 3-17

– Canceling a Foreground Process, on page 3-18

– Stopping a Foreground Process, on page 3-18

– Restarting a Stopped Process, on page 3-18

– Scheduling a Process for Later Operation (at Command), on page 3-19

3-2 AIX System User’s Guide – OS & Devices

– Listing All Scheduled Processes (at or atq Command), on page 3-20

– Removing a Process from the Schedule (at Command), on page 3-20

– Removing a Background Process (kill Command), on page 3-21

• Command Summary for Commands and Processes, on page 3-23

3-3 Commands and Processes

Commands Overview
Some commands can be entered simply by typing one word. It is also possible to combine
commands so that the output from one command becomes the input for another command.
This is known as piping.

Flags further define the actions of commands. A flag is a modifier used with the command
name on the command line, usually preceded by a dash.

Commands can also be grouped together and stored in a file. These are known as shell
procedures or shell scripts. Instead of executing the commands individually, you execute the
file that contains the commands.

To enter a command, type in the command name at the prompt, and press Enter.

$ CommandName

This section discusses:

• Command Syntax, on page 3-3

• Reading Syntax Diagrams, on page 3-5

• Reading Usage Statements, on page 3-7

• Using Web-based System Manager

• Using the smit Command, on page 3-7

• Locating a Command or Program (whereis Command), on page 3-7

• Displaying the Function of a Command (whatis Command), on page 3-8

• Listing Previously Entered Commands (history Command), on page 3-8

• Repeating Commands Using the Command History, on page 3-10

• Substituting Strings Using the Command History, on page 3-10

• Editing the Command History, on page 3-10

• Creating a Command Alias (alias Command), on page 3-11

• Working with Text Formatting Commands, on page 3-12

Command Syntax
Although some commands can be entered by simply typing one word, other commands use
flags and parameters. Each command has a syntax that designates the required and
optional flags and parameters. The general format for a command is:

CommandName flag(s) parameter(s)

Some general rules about commands are:

• Spaces between commands, flags, and parameters are important.

• Two commands can be entered on the same line by separating the commands with a
semicolon (;). For example:

$ CommandOne;CommandTwo

The shell runs the commands sequentially.

• Commands are case sensitive. The shell distinguishes between uppercase and
lowercase letters. To the shell, print is not the same as PRINT or Print.

3-4 AIX System User’s Guide – OS & Devices

• A very long command can be entered on more than one line by using the backslash (\)
character. A backslash signifies line continuation to the shell. The following example is
one command that spans two lines:

$ ls Mail info temp \ (press Enter)

> diary (the > prompt appears)

The > character is your secondary prompt ($ is the non–root user’s default primary
prompt), indicating that the current line is the continuation of the previous line. Note that
csh gives no secondary prompt, and the break must be at a word boundary, and its
primary prompt is %.

• To run a command, type the command name at the prompt, and press Enter.

Command Name
The first word of every command is the command name. Some commands only have a
command name.

Command Flags
After the command name, there may be a number of flags. Flags are sometimes called
options. A flag is set off by spaces or tabs and usually starts with a dash (–). Exceptions are
ps, tar, and ar, which do not require a dash in front of some of the flags. Flags modify the
operation of a command. For example, in the following command:

ls –a –F

ls is the command name and –a –F are the flags.

When a command uses flags, they come directly after the command name.
Single–character flags in a command can be combined with one dash. For example, the
previous command can also be written as:

ls –aF

There are some circumstances when a parameter actually begins with a dash (–). In this
case, use the delimiter –– (dash dash) before the parameter. The –– tells the command that
whatever follows is not a flag but a parameter.

For example, if you wanted to create a directory named –tmp and you entered the following
command:

mkdir –tmp

The system would display an error message similar to the following:

mkdir: Not a recognized flag: t

Usage: mkdir [–p] [–m mode] Directory ...

The correct way of entering the command is:

mkdir –– –tmp

Your new directory, –tmp, is now created.

Command Parameters
After the command name, there may be a number of flags, followed by parameters.
Parameters are sometimes called arguments or operands. Parameters specify information
the command needs in order to run. If you don’t specify a parameter, the command may
assume a default value. For example, in the following command:

ls –a temp

ls is the command name, –a is the flag, and temp is the parameter. This command
displays all (–a) the files in the directory temp. In the following example:

ls –a

3-5 Commands and Processes

because no parameter is given, the default value is the current directory. In the following
example:

ls temp mail

no flags are given, and temp and mail are parameters. In this case, temp and mail are
two different directory names. The ls command will display all but the hidden files in each of
these directories.

Whenever a parameter or operand–argument is, or contains, a numeric value, the number
is interpreted as a decimal integer, unless otherwise specified. Numerals in the range 0 to
INT_MAX, as defined in /usr/include/sys/limits.h, are syntactically recognized as numeric
values.

If a command you want to use accepts negative numbers as parameters or
option–arguments, you can use numerals in the range INT_MIN to INT_MAX, both as
defined in /usr/include/sys/limits.h. This does not necessarily mean that all numbers
within that range are semantically correct. Some commands have a built–in specification
permitting a smaller range of numbers, for example, some of the print commands. If an error
is generated, the error message lets you know the value is out of the supported range, not
that the command is syntactically incorrect.

Reading Syntax Diagrams
Syntax diagrams are designed to provide information about how to enter the command on
the command line. A syntax diagram can tell you:

• Which flags can be entered on the command line

• Which flags must take a parameter (option–argument)

• Which flags have optional parameters

• What the default values of flags and parameters are, if any

• Which flags can and cannot be entered together

• Which flags and parameters are optional

• When you can repeat flag and parameter sequences.

The commands use the following conventions in their syntax diagrams:

• Diagram items that must be entered literally on the command line are in bold. These
items include the command name, flags, and literal characters.

• Diagram items representing variables that must be replaced by a name are in italics.
These items include parameters that follow flags and parameters that the command
reads, such as Files and Directories.

• Default values that do not have to be entered are in the normal font on a thicker line.

0 Path Line The path line begins the syntax diagram.

1 Command Name This item in the diagram is the name of the command you
want to run. It is in bold, which indicates that it must be
entered exactly as it appears in the diagram.

In the example diagram, the path branches into two paths
after the command name. You can follow either the lower
path (discussed in item 2) or the upper path (discussed in
item 3).

2 Single–Choice Box If you follow the lower path, you encounter a box with the
words one of over it. You can choose only one item from
this box.

3-6 AIX System User’s Guide – OS & Devices

3 Default Line If you follow the upper path, you bypass the single–choice
box, and enter nothing. The bold line around the box is a
default line, which means that you do not have to enter
anything from that part of the diagram. Exceptions are
usually explained under ”Description.” One important
exception, the blank default line around input and output
files, is explained in item 10.

4 Repeat Arrow When you follow a path that takes you to a box with an
arrow around it, you must choose at least one item from the
box. Then you can either follow the arrow back around and
continue to choose items from the box, or you can continue
along the path. When following the arrow around just the
box (rather than an arrow that includes several branches in
the diagram), do not choose the same item more than
once.

5 Required Item Following the branch with the repeat arrow is a branch with
three choices and no default line around them. This means
that you must choose one of A, B, or C.

6 Go To Next Line If a diagram is too long to fit on one line, this character tells
you to go to the next line of the diagram to continue
entering your command. Remember, the diagram does not
end until you reach the vertical mark (discussed in Item 12).

7 Continue Diagram This character shows you where to continue with the
diagram after it breaks on the previous line.

8 Optional Parameter If a flag can (but does not have to) take a parameter, the
path branches after the flag. If you cannot enter a space
between the flag and parameter, you are told in a footnote
(discussed in Item 11).

9 Default Value Often, a command has default values or actions that it will
follow if you do not enter a specific item. These default
values are indicated in normal font in the default line if they
are equivalent to something you could enter on the
command line (for example, a flag with a value). If the
default is not something you can enter on the command
line, it is not indicated in the diagram.

Note: Default values are included in the diagram for your
information. It is not necessary to enter them on the
command line.

10 Input or Output A command that can read either input files or standard input
has an empty default line above the file parameter. If the
command can write its output to either an output file or to
standard output, it is also shown with an empty default line
above the output file parameter.

If a command can read only from standard input, an input
file is not shown in the diagram, and standard input is
assumed. If a command writes only to standard output, an
output file is not shown in the diagram, and standard output
is assumed.

When you must supply a file name for input or output, the
file parameter is included in the diagram without an empty
default line above it.

11 Footnote If a command has special requirements or restrictions, a
footnote calls attention to these differences.

12 Vertical Mark This ends the syntax diagram.

3-7 Commands and Processes

Reading Usage Statements
Usage statements are another way to represent command syntax. Like syntax diagrams,
usage statements tell you how to enter commands from the command line. Although usage
statements provide the same type of syntax information as diagrams, they are not in
diagram format. Rather, they consist of symbols such as [] (brackets), { } (braces), and |
(vertical bars). The following is a sample of a usage statement for the unget command:

unget [–rSID] [–s] [–n] File ...

The conventions for bold and italics are the same as for syntax diagrams. The following
additional conventions are used in the command usage statements:

• Parameters enclosed in brackets are optional.

• Parameters enclosed in braces are required.

• Parameters not enclosed in either brackets or braces are required.

• A vertical bar signifies that you choose only one parameter. For example, [a | b]
indicates that you can choose a, b, or nothing. Similarly, { a | b } indicates that you must
choose either a or b.

• Ellipses (...) signify the parameter can be repeated on the command line.

• The dash (–) represents standard input.

Using Web-based System Manager
Web-based System Manager is a graphical user interface for managing the system, either
from a locally attached display or remotely from another AIX system or personal computer
equipped with a web browser. You can start Web-based System Manager in a variety of
ways:

• from a command line terminal in the Common Desktop Environment (CDE) using a fast
path command

• from a command line terminal in the AIXwindows environment using a fast path
command

• from the Common Desktop Environment (CDE) Application Manager by clicking on its
icon in the System_Admin folder

• from a Version 3.2 HTML–compatible web browser on a personal computer

Using the smit Command
The smit command is a tool you can use to run other commands. Command names
entered as a parameter to the smit command may take you to a submenu or panel for that
command. For example, smit lsuser takes you directly to List All Users, which lists the
attributes of users on your system.

See the smit command in the AIX Commands Reference for the exact syntax.

Locating a Command or Program (whereis Command)
The whereis command locates the source, binary, and manuals sections for specified files.
The command attempts to find the desired program from a list of standard locations.

To find files in the current directory that have no documentation, enter:

whereis –m –u *

To find all of the files that contain the name Mail, enter:

whereis Mail

The system displays information similar to the following:

Mail: /usr/bin/Mail /usr/lib/Mail.rc

3-8 AIX System User’s Guide – OS & Devices

See the whereis command in the AIX Commands Reference for the exact syntax.

Displaying Information about a Command (man Command)
The man command displays information on commands, subroutines, and files. The general
format for the man command is:

man CommandName

To obtain information about the pg command, enter:

man pg

The system displays information similar to the following:

 pg Command

 Purpose

 Formats files to the display.

 Syntax

 pg [– Number] [–c] [–e] [–f] [–n] [–p String]

 [–s] [+LineNumber | +/Pattern/] [File ...]

 Description

 The pg command reads a file name from the File parameter and

 writes the file to standard output one screen at a time. If you

 specify a – (dash) as the File parameter, or run the pg command

 without options, the pg command reads standard input. Each

 screen is followed by a prompt. If you press the Enter key,

 another page is displayed. Subcommands used with the pg command

 let you review or search in the file.

The information the man command provides can also be obtained using the InfoExplorer
program.

See the man command in the AIX Commands Reference for the exact syntax.

Displaying the Function of a Command (whatis Command)
The whatis command looks up a given command, system call, library function, or special
file name, as specified by the Command parameter, from a database you create using the
catman –w command. The whatis command displays the header line from the manual
section. You can then issue the man command to obtain additional information.

The whatis command is equivalent to using the man –f command.

To find out what the ls command does, enter:

whatis ls

The system displays information similar to the following:

ls(1) –Displays the contents of a directory.

See the whatis command in the AIX Commands Reference for the exact syntax.

Listing Previously Entered Commands (history Shell Command)
The history command is a Korn shell built–in that lists the last 16 commands entered. The
Korn shell saves commands that you entered to a command history file, usually named
$HOME/.sh_history. This saves time when you need to repeat a previous command.

By default, the Korn shell saves the text of the last 128 commands. The history file size
(specified by the HISTSIZE environment variable) is not limited, although a very large
history file size can cause the Korn shell to start up slowly.

3-9 Commands and Processes

Note: The history shell command is not the same history command used with the INed
editor. Also note that the Bourne shell does not support command history.

For detailed information about shells, see ”Shells Overview”, on page 11-1

To list the previous commands you entered, at the prompt, enter:

history

The history command entered by itself lists the previous 16 commands entered. The
system displays information similar to the following:

928 ls

929 mail

930 printenv MAILMSG

931 whereis Mail

932 whatis ls

933 cd /usr/include/sys

934 ls

935 man pg

936 cd

937 ls | pg

938 lscons

939 tty

940 li *.txt

941 printenv MAILMSG

942 pwd

943 history

The listing first displays the position of the command in the $HOME/.sh_history file
followed by the command.

To list the previous five commands, at the prompt, enter:

history –5

A listing similar to the following appears:

939 tty

940 li *.txt

941 printenv MAILMSG

942 pwd

943 history

944 history –5

The history command followed by a number lists all the previous commands entered
starting at that number.

To list the commands since 938, at the prompt, enter:

history 938

A listing similar to the following appears:

938 lscons

939 tty

940 li *.txt

941 printenv MAILMSG

942 pwd

943 history

944 history –5

945 history 938

3-10 AIX System User’s Guide – OS & Devices

Repeating Commands Using the Shell history Command
Use the r Korn shell alias to repeat previous commands. Enter r and you can specify the
number or the first character or characters of the command.

If you want to list the displays currently available on the system, you would enter lsdisp at
the prompt. The system returns the information to you on the screen. If you want the same
information returned to you again, at the prompt, enter:

r

The system runs the most recently input command again. In this example, the lsdisp
command would run.

To repeat the li *.txt command, at the prompt, enter:

r li

The r Korn shell alias locates the most recent command that begins with the character or
characters specified.

Substituting Strings Using the Shell history Command
You can also use the r Korn shell alias to modify a command before it is run. In this case, a
substitution parameter of the form Old=New can be used to modify the command before it is
run.

For example, if command line 940 is li *.txt, and you want to run li *.exe, at the prompt,
enter:

r txt=exe 940

This runs command 940, substituting exe for txt.

For example, if the command on line 940 is the most recent command that starts with a
lower–case letter l, you can also enter:

r txt=exe l

Note: Only the first occurrence of the Old string is replaced by the New string. Entering the
r Korn shell alias without a specific command number or character does the
substitution to the previous command entered.

Editing the Command History
Use the fc Korn shell built–in command to list or edit portions of the command history file.
To select a portion of the file to edit or list, specify the number or the first character or
characters of the command. You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc Korn shell built–in
command, the editor specified by the FCEDIT variable is used. If the FCEDIT variable is not
defined, then the /usr/bin/ed editor is used. The edited command or commands are printed
and run when you exit the editor. Use the printenv command to display the value of the
FCEDIT variable.

For example, if you want to run the command:

cd /usr/tmp

which is very similar to command line 933, at the prompt enter:

fc 933

At this point, your default editor appears with the command line 933. You would change
include/sys to tmp, and when you exit your editor, the edited command is run.

You can also specify the editor you want to use in the fc command.

3-11 Commands and Processes

For example, if you want to edit a command using the /usr/bin/vi editor, at the prompt,
enter:

fc –e vi 933

At this point, the vi editor appears with the command line 933.

You can also specify a range of commands to edit.

For example, if you want to edit the commands 930 through 940, at the prompt, enter:

fc 930 940

At this point, your default editor appears with the command lines 930 through 940. When
you exit the editor, all the commands that appear in your editor are run sequentially.

Creating a Command Alias (alias Shell Command)
An alias lets you create a shortcut name for a command, a file name, or any shell text. By
using aliases, you save a lot of time when doing tasks you do frequently. The alias Korn
shell built–in command defines a word as an alias for some command. You can use aliases
to redefine built–in commands but not to redefine reserved words.

The first character of an alias name can be any nonspecial printable character. Any
remaining characters must be the same as for a valid file name.

The format for creating an alias is:

alias Name=String

in which the Name parameter specifies the name of the alias and the String parameter
specifies a string of characters. If String contains blank spaces, enclose it in quotes.

To create an alias for the command rm –i (prompts you before deleting files), at the prompt,
enter:

alias rm=”/usr/bin/rm –i”

In this example, whenever you enter the command rm, the actual command performed is
/usr/bin/rm –i.

To create an alias for the command ls –alF | pg (displays detailed information of all the files
in the current directory, including the invisible files; marks executable files with an * and
directories with a /; and scrolls per screen), at the prompt, enter:

alias dir=”/usr/bin/ls –alF | pg”

In this example, whenever you enter the command dir, the actual command performed is
/usr/bin/ls –alF | pg.

To display all the aliases you have, at the prompt, enter:

alias

The system displays information similar to the following:

rm=”/usr/bin/rm –i”

dir=”/usr/bin/ls –alF | pg”

3-12 AIX System User’s Guide – OS & Devices

Working with Text–Formatting Commands
You can use text–formatting commands to work with text composed of the AIX international
extended character set used for European languages.

International Character Support in Text Formatting
The AIX international extended character set provides the characters and symbols used in
many European languages, as well as an ASCII subset composed of English–language
characters, digits, and punctuation.

All characters in the AIX European extended character set have ASCII forms. These forms
can be used to represent the extended characters in input, or the characters can be input
directly by a device such as a keyboard that supports the European extended characters.

The following text–formatting commands support all international languages that use
single–byte characters. These commands are located in /usr/bin. (The commands
identified with an asterisk (*) support text processing for multibyte languages.)

addbib* hyphen pic* pstext

checkmm ibm3812 ps4014 refer*

checknr* ibm3816 ps630 roffbib*

col* ibm5587G* psbanne soelim*

colcrt ibm5585H–T* psdit sortbib*

deroff* indxbib* psplot tbl*

enscript lookbib* psrev troff*

eqn* makedev* psroff vgrind

grap* neqn* psrv xpreview*

hplj nroff*

Text–formatting commands and macro packages not in the preceding list have not been
enabled to process AIX international characters.

Inputting Extended Single–Byte Characters
If your input device supports characters from the European–language extended character
set, you can input them directly. Otherwise, use the following ASCII escape sequence form
to represent these characters:

The form \[N], where N is the 2– or 4–digit hexadecimal code for the character.

Note: The NCesc form \<xx> is no longer supported.

Text containing extended characters is output according to the formatting conventions of the
language in use. Characters that are not defined for the interface to a specific output device
produce no output or error indication.

Although the names of the requests, macro packages, and commands are based on
English, most of them can accept input (such as file names and parameters) containing
characters in the European extended character set.

For the nroff and troff commands and their preprocessors, the command input must be
ASCII, or an irrecoverable syntax error will result. International characters, either
single–byte or multibyte, can be input when enclosed within quotes and without other text to
be formatted. For example, using macros from the pic command:

define foobar % SomeText %

After the define directive, the first name, foobar, must be ASCII. However, the
replacement text, SomeText, can contain non–ASCII characters.

3-13 Commands and Processes

Multibyte Character Support in Text Formatting
Certain text–formatting commands can be used to process text for multibyte languages.
These commands are identified with an asterisk (*) in the list under ”International Character
Support in Text Formatting”, on page 3-12. Text–formatting commands not in the list have
not been enabled to process AIX international characters.

Inputting Multibyte Characters
If supported by your input device, multibyte characters can be input directly. Otherwise, you
can input any multibyte character in the ASCII form \[N], where N is the 2–, 4–, 6–, 7–, or
8–digit hexadecimal encoding for the character.

Although the names of the requests, macros, and commands are based on English, most of
them can accept input (such as file names and parameters) containing any type of multibyte
character.

If you are already familiar with using text–formatting commands with single–byte text, the
following list summarizes characteristics that are noteworthy or unique to the multibyte
locales:

• Text is not hyphenated.

• Special format types are required for multibyte numerical output. Japanese format types
are available.

• Text is output in horizontal lines, filled from left to right.

• Character spacing is constant, so characters automatically align in columns.

• Characters that are not defined for the interface to a specific output device produce no
output or error indication.

As for the nroff and troff commands and their preprocessors, the command input must be
ASCII, or a syntax error will result. International characters, either single–byte or multibyte,
can be input when enclosed within quotes and within other text to be formatted. For
example, using macros from the pic command:

define foobar % SomeText %

After the define directive, the first name, foobar, must be ASCII. However, the
replacement text, SomeText, can contain non–ASCII characters.

3-14 AIX System User’s Guide – OS & Devices

Processes Overview
A program or command that is actually running on the computer is referred to as a process.
Processes exist in parent–child hierarchies. A process started by a program or command is
a parent process; a child process is the product of the parent process. A parent process
may have several child processes, but a child process can only have one parent.

The system assigns a process identification number (PID number) to each process when it
starts. If you start the same program several times, it will have a different PID number each
time.

When a process is started on a system, the process uses a part of the available system
resources. When more than one process is running, a scheduler that is built into the
operating system gives each process its share of the computer’s time, based on established
priorities. These priorities can be changed by using the nice or renice commands.

Note: Only someone with root user authority can change a process priority to a higher one.
All users can lower priorities on a process they start by using the nice command, or
on a process they have already started by using the renice command.

This section discusses:

• Foreground and Background Processes

• Daemons

• Zombie Process

• Starting a Process

• Scheduling a Process for Later Operation (at Command)

• Listing All Scheduled Processes (at or atq Command)

• Checking Processes (ps Command)

• Setting the Initial Priority of a Process (nice Command)

• Changing the Priority of a Running Process (renice Command)

• Canceling a Foreground Process

• Stopping a Foreground Process

• Restarting a Stopped Process

• Removing a Process from the Schedule (at Command)

• Removing a Background Process (kill Command)

Foreground and Background Processes
Processes that are started from and require a user’s interaction are called foreground
processes. Processes that are run independently of a user are referred to as background
processes. Programs and commands run as foreground processes by default. To run a
process in the background, place an ampersand (&) at the end of the command name that
you use to start the process.

Daemons
Daemons are processes that run unattended. They are constantly in the background and
are available at all times. Daemons are usually started when the system starts and run until
the system stops. A daemon process performs system services and is available at all times
to more than one task or user. Daemon processes are started by the root user or root shell
and can be stopped only by the root user. For example, the qdaemon process provides
access to system resources such as printers. Another common daemon is the sendmail
daemon.

3-15 Commands and Processes

Zombie Process
A zombie process is a dead process that is no longer executing but is still recognized in the
process table (in other words, it has a PID number). It has no other system space allocated
to it. Zombie processes have been killed or have exited and continue to exist in the process
table until the parent process dies or the system is shut down and restarted. Zombie
processes show up as <defunct> when listed by the ps command.

Starting a Process
You start a foreground process from a display station by either entering a program name or
command name at the system prompt. Once a foreground process has started, the process
interacts with you at your display station until it is complete. This means no other interaction
(for example, entering another command) can take place at the display station until the
process is finished or you halt it.

A single user can run more than one process at a time up to a default maximum of 40
processes per user.

To Start a Process in the Foreground
To run a process in the foreground, enter the name of the command with all the appropriate
parameters and flags:

$ CommandName

To Start a Process in the Background
To run a process in the background, enter the name of the command with all the appropriate
parameters and flags, followed by an ampersand (&):

$ CommandName&

When the process is running in the background, you can perform additional tasks by
entering other commands at your display station.

Generally, background processes are most useful for commands that take a long time to
run. However, because they increase the total amount of work the processor is doing,
background processes also slow down the rest of the system.

Most processes direct their output to standard output, even when they run in the
background. Unless redirected, standard output goes to the display station. Because the
output from a background process can interfere with your other work on the system, it is
usually good practice to redirect the output of a background process to a file or a printer.
You can then look at the output whenever you are ready.

Note: Under certain circumstances, a process may generate its output in a different
sequence when run in the background than when run in the foreground.
Programmers may want to use the fflush subroutine to ensure that output occurs in
the proper order regardless of whether the process runs in foreground or
background.

As long as a background process is running, you can check its status with the ps command.

Checking Processes (ps Command)
Any time the system is running, several processes are also running. You can use the ps
command or a Web-based System Manager fast path to find out which processes are
running and to display information about those processes.

ps Command
The ps command has several flags that enable you to specify which processes to list and
what information to display about each process.

To show all processes running on your system, at the prompt, enter:

ps –ef

3-16 AIX System User’s Guide – OS & Devices

The system displays information similar to the following:

 USER PID PPID C STIME TTY TIME CMD

 root 1 0 0 Jun 28 – 3:23 /etc/init

 root 1588 6963 0 Jun 28 – 0:02 /usr/etc/biod 6

 root 2280 1 0 Jun 28 – 1:39 /etc/syncd 60

 mary 2413 16998 2 07:57:30 – 0:05 aixterm

 mary 11632 16998 0 07:57:31 lft/1 0:01 xbiff

 mary 16260 2413 1 07:57:35 pts/1 0:00 /bin/ksh

 mary 16469 1 0 07:57:12 lft/1 0:00 ksh

/usr/lpp/X11/bin/xinit

 mary 19402 16260 20 09:37:21 pts/1 0:00 ps –ef

The column heading definitions are as follows:

USER User login name

PID Process ID

PPID Parent process ID

C CPU utilization of process

STIME Start time of process

TTY Controlling workstation for the process

TIME Total execution time for the process

CMD Command

In the previous example, the process ID for the ps –ef command is 19402. Its parent
process ID is 16260, the /bin/ksh command.

If the listing is very long, the top portion scrolls off the screen. To prevent this from
happening, use the ps command piped to the pg command. At the prompt, enter:

ps –ef | pg

To show status information of all processes running on your system, at the prompt, enter:

ps gv

This form of the command lists a number of statistics for each active process. Output from
this command looks something like this:

 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

 0 – A 0:44 7 8 8 xx 0 0 0.0 0.0 swapper

 1 – A 1:29 518 244 140 xx 21 24 0.1 1.0 /etc/init

 771 – A 1:22 0 16 16 xx 0 0 0.0 0.0 kproc

 1028 – A 0:00 10 16 8 xx 0 0 0.0 0.0 kproc

 1503 – A 0:33 127 16 8 xx 0 0 0.0 0.0 kproc

 1679 – A 1:03 282 192 12 32768 130 0 0.7 0.0 pcidossvr

 2089 – A 0:22 918 72 28 xx 1 4 0.0 0.0 /etc/sync

 2784 – A 0:00 9 16 8 xx 0 0 0.0 0.0 kproc

 2816 – A 5:59 6436 2664 616 8 852 156 0.4 4.0 /usr/lpp/

 3115 – A 0:27 955 264 128 xx 39 36 0.0 1.0 /usr/lib/

 3451 – A 0:00 0 16 8 xx 0 0 0.0 0.0 kproc

 3812 – A 0:00 21 128 12 32768 34 0 0.0 0.0 usr/lib/lpd/

 3970 – A 0:00 0 16 8 xx 0 0 0.0 0.0 kproc

 4267 – A 0:01 169 132 72 32768 16 16 0.0 0.0 /etc/sysl

 4514 lft/0 A 0:00 60 200 72 xx 39 60 0.0 0.0 /etc/gett

 4776 pts/3 A 0:02 250 108 280 8 303 268 0.0 2.0 –ksh

 5050 – A 0:09 1200 424 132 32768 243 56 0.0 1.0 /usr/sbin

 5322 – A 0:27 1299 156 192 xx 24 24 0.0 1.0 /etc/cron

 5590 – A 0:00 2 100 12 32768 11 0 0.0 0.0 /etc/writ

 5749 – A 0:00 0 208 12 xx 13 0 0.0 0.0 /usr/lpp/

 6111 – T 0:00 66 108 12 32768 47 0 0.0 0.0 /usr/lpp/

See the ps command in the AIX Commands Reference for the exact syntax.

3-17 Commands and Processes

Web-based System Manager Fast Path
You can use the Web-based System Manager fast path to find out which processes are
running and to display information about those processes. At the prompt, type:

wsm processes

In the Processes container, select a process, then use the menus to complete the task.

Other commands you can use are smit process and smit monitors.

Setting the Initial Priority of a Process (nice Command)
You can set the initial priority of a process to a value lower than the base scheduling priority
by using the nice command to start the process.

Note: To run a process at a higher priority, you must have root user authority.

nice Command
To set the initial priority of a process, type:

nice –n Number CommandString

where Number is in the range of 0 to 39, with 39 being the lowest priority. The higher the
number, the lower the priority. If you use zero, the process will run at its base scheduling
priority. CommandString is the command and flags and parameters you want to run.

See the nice command in the AIX Commands Reference for more information and the
exact syntax.

You can also use the smit nice command to perform this task.

Changing the Priority of a Running Process (renice Command)
You can change the scheduling priority of a running process to a value lower or higher than
the base scheduling priority by using the renice command. This command changes the nice
value of a process. There are two ways to run this command:

• With the renice command from the command line

• With the Web-based System Manager fast path

Note: To run a process at a higher priority or to change the priority for a process you did
not start, you must have root user authority.

From the Command Line
To change the initial priority of a running process, type:

renice Priority –p ProcessID

where Priority is in the range of –20 to 20. The higher the number, the lower the priority. If
you use zero, the process will run at its base scheduling priority. ProcessID is the PID you
want to change the priority of.

Web-based System Manager Fast Path
You can use the Web-based System Manager fast path to change the priority of a running
process. At the prompt, type:

wsm processes

In the Processes container, select a process, then use the menus to complete the task.

You can also use the smit renice command to perform this task.

3-18 AIX System User’s Guide – OS & Devices

Canceling a Foreground Process
If you start a foreground process and then decide you do not want to let it finish, you can
cancel it by pressing INTERRUPT. This is usually Ctrl–C or Ctrl–Backspace. To find out
what your INTERRUPT key is set to, see Listing Control Key Assignments for Your Terminal
(stty Command), on page 2-6.

Note: INTERRUPT (Ctrl–C) does not cancel background processes. To cancel a
background process, you must use the kill command.

Most simple commands are not good examples for demonstrating how to cancel a
process–they run so quickly that they finish before you have time to cancel them. The
examples in this section, therefore, use a command that takes more than a few seconds to
run: find / –type f. This command displays the path names for all files on your system.
You do not need to study the find command in order to complete this section; it is used here
simply to demonstrate how to work with processes.

In the following example, the find command starts a process. After the process runs for a
few seconds, you can cancel it by pressing the INTERRUPT key:

$ find / –type f

/usr/sbin/acct/lastlogin

/usr/sbin/acct/prctmp

/usr/sbin/acct/prdaily

/usr/sbin/acct/runacct

/usr/sbin/acct/sdisk

/usr/sbin/acct/shutacct INTERRUPT (Ctrl–C)

$ _

The system returns the prompt to the screen. Now you can enter another command.

Stopping a Foreground Process
It is possible for a process to be stopped but not have its process ID (PID) removed from the
process table. You can stop a foreground process with a Ctrl–Z from the keyboard.

Note: Ctrl–Z works in the Korn shell (ksh) and C shell (csh), but not in the Bourne shell
(bsh).

Restarting a Stopped Process
This procedure describes how to restart a process that has been stopped with a Ctrl–Z.

Note: Ctrl–Z works in the Korn shell (ksh) and C shell (csh), but not in the Bourne shell
(bsh). To restart a stopped process, you must either be the user who started the
process or have root user authority.

1. To show all the processes running or stopped but not killed on your system, type:

ps –ef

You may want to pipe this command through a grep command to restrict the list to those
processes most likely to be the one you want to restart. For example, if you want to
restart a vi session, you could enter:

ps –ef | grep vi

This command would display only those lines from the ps command output that
contained the word vi. The output would look something like this:

UID PID PPID C STIME TTY TIME COMMAND

root 1234 13682 0 00:59:53 – 0:01 vi test

root 14277 13682 1 01:00:34 – 0:00 grep vi

2. In the ps command output, find the process you want to restart and note its PID number.
In the example, the PID is 1234.

3-19 Commands and Processes

3. To send the CONTINUE signal to the stopped process, type:

kill –19 1234

Substitute the PID of your process for the 1234. The –19 indicates the CONTINUE
signal. This command restarts the process in the background. If it is okay for the process
to run in the background, you are finished with the procedure. If the process needs to run
in the foreground (as a vi session would), you must proceed with the next step.

4. To bring the process in to the foreground, type:

fg 1234

Once again, substitute the PID of your process for the 1234. Your process should now
be running in the foreground. (You are now in your vi edit session).

Scheduling a Process for Later Operation (at Command)
You can set up a process as a batch process to run in the background at a scheduled time.
The at and smit commands let you enter the names of commands to be run at a later time
and allow you to specify when the commands should be run.

Note: The /var/adm/cron/at.allow and /var/adm/cron/at.deny files control whether you
can use the at command. A person with root user authority can create, edit, or
delete these files. Entries in these files are user login names with one name to a line.
The following is an example of an at.allow file:

root

nick

dee

sarah

If the at.allow file exists, only users whose login names appear in it can use the at
command. A system administrator can explicitly stop a user from using the at command by
listing the user’s login name in the at.deny file. If only the at.deny file exists, any user
whose name does not appear in the file can use the at command.

You cannot use the at command if one of the following is true:

• The at.allow file and the at.deny file do not exist (allows root user only).

• The at.allow file exists but the user’s login name is not listed in it.

• The at.deny file exists and the user’s login name is listed in it.

If the at.allow file does not exist and the at.deny file does not exist or is empty, only
someone with root user authority can submit a job with the at command.

The at command syntax allows you to specify a date string, a time and day string, or an
increment string for when you want the process to run. It also allows you to specify which
shell or queue to use. The following examples show some typical uses of the command.

at Command
For example, if your login name is joyce and you have a script named WorkReport that you
want to run at midnight, do the following:

1. Type in the time you want the program to start running.

at midnight

2. Type the names of the programs to run, pressing Enter after each name. After typing the
last name, press the end–of–file character (Ctrl–D) to signal the end of the list.

WorkReport^D

After pressing Ctrl–D, the system displays information similar to the following:

job joyce.741502800.a at Fri Jul 6 00:00:00 CDT 1994.

3-20 AIX System User’s Guide – OS & Devices

The program WorkReport is given the job number joyce.741502800.a and will run at
midnight July 6.

To list the programs you have sent to be run later, type:

at –l

The system displays information similar to the following:

joyce.741502800.a Fri Jul 6 00:00:00 CDT 1994

To cancel a program you have set up to run later, first list the job numbers assigned to your
programs with at –l. Once you know the job number of the program you want to cancel,
type:

at –r joyce.741502800.a

This cancels job joyce.741502800.a.

See the at command in the AIX Commands Reference for the exact syntax.

You can also use the smit at and smit sjat commands to perform this task.

Listing All Scheduled Processes
You can list all scheduled processes with the –l flag of the at command or with the atq
command. Both commands give the same output, but the atq command can order the
processes by the time the at command was issued and can display just the number of
processes in the queue.

You can list all scheduled processes in the following ways:

• With the at command from the command line

• With the atq command

For user restrictions on using the at command, see the Note, on page 3-19.

at Command
To list the scheduled processes, type:

at –l

This command lists all the scheduled processes in your queue. If you are a root user, this
command lists all the scheduled processes for all users. For complete details of the syntax,
see the at command.

atq Command
To list all scheduled processes in the queue, type:

atq

If you are a root user, you can list the scheduled processes in a particular user’s queue by
typing:

atq UserName

To list the number of scheduled processes in the queue, type:

atq –n

Removing a Process from the Schedule
You can remove a scheduled process with the at command using the –r flag of that
command or with the Web-based System Manager fast path. For user restrictions on using
the at command, see Note, on page 3-19.

3-21 Commands and Processes

From the Command Line
1. To remove a scheduled process, you must know the process number. You can obtain the

process number using the at –l command or the atq command. See ”Listing All
Scheduled Processes” for details.

2. When you know the number of the process you want to remove, type:

at –r ProcessNumber

Web-based System Manager Fast Path
You can use the Web-based System Manager fast path to remove a process from the
schedule. At the prompt, type:

wsm processes

In the Processes container, select a process, then use the menus to complete the task.

You can also use the smit rmat command to perform this task.

Removing a Background Process (kill Command)
If INTERRUPT does not halt your foreground process or if you decide, after starting a
background process, that you do not want the process to finish, you can cancel the process
with the kill command. Before you can cancel a process using the kill command, you must
know its PID number. The general format for the kill command is:

kill ProcessID

Note: To remove a process, you must have root user authority or be the user who started
the process. The default signal to a process from the kill command is –15
(SIGTERM).

kill Command
1. Use the ps command to determine the process ID of the process you want to remove.

You may want to pipe this command through a grep command to list only the process
you want. For example, if you want the process ID of a vi session, you could type:

ps –l | grep vi

2. In the next example, you issue the find command to run in the background. You then
decide to cancel the process. Issue the ps command to list the PID numbers.

$ find / –type f > dir.paths &

[1] 21593

$ ps

 PID TTY TIME COMMAND

 1627 pts3 0:00 ps

 5461 pts3 0:00 ksh

 17565 pts3 0:00 –ksh

 21593 pts3 0:00 find / –type f

$ kill 21593

$ ps

 PID TTY TIME COMMAND

 1627 pts3 0:00 ps

 5461 pts3 0:00 ksh

 17565 pts3 0:00 –ksh

[1] + Terminated 21593 find / –type f > dir.paths &

The command kill 21593 stops the background find process, and the second ps
command returns no status information about PID 21593. The system does not display
the termination message until you enter your next command, unless that command is
cd.

The kill command lets you cancel background processes. You may want to do this if you
realize that you have mistakenly put a process in the background or a process is taking
too long to run.

3-22 AIX System User’s Guide – OS & Devices

Notes:

a. Removing a parent process automatically removes all its child processes.

b. To remove a zombie process, you must remove its parent process.

See the kill command in the AIX Commands Reference for the exact syntax.

Web-based System Manager Fast Path
You can use the Web-based System Manager fast path to cancel a running process. At the
prompt, type:

wsm processes

In the Processes container, select a process, then use the menus to complete the task.

You can also use the smit kill command.

3-23 Commands and Processes

Command Summary for Commands and Processes

Commands

alias Shell command that prints a list of aliases to standard
output.

history Shell command that displays the history event list.

man

 Displays information about commands, subroutines, and
files online.

Web-based System Manager

 Performs system management from a web browser.

whatis

 Describes the function a command performs.

whereis

 Locates the source, binary, or manual for installed
programs.

Processes

at

 Runs commands at a later time, lists all scheduled
processes, or removes a process from the schedule.

atq

 Displays the queue of jobs waiting to be run.

kill

 Sends a signal to running processes.

nice

 Runs a command at a lower or higher priority.

ps

 Shows current status of processes.

renice

 Alters priority of running processes.

3-24 AIX System User’s Guide – OS & Devices

4-1 Input and Output Redirection

Chapter 4. Input and Output Redirection

The operating system allows you to manipulate the input and output (I/O) of data to and
from your system by using specific I/O commands and symbols. You can control input by
specifying the location from which to gather data. For example, you can specify to read
input as data is entered on the keyboard (standard input) or to read input from a file. You
can control output by specifying where to display or store data. You can specify to write
output data to the screen (standard output) or to write it to a file.

The operating system, because it is multitasking, is designed to handle processes in
combination with each other. This section discusses the advantages of redirecting input and
output and tying processes together.

This section discusses the following:

• Standard Input, Standard Output, and Standard Error, on page 4-2

• Redirecting Standard Output, on page 4-2

• Redirecting Output to a File, on page 4-2

• Redirecting Output and Appending It to a File, on page 4-3

• Creating a Text File with Redirection from the Keyboard, on page 4-3

• Concatenating Text Files, on page 4-3

• Redirecting Standard Input, on page 4-3

• Discarding Output with the /dev/null File, on page 4-4

• Redirecting Standard Error and Other Output, on page 4-4

• Inline Input (Here) Documents, on page 4-5

• Pipes and Filters, on page 4-5

• Displaying Program Output and Copying It to a File (tee command), on page 4-6

• Clearing Your Screen (clear Command), on page 4-6

• Sending a Message to Standard Output (echo Command), on page 4-7

• Appending a Single Line of Text to a File (echo Command), on page 4-7

• Copying Your Screen to a File (capture and script Commands), on page 4-7

• Displaying Text in Large Letters on Your Screen (banner Command), on page 4-8

• Command Summary for Input and Output Redirection, on page 4-9

4-2 AIX System User’s Guide – OS & Devices

Standard Input, Standard Output, and Standard Error
When a command begins running, it usually expects that three files are already open:
standard input, standard output, and standard error (sometimes called error output or
diagnostic output). A number, called a file descriptor, is associated with each of these files,
as follows:

File descriptor 0 Standard input

File descriptor 1 Standard output

File descriptor 2 Standard error (diagnostic) output

A child process normally inherits these files from its parent. All three files are initially
assigned to the workstation (0 to the keyboard, 1 and 2 to the display). The shell permits
them to be redirected elsewhere before control is passed to a command.

When you enter a command, if no file name is given, your keyboard is the standard input,
sometimes denoted as stdin. When a command finishes, the results are displayed on your
screen.

Your screen is the standard output, sometimes denoted as stdout. By default, commands
take input from the standard input and send the results to standard output.

Standard error, sometimes denoted as stderr, is where error messages go. By default, this
is your screen.

These default actions of input and output can be varied. You can use a file as input and
write results of a command to a file. This is called input/output redirection, which is one of
the powerful features of a UNIX operating system.

The output from a command, which normally goes to the terminal, can easily be redirected
to a file instead. This is known as output redirection. This is useful when you have a lot of
output that is difficult to read on the screen or when you want to put files together to create a
larger file.

Though not used as much as output redirection, the input for a command, which normally
comes from the keyboard, can also be redirected from a file. This is known as input
redirection. Redirection of input lets you prepare a file in advance and then have the
command read the file.

Redirecting Standard Output
When the notation > filename is added to the end of a command, the output of the
command is written to the specified file name. The > symbol is known as the output
redirection operator.

Any command that outputs its results to the screen can have its output sent to a file.

Redirecting Output to a File
For example, to send the results of the who command to a file called users, enter:

who > users

Note: If the file users already exists, it is written over, unless the noclobber option of
the set built–in ksh (Korn shell) or csh (C shell) command is specified.

To see the contents of the file users, enter:

cat users

4-3 Input and Output Redirection

A list similar to the following appears:

denise lft/0 May 13 08:05

marta pts/1 May 13 08:10

endrica pts/2 May 13 09:33

For example, to send the current directory listing to a file, enter:

ls > dirlist

Redirecting Output and Appending It to a File
When the notation > > filename is added to the end of a command, the output of the
command is appended to the specified file name rather than writing over any existing data.
The > > symbol is known as the append redirection operator.

For example, to append file2 to file1, enter:

cat file2 > > file1

Note: If the file file1 does not exist, it is created, unless the noclobber option of the set
built–in ksh (Korn shell) or csh (C shell) command is specified.

Creating a Text File with Redirection from the Keyboard
The cat command alone takes whatever you enter at the keyboard as input. You can
redirect this input to a file. Enter Ctrl–D on a new line to signal the end of the text.

At the system prompt, enter:

cat > filename

This is a test.

^D

Concatenating (Join) Text Files
Combining various files into one file is known as concatenation.

For example, at the system prompt, enter:

cat file1 file2 file3 > file4

The previous example creates file4, which consists of file1, file2, and file3
appended in the order given.
The following example shows a common error when concatenating files:

cat file1 file2 file3 > file1

Attention: In this example, you may think the cat command will append the contents of
file1, file2, and file3 into file1. The cat command creates the output file first,
so it actually erases the contents of file1 and then appends file2 and file3 to it.

Redirecting Standard Input
When the notation < filename is added to the end of a command, the input of the command
is read from the specified file name. The < symbol is known as the input redirection
operator.

Note: Only commands that normally take their input from the keyboard can have their input
redirected.

For example, to send the file letter1 as a message to user denise with the mail
command, enter:

mail denise < letter1

4-4 AIX System User’s Guide – OS & Devices

Discarding Output with the /dev/null File
The /dev/null file is a special file. This file has a unique property; it is always empty. Any
data you send to /dev/null is discarded. This is a useful feature when you run a program or
command that generates output you want to ignore.

For example, you have a program named myprog that accepts input from the screen and
generates messages while it is running that you would rather ignore. To read input from the
file myscript and discard the standard output messages, enter:

myprog < myscript >/dev/null

In this example, myprog uses the file myscript as input and all standard output is
discarded.

Redirecting Standard Error and Other Output
In addition to the standard input and standard output, commands often produce other types
of output, such as error or status messages known as diagnostic output. Like standard
output, standard error output is written to the screen unless redirected.

Generally, when a command starts, three files are already open: stdin (standard input),
stdout (standard output), and stderr (standard error). If you want to redirect standard input
or standard output, you can use the <, >, or > > symbols. However, if you want to redirect
standard error or other output, you must use a file descriptor. File descriptors can also be
specified to redirect standard input and standard output, but are already the default values.

A file descriptor is a number associated with each of the I/O files a command ordinarily
uses. The following numbers are associated with standard input, output, and error:

0 Standard input (keyboard)

1 Standard output (display)

2 Standard error (display)

To redirect standard error output, type the file descriptor number 2 in front of the output or
append redirection symbols (> or > >) and a file name after the symbol. For example, the
following command takes the standard error output from the cc command where it is used
to compile testfile.c and appends it to the end of the ERRORS file:

cc testfile.c 2 > > ERRORS

Other types of output can also be redirected using the file descriptors from 0 through 9. For
example, if the cmd command writes output to file descriptor 9, you can redirect that output
to the savedata file with the following command:

cmd 9> savedata

If a command writes to more than one output, you can independently redirect each one.
Suppose that a command directs its standard output to file descriptor 1, directs its standard
error output to file descriptor 2, and builds a data file on file descriptor 9. The following
command line redirects each of these outputs to a different file:

command > standard 2> error 9> data

4-5 Input and Output Redirection

Inline Input (Here) Documents
A command in the form of:

command << eofstring

in which eofstring is any string that does not contain pattern–matching characters, the shell
takes the subsequent lines as the standard input of command until the shell reads a line
consisting of only eofstring (possibly preceded by one or more tab characters). The lines
between the first eofstring and the second are frequently referred to as an inline input, or
here, document. If a – (minus) immediately follows the << redirection characters, the shell
strips leading tab characters from each line of the here document before it passes the line to
the command.

The shell creates a temporary file containing the here document and performs variable and
command substitution on the contents before passing the file to the command. It performs
pattern matching on file names that are part of command lines in command substitutions. To
prohibit all substitutions, quote any character of the eofstring:

command << \eofstring

The here document is especially useful for a small amount of input data that is more
conveniently placed in the shell procedure rather than kept in a separate file (such as editor
scripts). For instance, you could enter:

cat <<– xyz

 This message will be shown on the

 display with leading tabs removed.

 xyz

This feature is most useful in shell procedures.

Pipes and Filters
UNIX lets you connect two or more commands in such a way that the standard output of
one command is used as the standard input of another command. A set of commands
connected this way is known as a pipeline. The connection that joins the commands is
known as a pipe. Pipes are another important feature of UNIX because they let you tie
many single–purpose commands into one powerful command.

You can direct the output from one command to become the input for another command
using a pipeline. The commands are connected by a | (pipe) symbol.

When a command takes its input from another command, modifies it, and sends its results
to standard output, it is known as a filter. Filters can be used alone but they are especially
useful in pipelines. The most common filters are:

• sort

• more

• pg

For example, the ls command writes the contents of the current directory to the screen in
one scrolling data stream. When more than one screen of information is presented, some
data is lost from view. To control the output so the contents display screen by screen, you
can use a pipeline to direct the output of the ls command to the pg command, which
controls the format of output to the screen as shown in the following example:

ls | pg

In the example, the output of the ls command is the input for the pg command. Press Enter
to continue to the next screen.

4-6 AIX System User’s Guide – OS & Devices

Pipelines operate in one direction only (left to right). Each command in a pipeline runs as a
separate process and all processes can run at the same time. A process pauses when it
has no input to read or when the pipe to the next process is full.

Another example of using pipes is with the grep command. grep searches a file for lines
that contain strings of a certain pattern. To display all your files created or modified in July,
enter:

ls –l | grep Jul

In the example, the output of the ls command is the input for the grep command.

Displaying Program Output and Copying It to a File (tee
command)

The tee command, used with a pipe, reads standard input, then writes the output of a
program to standard output and simultaneously copies it into the specified file or files. This
gives you the advantage of viewing your output immediately and storing it for future use at
the same time.

For example, to view and save the output from a command at the same time, enter:

ps –ef | tee program.ps

This displays the standard output of the command ps –ef at the work station, and at the
same time saves a copy of it in the file program.ps. If program.ps already exists, it is
deleted and replaced, unless the noclobber option of the set built–in command is specified.

For example, to view and save the output from a command to an existing file:

ls –l | tee –a program.ls

This displays the standard output of ls –l at the workstation and at the same time appends a
copy of it to the end of program.ls. If the file program.ls does not exist, it is created,
unless the noclobber option of the set built–in command is specified.

The system displays information similar to the following, and the program.ls file contains
the same information:

–rw–rw–rw– 1 jones staff 2301 Sep 19 08:53 161414

–rw–rw–rw– 1 jones staff 6317 Aug 31 13:17 def.rpt

–rw–rw–rw– 1 jones staff 5550 Sep 10 14:13 try.doc

See the tee command in the AIX Commands Reference for the exact syntax.

Clearing Your Screen (clear Command)
You can empty the screen of messages and keyboard input with the clear command.

At the prompt, enter:

clear

The system clears the screen and displays the prompt.

See the clear command in the AIX Commands Reference for the exact syntax.

4-7 Input and Output Redirection

Sending a Message to Standard Output (echo Command)
You can display messages on the screen with the echo command.

For example, to write a message to standard output, at the prompt, enter:

echo Please insert diskette . . .

The system displays the following:

Please insert diskette . . .

For example, to use the echo command with pattern–matching characters, at the prompt,
enter:

echo The back–up files are: *.bak

The system displays the message The back–up files are: followed by the file names
in the current directory ending with .bak.

See the echo command in the AIX Commands Reference for the exact syntax.

Appending a Single Line of Text to a File (echo Command)
You can add a single line of text to a file with the echo command, used with the append
redirection operator.

For example, at the prompt, enter:

echo Remember to backup mail files by end of week.>

>notes

This adds the message Remember to backup mail files by end of week. to the
end of the file notes.

See the echo command in the AIX Commands Reference for the exact syntax.

See the echo command in the AIX Commands Reference Book for more information and
the exact syntax.

Copying Your Screen to a File (capture and script Commands)
You can copy everything printed on your terminal to a file that you specify with the capture
command, which emulates a VT100 terminal.

The script command also lets you copy everything printed on your terminal to a file that you
specify, without emulating a VT100 terminal.

Both commands are useful for producing hardcopy records of terminal dialogs.

For example, to capture the screen of a terminal while emulating a VT100, at the prompt,
enter:

capture screen.01

The system displays information similar to the following:

Capture command is started. The file is screen.01.

Use ^P to dump screen to file screen.01.

You are now emulating a vt100 terminal.

Press Any Key to continue.

4-8 AIX System User’s Guide – OS & Devices

After entering data and dumping the screen contents, stop the capture command by
pressing Ctrl–D or entering exit. The system displays information similar to the following:

Capture command is complete. The file is screen.01.

You are NO LONGER emulating a vt100 terminal.

Use the cat command to display the contents of your file.

For example, to capture the screen of a terminal, at the prompt, enter:

script

The system displays information similar to the following:

Script command is started. The file is typescript.

Everything displayed on the screen is now copied to the file typescript.

To stop the script command, press Ctrl–D or enter exit. The system displays information
similar to the following:

Script command is complete. The file is typescript.

Use the cat command to display the contents of your file.

See the capture and script commands in the AIX Commands Reference for the exact
syntax.

Displaying Text in Large Letters on Your Screen (banner
Command)

The banner command displays ASCII characters to your screen in large letters. Each line in
the output can be up to 10 digits or uppercase or lowercase characters in length.

For example, at the prompt, enter:

banner GOODBYE!

The system displays GOODBYE! in large letters at your screen.

See the banner command in the AIX Commands Reference for the exact syntax.

4-9 Input and Output Redirection

Command Summary for Input and Output Redirection

 > Redirects standard output to a file.

 < Redirects standard input from a file.

 > > Appends standard output to a file.

 | Connects processes in a pipeline.

banner Writes ASCII character strings in large letters to standard output.

capture Allows terminal screens to be dumped to a file.

clear Clears the terminal screen.

echo Writes character strings to standard output.

script Allows terminal input and output to be copied to a file.

tee Displays the standard output of a program and copies it into a file.

4-10 AIX System User’s Guide – OS & Devices

5-1 File Systems and Directories

Chapter 5. File Systems and Directories

File systems consist of groups of directories and the files within the directories. File systems
are commonly represented as an inverted tree. The root directory, symbolized by the /
(slash) symbol, defines a file system and appears at the top of a file system tree diagram.
Directories branch downward from the root directory in the tree diagram and contain files
and/or subdirectories. Branching creates unique paths through the directory structure to
every object in the file system.

Collections of files are stored in directories. These collections of files are often related to
each other; storing them in a structure of directories keeps them organized.

A file is a collection of data that can be read from or written to. A file can be a program you
create, text you write, data you acquire, or a device you use. Commands, printers,
terminals, correspondence, and application programs are all stored in files. This allows
users to access diverse elements of the system in a uniform way and gives the file system
great flexibility.

This section discusses the following:

• File Systems, on page 5-2

– File System Types, on page 5-2

– File System Structure, on page 5-2

– Showing Space Available on File System (df Command), on page 5-4

• Directory Overview, on page 5-5

– Types of Directories, on page 5-5

– Directory Organization, on page 5-6

– Directory Naming Conventions, on page 5-6

– Directory Path Names, on page 5-6

– Directory Abbreviations, on page 5-7

• Directory Handling Procedures, on page 5-8

– Creating a Directory (mkdir Command), on page 5-8

– Moving or Renaming a Directory (mvdir Command), on page 5-8

– Displaying Your Current Directory (pwd Command), on page 5-9

– Changing to Another Directory (cd Command), on page 5-9

– Copying a Directory (cp Command), on page 5-9

– Displaying Contents of a Directory (li and ls Commands), on page 5-10

– Deleting or Removing a Directory (rmdir Command), on page 5-12

– Comparing Contents of Directories (dircmp Command), on page 5-13

• Command Summary for File Systems and Directories, on page 5-14

5-2 AIX System User’s Guide – OS & Devices

File Systems
A file system is a hierarchical structure (file tree) of files and directories. This type of
structure resembles an inverted tree with the roots at the top and the branches at the
bottom. This file tree uses directories to organize data and programs into groups, allowing
the management of many directories and files at one time.

Some tasks are performed more efficiently on a file system than on each directory within the
file system. For example, you can back up, move, or secure an entire file system.

The basic type of file system is called the Journaled File System (JFS). This file system
uses database journaling techniques to maintain its structural consistency. This prevents
damage to the file system when the system is halted abnormally.

Some of the most important system management tasks have to do with file systems,
specifically:

• Allocating space for file systems on logical volumes.

• Creating file systems.

• Making file system space available to system users.

• Monitoring file system space usage.

• Backing up file systems to guard against data loss if the system fails.

• Maintaining file systems in a consistent state.

These tasks should be performed by your system administrator.

This section discusses:

• File System Types, on page 5-2

• File System Structure, on page 5-2

• Showing Space Available on File System (df Command), on page 5-4

File System Types
The AIX operating system supports multiple file system types. These include:

Journaled File System (JFS) The basic file system type. It supports the entire set of
file system commands.

Network File System (NFS) A file system type that permits files residing on remote
machines to be accessed as though they reside on the
local machine.

CD-ROM File System (CDRFS) A file system type that allows the contents of a
CD-ROM to be accessed through the normal file
system interfaces (open, read, and close).

File System Structure
On standalone machines, the following file systems reside on the associated devices by
default:

/dev/hd1 /home

/dev/hd2 /usr

/dev/hd3 /tmp

/dev/hd4 /(root)

/dev/hd9var /var

5-3 File Systems and Directories

The file tree has the following characteristics:

• Files that can be shared by machines of the same hardware architecture are located in
the /usr file system.

• Variable per-client files, for example, spool and mail files, are located in the /var file
system.

• The /(root) file system contains files and directories critical for system operation. For
example, it contains

– A device directory (/dev)

– Mount points where file systems can be mounted onto the root file system, for
example, /mnt.

• The /home file system is the mount point for users’ home directories.

• For servers, the /export directory contains paging–space files, per-client (unshared) root
file systems, dump, home, and /usr/share directories for diskless clients, as well as
exported /usr directories.

The following list provides information about the contents of some of the subdirectories of
the /(root) file system.

/bin Symbolic link to the /usr/bin directory. In prior UNIX file systems, the
/bin directory contained user commands that now reside in /usr/bin in
the new file structure.

/dev Contains device nodes for special files for local devices. The /dev
directory contains special files for tape drives, printers, disk partitions,
and terminals.

/etc Contains configuration files that vary for each machine. Examples
include:

• /etc/hosts

• /etc/passwd

The /etc directory contains the files generally used in system
administration. Most of the commands that used to reside in the /etc
directory now reside in the /usr/sbin directory. However, for
compatibility, it contains symbolic links to the new locations of some
executable files. Examples include:

• /etc/chown is a symbolic link to the /usr/bin/chown.

• /etc/exportvg is a symbolic link to the /usr/sbin/exportvg.

/export Contains the directories and files on a server that are for remote clients.

/home Serves as a mount point for a file system containing user home
directories. The /home file system contains per-user files and
directories.

In a standalone machine, a separate local file system is mounted over
the /home directory. In a network, a server might contain user files that
should be accessible from several machines. In this case, the server’s
copy of the /home directory is remotely mounted onto a local /home file
system.

/lib Symbolic link to the /usr/lib directory, which contains
architecture-independent libraries with names in the form lib*.a.

/sbin Contains files needed to boot the machine and mount the /usr file
system. Most of the commands used during booting come from the boot
image’s RAM disk file system; therefore, very few commands reside in
the /sbin directory.

5-4 AIX System User’s Guide – OS & Devices

/tmp Serves as a mount point for a file system that contains
system-generated temporary files.

/u Symbolic link to the /home directory.

/usr Serves as a mount point for a file system containing files that do not
change and can be shared by machines (such as executables and
ASCII documentation).

/var Serves as a mount point for files that vary on each machine. The /var
file system is configured as a file system since the files it contains tend
to grow. For example, it is a symbolic link to the /usr/tmp directory,
which contains temporary work files.

Showing Space Available on File System (df Command)
The df command displays information about total space and available space on a file
system. The FileSystem parameter specifies the name of the device on which the file
system resides, the directory on which the file system is mounted, or the relative path name
of a file system. If you do not specify the FileSystem parameter, the df command displays
information for all currently mounted file systems. If a file or directory is specified, then the
df command displays information for the file system on which it resides.

Normally, the df command uses free counts contained in the superblock. Under certain
exceptional conditions, these counts may be in error. For example, if a file system is being
actively modified when the df command is running, the free count may not be accurate.

See the df command in the AIX Commands Reference for the exact syntax.

Note: On some remote file systems, such as Network File Systems (NFS), columns are
blank if the server does not provide the information.

For example, to display information about all mounted file systems, enter:

df

If your system is configured so the /, /usr, /site, and /usr/venus directories reside in
separate file systems, the output from the df command resembles the following:

Filesystem 512–blocks free %used iused %iused Mounted on

/dev/hd4 20480 13780 32% 805 13% /

/dev/hd2 385024 15772 95% 27715 28% /usr

/dev/hd9var 40960 38988 4% 115 1% /var

/dev/hd3 20480 18972 7% 81 1% /tmp

/dev/hd1 4096 3724 9% 44 4% /home

For example, to display available space on the file system in which your current directory
resides, enter:

df .

5-5 File Systems and Directories

Directory Overview
A directory is a unique type of file that contains only the information needed to access files
or other directories. As a result, a directory occupies less space than other types of files. It
also gives the file system structure flexibility and depth. Directories enable you to group files
and other directories, allowing you to organize the file system into a modular hierarchy.
Unlike other types of files, a special set of commands control directories.

Directories contain directory entries. Each entry contains a file or subdirectory name and an
index node reference number (i–node number). To increase speed and enhance use of disk
space, the data in a file is stored at various locations in the computer’s memory. The i–node
contains the addresses used to locate all the scattered blocks of data associated with a file.
The i–node also records other information about the file including time of modification and
access, access modes, number of links, file owner, and file type. It is possible to link several
names for a file to the same i–node by creating directory entries with the ln command.

Because directories often contain information that should not be available to all users of the
system, directory access can be protected. By setting a directory’s permissions, you can
control who has access to the directory, also determining which users (if any) can alter
information within the directory. See File and Directory Access Modes, on page 9-4 for more
information.

This section discusses:

• Types of Directories, on page 5-5

• Directory Organization, on page 5-6

• Directory Naming Conventions, on page 5-6

• Directory Path Names, on page 5-6

• Directory Abbreviations, on page 5-7

• Directory Handling Procedures, on page 5-8

Types of Directories
Directories can be defined by the operating system, the system administrator, or users. The
system-defined directories contain specific kinds of system files, such as commands. At the
top of the file system hierarchy is the system-defined /(root) directory. The /(root) directory
usually contains the following standard system-related directories:

/dev Contains special files for I/O devices.

/etc Contains files for system initialization and system management.

/home Contains login directories for the system users.

/tmp Contains files that are temporary and can be deleted in a specified
number of days.

/usr Contains the lpp, include, and other system directories.

/usr/bin Contains user executable programs.

Some directories, such as your login or home directory ($HOME), are defined and
customized by the system administrator. When you log in to the operating system, the login
directory is the current directory.

Directories that you create are called user-defined directories. These directories help you
organize and maintain your files.

5-6 AIX System User’s Guide – OS & Devices

Directory Organization
Directories contain files, subdirectories, or a combination of both. A subdirectory is a
directory within a directory. The directory containing the subdirectory is the parent directory.

For the operating system to track and find directories, each directory has an entry for the
parent directory in which it was created, .. (dot dot), and an entry for the directory itself,
. (dot). In most directory listings, these files are hidden.

Directory Tree
Structures of parent directories, subdirectories, and files are called file systems. Directory
structures are often compared to an inverted tree. The root directory, symbolized by a /
(slash), is the base and pictured at the top of the directory tree. Subdirectories and files
branch downward from the root directory.

The file system structure of directories can easily become complex. Attempt to keep the file
and directory structure as simple as possible. Also, create files and directories with easily
recognizable names. This makes working with files easier.

Parent Directory
Each directory, except for /(root), has one parent directory and may have one or more child
directories. In the Example of Directory Structures illustration, C is parent to E, and C is
child to /(root).

Home Directory
When you log in, the system puts you in a directory called your home directory or login
directory. This directory is set up by the system administrator for each user. Your home
directory is where you keep your personal files. Normally, directories you create for your
own use will be subdirectories of your home directory. To return to your home directory at
any time, enter the cd command at the prompt.

Working Directory
You are always working within a directory. Whichever directory you are currently working in
is called your current or working directory. The pwd (present working directory) command
reports the name of your working directory. The cd command allows you to change working
directories.

Directory Naming Conventions
The name of each directory must be unique within the directory where it is stored. This
ensures that the directory also has a unique path name in the file system. Directories follow
the same naming conventions as files as explained in File Naming Conventions, on page .

Directory Path Names
Each file and directory can be reached by a unique path, known as the path name, through
the file system tree structure. The path name specifies the location of a directory or file
within the file system.

Note: Path names cannot exceed 1023 characters.

The file system uses two kinds of path names:

absolute path names Traces the path from the /(root) directory. Absolute path names
always begin with the / (slash) symbol.

relative path name Traces the path from the current directory through its parent or its
subdirectories and files.

5-7 File Systems and Directories

An absolute path name represents the complete name of a directory or file from the /(root)
directory downward. Regardless of where you are working in the file system, you can
always find a directory or file by specifying its absolute path name. Absolute path names
start with a / (slash), the symbol representing the root directory. The path name /A/D/9 is the
absolute path name for 9. The first / (slash) represents the /(root) directory, which is the
starting place for the search. The remainder of the path name directs the search to A, then
to D, and finally to 9.

There are two files named 9. This is possible because the absolute path names to the files
give each file a unique name within the file system. The path names /A/D/9 and /C/E/G/9
specify two unique files named 9.

Unlike full path names, relative path names specify a directory or file based on the current
working directory. For relative path names, you can use the notation .. (dot dot) to move
upward in the file system hierarchy. The .. (dot dot) represents the parent directory. Because
relative path names specify a path starting in the current directory, they do not begin with a /
(slash). Relative path names are used to specify the name of a file in the current directory or
the path name of a file or directory above or below the level of the current directory in the
file system. If D is the current directory, the relative path name for accessing 10 is F/10, but
the absolute path name is always /A/D/F/10. Also, the relative path name for accessing 3 is
../../B/3.

You can also represent the name of the current directory by using the notation . (dot). The .
(dot) notation is commonly used when running programs that read the current directory
name.

Directory Abbreviations
Abbreviations provide a quick and convenient way for specifying certain directories. The
following is a list of abbreviations.

Abbreviation Meaning

. The current working directory.

.. The directory above the current working directory (the parent directory).

~ Your home directory (this is not true for the Bourne shell).

$HOME Your home directory (this is true for all shells).

5-8 AIX System User’s Guide – OS & Devices

Directory Handling Procedures
There are a variety of ways to work with directories and their contents.

The command and an example are presented for each of the following directory tasks:

• Creating a Directory (mkdir Command), on page 5-8

• Moving or Renaming a Directory (mvdir Command), on page 5-8

• Displaying Your Current Directory (pwd Command), on page 5-9

• Changing to Another Directory (cd Command), on page 5-9

• Copying a Directory (cp Command), on page 5-9

• Displaying Contents of a Directory (li and ls Commands), on page 5-10

• Deleting or Removing a Directory (rmdir Command), on page 5-12

• Comparing Contents of Directories (dircmp Command), on page 5-13

Creating a Directory (mkdir Command)
The mkdir command creates one or more new directories specified by the Directory
parameter. Each new directory contains the standard entries . (dot) and .. (dot dot). You can
specify the permissions for the new directories with the –m Mode flag.

When a new directory is created, it is created within the current, or working, directory unless
you specify an absolute path name to another location in the file system.

For example, to create a new directory called Test in the current working directory with
default permissions, enter:

mkdir Test

For example, to create a new directory called Test with rwxr–xr–x permissions in a
previously created /home/demo/sub1 directory, enter:

mkdir –m 755 /home/demo/sub1/Test

For example, to create a new directory called Test with default permissions in the
/home/demo/sub2 directory, enter:

mkdir –p /home/demo/sub2/Test

The –p flag creates the /home, /home/demo, and /home/demo/sub2 directories if they
do not already exist.

See the mkdir command in the AIX Commands Reference for the exact syntax.

Moving or Renaming a Directory (mvdir Command)
The mvdir command moves directories or renames a directory.

For example, to move a directory, enter:

mvdir book manual

This moves the book directory under the directory named manual, if manual exists.
Otherwise, the book directory is renamed to manual.

For example, to move and rename a directory, enter:

mvdir book3 proj4/manual

This moves book3 to the directory named proj4 and renames it manual (if manual did
not previously exist).

See the mvdir command in the AIX Commands Reference for the exact syntax.

5-9 File Systems and Directories

Displaying Your Current Directory (pwd Command)
The pwd command writes to standard output the full path name of your current directory
(from the /(root) directory). All directories are separated by a / (slash). The /(root) directory
is represented by the first / (slash), and the last directory named is your current directory.

For example, to display your current directory, enter:

pwd

The full path name of your current directory is displayed similar to the following:

/home/thomas

See the pwd command in the AIX Commands Reference for the exact syntax.

Changing to Another Directory (cd Command)
The cd command moves you from your present directory to another directory. You must
have execute (search) permission in the specified directory.

If you do not specify a Directory parameter, the cd command moves you to your login
directory ($HOME in the ksh and bsh environments, or $home in the csh environment). If
the specified directory name is a full path name, it becomes the current directory. A full path
name begins with a / (slash) indicating the /(root) directory, a . (dot) indicating current
directory, or a .. (dot dot) indicating parent directory. If the directory name is not a full path
name, the cd command searches for it relative to one of the paths specified by the
$CDPATH shell variable (or $cdpath csh variable). This variable has the same syntax as,
and similar semantics to, the $PATH shell variable (or $path csh variable).

For example, to change to your home directory, enter:

cd

For example, to change to the /usr/include directory, enter:

cd /usr/include

This changes the current directory to /usr/include.

For example, to go down one level of the directory tree to the sys directory, enter:

cd sys

If the current directory is /usr/include and it contains a subdirectory named sys, then
/usr/include/sys becomes the current directory.

For example, to go up one level of the directory tree, enter:

cd ..

The special file name, .. (dot dot), refers to the directory immediately above the current
directory, its parent directory.

See the cd command in the AIX Commands Reference for the exact syntax.

Copying a Directory (cp Command)
The cp or copy command creates a copy of the contents of the file or directory specified by
the SourceFile or SourceDirectory parameters into the file or directory specified by the
TargetFile or TargetDirectory parameters. If the file specified as the TargetFile exists, the
copy writes over the original contents of the file. If you are coping more than one
SourceFile, the target must be a directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for
the TargetDirectory parameter. Files maintain their respective names when copied to a
directory unless you specify a new file name at the end of the path. The cp command also
copies entire directories into other directories if you specify the –r or –R flags.

5-10 AIX System User’s Guide – OS & Devices

For example, to copy all the files in a directory to a new directory, enter:

cp /home/janet/clients/* /home/nick/customers

This copies only the files in the clients directory to the customers directory.

For example, to copy a directory, including all its files and subdirectories, to another
directory, enter:

cp –R /home/nick/clients /home/nick/customers

This copies the clients directory, including all its files, subdirectories, and the files in
those subdirectories, under the customers directory.

See the cp command in the AIX Commands Reference for the exact syntax.

Displaying Contents of a Directory (li and ls Commands)
You can display the contents of a directory by using either the li command or the ls
command.

li command
The li command lists information about each named File and the files in each named
Directory. If File is an archived file and the –Rq flag is specified, the li command lists the
files in the archive. If you do not specify a File or Directory, the li command displays the
contents of the current directory.

When the li command displays the contents of a directory, it does not show entries for files
whose names begin with a . (dot) unless you use the –a flag.

The li command lists file and directory names in alphabetical order. Control characters in file
names are displayed in expanded form (for example, ^ D, \177).

For example, to list the files and directories in the current directory, enter:

li

For example, you can list the files and directories separated out by files, executable files,
symbolic links, and directories. The executable files are surrounded by right and left angle
brackets (< >), symbolic links are surrounded by at signs (@), and directories are
surrounded by brackets ([]). To see this listing, enter:

li –v

For example, to list all files and directories in the current directory, including those with
names beginning with a . (dot), enter:

li –a

For example, to display detailed information, enter:

li –l chap1 .profile

This displays an extended listing with detailed information about chap1 and the .profile
file.

For example, to display detailed information about a directory, enter:

li –d –l . manual manual/chap1

This displays a long listing for the . (dot) and manual directories, and for the
manual/chap1 file.

For example, to list the contents of each directory in a tree, enter:

li –R manual

This lists the names in each subdirectory of the tree that starts with manual.

See the li command in the AIX Commands Reference for the exact syntax.

5-11 File Systems and Directories

ls command
The ls command writes to standard output the contents of each specified Directory or the
name of each specified File, along with any other information you ask for with the flags. If
you do not specify a File or Directory, the ls command displays the contents of the current
directory.

By default, the ls command displays all information in alphabetic order by file name. If the
command is executed by a user with root authority, it uses the –A flag by default, listing all
entries except . (dot) and .. (dot dot). To show all entries for files, including those that begin
with a . (dot), use the ls –a command.

There are three main ways to format the output:

• List one entry per line using the –l flag.

• List entries in multiple columns by specifying either the –C or –x flag. The –C flag is the
default format when output is to a tty.

• List entries in a comma–separated series by specifying the –m flag.

To determine the number of character positions in the output line, the ls command uses the
$COLUMNS environment variable. If this variable is not set, the command reads the
terminfo file. If the ls command cannot determine the number of character positions by
either of these methods, it uses a default value of 80.

The information displayed with the –e and –l flags is interpreted as follows:

If the first character is:

d Entry is a directory.

b Entry is a block special file.

c Entry is a character special file.

l Entry is a symbolic link.

p Entry is a first–in, first–out (FIFO) pipe special file.

s Entry is a local socket.

– Entry is an ordinary file.

The next nine characters are divided into three sets of three characters each. The first three
characters show the owner’s permission. The next set of three characters shows the
permission of the other users in the group. The last set of three characters shows the
permission of anyone else with access to the file. The three characters in each set show
read, write, and execute permission of the file. Execute permission of a directory lets you
search a directory for a specified file.

Permissions are indicated as follows:

r Read permission granted

t Only the directory owner or the file owner can delete or rename a file
within that directory, even if others have write permission to the
directory.

w Write (edit) permission granted

x Execute (search) permission granted

– Corresponding permission not granted.

5-12 AIX System User’s Guide – OS & Devices

The information displayed with the –e flag is the same as with the –l flag, except for the
addition of an 11th character interpreted as follows:

+ Indicates a file has extended security information. For example, the file
may have extended ACL, TCB, or TP attributes in the mode.

– Indicates a file does not have extended security information.

When the size of the files in a directory are listed, the ls command displays a total count of
blocks, including indirect blocks.

For example, to list all files in the current directory, enter:

ls –a

This lists all files, including

• . (dot)

• .. (dot dot)

• Other files whose names may or may not begin with a . (dot)

For example, to display detailed information, enter:

ls –l chap1 .profile

This displays a long listing with detailed information about chap1 and .profile.

For example, to display detailed information about a directory, enter:

ls –d –l . manual manual/chap1

This displays a long listing for the directories . and manual, and for the file
manual/chap1. Without the –d flag, this would list the files in the . and manual
directories instead of the detailed information about the directories themselves.

See the ls command in the AIX Commands Reference for the exact syntax.

Deleting or Removing a Directory (rmdir Command)
The rmdir command removes the directory, specified by the Directory parameter, from the
system. The directory must be empty (it can only contain . and ..) before you can remove it,
and you must have write permission in its parent directory. Use the ls –a Directory
command to check whether the directory is empty.

For example, to empty and remove a directory, enter:

rm mydir/* mydir/.*

rmdir mydir

This removes the contents of mydir, then removes the empty directory. The rm command
displays an error message about trying to remove the directories . (dot) and .. (dot dot),
and then the rmdir command removes them and the directory itself.

Note that rm mydir/* mydir/.* first removes files with names that do not begin with a
dot, and then removes those with names that do begin with a dot. You may not realize that
the directory contains file names that begin with a dot because the ls command does not
normally list them unless you use the –a flag.

For example, to remove the /tmp/jones/demo/mydir directory structure and all the
directories beneath it, enter:

cd /tmp

rmdir –p jones/demo/mydir

This removes the jones/demo/mydir directory from the /tmp directory. If a directory is
not empty or you do not have write permission to it when it is to be removed, the command
terminates with appropriate error messages.

See the rmdir command in the AIX Commands Reference for the exact syntax.

5-13 File Systems and Directories

Comparing Contents of Directories (dircmp Command)
The dircmp command compares the two directories specified by the Directory1 and
Directory2 parameters and writes information about their contents to standard output. First,
the dircmp command compares the file names in each directory. If the same file name
appears in both, the dircmp command compares the contents of both files.

In the output, the dircmp command lists the files unique to each directory. It then lists the
files with identical names in both directories, but with different contents. If no flag is
specified, it also lists files that have identical contents as well as identical names in both
directories.

For example, to summarize the differences between the files in the proj.ver1 and
proj.ver2 directories, enter:

dircmp proj.ver1 proj.ver2

This displays a summary of the differences between the directories proj.ver1 and
proj.ver2. The summary lists separately the files found only in one directory or the other,
and those found in both. If a file is found in both directories, the dircmp command notes
whether the two copies are identical.

For example, to show the details of the differences between the files in the proj.ver1 and
proj.ver2 directories, enter:

dircmp –d –s proj.ver1 proj.ver2

The –s flag suppresses information about identical files. The –d flag displays a diff listing
for each of the differing files found in both directories.

See the dircmp command in the AIX Commands Reference for the exact syntax.

5-14 AIX System User’s Guide – OS & Devices

Command Summary for File Systems and Directories

File Systems

df Reports information about space on file systems.

Directory Abbreviations

 . The current working directory.

 .. The directory above the current working directory (the parent directory).

 ~ Your home directory (this is not true for the Bourne shell).

$HOME Your home directory (this is true for all shells).

Directory Handling Procedures

cd Changes the current directory.

cp Copies files or directories.

dircmp Compares two directories and the contents of their common files.

li Lists the contents of a directory.

ls Displays the contents of a directory.

mkdir Creates one or more new directories.

mvdir Moves (renames) a directory.

pwd Displays the path name of the working directory.

rmdir Removes a directory.

6-1 Files

Chapter 6. Files

Files are used for all input and output (I/O) of information in the operating system. This
standardizes access to both software and hardware. Input occurs when the contents of a file
is modified or written to. Output occurs when the contents of one file is read or transferred to
another file. For example, to create a hardcopy printout of a file, the system reads the
information from the text file and writes that information to the file representing the printer.
This section discusses:

• Types of Files, on page 6-2

– File Naming Conventions, on page 6-3

– File Path Names, on page 6-3

– Pattern Matching with Wildcards and Metacharacters, on page 6-3

– Pattern Matching versus Regular Expressions, on page 6-4

• File Handling Procedures, on page 6-5

– Deleting Files (del and rm Commands), on page 6-5

– Moving and Renaming Files (mv Command), on page 6-6

– Copying Files (cp Command), on page 6-7

– Finding Files (find Command), on page 6-8

– Showing File Type (file Command), on page 6-8

– Displaying File Contents (pg, more, page, and cat Commands), on page 6-9

– Finding Strings in Text Files (grep Command), on page 6-10

– Sorting Text Files (sort Command), on page 6-10

– Comparing Files (diff Command), on page 6-11

– Counting Words, Lines, and Bytes in Files (wc Command), on page 6-11

– Displaying the First Lines of Files (head Command), on page 6-12

– Displaying the Last Lines of Files (tail Command), on page 6-12

– Cutting Sections of Text Files (cut Command), on page 6-12

– Pasting Sections of Text Files (paste Command), on page 6-13

– Numbering Lines in Text Files (nl Command), on page 6-14

– Removing Columns in Text Files (colrm Command), on page 6-14

• Linking Files and Directories, on page 6-15

– Types of Links, on page 6-15

– Linking Files (ln Command), on page 6-16

– Removing Linked Files, on page 6-17

• DOS Files, on page 6-18

– Copying DOS Files to AIX Files, on page 6-18

– Copying AIX Files to DOS Files, on page 6-18

– Deleting DOS File, on page 6-19

– Listing Contents of DOS Directory, on page 6-19

• Command Summary for Files, on page 6-20

6-2 AIX System User’s Guide – OS & Devices

Types of Files
There are three basic types of files:

regular Stores data (text, binary, and executable).

directory Contains information used to access other files.

special Defines a FIFO (first-in, first-out) pipe file or a physical device.

All file types recognized by the system fall into one of these categories. However, the
operating system uses many variations of these basic types.

Regular Files
Regular files are the most common files. Another name for regular files is ordinary files.
Regular files contain data.

Text Files
Text files are regular files that contain information readable by the user. This information is
stored in ASCII. You can display and print these files. The lines of a text file must not
contain NUL characters, and none can exceed {LINE_MAX} bytes in length, including the
new-line character.

The term text file does not prevent the inclusion of control or other nonprintable characters
(other than NUL). Therefore, standard utilities that list text files as inputs or outputs are
either able to process the special characters gracefully or they explicitly describe their
limitations within their individual sections.

Binary Files
Binary files are regular files that contain information readable by the computer. Binary files
may be executable files that instruct the system to accomplish a job. Commands and
programs are stored in executable, binary files. Special compiling programs translate ASCII
text into binary code.

The only difference between text and binary files is that text files have lines of less than
{LINE_MAX} bytes, with no NUL characters, each terminated by a new-line character.

Directory Files
Directory files contain information the system needs to access all types of files, but they do
not contain the actual file data. As a result, directories occupy less space than a regular file
and give the file system structure flexibility and depth. Each directory entry represents either
a file or a subdirectory. Each entry contains the name of the file and the file’s index node
reference number (i–node). The i–node points to the unique index node assigned to the file.
The i–node describes the location of the data associated with the file. Directories are
created and controlled by a separate set of commands.

See Directory Overview, on page 5-5 for more information.

Special Files
Special files define devices for the system or temporary files created by processes. There
are three basic types of special files: FIFO (first-in, first-out), block, and character. FIFO files
are also called pipes. Pipes are created by one process to temporarily allow communication
with another process. These files cease to exist when the first process finishes. Block and
character files define devices.

Every file has a set of permissions (called access modes) that determine who can read,
modify, or execute the file.

To learn more about file access modes, see File and Directory Access Modes, on page 9-4.

6-3 Files

File Naming Conventions
The name of each file must be unique within the directory where it is stored. This ensures
that the file also has a unique path name in the file system. File-naming guidelines are:

• A file name can be up to 255 characters long and can contain letters, numbers, and
underscores.

• The operating system is case-sensitive, which means it distinguishes between uppercase
and lowercase letters in file names. Therefore, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory.

• File names should be as descriptive and meaningful as possible.

• Directories follow the same naming conventions as files.

• Certain characters have special meaning to the operating system and should be avoided
when naming files. These characters include the following:

 / \ ” ’ * ; – ? [] () ~ ! $ { } < > # @ & |

• A file name is hidden from a normal directory listing if it begins with a . (dot). When the li
or ls command is entered with the –a flag, the hidden files are listed along with regular
files and directories.

File Path Names
The path name for each file and directory in the file system consists of the names of every
directory that precedes it in the tree structure.

Since all paths in a file system originate from the /(root) directory, each file in the file system
has a unique relationship to the root directory known as the absolute path name. Absolute
path names begin with the / (slash) symbol. The absolute path name of file h within the
Example File System is /B/C/h. Notice that there are two files named g. Because the
absolute paths to these files are different, /B/g and /B/C/g, each file named g has a unique
name within the system. Every component of a path name is a directory except the final
component. The final component of a path name can be a file name.

Note: Path names cannot exceed 1023 characters.

Pattern Matching with Wildcards and Metacharacters
Wildcard characters provide a convenient way for specifying multiple file or directory names
with one character. The two wildcard characters are * (asterisk) and ? (question mark). The
metacharacters are [] (open and close square brackets), – (dash), and ! (exclamation
mark).

* Wildcard
Use the * to match any sequence or string of characters. The * means any characters,
including no characters. For example, if you have the following files in your directory:

1test 2test afile1 afile2 bfile1 file file1 file10 file2 file3

and you want to refer to only to the files that begin with file, you would use:

file*

The files selected would be: file file1 file10 file2 file3

To refer to only the files that contain the word file, you would use:

file

The files selected would be: afile1 afile2 bfile1 file file1 file10 file2
file3

6-4 AIX System User’s Guide – OS & Devices

? Wildcard
Use the ? to match any one character. The ? means any single character.

To refer to only the files that start with file and end with a single character, use:

file?

The files selected would be: file1 file2 file3

To refer to only the files that start with file and end with any two characters, use:

file??

The file selected would be: file10

[] Shell Metacharacters
Metacharacters offer another type of wildcard notation by enclosing the desired characters
within []. It is like using the ?, but it allows you to choose specific characters to be matched.
The [] also allow you to specify a range of values using the – (hyphen). To specify all the
letters in the alphabet, use [[:alpha:]]. To specify all the lowercase letters in the alphabet,
use [[:lower:]].

To refer to only the files that end in 1 or 2, use:

*file[12]

The files selected would be: afile1 afile2 file1 file2

To refer only to the files that start with any number, use:

[0123456789]* or [0–9]*

The files selected would be: 1test 2test

To refer only to the files that don’t begin with an a, use:

[!a]*

The files selected would be: 1test 2test bfile1 file file1 file10 file2
file3

Pattern Matching versus Regular Expressions
Regular expressions allow you to select specific strings from a set of character strings. The
use of regular expressions is generally associated with text processing.

Regular expressions can represent a wide variety of possible strings. While many regular
expressions can be interpreted differently depending on the current locale,
internationalization features provide for contextual invariance across locales.

See the examples in the following comparison between File Matching Patterns and Regular
Expressions:

Pattern Matching Regular Expression

* .*

? .

[!a] [^a]

[abc] [abc]

[[:alpha:]] [[:alpha:]]

See the awk command in the AIX Commands Reference for the exact syntax.

6-5 Files

File Handling Procedures
There are many ways to work with the files on your system. Usually you create a text file
with a text editor. The common editors in the UNIX environment are vi and ed. The AIX
operating system also includes its own text editor, INed. Because several text editors are
available, you can choose to edit with the editor you feel comfortable with.

You can also create files by using input/output redirection, as described in ”Input and Output
Redirection”, on page 4-1. The output of a command can be sent to a new file or appended
to an existing file.

After creating and modifying files, you may have to copy or move files from one directory to
another, rename files to distinguish different versions of a file or give different names to the
same file. You may also need to create new directories when working on different projects.

Also, you may need to delete certain files. Your directory can quickly get cluttered with files
that contain old or useless information. Deleting files that are not needed frees up storage
space on your system.

This section discusses:

• Deleting Files (del and rm Commands), on page 6-5

• Moving and Renaming Files (mv Command), on page 6-6

• Copying Files (cp Command), on page 6-7

• Finding Files (find Command), on page 6-8

• Showing File Type (file Command), on page 6-8

• Displaying File Contents (pg, more, and cat Commands), on page 6-9

• Finding Strings in Text Files (grep Command), on page 6-10

• Sorting Text Files (sort Command), on page 6-10

• Comparing Files (diff Command), on page 6-11

• Counting Words, Lines, and Characters in Files (wc Command), on page 6-11

• Displaying the First Lines of Files (head Command), on page 6-12

• Displaying the Last Lines of Files (tail Command), on page 6-12

• Cutting Sections of Text Files (cut Command), on page 6-12

• Pasting Sections of Text Files (paste Command), on page 6-13

• Numbering Lines in Text Files (nl Command), on page 6-14

• Removing Columns in Text Files (colrm Command), on page 6-14

Deleting Files (del and rm Commands)
When you no longer need a file, you can remove it with the del, rm, or delete commands.
The del command asks for confirmation before deleting a file. This gives you a chance to
change your mind. The rm and delete commands do not require user confirmation before
removing the file. You can also use any of these commands to delete a group of files or to
select certain files from a list for deletion.

del Command
Attention: The del command ignores file protection, allowing the owner of a file to
delete a write–protected file. However, to delete a file, you must have write permission in
the directory containing the file. Because pressing the Enter key by itself is the same as
answering yes, be careful not to delete files accidentally.

6-6 AIX System User’s Guide – OS & Devices

The del command displays the list of specified files and asks you to confirm your request to
delete the group of files. To answer yes (delete the files), press the Enter key, or enter a line
beginning with y (or the locale’s equivalent of a y). Any other response specifies no (do not
delete the files).

Note: The del command does not delete directories. See the rmdir command for
information about deleting directories.

For example, to delete the file named chap1.bak, enter:

del chap1.bak

This displays the message:

del: Remove chap1.bak? Enter y or the Enter key for yes.

You can press the Enter key or y to answer yes. Pressing any other key cancels the
deletion.

See the del command in the AIX Commands Reference for the exact syntax.

rm Command
The rm or delete command removes the entries for the specified file or files from a
directory. You do not need read or write permission for the file you want to remove.
However, you must have write permission for the directory containing that file.

For example, to delete the file named myfile, enter:

rm myfile

To delete all the files in the mydir directory one by one, enter:

rm –i mydir/*

After each file name is displayed, enter y to delete the file, or press the Enter key to keep it.

Note: This is different from the del command.

See the rm command in the AIX Commands Reference for the exact syntax.

Moving and Renaming Files (mv Command)
The mv command moves files and directories from one directory to another or renames a
file or directory. If you move a file or directory to a new directory without specifying a new
name, it retains its original name.

Attention: The mv command can overwrite many existing files unless you specify the –i
flag. The –i flag prompts you to confirm before it overwrites a file. The –f flag does not
prompt you. If both the –f and –i flags are specified in combination, the last flag specified
takes effect.

Moving Files with mv Command
For example, to move a file to another directory and give it a new name, enter:

mv intro manual/chap1

This moves intro to manual/chap1. The name intro is removed from the current
directory, and the same file appears as chap1 in the directory manual. Note the previous
Warning.

For example, to move a file to another directory, keeping the same name, enter:

mv chap3 manual

This moves chap3 to manual/chap3. Note the previous Warning.

6-7 Files

Renaming Files with mv Command
For example, to rename a file, enter:

mv appendix apndx.a

This renames appendix to apndx.a. If a file named apndx.a already exists, its old
contents are replaced with those of appendix. Note the previous Warning.

See the mv command in the AIX Commands Reference for the exact syntax.

Copying Files (cp Command)
The cp or copy command creates a copy of the contents of the file or directory specified by
the SourceFile or SourceDirectory parameters into the file or directory specified by the
TargetFile or TargetDirectory parameters. If the file specified as the TargetFile exists, the
copy writes over the original contents of the file without warning. If you are copying more
than one SourceFile, the target must be a directory.

If a file with the same name exists at the new destination, the copied file will overwrite the
file at the new destination. Therefore, it is a good practice to assign a new name for the
copy of the file to ensure that a file of the same name does not exist in the destination
directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for
the TargetDirectory parameter. Files maintain their respective names when copied to a
directory unless you specify a new file name at the end of the path. The cp command also
copies entire directories into other directories if you specify the –r or –R flags.

You can also copy special–device files. The preferred option for accomplishing this is the –R
flag. Specifying –R causes the special files to be recreated under the new path name.
Specifying the –r flag causes the cp command to attempt to copy the special files to regular
files.

For example, to make a copy of a file in the current directory, enter:

cp prog.c prog.bak

This copies prog.c to prog.bak. If the prog.bak file does not already exist, then the cp
command creates it. If it does exist, then the cp command replaces it with a copy of the
prog.c file.

For example, to copy a file in your current directory into another directory, enter:

cp jones /home/nick/clients

This copies the jones file to /home/nick/clients/jones.

For example, to copy all the files in a directory to a new directory, enter:

cp /home/janet/clients/* /home/nick/customers

This copies only the files in the clients directory to the customers directory.

For example, to copy a specific set of files to another directory, enter:

cp jones lewis smith /home/nick/clients

This copies the jones, lewis, and smith files in your current working directory to the
/home/nick/clients directory.

For example, to use pattern–matching characters to copy files, enter:

cp programs/*.c .

This copies the files in the programs directory that end with .c to the current directory,
signified by the single . (dot). You must type a space between the c and the final dot.

See the cp command in the AIX Commands Reference for the exact syntax.

6-8 AIX System User’s Guide – OS & Devices

Finding Files (find Command)
The find command recursively searches the directory tree for each specified Path, seeking
files that match a Boolean expression written using the terms given in the following text. The
output from the find command depends on the terms specified by the Expression
parameter.

For example, to list all files in the file system with the name .profile, enter:

find / –name .profile

This searches the entire file system and writes the complete path names of all files named
.profile. The / (slash) tells the find command to search the /(root) directory and all of
its subdirectories.To avoid wasting time, it is best to limit the search by specifying the
directories where you think the files might be.

For example, to list files having a specific permission code of 0600 in the current directory
tree, enter:

find . –perm 0600

This lists the names of the files that have only owner–read and owner–write permission. The
. (dot) tells the find command to search the current directory and its subdirectories. See the
chmod command for an explanation of permission codes.

For example, to search several directories for files with certain permission codes, enter:

find manual clients proposals –perm –0600

This lists the names of the files that have owner–read and owner–write permission and
possibly other permissions. The manual, clients, and proposals directories and their
subdirectories are searched. In the previous example, –perm 0600 selects only files with
permission codes that match 0600 exactly. In this example, –perm –0600 selects files with
permission codes that allow the accesses indicated by 0600 and other accesses above the
0600 level. This also matches the permission codes 0622 and 2744.

For example, to list all files in the current directory that have been changed during the
current 24–hour period, enter:

find . –ctime 0

For example, to search for regular files with multiple links, enter:

find . –type f –links +1

This lists the names of the ordinary files (–type f) that have more than one link (–links
+1).

Note: Every directory has at least two links: the entry in its parent directory and its own .
(dot) entry. See the ln command for more information on multiple file links.

For example, to print the path names of all files in or below the current directory, except the
directories named SCCS or files in the SCCS directories, enter:

find . –name SCCS –prune

For example, to search for all files that are exactly 414 bytes long, enter:

find . –size 414c

See the find command in the AIX Commands Reference for the exact syntax.

Showing File Type (file Command)
The file command reads the files specified by the File or –f FileList parameter, performs a
series of tests on each one, and attempts to classify them by types. The command then
writes the file types to standard output.

If a file appears to be ASCII, the file command examines the first 512 bytes and determines
its language. If a file does not appear to be ASCII, the file command further attempts to
determine whether it is a binary data file or a text file that contains extended characters.

6-9 Files

If the File parameter specifies an executable or object module file and the version number is
greater than 0, the file command displays the version stamp.

The file command uses the /etc/magic file to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates type.

For example, to display the type of information the file named myfile contains, enter:

file myfile

This displays the file type of myfile (such as directory, data, ASCII text, C–program
source, and archive).

For example, to display the type of each file named in filenames.lst, which contains a
list of file names, enter:

file –f filenames.lst

This displays the type of each file named in the filenames.lst list. Each file name must
appear alone on a line.

For example, to create the file filenames.lst, so that it contains all the file names in the
current directory enter:

ls > filenames.lst

Then edit filenames as desired.

See the file command in the AIX Commands Reference for the exact syntax.

Displaying File Contents (pg, more, page, and cat Commands)
The pg, more, and page commands allow you to view the contents of a file and control the
speed that your files are displayed. You can also use the cat command to display the
contents of one or more files on your screen. Combining the cat command with the pg
command allows you to read the contents of a file one full screen at a time.

You can also display the contents of files by using input/output redirection. See ”Input and
Output Redirection Overview”, on page 4-1 for more details on input/output redirection.

pg Command
The pg command reads the file names from the File parameter and writes them to standard
output one screen at a time. If you specify – (minus) as the File parameter, or run the pg
command without options, the pg command reads standard input. Each screen is followed
by a prompt. If you press the Enter key, another screen displays. Subcommands used with
the pg command let you review something that has already passed.

For example, to look at the contents of the file myfile one page at a time, enter:

pg myfile

See the pg command in the AIX Commands Reference for the exact syntax.

more or page Command
The more or page command displays continuous text one screen at a time. It pauses after
each screen and prints the filename and percent done (for example, myfile (7%)) at the
bottom of the screen. If you then press the Enter key, the more command displays an
additional line. If you press the Spacebar, the more command displays another screen of
text.

Note: On some terminal models, the more command clears the screen, instead of
scrolling, before displaying the next screen of data.

For example, to view a file named myfile, enter:

more myfile

Press the Spacebar to view the next screen.

6-10 AIX System User’s Guide – OS & Devices

See the more command in theAIX Commands Reference for more information and the
exact syntax.

cat Command
The cat command reads each File parameter in sequence and writes it to standard output.

For example, to display the contents of the file notes, enter:

cat notes

If the file is more than 24 lines long, some of it scrolls off the screen. To list a file one page
at a time, use the pg command.

For example, to display the contents of the files notes, notes2, and notes3, enter:

cat notes notes2 notes3

See the cat command in the AIX Commands Reference for the exact syntax.

Finding Strings in Text Files (grep Command)
The grep command searches for the pattern specified by the Pattern parameter and writes
each matching line to standard output.

For example, to search in a file named pgm.s for a pattern that contains some of the
pattern–matching characters *, ^, ?, [,], \(, \), \{, and \}, in this case lines starting with any
lower or upper case letter, enter:

grep ”^[a–zA–Z]” pgm.s

This displays all lines in pgm.s that begin with a letter.

To display all lines in a file named sort.c that do not match a pattern, enter:

grep –v bubble sort.c

This displays all lines that do not contain the word bubble in the file sort.c.

To display lines in the output of the ls command that match the string staff, enter:

ls –l | grep staff

See the grep command in the AIX Commands Reference for the exact syntax.

Sorting Text Files (sort Command)
The sort command alphabetizes or sequences lines in the files specified by the File
parameters and writes the result to standard output. If the File parameter specifies more
than one file, the sort command concatenates the files and alphabetizes them as one file.

Note: The sort command is case–sensitive and orders uppercase letters before lowercase
(this is dependent on the locale).

In the following examples the contents of the file names are:

marta

denise

joyce

endrica

melanie

and the contents of the file states are:

texas

colorado

ohio

To display the sorted contents of the file named names, enter:

sort names

6-11 Files

The system displays information similar to the following:

denise

endrica

joyce

marta

melanie

To display the sorted contents of the two files names and states, enter:

sort names states

The system displays information similar to the following:

colorado

denise

endrica

joyce

marta

melanie

ohio

texas

To replace the original contents of the file named names with its sorted contents, enter:

sort –o names names

This replaces the file names with the same data but in sorted order.

See the sort command in the AIX Commands Reference for the exact syntax.

Comparing Files (diff Command)
The diff command compares text files. It can compare single files or the contents of
directories.

When the diff command is run on regular files, and when it compares text files in different
directories, the diff command tells which lines must be changed in the files to make them
agree.

For example, to compare two files, enter:

diff chap1.bak chap1

This displays the differences between the files chap1.bak and chap1.

For example, to compare two files while ignoring differences in the amount of white space,
enter:

diff –w prog.c.bak prog.c

If two lines differ only in the number of spaces and tabs between words, the diff –w
command considers them to be the same.

See the diff command in the AIX Commands Reference for the exact syntax.

Counting Words, Lines, and Bytes in Files (wc Command)
By default, the wc command counts the number of lines, words, and bytes in the files
specified by the File parameter. If a file is not specified for the File parameter, standard input
is used. The command writes the results to standard output and keeps a total count for all
named files. If flags are specified, the ordering of the flags determines the ordering of the
output. A word is defined as a string of characters delimited by spaces, tabs, or newline
characters.

When files are specified on the command line, their names will be printed along with the
counts.

For example, to display the line, word, and byte counts of the file named chap1, enter:

wc chap1

6-12 AIX System User’s Guide – OS & Devices

This displays the number of lines, words, and bytes in the chap1 file.

For example, to display only byte and word counts, enter:

wc –cw chap*

This displays the number of bytes and words in each file where the name starts with chap,
and displays the totals.

See the wc command in the AIX Commands Reference for the exact syntax.

Displaying the First Lines of Files (head Command)
The head command writes to standard output the first few lines of each of the specified files
or of the standard input. If no flag is specified with the head command, the first 10 lines are
displayed by default.

For example, to display the first five lines of the Test file, enter:

head –5 Test

See the head command in the AIX Commands Reference for the exact syntax.

Displaying the Last Lines of Files (tail Command)
The tail command writes the file specified by the File parameter to standard output
beginning at a specified point.

For example, to display the last 10 lines of the notes file, enter:

tail notes

For example, to specify the number of lines to start reading from the end of the notes file,
enter:

tail –20 notes

For example, to display the notes file one page at a time, beginning with the 200th byte,
enter:

tail –c +200 notes | pg

For example, to follow the growth of the file named accounts, enter:

tail –f accounts

This displays the last 10 lines of the accounts file. The tail command continues to display
lines as they are added to the accounts file. The display continues until you press the
(Ctrl–C) key sequence to stop it.

See the tail command in the AIX Commands Reference for the exact syntax.

See the tail command in the AIX Commands Reference for more information and the exact
syntax.

Cutting Sections of Text Files (cut Command)
The cut command writes to standard output selected bytes, characters, or fields from each
line of a file.

For example, to display several fields of each line of a file:

cut –f1,5 –d: /etc/passwd

This displays the login name and full user name fields of the system password file. These
are the first and fifth fields (–f1,5) separated by colons (–d:).

6-13 Files

For example, if the /etc/passwd file looks like this:

su:*:0:0:User with special privileges:/:/usr/bin/sh

daemon:*:1:1::/etc:

bin:*:2:2::/usr/bin:

sys:*:3:3::/usr/src:

adm:*:4:4:System Administrator:/var/adm:/usr/bin/sh

pierre:*:200:200:Pierre Harper:/home/pierre:/usr/bin/sh

joan:*:202:200:Joan Brown:/home/joan:/usr/bin/sh

the cut command produces:

su:User with special privileges

daemon:

bin:

sys:

adm:System Administrator

pierre:Pierre Harper

joan:Joan Brown

See the cut command in the AIX Commands Reference for the exact syntax.

Pasting Sections of Text Files (paste Command)
The paste command merges the lines of up to 12 files into one file.

For example, if you have a file named names that contains the following text:

rachel

jerry

mark

linda

scott

another file named places that contains the following text:

New York

Austin

Chicago

Boca Raton

Seattle

and another file named dates that contains the following text:

February 5

March 13

June 21

July 16

November 4

to paste the text of the files names, places, and dates together, enter:

paste names places dates > npd

This creates a file named npd that contains the data from the names file in one column, the
places file in another, and the dates file in a third. The npd file now contains:

rachel New York February 5

jerry Austin March 13

mark Chicago June 21

linda Boca Raton July 16

scott Seattle November 4

A tab character separates the name, place, and date on each line. These columns do not
always line up because the tab stops are set at every eighth column.

For example, to separate the columns with a character other than a tab, enter:

paste –d”!@” names places dates > npd

6-14 AIX System User’s Guide – OS & Devices

This alternates ! and @ as the column separators. If the names, places, and dates files
are the same as in example 1, then the npd file contains:

rachel!New York@February 5

jerry!Austin@March 13

mark!Chicago@June 21

linda!Boca Raton@July 16

scott!Seattle@November 4

For example, to list the current directory in four columns, enter:

ls | paste – – – –

Each – (minus) tells the paste command to create a column containing data read from the
standard input. The first line is put in the first column, the second line in the second column,
and so on.

See the paste command in the AIX Commands Reference for the exact syntax.

Numbering Lines in Text Files (nl Command)
The nl command reads the specified file (standard input by default), numbers the lines in
the input, and writes the numbered lines to standard output.

For example, to number only the nonblank lines, enter:

nl chap1

This displays a numbered listing of chap1, numbering only the nonblank lines in the body
sections.

For example, to number all lines:

nl –ba chap1

This numbers all the lines in the file named chap1, including blank lines.

See the nl command in the AIX Commands Reference for the exact syntax.

Removing Columns in Text Files (colrm Command)
The colrm command removes specified columns from a file. Input is taken from standard
input. Output is sent to standard output.

If called with one parameter, the columns of each line from the specified column to the last
column are removed. If called with two parameters, the columns from the first specified
column to the second specified column are removed.

Note: Column numbering starts with column 1.

For example, to remove columns from the text.fil file, enter:

colrm 6 < text.fil

If text.fil contains:

123456789

then the colrm command displays:

12345

See the colrm command in the AIX Commands Reference for the exact syntax.

6-15 Files

Linking Files and Directories
Links are connections between a file name and an index node reference number (i–node),
the internal representation of a file. Because directory entries contain file names paired with
i–nodes, every directory entry is a link. The i–node number actually identifies the file, not the
file name. By using links, any i–node or file can be known by many different names.

For example, i–node 798 contains a memo regarding June sales in the Omaha office.
Presently, the directory entry for this memo is:

i–node Number File Name

798 memo

Because this information relates to information stored in the sales and omaha directories,
linking is used to share the information where it is needed. Using the ln command, links are
created to these directories. Now the file has three file names:

i–node Number File Name

798 memo

798 sales/june

798 omaha/junesales

When you use the pg or cat command to view the contents of any of the three file names,
the same information is displayed. If you edit the contents of the i–node from any of the
three file names, the contents of the data displayed by all of the file names will reflect any
changes.

This section discusses:

• Types of Links, on page 6-15

• Linking Files (ln Command), on page 6-16

• Removing Linked Files, on page 6-17

Types of Links
Links are created with the ln command. There are two kinds of links:

hard link Allows access to the data of a file from a new file name. Hard links
ensure the existence of a file. When the last hard link is removed, the
i–node and its data are deleted. Hard links can be created only between
files that are in the same file system.

symbolic link Allows access to data in other file systems from a new file name. The
symbolic link is a special type of file that contains a path name. When a
process encounters a symbolic link, the process may search that path.
Symbolic links do not protect a file from deletion from the file system.

Note: The user who creates a file retains ownership of that file no matter how many links
are created. Only the owner of the file or the root user can set the access mode for
that file. However, changes can be made to the file from a linked file name with the
proper access mode.

A file or directory exists as long as there is one hard link to the i–node for that file. In the
long listing displayed by the ls –l command, the number of links to each file and
subdirectory is given. All hard links are treated equally by the operating system regardless
of which link was created first.

6-16 AIX System User’s Guide – OS & Devices

Linking Files (ln Command)
Linking files with the ln command is a convenient way to work with the same data in more
than one place. Links are created by giving alternate names to the original file. The use of
links allows a large file, such as a database or mailing list, to be shared by several users
without making copies of that file. Not only do links save disk space, but changes made to
one file are automatically reflected in all the linked files.

The ln command links the file designated in the SourceFile parameter to the file designated
by the TargetFile parameter or to the same file name in another directory specified by the
TargetDirectory parameter. By default, the ln command creates hard links. To use the ln
command to create symbolic links, designate the –s flag.

If you are linking a file to a new name, you can list only one file. If you are linking to a
directory, you can list more than one file.

The TargetFile parameter is optional. If you do not designate a target file, the ln command
creates a new file in your current directory. The new file inherits the name of the file
designated in the SourceFile parameter.

Note: You cannot link files across file systems without using the –s flag.

For example, to create another link to a file named chap1, enter:

ln –f chap1 intro

This links chap1 to the new name, intro. When the –f flag is used, the file name intro is
created if it does not already exist. If intro does exist, the file is replaced by a link to
chap1. Then both the chap1 and intro file names will refer to the same file. Any
changes made to one also appear in the other.

For example, to link a file named index to the same name in another directory named
manual, enter:

ln index manual

This links index to the new name, manual/index.

For example, to link several files to names in another directory, enter:

ln chap2 jim/chap3 /home/manual

This links chap2 to the new name /home/manual/chap2 and jim/chap3 to
/home/manual/chap3.

For example, to use the ln command with pattern-matching characters, enter:

ln manual/* .

This links all files in the manual directory into the current directory, . (dot), giving them the
same names they have in the manual directory.

Note: You must type a space between the asterisk and the period.

For example, to create a symbolic link, enter:

ln –s /tmp/toc toc

This creates the symbolic link, toc, in the current directory. The toc file points to the
/tmp/toc file. If the /tmp/toc file exists, the cat toc command lists its contents.

To achieve identical results without designating the TargetFile parameter, enter:

ln –s /tmp/toc

See the ln command in the AIX Commands Reference for the exact syntax.

6-17 Files

Removing Linked Files
The rm or del command removes the link from the file name you indicate. When one of
several hard-linked file names is deleted, the file is not completely deleted since it remains
under the other name. When the last link to an i–node is removed, the data is removed as
well. The i–node number is then available for reuse by the system.

See the del and rm commands in the AIX Commands Reference for the exact syntax.

6-18 AIX System User’s Guide – OS & Devices

DOS Files
The AIX operating system allows you to work with DOS files on your system. Copy to a
diskette the DOS files you want to work with. With the correct commands, your system can
read these files into an AIX directory in AIX format and back onto the diskette in DOS
format.

Note: The wildcard characters * and ? (asterisk and question mark) do not work with these
commands (although they do with the AIX shell). If you do not specify a file name
extension, the file name is matched as if you had specified a blank extension.

This section describes:

• Copying DOS Files to AIX Files, on page 6-18

• Copying AIX Files to DOS Files, on page 6-18

• Deleting DOS Files, on page 6-19

• Listing Contents of a DOS Directory, on page 6-19

Copying DOS Files to AIX Files
The dosread command copies the specified DOS file to the specified AIX file.

Note: DOS file-naming conventions are used with one exception. Because the
\ (backslash) character can have special meaning to the AIX operating system, use
a / (slash) character as the delimiter to specify subdirectory names in a DOS path
name.

For example, to copy a text file named chap1.doc from a DOS diskette to the AIX file
system, enter:

dosread –a chap1.doc chap1

This copies the DOS text file \CHAP1.DOC on default device /dev/fd0 to the AIX file chap1
in the current directory.

For example, to copy a binary file from a DOS diskette to the AIX file system, enter:

dosread –D/dev/fd1 /survey/test.dta /home/fran/testdata

This copies the DOS data file \SURVEY\TEST.DTA on /dev/fd1 to the AIX file
/home/fran/testdata.

See the dosread command in the AIX Commands Reference for the exact syntax.

Copying AIX Files to DOS Files
The doswrite command copies the specified AIX file to the specified DOS file.

Note: DOS file-naming conventions are used with one exception. Because the
\ (backslash) character can have special meaning to the AIX operating system, use
a / (slash) character as the delimiter to specify subdirectory names in a DOS path
name.

For example, to copy a text file named chap1 from the AIX file system to a DOS diskette,
enter:

doswrite –a chap1 chap1.doc

This copies the AIX file chap1 in the current directory to the DOS text file \CHAP1.DOC on
/dev/fd0.

For example, to copy a binary file named /survey/test.dta from the AIX file system to a
DOS diskette, enter:

doswrite –D/dev/fd1 /home/fran/testdata /survey/test.dta

6-19 Files

This copies the AIX data file /home/fran/testdata to the DOS file \SURVEY\TEST.DTA
on /dev/fd1.

See the doswrite command in the AIX Commands Reference for the exact syntax.

Deleting DOS Files
The dosdel command deletes the specified DOS file.

Note: DOS file-naming conventions are used with one exception. Because the
\ (backslash) character can have special meaning to the AIX operating system, use
a / (slash) character as the delimiter to specify subdirectory names in a DOS path
name.

The dosdel command converts lowercase characters in the file or directory name to
uppercase before it checks the disk. Because all file names are assumed to be full (not
relative) path names, you need not add the initial / (slash).

For example, to delete a DOS file named file.ext on the default device (/dev/fd0), enter:

dosdel file.ext

See the dosdel command in the AIX Commands Reference for the exact syntax.

Listing Contents of a DOS Directory
The dosdir command displays information about the specified DOS files or directories.

Note: DOS file-naming conventions are used with one exception. Because the
\ (backslash) character can have special meaning to the AIX operating system, use
a / (slash) character as the delimiter to specify subdirectory names in a DOS path
name.

The dosdir command converts lowercase characters in the file or directory name to
uppercase before it checks the disk. Because all file names are assumed to be full (not
relative) path names, you need not add the initial / (slash).

For example, to read a directory of the DOS files on /dev/fd0, enter:

dosdir

The command returns the names of the files and disk-space information.

PG3–25.TXT

PG4–25.TXT

PG5–25.TXT

PG6–25.TXT

Free space: 312320 bytes

See the dosdir command in the AIX Commands Reference for the exact syntax.

6-20 AIX System User’s Guide – OS & Devices

Command Summary for Files

 * Wildcard, matches any characters.

 ? Wildcard, matches any single character.

 [] Metacharacters, matches enclosed characters.

File Handling Procedures

cat Concatenates or displays files.

cmp Compares two files.

colrm Extracts columns from a file.

cp Copies files.

cut Writes out selected bytes, characters, or fields from each line of a
file.

del Deletes files if the request is confirmed.

diff Compares text files.

file Determines the file type.

find Finds files with a matching expression.

grep Searches a file for a pattern.

head Displays the first few lines or bytes of a file or files.

more Displays continuous text one screen at a time on a display screen.

mv Moves files.

nl Numbers lines in a file.

pg Formats files to the display.

rm Removes (unlinks) files or directories.

paste Merges the lines of several files or subsequent lines in one file.

page Displays continuous text one screen at a time on a display screen.

sort Sorts files, merges files that are already sorted, and checks files to
determine if they have been sorted.

tail Writes a file to standard output, beginning at a specified point.

wc Counts the number of lines, words, and bytes in a file.

Linking Files and Directories

ln Links files and directories.

DOS Files

dosdel Deletes DOS files.

dosdir Lists the directory for DOS files.

dosread Copies DOS files to AIX files.

doswrite Copies AIX files to DOS files.

7-1 Printers, Print Jobs, and Queues

Chapter 7. Printers, Print Jobs, and Queues

Depending on the printer, you can control the appearance and characteristics of the final
output. The printers need not be located in the same area as the system unit and the
system console. A printer can be attached directly to a local system, or a print job can be
sent over a network to a remote system.

To handle print jobs with maximum efficiency, the system places each job into a queue to
await printer availability. The system can save output from one or more files in the queue.
As the printer produces the output from one file, the system processes the next job in the
queue. This process continues until each job in the queue has been printed.

AIX Guide to Printers and Printing provides detailed information about printers, print jobs,
and queues.

This section discusses:

• Printer Terminology, on page 7-2

• Starting a Print Job (qprt Command), on page 7-4

• Canceling a Print Job (qcan Command), on page 7-7

• Checking Print Job Status (qchk Command), on page 7-9

• Printer Status Conditions, on page 7-10

• Prioritizing a Print Job (qpri Command), on page 7-11

• Holding and Releasing a Print Job (qhld command), on page 7-12

• Moving a Print Job to Another Print Queue (qmov command), on page 7-13

• Formatting Files for Printing (pr Command), on page 7-14

• Printing ASCII Files on a PostScript Printer, on page 7-16

• Automating the Conversion of ASCII to PostScript, on page 7-18

• Overriding Automatic Determination of Print File Types, on page 7-18

• Command Summary for Printers, Print Jobs, and Queues, on page 7-19

7-2 AIX System User’s Guide – OS & Devices

Printer Terminology
The following describes terms commonly used with printing.

Print Job
A print job is a unit of work to be run on a printer. A print job can consist of printing one or
more files, depending on how the print job is requested. The system assigns a unique job
number to each job it runs.

Queue
The queue is where you direct a print job. It is a stanza in the /etc/qconfig file whose name
is the name of the queue and points to the associated queue device. The following is a
sample listing:

Msa1:

 device = lp0

In the previous example, Msa1 is the queue name, and lp0 is the device name.

Queue Device
The queue device is the stanza in the /etc/qconfig file that normally follows the local queue
stanza. It specifies the /dev file (printer device) that should be printed to and the backend
that should be used. Following is a sample listing:

lp0:

 file = /dev/lp0

 header = never

 trailer = never

 access = both

 backend = /usr/lpd/piobe

In the previous example, lp0 is the device name and the rest of the lines define how the
device is used.

Note: There can be more than one queue device associated with a single queue.

qdaemon
The qdaemon is a process that runs in the background and controls the queues. It is
generally started when the system is turned on.

Print Spooler
The spooler is not specifically a print job spooler. Instead, it provides a generic spooling
function that can be used for queuing various types of jobs, including print jobs queued to a
printer.

The spooler does not normally know what type of job it is queuing. When the system
administrator defines a spooler queue, the purpose of the queue is defined by the spooler
backend program that is specified for the queue. For example, if the spooler backend
program is the piobe command (the printer I/O backend), the queue is a print queue.
Likewise, if the spooler backend program is a compiler, the queue is for compile jobs. When
the spooler’s qdaemon command selects a job from a spooler queue, it runs the job by
invoking the backend program specified by the system administrator when the queue was
defined.

The main spooler command is the enq command. Although you can invoke this command
directly to queue a print job, three front-end commands are defined for submitting a print
job: the lp, lpr, and qprt commands. A print request issued by one of these commands is
first passed to the enq program, which then places the information about the file in the
queue for the qdaemon to process.

7-3 Printers, Print Jobs, and Queues

Real Printer
A real printer is the printer hardware attached to a serial or parallel port at a unique
hardware device address. The printer device driver in the kernel communicates with the
printer hardware and provides an interface between the printer hardware and a virtual
printer, but it is not aware of the concept of virtual printers.

Virtual Printer
A virtual printer is a set of attributes that define a specific software view of a real printer.
This view of the virtual printer refers only to the high-level data stream (such as ASCII or
PostScript) that the printer understands. It does not include any information about how the
printer hardware is attached to the host computer or about the protocol used for transferring
bytes of data to and from the printer. Virtual printers are defined by the system manager.

Local and Remote Printers
When you attach a printer to a node or host, the printer is referred to as a local printer. A
remote print system allows nodes that are not directly linked to a printer to have printer
access.

To use remote printing facilities, the individual nodes must be connected to a network using
the Transmission Control Protocol/Internet Protocol (TCP/IP) and must support the required
TCP/IP applications.

Printer Backend
The printer backend is a collection of programs called by the spooler’s qdaemon command
to manage a print job that is queued for printing. The printer backend performs the following
functions:

• Receives from the qdaemon command a list of one or more files to be printed.

• Uses printer and formatting attribute values from the database, overridden by flags
entered on the command line.

• Initializes the printer before printing a file.

• Runs filters as necessary to convert the print data stream to a format supported by the
printer.

• Provides filters for simple formatting of ASCII documents.

• Provides support for printing national language characters.

• Passes the filtered print data stream to the printer device driver.

• Generates header and trailer pages.

• Generates multiple copies.

• Reports paper out, intervention required, and printer error conditions.

• Reports problems detected by the filters.

• Cleans up after a print job is canceled.

• Provides a print environment that a system administrator can customize to address
specific printing needs.

7-4 AIX System User’s Guide – OS & Devices

Starting a Print Job (qprt Command)
Use the qprt or smit commands to request a print job and specify the following:

• Name of the file to print

• Print queue name

• Name of the output bin

• Number of copies to print

• Whether to make a copy of the file on the remote host

• Whether to erase the file after printing

• Whether to send notification of the job status

• Whether to send notification of the job status by the system mail

• Burst status

• User name for ”Delivery To” label

• Console acknowledgment message for remote print

• File acknowledgment message for remote print

• Priority level.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

qprt Command
The qprt command creates and queues a print job to print the file you specify. If you specify
more than one file, all the files together make up one print job. These files are printed in the
order specified on the command line.

Before you can print a file, you must have read access to it. To remove a file after it has
printed, you must have write access to the directory that contains the file.

7-5 Printers, Print Jobs, and Queues

The basic format of the qprt command is:

–b Number Specifies the bottom margin. The bottom margin is the number of blank
lines to be left at the bottom of each page.

–B Value Specifies whether burst pages (continuous-form pages separated at
perforations) should be printed. The Value variable consists of a
two-character string. The first character applies to header pages. The
second character applies to trailer pages. Each of the two characters
can be one of the following:

a Always prints the (header or trailer) page for each file
in each print job.

n Never prints the (header or trailer) page.

g Prints the (header or trailer) page once for each print
job (group of files).

For example, the –B ga flag specifies that a header page be
printed at the beginning of each print job and that a trailer page be
printed after each file in each print job.

Note: In a remote print environment, the default is determined by
the remote queue on the server.

–e Option Specifies whether emphasized print is wanted.

+ Indicates emphasized print is wanted.

! Indicates emphasized print is not wanted.

–E Option Specifies whether double-high print is wanted.

+ Indicates double-high print is wanted.

! Indicates double-high print is not wanted.

–f FilterType A one-character identifier that specifies a filter through which your print
file or files are to be passed before being sent to the printer. The
available filter identifiers are p, which invokes the pr filter, and n, which
processes output from the troff command.

–i Number Causes each line to be indented the specified number of spaces. The
Number variable must be included in the page width specified by the –w
flag.

–K Option Specifies whether condensed print is wanted.

+ Indicates condensed print is wanted.

! Indicates condensed print is not wanted.

–l Number Sets the page length to the specified number of lines. If the Number
variable is 0, page length is ignored, and the output is considered to be
one continuous page. The page length includes the top and bottom
margins and indicates the printable length of the paper.

–L Option Specifies whether lines wider than the page width should be wrapped to
the next line or truncated at the right margin.

+ Indicates that long lines should wrap to the next line.

! Indicates that long lines should not wrap but instead
should be truncated at the right margin.

–N Number Specifies the number of copies to be printed. If this flag is not specified,
one copy is printed.

–p Number Sets the pitch to Number characters per inch. Typical values for
Number are 10 and 12. The actual pitch of the characters printed is also
affected by the values for the –K (condensed) flag and the –W
(double-wide) flag.

7-6 AIX System User’s Guide – OS & Devices

–P Queue
[:QueueDevice]

Specifies the print queue name and the optional queue device name. If
this flag is not specified, the default printer is assumed.

–Q Value Specifies paper size for the print job. The Value for paper size is
printer-dependent. Typical values are: 1 for letter-size paper, 2 for legal,
and so on. Consult your printer manual for the values assigned to
specific paper sizes.

–t Number Specifies the top margin. The top margin is the number of blank lines to
be left at the top of each page.

–w Number Sets the page width to the number of characters specified by the
Number variable. The page width must include the number of indention
spaces specified with the –i flag.

–W Option Specifies whether double-wide print is wanted.

+ Indicates double-wide print is wanted.

! Indicates double-wide print is not wanted.

–z Value Rotates page printer output the number of quarter-turns clockwise as
specified by the Value variable. The length (–l) and width (–w) values
are automatically adjusted accordingly.

0 Portrait

1 Landscape right

2 Portrait upside-down

3 Landscape left

–= OutputBin Specifies the output bin destination for a print job. The possible values
are listed below. However, the valid output bins are printer-dependent.

0 Top printer bin

1–49 High Capacity Output (HCO) bins 1 – 49

–# Value Specifies a special function.

j Displays the job number for the specified print job.

h Queues the print job, but puts it in the HELD state
until it is released again.

v Validates the specified printer backend flag values.
This validation is useful in checking for illegal flag
values at the time of submitting a print job. If the
validation is not specified, an incorrect flag value will
stop the print job later when the job is actually being
processed.

For example, to request the myfile file to be printed on the first available printer
configured for the default print queue using default values, type:

qprt myfile

For example, to request the file somefile to be printed on a specific queue using specific
flag values and to validate the flag values at the time of print job submission, type:

qprt –f p –e + –Pfastest –# v somefile

This passes the somefile file through the pr filter command (the –f p flag) and prints it
using emphasized mode (the –e + flag) on the first available printer configured for the queue
named fastest (the –Pfastest flag).

7-7 Printers, Print Jobs, and Queues

For example, to print myfile on legal-size paper, type:

qprt –Q2 myfile

For example, to print three copies of each of the files new.index.c, print.index.c, and
more.c at the print queue Msp1, type:

qprt –PMsp1 –N 3 new.index.c print.index.c more.c

For example, to print three copies of the concatenation of three files new.index.c,
print.index.c, and more.c, type:

cat new.index.c print.index.c more.c | qprt –PMsp1 –N 3

Note: The AIX operating system also supports the BSD UNIX print command (lpr) and the
System V UNIX print command (lp). See the lpr and lp commands in the
AIX Commands Reference for the exact syntax.

See the qprt command in the AIX Commands Reference for the exact syntax.

smit Command
You can also issue the qprt command with smit. At the prompt, type:

smit qprt

then press Enter.

Canceling a Print Job (qcan Command)
You can cancel any job in the print queue with the Web-based System Manager fast path or
with the qcan or smit commands. When you cancel a print job, you are prompted to provide
the name of the print queue where the job resides and the job number to be canceled.

This procedure applies to both local and remote print jobs.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Web-based System Manager Fast Path
To cancel a print job using the Web-based System Manager fast path, type:

wsm printers

In the Print Queues container, select the print job, then use the menus to cancel it from a
print queue.

qcan Command
The qcan command cancels either a particular job number in a local or remote print queue,
or all jobs in a local print queue. To determine the job number, type the qchk command.

The basic format of the qcan command is:

qcan –PQueueName –x JobNumber

See the qcan command in the AIX Commands Reference for the exact syntax.

For example, to cancel job number 123 on whichever printer the job is on, type:

qcan –x 123

For example, to cancel all jobs queued on printer lp0, type:

qcan –X –Plp0

7-8 AIX System User’s Guide – OS & Devices

Note: The AIX operating system also supports the BSD UNIX cancel print command
(lprm) and the System V UNIX cancel print command (cancel). See the lprm and
cancel commands in the AIX Commands Reference for more information and the
exact syntax.

smit Command
To cancel a print job using SMIT, type:

smit qcan

7-9 Printers, Print Jobs, and Queues

Checking Print Job Status (qchk Command)
You can display the current status information for specified job numbers, queues, printers,
or users with the Web-based System Manager fast path or the qchk or smit commands.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Web-based System Manager Fast Path
To check the status of a print job using the Web-based System Manager fast path, type:

wsm printers

In the Print Queues container, select the print job, then use the menus to check its status.

qchk Command
The qchk command displays the current status information regarding specified print jobs,
print queues, or users.

The basic format of the qchk command is:

qchk –P QueueName –# JobNumber –u OwnerName

See the qchk command in the AIX Commands Reference for the exact syntax.

For example, to display the default print queue, type:

qchk –q

For example, to display the long status of all queues until empty, while updating the screen
every 5 seconds, type:

qchk –A –L –w 5

For example, to display the status for print queue lp0, type:

qchk –P lp0

For example, to display the status for job number 123, type:

qchk –# 123

For example, to check the status of all jobs in all queues, type:

qchk –A

Note: The AIX operating system also supports the BSD UNIX check print queue command
(lpq) and the System V UNIX check print queue command (lpstat). See the lpq and
lpstat commands in the AIX Commands Reference for the exact syntax.

smit Command
To check a print job’s status using SMIT, type:

smit qchk

7-10 AIX System User’s Guide – OS & Devices

Printer Status Conditions
Some of the status conditions that a print queue can have are:

DEV_BUSY Indicates that:

• More than one queue is defined to a printer device (lp0) and
another queue is currently using the printer device.

• qdaemon attempted to use the printer port device (lp0), but
another application is currently using that printer device.

To recover from a DEV_BUSY, wait until the queue or application has
released the printer device or cancel the job or process that is using the
printer port.

DEV_WAIT Indicates that the queue is waiting on the printer because the printer is
offline, out of paper, jammed, or the cable is loose, bad, or wired
incorrectly.

To recover from a DEV_WAIT, correct the problem that caused it to wait.
Sometimes, the jobs have to be removed from the queue before the
problem can be corrected.

A queue that is in DEV_WAIT for longer than a defined number of
seconds will go into a DOWN state.

DOWN A queue will usually go into a DOWN state after it has been in the
DEV_WAIT state. This situation occurs when the printer device driver
cannot tell if the printer is there due to absence of correct signallng.
However, some printers may not have the capability to signal the
queuing system that it is offline, and instead signals that it is off. If the
printer device signals or appears to be off, the queue will go into the
DOWN state.

To recover from a DOWN state, correct the problem that has brought
the queue down and have the system administrator bring the queue
back up. The queue must be manually brought up before it can be used
again.

HELD Specifies that a print job is held. The print job will not be processed by
the spooler until it is released.

QUEUED Specifies that a print file is queued and is waiting in line to be printed.

READY Specifies that everything involved with the queue is ready to queue and
print a job.

RUNNING Specifies that a print file is printing.

7-11 Printers, Print Jobs, and Queues

Prioritizing a Print Job (qpri Command)
You can change the priority of a job with the Web-based System Manager fast path or with
the qpri or smit commands. You can only assign job priority on local queues. Higher values
indicate a higher priority for the print job. The default priority is 15. The maximum priority is
20 for most users, and 30 for users with root user privilege and members of the printq group
(group 0).

Note: You cannot assign priority to a remote print job.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Web-based System Manager Fast Path
To change the priority of a queued print job using the Web-based System Manager fast
path, type:

wsm printers

In the Print Queues container, select the print job, then use the menus to set the priority for
that job in a local print queue.

qpri Command
The qpri command reassigns the priority of a print job that you submitted. If you have root
user authority or belong to the printq group, you can assign priority to any job while it is in
the print queue.

The basic format of the qpri command is:

qpri –# JobNumber –a PriorityLevel

For example, to change job number 123 to priority number 18, type:

qpri –# 123 –a 18

For example, to prioritize a local print job as it is submitted, type:

qprt –PQueueName –R PriorityLevel FileName

See the qpri command in the AIX Commands Reference for the exact syntax.

smit Command
To change the priority of a print job using SMIT, type:

smit qpri

7-12 AIX System User’s Guide – OS & Devices

Holding and Releasing a Print Job (qhld Command)

After you have sent a print job to a print queue, you can put the print job on hold with the
Web-based System Manager fast path or with the qhld or smit commands. You can later
release the print job for printing with these same commands.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Web-based System Manager Fast Path
To hold or release a print job using the Web-based System Manager fast path, type:

wsm printers

In the Print Queues container, select the print job, then use the menus to put it on hold or to
release it for printing.

qhld Command
The qhld command puts a print job on hold after you have sent it. You can either put a
particular print job on hold, or you can hold all the print jobs on a specified print queue. To
determine the print job number, type the qchk command.

The basic format of the qhld command is:

qhld [–r] {[–#JobNumber] [–PQueue] [–uUser]}

See the qhld command in the AIX Commands Reference for the exact syntax.

For example, to hold job number 452 on whichever print queue the job is on, type:

qhld –#452

For example, to hold all jobs queued on print queue hp2, type:

qhld –Php2

To release job number 452 on whichever print queue the job is on, type:

qhld –#452 –r

To release all jobs queued on print queue hp2, type:

qhld –Php2 –r

smit Command
To hold or release a print job using SMIT, type:

smit qhld

7-13 Printers, Print Jobs, and Queues

Moving a Print Job to Another Print Queue (qmov Command)
After you have sent a print job to a print queue, you may want to move the print job to
another print queue. You can move it with the Web-based System Manager fast path or with
the qmov or smit commands.

Prerequisites
• For local print jobs, the printer must be physically attached to your system.

• For remote print jobs, your system must be configured to communicate with the remote
print server.

Web-based System Manager Fast Path
To move a print job to another queue using the Web-based System Manager fast path, type:

wsm printers

In the Print Queues container, select the print job, then use the menus to move it from one
print queue to another.

qmov Command
The qmov moves a print job to another print queue. You can either move a particular print
job, or you can move all the print jobs on a specified print queue or all the print jobs sent by
a specified user. To determine the print job number, type the qchk command.

The basic format of the qmov command is:

qmov

–m

NewQueue {[–#JobNumber] [–PQueue] [–uUser]}

See the qmov command in the AIX Commands Reference for the exact syntax.

For example, to move job number 280 to print queue hp2, type:

qmov –mhp2 –#280

For example, to move all print jobs on print queue hp4D to print queue hp2, type:

qmov –mhp2 –Php4D

smit Command
To move a print job using SMIT, type:

smit qmov

7-14 AIX System User’s Guide – OS & Devices

Formatting Files for Printing (pr Command)
The pr command performs simple formatting of the files you sent to be printed. You pipe the
output of the pr command to the qprt command to format your text.

Some useful pr command flags are:

–d Double-spaces the output.

–h ”String” Displays the specified string, enclosed in ” ” (quotes), instead of
the file name as the page header. The flag and string should be
separated by a space.

–l Lines Overrides the 66-line default and resets the page length to the
number of lines specified by the Lines variable. If the Lines value
is smaller than the sum of both the header and trailer depths (in
lines), the header and trailer are suppressed (as if the –t flag were
in effect).

–m Merges files. Standard output is formatted so the pr command
writes one line from each file specified by a File variable, side by
side into text columns of equal fixed widths, based on the number
of column positions. This flag should not be used with the
–Column flag.

–n [Width] [Character] Provides line numbering based on the number of digits specified
by the Width variable. The default is 5 digits. If the Character (any
non-digit character) variable is specified, it is appended to the line
number to separate it from what follows on the line. The default
character separator is the ASCII TAB character.

–o Offset Indents each line by the number of character positions specified
by the Offset variable. The total number of character positions per
line is the sum of the width and offset. The default value of Offset
is 0.

–sCharacter Separates columns by the single character specified by the
Character variable instead of by the appropriate number of
spaces. The default value for Character is an ASCII TAB
character.

–t Does not display the five-line identifying header and the five-line
footer. Stops after the last line of each file without spacing to the
end of the page.

–w Width Sets the number of column positions per line to the value
specified by the Width variable. The default value is 72 for
equal-width multicolumn output. There is no limit otherwise. If the
–w flag is not specified and the –s flag is specified, the default
width is 512 column positions.

–Column Sets the number of columns to the value specified by the Column
variable. The default value is 1. This option should not be used
with the –m flag. The –e and –i flags are assumed for multicolumn
output. A text column should never exceed the length of the page
(see the –l flag). When this flag is used with the –t flag, use the
minimum number of lines to write the output.

+Page Begins the display with the page number specified by the Page
variable. The default value is 1.

7-15 Printers, Print Jobs, and Queues

For example, to print a file named prog.c with headings and page numbers on the printer,
enter:

pr prog.c | qprt

This adds page headings to prog.c and sends it to the qprt command. The heading
consists of the date the file was last modified, the file name, and the page number.

For example, to specify a title for a file named prog.c, enter:

pr –h ”MAIN PROGRAM” prog.c | qprt

This prints prog.c with the title MAIN PROGRAM in place of the file name. The modification
date and page number are still printed.

For example, to print a file named word.lst in multiple columns, enter:

pr –3 word.lst | qprt

This prints the word.lst file in three vertical columns.

For example, to print several files side by side on the paper:

pr –m –h ”Members and Visitors” member.lst visitor.lst | qprt

This prints member.lst and visitor.lst side by side with the title Members and
Visitors.

For example, to modify a file named prog.c for later use, enter:

pr –t –e prog.c > prog.notab.c

This replaces tab characters in prog.c with spaces and puts the result in prog.notab.c.
Tab positions are at columns 9, 17, 25, 33, and so on. The –e flag tells the pr command to
replace the tab characters; the –t flag suppresses the page headings.

For example, to print a file named myfile in two columns, in landscape, and in 7-point text,
enter:

pr –l66 –w172 –2 myfile | qprt –z1 –p7

See the pr command in the AIX Commands Reference for the exact syntax.

7-16 AIX System User’s Guide – OS & Devices

Printing ASCII Files on a PostScript Printer
The Text Formatting System includes the enscript filter for converting ASCII print files to
PostScript for printing on a PostScript printer. This filter is called by the qprt –da command
when submitting a print job to a PostScript print queue.

Prerequisites
• The printer must be physically attached to your system.

• The printer must be configured and defined.

• The transcript portion of Text Formatting Services must be installed.

There are several flags that may be specified with the qprt command to customize the
output when submitting ASCII files to a PostScript print queue.

–1+ Adds page headings.

–2+ Formats the output in two columns.

–3+ Prints the page headings, dates, and page numbers in a fancy style.
This is sometimes referred to as ”gaudy” mode.

–4+ Prints the file, even if it contains unprintable characters.

–5+ Lists characters that are not included in a font.

–h string Specifies a string to be used for page headings. If this flag is not
specified, the heading consists of the file name, modification date, and
page number.

–l value Specifies the maximum number of lines printed per page. Depending on
the point size, fewer lines per page may actually appear.

–L! Truncates lines longer than the page width.

–p Specifies the point size. If this flag is not specified, a point size of 10 is
assumed, unless two-column rotated mode (–2+ –z1) is specified, in
which case a value of 7 is used.

–s Specifies the font style. If this flag is not specified, the Courier font is
used. Acceptable values are:

Courier-Oblique

Helvetica

Helvetica-Oblique

Helvetica-Narrow

Helvetica-Narrow-Oblique

NewCenturySchlbk-Italic

Optima

Optima-Oblique

Palatino-Roman

Palatino-Italic

Times-Roman

Times-Italic.

Note: The PostScript printer must have access to the specified font.

–z1 Rotates the output 90 degrees (landscape mode).

7-17 Printers, Print Jobs, and Queues

For example, to send the ACSII file myfile.ascii to the PostScript printer named Msps1,
enter:

qprt –da –PMsps1 myfile.ascii

For example, to send the ACSII file myfile.ascii to the PostScript printer named Msps1
and print out in the Helvetica font, enter:

qprt –da –PMsps1 –sHelvetica myfile.ascii

For example, to send the ASCII file myfile.ascii to the PostScript printer named Msps1
and print out in the point size 9, enter:

qprt –da –PMsps1 –p9 myfile.ascii

7-18 AIX System User’s Guide – OS & Devices

Automating the Conversion of ASCII to PostScript
Many applications that generate PostScript print files follow the convention of making the
first two characters of the PostScript file %! which identifies the print file as a PostScript
print file. To configure the system to detect ASCII print files submitted to a PostScript print
queue and automatically convert them to PostScript files before sending them to the
PostScript printer, perform these steps:

1. At the prompt, enter:

smit chpq

2. Type in the PostScript queue name, or use the List feature to select from a list of queues.

3. Select Printer Setup menu option.

4. Change value of AUTOMATIC detection of print file TYPE to be done? field to yes.

Any of the following commands now convert an ASCII file to a PostScript file and print it on
a PostScript printer. To convert myfile.ascii, you would type any of the following at the
command line:

qprt –Pps myfile.ps myfile.ascii

lpr –Pps myfile.ps myfile.ascii

lp –dps myfile.ps myfile.acsii

where ps is a PostScript print queue.

Overriding Automatic Determination of Print File Types
There are two instances where the automatic determination of print file type for PostScript
printing may need to be overridden.

For example, to print a PostScript file named myfile.ps that does not begin with %!, type
the following at the command line:

qprt –ds –Pps myfile.ps

For example, to print the source listing of a PostScript file named myfile.ps that begins
with %!, type the following at the command line:

qprt –da –Pps myfile.ps

7-19 Printers, Print Jobs, and Queues

Command Summary for Printers, Print Jobs, and Queues

cancel Cancels requests to a line printer.

lp Sends requests to a line printer.

lpq Examines the spool queue.

lpr Enqueues print jobs.

lprm Removes jobs from the line printer spooling queue.

lpstat Displays line printer status information.

pr Writes a file to standard output.

qcan Cancels a print job.

qchk Displays the status of a print queue.

qhld Holds or releases a print job.

qmov Moves a print job to another print queue.

qpri Prioritizes a job in the print queue.

qprt Starts a print job.

7-20 AIX System User’s Guide – OS & Devices

8-1 Back-up Files and Storage Media

Chapter 8. Backup Files and Storage Media

Once your system is in use, your next consideration should be to back up the file systems,
directories, and files. Files and directories represent a significant investment of time and
effort. At the same time, all computer files are potentially easy to change or erase, either
intentionally or by accident. If you take a careful and methodical approach to backing up
your file systems, you should always be able to restore recent versions of files or file
systems with little difficulty.

Note: When a hard disk crashes, the information contained on that disk is destroyed. The
only way to recover the destroyed data is to retrieve the information from your
backup copy.

There are several different methods of backing up. The most frequently used method is a
regular backup, which is a copy of a file system, directory, or file that is kept for file transfer
or in case the original data is unintentionally changed or destroyed. Another form of backing
up is the archive backup; this method is used for a copy of one or more files, or an entire
database that is saved for future reference, historical purposes, or for recovery if the original
data is damaged or lost. Usually an archive is used when that specific data is removed from
the system.

This section discusses:

• Backup Policy, on page 8-2

– Backup Media, on page 8-3

• Formatting Diskettes (format or fdformat Command), on page 8-4

• Checking the Integrity of the File System (fsck Command), on page 8-5

• Copying to or from Diskettes (flcopy Command), on page 8-5

• Copying Files to Tape or Disk (cpio –o Command), on page 8-6

• Copying Files from Tape or Disk (cpio –i Command), on page 8-6

• Copying to or from Tapes (tcopy Command), on page 8-7

• Checking the Integrity of a Tape (tapechk Command), on page 8-7

• Compressing Files (compress and pack Commands), on page 8-7

• Expanding Compressed Files (uncompress and unpack Commands), on page 8-9

• Backing Up Files (backup Command), on page 8-10

• Restoring Backed-Up Files (restore Command), on page 8-12

• Archiving Files (tar Command), on page 8-14

• Command Summary for Backup Files and Storage Media, on page 8-15

8-2 AIX System User’s Guide – OS & Devices

Backup Policy
No single backup policy can meet the needs of all users. A policy that works well for a
system with one user, for example, could be inadequate for a system that serves 5 or 10
different users. Likewise, a policy developed for a system on which many files are changed
daily would be inefficient for a system on which data changes infrequently. Only you can
determine the best backup policy for your system, but the following general guidelines
should help:

Make sure you can recover from major losses.

Can your system continue to run after any single fixed disk fails? Can you recover your
system if all the fixed disks should fail? Could you recover your system if you lost your
backup diskettes or tape to fire or theft? Although these things are not likely, any of them are
possible. Think through each of these possible losses and design a backup policy that
would enable you to recover your system after any of them.

Check your backups periodically.

Backup media and its hardware can be unreliable. A large library of backup tapes or
diskettes is useless if their data cannot be read back onto a fixed disk. To make certain that
your backups are usable, try to display the table of contents from the backup tape
periodically (using restore –T, or tar –t for archive tapes). If you use diskettes for your
backups and have more than one diskette drive, try to read diskettes from a different drive
than the one on which they were created. You also may want the security of repeating each
level 0 backup with a second set of diskettes. If you use a streaming tape device for
backups, you can use the tapechk command to perform rudimentary consistency checks on
the tape.

Keep old backups.

Develop a regular cycle for reusing your backup media; however, you should not reuse all of
your backup media. Sometimes it may be months before you or some other user of your
system notices that an important file is damaged or missing. You should save old backups
for such possibilities. For example, you could have the following three cycles of backup
tapes or diskettes:

• Once per week, recycle all daily diskettes except the one for Friday.

• Once per month, recycle all Friday diskettes except for the one from the last Friday of the
month. This makes the last four Friday backups always available.

• Once per quarter, recycle all monthly diskettes except for the last one. Keep the last
monthly diskette from each quarter indefinitely, perhaps in a different building.

Check file systems before backing them up.

A backup that was made from a damaged file system may be useless. Before making your
backups, it is good policy to check the integrity of the file system with the fsck command.

Ensure files are not in use during a backup.

Your system should not be in use when you make your backups. If the system is in use, files
can change while they are being backed up, and the backup copy will not be accurate.

Back up your system before major changes are made to the system.

It is always good policy to back up your entire system before any hardware testing or repair
work is performed or before you install any new devices, programs, or other system
features.

Other Factors

Other items to consider when planning and implementing a backup strategy are:

8-3 Back-up Files and Storage Media

• How often does the data change? As pointed out earlier, the operating system data does
not change very often so you do not need to back it up frequently. User data, on the other
hand, usually changes frequently and you should back it up frequently.

• How many users are on the system? The number of users would affect the amount of
storage media and frequency required for backups.

• How difficult would it be to recreate the data? It is important to consider that some data
cannot be recreated if there is not a backup.

Whatever the appropriate backup strategy for your site, it is very important that one exists.
Backups should be done frequently and regularly. Recovering from data loss is very difficult
if a good backup strategy has not been implemented.

Backup Media
Several different types of backup media are available for backups. The different types of
backup media available to your specific system configuration depend upon both your
software and hardware. The types most frequently used are the 5.25-inch diskette, 8-mm
tape, 9-track tape, and the 3.5-inch diskette.

Warning: Running the backup command results in the loss of all material previously stored
on the selected output medium.

Diskettes
Diskettes are the standard backup medium. Unless you specify a different device using the
backup –f command, the backup command automatically writes its output to the /dev/rfd0
device, which is the diskette drive. To back up to the default tape device, enter /dev/rmt0.

Be careful with your diskettes. Because each piece of information occupies such a small
area on the diskette, small scratches, dust, food, or tobacco particles can make the
information unusable. Be sure to remember the following:

• Do not touch the recording surfaces.

• Keep diskettes away from magnets and magnetic field sources such as telephones,
dictation equipment, and electronic calculators.

• Keep diskettes away from extreme heat and cold. The recommended temperature range
is 10 degrees Celsius to 60 degrees Celsius (50 degrees Fahrenheit to 140 degrees
Fahrenheit).

• Proper care helps prevent loss of information.

• Make back-up copies of your diskettes regularly.

Warning: Diskette drives and diskettes must be the correct type to store data successfully.
If you use the wrong diskette in your 3.5-inch diskette drive, the data on the diskette could
be destroyed.

The diskette drive uses the following 3.5-inch diskettes:

• 1MB capacity (stores approximately 720KB of data)

• 2MB capacity (stores approximately 1.44MB of data).

Tapes
Tape is well-suited to certain tasks because of its high capacity and durability. It is often
chosen for storing large files or many files, such as archive copies of file systems. It is also
used for transferring many files from one system to another. Tape is not widely used for
storing frequently accessed files because other media provide much faster access times.

Tape files are created using commands such as backup, cpio, and tar, which open a tape
drive, write to it, and close it.

8-4 AIX System User’s Guide – OS & Devices

Formatting Diskettes (format or fdformat Command)
Attention: Formatting a diskette destroys any existing data on that diskette.

You can format diskettes in the diskette drive specified by the Device parameter (the
/dev/rfd0 device by default) with the format and fdformat commands. The format
command determines the device type, which is one of the following:

• 5.25-inch low-density diskette (360KB) containing 40x2 tracks, each with 9 sectors

• 5.25-inch high-capacity diskette (1.2MB) containing 80x2 tracks, each with 15 sectors

• 3.5-inch low-density diskette (720KB) containing 80x2 tracks, each with 9 sectors

• 3.5-inch high-capacity diskette (2.88MB) containing 80x2 tracks, each with 36 sectors.

The sector size is 512 bytes for all diskette types.

The format command formats a diskette for high density unless the Device parameter
specifies a different density.

The fdformat command formats a diskette for low density unless the –h flag is specified.
The Device parameter specifies the device containing the diskette to be formatted (such as
the /dev/rfd0 device for drive 0).

Before formatting a diskette, the format and fdformat commands prompt for verification.
This allows you to end the operation cleanly if necessary.

For example, to format a diskette in the /dev/rfd0 device, enter:

format –d /dev/rfd0

For example, to format a diskette without checking for bad tracks, enter:

format –f

For example, to format a 360KB diskette in a 5.25-inch, 1.2MB diskette drive in the
/dev/rfd1 device, enter:

format –l –d /dev/rfd1

For example, to force high-density formatting of a diskette when using the fdformat
command, enter:

fdformat –h

See the format command in the AIX Commands Reference for the exact syntax.

8-5 Back-up Files and Storage Media

Checking the Integrity of the File System (fsck Command)
You can check and interactively repair inconsistent file systems with the fsck command. It
should be run on every file system as part of system initialization. You must be able to read
the device file on which the file system resides (for example, the /dev/hd0 device).
Normally, the file system is consistent, and the fsck command merely reports on the
number of files, used blocks, and free blocks in the file system. If the file system is
inconsistent, the fsck command displays information about the inconsistencies found and
prompts you for permission to repair them. The fsck command is conservative in its repair
efforts and tries to avoid actions that might result in the loss of valid data. In certain cases,
however, the fsck command recommends the destruction of a damaged file.

Attention: Always run the fsck command on file systems after a system malfunction.
Corrective actions may result in some loss of data. The default action for each
consistency correction is to wait for the operator to enter yes or no. If you do not have
write permission for an affected file, the fsck command defaults to a no response in
spite of your actual response.

For example, to check all the default file systems, enter:

fsck

This form of the fsck command asks you for permission before making any changes to a file
system.

For example, to fix minor problems with the default file systems automatically, enter:

fsck –p

For example, to check the file system /dev/hd1, enter:

fsck /dev/hd1

This checks the unmounted file system located on the /dev/hd1 device.

Note: The fsck command will not make corrections to a mounted file system.

See the fsck command in the AIX Commands Reference for the exact syntax.

Copying to or from Diskettes (flcopy Command)
You can copy a diskette (opened as /dev/rfd0) to a file named floppy created in the
current directory with the flcopy command. The message: Change floppy, hit
return when done appears as needed. The flcopy command then copies the floppy
file to the diskette.

For example, to copy /dev/rfd1 to the floppy file in the current directory, enter:

flcopy –f /dev/rfd1 –r

For example, to copy the first 100 tracks of the diskette, enter:

flcopy –f /dev/rfd1 –t 100

See the flcopy command in the AIX Commands Reference for the exact syntax.

8-6 AIX System User’s Guide – OS & Devices

Copying Files to Tape or Disk (cpio –o Command)
You can read file path names from standard input and copy these files to standard output,
along with path names and status information with the cpio –o command. Path names
cannot exceed 128 characters. Avoid giving the cpio command path names made up of
many uniquely linked files, as it may not have enough memory to keep track of them and
would lose linking information.

For example, to copy files in the current directory whose names end with .c onto diskette,
enter:

ls *.c | cpio –ov >/dev/rfd0

The –v flag displays the names of each file.

For example, to copy the current directory and all subdirectories onto diskette, enter:

find . –print | cpio –ov >/dev/rfd0

This saves the directory tree that starts with the current directory (.) and includes all of its
subdirectories and files. Do this faster by entering:

find . –cpio /dev/rfd0 –print

The –print entry displays the name of each file as it is copied.

See the cpio command in the AIX Commands Reference for the exact syntax.

Copying Files from Tape or Disk (cpio –i Command)
The cpio –i command reads from standard input an archive file created by the cpio –o
command and copies from it the files with names that match the Pattern parameter. These
files are copied into the current directory tree. You can list more than one Pattern parameter,
using the file name notation described in the ksh command. The default for the Pattern
parameter is an * (asterisk), selecting all files in the current directory. In an expression such
as [a–z], the minus sign means through according to the current collating sequence.

Note: The patterns ”*.c” and ”*.o” must be enclosed in quotation marks to prevent the
shell from treating the * (asterisk) as a pattern-matching character. This is a special
case in which the cpio command itself decodes the pattern-matching characters.

For example, to list the files that have been saved onto a diskette with the cpio command,
enter:

cpio –itv </dev/rfd0

This displays the table of contents of the data previously saved onto the /dev/rfd0 file in
the cpio command format. The listing is similar to the long directory listing produced by the
li –l command. To list only the file path names, use only the –it flags.

For example, to copy the files previously saved with the cpio command from a diskette,
enter:

cpio –idmv </dev/rfd0

This copies the files previously saved onto the /dev/rfd0 file by the cpio command back
into the file system (specify the –i flag). The –d flag allows the cpio command to create the
appropriate directories if a directory tree is saved. The –m flag maintains the last
modification time in effect when the files are saved. The –v flag causes the cpio command
to display the name of each file as it is copied.

For example, to copy selected files from diskette, enter:

cpio –i ”*.c” ”*.o” </dev/rfd0

This copies the files that end with .c or .o from diskette.

See the cpio command in the AIX Commands Reference for more information and the
exact syntax.

8-7 Back-up Files and Storage Media

Copying to or from Tapes (tcopy Command)
You can copy magnetic tapes with the tcopy command.

For example, to copy from one streaming tape to a 9-track tape, enter:

tcopy /dev/rmt0 /dev/rmt8

See the tcopy command in the AIX Commands Reference for the exact syntax.

Checking the Integrity of a Tape (tapechk Command)
You can perform rudimentary consistency checking on an attached streaming tape device
with the tapechk command. Some hardware malfunctions of a streaming tape drive can be
detected by simply reading a tape. The tapechk command provides a way to perform tape
reads at the file level.

For example, to check the first three files on a streaming tape device, enter:

tapechk 3

See the tapechk command in the AIX Commands Reference for the exact syntax.

Compressing Files (compress and pack Commands)
You can compress files for storage with the compress and pack commands, and use the
uncompress and unpack commands to expand the restored files. The process of
compressing and expanding files takes time but, once packed, the data uses less space on
the backup medium.

There are several methods of compressing a file system:

• Use the –p option with the backup command.

• Use the compress or pack commands.

There are many reasons for compressing files, but generally they fall into two categories:

• Saving storage and archiving system resources:

– Compress file systems before doing backups to preserve tape space.

– Compress log files created by shell scripts that run at night; it is easy to have the script
compress the file before it exits.

– Compress files that are not currently being accessed. For example, the files belonging
to a user who is away for extended leave can be compressed and placed into a tar
archive on disk or to a tape and later be restored.

• Saving money and time by compressing files before sending them over a network.

Notes:

1. The command might run out of working space in the file system while
compressing. The compress command creates the compressed files before it
deletes any of the uncompressed files so it needs a space about 50% larger than
the total size of the files.

2. A file might fail to compress because it is already compressed. If the compress
command cannot reduce file sizes, it fails.

8-8 AIX System User’s Guide – OS & Devices

compress Command
The compress command reduces the size of files using adaptive Lempel-Zev coding. Each
original file specified by the File parameter is replaced by a compressed file with a .Z
appended to its name. The compressed file retains the same ownership, modes, and
access and modification times of the original file. If no files are specified, the standard input
is compressed to the standard output. If compression does not reduce the size of a file, a
message is written to standard error and the original file is not replaced.

Compressed files can be restored to their original form using the uncompress command.

The amount of compression depends on the size of the input, the number of bits per code
specified by the Bits variable, and the distribution of common substrings. Typically, source
code or English text is reduced by 50 to 60 percent. The compression of the compress
command is generally more compact and takes less time to compute than the compression
achieved by the pack command which uses adaptive Huffman coding.

For example, to compress the foo file and write the percentage compression to standard
error, enter:

compress –v foo

See the compress command in the AIX Commands Reference for the exact syntax.

pack Command
The pack command stores the file or files specified by the File parameter in a compressed
form using Huffman coding. The input file is replaced by a packed file with a name derived
from the original file name (File.z), with the same access modes, access and modification
dates, and owner as the original file. The input file name can contain no more than 253
bytes to allow space for the added .z suffix. If the pack command is successful, the original
file is removed. Packed files can be restored to their original form using the unpack
command.

If the pack command cannot create a smaller file, it stops processing and reports that it is
unable to save space. (A failure to save space generally happens with small files or files
with uniform character distribution.) The amount of space saved depends on the size of the
input file and the character frequency distribution. Because a decoding tree forms the first
part of each .z file, you do not save space with files smaller than three blocks. Typically, text
files are reduced 25 to 40 percent.

The exit value of the pack command is the number of files that it could not pack. Packing is
not done under any of the following conditions:

• The file is already packed.

• The input file name has more than 253 bytes.

• The file has links.

• The file is a directory.

• The file cannot be opened.

• No storage blocks are saved by packing.

• A file called File.z already exists.

• The .z file cannot be created.

• An I/O error occurred during processing.

For example, to compress the files chap1 and chap2, enter:

pack chap1 chap2

This compresses chap1 and chap2, replacing them with files named chap1.z and chap2.z.
The pack command displays the percent decrease in size for each file.

See the pack command in the AIX Commands Reference for more information and the
exact syntax.

8-9 Back-up Files and Storage Media

Expanding Compressed Files (uncompress and unpack
Commands)

You can expand compressed files with the uncompress and unpack commands.

uncompress Command
The uncompress command restores original files that were compressed by the compress
command. Each compressed file specified by the File variable is removed and replaced by
an expanded copy. The expanded file has the same name as the compressed version, but
without the .Z extension. The expanded file retains the same ownership, modes, and access
and modification times as the original file. If no files are specified, standard input is
expanded to standard output.

Although similar to the uncompress command, the zcat command always writes the
expanded output to standard output.

For example, to uncompress the foo file, enter:

uncompress foo

See the uncompress command in the AIX Commands Reference for the exact syntax.

unpack Command
The unpack command expands files created by the pack command. For each file specified,
the unpack command searches for a file called File.z. If this file is a packed file, the unpack
command replaces it by its expanded version. The unpack command renames the new file
by removing the .z suffix from File. The new file has the same access modes, access and
modification dates, and owner as the original packed file.

The unpack command operates only on files ending in .z. As a result, when you specify a
file name that does not end in .z, the unpack command adds the suffix and searches the
directory for a file name with that suffix.

The exit value is the number of files the unpack command was unable to unpack. A file
cannot be unpacked if any of the following occurs:

• The file name (exclusive of .z) has more than 253 bytes.

• The file cannot be opened.

• The file is not a packed file.

• A file with the unpacked file name already exists.

• The unpacked file cannot be created.

Note: The unpack command writes a warning to standard error if the file it is unpacking
has links. The new unpacked file has a different i–node than the packed file from
which it was created. However, any other files linked to the original i–node of the
packed file still exist and are still packed.

For example, to unpack the packed files chap1.z and chap2, enter:

unpack chap1.z chap2

This expands the packed files chap1.z and chap2.z, and replaces them with files named
chap1 and chap2. Note that you can give the unpack command file names either with or
without the .z suffix.

See the unpack command in the AIX Commands Reference for the exact syntax.

8-10 AIX System User’s Guide – OS & Devices

Backing Up Files (backup Command)

Warning: If you attempt to back up a mounted file system a message is displayed. The
backup command continues, but inconsistencies in the file system may occur. This situation
does not apply to the root (/) file system.

You can create copies of your files on a backup medium, such as a magnetic tape or
diskette, with the backup or smit commands. The copies are in one of the two following
backup formats:

• Specific files backed up by name, using the –i flag.

• Entire file system backed up by i–node number, using the –Level and FileSystem
parameters.

Notes:

1. There is always the possibility of data corruption when a file is modified during
system backup. Therefore, system activity should be at a minimum during the
system backup procedure.

2. If a backup is made to 8-mm tape with the device block size set to 0 (zero), it is
not possible to directly restore from the tape. If you have done backups with the 0
setting, you can restore from them by using special procedures described under
the restore command.

Warning: Be sure the flags you specify match the backup medium. Also, if you attempt to
back up a mounted file system, inconsistencies may occur.

backup Command
For example, to back up selected files in your $HOME directory by name, enter:

find $HOME –print | backup –i –v

The –i flag prompts the system to read from standard input the names of files to be backed
up. The find command generates a list of files in the user’s $HOME directory. This list is
piped to the backup command as standard input. The –v flag displays a progress report as
each file is copied. The files are backed up on the default backup device for the local
system.

For example, to back up the root file system, enter:

backup –0 –u /

The 0 level and the / tell the system to back up the / (root) file system. The file system is
backed up to the /dev/rfd0 file. The –u flag tells the system to update the current backup
level record in the /etc/dumpdates file.

For example, to back up all files in the / (root) file system modified since the last 0 level
backup, enter:

backup –1 –u /

See the backup command in the AIX Commands Reference for the exact syntax.

8-11 Back-up Files and Storage Media

smit Command
The backup command can also be done using smit.

1. At the prompt, enter:

smit backup

2. Enter the path name of the directory on which the file system is normally mounted in the
DIRECTORY full pathname field:

/home/bill

3. In the BACKUP device or FILE fields, enter the output device name as in the following
example for a raw magnetic tape device:

/dev/rmt0

4. Use the Tab key to toggle the optional REPORT each phase of the backup field if you
want error messages printed to the screen.

5. In a system management environment, use the default for the MAX number of blocks to
write on backup medium field because this field does not apply to tape backups.

6. Press Enter to back up the named directory or file system.

7. Run the restore –t command. If this command generates an error message, you must
repeat the entire backup.

8-12 AIX System User’s Guide – OS & Devices

Restoring Backed-Up Files (restore Command)
You can read files written by the backup command from a backup medium and restore
them on your local system with the restore or smit commands.

Notes:

1. Files must be restored using the same method by which they were backed up. For
example, if a file system was backed up by name, it must be restored by name.

2. When more than one diskette is required, the restore command reads the one mounted,
prompts you for a new one, and waits for your response. After inserting the new diskette,
press the Enter key to continue restoring files.

restore Command
For example, to list the names of files previously backed up, enter:

restore –T

Information is read from the /dev/rfd0 default backup device. If individual files are backed
up, only the file names are displayed. If an entire file system is backed up, the i–node
number is also shown.

For example, to restore files to the main file system, enter:

restore –x –v

The –x flag extracts all the files from the backup medium and restores them to their proper
places in the file system. The –v flag displays a progress report as each file is restored. If a
file system backup is being restored, the files are named with their i–node numbers.
Otherwise, just the names are displayed.

For example, to copy the file /home/mike/manual/chap1 , enter:

restore –xv /home/mike/manual/chap1

This command extracts the /home/mike/manual/chap1 file from the backup medium
and restores it. The /home/mike/manual/chap1 file must be a name that can be
displayed by the restore –T command.

For example, to copy all the files in a directory named manual, enter:

restore –xdv manual

This command restores the manual directory and the files in it. If it does not exist, a
directory named manual is created in the current directory to hold the files being restored.

See the restore command in the AIX Commands Reference for the exact syntax.

8-13 Back-up Files and Storage Media

smit Command
The restore command can also be done using smit.

1. At the prompt, enter:

smit restore

2. Make your entry in the Target DIRECTORY field. This is the directory where you want
the restored files to reside.

3. Proceed to the BACKUP device or FILE field and enter the output device name as in the
following example for a raw magnetic tape device:

/dev/rmt0

If the device is not available, a message similar to the following is displayed:

Cannot open /dev/rmtX, no such file or directory.

This message indicates that the system cannot reach the device driver because there is
no file for rmtX in the /dev directory. Only items in the available state are in /dev.

4. For the NUMBER of blocks to read in a single input field, the default is recommended.

5. Press Enter to restore the specified file system or directory.

8-14 AIX System User’s Guide – OS & Devices

Archiving Files (tar Command)
You can write files to or retrieve files from an archive storage with the tar command. The tar
command looks for archives on the default device (usually tape), unless you specify another
device.

When writing to an archive, the tar command uses a temporary file (the /tmp/tar* file) and
maintains in memory a table of files with several links. You receive an error message if the
tar command cannot create the temporary file or if there is not enough memory available to
hold the link tables.

For example, to write the file1 and file2 files to a new archive on the default tape drive,
enter:

tar –c file1 file2

For example, to extract all files in the /tmp directory from the archive file on
the /dev/rmt2 tape device and use the time of extraction as the modification time, enter:

tar –xm –f/dev/rmt2 /tmp

For example, to display the names of the files in the out.tar disk archive file from the
current directory, enter:

tar –vtf out.tar

See the tar command in the AIX Commands Reference for more information and the exact
syntax.

8-15 Back-up Files and Storage Media

Command Summary for Backup Files and Storage Media

backup Backs up files and file systems.

compress Compresses and expands data.

cpio Copies files into and out of archive storage and directories.

fdformat Formats diskettes.

flcopy Copies to and from diskettes.

format Formats diskettes.

fsck Checks file system consistency and interactively repairs the
file system.

pack Compresses files.

restore Copies previously backed–up file systems or files, created
by the backup command, from a local device.

tapechk Performs consistency checking of the streaming tape
device.

tar Manipulates archives.

tcopy Copies a magnetic tape.

uncompress

Compresses and expands data.

unpack Expands files.

Related Information
Commands Overview

Processes Overview

Input and Output Redirection Overview

File Systems Overview

Directory Overview

Files Overview

File and System Security

8-16 AIX System User’s Guide – OS & Devices

9-1 File and System Security

Chapter 9. File and System Security

Computer security is very similar to other types of security. Its goal is the protection of
information stored on the computer system, a valuable resource. Information security is
aimed at:

Integrity The value of all information depends upon its accuracy. If unauthorized
changes are made to data, this data loses some or all of its value.

Privacy The value of much information depends upon its secrecy.

Availability Information must be readily available.

It is helpful to plan and implement your security policies before you begin using the system.
Security policies are very time consuming to change later, so a little planning now can save
a lot of time later.

This section discusses:

• Security Threats, on page 9-2

– Basic Security, on page 9-2

• File Ownership and User Groups, on page 9-4

– Changing File or Directory Ownership (chown Command), on page 9-4

– File and Directory Access Modes, on page 9-4

– Displaying Group Information (lsgroup Command), on page 9-6

– Changing File or Directory Permissions (chmod Command), on page 9-8

• Access Control Lists, on page 9-9

– Displaying Access Control Information (aclget Command), on page 9-12

– Setting Access Control Information (aclput Command), on page 9-12

– Editing Access Control Information (acledit Command), on page 9-12

• Locking Your Terminal (lock or xlock Command), on page 9-13

• Testing Files for Viruses (virscan Command), on page 9-14

• Command Summary for File and System Security, on page 9-16

9-2 AIX System User’s Guide – OS & Devices

Security Threats
Threats to information security arise from three different types of behavior:

Carelessness Information security is often violated due to the carelessness of the
authorized users of the system. If you are careless with your password,
for instance, no other security mechanisms can prevent unauthorized
access to your account and data.

Browsing Many security problems are caused by browsers–authorized users of
the system exploring the system looking for carelessly protected data.

Penetration Penetration represents deliberate attacks upon the system. An
individual trying to penetrate the system will study it for security
vulnerabilities and deliberately plan attacks designed to exploit those
weaknesses.

The last form of behavior usually represents the greatest threat to information security, but
problems caused by carelessness or browsing should not be underestimated.

Basic Security
Every system should maintain the level of security represented by these basic security
policies.

Backups
Physically secure, reliable, and up-to-date system backups are the single most important
security task. With a good system backup, you can recover from any system problems with
minimal loss. Your backup policy should be documented and include information regarding:

• How often backups will be made.

• What types of backups (system, data, or incremental) will be made.

• How backup tapes will be verified.

• How backup tapes will be stored.

For more information, see ”Backup Files and Storage Media”, on page 8-1.

Identification and Authentication
Identification and authentication establish your identity. You are required to log in to the
system. You supply your user name and a password, if the account has one (in a secure
system, all accounts should either have passwords or be invalidated). If the password is
correct, you are logged in to that account; you acquire the access rights and privilege of the
account.

Because the password is the only protection for your account, it is important that you select
and guard your password carefully. Many attempts to break into a system start with attempts
to guess passwords. The operating system provides significant password protection by
storing user passwords separately from other user information. The encrypted passwords
and other security-relevant data for users are stored in the /etc/security/passwd file. This
file should be accessible only by the root user. With this restricted access to the encrypted
passwords, an attacker cannot decipher the password with a program that simply cycles
through all possible or likely passwords.

It is still possible to guess passwords by repeatedly attempting to log in to an account. If the
password is trivial or is infrequently changed, such attacks may easily succeed.

9-3 File and System Security

Login User IDs
The operating system also identifies users by their login user ID. The login user ID allows
the system to trace all user actions to their source. After a user logs in to the system but
before running the initial user program, the system sets the login ID of the process to the
user ID found in the user database. All subsequent processes during the login session are
tagged with this ID. These tags provide a trail of all activities performed by the login user ID.

The user can reset the effective user ID, real user ID, effective group ID, real group ID, and
supplementary group ID during the session, but cannot change the login user ID.

Unattended Terminals
All systems are vulnerable if terminals are left logged in and unattended. The most serious
problem occurs when a system manager leaves a terminal unattended that has been
enabled with root authority. In general, users should log off any time they leave their
terminals.

You can force a terminal to log off after a period of inactivity by setting the TMOUT and
TIMEOUT parameters in the /etc/profile file. The TMOUT parameter works in the ksh
(Korn) shell, and the TIMEOUT parameter works in the bsh (Bourne) shell. For more
information about the TMOUT parameter, see Parameter Substitution in the Korn Shell or
POSIX Shell, on page 11-17 For more information about the TIMEOUT parameter, see
Variable and File Name Substitution in the Bourne Shell, on page 11-81

The following example, taken from a .profile file, forces the terminal to log off after an hour
of inactivity:

TO=3600

echo ”Setting Autologout to $TO”

TIMEOUT=$TO

TMOUT=$TO

export TIMEOUT TMOUT

Note: Users can override the TMOUT and TIMEOUT values in the /etc/profile file by
specifying different values in the .profile file in your home directory.

9-4 AIX System User’s Guide – OS & Devices

File Ownership and User Groups
Initially, a file’s owner is identified by the user ID of the person who created the file. The
owner of a file determines who may read, write (modify), or execute the file. Ownership can
be changed with the chown command.

Every user ID is assigned to a group with a unique group ID. The system manager creates
the groups of users when setting up the system. When a new file is created, the operating
system assigns permissions to the user ID that created it, to the group ID containing the file
owner, and to a group called others, consisting of all other users. The id command shows
your user ID (UID), group ID (GID), and the names of all groups you belong to.

In file listings (such as the listings shown by the li or ls command), the three groups of users
are always represented in the following order: user, group, and others. If you need to find
out your group name, the groups command shows all the groups for a user ID.

Changing File or Directory Ownership (chown Command)
You can change the owner of your files with the chown command.

When the –R option is specified, the chown command recursively descends through the
directory structure from the specified directory. When symbolic links are encountered, the
ownership of the file or directory pointed to by the link is changed; the ownership of the
symbolic link is not changed.

Note: Only the root user can change the owner of another file. No errors are reported
when the –f option is specified.

For example, to change the owner of the file program.c, enter:

chown jim program.c

The user access permissions for program.c now apply to jim. As the owner, jim can
use the chmod command to permit or deny other users access to program.c.

For example, to change the owner and group of all files in the directory /tmp/src to owner
john and group build, enter:

chown –R john:build /tmp/src

See the chown command in the AIX Commands Reference for the exact syntax.

File and Directory Access Modes
Every file has an owner. For new files, the user who creates the file is the owner of that file.
The owner assigns an access mode to the file. Access modes grant other system users
permission to read, modify, or execute the file. Only the file’s owner or users with root
authority can change the access mode of a file.

There are the three classes of users: user/owner, group, and all others. Access is granted to
these groups in some combination of three modes: read, write, or execute. When a new file
is created, the default permissions are read, write, and execute permission for the user who
created the file. The other two groups have read and execute permission. The following
table illustrates the default file access modes for the three sets of user groups:

Classes Read Write Execute

Owner Yes Yes Yes

Group Yes No Yes

Others Yes No Yes

Files can be read (r), written (w), or executed (x). The system determines who has
permission and the level of permission they have for each of these activities. Access modes
are represented two ways in the operating system: symbolically and numerically.

9-5 File and System Security

Symbolic Representation of Access Modes
Access modes are represented symbolically, as follows:

r Indicates read permission, which allows users to view the contents of a
file.

w Indicates write permission, which allows users to modify the contents of
a file.

x Indicates execute permission. For executable files (ordinary files that
contain programs), execute permission means that the program can be
run. For directories, execute permission means the contents of the
directory can be searched.

For example, a file with the access modes set to rwxr–xr–x gives read and execute
permission to all three groups, but write permission only to the owner of the file. This is the
symbolic representation of the default setting.

The ls command, when used with the –l (lower case L) flag, gives a detailed listing of the
current directory. The first 10 characters in the ls –l listing show the file type and
permissions for each of the three groups. The ls –l command also tells you the owner and
group associated with each file and directory.

The first character indicates the type of file. The remaining nine characters contain the file
permission information for each of the three classes of users. The following symbols are
used to represent the type of file:

– Regular files

d Directory

b Block special files

c Character special files

p Pipe special files

l Symbolic links

s Sockets.

For example, this is a sample ls –l listing:

–rwxrwxr–x 2 janet acct 512 Mar 01 13:33 january

Here, the first – (dash) indicates a regular file. Characters 2 through 4, rwx, represent the
user’s access mode (read, write, and execute). Characters 5 through 7, rwx, indicate the
group’s access modes (read, write, and execute). Characters 8 through 10, r–x, indicate
read and execute access for all other users. Dashes within the last 9 characters indicate no
permission is given.

janet is the file owner and acct is the name of Janet’s group. 512 is the file size in bytes,
Mar 01 13:33 is the last date and time of modification, and january is the file name. The
2 indicates how many links exist to the file.

9-6 AIX System User’s Guide – OS & Devices

Numeric Representation of Access Modes
Numerically, read access is represented by a value of 4, write permission is represented by
a value of 2, and execute permission is represented by a value of 1. The total value
between 1 and 7 represents the access mode for each group (user, group, and other). The
following table illustrates how to determine the numerical values for each level of access:

Total Value Read Write Execute

0 – – –

1 – – 1

2 – 2 –

3 – 2 1

4 4 – –

5 4 – 1

6 4 2 –

7 4 2 1

When a file is created, the default file access mode is 755. This means the user has read,
write, and execute permissions (4+2+1=7), the group has read and execute permission
(4+1=5), and all others have read and execute permission (4+1=5). Access permission
modes can be changed for files you own by running the chmod (change mode) command.

Displaying Group Information (lsgroup Command)
You can display the attributes of all the groups on the system or of the groups specified with
the lsgroup command. If one or more attributes cannot be read, the lsgroup command lists
as much information as possible. The attribute information displays as Attribute=Value
definitions, each separated by a blank space.

For example, to list all of the groups on the system, enter:

lsgroup ALL

The system displays each group, group ID, and all of the users in the group in a list similar
to the following:

system 0 arne,pubs,ctw,geo,root,chucka,noer,su,dea,

 backup,build,janice,denise

staff 1 john,ryan,flynn,daveb,jzitt,glover,maple,ken

 gordon,mbrady

bin 2 root,bin

sys 3 root,su,bin,sys

To display specific attributes for all groups, you can use one of two styles for listing specific
attributes for all groups:

• You can list attributes in the form Attribute=Value separated by a blank space. This
is the default style. For example, to list the ID and users for all of the groups on the
system, enter:

lsgroup –a id users ALL | pg

A list similar to the following displays:

system id=0

users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build

staff id=1 users=john,ryan,flynn,daveb,jzitt,glover,maple,ken

9-7 File and System Security

• You can also list the information in stanza format. For example, to list the ID and users for
all of the groups on the system in stanza format, enter:

lsgroup –a –f id users ALL | pg

A list similar to the following displays:

system:

 id=0

 users=pubs,ctw,geo,root,chucka,noer,su,dea,backup,build

staff:

 id=1

 users=john,ryan,flynn,daveb,jzitt,glover,maple,ken

bin:

 id=2

 users=root,bin

sys:

 id=3

 users=root,su,bin,sys

To display all attributes for a specific group, you can use one of two styles for listing specific
attributes for all groups:

• You can list each attribute in the form Attribute=Value separated by a blank space.
This is the default style. For example, to list all attributes for the group system, enter:

lsgroup system

A list similar to the following displays:

system id=0 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,

backup,build,janice,denise

• You can also list the information in stanza format. For example, to list all attributes for the
group bin in stanza format, enter:

lsgroup –f system

A list similar to the following displays:

system:

 id=0

 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,

 backup,build,janice,denise

To list specific attributes for a specific group, enter:

lsgroup –a Attributes Group

For example, to list the ID and users for group bin, enter:

lsgroup –a id users bin

A list similar to the following displays:

bin id=2 users=root,bin

See the lsgroup command in the AIX Commands Reference for the exact syntax.

9-8 AIX System User’s Guide – OS & Devices

Changing File or Directory Permissions (chmod Command)
You can modify the read, write, and execute permissions of specified files and modify the
search permission codes of specified directories with the chmod command.

For example, to add a type of permission to files chap1 and chap2, enter:

chmod g+w chap1 chap2

This adds write permission for group members to the files chap1 and chap2.

For example, to make several permission changes at once to the mydir directory, enter:

chmod go–w+x mydir

This denies (–) group members (g) and others (o) the permission to create or delete files
(w) in mydir and allows (+) group members and others to search mydir or use (x) it in a
path name. This is equivalent to the command sequence:

chmod g–w mydir

chmod o–w mydir

chmod g+x mydir

chmod o+x mydir

For example, to permit only the owner to use a shell procedure named cmd as a command,
enter:

chmod u=rwx,go= cmd

This gives read, write, and execute permission to the user who owns the file (u=rwx). It also
denies the group and others the permission to access cmd in any way (go=).

For example, to use the numeric mode form of the chmod command to change the
permissions of the file text, enter:

chmod 644 text

This sets read and write permission for the owner, and it sets read-only mode for the group
and others.

See the chmod command in the AIX Commands Reference for more information and the
exact syntax.

9-9 File and System Security

Access Control Lists
Access control is composed of protected information resources that specify who can be
granted access to such resources. The operating system allows for need-to-know or
discretionary security. The owner of an information resource can grant other users read or
write access rights for that resource. A user who is granted access rights to a resource can
transfer those rights to other users. This security allows for user-controlled information flow
in the system; the owner of an information resource defines the access permissions to the
object.

Users have user-based access only to the objects they own. Typically, users receive either
the group permissions or the default permissions for a resource. The major task in
administering access control is to define the group memberships of users, because these
memberships determine the users’ access rights to the files they do not own.

Access control lists (ACLs) increase the quality of file access controls by adding extended
permissions that modify the base permissions assigned to individuals and groups. With
extended permissions, you can permit or deny file access to specific individuals or groups
without changing the base permissions.

Note: The access control list for a file cannot exceed one memory page (approximately
4096 bytes) in size.

Access control lists are maintained by the aclget, acledit, and the aclput commands.

Although the chmod command in numeric mode (with octal notations) can set base
permissions and attributes, the chmod subroutine, which the command calls, disables
extended permissions. If you use the numeric mode of the chmod command on a file that
has an ACL, extended permissions are disabled. The symbolic mode of the chmod
command does not disable extended permissions. For information on numeric and symbolic
mode, refer to the chmod command.

Base Permissions
Base permissions are the traditional file access modes assigned to the file owner, file group,
and other users. The access modes are: read (r), write (w), and execute/search (x).

In an access control list, base permissions are in the following format, with the Mode
parameter expressed as rwx (with a dash replacing each unspecified permission):

base permissions:

 owner(name): Mode

 group(group): Mode

 others: Mode

Attributes
Three attributes can be added to an access control list: setuid (SUID), setgid (SGID), and
savetext (SVTX). These attributes are in the following format:

attributes: SUID, SGID, SVTX

Extended Permissions
Extended permissions give the owner of a file the ability to define access to that file more
precisely. Extended permissions modify the base file permissions (owner, group, others) by
permitting, denying, or specifying access modes for specific individuals, groups, or user and
group combinations.

9-10 AIX System User’s Guide – OS & Devices

The permit, deny, and specify keywords are defined as follows:

permit Grants the user or group the specified access to the file.

deny Restricts the user or group from using the specified access to the file.

specify Precisely defines the file access for the user or group.

If a user is denied a particular access by either a deny or a specify keyword, no other entry
can override that access denial.

The enabled keyword must be specified in the access control list (ACL) for the extended
permissions to take effect. The default value is the disabled keyword.

In an ACL, extended permissions are in the following format:

extended permissions:

 enabled | disabled

 permit Mode UserInfo...:

 deny Mode UserInfo...:

 specify Mode UserInfo...:

Use a separate line for each permit, deny, or specify entry. The Mode parameter is
expressed as rwx (with a dash replacing each unspecified permission). The UserInfo
parameter is expressed as u:UserName, or g:GroupName, or a comma-separated
combination of u:UserName and g:GroupName.

Note: If more than one user name is specified in an entry, that entry cannot be used in an
access control decision, because a process has only one user ID.

Access Control List Example
The following is an example of an ACL:

attributes: SUID

base permissions:

 owner(frank): rw–

 group(system): r–x

 others: –––

extended permissions:

 enabled

 permit rw– u:dhs

 deny r–– u:chas, g:system

 specify r–– u:john, g:gateway, g:mail

 permit rw– g:account, g:finance

The parts of the ACL and their meanings are the following:

• The first line indicates that the setuid bit is turned on.

• The next line, which introduces the base permissions, is optional.

• The next three lines specify the base permissions. The owner and group names in
parentheses are for information only. Changing these names does not alter the file owner
or file group. Only the chown command and the chgrp command can change these file
attributes.

• The next line, which introduces the extended permissions, is optional.

• The next line specifies that the extended permissions that follow are enabled.

• The last four lines are the extended entries. The first extended entry grants user dhs
read (r) and write (w) permission on the file.

• The second extended entry denies read (r) access to user chas when he is a member of
the system group.

9-11 File and System Security

• The third extended entry specifies that as long as user john is a member of both the
gateway group and the mail group, he can have read (r) access. If user john is not a
member of both groups, this extended permission does not apply.

• The last extended entry grants any user in both the account group and the finance
group read (r) and write (w) permission.

Note: More than one extended entry can be applied to a process, with restrictive
modes taking precedence over permissive modes.

See the acledit command in the AIX Commands Reference for the exact syntax.

Access Authorization
Managing access rights is the responsibility of the owner of the information resource.
Resources are protected by permission bits, which are included in the mode of the object.
The permission bits define the access permissions granted to the owner of the object, the
group of the object, and for the others default class. The operating system supports three
different modes of access (read, write, and execute) that can be granted separately.

When a user logs in to an account (using the login or su commands), the user IDs and
group IDs assigned to that account are associated with the user’s processes. These IDs
determine the access rights of the process.

For files, directories, named pipes, message queues, shared memory segments,
semaphores, and devices (special files), access is authorized as follows:

• For each access control entry (ACE) in the access control list (ACL), the identifier list is
compared to the identifiers of the process. If there is a match, the process receives the
permissions and restrictions defined for that entry. The logical unions for both
permissions and restrictions are computed for each matching entry in the ACL. If the
requesting process does not match any of the entries in the ACL, it receives the
permissions and restrictions of the default entry.

• If the requested access mode is permitted (included in the union of the permissions) and
is not restricted (included in the union of the restrictions), access is granted; otherwise, it
is denied.

A process with a user ID of 0 is known as a root user process. These processes are
generally allowed all access permissions. But if a root user process requests execute
permission for a program, access is granted only if execute permission is granted to at least
one user.

The identifier list of an ACL matches a process if all identifiers in the list match the
corresponding type of effective identifier for the requesting process. A USER-type identifier
matched is equal to the effective user ID of the process, and a GROUP-type identifier
matches if it is equal to the effective group ID of the process or to one of the supplementary
group IDs. For instance, an ACE with an identifier list such as:

USER:fred, GROUP:philosophers, GROUP:yankee_fans

would match a process with an effective user ID of fred and a group set of:

philosophers, philanthropists, yankee_fans, good_sports

but would not match for a process with an effective user ID of fred and a group set of:

philosophers, iconoclasts, redsox_fans, poor_sports

Note that an ACE with an identifier list of the following would match for both processes:

USER:fred, GROUP:philosophers

In other words, the identifier list in the ACE functions is a set of conditions that must hold for
the specified access to be granted.

All access permission checks for these objects are made at the system call level when the
object is first accessed. Since SVIPC objects are accessed statelessly, checks are made for
every access. For objects with file system names, it is necessary to be able to resolve the

9-12 AIX System User’s Guide – OS & Devices

name of the actual object. Names are resolved either relatively (to the process’ working
directory) or absolutely (to the process’ root directory). All name resolution begins by
searching one of these.

The discretionary access control mechanism allows for effective control of access to
information resources and provides for separate protection of the confidentiality and integrity
of the information. Owner-controlled access control mechanisms are only as effective as
users make them. All users must understand how access permissions are granted and
denied and how these are set.

Displaying Access Control Information (aclget Command)
You can display the access control information of a file with the aclget command. The
information that you view includes attributes, base permissions, and extended permissions.

For example, to display the access control information for the status file, enter:

aclget status

The access control information that displays includes a list of attributes, base permissions,
and extended permissions. For an example, see Access Control List Example, on page
9-10.

For example, to save the access control information of the plans file in the acl1 file to edit
and use later, enter:

aclget –o acl1 plans

See the aclget command in the AIX Commands Reference for the exact syntax.

Setting Access Control Information (aclput Command)
You can set the access control information of a file with the aclput command.

Note: The access control list for a file cannot exceed one memory page (approximately
4096 bytes) in size.

For example, to set the access control information for the status file with information
stored in the acldefs file, enter:

aclput –i acldefs status

For example, to set the access control information for the status file with the same
information used for the plans file, enter:

aclget plans | aclput status

See the aclput command in the AIX Commands Reference for the exact syntax.

Editing Access Control Information (acledit Command)
You can change the access control information of a file with the acledit command. The
command displays the current access control information and lets the file owner change it.
Before making any changes permanent, the command asks if you want to proceed.

Note: The EDITOR environment variable must be specified with a complete path name;
otherwise, the acledit command will fail.

The access control information that displays includes a list of attributes, base permissions,
and extended permissions. For an example, see Access Control List Example, on page
9-10.

For example, to edit the access control information of the plans file, enter:

acledit plans

See the acledit command in the AIX Commands Reference for the exact syntax.

9-13 File and System Security

Locking Your Terminal (lock or xlock Command)
You can lock your terminal with the lock command. The lock command requests a
password from the user, reads it, and requests the password a second time to verify it. In
the interim, the command locks the terminal and does not relinquish it until the password is
received the second time. The timeout default value is 15 minutes, but this can be changed
with the –Number flag.

Note: If your interface is AIXwindows use the xlock command in the same manner.

For example, to lock your terminal under password control, enter:

lock

You are prompted for the password twice so the system can verify it. If the password is not
repeated within 15 minutes, the command times out.

For example, to reserve a terminal under password control, with a timeout interval of 10
minutes, enter:

lock –10

See the lock or the xlock command in the AIX Commands Reference for the exact syntax.

9-14 AIX System User’s Guide – OS & Devices

Testing Files for Viruses (virscan Command)
The virscan command is designed to detect many common computer viruses. It scans
executable files, looking for signatures of viruses known when this version of the program
was made available. A signature is a bit-pattern that is found in a particular virus. Virus
signatures are obtained by performing ”reverse engineering” on virus samples. To find virus
signatures, the files that are scanned by the virscan program must be in their native
executable form (not encrypted and not packed).

Note: The virscan command does not remove viruses, inhibit virus propagation, or
recover any damage caused by viruses to programs or data. If you suspect that your
computer system may be infected by a computer virus, contact the appropriate help
desk, system administrator, or area information coordinator.

The virscan command scans files looking for bit-patterns matching the virus signatures.
There may be viruses that currently exist, or that will exist in the future, that this program will
not detect. There is no available, guaranteed solution to the computer virus problem.
Therefore, it is recommended that data be backed up regularly and that caution is exercised
in acquiring and using software.

For example, to scan for viruses in the /usr file system, enter:

virscan /usr

For further information on virscan and to view the online help, enter virscan without any
arguments. To display a complete list of the available command-line options, enter:

virscan –h

See the virscan command in the AIX Commands Reference for the exact syntax.

Signature Files Format
The virscan command uses the virus signatures found in the virsig.lst and the
addenda.lst files, if present, to scan for viruses.

In both files, comment lines begin with an asterisk (*). The virscan command does not use
these lines in its virus scan. Comment lines are used to give additional, human-readable
comments about the information in the signature files.

The body of the file consists of entries that tell the virscan command what to do for each
virus. Each entry is made up of three lines:

1. The first entry should consist of a hexadecimal string that the virscan command looks
for to determine if a particular virus is contained in the file. The following
recommendations are made for signatures:

– Use at least 24 hexadecimal digits (that is, at least 12 bytes) in any signature that is
added to the addenda.lst file, and more whenever possible. Shorter signatures have a
larger chance of leading to false reports of viruses.

– Take the signature from a code area of the virus, rather than a data area, to minimize
the possibility of false alarms.

– Test new signatures against a number of programs before using them widely to ensure
that no common programs give false alarms for the signature.

To indicate that a specified byte position in the signature string can have any value, use
two question mark characters (??) in place of a pair of hexadecimal characters
representing a signature byte. This indicates that the specified byte position in the
signature string may have any value. Do not count the ?? bytes when following the
signature length guidelines. If a signature string has any ?? substrings in it, no scan for
variations on the signature is performed, even if the –m flag is used. If a signature string
has any ?? strings in it, any FF values in the signature string will be treated as ?? bytes.

9-15 File and System Security

2. The second entry should contain a message that is displayed if the string is found in the
specified files. This message indicates that the virus was found. The text of this message
can be in either uppercase or lowercase characters.

3. The third entry should contain one or more strings that indicate what the virscan
command should do if the signature is found. These strings are as follows:

EXE Tells the virscan command that it should display the indicated message
if the signature is found in an executable file.

Offset The next string after Offset (delimited by blanks) must be a numeric
string and is used as an integer offset into the object file at which the
virus signature is expected to be found. If the signature is found
elsewhere, the indicated message will not be displayed.

No mutants Tells the virscan command to not search for variations on this virus
even when the –m flag is used. If a signature is found to be prone to
false alarms when the –m flag is used, this string will eliminate the false
alarms.

For example, suppose that a new virus, called Purple Virus, is discovered. This virus is
found to infect executables, and you determined that the following string appears in every
copy of the virus:

EA6061626364786566676869716A6B6C6D6E516FC0C1C8C958D6F1

The following lines could be added to the addenda.lst file to scan for this virus:

*

* Entry for the nonexistent Purple Virus (just an example)

*

EA6061626364786566676869716A6B6C6D6E516FC0C1C8C958D6F1

A file on this disk may have the Purple Virus.

(EXE)

Adding Additional Virus Signatures
To scan for signatures other than those in the virsig.lst file, perform the following:

1. Create a file named addenda.lst containing the new signatures.

2. Place the addenda.lst file in the /usr/lib/security/scan directory so the virscan
command can find it. If the virscan command can find the addenda.lst file, it loads it
with the virsig.lst file.

3. Use the –v flag option to verify that virscan is loading the addenda.lst file correctly.

The addenda.lst file follows the same format as the virsig.lst file.

9-16 AIX System User’s Guide – OS & Devices

Command Summary for File and System Security

acledit Edits the access control information of a file.

aclget Displays the access control information of a file.

aclput Sets the access control information of a file.

chmod Changes permission modes.

chown Changes the user associated with a file.

lock Reserves a terminal.

lsgroup Displays the attributes of groups.

virscan Scans files for viruses.

xlock Locks the local X display until a password is entered.

10-1 User Environment Customization

Chapter 10. Customizing the User Environment

The AIX operating system provides various commands and initialization files that enable you
to customize the behavior and the appearance of your user environment to your
preferences.

Some of the default resources of the applications you use on your system can also be
customized. Defaults are initiated by the program at startup. When you change the defaults,
you must exit and then restart the program to see the new defaults in effect.

Common Desktop Environment 1.0: Advanced User’s and System Administrator’s Guide
provides detailed information about customizing the behavior and appearance of the CDE
Desktop.

This section discusses:

• AIX Support for the X/Open UNIX95 Specification, on page 10-2

• System Startup Files Overview, on page 10-3

– /etc/profile File

– /etc/environment File

– .profile File

– .env File

• AIXwindows Startup Files Overview, on page 10-6

– .xinitrc File

– .Xdefaults File

– .mwmrc File

• Customization Procedures, on page 10-11

– Exporting Shell Variables (export Shell Command), on page 10-11

– Changing the Display’s Font (chfont Command), on page 10-11

– Changing Control Keys (stty Command), on page 10-12

– Changing Your System Prompt, on page 10-12

• Customizing the InfoExplorer Windows Program, on page 10-13

• Summary for Customizing the User Environment, on page 10-16

Related Information
User Environment and System Information

Commands Overview

Processes Overview

File Systems Overview

Directory Overview

Files Overview

File and System Security

System Initialization Files Overview

10-2 AIX System User’s Guide – OS & Devices

Customization Procedures

Customizing the InfoExplorer ASCII Program

Shells Overview

Korn Shell or POSIX Shell

Bourne Shell

C Shell

AIX Support for the X/Open UNIX95 Specification
Beginning with AIX Version 4.2.2, the operating system is designed to support the X/Open
UNIX95 Specification for portability of UNIX–based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Beginning with Version 4.2, AIX is even more open and portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per–system, per–user, or per–process basis.

The default AIX environment is one that maintains compatibility with previous AIX releases.
To obtain an environment designed to conform to the UNIX95 specification, the environment
variable XPG_SUS_ENV must be assigned the value ON. If XPG_SUS_ENV is set to any
other value, or is unset, the default AIX behavior will be used.

When XPG_SUS_ENV is set, every program in that environment will operate in the
UNIX95–specified operating system environment. It is possible that some applications
compiled for the AIX environment (perhaps for an earlier version of AIX) will not operate
correctly when XPG_SUS_ENV is set.

10-3 User Environment Customization

System Startup Files Overview
When you log in, the shell defines your user environment after reading the initialization files
that you have set up. The characteristics of your user environment are defined by the values
given to your environment variables. You maintain this environment until you log off the
system.

The shell uses two types of profile files when you log in to the operating system. It evaluates
the commands contained in the files and then executes the commands to set up your
system environment. The files have similar functions except that the /etc/profile file controls
profile variables for all users on a system whereas the .profile file allows you to customize
your own environment.

The shell first evaluates the commands contained in the /etc/profile file and then runs the
commands to set up your system environment in the /etc/environment file. After these files
are run, the system then checks to see if you have a .profile file in your home directory. If
the .profile file exists, it runs this file. The .profile file will specify if there also exists an
environment file. If an environment file exists, (usually called .env), the system then runs
this file and sets up your environment variables.

The /etc/profile, /etc/environment, and the .profile files are run once at login time. The
.env file, on the other hand, is run every time you open a new shell or a window.

This section discusses the following initialization files:

• /etc/profile File

• /etc/environment File

• .profile File

• .env File

/etc/profile File
The first file that the operating system uses at login time is the /etc/profile file. This file
controls systemwide default variables such as:

• Export variables

• File creation mask (umask)

• Terminal types

• Mail messages to indicate when new mail has arrived.

The system administrator configures the profile file for all users on the system. Only the
system administrator can change this file.

The following example is typical of an /etc/profile file:

#Set file creation mask

unmask 022

#Tell me when new mail arrives

MAIL=/usr/mail/$LOGNAME

#Add my /bin directory to the shell search sequence

PATH=/usr/bin:/usr/sbin:/etc::

#Set terminal type

TERM=lft

#Make some environment variables global

export MAIL PATH TERM

See .profile File Format in the AIX Files Reference for detailed information about the
/etc/profile file.

10-4 AIX System User’s Guide – OS & Devices

/etc/environment File
The second file that the operating system uses at login time is the /etc/environment file.
The /etc/environment file contains variables specifying the basic environment for all
processes. When a new process begins, the exec subroutine makes an array of strings
available that have the form Name=Value. This array of strings is called the environment.
Each name defined by one of the strings is called an environment variable or shell variable.
The exec subroutine allows the entire environment to be set at one time.

When you log in, the system sets environment variables from the environment file before
reading your login profile, .profile. The following variables make up the basic environment:

HOME The full path name of the user’s login or HOME directory. The login
program sets this to the name specified in the /etc/passwd file.

LANG The locale name currently in effect. The LANG variable is initially set in
the /etc/profile file at installation time.

NLSPATH The full path name for message catalogs.

LOCPATH The full path name of the location of National Language Support tables.

PATH The sequence of directories that commands, such as sh, time, nice
and nohup, search when looking for a command whose path name is
incomplete.

TZ The time zone information. The TZ environment variable is initially set
by the /etc/profile file, the system login profile.

See .environment File in the AIX Files Reference for detailed information about the
/etc/environment file.

.profile File
The third file that the operating system uses at login time is the .profile file. The .profile file
is present in your home ($HOME) directory and enables you to customize your individual
working environment. Because the .profile file is hidden, use the li –a command to list it.

After the login program adds the LOGNAME (login name) and HOME (login directory)
variables to the environment, the commands in the $HOME/.profile file are executed if the
file is present. The .profile file contains your individual profile that overrides the variables
set in the /etc/profile file. The .profile file is often used to set exported environment
variables and terminal modes. You can tailor your environment as desired by modifying the
.profile file. Use the .profile file to control the following defaults:

• Shells to open

• Prompt appearance

• Keyboard sound.

The following example shows a typical .profile file:

PATH=/usr/bin:/etc:/home/bin1:/usr/lpp/tps4.0/user::

epath=/home/gsc/e3:

export PATH epath

csh

This example has defined two path variables (PATH and epath), exported them, and
opened a C shell (csh).

You can also use the .profile file (or if it is not present, the /etc/profile file) to determine
login shell variables. You can also customize other shell environments. For example, use
the .cshrc file and .kshrc file to tailor a C shell and a Korn shell, respectively, when each
type of shell is started.

10-5 User Environment Customization

.env File
A fourth file that the operating system uses at login time is the .env file, if your .profile has
the following line: export ENV=$HOME/.env

The .env file enables you to customize your individual working environment variables.
Because the .env file is hidden, use the li –a command to list it. The .env file contains the
individual user environment variables that override the variables set in the
/etc/environment file. You can tailor your environment variables as desired by modifying
your .env file. The following example shows a typical .env file:

export myid=‘id | sed –n –e ’s/).*$//’ –e ’s/^.*(//p’‘ \

 bold=‘tput smso‘ \

 norm=‘tput rmso‘

#set prompt: login & system name (reverse video) & path (normal)

if [$myid = root]

 then typeset –x PSCH=’${bold}#:${norm}\${PWD}> ’

 PS1=”${bold}#:${norm}\${PWD}> ”

 else typeset –x PSCH=’>’

 PS1=”${bold}$LOGNAME@$UNAME:${norm}\${PWD}> ”

 PS2=”>”

 PS3=”#?”

fi

export PS1 PS2 PS3

#setup my command aliases

alias ls=”/bin/ls –CF” \

 d=”/bin/ls –Fal | pg” \

 rm=”/bin/rm –i” \

 up=”cd ..”

Note: When modifying the .env file, ensure that newly created environment variables do
not conflict with standard variables such as MAIL, PS1, PS2, and IFS.

10-6 AIX System User’s Guide – OS & Devices

AIXwindows Startup Files Overview
When working in a graphical window environment, there are also certain initialization files
the system uses.

Because different computer systems have different ways of starting the X server and
AIXwindows, you should consult with your system administrator to learn how to get started.
Usually, the X server and AIXwindows are started from a shell script that runs automatically
when you log in. You may, however, find that you need to start the X server or AIXwindows
or both.

If you log in and find that your display is functioning as a single terminal, with no windows
displayed, you can start X by entering:

xinit

If this command does not start X, check with your system administrator to ensure that the
X11 directory containing executable programs is in your search path. The appropriate path
may differ from one system to another.

If you log in and find one or more windows without frames, you can start AIXwindows
Window Manager by entering:

mwm &

Note: Before entering this command, make sure that the pointer rests within a window that
has a system prompt.

Because AIXwindows permits plenty of customization both by programmers writing
AIXwindows applications and by users, you may find that mouse buttons or other functions
do not operate as you might expect from reading this documentation. You can reset your
AIXwindows environment to the default behavior by pressing and holding the following four
keys:

Alt–Ctrl–Shift–!

You can return to the customized behavior by pressing this key sequence again. If your
system does not permit this combination of keystrokes, you can also restore default
behavior from the default root menu.

This section discusses the following initialization files:

• .xinitrc File

• .Xdefaults File

• .mwmrc File

.xinitrc File
The xinit command uses a customizable shell script file that lists the X client programs to
start. The .xinitrc file in your home directory controls the windows and applications that start
up when you start AIXwindows.

The xinit command first looks for the $XINITRC environment variable to start AIXwindows.
If the $XINITRC environment variable is not found, it looks for the $HOME/.xinitrc shell
script. If the $HOME/.xinitrc shell script is not found, the xinit command starts the
/usr/lib/X11/$LANG/xinitrc shell script. If /usr/lib/X11/$LANG/xinitrc is not found, it looks
for the /usr/lpp/X11/defaults /$LANG/xinitrc shell script. If that script is not found, it
searches for the /usr/lpp/X11/defaults/xinitrc shell script.

The xinitrc shell script starts commands, such as the mwm (AIXwindows Window
Manager), aixterm, and xclock commands.

The xinit command performs the following operations:

• Starts an X Server on the current display.

10-7 User Environment Customization

• Sets up the $DISPLAY environment variable.

• Runs the xinitrc file to start the X client programs.

• Automatically loads the Display PostScript (DPS) extension.

Note: To prevent DPS from automatically loading, the /usr/lpp/X11/xinit file must be
modified.

The following example shows the part of the xinitrc file you can customize:

This script is invoked by /usr/lpp/X11/bin/xinit

.

.

.

#***

Start the X clients. Change the following lines to *

whatever command(s) you desire! *

The default clients are an analog clock (xclock), an lft *

terminal emulator (aixterm), the X Desktop Manager (xdt), *

and the Motif Window Manager (mwm). *

#***

If not X–Station then invoke the DPS copyright

if [–z ”$XSTATION”]

then

 /usr/lpp/DPS/bin/copyright –x &

fi

aixterm =80x25+0–0 –fg Wheat –bg MidnightBlue &

if [–z ”$XSTATION”]

then

 sleep 3 # allow for DPS copyright to show up

fi

if [–x /usr/lpp/X11/bin/xdt3]

then

 /usr/lpp/X11/bin/xdt3 &

fi

exec mwm

.Xdefaults File
If you work in an AIXwindows interface, you can customize this interface with the .Xdefaults
file. AIXwindows allows you to specify your preferences for visual characteristics, such as
colors and fonts.

Many aspects of a windows-based application’s appearance and behavior are controlled by
sets of variables called resources. The visual or behavioral aspect of a resource is
determined by its assigned value. There are several different types of values for resources.
For example, resources that control color can be assigned predefined values such as
DarkSlateBlue or Black. Resources that specify dimensions are assigned numeric values.
Some resources take Boolean values (True or False).

If you do not have a .Xdefaults file in your home directory, you can create one with any text
editor. Once you have this file in your home directory, you can set resource values in it as
you wish. A sample default file called Xdefaults.tmpl is in the /usr/lpp/X11/defaults
directory.

10-8 AIX System User’s Guide – OS & Devices

The following example shows part of a typical .Xdefaults file:

*AutoRaise: on

*DeIconifyWarp: on

*warp:on

*TitleFont:andysans12

*scrollBar: true

*font: Rom10.500

Mwm*menu*foreground: black

Mwm*menu*background: CornflowerBlue

Mwm*menu*RootMenu*foreground: black

Mwm*menu*RootMenu*background: CornflowerBlue

Mwm*icon*foreground: grey25

Mwm*icon*background: LightGray

Mwm*foreground: black

Mwm*background: LightSkyBlue

Mwm*bottomShadowColor: Blue1

Mwm*topShadowColor: CornflowerBlue

Mwm*activeForeground: white

Mwm*activeBackground: Blue1

Mwm*activeBottomShadowColor: black

Mwm*activeTopShadowColor: LightSkyBlue

Mwm*border: black

Mwm*highlight:white

aixterm.foreground: green

aixterm.background: black

aixterm.fullcursor: true

aixterm.ScrollKey: on

aixterm.autoRaise: true

aixterm.autoRaiseDelay: 2

aixterm.boldFont:Rom10.500

aixterm.geometry: 80x25

aixterm.iconFont: Rom8.500

aixterm.iconStartup: false

aixterm.jumpScroll: true

aixterm.reverseWrap: true

aixterm.saveLines: 500

aixterm.scrollInput: true

aixterm.scrollKey: false

aixterm.title: AIX

.mwmrc File
Most of the features that you want to customize can be set with resources in your
.Xdefaults file. However, key bindings, mouse button bindings, and menu definitions for
your window manager are specified in the supplementary .mwmrc file, which is referenced
by resources in the .Xdefaults file.

If you do not have a .mwmrc file in your home directory, you can copy it as follows:

cp /usr/lib/X11/system.mwmrc .mwmrc

Because the .mwmrc file overrides the systemwide effects of the system.mwmrc file, your
specifications do not interfere with the specifications of other users.

10-9 User Environment Customization

The following example shows part of the typical system.mwmrc file:

DEFAULT mwm RESOURCE DESCRIPTION FILE (system.mwmrc)

#

menu pane descriptions

#

Root Menu Description

Menu RootMenu

{ ”Root Menu” f.title

 no–label f.separator

 ”New Window” f.exec ”aixterm &”

 ”Shuffle Up” f.circle_up

 ”Shuffle Down” f.circle_down

 ”Refresh” f.refresh

 no–label f.separator

 ”Restart” f.restart

 ”Quit” f.quit_mwm

}

Default Window Menu Description

Menu DefaultWindowMenu MwmWindowMenu

{ ”Restore” _R Alt<Key>F5 f.normalize

 ”Move” _M Alt<Key>F7 f.move

 ”Size” _S Alt<Key>F8 f.resize

 ”Minimize” _n Alt<Key>F9 f.minimize

 ”Maximize” _x Alt<Key>F10 f.maximize

 ”Lower” _L Alt<Key>F3 f.lower

 no–label f.separator

 ”Close” _C Alt<Key>F4 f.kill

}

no acclerator window menu

Menu NoAccWindowMenu

{

 ”Restore” _R f.normalize

 ”Move” _M f.move

 ”Size” _S f.resize

 ”Minimize” _n f.minimize

 ”Maximize” _x f.maximize

 ”Lower” _L f.lower

 no–label f.separator

 ”Close” _C f.kill

}

Keys DefaultKeyBindings

{

 Shift<Key>Escape icon|window f.post_wmenu

 Meta<Key>space icon|window f.post_wmenu

 Meta<Key>Tab root|icon|window f.next_key

 Meta Shift<Key>Tab root|icon|window f.prev_key

 Meta<Key>Escape root|icon|window f.next_key

 Meta Shift<Key>Escape root|icon|window f.prev_key

 Meta Ctrl Shift<Key>exclam root|icon|window f.set_behavior

}

#

button binding descriptions

#

10-10 AIX System User’s Guide – OS & Devices

Buttons DefaultButtonBindings

{

 <Btn1Down> frame|icon f.raise

 <Btn3Down> frame|icon f.post_wmenu

 <Btn1Down> root f.menu RootMenu

 <Btn3Down> root f.menu RootMenu

 Meta<Btn1Down> icon|window f.lower

 Meta<Btn2Down> window|icon f.resize

 Meta<Btn3Down> window f.move

}

Buttons PointerButtonBindings

{

 <Btn1Down> frame|icon f.raise

 <Btn2Down> frame|icon f.post_wmenu

 <Btn3Down> frame|icon f.lower

 <Btn1Down> root f.menu RootMenu

 Meta<Btn2Down> window|icon f.resize

 Meta<Btn3Down> window|icon f.move

}

#

END OF mwm RESOURCE DESCRIPTION FILE

#

10-11 User Environment Customization

Customization Procedures
There are many ways to customize your system environment. This section discusses the
following procedures:

• Exporting Shell Variables (export Shell Command), on page 10-11

• Changing the Display’s Font (chfont Command), on page 10-11

• Changing Control Keys (stty Command), on page 10-12

• Changing Your System Prompt, on page 10-12

Exporting Shell Variables (export Shell Command)
A local shell variable is a variable known only to the shell that created it. If you start a new
shell, the old shell’s variables are unknown to it. If you want the new shells that you open to
know the variables from an old shell, you need to make the variables global by exporting
them.

You can use the export command to make local variables global. To make your local shell
variables global automatically, export them in your .profile file.

Note: Variables can be exported down to child shells but not exported up to parent shells.

For example, to make the local shell variable PATH global, enter:

export path

For example, to list all your exported variables, enter:

export

The system displays information similar to the following:

DISPLAY=unix:0

EDITOR=vi

ENV=$HOME/.env

HISTFILE=/u/denise/.history

HISTSIZE=500

HOME=/u/denise

LANG=En_US

LOGNAME=denise

MAIL=/usr/mail/denise

MAILCHECK=0

MAILMSG=**YOU HAVE NEW MAIL. USE THE mail COMMAND TO SEE YOUR

MAILPATH=/usr/mail/denise?denise has mail !!!

MAILRECORD=/u/denise/.Outmail

PATH=/usr/ucb:/usr/lpp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/denise/bin:

/u/bin1

PWD=/u/denise

SHELL=/bin/ksh

Changing the Display’s Font (chfont Command)
You can change the default font at system startup with the chfont or smit command. A font
palette is a file that the system uses to define and identify the fonts it has available.

Note: You must have root authority to run the chfont command.

chfont Command
For example, to change the active font to the fifth font in the font palette, enter:

chfont –a5

Font ID 5 becomes the primary font.

10-12 AIX System User’s Guide – OS & Devices

For example, to change the font to an italic, roman, and bold face of the same size, enter:

chfont –n /usr/lpp/fonts/It114.snf /usr/lpp/fonts/Bld14.snf

/usr/lpp/fonts/Rom14.snf

See the chfont command in the AIX Commands Reference for more information and the
exact syntax. See also Listing the Available Fonts (lsfont Command), on page 2-4

smit Command
The chfont command can also be run using smit.

To select the active font, enter:

smit chfont

To select the font palette, enter:

smit chfontpl

Changing Control Keys (stty Command)
You can change the keys your terminal uses for control keys with the stty command. Your
changes to control keys last until you log off. To make your changes permanent, place them
in your .profile file.

For example, to assign Ctrl–Z as the interrupt key, enter:

stty intr ^Z

For example, to reset all control keys to their default values, enter:

stty sane

For example, to display your current settings, enter:

stty –a

See the stty command in the AIX Commands Reference for the exact syntax.

Changing Your System Prompt
Your shell uses three prompt variables:

PS1 Prompt used as the normal system prompt.

PS2 Prompt used when the shell expects more input.

PS3 Prompt used when you have root authority.

You can change any of your prompt characters by changing the value of its shell variable.
Your changes to your prompts last until you log off. To make your changes permanent, place
them in your .env file.

For example, to display the current value of the PS1 variable, enter:

echo ”prompt is $PS1”

The system displays information similar to the following:

prompt is $

For example, to change your prompt to Ready> , enter:

PS1=”Ready> ”

For example, to change your continuation prompt to Enter more–> , enter:

PS2=”Enter more–>”

For example, to change your root prompt to Root–> , enter:

PS3=”Root–> ”

10-13 User Environment Customization

Customizing the InfoExplorer Windows Program
You can customize the InfoExplorer program by setting defaults and preferences. For
example, you can specify which information bases and printer to use by default. You can
also specify such things as the number of history events to track and the type of print
output.

The primary difference between defaults and preferences is that the InfoExplorer program
initiates defaults at startup. When setting defaults, you must exit and restart the program to
have the changes take effect (except for default printer settings). When setting preferences,
the changes take place immediately.

The following sections describe customizing the InfoExplorer Window Interface:

• Changing Defaults in the InfoExplorer Window Interface, on page 10-13

• Changing Preferences in the InfoExplorer Window Interface, on page 10-14

Changing Defaults in the InfoExplorer Window Interface
In InfoExplorer, you can set many defaults. The InfoExplorer program uses the default
settings at startup. Use the Defaults option in the Options pull-down menu to set defaults
for:

• Window size

• Navigation article

• Bookmark, history, and note files

• Note template file

• Search databases

• Printers

Changing the Default Window Size
When you start the InfoExplorer program, window size is determined by system default. You
can customize the default window size to suit your needs. Specifically, you can set the
default window size for navigation and reading windows using the Window Size option in
the Options pull-down menu. The new default then determines the window size for current
and future InfoExplorer sessions.

For procedural information, see Setting Window Size with the InfoExplorer Program
(InfoExplorer Help). For information on changing window size using the .Xdefaults file, see
Setting Window Size with X Resources (InfoExplorer Help).

Designating a Default Navigation Article
By system default, the InfoExplorer program initially displays the Topic & Task Index as the
primary navigation article. You can change this default to the navigation article that best
suits your purposes. Then, at startup, the InfoExplorer program automatically displays the
new default navigation article.

For procedural information, see Setting Defaults (InfoExplorer Windows).

Designating Default Files
You may want a trainee to follow a specific path while using the InfoExplorer program, or
you may want to retrace your path from a previous session. To handle this, you can
designate a specific history file as the default history file. Then, when you use the History
option, the default history file leads you or the trainee down the designated path.

You can also designate a bookmarks file or a notes file as the default bookmarks or notes
file and follow those specific paths in subsequent sessions.

For procedural information, see Setting Defaults (InfoExplorer Help).

10-14 AIX System User’s Guide – OS & Devices

Designating a Default Note Template File
When you create a note in InfoExplorer, the note editor window is initially blank. You can
type the note into the blank window or paste in selected text from the reading window. To
use a specific form when writing notes, you can specify a note template. If you have built
and saved many note templates, you can designate one of them as the default. Then, when
you use the Note option, the InfoExplorer program displays the default note template.

For procedural information, see Setting Defaults (InfoExplorer Help).

Changing the Default Search Information Base
By default, when you search with the InfoExplorer program, the search includes all
information bases loaded with the program. However, it is not always necessary to include
every information base in your search. To make your searches more efficient, you can
specify which information bases to search during current and future sessions. You can also
easily reset the selection to its original form (system default) so that the information bases
loaded with the program are again included in a search.

For procedural information, see Setting Defaults (InfoExplorer Help).

Designating Default Printers
You may have printers that are better suited for artwork or pretty print. The Pretty Print
option uses the troff program to convert a document to output for a phototypesetter. With
the InfoExplorer program, you can designate a default printer for each of the different types
of print: simple (text print), pretty (more elaborate print, retaining text font and style
characteristics), or artwork. When you issue a print command for a screen containing one
type of print or artwork, the printer you have designated automatically receives that
particular command.

For example, when you choose the Print Graphic option of the info pull-down menu, the
print job is automatically sent to the printer you designated for artwork.

Note: The troff document-formatting program must be installed on your system before you
can use the pretty print feature.

For procedural information, see Setting Defaults (InfoExplorer Help).

Changing Preferences in the InfoExplorer Window Interface
In InfoExplorer, you can set many preferences. You use the Preferences option in the
Customize pull-down menu to set defaults for:

• Font size

• Artwork display

• Auto-holding articles

• Print article

• History event size

• Preferred library

Changing the Font Size
If the font size in the reading and navigation windows is too large or too small, you can
change the default font size. The system default font size is medium. However, you can
change it to X-small, small, large, or X-large. You can then apply the changes to the current
session or both current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).

10-15 User Environment Customization

Changing the Artwork Display
Some hypertext articles have artwork. You determine whether to display this artwork in an
artwork window or in the reading window. To do this, you select one of the Inline, Separate
Window, or Don’t Care options of the Customize pull-down menu. If you choose the Don’t
Care option, artwork appears in a separate artwork window unless specifically designed to
appear in the reading window.

After determining how to display artwork, you can apply the changes to the current session
only or to current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).

Auto–Holding Articles
The Auto-Hold option of the Customize pull-down menu determines whether the
InfoExplorer program opens a new reading window for each new article. By system default,
the InfoExplorer program replaces the contents of a reading window when you link to
another article. To keep articles open as you move through the information base, you use
the Auto-Hold option. When you set the Auto-Hold option to On, you can follow links
without losing the articles from which you have linked. You can apply the changes to the
current session only or to current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).

Designating Print Article
You can select between Simple Print and Pretty Print. Simple Print does not support
graphics. The Pretty Print option uses the troff program to convert a document to output
for a phototypesetter.

For procedural information, see Setting Preferences (InfoExplorer Help).

Changing the History Event Size
A history list can range in size from 0 (zero) to 500 events. For example, if the history list
size is set at 10 events, the history list contains your last 10 links.

The system default for the history event size is 100 events. You can change the default size
to fit your particular situation. You can then apply the changes to the current session only or
to current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).

Changing the Preferred Library
You can designate one of the defined libraries as a ”preferred library” to be used if
InfoExplorer is started without a library specified at the command line.

For procedural information, see Setting Preferences (InfoExplorer Help).

10-16 AIX System User’s Guide – OS & Devices

Summary for User Environment Customization

System Startup Files

/etc/profile System file that contains commands that the system executes when
you log in.

/etc/environment System file that contains variables specifying the basic environment
for all processes.

$HOME/.profile File in your home directory that contains commands that override the
system /etc/profile when you log in.

$HOME/.env File in your home directory that overrides the system
/etc/environment and contains variables specifying the basic
environment for all processes.

AIXwindows Startup Files

$HOME/.xinitrc File in your home directory that controls the windows and
applications that start up when you start AIXwindows.

$HOME/.Xdefaults File in your home directory that controls the visual or behavioral
aspect of AIXwindows resources.

$HOME/.mwmrc File in your home directory that defines key bindings, mouse button
bindings, and menu definitions for your window manager.

Customization Procedures

PS1 Normal system prompt.

PS2 More input system prompt.

PS3 Root system prompt.

chfont Changes the font used by a display at system restart.

stty Sets, resets, and reports workstation operating parameters.

11-1 Shells

Chapter 11. Shells

Your interface to the operating system is called a shell. The shell is the outermost layer of
the operating system. Shells incorporate a programming language to control processes and
files, as well as to start and control other programs. The shell manages the interaction
between you and the operating system by prompting you for input, interpreting that input for
the operating system, and then handling any resulting output from the operating system.

Shells provide a way for you to communicate with the operating system. This
communication is carried out either interactively (input from the keyboard is acted upon
immediately) or as a shell script. A shell script is a sequence of shell and operating system
commands that is stored in a file.

When you log in to the system, the system locates the name of a shell program to execute.
Once executed, the shell displays a command prompt. This prompt is usually a $ (dollar
sign). When you type a command at the prompt and press the Enter key, the shell evaluates
the command and attempts to carry it out. Depending on your command instructions, the
shell writes the command output to the screen or redirects the output. It then returns the
command prompt and waits for you to type another command.

A command line is the line on which you type. It contains the shell prompt. The basic format
for each line is:

$ Command Argument(s)

The shell considers the first word of a command line (up to the first blank space) as the
command, and all words after that as arguments.

This section discusses:

• Shell Features, on page 11-3

• Korn Shell or POSIX Shell, on page 11-9

• Quoting, on page 11-12

• Reserved Words, on page 11-14

• Command Aliasing in the Korn Shell or POSIX Shell, on page 11-15

• Parameter Substitution in the Korn Shell or POSIX Shell, on page 11-17

• Command Substitution in the Korn Shell or POSIX Shell, on page 11-23

• Arithmetic Evaluation in the Korn Shell or POSIX Shell, on page 11-24

• Field Splitting, on page 11-25

• File Name Substitution in the Korn Shell or POSIX Shell, on page 11-26

• Input and Output Redirection in the Korn Shell or POSIX Shell, on page 11-28

• Exit Status, on page 11-31

• Korn Shell or POSIX Shell Commands, on page 11-32

• Korn Shell or POSIX Shell Built–In Commands, on page 11-37

• Conditional Expressions, on page 11-49

• Job Control in the Korn Shell or POSIX Shell, on page 11-51

• Inline Editing in the Korn Shell or POSIX Shell, on page 11-53

• List of Korn Shell or POSIX Shell Built–in Commands, on page 11-60

• List of Bourne Shell Built–in Commands, on page 11-62

11-2 AIX System User’s Guide – OS & Devices

• List of C Shell Built–in Commands, on page 11-63

• Korn Shell Related Information, on page 11-65

• Bourne Shell Related Information, on page 11-66

• C Shell Related Information, on page 11-67

• Bourne Shell, on page 11-68

• Restricted Shell, on page 11-70

• Bourne Shell Commands, on page 11-71

• Variable and File Name Substitution in the Bourne Shell, on page 11-81

• Input and Output Redirection in the Bourne Shell, on page 11-89

• C Shell, on page 11-90

• C Shell Commands, on page 11-92

• History Substitution in the C Shell, on page 11-103

• Alias Substitution in the C Shell, on page 11-106

• Variable and File Name Substitution in the C Shell, on page 11-107

• Environment Variables in the C Shell, on page 11-111

• Input and Output Redirection in the C Shell, on page 11-114

• Job Control in the C Shell, on page 11-116

11-3 Shells

Shell Features
The primary advantages of interfacing to the system through a shell are:

• Wildcard substitution in file names (pattern matching)

Carries out commands on a group of files by specifying a pattern to match, rather than
an actual file name.

For more information, see:

– File Name Substitution in the Korn Shell or POSIX Shell, on page 11-26

– File Name Substitution in the Bourne Shell, on page 11-82

– File Name Substitution in the C Shell, on page 11-109

• Background processing

Sets up lengthy tasks to run in the background, freeing the terminal for concurrent
interactive processing.

For more information, see the bg command in:

– Job Control in the Korn Shell or POSIX Shell, on page 11-51

– C Shell Built–In Commands, on page 11-92

Note: The Bourne shell does not support job control.

• Command aliasing

Gives an alias name to a command or phrase. When the shell encounters an alias on the
command line or in a shell script, it substitutes the text to which the alias refers.

For more information, see:

– Command Aliasing in the Korn Shell or POSIX Shell, on page 11-15

– Alias Substitution in the C Shell, on page 11-106

Note: The Bourne shell does not support command aliasing.

• Command history

Records the commands you enter in a history file. You can use this file to easily access,
modify, and reissue any listed command.

For more information, see the history command in:

– Korn Shell or POSIX Shell Command History, on page 11-11

– C Shell Built–In Commands, on page 11-92

– History Substitution in the C Shell, on page 11-103

Note: The Bourne shell does not support command history.

• File name substitution

Automatically produces a list of file names on a command line using pattern–matching
characters.

For more information, see:

– File Name Substitution in the Korn Shell or POSIX Shell, on page 11-26

– File Name Substitution in the Bourne Shell, on page 11-82

– File Name Substitution in the C Shell, on page 11-109

11-4 AIX System User’s Guide – OS & Devices

• Input and output redirection

Redirects input away from the keyboard and redirects output to a file or device other
than the terminal. For example, input to a program can be provided from a file and
redirected to the printer or to another file.

For more information, see:

– Input and Output Redirection in the Korn Shell or POSIX Shell, on page 11-28

– Input and Output Redirection in the Bourne Shell, on page 11-89

– Input and Output Redirection in the C Shell, on page 11-114

• Piping

Links any number of commands together to form a complex program. The standard
output of one program becomes the standard input of the next.

For more information, see the pipeline definition in Shells Terms, on page 11-5

• Shell variable substitution

Stores data in user–defined variables and predefined shell variables.

For more information, see:

– Parameter Substitution in the Korn Shell or POSIX Shell, on page 11-17

– Variable Substitution in the Bourne Shell, on page 11-81

– Variable Substitution in the C Shell, on page 11-107

Available Shells
The following shells are provided with this version of the operating system:

• Korn shell (started with the ksh command)

• Bourne shell (started with the bsh command)

• Restricted shell (a limited version of the Bourne shell started with the Rsh command)

• POSIX shell (also known as the Korn Shell, and started with the psh command)

• Default shell (started with the sh command)

• C shell (started with the csh command)

• Trusted shell (a limited version of the Korn shell started with the tsh command)

• Remote shell (started with the rsh command).

The login shell refers to the shell loaded when you log in to the computer system. Your login
shell is set in the /etc/passwd file. The Korn shell is the standard operating system login
shell and is backwardly compatible with the Bourne shell.

The default or standard shell refers to the shell linked to and started with the /usr/bin/sh
command. The Bourne shell is set up as the default shell and is a subset of the Korn shell.

The default or standard shell refers to the shell linked to and started with the /usr/bin/sh
command. The Korn shell, also known as the POSIX shell, is set up as the default shell. The
POSIX shell is called the /usr/bin/psh and is linked to the /usr/bin/ksh command.

11-5 Shells

Shells Terms
The following definitions are helpful in understanding shells:

blank A blank is one of the characters in the blank character class
defined in the LC_CTYPE category. In the POSIX shell, a
blank is either a tab or space.

built–in command A command that the shell executes without searching for it
and creating a separate process.

command A sequence of characters in the syntax of the shell
language. The shell reads each command and carries out
the desired action either directly or by invoking separate
utilities.

comment Any word that begins with # (pound sign). The word and all
characters that follow it, until the next new–line character,
are ignored.

identifier A sequence of letters, digits, or underscores from the
portable character set, starting with a letter or underscore.
The first character of an identifier must not be a digit.
Identifiers are used as names for aliases, functions, and
named parameters.

list A sequence of one or more pipelines separated by one of
these four symbols ; (semicolon), & (ampersand), &&
(double ampersand), or || (double bar). The list is optionally
ended by one of the following symbols: ; (semicolon), &
(ampersand), or |& (bar, ampersand).

; Sequentially processes the preceding
pipeline. The shell carries out each
command in turn and waits for the last
command to complete.

& Asynchronously processes the preceding
pipeline. The shell carries out each
command in turn, processing the pipeline
in the background without waiting for it to
complete.

|& Asynchronously processes the preceding
pipeline and establishes a two–way pipe to
the parent shell. The shell carries out each
command in turn, processing the pipeline
in the background without waiting for it to
complete. The parent shell can read from
and write to the standard input and output
of the spawned command by using the
read –p and print –p commands. Only one
such command can be active at any given
time.

&& Processes the list that follows this symbol
only if the preceding pipeline returns an
exit value of 0 (zero).

|| Processes the list that follows this symbol
only if the preceding pipeline returns a
nonzero exit value.

11-6 AIX System User’s Guide – OS & Devices

The ; (semicolon), & (ampersand), and |& (bar, ampersand)
have a lower priority than the && (double ampersand) and ||
(double bar). The ;, &, and |& symbols have equal priority
among themselves. The && and || symbols are equal in
priority. One or more new–line characters can be used
instead of a semicolon to delimit two commands in a list.

Note: The |& symbol is valid only in the Korn shell.

metacharacter Each metacharacter has a special meaning to the shell and
causes termination of a word unless it is quoted.
Metacharacters are: | (pipe), & (ampersand), ; (semicolon),
< (less–than sign), > (greater–than sign), ((left
parenthesis),) (right parenthesis), $ (dollar sign), ‘
(backquote), \ (backslash), ’ (right quote), ” (double
quotation marks), new–line character, space character, and
tab character. All characters enclosed between single
quotation marks are considered quoted and are interpreted
literally by the shell. The special meaning of metacharacters
is retained if not quoted. (Metacharacters are also known as
parser metacharacters in the C shell.)

parameter assignment list Includes one or more words of the form Identifier=Value in
which spaces surrounding the = (equal sign) must be
balanced. That is, leading and trailing blanks, or no blanks,
must be used.

Note: In the C shell, the parameter assignment list is of
the form set Identifier = Value. The spaces
surrounding the = (equal sign) are required.

pipeline A sequence of one or more commands separated by |
(pipe). Each command in the pipeline, except possibly the
last command, is run as a separate process. However, the
standard output of each command that is connected by a
pipe becomes the standard input of the next command in
the sequence. If a list is enclosed with parentheses, it is
carried out as a simple command that operates in a
separate subshell.

If the reserved word ! does not precede the pipeline, the
exit status will be the exit status of the last command
specified in the pipeline. Otherwise, the exit status is the
logical NOT of the exit status of the last command. In other
words, if the last command returns zero, the exit status will
be 1. If the last command returns greater than zero, the exit
status will be zero.

The format for a pipeline is:

[!] command1 [| command2 ...]

Note: Early versions of the Bourne shell used the ^ (caret)
to indicate a pipe.

shell variable A name or parameter to which a value is assigned. Assign
a variable by typing the variable name, an = (equal sign),
and then the value. The variable name can be substituted
for the assigned value by preceding the variable name with
a $ (dollar sign). Variables are particularly useful for
creating a short notation for a long path name, such as
$HOME for the home directory. A predefined variable is one
whose value is assigned by the shell. A user–defined
variable is one whose value is assigned by a user.

11-7 Shells

simple command A sequence of optional parameter assignment lists and
redirections, in any sequence. They are optionally followed
by commands, words, and redirections. They are
terminated by ;, |, &, ||, &&, |&, or a new–line character.
The command name is passed as parameter 0 (as defined
by the exec subroutine). The value of a simple command is
its exit status of zero if it terminates normally or nonzero if it
terminates abnormally. The sigaction, sigvec, or signal
Subroutine in the AIX Technical Reference, Volume 2: Base
Operating System and Extensions includes a list of
signal–exit status values.

subshell A shell that is running as a child of the login shell or the
current shell.

wildcard character Also known as a pattern–matching character. The shell
associates them with assigned values. The basic wildcards
are ?, *, [set], and [!set]. Wildcard characters are
particularly useful when performing file name substitution.

word A sequence of characters that does not contain any blanks.
Words are separated by one or more metacharacters.

Creating and Running a Shell Script
Shell scripts provide an easy way to carry out tedious commands, large or complicated
sequences of commands, and routine tasks. A shell script is a file that contains one or more
commands. When you type the name of a shell script file, the system executes the
command sequence contained by the file.

You can create a shell script using a text editor. Your script can contain both operating
system commands and shell built–in commands.

The following steps are general guidelines for writing shell scripts:

1. Using a text editor, create and save a file. You can include any combination of shell and
operating system commands in the shell script file.

By convention, shell scripts that are not set up for use by many users are stored in the
$HOME/bin directory.

Note: The operating system does not support the setuid or setgid subroutines within a
shell script.

1. Use the chmod command to allow only the owner to run (or execute) the file. For
example, if your file is named script1, enter:

chmod u=rwx script1

2. Enter the script name on the command line to run the shell script. To run the shell script,
script1, enter:

script1

Note: You can run a shell script without making it executable if a shell command (ksh,
bsh, or csh) precedes the shell script file name on the command line. For example,
to run a nonexecutable file named script1 under the control of the Korn shell,
type:

ksh script1

11-8 AIX System User’s Guide – OS & Devices

Specifying a Shell for a Script File
When you run an executable shell script in either the Korn (the POSIX Shell) or Bourne
shell, the commands in the script are carried out under the control of the current shell (the
shell from which the script is started) unless you specify a different shell. When you run an
executable shell script in the C shell, the commands in the script are carried out under the
control of the Bourne shell (/usr/bin/bsh) unless you specify a different shell.

You can cause a shell script to run in a specific shell by including the shell within the shell
script. To run an executable shell script under a specific shell, enter #! Path on the first line
of the shell script. The #! characters identify the file type. The Path variable specifies the
path name of the shell from which to run the shell script. For example, if the first line in a
shell script is #!/usr/bin/bsh, the script is run under control of the Bourne shell.

When you precede a shell script file name with a shell command, the shell specified on the
command line overrides any shell specified within the script file itself. Therefore, entering
ksh myfile runs the file named myfile under the control of the Korn shell, even if the first
line of myfile is #!/usr/bin/csh.

Related Information
Commands Overview

Processes Overview

File Systems Overview

Directory Overview

Files Overview

File and System Security

Korn Shell or POSIX Shell

Bourne Shell

C Shell

11-9 Shells

Korn Shell or POSIX Shell
The Korn shell is an interactive command interpreter and command programming language.
It conforms to the Portable Operating System Interface for Computer Environments
(POSIX), an international standard for operating systems. POSIX is not an operating
system, but is a standard aimed at portability of applications, at the source level, across
many systems. POSIX features are built on top of the Korn shell. The Korn shell (also
known as the POSIX shell) offers many of the same features as the Bourne and C shells,
such as I/O redirection capabilities, variable substitution, and file name substitution. It also
includes several additional command and programming language features:

Arithmetic evaluation The Korn shell, or POSIX shell, can perform integer
arithmetic using the built–in let command, using any base
from 2 to 36. Arithmetic Evaluation in the Korn Shell or
POSIX Shell, on page 11-24 further describes this feature.

Command history The Korn shell, or POSIX shell, stores a file that records all
of the commands you enter. You can use a text editor to
alter a command in this history file and then reissue the
command. For more information about the command
history feature, see Korn Shell or POSIX Shell Command
History, on page 11-11 .

Coprocess facility The coprocess facility enables you run programs in the
background and send and receive information to these
background processes.

Editing The Korn shell, or POSIX shell, offers inline editing options
that enable you to edit the command line. Editors similar to
emacs, gmacs, and vi are available. ”Inline Editing in the
Korn Shell or POSIX Shell”, on page 11-53 further
describes this feature.

This section discusses the following:

• Korn Shell Environment, on page 11-10

• Shell Startup, on page 11-10

• Korn Shell or POSIX Shell Command History, on page 11-11

• Quoting, on page 11-12

• Reserved Words, on page 11-14

• Command Aliasing in the Korn Shell or POSIX Shell, on page 11-15

• Parameter Substitution in the Korn Shell or POSIX Shell, on page 11-17

• Command Substitution in the Korn Shell or POSIX Shell, on page 11-23

• Arithmetic Evaluation in the Korn Shell or POSIX Shell, on page 11-24

• Field Splitting, on page 11-25

• File Name Substitution in the Korn Shell or POSIX Shell, on page 11-26

• Input and Output Redirection in the Korn Shell or POSIX Shell, on page 11-28

• Exit Status, on page 11-31

• Korn Shell or POSIX Shell Commands, on page 11-32

• Korn Shell or POSIX Shell Built–in Commands, on page 11-37

• Conditional Expressions, on page 11-49

• Job Control in the Korn Shell or POSIX Shell, on page 11-51

11-10 AIX System User’s Guide – OS & Devices

• Inline Editing in the Korn Shell or POSIX Shell, on page 11-53

• Korn Shell Related Information

Korn Shell Environment
All variables (with their associated values) known to a command at the beginning of its
execution constitute its environment. This environment includes variables that a command
inherits from its parent process and variables specified as keyword parameters on the
command line that calls the command. The shell interacts with the environment in several
ways. When it is started, the shell scans the environment and creates a parameter for each
name found, giving the parameter the corresponding value and marking it for export.
Executed commands inherit the environment.

If you modify the values of the shell parameters or create new ones using the export or
typeset –x commands, the parameters become part of the environment. The environment
seen by any executed command is therefore composed of any name–value pairs originally
inherited by the shell, whose values may be modified by the current shell, plus any additions
that resulted from using the export or typeset –x commands. The executed command
(subshell) will see any modifications it makes to the environment variables it has inherited,
but it needs to export these variables for its child shells or processes to see the modified
values.

The environment for any simple command or function is changed by prefixing with one or
more parameter assignments. A parameter assignment argument is a word of the form
Identifier=Value. Thus, the two following expressions are equivalent (as far as the execution
of the command is concerned).

TERM=450 Command arguments

(export TERM; TERM=450; Command arguments)

If the –k flag is set, all parameter assignment arguments are placed in the environment,
even if they occur after the command name. The following first prints a=b c and then c:

echo a=b c

set –k

echo a=b c

Note: This feature is intended for use with scripts written for early versions of the shell. Its
use in new scripts is strongly discouraged.

Shell Startup
You can start the Korn shell with either the ksh command or the psh command (POSIX
shell).

If the shell is started by the exec command, and the first character of zero argument ($0) is
– (minus sign), then the shell is assumed to be a login shell. The shell first reads commands
from the /etc/profile file, and then from either the .profile file in the current directory or from
the $HOME/.profile file, if either file exists. Next, the shell reads commands from the file
named by performing parameter substitution on the value of the ENV environment variable,
if the file exists.

If you specify the File [Parameter] parameter when invoking the Korn shell or POSIX shell,
the shell runs the script file identified by the File parameter, including any parameters
specified. The script file specified must have read permission; any setuid and setgid
settings are ignored. The shell then reads the commands.

Note: Do not specify a script file with the –c or –s flags.

Refer to Parameter Substitution in the Korn Shell or POSIX Shell, on page 11-17 for more
information on positional parameters.

11-11 Shells

Shell Prompt
When used interactively, the shell prompts with the value of the PS1 parameter before
reading a command. If at any time a new line is entered and the shell requires further input
to complete a command, the shell issues the secondary prompt (the value of the PS2
parameter).

Korn Shell or POSIX ShellCommand History
The Korn shell or POSIX shell saves commands entered from your terminal device to a
history file. If set, the HISTFILE variable value is the name of the history file. If the
HISTFILE variable is not set or cannot be written, the history file used is
$HOME/.sh_history. If the history file does not exist and the Korn shell cannot create it, or if
it does exist and the Korn shell does not have permission to append to it, then the Korn
shell uses a temporary file as the history file. The shell accesses the commands of all
interactive shells using the same named history file with appropriate permissions.

By default, the Korn shell or POSIX shell saves the text of the last 128 commands entered
from a terminal device. The history file size (specified by the HISTSIZE variable) is not
limited, although a very large history file can cause the Korn shell to start up slowly.

Command History Substitution
Use the fc built–in command to list or edit portions of the history file. To select a portion of
the file to edit or list, specify the number or the first character or characters of the command.
You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc regular built–in command,
the editor specified by the FCEDIT variable is used. If the FCEDIT variable is not defined,
then the /usr/bin/ed file is used. The edited command or commands are printed and run
when you exit the editor.

The editor name – (dash) is used to skip the editing phase and run the command again. In
this case, a substitution parameter of the form Old=New can be used to modify the
command before it is run. For example, if r is aliased to fc –e –, then typing r
bad=good c runs the most recent command that starts with the letter c, and replaces the
first occurrence of the bad string with the good string.

For more information about using the history shell command, see Listing Previously Entered
Commands (history Shell Command), on page 3-8 and the fc command in the
AIX Commands Reference.

11-12 AIX System User’s Guide – OS & Devices

Quoting
When you want the Korn shell or POSIX shell to read a character as a regular character,
rather than with any normally associated meaning, you must quote it. To negate the special
meaning of a metacharacter, use one of the quoting mechanisms in the following list.

Each metacharacter has a special meaning to the shell and, unless quoted, causes
termination of a word. The following characters are considered metacharacters by the Korn
shell or POSIX shell and must be quoted if they are to represent themselves:

• | (pipe)

• & (ampersand)

• ; (semicolon)

• < (less–than sign) and > (greater–than sign)

• ((left parenthesis) and) (right parenthesis)

• $ (dollar sign)

• ‘ (backquote) and ’ (right quote)

• \ (backslash)

• ” (double–quotation marks)

• new–line character

• space character

• tab character.

The quoting mechanisms are the \ (backslash), single quotes, and double quotes.

\ (Backslash) A backslash (\) that is not quoted preserves the literal value of the
following character, with the exception of a new–line character. If
a new–line character follows the backslash, the shell interprets
this as line continuation.

Single Quotes Enclosing characters in single quotes (’ ’) preserves the literal
value of each character within the single quotes. A single quote
cannot occur within single quotes.

A backslash cannot be used to escape a single quote in a
single–quoted string. An embedded quote can be created by
writing, for example: ’a’\’’b’, which yields a’b.

11-13 Shells

Double Quotes

Enclosing characters in double quotes (” ”) preserves the literal
value of all characters within the double quotes, with the
exception of the characters dollar sign, backquote, and
backslash, as follows:

$ The dollar sign retains its special meaning
introducing parameter expansion, a form of
command substitution, and arithmetic expansion.

The input characters within the quoted string that are also
enclosed between $(and the matching) will not be affected by the
double quotes, but define that command whose output replaces
the $(...) when the word is expanded.

Within the string of characters from an enclosed ${ to the
matching }, there must be an even number of unescaped double
quotes or single quotes, if any. A preceding backslash character
must be used to escape a literal { or }.

‘ The backquote retains its special meaning
introducing the other form of command
substitution. The portion of the quoted string,
from the initial backquote and the characters up
to the next backquote that is not preceded by a
backslash, defines that command whose output
replaces ‘ ... ‘ when the word is expanded.

\ The backslash retains its special meaning as an
escape character only when followed by one of
the following characters: $, ‘ , ”, \, or a new–line
character.

A double quote must be preceded by a backslash to be included within double quotes.
When you use double quotes, if a backslash is immediately followed by a character that
would be interpreted as having a special meaning, the backslash is deleted, and the
subsequent character is taken literally. If a backslash does not precede a character that
would have a special meaning, it is left in place unchanged, and the character immediately
following it is also left unchanged. For example:

”\$” –> $

”\a” –> \a

The following conditions apply to metacharacters and quoting characters in the Korn or
POSIX shell:

• The meanings of $* (dollar sign, asterisk) and $@ (dollar sign, at sign) are identical when
not quoted, when used as a parameter assignment value, or when used as a file name.

• When used as a command argument, ”$*” (double quotes, dollar sign, asterisk, double
quotes) is equivalent to ”$1d$2d...”, where d is the first character of the IFS parameter.

• ”$@” (double quotes, at sign, asterisk, double quotes) is equivalent to ”$1” ”$2”

• Inside backquotes (‘‘), the backslash quotes the characters \ (backslash), ’ (single
quote), and $ (dollar sign). If the backquotes occur within ” ” (double quotation marks),
the backslash also quotes the double quotation marks character.

• Parameter and command substitution occurs inside ” ” (double quotation marks).

• The special meaning of reserved words or aliases is removed by quoting any character of
the reserved word. You cannot quote function names or built–in command names.

• Korn Shell Related Information

11-14 AIX System User’s Guide – OS & Devices

Reserved Words
The following reserved words have special meaning to the shell:

! case do
done elif else
esac fi for
function if in
select then time
until while {
} [[]]

The reserved words are recognized only when they appear without quotation marks and
when the word is used as the:

• First word of a command

• First word following one of the reserved words other than case, for, or in

• Third word in a case or for command (only in is valid in this case).

• Korn Shell Related Information

11-15 Shells

Command Aliasing in the Korn Shell or POSIX Shell
The Korn shell, or POSIX shell, allows you to create aliases to customize commands. The
alias command defines a word of the form Name=String as an alias. When you use an
alias as the first word of a command line, ksh checks to see if it is already processing an
alias with the same name. If it is, ksh does not replace the alias name. If an alias with the
same name is not already being processed, ksh replaces the alias name by the value of the
alias.

The first character of an alias name can be any printable character, except the
metacharacters. The remaining characters must be the same as for a valid identifier. The
replacement string can contain any valid shell text, including the metacharacters.

If the last character of the alias value is a blank, the shell also checks the word following the
alias for alias substitution. You can use aliases to redefine special built–in commands, but
not to redefine reserved words. Alias definitions are not inherited across invocations of ksh.
However, if you specify alias –x, the alias stays in effect for scripts invoked by name, that
do not invoke a separate shell. To export an alias definition and to cause child processes to
have access to them, you must specify the alias –x as well as the alias definition in your
environment file.

To create, list, and export aliases, use the alias command. Remove aliases with the unalias
command.

The format for creating an alias is:

alias Name=String

in which the Name parameter specifies the name of the alias and the String parameter
specifies the value of the alias.

The following exported aliases are predefined by the Korn shell, but can be unset or
redefined. We recommend that you do not change them, because this may later confuse
anyone who expects the alias to work as predefined by ksh.

autoload=’typeset –fu’

false=’let 0’

functions=’typeset –f’

hash=’alias –t’

history=’fc –l’

integer=’typeset –i’

nohup=’nohup ’

r=’fc –e –’

true=’:’

type=’whence –v’

Aliases are not supported on noninteractive invocations of the Korn shell (ksh); for example,
in a shell script, or with the –c option in ksh, as in:

ksh –c alias

For more information about aliasing, see Creating a Command Alias, on page 3-11 and the
alias command in the AIX Commands Reference.

11-16 AIX System User’s Guide – OS & Devices

Tracked Aliases
Frequently, aliases are used as shorthand for full path names. One aliasing facility option
allows you to automatically set the value of an alias to the full path name of a corresponding
command. This special type of alias is a tracked alias. Tracked aliases speed execution by
eliminating the need for the shell to search the PATH variable for a full path name.

The set –h command turns on command tracking so that each time a command is
referenced, the shell defines the value of a tracked alias. This value is undefined each time
you reset the PATH variable.

These aliases remain tracked so that the next subsequent reference will redefine the value.
Several tracked aliases are compiled into the shell.

Tilde Substitution
After the shell performs alias substitution, it checks each word to see if it begins with an
unquoted ~ (tilde). If it does, the shell checks the word, up to the first / (slash), to see if it
matches a user name in the /etc/passwd file. If the shell finds a match, it replaces the ~
character and the name with the login directory of the matched user. This process is called
tilde substitution.

The shell does not change the original text if it does not find a match. The Korn shell also
makes special replacements if the ~ character is the only character in the word or followed
by + (plus sign) or – (minus sign):

~ Replaced by the value of the HOME variable.

~+ Replaced by the $PWD variable (the full path name of the current directory).

~– Replaced by the $OLDPWD variable (the full path name of the previous
directory).

In addition, the shell attempts tilde substitution when the value of a variable assignment
parameter begins with a tilde ~ character.

• Korn Shell Related Information

11-17 Shells

Parameter Substitution in the Korn Shell or POSIX Shell
The Korn Shell, or POSIX shell, enables you to do parameter substitutions.

This section discusses:

• Parameters, on page 11-17

• Parameter Substitution, on page 11-18

• Predefined Special Parameters, on page 11-19

• Variables Set by the Korn Shell or POSIX Shell, on page 11-20

• Variables Used by the Korn Shell or POSIX Shell, on page 11-21

• Korn Shell Related Information, on page 11-65

Parameters in the Korn Shell
A parameter is categorized as an:

• Identifier of any of the characters * (asterisk), @ (at sign), # (pound sign), ? (question
mark), – (dash), $ (dollar sign), and ! (exclamation point). These are called special
parameters.

• Argument denoted by a number (positional parameter)

• Parameter denoted by an identifier, with a value and zero or more attributes (named
parameter/variables).

The typeset special built–in command assigns values and attributes to named parameters.
The attributes supported by the Korn shell are described with the typeset special built–in
command. Exported parameters pass values and attributes to the environment.

The value of a named parameter is assigned by:

Name=Value [Name=Value] ...

If the –i integer attribute is set for the Name parameter, the Value parameter is subject to
arithmetic evaluation. Refer to Arithmetic Evaluation in the Korn Shell or POSIX Shell, on
page 11-24 for more information about arithmetic expression evaluation.

The shell supports a one–dimensional array facility. An element of an array parameter is
referenced by a subscript. A subscript is denoted by an arithmetic expression enclosed by
[] (brackets). To assign values to an array, use set –A Name ValueThe value of all
subscripts must be in the range of 0 through 511. Arrays need not be declared. Any
reference to a named parameter with a valid subscript is legal and an array will be created,
if necessary. Referencing an array without a subscript is equivalent to referencing the
element 0.

Positional parameters are assigned values with the set special command. The $0
parameter is set from argument 0 when the shell is invoked. The $ character is used to
introduce substitutable parameters.

11-18 AIX System User’s Guide – OS & Devices

Parameter Substitution
The following are substitutable parameters:

${Parameter} The shell reads all the characters from the ${ (dollar sign, left
brace) to the matching } (right brace) as part of the same word,
even if that word contains braces or metacharacters. The value, if
any, of the specified parameter is substituted. The braces are
required when the Parameter parameter is followed by a letter,
digit, or underscore that is not to be interpreted as part of its
name, or when a named parameter is subscripted.

If the specified parameter contains one or more digits, it is a
positional parameter. A positional parameter of more than one
digit must be enclosed in braces. If the value of the variable is an
* (asterisk) or an @ (at sign), each positional parameter, starting
with $1, is substituted (separated by a field separator character).
If an array identifier with a subscript * (asterisk) or an @ (at sign)
is used, then the value for each of the elements (separated by a
field separator character) is substituted.

${#Parameter} If the value of the Parameter parameter is an * or an @, the
number of positional parameters is substituted. Otherwise, the
length specified by the Parameter parameter is substituted.

${#Identifier[*]} The number of elements in the array specified by the Identifier
parameter is substituted.

${Parameter:–Word}

If the Parameter parameter is set and is not null, then its value is
substituted; otherwise, the value of the Word parameter is
substituted.

${Parameter:=Word}

If the Parameter parameter is not set or is null, then it is set to the
value of the Word parameter. Positional parameters cannot be
assigned in this way.

${Parameter:?Word}

If the Parameter parameter is set and is not null, then substitute
its value. Otherwise, print the value of the Word variable and exit
from the shell. If the Word variable is omitted, then a standard
message is printed.

${Parameter:+Word}

If the Parameter parameter is set and is not null, then substitute
the value of the Word variable. Otherwise, substitute nothing.

${Parameter#Pattern} | ${Parameter##Pattern}

 If the specified shell Pattern parameter matches the beginning of
the value of the Parameter parameter, then the value of this
substitution is the value of the Parameter parameter with the
matched portion deleted. Otherwise, the value of the Parameter
parameter is substituted. In the first form, the smallest matching
pattern is deleted. In the second form, the largest matching
pattern is deleted.

11-19 Shells

${Parameter%Pattern} | ${Parameter%%Pattern}

 If the specified shell Pattern matches the end of the value of the
Parameter variable, then the value of this substitution is the value
of the Parameter variable with the matched part deleted;
otherwise, substitute the value of the Parameter variable. In the
first form, the smallest matching pattern is deleted; in the second
form, the largest matching pattern is deleted.

In the previous expressions, the Word variable is not evaluated
unless it is to be used as the substituted string. Thus, in the
following example the pwd command is executed only if the –d
flag is not set or is null:

echo ${d:–$(pwd)}

Note: If the : (colon) is omitted from the previous expressions, the shell checks only
whether the Parameter parameter is set.

Predefined Special Parameters
The following parameters are automatically set by the shell:

@ Expands the positional parameters, beginning with $1. Each
parameter is separated by a space.

If you place ” (double quotation marks) around $@, the shell
considers each positional parameter a separate string. If no
positional parameters exist, the shell expands the statement to an
unquoted null string.

* Expands the positional parameters, beginning with $1. The shell
separates each parameter with the first character of the IFS
parameter value.

If you place ” (double quotation marks) around $*, the shell
includes the positional parameter values in double quotes. Each
value is separated by the first character of the IFS parameter.

Specifies the number (in decimals) of positional parameters
passed to the shell, not counting the name of the shell procedure
itself. The $# parameter thus yields the number of the
highest–numbered positional parameter that is set. One of the
primary uses of this parameter is to check for the presence of the
required number of arguments.

– (hyphen) Supplies flags to the shell on invocation or with the set command.

? Specifies the exit value of the last command executed. Its value is
a decimal string. Most commands return 0 to indicate successful
completion. The shell itself returns the current value of the $?
parameter as its exit value.

11-20 AIX System User’s Guide – OS & Devices

$ Identifies the process number of this shell. Because process
numbers are unique among all existing processes, this string of
up to 5 digits is often used to generate unique names for
temporary files.

The following example illustrates the recommended practice of
creating temporary files in a directory used only for that purpose:

temp=$HOME/temp/$$

ls >$temp

.

.

.

rm $temp

! Specifies the process number of the last background command
invoked.

0 (zero) Expands to the name of the shell or shell script.

Variables Set by the Korn Shell or POSIX Shell
The following variables are set by the shell:

_ (underscore) Indicates initially the absolute path name of the shell or
script being executed as passed in the environment.
Subsequently, it is assigned the last argument of the
previous command. This parameter is not set for
commands that are asynchronous. This parameter is also
used to hold the name of the matching MAIL file when
checking for mail.

ERRNO Specifies a value that is set by the most recently failed
subroutine. This value is system–dependent and is
intended for debugging purposes.

LINENO Specifies the line number of the current line within the script
or function being executed.

OLDPWD Indicates the previous working directory set by the cd
command.

OPTARG Specifies the value of the last option argument processed
by the getopts regular built–in command.

OPTIND Specifies index of the last option argument processed by
the getopts regular built–in command.

PPID Identifies the process number of the parent of the shell.

PWD Indicates the present working directory set by the cd
command.

RANDOM Generates a random integer, uniformly distributed between
0 and 32767. The sequence of random numbers can be
initialized by assigning a numeric value to the RANDOM
variable.

REPLY Set by the select statement and by the read regular built–in
command when no arguments are supplied.

SECONDS Specifies the number of seconds since shell invocation is
returned. If this variable is assigned a value, then the value
returned upon reference will be the value that was assigned
plus the number of seconds since the assignment.

11-21 Shells

Variables Used by the Korn Shellor POSIX Shell
The following variables are used by the shell:

CDPATH Indicates the search path for the cd (change directory) command.

COLUMNS Defines the width of the edit window for the shell edit modes and
for printing select lists.

EDITOR If the value of this parameter ends in emacs, gmacs, or vi, and
the VISUAL variable is not set with the set special built–in
command, then the corresponding option is turned on.

ENV If this variable is set, then parameter substitution is performed on
the value to generate the path name of the script that will be
executed when the shell is invoked. This file is typically used for
alias and function definitions.

FCEDIT Specifies the default editor name for the fc regular built–in
command.

FPATH Specifies the search path for function definitions. This path is
searched when a function with the –u flag is referenced and when
a command is not found. If an executable file is found, then it is
read and executed in the current environment.

HISTFILE If this variable is set when the shell is invoked, then the value is
the path name of the file that will be used to store the command
history.

HISTSIZE If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will
be greater than or equal to this number. The default is 128.

HOME Indicates the name of your login directory, which becomes the
current directory upon completion of a login. The login program
initializes this variable. The cd command uses the value of the
$HOME parameter as its default value. Using this variable rather
than an explicit path name in a shell procedure allows the
procedure to be run from a different directory without alterations.

IFS Specifies internal field separators (normally space, tab, and new
line) used to separate command words that result from command
or parameter substitution and for separating words with the
regular built–in command read. The first character of the IFS
parameter is used to separate arguments for the $* substitution.

LANG Provides a default value for the LC_* variables.

LC_ALL Overrides the value of the LANG and LC_* variables.

LC_COLLATE Determines the behavior of range expression within pattern
matching.

LC_CTYPE Defines character classification, case conversion, and other
character attributes.

LC_MESSAGES Determines the language in which messages are written.

LINES Determines the column length for printing select lists. Select lists
print vertically until about two–thirds of lines specified by the
LINES variable are filled.

MAIL Specifies the file path name used by the mail system to detect the
arrival of new mail. If this variable is set to the name of a mail file
and the MAILPATH variable is not set, then the shell informs the
user of new mail in the specified file.

11-22 AIX System User’s Guide – OS & Devices

MAILCHECK Specifies how often (in seconds) the shell checks for changes in
the modification time of any of the files specified by the
MAILPATH or MAIL variables. The default value is 600 seconds.
When the time has elapsed, the shell checks before issuing the
next prompt.

MAILPATH Specifies a list of file names separated by colons. If this variable
is set, then the shell informs the user of any modifications to the
specified files that have occurred during the period, in seconds,
specified by the MAILCHECK variable. Each file name can be
followed by a ? (question mark) and a message that will be
printed. The message will undergo variable substitution with the
$_ variable defined as the name of the file that has changed. The
default message is you have mail in $ _.

NLSPATH Determines the location of message catalogs for the processing
of LC_MESSAGES.

PATH Indicates the search path for commands, which is an ordered list
of directory path names separated by colons. The shell searches
these directories in the specified order when it looks for
commands. A null string anywhere in the list represents the
current directory.

PS1 Specifies the string to be used as the primary system prompt. The
value of this parameter is expanded for parameter substitution to
define the primary prompt string, which is a $ (dollar sign) by
default. The ! (exclamation point) character in the primary prompt
string is replaced by the command number.

PS2 Specifies the value of the secondary prompt string, which is a >
(greater–than sign) by default.

PS3 Specifies the value of the selection prompt string used within a
select loop, which is #? (pound sign, question mark) by default.

PS4 The value of this variable is expanded for parameter substitution
and precedes each line of an execution trace. If omitted, the
execution trace prompt is a + (plus sign).

SHELL Specifies the path name of the shell, which is kept in the
environment.

TMOUT Specifies the number of seconds a shell waits inactive before
exiting. If the TMOUT variable is set to a value greater than 0
(zero), the shell exits if a command is not entered within the
prescribed number of seconds after issuing the PS1 prompt.
(Note that the shell can be compiled with a maximum boundary
that cannot be exceeded for this value.)

Note: After the timeout period has expired, there is a
60–second pause before the shell exits.

VISUAL If the value of this variable ends in emacs, gmacs, or vi, then the
corresponding option is turned on.

The shell gives default values to the PATH, PS1, PS2, MAILCHECK, TMOUT, and IFS
parameters, but the HOME, SHELL, ENV, and MAIL parameters are not set by the shell
(although the HOME parameter is set by the login command).

11-23 Shells

Command Substitution in the Korn Shell or POSIX Shell
The Korn Shell, or POSIX Shell, enables you to do command substitution.

In command substitution, the shell executes a specified command in a subshell environment
and replaces that command with its output. To execute command substitution in the Korn
shell or POSIX shell, perform the following:

$(command)

or, for the backquoted version, use:

‘command‘

Note: Although the backquote syntax is accepted by ksh, it is considered obsolete by the
XPG4 and POSIX standards. These standards recommend that portable
applications use the $(command) syntax.

The shell expands the command substitution by executing command in a subshell
environment and replacing the command substitution (the text of command plus the
enclosing $() or backquotes) with the standard output of the command, removing
sequences of one or more new-line characters at the end of the substitution.

In the following example, the $() (dollar sign, parentheses) surrounding the command
indicates that the output of the whoami command is substituted:

echo My name is: $(whoami)

You can perform the same command substitution with:

echo My name is: ‘whoami‘

The output from both examples for user dee is:

My name is: dee

You can also substitute arithmetic expressions by enclosing them in () (parentheses). For
example, the command:

echo Each hour contains $((60 * 60)) seconds

produces the following result:

Each hour contains 3600 seconds

The Korn shell or POSIX shell removes all trailing new-line characters when performing
command substitution. For example, if your current directory contains the file1, file2,
and file3 files, the command:

echo $(ls)

removes the new-line characters and produces the following output:

file1 file2 file3

To preserve new-line characters, insert the substituted command in ” ” (double quotes):

echo ”$(ls)”

11-24 AIX System User’s Guide – OS & Devices

Arithmetic Evaluation in the Korn Shell or POSIX Shell
 The Korn shell or POSIX shell let regular built–in command enables you to perform integer
arithmetic. Constants are of the form [Base]Number. The Base parameter is a decimal
number between 2 and 36 inclusive, representing the arithmetic base. The Number
parameter is a number in that base. If you omit the Base parameter, the shell uses a base of
10.

Arithmetic expressions use the same syntax, precedence, and associativity of expression as
the C language. All of the integral operators, other than ++ (double plus), –– (dash), ?:
(question mark, colon) and , (comma), are supported. The following Korn Shell Arithmetic
Operators table lists valid Korn shell or POSIX shell operators in decreasing order of
precedence:

Korn Shell Arithmetic Operators

Operator Definition

– Unary minus

! Logical negation

~ Bitwise negation

* Multiplication

/ Division

% Remainder

+ Addition

– Subtraction

<<, >> Left shift, right shift

<=,>=, <>, ==, != Comparison

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

= *=, /=, &= +=, –=, <<=, > >=, &=, ^=, |= Assignment

Many arithmetic operators, such as *, &, <, and >, have special meaning to the Korn shell or
POSIX shell. These characters must be quoted. For example, to multiply the current value
of y by 5 and reassign the new value to y, use the expression:

let ”y = y * 5”

Enclosing the expression in quotes removes the special meaning of the * (asterisk)
character.

You can group operations inside let command expressions to force grouping. For example,
in the expression:

let ”z = q * (z – 10)”

the command multiplies q by the reduced value of z.

11-25 Shells

The Korn shell or POSIX shell includes an alternative form of the let command if only a
single expression is to be evaluated. The shell treats commands enclosed in (()) (double
left parentheses, double right parentheses) as quoted expressions. Therefore, the
expression:

((x = x / 3))

is equivalent to:

let ”x = x / 3”

Named parameters are referenced by name within an arithmetic expression without using
the parameter substitution syntax. When a named parameter is referenced, its value is
evaluated as an arithmetic expression.

Specify an internal integer representation of a named parameter with the –i flag of the
typeset special built–in command. Using the –i flag, arithmetic evaluation is performed on
the value of each assignment to a named parameter. If you do not specify an arithmetic
base, the first assignment to the parameter determines the arithmetic base. This base is
used when parameter substitution occurs.

Field Splitting
After performing command substitution, the Korn shell scans the results of substitutions for
those field separator characters found in the IFS (Internal Field Separator) variable. Where
such characters are found, the shell splits the substitutions into distinct arguments. The
shell retains explicit null arguments (”” or ’’) and removes implicit null arguments (those
resulting from parameters that have no values).

• If the value of IFS is a space, tab and new-line character, or if it is not set, any sequence
of space, tab and new-line characters at the beginning or end of the input will be ignored
and any sequence of those characters within the input will delimit a field. For example,
the following input yields two fields, school and days:

<newline><space><tab>school<tab><tab>days<space>

• Otherwise, and if the value of IFS is not null, the following rules apply in sequence. ”IFS
white space” is used to mean any sequence (zero or more instances) of white-space
characters that are in the IFS value (for example, if IFS contains space/comma/tab, any
sequence of space and tab characters is considered IFS white space).

c. IFS white space is ignored at the beginning and end of the input.

d. Each occurrence in the input of an IFS character that is not IFS white space, along
with any adjacent IFS white space, delimits a field.

e. Non-zero length IFS white space delimits a field.

11-26 AIX System User’s Guide – OS & Devices

File Name Substitution in the Korn Shell or POSIX Shell
The Korn shell, or POSIX shell, performs file name substitution by scanning each command
word specified by the Word variable for certain characters. If a command word includes the
* (asterisk), ? (question mark) or [(left bracket) characters, and the –f flag has not been set,
the shell regards the word as a pattern. The shell replaces the word with file names, sorted
according to the collating sequence in effect in the current locale, that match that pattern. If
the shell does not find a file name to match the pattern, it does not change the word.

When the shell uses a pattern for file name substitution, the . (dot) and / (slash) characters
must be matched explicitly.

Note: The Korn shell does not treat these characters specially in other instances of pattern
matching.

These pattern–matching characters indicate the following substitutions:

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters
separated by a – (hyphen) matches any character lexically within
the inclusive range of that pair, according to the collating
sequence in effect in the current locale. If the first character
following the opening [(left bracket) is an ! (exclamation point),
then any character not enclosed is matched. A – (hyphen) can be
included in the character set by putting it as the first or last
character.

You can also use the [: charclass :] notation to match file names within a range
indication. This format instructs the system to match any single character belonging to
class. The definition of which characters constitute a specific character class is present
through the LC_CTYPE category of the setlocale subroutine. All character classes
specified in the current locale are recognized.

The names of some of the character classes are:

• alnum

• alpha

• cntrl

• digit

• graph

• lower

• print

• punct

• space

• upper

• xdigit.

For example, [[:upper:]] matches any uppercase letter.

The Korn shell supports file name expansion based on collating elements or symbols, or
equivalence classes.

11-27 Shells

A PatternList is a list of one or more patterns separated from each other with a vertical bar
(|). Composite patterns are formed with one or more of the following:

?(PatternList) Optionally matches any one of the given patterns.

*(PatternList) Matches zero or more occurrences of the given patterns.

+(PatternList) Matches one or more occurrences of the given patterns.

@(PatternList) Matches exactly one of the given patterns.

!(PatternList) Matches anything, except one of the given patterns.

Pattern matching has some restrictions. If the first character of a file name is a . (dot), it can
be matched only by a pattern that also begins with a dot. For example, * (asterisk) matches
the file names myfile and yourfile but not the file names .myfile and .yourfile.
To match these files, use a pattern such as the following:

.*file

If a pattern does not match any file names, then the pattern itself is returned as the result of
the attempted match.

File and directory names should not contain the characters * (asterisk), ? (question mark),
[(left bracket), or] (right bracket) because they can cause infinite recursion (that is, infinite
loops) during pattern–matching attempts.

Quote Removal
The quote characters, backslash (\), single quote (’), and double quote (”) that were present
in the original word will be removed unless they have themselves been quoted.

• Korn Shell Related Information

11-28 AIX System User’s Guide – OS & Devices

Input and Output Redirection in the Korn Shell or POSIX Shell
Before the Korn shell executes a command, it scans the command line for redirection
characters. These special notations direct the shell to redirect input and output. Redirection
characters can appear anywhere in a simple command or can precede or follow a
command. They are not passed on to the invoked command.

The shell performs command and parameter substitution before using the Word or Digit
parameter except as noted. File name substitution occurs only if the pattern matches a
single file and blank interpretation is not performed.

<Word Uses the file specified by the Word parameter as standard input (file
descriptor 0).

>Word Uses the file specified by the Word parameter as standard output (file
descriptor 1). If the file does not exist, the shell creates it. If the file
exists and the noclobber option is on, an error results; otherwise, the
file is truncated to zero length.

>|Word Same as the >Word command, except that this redirection statement
overrides the noclobber option.

> >Word Uses the file specified by the Word parameter as standard output. If the
file currently exists, the shell appends the output to it (by first seeking
the end-of-file character). If the file does not exist, the shell creates it.

<>Word Opens the file specified by the Word parameter for reading and writing
as standard input.

<<[–]Word Reads each line of shell input until it locates a line containing only the
value of the Word parameter or an end-of-file character. The shell does
not perform parameter substitution, command substitution, or file name
substitution on the file specified. The resulting document, called a here
document, becomes the standard input. If any character of the Word
parameter is quoted, no interpretation is placed upon the characters of
the document.

The here document is treated as a single word that begins after the next
new-line character and continues until there is a line containing only the
delimiter, with no trailing blank characters. Then the next here document,
if any, starts. The format is:

[n]<<word

 here document

delimiter

If any character in word is quoted, the delimiter is formed by removing
the quote on word. The here document lines will not be expanded.
Otherwise, the delimiter is the word itself. If no characters in word are
quoted, all lines of the here document will be expanded for parameter
expansion, command substitution, and arithmetic expansion.

The shell performs parameter substitution for the redirected data. To
prevent the shell from interpreting the \ (backslash), $ (dollar sign), and ‘
(single quote) characters and the first character of the Word parameter,
precede the characters with a \ character.

If a – (minus sign) is appended to <<, the shell strips all leading tabs from
the Word parameter and the document.

11-29 Shells

<&Digit Duplicates standard input from the file descriptor specified by the Digit
parameter.

>& Digit Duplicates standard output in the file descriptor specified by the Digit
parameter.

<&– Closes standard input.

>&– Closes standard output.

<&p Moves input from the coprocess to standard input.

>&p Moves output to the coprocess to standard output.

If one of these redirection options is preceded by a digit, then the file descriptor number
referred to is specified by the digit (instead of the default 0 or 1). In the following example,
the shell opens file descriptor 2 for writing as a duplicate of file descriptor 1:

... 2>&1

The order in which redirections are specified is significant. The shell evaluates each
redirection in terms of the (FileDescriptor, File) association at the time of evaluation. For
example, in the statement:

... 1>File 2>&1

the file descriptor 1 is associated with the file specified by the File parameter. The shell
associates file descriptor 2 with the file associated with file descriptor 1 (File). If the order of
redirections were reversed, file descriptor 2 would be associated with the terminal
(assuming file descriptor 1 had previously been) and file descriptor 1 would be associated
with the file specified by the File parameter.

If a command is followed by an & (ampersand) and job control is not active, the default
standard input for the command is the empty file, /dev/null. Otherwise, the environment for
the execution of a command contains the file descriptors of the invoking shell as modified by
input and output specifications.

For more information about redirection, see ”Input and Output Redirection”, on page 4-1

Coprocess Facility
The Korn shell, or POSIX shell, allows you to run one or more commands as background
processes. These commands, run from within a shell script, are called coprocesses.
Coprocesses are useful when you want to communicate with a program.

Designate a coprocess by placing the |& (pipe, ampersand) operator after a command. Both
standard input and output of the command are piped to your script.

A coprocess must meet the following restrictions:

• Include a new-line character at the end of each message

• Send each output message to standard output

• Clear its standard output after each message.

The following example demonstrates how input is passed to and returned from a coprocess:

echo ”Initial process”

./FileB.sh |&

read –p a b c d

echo ”Read from coprocess: $a $b $c $d”

print –p ”Passed to the coprocess”

read –p a b c d

echo ”Passed back from coprocess: $a $b $c $d”

FileB.sh

 echo ”The coprocess is running”

 read a b c d

 echo $a $b $c $d

11-30 AIX System User’s Guide – OS & Devices

The resulting standard output is:

Initial process

Read from coprocess: The coprocess is running

Passed back from coprocess: Passed to the coprocess

The print –p command lets you write to the coprocess. To read from the coprocess, issue
the read –p command.

Redirecting Coprocess Input and Output
The standard input and output of a coprocess is reassigned to a numbered file descriptor by
using I/O redirection. For example, the command:

exec 5>&p

moves the input of the coprocess to file descriptor 5.

Once this is done, you can use standard redirection syntax to redirect command output to
the coprocess. You can also start another coprocess. Output from both coprocesses is
connected to the same pipe and is read with the read –p command. To stop the coprocess,
type:

read –u5

11-31 Shells

Exit Status
Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit
status. Otherwise, the shell returns the exit status of the last command carried out. The shell
reports detected run–time errors by printing the command or function name and the error
condition. If the number of the line on which an error occurred is greater than 1, then the line
number is also printed in [] (brackets) after the command or function name.

For a non–interactive shell, an error encountered by a special built–in or other type of
command will cause the shell to write a diagnostic message as shown in the following table:

Error Special Built–In Other Utilities

Shell language syntax error will exit will exit

Utility syntax error (option or
operand error)

will exit will not exit

Redirection error will exit will not exit

Variable assignment error will exit will not exit

Expansion error will exit will exit

Command not found not applicable may exit

Dot script not found will exit not applicable

If any of the errors shown as ”will (may) exit” occur in a subshell, the subshell will (may) exit
with a nonzero status, but the script containing the subshell will not exit because of the
error.

In all cases shown in the table, an interactive shell will write a diagnostic message to
standard error, without exiting.

For more information about redirection see ”Input and Output Redirection in the Korn Shell
or POSIX Shell.”

• Korn Shell Related Information

11-32 AIX System User’s Guide – OS & Devices

Korn Shell or POSIX Shell Commands
A Korn shell command is one of the following:

• Simple command, on page 11-5

• Pipeline, on page 11-5

• List, on page 11-5

• Compound command, on page 11-33

• Function, on page 11-35

When you issue a command in the Korn shell or POSIX shell , the shell evaluates the
command and acts as follows:

• Makes all indicated substitutions.

• Determines whether the command contains a / (slash). If it does, the shell runs the
program named by the specified path name.

If the command does not contain a / (slash), the Korn shell or POSIX shell continues with
the following actions:

• Determines whether the command is a special built–in command. If it is, the shell runs
the command within the current shell process.

See ”Korn Shell or POSIX Shell Built–in Commands”, on page 11-37 for information
about special built–in commands.

• Compares the command to user–defined functions. If the command matches a
user–defined function, the positional parameters are saved and then reset to the
arguments of the function call. When the function completes or issues a return, the
positional parameter list is restored, and any trap set on EXIT within the function is
carried out. The value of a function is the value of the last command executed. A function
is carried out in the current shell process.

• If the command name matches the name of a regular built–in command, that regular
built–in command will be invoked.

See ”Korn Shell or POSIX Shell Built–in Commands”, on page 11-37 for information
about regular built–in commands.

• Creates a process and attempts to carry out the command by using the exec command
(if the command is neither a built–in command nor a user–defined function).

The Korn shell, or POSIX shell, searches each directory in a specified path for an
executable file. The PATH shell variable defines the search path for the directory containing
the command. Alternative directory names are separated with a : (colon). The default path is
/usr/bin: (specifying the /usr/bin directory, and the current directory, in that order). The
current directory is specified by two or more adjacent colons, or by a colon at the beginning
or end of the path list.

If the file has execute permission but is not a directory or an a.out file, the shell assumes
that it contains shell commands. The current shell process spawns a subshell to read the
file. All nonexported aliases, functions, and named parameters are removed from the file. If
the shell command file has read permission, or if the setuid or setgid bits are set on the
file, then the shell runs an agent that sets up the permissions and carries out the shell with
the shell command file passed down as an open file. A parenthesized command is run in a
subshell without removing nonexported quantities.

This section discusses:

• Korn Shell Compound Commands, on page 11-33.

• Functions, on page 11-35.

11-33 Shells

• Korn Shell or POSIX Shell Built–in Commands, on page 11-37.

• Conditional Expressions, on page 11-49.

• Korn Shell Related Information

Korn Shell Compound Commands
A compound command is a list of simple commands, a pipeline, or it can begin with a
reserved word. Most of the time you will use compound commands such as if, while, and
for when you are writing shell scripts.

List of Korn Shell or POSIX Shell Compound Commands

for Identifier [in Word ...] ;do List ;done

 Each time a for command is executed, the Identifier
parameter is set to the next word taken from the in Word ...
list. If the in Word ... command is omitted, then the for
command executes the do List command once for each
positional parameter that is set. Execution ends when there
are no more words in the list. Refer to ”Parameter
Substitution in the Korn Shell”, on page 11-17 for more
information on positional parameters.

select Identifier [in Word ...] ;do List ;done

 A select command prints on standard error (file descriptor
2) the set of words specified, each preceded by a number. If
the in Word ... command is omitted, then the positional
parameters are used instead. The PS3 prompt is printed
and a line is read from the standard input. If this line
consists of the number of one of the listed words, then the
value of the Identifier parameter is set to the word
corresponding to this number.

If the line read from standard input is empty, the selection
list is printed again. Otherwise, the value of the Identifier
parameter is set to null. The contents of the line read from
standard input is saved in the REPLY parameter. The List
parameter is executed for each selection until a break or an
end–of–file character is encountered. Refer to ”Parameter
Substitution in the Korn Shell or POSIX Shell”, on page
11-17 for more information on positional parameters.

case Word in [[(] Pattern [| Pattern] ...) List ;;] ... esac

 A case command executes the List parameter associated
with the first Pattern parameter that matches the Word
parameter. The form of the patterns is the same as that
used for file name substitution.

if List ;then List [elif List ;then List] ... [;else List] ;fi

 The List parameter specifies a list of commands to be run.
The shell executes the if List command first. If a zero exit
status is returned, it executes the then List command.
Otherwise, the commands specified by the List parameter
following the elif command are executed.

11-34 AIX System User’s Guide – OS & Devices

If the value returned by the last command in the elif List
command is zero, the then List command is executed. If
the value returned by the last command in the then List
command is zero, the else List command is executed. If no
commands specified by the List parameters are executed
for the else or then command, the if command returns a
zero exit status.

while List ;do List ;done

until List ;do List ;done

 The List parameter specifies a list of commands to be run.
The while command repeatedly executes the commands
specified by the List parameter. If the exit status of the last
command in the while List command is zero, the do List
command is executed. If the exit status of the last
command in the while List command is not zero, the loop
terminates. If no commands in the do List command are
executed, then the while command returns a zero exit
status. The until command may be used in place of the
while command to negate the loop termination test.

(List)

 The List parameter specifies a list of commands to run. The
shell executes the List parameter in a separate
environment.

Note: If two adjacent open parentheses are needed for
nesting, you must insert a space between them in
order to differentiate between the command and
arithmetic evaluation.

{List;}

The List parameter specifies a list of commands to run. The
List parameter is simply executed.

Note: Unlike the metacharacters () (parentheses), { }
(braces) denote reserved words (used for special
purposes, not as user–declared identifiers). To be
recognized, these reserved words must appear at
the beginning of a line or after a ; (semicolon).

[[Expression]] Evaluates the Expression parameter. If the expression is
true, the command returns a zero exit status.

function Identifier {List ;} or function Identifier () {List ;}

 Defines a function that is referenced by the Identifier
parameter. The body of the function is the specified list of
commands enclosed by { } (braces). The () consists of two
operators, so mixing blank characters with the identifier,
(and) is permitted, but is not necessary.

time Pipeline

 Executes the Pipeline parameter. The elapsed time, user
time, and system time are printed to standard error.

11-35 Shells

Functions
The function reserved word defines shell functions. The shell reads and stores functions
internally. Alias names are resolved when the function is read. The shell executes functions
in the same manner as commands, with the arguments passed as positional parameters.
Refer to ”Parameter Substitution in the Korn Shell or POSIX Shell”, on page 11-17 for more
information on positional parameters.

The Korn shell or POSIX shell executes functions in the environment from which functions
are invoked. All of the following are shared by the function and the invoking script, and side
effects can be produced:

• Variable values and attributes (unless you use typeset within the function to declare a
local variable).

• Working directory.

• Aliases, function definitions, and attributes.

• Special parameter $.

• Open files.

The following are not shared between the function and the invoking script, and there are no
side effects:

• Positional parameters.

• Special parameter #.

• Variables in a variable assignment list when the function is invoked.

• Variables declared using typeset within the function.

• Options.

• Traps. However, signals ignored by the invoking script will also be ignored by the
function.

Note: In earlier versions of the Korn shell, traps other than EXIT and ERR were shared by
the function as well as the invoking script.

If trap on 0 or EXIT is executed inside the body of a function, the action is executed after the
function completes, in the environment that called the function. If the trap is executed
outside the body of a function, the action is executed upon exit from the Korn shell. In earlier
versions of the Korn shell, no trap on 0 or EXIT outside the body of a function was executed
upon exit from the function.

When a function is executed, it has the same syntax–error and variable–assignment
properties described in ”Korn Shell or POSIX Shell Built–in Commands.”

The compound command is executed whenever the function name is specified as the name
of a simple command. The operands to the command temporarily will become the positional
parameters during the execution of the compound command. The special parameter # will
also change to reflect the number of operands. The special parameter 0 will not change.

The return special command is used to return from function calls. Errors within functions
return control to the caller.

Function identifiers are listed with the –f or +f option of the typeset special command. The
–f option also lists the text of functions. Functions are undefined with the –f option of the
unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The –xf option of the
typeset special command allows a function to be exported to scripts that are executed
without a separate invocation of the shell. Functions that must be defined across separate
invocations of the shell should be specified in the ENV file with the –xf option of the typeset
special command.

11-36 AIX System User’s Guide – OS & Devices

The exit status of a function definition is zero if the function was not successfully declared.
Otherwise, it will be greater than zero. The exit status of a function invocation is the exit
status of the last command executed by the function.

11-37 Shells

Korn Shell or POSIX Shell Built–In Commands
Special commands are built in to the Korn shell and POSIX shell and executed in the shell
process. Unless otherwise indicated, the output is written to file descriptor 1 and the exit
status is 0 (zero) if the command does not contain any syntax errors. Input and output
redirection is permitted. There are two types of built–in commands, special built–in
commands and regular built–in commands.

Refer to the List of Korn Shell or POSIX Shell Built–in Commands for an alphabetical listing
of these commands.

Special built–in commands differ from regular built–in commands in the following ways:

• A syntax error in a special built–in command may cause the shell executing the
command to end. This does not happen if you have a syntax error in a regular built–in
command. If a syntax error in a special built–in command does not end the shell
program, the exit value is non–zero.

• Variable assignments specified with special built–in commands remain in effect after the
command completes. This is not the situation with regular built–in commands.

• I/O redirections are processed after parameter assignments.

In addition, words that are in the form of a parameter assignment following the export,
readonly, and typeset special commands are expanded with the same rules as a
parameter assignment. This means that tilde substitution is performed after the = (equal
sign), and word splitting and file name substitution are not performed.

Special Built–in Command Descriptions
The Korn Shell provides the following special built–in commands:

: eval newgrp shift

. exec readonly times

break exit return trap

continue export set typeset

 unset

: [Argument ...] Expands only arguments. It is used when a command is
necessary, as in the then condition of an if command, but nothing
is to be done by the command.

. File [Argument ...] Reads the complete specified file and then executes the
commands. The commands are executed in the current shell
environment. The search path specified by the PATH variable is
used to find the directory containing the specified file. If any
arguments are specified, they become the positional parameters.
Otherwise, the positional parameters are unchanged. The exit
status is the exit status of the last command executed. Refer to
Parameter Substitution in the Korn Shell or POSIX Shell, on page
11-17 for more information on positional parameters.

Note: The .File [Argument ...] command reads the entire file
before any commands are carried out. Therefore, the
alias and unalias commands in the file do not apply to
any functions defined in the file.

break [n] Exits from the enclosing for, while, until, or select loop, if one
exists. If you specify the n parameter, the command breaks the
number of levels specified by the n parameter. The value of n is
any integer equal to or greater than 1.

11-38 AIX System User’s Guide – OS & Devices

continue [n] Resumes the next iteration of the enclosing for, while, until, or
select loop. If you specify the n variable, the command resumes
at the nth enclosing loop. The value of n is any integer equal to or
greater than 1.

eval [Argument ...] Reads the specified arguments as input to the shell and executes
the resulting command or commands.

exec [Argument ...] Executes the command specified by the argument in place of this
shell (without creating a new process). Input and output
arguments can appear and affect the current process. If you do
not specify an argument, the exec command modifies file
descriptors as prescribed by the input and output redirection list.
In this case, any file descriptor numbers greater than 2 that are
opened with this mechanism are closed when invoking another
program.

exit [n] Exits the shell with the exit status specified by the n parameter.
The n parameter must be an unsigned decimal integer with range
0–255. If you omit the n parameter, the exit status is that of the
last command executed. An end–of–file character also exits the
shell, unless the ignoreeof option of the set special command is
turned on.

export –p [Name[= Value]] ...

Marks the specified names for automatic export to the
environment of subsequently executed commands.

–p

writes to standard output the names and values of all exported
variables, in the following format:

”export %s= %s\n”, <name> <value>

newgrp [Group] Equivalent to the exec/usr/bin/newgrp [Group] command.

Note: This command does not return.

readonly –p [Name[= Value]] ...

Marks the names specified by the Name parameter as read–only.
These names cannot be changed by subsequent assignment.

–p

writes to standard output the names and values of all exported
variables, in the following format:

”export %s= %s\n”, <name> <value>

return [n] Causes a shell function to return to the invoking script. The return
status is specified by the n variable. If you omit the n variable, the
return status is that of the last command executed. If you invoke
the return command outside of a function or a script, then it is the
same as an exit command.

11-39 Shells

set [+ |–abCefhkmnostuvx] [+ |–o Option]... [+ |–A Name] [Argument ...]

If no options or arguments are specified, the set command writes the
names and values of all shell variables in the collation sequence of the
current locale. When options are specified, they will set or unset attributes
of the shell, as described below. When arguments are specified, they will
cause positional parameters to be set or unset, as described below. The
flags for this command are interpreted as follows:

–A Array assignment. Unsets the Name parameter and
assigns values sequentially from the specified Argument
parameter list. If the +A flag is used, the Name parameter
is not unset first.

–a Exports automatically all subsequent parameters that are
defined.

–b Notifies the user asynchronously of background job
completions.

–C Equivalent to set –o noclobber.

–e Executes the ERR trap, if set, and exits if a command
has a nonzero exit status. This mode is disabled while
reading profiles.

–f Disables file name substitution.

–h Designates each command as a tracked alias when first
encountered.

–k Places all parameter assignment arguments in the
environment for a command, not just those arguments
that precede the command name.

–m Runs background jobs in a separate process and prints a
line upon completion. The exit status of background jobs
is reported in a completion message. On systems with
job control, this flag is turned on automatically for
interactive shells (refer to ”Job Control in the Korn Shell
or POSIX Shell” , on page 11-51.)

–n Reads commands and checks them for syntax errors, but
does not execute them. This flag is ignored for interactive
shells.

–o Option Prints current option settings and an error message if you
do not specify an argument. You can set more than one
option on a single ksh command line. If the +o flag is
used, the specified option is unset. Arguments, as
specified by the Option variable, can be one of the
following:

allexport Same as the –a flag.

errexit Same as the –e flag.

bgnice Runs all background jobs at a lower
priority. This is the default mode.

emacs Enters an emacs–style inline editor for
command entry.

gmacs Enters a gmacs–style inline editor for
command entry.

11-40 AIX System User’s Guide – OS & Devices

ignoreeof Does not exit the shell when it
encounters an end–of–file character. To
exit the shell, you must use the exit
command, or press the Ctrl–D key
sequence more than 11 times.

keyword Same as the –k flag.

Note: This flag is for backward
compatibility with the Bourne shell
only. Its use is strongly
discouraged.

markdirs Appends a / (slash) to all directory names
that are a result of file name substitution.

monitor Same as the –m flag.

noclobber Prevents redirection from truncating
existing files. When you specify this
option, a vertical bar must follow the
redirection symbol (>|) to truncate a file.

noexec Same as the –n flag.

noglob Same as the –f flag.

nolog Prevents function definitions from being
saved in the history file.

nounset Same as the –u flag.

privileged Same as the –p flag.

trackall Same as the –h flag.

verbose Same as the –v flag.

vi Enters the insert mode of a vi–style inline
editor for command entry. Entering
escape character 033 puts the editor into
the move mode. A return sends the line.

viraw Processes each character as it is typed
in vi mode.

xtrace Same as the –x flag.

–p Disables processing of the
$HOME/.profile file and uses the
/etc/suid _profile file instead of the ENV
file. This mode is enabled whenever the
effective user ID (UID) or group ID (GID)
is not equal to the real UID or GID.
Turning off this option sets the effective
UID or GID to the real UID and GID.

Note: The system does not support the
–p option since the operating
system does not support setuid
shell scripts.

–s Sorts the positional parameters
lexicographically.

–t Exits after reading and executing one
command.

11-41 Shells

Note: This flag is for backward
compatibility with the Bourne shell
only. Its use is strongly discouraged.

–u Treats unset parameters as errors when
substituting.

–v Prints shell input lines as they are read.

–x Prints commands and their arguments as
they are executed.

– Turns off the –x and –v flags and stops
examining arguments for flags.

–– Prevents any flags from being changed.
This option is useful in setting the $1
parameter to a value beginning with a –
(minus sign). If no arguments follow this
flag, the positional parameters are not set.

Preceding any of the set command flags with a + (plus
sign) rather than a – (minus sign) turns off the flag. You can
use these flags when you invoke the shell. The current set
of flags is found in the $– parameter. Unless you specify
the –A flag, the remaining arguments are positional
parameters and are assigned, in order, to $1, $2, ..., and
so forth. If no arguments are given, the names and values
of all named parameters are printed to standard output.

shift [n] Renames the positional parameters, beginning with $ n +1 ...
through $1 The default value of the n parameter is 1. The n
parameter is any arithmetic expression that evaluates to a
nonnegative number less than or equal to the $# parameter.

times Prints the accumulated user and system times for the shell and
for processes run from the shell.

trap [Command] [Signal] ...

Runs the specified command when the shell receives the
specified signal or signals. The Command parameter is read once
when the trap is set and once when the trap is taken. The Signal
parameter can be given as a number or as the name of the
signal. Trap commands are executed in order of signal number.
Any attempt to set a trap on a signal that was ignored on entry to
the current shell is ineffective.

If the command is a – (minus sign), all traps are reset to their
original values. If you omit the command and the first signal is a
numeric signal number, then the ksh command resets the value
of the Signal parameter or parameters to the original values.

Note: If you omit the command and the first signal is a symbolic
name, the signal is interpreted as a command.

If the value of the Signal parameter is the ERR signal, the
specified command is carried out whenever a command has a
nonzero exit status. If the signal is DEBUG, then the specified
command is carried out after each command. If the value of the
Signal parameter is the 0 or EXIT signal and the trap command is
executed inside the body of a function, the specified command is
carried out after the function completes. If the Signal parameter is
0 or EXIT for a trap command set outside any function, the
specified command is carried out on exit from the shell. The trap

11-42 AIX System User’s Guide – OS & Devices

command with no arguments prints a list of commands associated
with each signal number.

For a complete list of Signal parameter values, used in the trap
command without the SIG prefix, refer to the sigaction, sigvec, or
signal subroutine in the AIX Technical Reference, Volume 2: Base
Operating System and Extensions.

typeset [+HLRZfilrtux [n]] [Name[= Value]] ...
Sets attributes and values for shell parameters. When invoked
inside a function, a new instance of the Name parameter is
created. The parameter value and type are restored when the
function completes. You can specify the following flags with the
typeset command:

–H Provides AIX–to–host–file mapping on non–AIX
machines.

–L Left–justifies and removes leading blanks from the
Value parameter. If the n parameter has a
nonzero value, it defines the width of the field;
otherwise, it is determined by the width of the
value of its first assignment. When the parameter
is assigned, it is filled on the right with blanks or
truncated, if necessary, to fit into the field. Leading
zeros are removed if the –Z flag is also set. The
–R flag is turned off.

–R Right–justifies and fills with leading blanks. If the n
parameter has a nonzero value, it defines the
width of the field; otherwise, it is determined by
the width of the value of its first assignment. The
field remains filled with blanks or is truncated from
the end if the parameter is reassigned. The L flag
is turned off.

–Z Right–justifies and fills with leading zeros if the
first nonblank character is a digit and the –L flag
has not been set. If the n parameter has a
nonzero value, it defines the width of the field;
otherwise, it is determined by the width of the
value of its first assignment.

–f Indicates that the names refer to function, rather
than parameter, names. No assignments can be
made and the only other valid flags are –t, –u,
and –x . The –t flag turns on execution tracing for
this function. The –u flag causes this function to
be marked undefined. The FPATH variable is
searched to find the function definition when the
function is referenced. The –x flag allows the
function definition to remain in effect across shell
scripts that are not a separate invocation of the
ksh command.

–i Identifies the parameter as an integer, making
arithmetic faster. If the n parameter has a nonzero
value, it defines the output arithmetic base;
otherwise, the first assignment determines the
output base.

11-43 Shells

–l Converts all uppercase characters to lowercase.
The –u uppercase conversion flag is turned off.

–r Marks the names specified by the Name
parameter as read–only. These names cannot be
changed by subsequent assignment.

–t Tags the named parameters. Tags can be defined
by the user and have no special meaning to the
shell.

–u Converts all lowercase characters to uppercase
characters. The –l lowercase flag is turned off.

–x Marks the name specified by the Name
parameter for automatic export to the
environment of subsequently executed
commands.

Using a + (plus sign) rather than a – (minus sign) turns off the
typeset command flags. If you do not specify Name parameters
but do specify flags, a list of names (and optionally the values) of
the parameters that have these flags set is printed. (Using a +
rather than a – keeps the values from being printed.) If you do not
specify any names or flags, the names and attributes of all
parameters are printed.

unset [–fv] Name ... Unsets the values and attributes of the parameters given by the
list of names. If –v is specified, Name refers to a variable name,
and the shell will unset it and remove it from the environment.
Read–only variables cannot be unset. Unsetting the ERRNO,
LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM,
SECONDS, TMOUT, and _ (underscore) variables removes their
special meanings even if they are subsequently assigned.

If the –f flag is set, then Name refers to a function name, and the
shell will unset the function definition.

11-44 AIX System User’s Guide – OS & Devices

Regular Built–in Command Descriptions
The Korn Shell provides the following regular built–in commands:

alias fg print ulimit

bg getopts pwd umask

cd jobs read unalias

command kill setgroups wait

echo let test whence

fc

alias [–t] [–x] [AliasName[= String]] ...

Creates or redefines alias definitions or writes existing alias
definitions to standard output.

For more information, refer to the alias command in the
AIX Commands Reference.

bg [JobID...] Puts each specified job into the background. The current job is
put in the background if a JobID parameter is not specified. Refer
to ”Job Control in the Korn Shell or POSIX Shell”, on page 11-51
for more information about job control.

For more information about running jobs in the background, refer
to the bg command in the AIX Commands Reference.

cd [Argument]

cd Old New This command can be in either of two forms. In the first form, it
changes the current directory to the one specified by the
Argument parameter. If the value of the Argument parameter is –
(minus sign), the directory is changed to the previous directory.
The HOME shell variable is the default value of the Argument
parameter. The PWD variable is set to the current directory.

The CDPATH shell variable defines the search path for the
directory containing the value of the Argument parameter.
Alternative directory names are separated by a : (colon). The
default path is null, specifying the current directory. The current
directory is specified by a null path name, which appears
immediately after the equal sign or between the colon delimiters
anywhere in the path list. If the specified argument begins with a /
(slash), the search path is not used. Otherwise, each directory in
the path is searched for the argument.

The second form of the cd command substitutes the string
specified by the New variable for the string specified by the Old
variable in the current directory name, PWD, and tries to change
to this new directory.

command [–p] CommandName [Argument ...]
command [–v | –V] CommandName

Command causes the shell to treat the specified command and
arguments as a simple command, suppressing shell function
lookup.

For more information, refer to the command command in the
AIX Commands Reference.

echo [String ...] Writes character strings to standard output. Refer to the echo
command for usage and description. The –n flag is not
supported.

11-45 Shells

fc [–r] [–e Editor] [First [Last]]
fc –l [–n] [–r] [First [Last]]
fc –s [Old= New] [First]

Displays the contents of your command history file or invokes an
editor to modify and re–executes commands previously entered in
the shell.

For more information, refer to the fc command in the
AIX Commands Reference.

fg [JobID] Brings each job specified into the foreground. If you do not
specify any jobs, the command brings the current job into the
foreground.

For more information about running jobs in the foreground, refer
to the fg command in the AIX Commands Reference.

getopts OptionString Name [Argument ...]

Checks the Argument parameter for legal options.

For more information, refer to the getopts command in the
AIX Commands Reference.

jobs [–l | –n | –p] [JobID ...]

Displays the status of jobs started in the current shell
environment. If no specific job is specified with the JobID
parameter, status information for all active jobs is displayed. If a
job termination is reported, the shell removes that job’s process
ID from the list of those known by the current shell environment.

For more information, refer to the jobs command in the
AIX Commands Reference.

To Send Signal to Processes:

kill [–s { SignalName | SignalNumber }] ProcessID...
kill [–SignalName | –SignalNumber] ProcessID...

To List Signal Names:

kill –l [ExitStatus] Sends a signal (by default, the SIGTERM signal) to a running
process. This default action normally stops processes. If you want
to stop a process, specify the process ID (PID) in the ProcessID
variable. The shell reports the PID of each process that is running
in the background (unless you start more than one process in a
pipeline, in which case the shell reports the number of the last
process). You can also use the ps command to find the process
ID number of commands.

For more information, refer to the kill command in the
AIX Commands Reference.

let Expression ... Evaluates specified arithmetic expressions. The exit status is 0 if
the value of the last expression is nonzero, and 1 otherwise.
Refer to ”Arithmetic Evaluation in the Korn Shell or POSIX Shell”,
on page 11-24 for more information.

11-46 AIX System User’s Guide – OS & Devices

print [–Rnprsu [n]] [Argument ...]

Prints shell output. If you do not specify any flags, or if the – (minus
sign) or –– (dash) flags are specified, the arguments are printed to
standard output as described by the echo command. The flags do
the following:

–R Prints in raw mode (the escape conventions of
the echo command are ignored). The –R Flag
prints all subsequent arguments and flags other
than –n.

–n Prevents a new–line character from being added
to the output.

–p Writes the arguments to the pipe of the process
run with |& (bar, ampersand) instead of to
standard output.

–r Prints in raw mode. The escape conventions of
the echo command are ignored.

–s Writes the arguments to the history file instead of
to standard output.

–u Specifies a one–digit file descriptor unit number,
n, on which the output is placed. The default is 1.

pwd Equivalent to print –r – $PWD.
Note: The internal Korn shell pwd command does not support

symbolic links.

read [–prsu [n]] [Name?Prompt] [Name...]
Takes shell input. One line is read and broken up into fields, using
the characters in the IFS variable as separators.

For more information, refer to the read command in the
AIX Commands Reference.

setgroups Executes the /usr/bin/setgroups command, which runs as a
separate shell. See the setgroups command for information on
how this command works. There is one difference, however. The
setgroups built–in command invokes a subshell, but the
setgroups command replaces the currently executing shell.
Since the built–in command is supported only for compatibility, it
is recommended that scripts use the absolute path name
/usr/bin/setgroups rather than the shell built–in command.

test Same as [expression]. See ”Conditional Expressions”, on page
11-49 for usage and description.

ulimit [–HSacdfmst] [Limit]
Sets or displays user–process resource limits as defined in the
/etc/security/limits file. This file contains six default limits:

fsize = 2097151

core = 2048

cpu = 3600

data = 131072

rss = 65536

stack = 8192

These values are used as default settings when a new user is
added to the system. The values are set with the mkuser command
when the user is added to the system, or changed with the chuser
command.

11-47 Shells

Limits are categorized as either soft or hard. Users may change
their soft limits, up to the maximum set by the hard limits, with the
ulimit command. You must have root user authority to change
resource hard limits.

Many systems do not contain one or more of these limits. The
limit for a specified resource is set when the Limit parameter is
specified. The value of the Limit parameter can be a number in
the unit specified with each resource, or the value unlimited .
You can specify the following ulimit command flags:

–H Specifies that the hard limit for the given resource
is set. If you have root user authority, you can
increase the hard limit. Anyone can decrease it.

–S Specifies that the soft limit for the given resource
is set. A soft limit can be increased up to the
value of the hard limit. If neither the –H or –S
options are specified, the limit applies to both.

–a Lists all of the current resource limits.

–c Specifies the number of 512–byte blocks on the
size of core dumps.

–d Specifies the size, in KB, of the data area.

–f Specifies the number of 512–byte blocks for files
written by child processes (files of any size can
be read).

–m Specifies the number of KB for the size of
physical memory.

–n Specifies the limit on the number of file
descriptors a process may have open.

–s Specifies the number of KB for the size of the
stack area.

–t Specifies the number of seconds to be used by
each process.

The current resource limit is printed when you omit the Limit
variable. The soft limit is printed unless you specify the –H flag.
When you specify more than one resource, the limit name and
unit is printed before the value. If no option is given, the –f flag is
assumed. When you change the value, set both hard and soft
limits to Limit unless you specify –H or –S.

For more information about user and system resource limits, refer
to the getrlimit, setrlimit, or vlimit subroutine in the
AIX Technical Reference, Volume 1: Base Operating System and
Extensions.

umask [–S] [Mask] Determines file permissions. This value, along with the
permissions of the creating process, determines a file’s
permissions when the file is created. The default is 022. If the
Mask parameter is not specified, the umask command displays to
standard output the file mode creation mask of the current shell
environment.

For more information about file permissions, refer to the umask
command in the AIX Commands Reference.

11-48 AIX System User’s Guide – OS & Devices

unalias –a

unalias AliasName... Removes the definition for each alias name specified, or removes
all alias definitions if the –a flag is used. Alias definitions are
removed from the current shell environment.

For more information, refer to the unalias command in the
AIX Commands Reference.

wait [ProcessID...] Waits for the specified job and terminates. If you do not specify a
job, the command waits for all currently active child processes.
The exit status from this command is that of the process for which
it waits.

For more information, refer to the wait command in the
AIX Commands Reference.

whence [–pv] Name ...
Indicates, for each name specified, how it would be interpreted if
used as a command name. When used without either flag, whence
will display the absolute pathname, if any, that corresponds to each
name.

–p Does a path search for the specified name or
names even if these are aliases, functions, or
reserved words.

–v Produces a more verbose report that specifies
which type each name is.

11-49 Shells

Conditional Expressions
A conditional expression is used with the [[(double bracket) compound command to test
attributes of files and to compare strings. Word splitting and file name substitution are not
performed on words appearing between [[and]](double brackets). Each expression is
constructed from one or more of the following unary or binary expressions:

–a File True, if the specified file is a symbolic link that points to another file
that does exist.

–b File True, if the specified file exists and is a block special file.

–c File True, if the specified file exists and is a character special file.

–d File True, if the specified file exists and is a directory.

–e File True, if the specified file exists.

–f File True, if the specified file exists and is an ordinary file.

–g File True, if the specified file exists and its setgid bit is set.

–h File True, if the specified file exists and is a symbolic link.

–k File True, if the specified file exists and its sticky bit is set.

–n String True, if the length of the specified string is nonzero.

–o Option True, if the specified option is on.

–p File True, if the specified file exists and is a FIFO special file or a pipe.

–r File True, if the specified file exists and is readable by the current
process.

–s File True, if the specified file exists and has a size greater than 0.

–t FileDescriptor True, if specified file descriptor number is open and associated with
a terminal device.

–u File True, if the specified file exists and its setuid bit is set.

–w File True, if the specified file exists and the write bit is on. However, the
file will not be writable on a read-only file system even if this test
indicates true.

–x File True, if the specified file exists and the execute flag is on. If the
specified file exists and is a directory, then the current process has
permission to search in the directory.

–z String True, if length of the specified string is 0.

–L File True, if the specified file exists and is a symbolic link.

–O File True, if the specified file exists and is owned by the effective user ID
of this process.

–G File True, if the specified file exists and its group matches the effective
group ID of this process.

–S File True, if the specified file exists and is a socket.

File1 –nt File2 True, if File1 exists and is newer than File2.

File1 –ot File2 True, if File1 exists and is older than File2.

File1 –ef File2 True, if File1 and File2 exist and refer to the same file.

String1 = String2 True, if String1 is equal to String2.

String1 != String2 True, if String1 is not equal to String2.

String = Pattern True, if the specified string matches the specified pattern.

String != Pattern True, if the specified string does not match the specified pattern.

11-50 AIX System User’s Guide – OS & Devices

String1 < String2 True, if String1 comes before String2 based on the ASCII value of
their characters.

String1 > String2 True, if String1 comes after String2 based on the ASCII value of their
characters.

Expression1 –eq
Expression2

True, if Expression1 is equal to Expression2.

Expression1 –ne
Expression2

True, if Expression1 is not equal to Expression2.

Expression1 –lt
Expression2

True, if Expression1 is less than Expression2.

Expression1 –gt
Expression2

True, if Expression1 is greater than Expression2.

Expression1 –le
Expression2

True, if Expression1 is less than or equal to Expression2.

Expression1 –ge
Expression2

True, if Expression1 is greater than or equal to Expression2.

Note: In each of the previous expressions, if the File variable is similar to /dev/fd/n,
where n is an integer, then the test is applied to the open file whose descriptor
number is n.

You can construct a compound expression from these primitives by using any of the
following expressions, listed in decreasing order of precedence:

(Expression) True, if the specified expression is true. Used to group
expressions.

!Expression True, if the specified expression is false.

Expression1 &&
Expression2

True, if Expression1 and Expression2 are both true.

Expression1 ||
Expression2

True, if either Expression1 or Expression2 is true.

11-51 Shells

Job Control in the Korn Shell or POSIX Shell
The Korn shell, or POSIX shell, provides a facility to control command sequences, or jobs.
When you execute the set –m special command, the Korn shell associates a job with each
pipeline. It keeps a table of current jobs, printed by the jobs command, and assigns them
small integer numbers.

When a job is started in the background with an & (ampersand), the shell prints a line that
looks like:

[1] 1234

This indicates that the job, which was started in the background, was job number 1. It also
shows that the job had one (top–level) process with a process ID of 1234.

If you are running a job and want to do something else, use the Ctrl–Z key sequence. This
key sequence sends a STOP signal to the current job. The shell normally indicates that the
job has been stopped, and then displays a shell prompt. You can then manipulate the state
of this job (putting it in the background with the bg command), run other commands, and
then eventually bring the job back into the foreground with the fg command. The Ctrl–Z key
sequence takes effect immediately, and is like an interrupt in that the shell discards pending
output and unread input when you type the sequence.

A job being run in the background stops if it tries to read from the terminal. Background jobs
are normally allowed to produce output. You can disable this option by issuing the stty
tostop command. If you set this terminal option, then background jobs stop when they try to
produce output or read input.

You can refer to jobs in the Korn shell in several ways. A job is referenced by the process ID
of any of its processes, or in one of the following ways:

%Number Specifies the job with the given number.

%String Specifies any job whose command line begins with the
String variable.

%?String Specifies any job whose command line contains the String
variable.

%% Specifies the current job.

%+ Equivalent to %%.

%– Specifies the previous job.

This shell learns immediately whenever a process changes state. It normally informs you
whenever a job becomes blocked so that no further progress is possible. The shell does this
just before it prints a prompt so that it does not otherwise disturb your work.

When the monitor mode is on, each completed background job triggers traps set for the
CHLD signal.

If you try to leave the shell (either by typing exit or using the Ctrl–D key sequence) while
jobs are stopped or running, the system warns you with the message There are
stopped(running)jobs. Use the jobs command to see which jobs are affected. If you
immediately try to exit again, the shell terminates the stopped and running jobs without
warning.

11-52 AIX System User’s Guide – OS & Devices

Signal Handling
The SIGINT and SIGQUIT signals for an invoked command are ignored if the command is
followed by & (ampersand) and the job monitor option is not active. Otherwise, signals
have the values that the shell inherits from its parent.

When a signal for which a trap has been set is received while the shell is waiting for the
completion of a foreground command, the trap associated with that signal will not be
executed until after the foreground command has completed. Therefore, a trap on a CHILD
signal is not performed until the foreground job terminates.

• Korn Shell Related Information

11-53 Shells

Inline Editing in the Korn Shell or POSIX Shell
Normally, you type each command line from a terminal device and follow it by a new–line
character (RETURN or LINE FEED). When you activate the emacs, gmacs, or vi inline
editing option, you can edit the command line.

The following commands enter edit modes:

set –o emacs Enters emacs editing mode and initiates an emacs–style inline
editor.

set –o gmacs Enters emacs editing mode and initiates a gmacs–style inline
editor.

set –o vi Enters vi editing mode and initiates a vi–style inline editor.

An editing option is automatically selected each time the VISUAL or EDITOR variable is
assigned a value ending in any of these option names.

Note: To use the editing features, your terminal must accept RETURN as a carriage return
without line feed. A space must overwrite the current character on the screen.

Each editing mode opens a window at the current line. The window width is the value of the
COLUMNS variable if it is defined; otherwise, the width is 80 character spaces. If the line is
longer than the window width minus two, the system notifies you by displaying a mark at the
end of the window. As the cursor moves and reaches the window boundaries, the window is
centered about the cursor. The marks displayed are:

> Indicates that the line extends on the right side of the window.

< Indicates that the line extends on the left side of the window.

* Indicates that the line extends on both sides of the window.

The search commands in each edit mode provide access to the Korn shell history file. Only
strings are matched. If the leading character in the string is a ^ (caret), the match must
begin at the first character in the line.

This section discusses:

• emacs Editing Mode, on page 11-53

• vi Editing Mode, on page 11-56

• Korn Shell Related Information, on page 11-65

emacs Editing Mode
The emacs mode is entered when you enable either the emacs or gmacs option. The only
difference between these two modes is the way each handles the Ctrl–T edit command. To
edit, move the cursor to the point needing correction and insert or delete characters or
words, as needed. All of the editing commands are control characters or escape sequences.

Edit commands operate from any place on a line (not just at the beginning). Do not press
the Enter key or line–feed (Down Arrow) key after edit commands, except as noted.

Ctrl–F Moves the cursor forward (right) one character.

Esc–F Moves the cursor forward one word (a string of characters
consisting of only letters, digits, and underscores).

Ctrl–B Moves the cursor backward (left) one character.

Esc–B Moves the cursor backward one word.

Ctrl–A Moves the cursor to the beginning of the line.

Ctrl–E Moves the cursor to the end of the line.

11-54 AIX System User’s Guide – OS & Devices

Ctrl–] c Moves the cursor forward on the current line to the indicated
character.

Esc–Ctrl–] c Moves the cursor backward on the current line to the indicated
character.

Ctrl–X Ctrl–X Interchanges the cursor and the mark.

ERASE Deletes the previous character. (User–defined erase character as
defined by the stty command, usually the Ctrl–H key sequence.)

Ctrl–D Deletes the current character.

Esc–D Deletes the current word.

Esc–Backspace Deletes the previous word.

Esc–H Deletes the previous word.

Esc–Delete Deletes the previous word. If your interrupt character is the Delete
key, then this command does not work.

Ctrl–T Transposes the current character with the next character in
emacs mode. Transposes the two previous characters in gmacs
mode.

Ctrl–C Capitalizes the current character.

Esc–C Capitalizes the current word.

Esc–L Changes the current word to lowercase.

Ctrl–K Deletes from the cursor to the end of the line. If preceded by a
numerical parameter whose value is less than the current cursor
position, this editing command deletes from the given position up
to the cursor. If preceded by a numerical parameter whose value
is greater than the current cursor position, this editing command
deletes from the cursor up to the given cursor position.

Ctrl–W Deletes from the cursor to the mark.

Esc–P Pushes the region from the cursor to the mark on the stack.

KILL User–defined kill character as defined by the stty command,
usually the Ctrl–G key sequence or an @ (ampersand). Kills the
entire current line. If two kill characters are entered in succession,
all subsequent kill characters cause a line feed (useful when
using paper terminals).

Ctrl–Y Restores the last item removed from the line. (Yanks the item
back to the line.)

Ctrl–L Line feeds and prints the current line.

Ctrl–@ (Null character) Sets a mark.

Esc–space Sets a mark.

Ctrl–J (New line) Executes the current line.

Ctrl–M (Return) Executes the current line.

EOF Processes the end–of–file character, normally the Ctrl–D key
sequence, as an end–of–file only if the current line is null.

Ctrl–P Fetches the previous command. Each time the Ctrl–P key
sequence is entered, the previous command back in time is
accessed. Moves back one line when not on the first line of a
multiple–line command.

Esc–< Fetches the least recent (oldest) history line.

Esc–> Fetches the most recent (youngest) history line.

11-55 Shells

Ctrl–N Fetches the next command line. Each time the Ctrl–N key
sequence is entered, the next command line forward in time is
accessed.

Ctrl–R String Reverses search history for a previous command line containing
the string specified by the String parameter. If a value of 0 is
given, the search is forward. The specified string is terminated by
an Enter or new–line character. If the string is preceded by a ^
(caret character), the matched line must begin with the String
parameter. If the String parameter is omitted, then the next
command line containing the most recent String parameter is
accessed. In this case, a value of 0 reverses the direction of the
search.

Ctrl–O (Operate) Executes the current line and fetches the next line
relative to the current line from the history file.

Esc Digits (Escape) Defines the numeric parameter. The digits are taken as
a parameter to the next command. The commands that accept a
parameter are Ctrl–F, Ctrl–B, ERASE, Ctrl–C, Ctrl–D, Ctrl–K,
Ctrl–R, Ctrl–P, Ctrl–N, Ctrl–], Esc–., Esc–Ctrl–], Esc–_, Esc–B,
Esc–C, Esc–D, Esc–F, Esc–H, Esc–L, and Esc–Ctrl–H.

Esc Letter (Soft–key) Searches the alias list for an alias named _Letter. If an
alias of this name is defined, its value is placed into the input
queue. The Letter parameter must not specify one of the escape
functions.

Esc–[Letter (Soft–key) Searches the alias list for an alias named __Letter
(double underscore). If an alias of this name is defined, its value
is placed into the input queue. This command can be used to
program function keys on many terminals.

Esc–. Inserts on the line the last word of the previous command. If
preceded by a numeric parameter, the value of this parameter
determines which word to insert rather than the last word.

Esc–_ Same as the Esc–. (Escape, dash, period) key sequence.

Esc–* Attempts file name substitution on the current word. An asterisk is
appended if the word does not match any file or contain any
special pattern characters.

Esc–Esc File name completion. Replaces the current word with the longest
common prefix of all file names that match the current word with
an asterisk appended. If the match is unique, a / (slash) is
appended if the file is a directory and a space is appended if the
file is not a directory.

Esc–= Lists the files that match the current word pattern as if an asterisk
were appended.

Ctrl–U Multiplies the parameter of the next command by 4.

\ Escapes the next character. Editing characters and the ERASE,
KILL and INTERRUPT (normally the Delete key) characters can
be entered in a command line or in a search string if preceded by
a \ (backslash). The backslash removes the next character’s
editing features, if any.

Ctrl–V Displays the version of the shell.

Esc–# Inserts a # (pound sign) at the beginning of the line and then
executes the line. This causes a comment to be inserted in the
history file.

11-56 AIX System User’s Guide – OS & Devices

vi Editing Mode
The vi editing mode has two typing modes. When you enter a command, you are in Input
mode. To edit, you must enter the Control mode by pressing the Esc key.

Most control commands accept an optional repeat Count parameter prior to the command.
When in vi mode on most systems, canonical processing is initially enabled. The command
is echoed again if:

• The speed is 1200 baud or greater.

• The command contains any control characters.

• Less than one second has elapsed since the prompt was printed.

The Esc character terminates canonical processing for the remainder of the command, and
you can then modify the command line. This scheme has the advantages of canonical
processing with the type–ahead echoing of raw mode. If the viraw option is also set,
canonical processing is always disabled. This mode is implicit for systems that do not
support two alternate end–of–line delimiters and might be helpful for certain terminals.

Available vi edit commands are grouped in the following categories:

• Input

• Motion

• Search

• Text Modification

• Miscellaneous.

Input Edit Commands
Note: By default, the editor is in input mode.

ERASE (User–defined erase character as defined by the stty command,
usually Ctrl–H or #.) Deletes the previous character.

Ctrl–W Deletes the previous blank separated word.

Ctrl–D Terminates the shell.

Ctrl–V Escapes the next character. Editing characters, such as the
ERASE or KILL characters, can be entered in a command line or
in a search string if preceded by a Ctrl–V key sequence. The
Ctrl–V key sequence removes the next character’s editing
features (if any).

\ Escapes the next ERASE or KILL character.

Motion Edit Commands
Motion edit commands move the cursor:

[Count]l Moves the cursor forward (right) one character.

[Count]w Moves the cursor forward one alphanumeric word.

[Count]W Moves the cursor to the beginning of the next word that follows a
blank.

[Count]e Moves the cursor to the end of the current word.

[Count]E Moves the cursor to the end of the current blank–separated word.

[Count]h Moves the cursor backward (left) one character.

[Count]b Moves the cursor backward one word.

[Count]B Moves the cursor to the previous blank–separated word.

11-57 Shells

[Count]| Moves the cursor to the column specified by the Count parameter.

[Count]fc Finds the next character c in the current line.

[Count]Fc Finds the previous character c in the current line.

[Count]tc Equivalent to f followed by h.

[Count]Tc Equivalent to F followed by l.

[Count]; Repeats for the number of times specified by the Count
parameter the last single–character find command: f, F, t, or T.

[Count], Reverses the last single–character find command the number of
times specified by the Count parameter.

0 Moves the cursor to the start of a line.

^ Moves the cursor to the first nonblank character in a line.

$ Moves the cursor to the end of a line.

Search Edit Commands
Search edit commands access your command history:

[Count]k Fetches the previous command.

[Count]– Equivalent to the k command.

[Count]j Fetches the next command. Each time the j command is entered,
the next command is accessed.

[Count]+ Equivalent to the j command.

[Count]G Fetches the command whose number is specified by the Count
parameter. The default is the least recent history command.

/String Searches backward through history for a previous command
containing the specified string. The string is terminated by a
RETURN or new–line character. If the specified string is preceded
by a ^ (caret), the matched line must begin with the String
parameter. If the value of the String parameter is null, the
previous string is used.

?String Same as /String except that the search is in the forward direction.

n Searches for the next match of the last pattern to /String or ?
commands.

N Searches for the next match of the last pattern to /String or ?
commands, but in the opposite direction. Searches history for the
string entered by the previous /String command.

Text–Modification Edit Commands
Text–modification edit commands modify the line:

a Enters the input mode and enters text after the current character.

A Appends text to the end of the line. Equivalent to the $a
command.

[Count]cMotion

c[Count]Motion Deletes the current character through the character to which the
Motion parameter specifies to move the cursor, and enters input
mode. If the value of the Motion parameter is c, the entire line is
deleted and the input mode is entered.

C Deletes the current character through the end of the line and
enters input mode. Equivalent to the c$ command.

11-58 AIX System User’s Guide – OS & Devices

S Equivalent to the cc command.

D Deletes the current character through the end of line. Equivalent
to the d$ command.

[Count]dMotion

d[Count]Motion Deletes the current character up to and including the character
specified by the Motion parameter. If Motion is d, the entire line is
deleted.

i Enters the input mode and inserts text before the current
character.

I Inserts text before the beginning of the line. Equivalent to the 0i
command.

[Count]P Places the previous text modification before the cursor.

[Count]p Places the previous text modification after the cursor.

R Enters the input mode and types over the characters on the
screen.

[Count]rc Replaces the number of characters specified by the Count
parameter, starting at the current cursor position, with the
characters specified by the c parameter. This command also
advances the cursor after the characters are replaced.

[Count]x Deletes the current character.

[Count]X Deletes the preceding character.

[Count]. Repeats the previous text–modification command.

[Count]~ Inverts the case of the number of characters specified by the
Count parameter, starting at the current cursor position, and
advances the cursor.

[Count]_ Appends the word specified by the Count parameter of the
previous command and enters input mode. The last word is used
if the Count parameter is omitted.

* Appends an * (asterisk) to the current word and attempts file
name substitution. If no match is found, it rings the bell.
Otherwise, the word is replaced by the matching pattern and input
mode is entered.

\ File name completion. Replaces the current word with the longest
common prefix of all file names matching the current word with an
asterisk appended. If the match is unique, a / (slash) is appended
if the file is a directory. A space is appended if the file is not a
directory.

Miscellaneous Edit Commands
Miscellaneous edit commands include:

[Count]yMotion

y[Count]Motion Yanks the current character up to and including the character
marked by the cursor position specified by the Motion parameter
and puts all of these characters into the delete buffer. The text
and cursor are unchanged.

Y Yanks from the current position to the end of the line. Equivalent
to the y$ command.

u Undoes the last text–modifying command.

11-59 Shells

U Undoes all the text–modifying commands performed on the line.

[Count]v Returns the command fc –e ${VISUAL:–${EDITOR:–vi}}
Count in the input buffer. If the Count parameter is omitted, then
the current line is used.

Ctrl–L Line feeds and prints the current line. This command is effective
only in control mode.

Ctrl–J (New line) Executes the current line, regardless of the mode.

Ctrl–M (Return) Executes the current line, regardless of the mode.

Sends the line after inserting a # (pound sign) in front of the line.
Useful if you want to insert the current line in the history without
executing it.

If the command line contains a pipe (|) or semicolon or new–line
character, then additional # (pound signs) will be inserted in front
of each of these symbols. To delete all pound signs, retrieve the
command line from history and enter another #.

= Lists the file names that match the current word as if an asterisk
were appended to it.

@Letter Searches the alias list for an alias named _Letter. If an alias of
this name is defined, its value is placed into the input queue for
processing.

11-60 AIX System User’s Guide – OS & Devices

List of Korn Shell or POSIX Shell Built–in Commands

Special Built–in Commands

: (colon) Expands only arguments.

. (dot) Reads a specified file and then executes the commands.

break Exits from the enclosing for, while, until, or select loop, if one
exists.

continue Resumes the next iteration of the enclosing for, while, until, or
select loop.

eval Reads the arguments as input to the shell and executes the
resulting command or commands.

exec Executes the command specified by the Argument parameter,
instead of this shell, without creating a new process.

exit Exits the shell whose exit status is specified by the n parameter.

export Marks names for automatic export to the environment of
subsequently executed commands.

newgrp Equivalent to the exec /usr/bin/newgrp [Group ...] command.

readonly Marks the specified names read–only.

return Causes a shell to return to the invoking script.

set Unless options or arguments are specified, writes the names and
values of all shell variables in the collation sequence of the
current locale.

shift Renames positional parameters.

times Prints the accumulated user and system times for both the shell
and the processes run from the shell.

trap Runs a specified command when the shell receives a specified
signal or signals.

typeset Sets attributes and values for shell parameters.

unset Unsets the values and attributes of the specified parameters.

Regular Built–in Commands

alias Prints a list of aliases to standard output.

bg Puts specified jobs in the background.

cd Changes the current directory to the specified directory or
substitutes the current string with the specified string.

echo Writes character strings to standard output.

fc Selects a range of commands from the last HISTSIZE variable
command typed at the terminal. Re–executes the specified
command after old–to–new substitution is performed.

fg Brings the specified job to the foreground.

getopts Checks the Argument parameter for legal options.

jobs Lists information for the specified jobs.

kill Sends the TERM (terminate) signal to specified jobs or
processes.

let Evaluates specified arithmetic expressions.

11-61 Shells

print Prints shell output.

pwd Equivalent to the print –r –$PWD command.

read Takes shell input.

ulimit Sets or displays user process resource limits as defined in the
/etc/security/limits file.

umask Determines file permissions.

unalias Removes the parameters in the list of names from the alias list.

wait Waits for the specified job and terminates.

whence Indicates how each specified name would be interpreted if used
as a command name.

See Korn Shell or POSIX Shell Built–in Commands for more information.

11-62 AIX System User’s Guide – OS & Devices

List of Bourne Shell Built–in Commands

: Returns a zero exit value

. Reads and executes commands from a file parameter and
then returns.

break Exists from the enclosing for, while, or until command
loops, if any.

cd Changes the current directory to the specified directory.

continue Resumes the next iteration of the enclosing for, while, or
until command loops.

echo Writes character strings to standard output.

eval Reads the arguments as input to the shell and executes the
resulting command or commands.

exec Executes the command specified by the Argument
parameter, instead of this shell, without creating a new
process.

exit Exits the shell whose exit status is specified by the n
parameter.

export Marks names for automatic export to the environment of
subsequently executed commands.

hash Finds and remembers the location in the search path of
specified commands.

pwd Displays the current directory.

read Reads one line from standard input.

readonly Marks name specified by Name parameter as read–only.

return Causes a function to exit with a specified return value.

set Controls the display of various parameters to standard
output.

shift Shifts command–line arguments to the left.

test Evaluates conditional expressions.

times Displays the accumulated user and system times for
processes run from the shell.

trap Runs a specified command when the shell receives a
specified signal or signals.

type Interprets how the shell would interpret a specified name as
a command name.

ulimit Displays or adjusts allocated shell resources.

umask Determines file permissions.

unset Removes the variable or function corresponding to a
specified name.

wait Waits for the specified child process to end and reports its
termination status.

See Bourne Shell Built–in Commands for more information.

11-63 Shells

List of C Shell Built–in Commands

alias Displays specified aliases or all aliases.

bg Puts the current or specified jobs into the background.

break Resumes running after the end of the nearest enclosing foreach
or while command.

breaksw Breaks from a switch command.

case Defines a label in a switch command.

cd Changes the current directory to the specified directory.

chdir Changes the current directory to the specified directory.

continue Continues execution of the nearest enclosing foreach or while
command.

default Labels the default case in a switch statement.

dirs Displays the directory stack.

echo Writes character strings to the standard output of the shell.

else Runs the commands that follow the second else in an if
(Expression) then ...else if (Expression2) then ... else ... endif
command sequence.

end Signifies the end of a sequence of commands preceded by the
foreach command. Also see the while command.

endif Runs the commands that follow the second then statement in an
if (Expression) then ... else if (Expression2) then ... else ... endif
command sequence.

endsw Marks the end of a switch (String) case String : ... breaksw
default: ... breaksw endsw command sequence. This command
sequence successively matches each case label against the
value of the String variable. Execution continues after the endsw
command if a breaksw command is executed or if no label
matches and there is no default.

eval Reads variable values as input to the shell and executes the
resulting command or commands in the context of the current
shell.

exec Runs the specified command in place of the current shell.

exit Exits the shell with either the value of the status shell variable or
the value of the specified expression.

fg Brings the current or specified jobs into the foreground, continuing
them if they are stopped.

foreach Successively sets a Name variable for each member specified by
the List variable and a sequence of commands, until reaching an
end command.

glob Displays list using history, variable, and file name expansion.

goto Continues to run after a specified line.

hashstat

 Displays statistics indicating how successful the hash table has
been at locating commands.

history Displays the history event list.

if Runs a specified command if a specified expression is true.

11-64 AIX System User’s Guide – OS & Devices

jobs Lists the active jobs.

kill Sends either the TERM (terminate) signal or the signal specified
by the Signal variable to the specified job or process.

limit Limits usage of a specified resource by the current process and
each process it creates.

login Ends a login shell and replaces it with an instance of the
/usr/sbin/login command.

logout Ends a login shell.

nice Sets the priority of commands run in the shell.

nohup Causes hangups to be ignored for the remainder of a procedure.

notify Causes the shell to notify you asynchronously when the status of
the current or a specified job changes.

onintr Controls the action of the shell on interrupts.

popd Pops the directory stack and returns to the new top directory.

pushd Exchanges elements of the directory stack.

rehash Causes recomputation of the internal hash table containing the
contents of the directories in the path shell variable.

repeat Runs the specified command, subject to the same restrictions as
the if command, the number of times specified.

set Shows the value of all shell variables.

setenv Modifies the value of the specified environment variable.

shift Shifts the specified variable to the left.

source Reads command specified by the Name variable.

stop Stops the current or specified jobs running in the background.

suspend Stops the shell as if a STOP signal has been received.

switch Starts a switch (String) case String : ... breaksw default: ...
breaksw endsw command sequence. This command sequence
successively matches each case label against the value of the
String variable. If none of the labels match before a default label
is found, the execution begins after the default label.

time Displays a summary of the time used by the shell and its child
processes.

umask Determines file permissions.

unalias Discards all aliases with names that match the Pattern variable.

unhash Disables the use of the internal hash table to locate running
programs.

unlimit Removes resource limitations.

unset Removes all variables having names that match the Pattern
variable.

unsetenv Removes all variables from the environment whose names match
the specified Pattern variable.

wait Waits for all background jobs.

while Evaluates the commands between the while and the matching
end command sequence while an expression specified by the
Expression variable evaluates nonzero.

@ Displays the value of specified shell variables.

See C Shell Built–In Commands for more information.

11-65 Shells

Korn Shell Related Information
Shells Overview.

Korn Shell or POSIX Shell Overview

Korn Shell or POSIX Shell Commands.

Command Aliasing in the Korn Shell or POSIX Shell

Parameter Substitution in the Korn Shell or POSIX Shell

Command Substitution in the Korn Shell or POSIX Shell

Arithmetic Evaluation in the Korn Shell or POSIX Shell.

Field Splitting

File Name Substitution in the Korn Shell or POSIX Shell

Quote Removal

Input and Output Redirection in the Korn Shell or POSIX Shell.

Job Control in the Korn Shell or POSIX Shell.

Inline Editing in the Korn Shell or POSIX Shell.

The ksh and stty commands.

The alias, cd, export, fc, getopts, read, set, and typeset Korn shell commands.

The /etc/passwd file.

Bourne Shell

C Shell

11-66 AIX System User’s Guide – OS & Devices

Bourne Shell Related Information
Shells Overview.

Bourne Shell

Restricted Shell.

Bourne Shell Commands.

Variable and File Name Substitution in the Bourne Shell

Input and Output Redirection in the Bourne Shell.

The bsh or Rsh command, login command.

The Bourne shell read special command.

The setuid subroutine, setgid subroutine.

The null special file.

The environment file, profile file format.

Korn Shell or POSIX Shell

C Shell

11-67 Shells

C Shell Related Information
Shells Overview.

C Shell Commands.

History Substitution in the C Shell.

Alias Substitution in the C Shell.

Variable and File Name Substitution in the C Shell

Environment Variables in the C Shell.

Input and Output Redirection in the C Shell.

Job Control in the C Shell.

The csh command, ed command.

The alias, unalias, jobs, notify and set C Shell built–in commands.

11-68 AIX System User’s Guide – OS & Devices

Bourne Shell
The Bourne shell is an interactive command interpreter and command programming
language. The bsh command runs the Bourne shell.

The Bourne shell can be run either as a login shell or as a subshell under the login shell.
Only the login command can call the Bourne shell as a login shell. It does this by using a
special form of the bsh command name: –bsh . When called with an initial – (hyphen), the
shell first reads and runs commands found in the system /etc/profile file and your
$HOME/.profile, if one exists. The /etc/profile file sets variables needed by all users.
Finally, the shell is ready to read commands from your standard input.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs
the script file identified by the File parameter, including any parameters specified. The script
file specified must have read permission; any setuid and setgid settings are ignored. The
commands are then read. A script file should not be specified if either the –c or –s flag is
used.

This section discusses:

• Bourne Shell Environment, on page 11-68

• Restricted Shell, on page 11-70

• Bourne Shell Commands, on page 11-71

– Quoting Characters

– Signal Handling

– Bourne Shell Special Commands

– Command Substitution in the Bourne Shell

• Variable and File Name Substitution in the Bourne Shell, on page 11-81

– Variable Substitution in the Bourne Shell

– User–Defined Variables

– Conditional Substitution

– Positional Parameters

– File Name Substitution in the Bourne Shell, on page 11-82

– Character Classes

• Input and Output Redirection in the Bourne Shell, on page 11-89

• Bourne Shell Related Information

Bourne Shell Environment
All variables (with their associated values) known to a command at the beginning of its
execution constitute its environment. This environment includes variables that a command
inherits from its parent process and variables specified as keyword parameters on the
command line that calls the command.

The shell passes to its child processes the variables named as arguments to the built–in
export command. This command places the named variables in the environments of both
the shell and all its future child processes.

Keyword parameters are variable–value pairs that appear in the form of assignments,
normally before the procedure name on a command line (but see also the flag for the set
command). Such variables are placed in the environment of the procedure being called.

11-69 Shells

For example, consider the following simple procedure, which displays the values of two
variables (saved in a command file named key_command):

key_command

echo $a $b

The following command lines produce the output shown:

Input Output

a=key1 b=key2 key_command key1 key2

a=tom b=john key_command tom john

A procedure’s keyword parameters are not included in the parameter count stored in $#.

A procedure can access the values of any variables in its environment. If it changes any of
these values, however, the changes are not reflected in the shell environment. They are
local to the procedure in question. To place the changes in the environment that the
procedure passes to its child processes, you must export the new values within that
procedure.

To obtain a list of variables that are exportable from the current shell, enter:

export

To obtain a list of read–only variables from the current shell, enter:

readonly

To obtain a list of variable–value pairs in the current environment, enter:

env

For more information about user environments, see /etc/environment File, on page 10-4

11-70 AIX System User’s Guide – OS & Devices

Restricted Shell
The restricted shell is used to set up login names and execution environments whose
capabilities are more controlled than those of the regular Bourne shell. The Rsh or bsh –r
command opens the restricted shell. The behavior of these commands is identical to those
of the bsh command, except that the following actions are not allowed:

• Changing the directory (with the cd command)

• Setting the value of PATH or SHELL variables

• Specifying path or command names containing a / (slash)

• Redirecting output.

If the restricted shell determines that a command to be run is a shell procedure, it uses the
Bourne shell to run the command. In this way, it is possible to provide an end user with shell
procedures that access the full power of the Bourne shell while imposing a limited menu of
commands. This scheme assumes that the end user does not have write and execute
permissions in the same directory.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs
the script file identified by the File parameter, including any parameters specified. The script
file specified must have read permission. Any setuid and setgid settings for script files are
ignored. The shell then reads the commands.

Note: You should not specify a script file if using either the –c or –s flag.

When started with the Rsh command, the shell enforces restrictions after interpreting the
.profile and /etc/environment files. Therefore, the writer of the .profile file has complete
control over user actions by performing setup actions and leaving the user in an appropriate
directory (probably not the login directory). An administrator can create a directory of
commands in the /usr/rbin directory that the Rsh command can use by changing the PATH
variable to contain the directory. If started with the bsh –r command, the shell applies
restrictions when interpreting the .profile files.

When called with the name Rsh, the restricted shell reads the user’s .profile file
($HOME/.profile). It acts as the regular Bourne shell while doing this, except that an
interrupt causes an immediate exit instead of a return to command level.

• Bourne Shell Related Information

11-71 Shells

Bourne Shell Commands
When you issue a command in the Bourne shell, it first evaluates the command and makes
all indicated substitutions. It then runs the command provided that:

• The command name is a Bourne shell special built–in command

OR

• The command name matches the name of a defined function. If this is the case, the shell
sets the positional parameters to the parameters of the function.

If the command name matches neither a built–in command nor the name of a defined
function and the command names an executable file that is a compiled (binary) program,
the shell (as parent) spawns a new (child) process that immediately runs the program. If the
file is marked executable but is not a compiled program, the shell assumes that it is a shell
procedure. In this case, the shell spawns another instance of itself (a subshell), to read the
file and execute the commands included in it. The shell also runs a parenthesized command
in a subshell. To the end user, a compiled program is run in exactly the same way as a shell
procedure. The shell normally searches for commands in file system directories, in this
order:

1. /usr/bin

2. /etc

3. /usr/sbin

4. /usr/ucb

5. $HOME/bin

6. /usr/bin/X11

7. /sbin

8. Current directory

The shell searches each directory, in turn, continuing with the next directory if it fails to find
the command.

Note: The order in which the shell searches directories is determined by the PATH
variable. You can change the particular sequence of directories searched by
resetting the PATH variable.

If you give a specific path name when you run a command (for example, /usr/bin/sort),
the shell does not search any directories other than the one you specify. If the command
name contains a / (slash), the shell does not use the search path.

You can give a full path name that begins with the root directory (such as
/usr/bin/sort). You can also specify a path name relative to the current directory. If you
specify, for example:

bin/myfile

the shell looks in the current directory for a directory named bin and in that directory for the
file myfile.

Note: The restricted shell does not run commands containing a / (slash).

The shell remembers the location in the search path of each executed command (to avoid
unnecessary exec commands later). If it finds the command in a relative directory (one
whose name does not begin with /), the shell must redetermine the command’s location
whenever the current directory changes. The shell forgets all remembered locations each
time you change the PATH variable or run the hash –r command.

This section discusses:

• Quoting Characters, on page 11-72

11-72 AIX System User’s Guide – OS & Devices

• Signal Handling, on page 11-72

• Bourne Shell Built–in Commands, on page 11-74

• Command Substitution in the Bourne Shell, on page 11-80

• Bourne Shell Related Information

Quoting Characters
Many characters have a special meaning to the shell. Sometimes you want to conceal that
meaning. Single (’) and double (”) quotation marks surrounding a string, or a backslash (\)
before a single character allow you to conceal the character’s meaning.

All characters, except the enclosing single quotation marks, are taken literally, with any
special meaning removed. Thus, the command:

stuff=’echo $? $*; ls * | wc’

assigns the literal string echo $? $*; ls * | wc to the variable stuff. The shell does
not execute the echo, ls, and wc commands or expand the $? and $* variables and the *
(asterisk) special character.

Within double quotation marks, the special meaning of the $ (dollar sign), ‘ (backquote),
and ” (double quotation) characters remains in effect, while all other characters are taken
literally. Thus, within double quotation marks, command and variable substitution takes
place. In addition, the quotation marks do not affect the commands within a command
substitution that is part of the quoted string, so characters there retain their special
meanings.

Consider the following sequence:

ls *

file1 file2 file3

message=”This directory contains ‘ls * ‘ ”

echo $message

This directory contains file1 file2 file3

This shows that the * (asterisk) special character inside the command substitution was
expanded.

To hide the special meaning of the $ (dollar sign), ‘ (backquote), and ” (double quotation)
characters within double quotation marks, precede these characters with a \ (backslash).
When you do not use double quotation marks, preceding a character with a backslash is
equivalent to placing it within single quotation marks. Hence, a backslash immediately
preceding a new–line character (that is, a backslash at the end of the line) hides the
new–line character and allows you to continue the command line on the next physical line.

Signal Handling
The shell ignores INTERRUPT and QUIT signals for an invoked command if the command
is terminated with an & (ampersand); that is, if it is running in the background. Otherwise,
signals have the values inherited by the shell from its parent, with the exception of the
SEGMENTATION VIOLATION signal. For more information, refer to the Bourne shell built–in
trap command.

11-73 Shells

Bourne Shell Compound Commands
A compound command is one of the following:

• Pipeline (one or more simple commands separated by the | (pipe) symbol)

• List of simple commands

• Command beginning with a reserved word

• Command beginning with the control operator ((left parenthesis).

Unless otherwise stated, the value returned by a compound command is that of the last
simple command executed.

Reserved Words
The following reserved words are recognized only when they appear without quotes as the
first word of a command:

for do done
case esac
if then fi
elif else
while until
{ }
()

for Identifier [in Word . . .] do List done

 Sets the Identifier parameter to the word or words specified
by the Word parameter (one at a time) and runs the
commands specified in the List parameter. If you omit in
Word . . ., then the for command runs the List parameter
for each positional parameter that is set, and processing
ends when all positional parameters have been used.

case Word in Pattern [|Pattern] . . .) List;; [Pattern [|Pattern] . . .) List;;] . . . esac

 Runs the commands specified in the List parameter that are
associated with the first Pattern parameter that matches the
value of the Word parameter. Uses the same
character–matching notation in patterns that are used for
file name substitution, except that a / (slash), leading . (dot),
or a dot immediately following a slash do not need to match
explicitly.

if List then List [elif List then List] . . . [else List] fi

 Runs the commands specified in the List parameter
following the if command. If the command returns a zero
exit value, the shell runs the List parameter following the
first then command. Otherwise, it runs the List parameter
following the elif command (if it exists). If this exit value is
zero, the shell runs the List parameter following the next
then command. If the command returns a non–zero exit
value, the shell runs the List parameter following the else
command (if it exists). If no else List or then List is
performed, the if command returns a zero exit value.

11-74 AIX System User’s Guide – OS & Devices

while List do List done

 Runs the commands specified in the List parameter
following the while command. If the exit value of the last
command in the while List is zero, the shell runs the List
parameter following the do command. It continues looping
through the lists until the exit value of the last command in
the while List is non–zero. If no commands in the do List
are performed, the while command returns a zero exit
value.

until List do List done

 Runs the commands specified in the List parameter
following the until command. If the exit value of the last
command in the until List is non–zero, runs the List
following the do command. Continues looping through the
lists until the exit value of the last command in the until List
is zero. If no commands in the do List are performed, the
until command returns a zero exit value.

(List) Runs the commands in the List parameter in a subshell.

{ List; } Runs the commands in the List parameter in the current
shell process and does not start a subshell.

Name () { List } Defines a function that is referenced by the Name
parameter. The body of the function is the list of commands
between the braces specified by the List parameter.

Bourne Shell Built–In Commands
Special commands are built in to the Bourne shell and run in the shell process. Unless
otherwise indicated, output is written to file descriptor 1 (stdout) and the exit status is 0
(zero) if the command does not contain any syntax errors. Input and output redirection is
permitted.

Refer to the List of Bourne Shell Built–in Commands for an alphabetical listing of these
commands.

The following special commands are treated somewhat differently from other special built–in
commands:

: (colon) exec shift
. (dot) exit times
break export trap
continue readonly wait
eval return

The Bourne shell processes these commands as follows:

• Keyword parameter assignment lists preceding the command remain in effect when the
command completes.

• I/O redirections are processed after parameter assignments.

• Errors in a shell script cause the script to stop processing.

11-75 Shells

Special Command Descriptions
The Bourne shell provides the following special built–in commands:

Built–In Commands

: Returns a zero exit value.

. File Reads and runs commands from the File parameter, and returns.
Does not start a subshell. The shell uses the search path specified
by the PATH variable to find the directory containing the specified
file.

break [n] Exits from the enclosing for, while, or until command loops, if any.
If you specify the n variable, the break command breaks the number
of levels specified by the n variable.

continue [n] Resumes the next iteration of the enclosing for, while, or until
command loops. If you specify the n variable, the command
resumes at the nth enclosing loop.

cd Directory] Changes the current directory to Directory. If you do not specify
Directory, the value of the HOME shell variable is used. The
CDPATH shell variable defines the search path for Directory.
CDPATH is a colon–separated list of alternative directory names. A
null path name specifies the current directory (which is the default
path). This null path name appears immediately after the equal sign
in the assignment or between the colon delimiters anywhere else in
the path list. If Directory begins with a / (slash), the shell does not
use the search path. Otherwise, the shell searches each directory in
the CDPATH shell variable.

Note: The restricted shell cannot run the cd shell command.

echo String . . .]

 Writes character strings to standard output. Refer to the echo
command for usage and parameter information. The –n flag is not
supported.

eval [Argument . . .]

 Reads arguments as input to the shell and runs the resulting
command or commands.

exec [Argument . . .]

 Runs the command specified by the Argument parameter in place of
this shell without creating a new process. Input and output
arguments can appear and, if no other arguments appear, cause the
shell input or output to be modified. This is not recommended for
your login shell.

exit [n] Causes a shell to exit with the exit value specified by the n
parameter. If you omit this parameter, the exit value is that of the last
command executed (the Ctrl–D key sequence also causes a shell to
exit). The value of the n parameter can be from 0 to 255, inclusive.

11-76 AIX System User’s Guide – OS & Devices

export [Name . . .]

 Marks the specified names for automatic export to the environments
of subsequently executed commands. If you do not specify the
Name parameter, the export command displays a list of all names
that are exported in this shell. You cannot export function names.

hash [–r][Command . . .]

 Finds and remembers the location in the search path of each
Command specified. The –r flag causes the shell to forget all
locations. If you do not specify the flag or any commands, the shell
displays information about the remembered commands in the
following format:

Hits Cost Command

Hits indicates the number of times a command has been run by the
shell process. Cost is a measure of the work required to locate a
command in the search path. Command shows the path names of
each specified command. Certain situations require that the stored
location of a command be recalculated; for example, the location of
a relative path name when the current directory changes.
Commands for which that might be done are indicated by an *
(asterisk) next to the Hits information. Cost is incremented when
the recalculation is done.

pwd Displays the current directory. Refer to the pwd command for a
discussion of command options.

read [Name . . .] Reads one line from standard input. Assigns the first word in the line
to the first Name parameter, the second word to the second Name
parameter, and so on, with leftover words assigned to the last Name
parameter. This command returns a value of 0 unless it encounters
an end–of–file character.

readonly [Name . . .]

 Marks the name specified by the Name parameter as read–only.
The value of the name cannot be reset. If you do not specify any
Name, the readonly command displays a list of all read–only
names.

return [n] Causes a function to exit with a return value of n. If you do not
specify the n variable, the function returns the status of the last
command performed in that function. This command is valid only
when run within a shell function.

set [Flag [Argument] . . .]

Sets one or more of the following flags:

–a Marks for export all variables to which an
assignment is performed. If the assignment
precedes a command name, the export attribute is
effective only for that command execution
environment, except when the assignment precedes
one of the special built–in commands. In this case,
the export attribute persists after the built–in
command has completed. If the assignment does
not precede a command name, or if the assignment
is a result of the operation of the getopts or read

11-77 Shells

commands, the export attribute persists until the
variable is unset.

 –e Exits immediately if all of the following conditions
exist for a command:

– It exits with a return value greater than 0 (zero).

– It is not part of the compound list of a while,
until, or if command.

– It is not being tested using AND or OR lists.

– It is not a pipeline preceded by the ! (exclamation
point) reserved word.

–f Disables file name substitution.

–h Locates and remembers the commands called
within functions as the functions are defined.
(Normally these commands are located when the
function is performed; see the hash command.)

–k Places all keyword parameters in the environment
for a command, not just those preceding the
command name.

–n Reads commands but does not run them. The –n
flag can be used to check for shell script syntax
errors.

–t Exits after reading and executing one command.

–u Treats an unset variable as an error and
immediately exits when performing variable
substitution. An interactive shell does not exit.

–v Displays shell input lines as they are read.

–x Displays commands and their arguments before
they are run.

–– Does not change any of the flags. This is useful in
setting the $1 positional parameter to a string
beginning with a – (minus sign).

Using a + (plus sign) rather than a – (minus sign) unsets flags. You
can also specify these flags on the shell command line. The $–
special variable contains the current set of flags.

Any Argument to the set command becomes a positional parameter
and is assigned, in order, to $1, $2, and so on. If you do not specify
a flag or Argument, the set command displays all the names and
values of the current shell variables.

shift [n] Shifts command line arguments to the left; that is, reassigns the
value of the positional parameters by discarding the current value of
$1 and assigning the value of $2 to $1, of $3 to $2, and so on. If
there are more than 9 command line arguments, the 10th is
assigned to $9 and any that remain are still unassigned (until after
another shift). If there are 9 or fewer arguments, the shift command
unsets the highest–numbered positional parameter that has a value.

The $0 positional parameter is never shifted. The shift n command
is a shorthand notation specifying n number of consecutive shifts.
The default value of the n parameter is 1.

11-78 AIX System User’s Guide – OS & Devices

test Expression | [Expression]

 Evaluates conditional expressions. Refer to the test command for a
discussion of command flags and parameters. The –h flag is not
supported by the built–in test command in bsh.

times Displays the accumulated user and system times for processes run
from the shell.

trap [Command] [n] . . .

 Runs the command specified by the Command parameter when the
shell receives the signal or signals specified by the n parameter. The
trap commands are run in order of signal number. Any attempt to
set a trap on a signal that was ignored on entry to the current shell is
ineffective.

Note: The shell scans the Command parameter once when the
trap is set and again when the trap is taken.

If you do not specify a command, then all traps specified by the n
parameter are reset to their current values. If you specify a null
string, this signal is ignored by the shell and by the commands it
invokes. If the n parameter is 0 (zero), the specified command is run
when you exit from the shell. If you do not specify either a command
or a signal, the trap command displays a list of commands
associated with each signal number.

type [Name . . .]

 For each Name specified, indicates how the shell would interpret it
as a command name.

11-79 Shells

ulimit [–HS] [–c | –d | –f | –m | –s | –t] [limit]

Displays or adjusts allocated shell resources. There are two modes
for displaying the shell resource settings, which can either be
displayed individually or as a group. The default mode is to display
resources set to the soft setting, or the lower bound, as a group.

The setting of shell resources depends on the effective user ID of
the current shell. The hard level of a resource can be set only if the
effective user ID of the current shell is root. You will get an error if
you are not root and you are attempting to set the hard level of a
resource. By default, the root user sets both the hard and soft limits
of a particular resource. The root user should therefore be careful in
using the –S, –H, or default flag usage of limit settings. Unless you
are a root user, you can only set the soft limit of a resource. Once a
limit has been decreased by a non–root user, it cannot be increased,
even back to the original system limit.

To set a resource limit, select the appropriate flag and the limit value
of the new resource, which should be an integer. You can only set
one resource limit at a time. If more than one resource flag is
specified, you receive undefined results. By default, ulimit with only
a new value on the command line sets the file size of the shell. Use
of the –f flag is optional.

You can specify the following ulimit command flags:

–c Sets or displays core segment for shell.

–d Sets or displays data segment for shell.

–f Sets or displays file size for shell.

–H Sets or displays hard resource limit (root user only)

–m Sets or displays memory for shell.

–s Sets or displays stack segment for shell.

–S Sets or displays soft resource limit.

–t Sets or displays CPU time maximum for shell.

umask [nnn] Determines file permissions. This value, along with the permissions
of the creating process, determines a file’s permissions when the file
is created. The default is 022. When no value is entered, umask
displays the current value.

unset [Name . . .] Removes the corresponding variable or function for each name
specified by the Name parameter. The PATH, PS1, PS2,
MAILCHECK, and IFS shell variables cannot be unset.

wait [n] Waits for the child process whose process number is specified by
the n parameter to exit and then returns the exit status of that
process. If you do not specify the n parameter, the shell waits for all
currently active child processes and the return value is 0.

11-80 AIX System User’s Guide – OS & Devices

Command Substitution in the Bourne Shell
Command substitution allows you to capture the output of any command as an argument to
another command. When you place a command line within ‘‘ (backquotes), the shell first
runs the command or commands, and then replaces the entire expression, including the
backquotes, with the output. This feature is often used to give values to shell variables. For
example, the statement:

today=‘date‘

assigns the string representing the current date to the today variable. The following
assignment saves, in the files variable, the number of files in the current directory:

files=‘ls | wc –l‘

You can perform command substitution on any command that writes to standard output.

To nest command substitutions, precede each of the nested backquotes with a \
(backslash), as in:

logmsg=‘echo Your login directory is \‘pwd\‘‘

You can also give values to shell variables indirectly by using the read special command.
This command takes a line from standard input (usually your keyboard) and assigns
consecutive words on that line to any variables named. For example:

read first init last

takes an input line of the form:

J. Q. Public

and has the same effect as if you had typed:

first=J. init=Q. last=Public

The read special command assigns any excess words to the last variable.

11-81 Shells

Variable and File Name Substitution in the Bourne Shell
The Bourne shell permits you to do variable and file name substitutions.

The following sections offer information about creating and substituting variables in the
Bourne shell:

• Variable Substitution in the Bourne Shell, on page 11-81

• User–Defined Variables, on page 11-81

• Conditional Substitution, on page 11-86

• Positional Parameters, on page 11-85

• File Name Substitution in the Bourne Shell, on page 11-82

• Character Classes, on page 11-88

• Bourne Shell Related Information

Variable Substitution in the Bourne Shell
The Bourne shell has several mechanisms for creating variables (assigning a string value to
a name). Certain variables, positional parameters and keyword parameters, are normally
set only on a command line. Other variables are simply names to which you or the shell can
assign string values.

User–Defined Variables
The shell recognizes alphanumeric variables to which string values can be assigned. To
assign a string value to a name, enter:

Name=String

A name is a sequence of letters, digits, and underscores that begins with an underscore or
a letter. To use the value that you have assigned to a variable, add a $ (dollar sign) to the
beginning of its name. Thus, the $Name variable yields the value specified by the String
variable. Note that no spaces are on either side of the = (equal sign) in an assignment
statement. (Positional parameters cannot appear in an assignment statement. They can
only be set as described in Positional Parameters, on page 11-85.) You can put more than
one assignment on a command line, but remember that the shell performs the assignments
from right to left.

If you enclose the String variable with ” or ’ (double or single quotation marks), the shell
does not treat blanks, tabs, semicolons, and new–line characters within the string as word
delimiters, but imbeds them literally in the string.

If you enclose the String variable with ” (double quotation marks), the shell still recognizes
variable names in the string and performs variable substitution; that is, it replaces
references to positional parameters and other variable names that are prefaced by $ (dollar
sign) with their corresponding values, if any. The shell also performs command substitution
within strings that are enclosed in double quotation marks.

If you enclose the String variable with ’ (single quotation marks), the shell does not
substitute variables or commands within the string. The following sequence illustrates this
difference:

You: num=875

 number1=”Add $num”

 number2=’Add $num’

 echo $number1

System: Add 875

You: echo $number2

System: Add $num

11-82 AIX System User’s Guide – OS & Devices

The shell does not reinterpret blanks in assignments after variable substitution. Thus, the
following assignments result in $first and $second having the same value:

first=’a string with embedded blanks’

second=$first

When you reference a variable, you can enclose the variable name (or the digit designating
a positional parameter) in { } (braces) to delimit the variable name from any string following.
In particular, if the character immediately following the name is a letter, digit, or underscore,
and the variable is not a positional parameter, then the braces are required:

You: a=’This is a’

 echo ”${a}n example”

System: This is an example

You: echo ”$a test”

System: This is a test

Refer to Conditional Substitution, on page 11-86 for a different use of braces in variable
substitutions.

Variables Used by the Shell
The shell uses the following variables. While the shell sets some of them, you can set or
reset all of them:

CDPATH Specifies the search path for the cd (change directory)
command.

HOME Indicates the name of your login directory, the directory that
becomes the current directory upon completion of a login.
The login program initializes this variable. The cd
command uses the value of the $HOME variable as its
default value. Using this variable rather than an explicit path
name in a shell procedure allows the procedure to be run
from a different directory without alterations.

IFS The characters that are internal field separators (the
characters that the shell uses during blank interpretation;
see Blank Interpretation, on page 11-83). The shell
initially sets the IFS variable to include the blank, tab, and
new–line characters.

LANG Determines the locale to use for the locale categories when
both the LC_ALL variable and the corresponding
environment variable (beginning with LC_) do not specify a
locale. For more information about locales, see ”Locale
Overview” in AIX 4.3 System Management Concepts:
Operating System and Devices.

LC_ALL Determines the locale to be used to override any values for
locale categories specified by the settings of the LANG
environment variable or any environment variables
beginning with LC_. For more information about locales and
the LANG environment variable, see ”Locale Overview” in
AIX 4.3 System Management Concepts: Operating System
and Devices.

LC_COLLATE Defines the collating sequence to use when sorting names
and when character ranges occur in patterns. For
information about locales and the LANG environment
variable, see ”Locale Overview” in AIX 4.3 System
Management Concepts: Operating System and Devices.

11-83 Shells

LC_CTYPE Determines the locale for the interpretation of sequences of
bytes of text data as characters (that is, single– versus
multibyte characters in arguments and input files), which
characters are defined as letters (alpha character class),
and the behavior of character classes within pattern
matching. For more information about locales, see ”Locale
Overview” in AIX 4.3 System Management Concepts:
Operating System and Devices.

LC_MESSAGES Determines the language in which messages should be
written. For information about locales and the LANG
environment variable, see ”Locale Overview” in AIX 4.3
System Management Concepts: Operating System and
Devices.

LIBPATH Specifies the search path for shared libraries.

LOGNAME Specifies your login name, marked readonly in the
/etc/profile file.

MAIL Indicates the path name of the file used by the mail system
to detect the arrival of new mail. If this variable is set, the
shell periodically checks the modification time of this file
and displays the value of $MAILMSG if the time changes
and the length of the file is greater than 0. Set the MAIL
variable in the .profile file. The value normally assigned to
it by users of the mail command is
/usr/spool/mail/$LOGNAME.

MAILCHECK The number of seconds that the shell lets elapse before
checking again for the arrival of mail in the files specified by
the MAILPATH or MAIL variables. The default value is 600
seconds (10 minutes). If you set the MAILCHECK variable
to 0, the shell checks before each prompt.

MAILMSG The mail notification message. If you explicitly set the
MAILMSG variable to a null string (MAILMSG=””), no
message is displayed.

MAILPATH A list of file names separated by colons. If this variable is
set, the shell informs you of the arrival of mail in any of the
files specified in the list. You can follow each file name by a
% (percent sign) and a message to be displayed when mail
arrives. Otherwise, the shell uses the value of the
MAILMSG variable or, by default, the message [YOU HAVE
NEW MAIL].

Note: When the MAILPATH variable is set, these files are
checked instead of the file set by the MAIL variable.
To check the files set by the MAILPATH variable
and the file set by the MAIL variable, specify the
MAIL file in your list of MAILPATH files.

11-84 AIX System User’s Guide – OS & Devices

PATH The search path for commands, which is an ordered list of
directory path names separated by colons. The shell
searches these directories in the specified order when it
looks for commands. A null string anywhere in the list
represents the current directory.

The PATH variable is normally initialized in the
/etc/environment file, usually to
/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin. You
can reset this variable to suit your own needs. The PATH
variable provided in your .profile file also includes
$HOME/bin and your current directory.

If you have a project–specific directory of commands, for
example, /project/bin, that you want searched before the
standard system directories, set your PATH variable as
follows:

PATH=/project/bin:$PATH

The best place to set your PATH variable to a value other
than the default value is in your $HOME/.profile file. You
cannot reset the PATH variable if you are executing
commands under the restricted shell.

PS1 The string to be used as the primary system prompt. An
interactive shell displays this prompt string when it expects
input. The default value of the PS1 variable is $ (dollar sign)
followed by a blank space, for nonroot users.

PS2 The value of the secondary prompt string. If the shell
expects more input when it encounters a new–line
character in its input, it prompts with the value of the PS2
variable. The default value of the PS2 variable is > (greater
than sign), followed by a blank space.

SHACCT The name of a file that you own. If this variable is set, the
shell writes an accounting record in the file for each shell
script executed. You can use accounting programs such as
acctcom and acctcms to analyze the data collected.

SHELL The path name of the shell, which is kept in the
environment. This variable should be set and exported by
the $HOME/.profile file of each restricted login.

TIMEOUT The number of minutes a shell remains inactive before it
exits. If this variable is set to a value greater than 0 (zero),
the shell exits if a command is not entered within the
prescribed number of seconds after issuing the PS1
prompt. (Note that the shell can be compiled with a
maximum boundary that cannot be exceeded for this
value.) A value of zero indicates no time limit.

11-85 Shells

Predefined Special Variables
Several variables have special meanings. The following variables are set only by the shell.

$@ Expands the positional parameters, beginning with $1.
Each parameter is separated by a space.

If you place ” (double quotation marks) around $@, the
shell considers each positional parameter a separate string.
If no positional parameters exist, the Bourne shell expands
the statement to an unquoted null string.

$* Expands the positional parameters, beginning with $1. The
shell separates each parameter with the first character of
the IFS variable value.

If you place ” (double quotation marks) around $*, the shell
includes the positional parameter values, in double quotes.
Each value is separated by the first character of the IFS
variable.

$# Specifies the number of positional parameters passed to
the shell, not counting the name of the shell procedure
itself. The $# variable thus yields the number of the
highest–numbered positional parameter that is set. One of
the primary uses of this variable is to check for the
presence of the required number of arguments. Only
positional parameters $0 through $9 are accessible through
the shell. See ”Positional Parameters”, on page 11-85 for
more information.

$? Specifies the exit value of the last command executed. Its
value is a decimal string. Most commands return a value of
0 to indicate successful completion. The shell itself returns
the current value of the $? variable as its exit value.

$$ Identifies the process number of the current process.
Because process numbers are unique among all existing
processes, this string is often used to generate unique
names for temporary files.

The following example illustrates the recommended
practice of creating temporary files in a directory used only
for that purpose:

temp=/tmp/$$

ls >$temp

.

.

.

rm $temp

$! Specifies the process number of the last process run in the
background using the & (ampersand) terminator.

$– A string consisting of the names of the execution flags
currently set in the shell.

Blank Interpretation
After the shell performs variable and command substitution, it scans the results for internal
field separators (those defined in the IFS shell variable). The shell splits the line into distinct
words at each place it finds one or more of these characters separating each distinct word
with a single space. It then retains explicit null arguments (”” or ’’) and discards implicit null
arguments (those resulting from parameters that have no values).

11-86 AIX System User’s Guide – OS & Devices

Conditional Substitution
Normally, the shell replaces the expression $Variable with the string value assigned to the
Variable variable, if there is one. However, there is a special notation that allows conditional
substitution, depending on whether the variable is set or not null, or both. By definition, a
variable is set if it has ever been assigned a value. The value of a variable can be the null
string, which you can assign to a variable in any one of the following ways:

A=

bcd=””

Efg=’’ Assigns the null string to the A, bcd, and Efg.

set ’’ ”” Sets the first and second positional parameters to the null
string and unsets all other positional parameters.

The following is a list of the available expressions you can use to perform conditional
substitution:

${Variable– String}

 If the variable is set, substitute the Variable value in place
of this expression. Otherwise, replace this expression with
the String value.

${Variable:–String}

 If the variable is set and not null, substitute the Variable
value in place of this expression. Otherwise, replace this
expression with the String value.

${Variable=String}

 If the variable is set, substitute the Variable value in place
of this expression. Otherwise, set the Variable value to the
String value and then substitute the Variable value in place
of this expression. You cannot assign values to positional
parameters in this fashion.

${Variable:=String}

 If the variable is set and not null, substitute the Variable
value in place of this expression. Otherwise, set the
Variable value to the String value and then substitute the
Variable value in place of this expression. You cannot
assign values to positional parameters in this fashion.

${Variable?String}

 If the variable is set, substitute the Variable value in place
of this expression. Otherwise, display a message of the
form:

Variable: String

and exit from the current shell (unless the shell is the login
shell). If you do not specify a value for the String variable,
the shell displays the following message:

Variable: parameter null or not set

11-87 Shells

${Variable:?String}

 If the variable is set and not null, substitute the Variable
value in place of this expression. Otherwise, display a
message of the form:

Variable: String

and exit from the current shell (unless the shell is the login
shell). If you do not specify the String value, the shell
displays the following message:

Variable: parameter null or not set

${Variable+String}

 If the variable is set, substitute the String value in place of
this expression. Otherwise, substitute the null string.

${Variable:+String}

 If the variable is set and not null, substitute the String value
in place of this expression. Otherwise, substitute the null
string.

In conditional substitution, the shell does not evaluate the String variable until the shell uses
this variable as a substituted string. Thus, in the following example, the shell executes the
pwd command only if d is not set or is null:

echo ${d:–‘pwd‘}

Positional Parameters
When you run a shell procedure, the shell implicitly creates positional parameters that
reference each word on the command line by its position on the command line. The word in
position 0 (the procedure name) is called $0, the next word (the first parameter) is called $1,
and so on, up to $9. To refer to command line parameters numbered higher than 9, use the
built–in shift command.

You can reset the values of the positional parameters explicitly by using the built–in set
command.

Note: When an argument for a position is not specified, its positional parameter is set to
null. Positional parameters are global and can be passed to nested shell procedures.

File Name Substitution in the Bourne Shell
Command parameters are often file names. You can automatically produce a list of file
names as parameters on a command line. To do this, specify a character that the shell
recognizes as a pattern–matching character. When a command includes such a character,
the shell replaces it with the file names in a directory.

Note: The Bourne shell does not support file name expansion based on equivalence
classification of characters.

Most characters in such a pattern match themselves, but you can also use some special
pattern–matching characters in your pattern. These special characters are:

* Matches any string, including the null string.

? Matches any one character.

[. . .] Matches any one of the characters enclosed in square
brackets.

[! . . .] Matches any character other than one of the characters
that follow the exclamation mark within square brackets.

11-88 AIX System User’s Guide – OS & Devices

Within square brackets, a pair of characters separated by a – (hyphen) specifies the set of
all characters lexically within the inclusive range of that pair, according to the binary ordering
of character values.

Pattern matching has some restrictions. If the first character of a file name is a . (dot), it can
be matched only by a pattern that also begins with a dot. For example, * (asterisk) matches
the file names myfile and yourfile but not the file names .myfile and .yourfile. To
match these files, use a pattern such as the following:

.*file

If a pattern does not match any file names, then the pattern itself is returned as the result of
the attempted match.

File and directory names should not contain the characters * (asterisk), ? (question mark), [
(left bracket), or] (right bracket) because they can cause infinite recursion (that is, infinite
loops) during pattern–matching attempts.

Character Classes
You can also use character classes to match file names:

[[:charclass:]]

This format instructs the system to match any single character belonging to the specified
class. The defined classes correspond to ctype subroutines. They are:

Character Class Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters

blank Space or horizontal tab

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation characters

space Space, horizontal tab, carriage return, new–line, vertical tab
or form–feed character

upper Uppercase characters

xdigit Hexadecimal digits.

11-89 Shells

Input and Output Redirection in the Bourne Shell
In general, most commands do not know or care whether their input or output is associated
with the keyboard, the display screen, or a file. Thus, a command can be used conveniently
either at the keyboard or in a pipeline.

The following redirection options can appear anywhere in a simple command. They can also
precede or follow a command, but are not passed to the command.

<File Uses the specified file as standard input.

>File Uses the specified file as standard output. Creates the file if
it does not exist; otherwise, truncates it to zero length.

> >File Uses the specified file as standard output. Creates the file if
it does not exist; otherwise, adds the output to the end of
the file.

<<[–]eofstr Reads as standard input all lines from the eofstr variable up
to a line containing only eofstr or up to an end–of–file
character. If any character in the eofstr variable is quoted,
the shell does not expand or interpret any characters in the
input lines. Otherwise, it performs variable and command
substitution and ignores a quoted new–line character
(\new–line). Use a \ (backslash) to quote characters within
the eofstr variable or within the input lines.

If you add a – (minus) to the << redirection option, then all
leading tabs are stripped from the eofstr variable and from
the input lines.

<&Digit Associates standard input with the file descriptor specified
by the Digit variable.

>&Digit Associates standard output with the file descriptor specified
by the Digit variable.

<&– Closes standard input.

>&– Closes standard output.

Note: The restricted shell does not allow output redirection.

For more information about redirection, see Input and Output Redirection, on page 4-1 and
Bourne Shell Related Information.

11-90 AIX System User’s Guide – OS & Devices

C Shell
The C shell is an interactive command interpreter and a command programming language.
It uses syntax that is similar to the C programming language. The csh command starts the
C shell.

When you log in, it first searches the systemwide setup file /etc/csh.cshrc. If it is there, the
C shell executes the commands stored in that file. Next, the C shell executes the
systemwide setup file /etc/csh.login if it is available. Then, it searches your home directory
for the .cshrc and .login files. If they exist, they contain any customized user information
pertinent to running the C shell. All variables set in the /etc/csh.cshrc and /etc/csh.login
files may be overridden by your .cshrc and .login files in your $HOME directory. Only the
root user can modify the /etc/csh.cshrc and /etc/csh.login files.

The /etc/csh.login and $HOME/.login files are executed only once at login time. They are
generally used to hold environment variable definitions, commands that you want executed
once at login, or commands that set up terminal characteristics.

The /etc/csh.cshrc and $HOME/.cshrc files are executed at login time, and every time the
csh command or a C shell script is invoked. They are generally used to define C shell
characteristics like aliases and C shell variables (for example, history, noclobber, or
ignoreeof). It is recommended that you only use the C shell built–in commands in the
/etc/csh.cshrc and $HOME/.cshrc files because using other commands increases the
startup time for shell scripts.

This section discusses the following:

• C Shell Limitations, on page 11-91

• Signal Handling, on page 11-91

• C Shell Commands, on page 11-92

– C Shell Built–In Commands, on page 11-92

– C Shell Expressions and Operators, on page 11-100

– Command Substitution in the C Shell, on page 11-102

– Nonbuilt–in Command Execution, on page 11-102

• History Substitution in the C Shell, on page 11-103

– History Lists, on page 11-103

– Event Specification, on page 11-104

– Quoting with Single and Double Quotes, on page 11-105

• Alias Substitution in the C Shell, on page 11-106

• Variable and File Name Substitution in the C Shell, on page 11-107

– Variable Substitution in the C Shell, on page 11-107

– File Name Substitution in the C Shell, on page 11-109

– File Name Expansion, on page 11-109

– File Name Abbreviation, on page 11-109

– Character Classes, on page 11-110

• Environment Variables in the C Shell, on page 11-111

• Input and Output Redirection in the C Shell, on page 11-114

– Control Flow

• Job Control in the C Shell, on page 11-116

11-91 Shells

• C Shell Related Information

C Shell Limitations
The following are limitations of the C shell:

• Words can be no longer than 1024 bytes.

• Argument lists are limited to ARG_MAX bytes. Values for the ARG_MAX variable are
found in the /usr/include/sys/limits.h file.

• The number of arguments to a command that involves file name expansion is limited to
1/6th the number of bytes allowed in an argument list.

• Command substitutions can substitute no more bytes than are allowed in an argument
list.

• To detect looping, the shell restricts the number of alias substitutions on a single line to
20.

• The csh command does not support file name expansion based on equivalence
classification of characters.

Signal Handling
The C shell normally ignores quit signals. Jobs running detached are immune to signals
generated from the keyboard (INTERRUPT, QUIT, and HANGUP). Other signals have the
values the shell inherits from its parent. You can control the shell’s handling of INTERRUPT
and TERMINATE signals in shell procedures with onintr. Login shells catch or ignore
TERMINATE signals depending on how they are set up. Shells other than login shells pass
TERMINATE signals on to the child processes. In no cases are INTERRUPT signals
allowed when a login shell is reading the .logout file.

11-92 AIX System User’s Guide – OS & Devices

C Shell Commands
A simple command is a sequence of words separated by blanks or tabs.

A word is a sequence of characters or numerals, or both, that does not contain blanks
without quotation marks. In addition, the following characters and doubled characters also
form single words when used as command separators or terminators:

& | ;
&& || << > >
< > ()

These special characters can be parts of other words. Preceding them with a \ (backslash),
however, prevents the shell from interpreting them as special characters. Strings enclosed
in ’ ’ or ” ” (matched pairs of quotation characters) or backquotes can also form parts of
words. Blanks, tab characters, and special characters do not form separate words when
they are enclosed in these marks. In addition, you can enclose a new–line character within
these marks by preceding it with a \ (backslash).

The first word in the simple command sequence (numbered 0) usually specifies the name of
a command. Any remaining words, with a few exceptions, are passed to that command. If
the command specifies an executable file that is a compiled program, the shell immediately
runs that program. If the file is marked executable but is not a compiled program, the shell
assumes that it is a shell script. In this case, the shell starts another instance of itself (a
subshell) to read the file and execute the commands included in it.

This section discusses:

• C Shell Built–In Commands, on page 11-92

• C Shell Expressions and Operators, on page 11-100

• Command Substitution in the C Shell, on page 11-102

• Nonbuilt–in Command Execution, on page 11-102

• C Shell Related Information

C Shell Built–In Commands
Built–in commands are run within the shell. If a built–in command occurs as any component
of a pipeline, except the last, the command runs in a subshell.

Note: If you enter a command from the C shell prompt, the system searches for a built–in
command first. If a built–in command does not exist, the system searches the
directories specified by the path shell variable for a system–level command. Some
C shell built–in commands and operating system commands have the same name.
However, these commands do not necessarily work the same way. Check the
appropriate command description for information on how the command works.

If you run a shell script from the shell and the first line of the shell script begins with #!/
ShellPathname, the C shell runs the shell specified in the comment to process the script.
Otherwise, it runs the default shell (the shell linked to /usr/bin/sh). If run by the default
shell, C shell built–in commands may not be recognized. To get the system to run C shell
commands, make the first line of the script #!/usr/bin/csh.

Refer to the List of C Shell Built–In Commands for an alphabetic listing of the built–in
commands.

11-93 Shells

C Shell Command Descriptions
The C shell provides the following built–in commands:

alias [Name [WordList]] Displays all aliases if you do not specify any parameters.
Otherwise, the command displays the alias for the specified
Name. If WordList is specified, this command assigns the
value of WordList to the alias Name. The specified alias
Name cannot be alias or unalias.

bg [%Job ...] Puts the current job or job specified by Job into the
background, continuing the job if it was stopped.

break Resumes running after the end of the nearest enclosing
foreach or while command.

breaksw Breaks from a switch command; resumes after the endsw
command.

case Label: Defines a Label in a switch command.

cd[Name] Equivalent to the chdir command (see following
description).

chdir [Name] Changes the current directory to that specified by the Name
variable. If you do not specify Name, the command
changes to your home directory. If the value of the Name
variable is not a subdirectory of the current directory and
does not begin with / (slash), ./ (period, slash), or ../ (two
periods, slash), the shell checks each component of the
cdpath shell variable to see if it has a subdirectory
matching the Name variable. If the Name variable is a shell
variable with a value that begins with / (slash), the shell
tries this to see if it is a directory. The chdir command is
equivalent to the cd command.

continue Continues execution at the end of the nearest enclosing
while or foreach command.

default: Labels the default case in a switch statement. The default
should come after all other case labels.

dirs Displays the directory stack.

echo Writes character strings to the standard output of the shell.

else Runs the commands that follow the second else in an if
(Expression) then ...else if (Expression2) then ... else ...
endif command sequence.

end Successively sets the Name variable to each member
specified by the List variable and runs the sequence of
Commands between the foreach and the matching end
statements. The foreach and end statements must appear
alone on separate lines.

Uses the continue statement to continue the loop and the
break statement to end the loop prematurely. When the
foreach command is read from the terminal, the C shell
prompts with a ? (question mark) to allow Commands to be
input. Commands within loops, prompted for by ?, are not
placed in the history list.

11-94 AIX System User’s Guide – OS & Devices

endif If the Expression variable is true, runs the Commands that
follow the first then statement. If the else if Expression2 is
true, runs the Commands that follow the second then
statement. If the else if Expression2 is false, runs the
Commands that follow the else. Any number of else if pairs
are possible. Only one endif statement is needed. The else
segment is optional. The words else and endif can be used
only at the beginning of input lines. The if segment must
appear alone on its input line or after an else command.

endsw Successively matches each case label against the value of
the string variable. The string is command and file name
expanded first. Use the pattern–matching characters *
(asterisk), ? (question mark), and [. . .] (brackets enclosing
ellipses) in the case labels, which are variable–expanded. If
none of the labels match before a default label is found,
the execution begins after the default label. The case label
and the default label must appear at the beginning of the
line. The breaksw command causes execution to continue
after the endsw command. Otherwise, control may fall
through the case and default labels, as in the C
programming language. If no label matches and there is no
default, execution continues after the endsw command.

eval Parameter . . . Reads the value of the Parameter variable as input to the
shell and runs the resulting command or commands in the
context of the current shell. Use this command to run
commands generated as the result of command or variable
substitution, since parsing occurs before these
substitutions.

exec Command Runs the specified Command in place of the current shell.

exit [(Expression) Exits the shell with either the value of the status shell
variable (if no Expression is specified) or with the value of
the specified Expression.

fg [%Job ...] Brings the current job or job specified by Job into the
foreground, continuing the job if it was stopped.

foreach Name (List)
Command. . .

Successively sets a Name variable for each member
specified by the List variable and a sequence of commands,
until reaching an end command.

glob List Displays List using history, variable, and file name
expansion. Puts a null character between words and does
not include a carriage return at the end.

goto Word Continues to run after the line specified by the Word
variable. The specified Word is file name and command
expanded to yield a string of the form specified by the
Label: variable. The shell rewinds its input as much as
possible and searches for a line of the form Label:, possibly
preceded by blanks or tabs.

hashstat Displays statistics indicating how successful the hash table
has been at locating commands.

11-95 Shells

history [–r | –h] [n] Displays the history event list. The oldest events are
displayed first. If you specify a number n, only the specified
number of the most recent events are displayed. The –r flag
reverses the order in which the events are displayed so the
most recent is displayed first. The –h flag displays the
history list without leading numbers. Use this flag to
produce files suitable for use with the –h flag of the source
command.

if (Expression) Command Runs the specified Command (including its arguments) if
the specified Expression is true. Variable substitution on the
Command variable happens early, at the same time as the
rest of the if statement. The specified Command must be a
simple command (rather than a pipeline, command list, or
parenthesized command list).

Note: Input and output redirection occurs even if the
Expression variable is false and the Command is
not executed.

jobs [–l] Lists the active jobs. With the –l (lowercase L) flag, the jobs
command lists process IDs in addition to the job number
and name.

kill –l | [[–Signal] %
Job...|PID...]

Sends either the TERM (terminate) signal or the signal
specified by Signal to the specified Job or PID (process).
Specify signals either by number or by name (as given in
the /usr/include/sys/signal.h file, stripped of the SIG
prefix). The –l (lowercase L) flag lists the signal names.

11-96 AIX System User’s Guide – OS & Devices

limit [–h] [Resource
[Max–Use]]

Limits the usage of the specified resource by the current
process and each process it creates. Process resource
limits are defined in the /etc/security/limits file.
Controllable resources are the central processing unit
(CPU) time, file size, data size, core dump size, and
memory use. Maximum allowable values for these
resources are set with the mkuser command when the user
is added to the system. They are changed with the chuser
command.

Limits are categorized as either soft or hard. Users may
increase their soft limits up to the ceiling imposed by the
hard limits. You must have root user authority to increase a
soft limit above the hard limit, or to change hard limits. The
–h flag displays hard limits instead of the soft limits.

If a Max–Use parameter is not specified, the limit
command displays the current limit of the specified
resource. If the Resource parameter is not specified, the
limit command displays the current limits of all resources.
For more information about the resources controlled by the
limit subcommand, see the getrlimit, setrlimit, or vlimit
subroutine in the AIX Technical Reference, Volume 1: Base
Operating System and Extensions.

The Max–Use parameter for CPU time is specified in the
hh:mm:ss format. The Max–Use parameter for other
resources is specified as a floating–point number or an
integer optionally followed by a scale factor. The scale
factor is: k or kilobytes (1024 bytes), m or megabytes, or b
or blocks (the units used by the ulimit subroutine as
explained in the AIX Technical Reference, Volume 2: Base
Operating System and Extensions). If you do not specify a
scale factor, k is assumed for all resources. For both
resource names and scale factors, unambiguous prefixes of
the names suffice.

Note: This command limits the physical memory (memory
use) available for a process only if there is
contention for system memory by other active
processes.

login Ends a login shell and replaces it with an instance of the
/usr/bin/login command. This is one way to log off
(included for compatibility with the ksh and bsh
commands).

logout Ends a login shell. This command must be used if the
ignoreeof option is set.

nice [+n] [Command] If no values are specified, sets the priority of commands run
in this shell to 24. If the +n flag is specified, sets the priority
plus the specified number. If the +n flag and Command are
specified, runs Command at priority 24 plus the specified
number. If you have root user authority, you can run the
nice statement with a negative number. The Command
always runs in a subshell, and the restrictions placed on
commands in simple if statements apply.

11-97 Shells

nohup [Command] Causes hangups to be ignored for the remainder of the
script when no Command is specified. If Command is
specified, causes the specified Command to be run with
hangups ignored. To run a pipeline or list of commands,
put the pipeline or list in a shell script, give the script
execute permission, and use the shell script as the value of
the Command variable. All processes run in the background
with & (ampersand) are effectively protected from being
sent a hangup signal when you log off. However, these
processes are still subject to explicitly sent hangups unless
the nohup statement is used.

notify [%Job...] Causes the shell to notify you asynchronously when the
status of the current job or specified Job changes. Normally,
the shell provides notification just before it presents the
shell prompt. This feature is automatic if the notify shell
variable is set.

onintr [– | Label] Controls the action of the shell on interrupts. If no
arguments are specified, restores the default action of the
shell on interrupts, which ends shell scripts or returns to the
command input level. If a – flag (dash) is specified, causes
all interrupts to be ignored. If Label is specified, causes the
shell to run a goto Label statement when the shell receives
an interrupt or when a child process ends due to an
interruption. In any case, if the shell is running detached
and interrupts are being ignored, all forms of the onintr
statement have no meaning. Interrupts continue to be
ignored by the shell and all invoked commands.

popd [+n] Pops the directory stack and changes to the new top
directory. If you specify a +n variable, the command
discards the nth entry in the stack. The elements of the
directory stack are numbered from the top, starting at 0.

pushd [+n|Name] With no arguments, exchanges the top two elements of the
directory stack. With the Name variable, the command
changes to the new directory and pushes the old current
directory (as given in the cwd shell variable) onto the
directory stack. If you specify a +n variable, the command
rotates the nth component of the directory stack around to
be the top element and changes to it. The members of the
directory stack are numbered from the top, starting at 0.

rehash Causes recomputation of the internal hash table of the
contents of the directories in the path shell variable. This
action is needed if new commands are added to directories
in the path shell variable while you are logged in. The
rehash command is necessary only if commands are
added to one of the user’s own directories or if someone
changes the contents of one of the system directories.

repeat Count Command Runs the specified Command, subject to the same
restrictions as commands in simple if statements, the
number of times specified by Count.

Note: I/O redirections occur exactly once, even if the
Count variable equals 0 (zero).

11-98 AIX System User’s Guide – OS & Devices

set [[Name[n]] [= Word]] |
[Name = (List)]

Shows the value of all shell variables when used with no
arguments. Variables that have more than a single word as
their value are displayed as a parenthesized word list. If
only Name is specified, the C shell sets the Name variable
to the null string. Otherwise, sets Name to the value of the
Word variable, or sets the Name variable to the list of words
specified by the List variable. When n is specified, the nth
component of the Name variable is set to the value of the
Word variable; the nth component must already exist. In all
cases, the value is command and file name expanded.
These arguments may be repeated to set multiple values in
a single set command. However, variable expansion
happens for all arguments before any setting occurs.

setenvName Value Sets the value of the environment variable specified by the
Name variable to Value, a single string. The most
commonly used environment variables, USER, TERM,
HOME, and PATH, are automatically imported to and
exported from the C shell variables user, term, home, and
path. There is no need to use the setenv statement for
these.

shift [Variable] Shifts the members of the argv shell variable or the
specified Variable to the left. An error occurs if the argv
shell variable or specified Variable is not set or has less
than one word as its value.

source[–h] Name Reads commands specified by the Name variable. You can
nest the source commands. However, if they are nested
too deeply, the shell might run out of file descriptors. An
error in a source command at any level ends all nested
source commands. Normally, input during source
commands is not placed on the history list. The –h flag
causes the commands to be placed in the history list
without executing them.

stop [%Job ...] Stops the current job or specified Job running in the
background.

suspend Stops the shell as if a STOP signal had been received.

switch (string) Starts a switch (String) case String : ... breaksw default:
... breaksw endsw command sequence. This command
sequence successively matches each case label against
the value of the String variable. If none of the labels match
before a default label is found, the execution begins after
the default label.

11-99 Shells

time [Command]

The time command controls automatic timing of
commands. If you do not specify the Command variable,
the time command displays a summary of time used by this
shell and its children. If you specify a command with the
Command variable, it is timed. The shell then displays a
time summary, as described under the time shell variable. If
necessary, an extra shell is created to display the time
statistic when the command completes.

Here is an example using time with the sleep command:

time sleep

The output from this command might look like:

0.0u 0.0s 0:00 100% 44+4k 0+0io 0pf+0w

The seven fields in the output are described below:

Field Description

First Number of seconds of CPU time devoted
to the user process

Second Number of seconds of CPU time consumed
by the kernel on behalf of the user process

Third Elapsed (wall clock) time for the command

Fourth Total user CPU Time plus system time, as
a percentage of elapsed time

Fifth Average amount of shared memory used,
plus average amount of unshared data
space used, in kilobytes

Sixth Number of block input and output
operations

Seventh Page faults plus number of swaps

umask [Value] Determines file permissions. This Value, along with the
permissions of the creating process, determines a file’s
permissions when the file is created. The default is 022.
The current setting will be displayed if no Value is specified.

unalias *|Pattern Discards all aliases with names that match the Pattern
variable. All aliases are removed by the unalias *
command. The absence of aliases does not cause an error.

unhash Disables the use of the internal hash table to locate running
programs.

unlimit [–h][Resource] Removes the limitation on the Resource variable. If no
Resource variable is specified, all resource limitations are
removed. See the description of the limit command for the
list of Resource names.

The –h flag removes corresponding hard limits. Only a user
with root user authority can change hard limits.

unset *|Pattern Removes all variables with names that match the Pattern
variable. Use unset * to remove all variables. If no variables
are set, it does not cause an error.

unsetenv Pattern Removes all variables from the environment whose name
matches the specified Pattern. (See the setenv built–in
command.)

11-100 AIX System User’s Guide – OS & Devices

wait Waits for all background jobs. If the shell is interactive, an
INTERRUPT (usually the Ctrl–C key sequence) disrupts the
wait. The shell then displays the names and job numbers of
all jobs known to be outstanding.

while (Expression)
Command. . . end

Evaluates the Commands between the while and the
matching end statements while the expression specified by
the Expression variable evaluates nonzero. You can use
the break statement to end and the continue statement to
continue the loop prematurely. The while and end
statements must appear alone on their input lines. If the
input is from a terminal, prompts occur after the while
(Expression) similar to the foreach statement.

@ [Name[n] = Expression] Displays the values of all the shell variables when used with
no arguments. Otherwise, sets the name specified by the
Name variable to the value of the Expression variable. If the
expression contains < (less than), > (greater than), &
(ampersand), or | (pipe) characters, this part of the
expression must be placed within parentheses. When n is
specified, the nth component of the Name variable is set to
the Expression variable. Both the Name variable and its nth
component must already exist.

C language operators, such as *= (asterisk, equal sign) and
+= (plus sign, equal sign), are available. The space
separating the Name variable from the assignment operator
is optional. Spaces are, however, required in separating
components of the Expression variable, which would
otherwise be read as a single word. Special suffix
operators, ++ (double plus sign) and –– (double minus sign)
increase and decrease, respectively, the value of the Name
variable.

C Shell Expressions and Operators
The @ built–in command and the exit, if, and while statements accept expressions that
include operators similar to those of C language, with the same precedence. The following
operators are available:

Operator What it Means

() change precedence

~ complement

! negation

*/ % multiply, divide, modulo

+ – add, subtract

<< > > left shift, right shift

<= >= < > relational operators

== != =~ !~ string comparison/pattern matching

& bitwise ”and”

^ bitwise ”exclusive or”

| bitwise ”inclusive or”

&& logical ”and”

|| logical ”or”

11-101 Shells

In the above list, precedence of the operators decreases down the list – left to right, top to
bottom.

Note: The operators + and – are right associative. For example, evaluation of a + b – c is
performed as follows:

a + (b – c)

and not:

(a + b) – c

The ==, !=, =~, and !~ operators compare their arguments as strings; all others operate on
numbers. The =~ and !~ operators are similar to == and != , except that the rightmost side is
a pattern against which the leftmost operand is matched. This reduces the need for use of
the switch statement in shell procedures when all that is really needed is pattern matching.

The logical operators || (or) and && (and) are available as well. They can be used, for
example, to check for a range of numbers:

if ($#argv > 2 && $#argv < 7) then

In the preceding example, the number of arguments must be greater than 2 and less than 7.

Strings beginning with 0 (zero) are considered octal numbers. Null or missing arguments
are considered 0. All expressions result in strings representing decimal numbers. Note that
two components of an expression can appear in the same word. Except when next to
components of expressions that are syntactically significant to the parser (& | < > ()),
expression components should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in ()
(parentheses) and file inquiries of the form (–operator Filename), where operator is one of
the following:

r Read access

w Write access

x Execute access

e Existence

o Ownership

z Zero size

f Plain file

d Directory

The specified Filename is command and file name expanded and then tested to see if it has
the specified relationship to the real user. If Filename does not exist or is inaccessible, then
all inquiries return false(0). If the command runs successfully, the inquiry returns a value of
true(1). Otherwise, if the command fails, the inquiry returns a value of false(0). If more
detailed status information is required, run the command outside an expression and then
examine the status shell variable.

11-102 AIX System User’s Guide – OS & Devices

Command Substitution in the C Shell
In command substitution, the shell executes a specified command and replaces that
command with its output. To perform command substitution in the C shell, enclose the
command or command string in ‘ ‘ (backquotes). The shell normally breaks the output from
the command into separate words at blanks, tabs, and new–line characters. It then replaces
the original command with this output.

In the following example, the ‘ ‘ (backquotes) around the date command indicate that the
output of the command will be substituted:

echo The current date and time is: ‘date‘

The output from this command might look like:

The current date and time is: Wed Apr 8 13:52:14 CDT 1992

The C shell performs command substitution selectively on the arguments of built–in shell
commands. This means that it does not expand those parts of expressions that are not
evaluated. For commands that are not built–in, the shell substitutes the command name
separately from the argument list. The substitution occurs in a child of the main shell, only
after the shell performs input or output redirection.

If a command string is surrounded by ” ” (double quotation marks), the shell treats only
new–line characters as word separators, thus preserving blanks and tabs within the word. In
all cases, the single final new–line character does not force a new word.

Nonbuilt–in C Shell Command Execution
When the C shell determines that a command is not a built–in shell command, it attempts to
run the command with the execv system call. Each word in the path shell variable names a
directory from which the shell attempts to run the command. If given neither the –c nor –t
flag, the shell hashes the names in these directories into an internal table. The shell only
tries to call the exec system call on a directory if there is a possibility that the command
resides there. If you turn off this mechanism with the unhash command or give the shell the
–c or –t flag, the shell concatenates with the given command name to form a path name of
a file. The shell also does this in any case for each directory component of the path variable
that does not begin with a / (slash). The shell then attempts to run the command.

Parenthesized commands always run in a subshell. For example:

(cd ; pwd) ; pwd

displays the home directory without changing the current directory location. However, the
command:

cd ; pwd

changes the current directory location to the home directory. Parenthesized commands are
most often used to prevent the chdir command from affecting the current shell.

If the file has execute permission, but is not an executable binary to the system, then the
shell assumes it is a file containing shell commands and runs a new shell to read it.

If there is an alias for the shell, then the words of the alias are prefixed to the argument list
to form the shell command. The first word of the alias should be the full path name of the
shell.

11-103 Shells

History Substitution in the C Shell
History substitution lets you modify individual words from previous commands to create new
commands. History substitution makes it easy to repeat commands, repeat the arguments
of a previous command in the current command, or fix spelling mistakes in the previous
command with little typing.

History substitutions begin with the ! (exclamation point) character and can appear
anywhere on the command line, provided they do not nest (in other words, a history
substitution cannot contain another history substitution). You can precede the ! (exclamation
point) with a \ (backslash) to cancel the exclamation point’s special meaning. In addition, if
you place the ! before a blank, tab, new-line character, = (equal sign), or ((left parenthesis),
history substitution does not occur.

History substitutions also occur when you begin an input line with a ^ (caret or circumflex).
The shell echoes any input line containing history substitutions at the workstation before it
executes that line.

This section discusses:

• History Lists, on page 11-103

• Event Specification, on page 11-104

• Quoting with Single and Double Quotes, on page 11-105

History Lists
The history list saves commands that the shell reads from the command line that consist of
one or more words. History substitution reintroduces sequences of words from these saved
commands into the input stream.

The history shell variable controls the size of the history list. You must set the history shell
variable either in the .cshrc file or on the command line with the built-in set command. The
previous command is always retained regardless of the value of the history variable.
Commands in the history list are numbered sequentially starting from 1. The built-in history
command produces output of the type:

9 write michael

10 ed write.c

11 cat oldwrite.c

12 diff *write.c

The shell displays the command strings with their event numbers. It is not usually necessary
to use event numbers to refer to events, but you can have the current event number
displayed as part of your system prompt by placing an ! (exclamation point) in the prompt
string assigned to the prompt environment variable.

A full history reference contains an event specification, a word designator, and one or more
modifiers in the following general format:

Event[.]Word:Modifier[:Modifier] . . .

Note: Only one word can be modified. A string that contains blanks is not allowed.

In the previous sample of history command output, the current event number is 13. Using
this example, the following refer to previous events:

!10 Event number 10.

!–2 Event number 11 (the current event minus 2).

!d Command word beginning with d (event number 12).

!?mic? Command word containing the string mic (event number 9).

11-104 AIX System User’s Guide – OS & Devices

These forms, without further modification, simply reintroduce the words of the specified
events, each separated by a single blank. As a special case, !! (double exclamation point)
refers to the previous command; the command !! alone on an input line reruns the previous
command.

Event Specification
To select words from an event, follow the event specification with a : (colon) and one of the
following word designators (the words of an input line are numbered sequentially starting
from 0):

0 First word (the command name).

n nth argument.

^ First argument.

$ Last argument.

% Word matched by an immediately preceding ?string? search.

x–y Range of words from the xth word to the yth word.

–y Range of words from the first word (0) to the yth word.

* First through the last argument, or nothing if there is only one word (the
command name) in the event.

x* xth argument through the last argument.

x– Like x* but omitting the last argument.

You can omit the colon that separates the event specification from the word designator if the
word designator begins with a ^ (circumflex), $ (dollar sign), * (asterisk), – (dash), or %
(percent sign). You can also place a sequence of the following modifiers after the optional
word designator, each preceded by a colon:

h Removes a trailing path name extension, leaving the head.

r Removes a trailing .xxx component, leaving the root name.

e Removes all but the .xxx trailing extension.

s/OldWord/NewWord/

 Substitutes the value of the NewWord variable for the value of the
OldWord variable.

The left side of a substitution is not a pattern in the sense of a string recognized by an
editor; rather, it is a word, a single unit without blanks. Normally, a / (slash) delimits the
original word (OldWord) and its replacement (NewWord). However, you can use any
character as the delimiter. In the following example, using the % (percent sign) as a
delimiter allows a / (slash) to be included in the words:

s%/home/myfile%/home/yourfile%

The shell replaces an & (ampersand) with the OldWord text in the NewWord variable. In the
following example, /home/myfile becomes /temp/home/myfile.

s%/home/myfile%/temp&%

11-105 Shells

The shell replaces a null word in a substitution with either the last substitution or with the
last string used in the contextual scan !?String?. You can omit the trailing delimiter (/) if a
new-line character follows immediately. Use the following modifiers to delimit the history list:

t Removes all leading path name components, leaving the tail.

& Repeats the previous substitution.

g Applies the change globally; that is, all occurrences for each line.

p Displays the new command, but does not run it.

q Quotes the substituted words, thus preventing further substitutions.

x Acts like the q modifier, but breaks into words at blanks, tabs, and
new-line characters.

Unless the g modifier precedes the above modifiers, the change applies only to the first
modifiable word.

If you give a history reference without an event specification (for example, !$), the shell
uses the previous command as the event. If a previous history reference occurs on the
same line, the shell repeats the previous reference. Thus, the following sequence gives the
first and last arguments of the command that matches ?foo?.

!?foo?^ !$

A special abbreviation of a history reference occurs when the first nonblank character of an
input line is a ^ (circumflex). This is equivalent to !:s^ , thus providing a convenient
shorthand for substitutions on the text of the previous line. The command ^ lb^ lib
corrects the spelling of lib in the previous command.

If necessary, you can enclose a history substitution in { } (braces) to insulate it from the
characters that follow. For example, if you want to use a reference to the command:

ls –ld ~paul

to perform the command:

ls –ld ~paula

use the following construction:

!{l}a

In this example, !{l}a looks for a command starting with l and appends a to the end.

Quoting with Single and Double Quotes
Enclose strings in single and double quotation marks in order to prevent all or some of the
substitutions that remain. Enclosing strings in ’ ’ (single quotation marks) prevents further
interpretation, while enclosing strings in ” ” (double quotation marks) allows further
expansion. In both cases, the text that results becomes (all or part of) a single word.

11-106 AIX System User’s Guide – OS & Devices

Alias Substitution in the C Shell
An alias is a name assigned to a command or command string. The C shell allows you to
assign aliases and use them just as you would commands. The shell maintains a list of the
aliases you define.

After the shell scans the command line, it divides it into distinct words and checks the first
word of each command, left to right, to see if it has an alias. If it does, the shell uses the
history mechanism to replace the text of the alias with the text of the command referenced
by the alias. The resulting words replace the command and argument list. If no reference is
made to the history list, the argument list is left unchanged.

For information about the C shell history mechanism, see History Substitution in the C Shell

The alias and unalias built–in commands establish, display, and modify the alias list. Use
the alias command in the following format:

alias [Name [WordList]]

The optional Name variable specifies the alias for the specified name. If you specify a word
list with the WordList variable, the command assigns it as the alias of the Name variable. If
you issue the alias command without either optional variable, it displays all C shell aliases.

If the alias for the ls command is ls –l, the command:

ls /usr

is replaced by the command:

ls –l /usr

The argument list is undisturbed because there is no reference to the history list in the
command with an alias. Similarly, if the alias for the lookup command is:

grep \!^ /etc/passwd

then the shell replaces lookup bill with:

grep bill /etc/passwd

In this example, !^ refers to the history list and the shell replaces it with the first argument
in the input line, in this case bill .

You can use special pattern–matching characters in an alias. The command:

alias lprint ’pr &bslash2.!* >

> print’

creates a command that formats its arguments to the line printer. The ! character is
protected from the shell in the alias by use of single quotes so that it is not expanded until
the pr command runs.

If the shell locates an alias, it performs the word transformation of the input text and begins
the alias process again on the reformed input line. If the first word of the next text is the
same as the old, looping is prevented by flagging it to terminate the alias process. Other
subsequent loops are detected and result in an error.

• C Shell Related Information

11-107 Shells

Variable and File Name Substitution in the C Shell
The C Shell permits you to do variable and file name substitutions.

The following sections offer information about creating and substituting variables in the C
shell:

• Variable Substitution in the C Shell, on page 11-107

• File Name Substitution in the C Shell, on page 11-109

• File Name Expansion, on page 11-109

• File Name Abbreviation, on page 11-109

• Character Classes, on page 11-110

• C Shell Related Information

Variable Substitution in the C Shell
The C shell maintains a set of variables, each of which has as its value a list of zero or more
words. Some of these variables are set by the shell or referred to by it. For instance, the
argv variable is an image of the shell variable list, and words that comprise the value of this
variable are referred to in special ways.

You can change and display the values of variables with the set and unset commands. Of
the variables referred to by the shell, a number are toggles (variables that turn something on
and off). The shell does not care what their value is, only whether they are set or unset. For
instance, the verbose shell variable is a toggle that causes command input to be echoed.
The setting of this variable results from issuing the –v flag on the command line.

Other operations treat variables numerically. The @ command performs numeric
calculations and the result is assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For numeric operations, the null string is considered
to be zero, and the second and subsequent words of multiword values are ignored.

When you issue a command, the shell parses the input line and performs alias substitution.
Next, before running the command, it performs variable substitution. The $ (dollar sign)
character keys the substitution. It is, however, passed unchanged if followed by a blank, tab,
or new–line character. Preceding the $ character with a \ (backslash) prevents this
expansion, except in two cases:

• The command is enclosed in ” ” (double quotation marks). In this case, the shell always
performs the substitution.

• The command is enclosed in ’ ’ (single quotation marks). In this case, the shell never
performs the substitution. Strings enclosed by ’ ’ are interpreted for command
substitution. (See Command Substitution in the C Shell, on page 0.)

The shell recognizes input and output redirection before variable expansion, and expands
each separately. Otherwise, the command name and complete argument list expands
together. It is therefore possible for the first (command) word to generate more than one
word, the first of which becomes the command name and the rest of which become
parameters.

Unless enclosed in ” ” (double quotation marks) or given the :q modifier, the results of
variable substitution may eventually be subject to command and file name substitution.
When enclosed by double quotation marks, a variable with a value that consists of multiple
words expands to a single word or a portion of a single word, with the words of the
variable’s value separated by blanks. When you apply the :q modifier to a substitution, the
variable expands to multiple words. Each word is separated by a blank and enclosed in
double quotation marks to prevent later command or file name substitution.

11-108 AIX System User’s Guide – OS & Devices

The notations below allow you to introduce variable values into the shell input. Except as
noted, it is an error to reference a variable that is not set with the set command.

You can apply the modifiers :gh, :gt, :gr, :h, :r, :q, and :x to the following substitutions. If { }
(braces) appear in the command form, then the modifiers must appear within the braces.
The current implementation allows only one : (colon) modifier on each variable expansion.

$Name

${Name} Replaced by the words assigned to the Name variable,
each separated by a blank. Braces insulate the Name
variable from any following characters that would otherwise
be part of it. Shell variable names start with a letter and
consist of up to 20 letters and digits, including the _
(underline) character. If the Name variable does not specify
a shell variable but is set in the environment, then its value
is returned. The modifiers preceded by colons, as well as
the other forms described here, are not available in this
case.

$Name[number]

${Name[number]}

 Selects only some of the words from the value of the Name
variable. The number is subjected to variable substitution
and may consist of a single number, or two numbers
separated by a – (dash). The first word of a variable’s string
value is numbered 1. If the first number of a range is
omitted, it defaults to 1. If the last number of a range is
omitted, it defaults to $#Name. The * (asterisk) symbol
selects all words. It is not an error for a range to be empty if
the second argument is omitted or is in a range.

$#Name

${#Name} Gives the number of words in the Name variable. This is
useful for use in a [number] as shown above. For example,
$Name[$#Name].

$0 Substitutes the name of the file from which command input
is being read. An error occurs if the name is not known.

$number

${number} Equivalent to $argv[number].

$* Equivalent to $argv[*].

The following substitutions may not be changed with : modifiers:

$?name

${?name} Substitutes the string 1 if the name variable is set; 0 (zero)
if this variable is not set.

$?0 Substitutes 1 if the current input file name is known; 0
(zero) if the file name is not known.

$$ Substitutes the (decimal) process number of the parent
shell.

$< Substitutes a line from standard input, without further
interpretation. Use this substitution to read from the
keyboard in a shell procedure.

11-109 Shells

File Name Substitution in the C Shell
The C shell provides several abridgment features to save time and keystrokes. If a word
contains any of the characters * (asterisk), ? (question mark), [] (brackets), or { } (braces),
or begins with a ~ (tilde), that word is a candidate for file name substitution. The C shell
regards the word as a pattern and replaces the word with an alphabetically sorted list of file
names matching the pattern.

The current collating sequence is used, as specified by the LC_COLLATE or LANG
environment variables. In a list of words specifying file name substitution, an error results if
no patterns match an existing file name. However, it is not required that every pattern
match. Only the character–matching symbols * (asterisk), ? (question mark), and []
(brackets) indicate pattern–matching, or file name expansion. The ~ (tilde) and { } (braces)
characters indicate file name abbreviation.

File Name Expansion
The * (asterisk) character matches any string of characters, including the null string. For
example, in a directory containing the files:

a aa aax alice b bb c cc

the command echo a* prints all files names beginning with the character a :

a aa aax alice

Note: When file names are matched, the characters . (period) and / (slash) must be
matched explicitly.

The ? (question mark) character matches any single character. The command:

ls a?x

lists every file name beginning with the letter a, followed by a single character, and ending
with the letter x:

aax

To match a single character or a range of characters, enclose the character or characters
inside of [] (brackets). The command:

ls [abc]

lists all file names exactly matching one of the enclosed characters:

a b c

Within brackets, a lexical range of characters is indicated by [a–z]. The characters
matching this pattern are defined by the current collating sequence.

File Name Abbreviation
The ~ (tilde) and { (left brace) characters indicate file name abbreviation. A ~ at the
beginning of a file name is used to represent home directories. Standing alone, the ~
character expands to your home directory as reflected in the value of the home shell
variable. For example, the command:

ls ~

lists all files and directories located in your $HOME directory.

When followed by a name consisting of letters, digits, and – (dash) characters, the shell
searches for a user with that name and substitutes that user’s $HOME directory.

Note: f the ~ character is followed by a character other than a letter or / (slash), or appears
anywhere except at the beginning of a word, it does not expand.

11-110 AIX System User’s Guide – OS & Devices

To match characters in file names without typing the entire file name, use { } (braces)
around the file names. The pattern a{b,c,d}e is shorthand for abe ace ade. The shell
preserves the left–to–right order and separately stores the results of matches at a low level
to preserve this order. This construct may be nested. Thus:

~source/s1/{oldls,ls}.c

expands to:

/usr/source/s1/oldls.c /usr/source/s1/ls.c

if the home directory for source is /usr/source. Similarly:

../{memo,*box}

might expand to:

../memo ../box ../mbox

Note: memo is not sorted with the results of matching *box. As a special case, the { (left
brace), } (right brace), and { } (left and right braces) characters are passed
undisturbed.

Character Classes
You can also use character classes to match file names within a range indication:

[:charclass:]

This format instructs the system to match any single character belonging to the specified
class. The defined classes correspond to ctype subroutines.

Character Class Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation character

space Space, horizontal tab, carriage return, new–line, vertical
tab, or form–feed character

upper Uppercase characters

xdigit Hexadecimal digits.

Suppose you are in a directory containing the following files:

a aa aax Alice b bb c cc

Enter the following command at a C shell prompt:

The C shell lists all file names that begin with lowercase characters:

a aa aax b bb c cc

For more information about character class expressions, refer to the ed command.

11-111 Shells

Environment Variables in the C Shell
Certain variables have special meaning to the C shell. Of these, argv, cwd, home, path,
prompt, shell, and status are always set by the shell. Except for the cwd and status
variables, this action occurs only at initialization. These variables maintain their settings
unless you explicitly reset them.

The csh command copies the USER, TERM, HOME, and PATH environment variables into
the csh variables, user, term, home, and path, respectively. The values are copied back
into the environment whenever the normal shell variables are reset. It is not necessary to
worry about the path variable setting other than in the .cshrc file, because csh
subprocesses import the path definition from the environment and reexport it if changed.

The following variables have special meanings:

argv Contains the arguments passed to shell scripts. Positional
parameters are substituted from this variable.

cdpath Specifies a list of alternate directories to be searched by the
chdir or cd command to find subdirectories.

cwd Specifies the full path name of the current directory.

echo Set when the –x command line flag is used; when set,
causes each command and its arguments to echo just
before being run. For commands that are not built–in, all
expansions occur before echoing. Built–in commands are
echoed before command and file name substitution
because these substitutions are then done selectively.

histchars Specifies a string value to change the characters used in
history substitution. Use the first character of its value as
the history substitution character, this replaces the default
character, ! (exclamation point). The second character of its
value replaces the ^ (circumflex) character in quick
substitutions.

Note: Setting the histchars value to a character used in
command or file names may cause unintentional
history substitution.

history Contains a numeric value to control the size of the history
list. Any command that is referenced in this many events is
not discarded. Very large values of the history variable
may cause the shell to run out of memory. Regardless of
whether this variable is set, the C shell always saves the
last command that ran on the history list.

home Indicates your home directory, initialized from the
environment. The file name expansion of the ~ (tilde)
character refers to this variable.

ignoreeof Specifies that the shell ignore an end–of–file character from
input devices that are workstations. This prevents shells
from accidentally being killed when it reads an end–of–file
character (Ctrl–D).

mail Specifies the files where the shell checks for mail. This is
done after each command completion which results in a
prompt if a specified time interval has elapsed. The shell
displays the message Mail in file . if the file exists
with an access time less than its change time.

11-112 AIX System User’s Guide – OS & Devices

If the first word of the value of the mail variable is numeric,
it specifies a different mail checking time interval (in
seconds); the default is 600 (10 minutes). If you specify
multiple mail files, the shell displays the message New
mail in file, when there is mail in the specified file.

noclobber Places restrictions on output redirection to ensure that files
are not accidentally destroyed and that redirections append
to existing files.

noglob Inhibits file name expansion. This is most useful in shell
scripts that are not dealing with file names, or when a list of
file names has been obtained and further expansions are
not desirable.

nonomatch Specifies that no error results if a file name expansion does
not match any existing files; rather, the primitive pattern
returns. It is still an error for the primitive pattern to be
malformed.

notify Specifies that the shell send asynchronous notification of
changes in job status. The default presents status changes
just before displaying the shell prompt.

path Specifies directories in which commands are sought for
execution. A null word specifies the current directory. If
there is no path variable set, then only full path names can
run. The default search path (from the /etc/environment
file used during login) is:

/usr/bin /etc /usr/sbin /usr/ucb

/usr/bin/X11 /sbin

A shell given neither the –c nor the –t flag normally hashes
the contents of the directories in the path variable after
reading the .cshrc and also each time the path variable is
reset. If new commands are added to these directories
while the shell is active, you must give the rehash
command, or the commands may not be found.

prompt Specifies the string displayed before each command is read
from an interactive workstation input. If an ! (exclamation
point) appears in the string, it is replaced by the current
event number. If the ! character is in a quoted string
enclosed by single or double quotation marks, the !
character must be preceded by a \ (backslash). The default
prompt for users without root authority is %. The default
prompt for the root user is #.

savehist Specifies a numeric value to control the number of entries
of the history list that are saved in the ~/.history file when
you log off. Any command referenced in this number of
events is saved. During startup, the shell reads ~/.history
into the history list, enabling history to be saved across
logins. Very large values of the savehist variable slow
down the shell startup.

shell Specifies the file in which the C shell resides. This is used
in forking shells to interpret files that have execute bits set,
but which are not executable by the system. This is
initialized to the home of the C shell.

11-113 Shells

status Specifies the status returned by the last command. If the
command ends abnormally, 0200 is added to the status.
Built–in commands that are unsuccessful return an exit
status of 1. Successful built–in commands set status to a
value of 0.

time Controls automatic timing of commands. If this variable is
set, any command that takes more than the specified
number of CPU seconds will display a line of resources
used, at the end of execution. For more information about
the default outputs, see the built–in time command.

verbose Set by the –v command line flag, this variable causes the
words of each command to display after history substitution.

• C Shell Related Information

11-114 AIX System User’s Guide – OS & Devices

Input and Output Redirection in the C Shell
Before the C shell executes a command, it scans the command line for redirection
characters. These special notations direct the shell to redirect input and output.

You can redirect the standard input and output of a command with the following syntax
statements:

< File Opens the specified File (which is first variable, command, and file
name expanded) as the standard input.

<<Word Reads the shell input up to the line that matches the value of the
Word variable. The Word variable is not subjected to variable, file
name, or command substitution. Each input line is compared to the
Word variable before any substitutions are done on the line. Unless
a quoting character (\, ”, ’ or ‘.) appears in the Word variable, the
shell performs variable and command substitution on the intervening
lines, allowing the \ (backslash) character to quote the $ (dollar
sign), \ (backslash), and ‘ (backquote) characters. Commands that
are substituted have all blanks, tabs, and new–line characters
preserved, except for the final new–line character, which is dropped.
The resultant text is placed in an anonymous temporary file, which is
given to the command as standard input.

> File

>!File

>& File

>&! File Uses the specified File as standard output. If File does not exist, it is
created. If File exists, it is truncated, and its previous contents are
lost. If the noclobber shell variable is set, File must not exist or be a
character special file, or an error results. This helps prevent
accidental destruction of files. In this case, use the forms including
an ! (exclamation point) to suppress this check. File is expanded in
the same way as < input file names. The form >& redirects both
standard output and standard error to the specified File. The
following example shows how to separately redirect standard output
to /dev/tty and standard error to /dev/null. The parentheses are
required to allow standard output and standard error to be separate.

% (find / –name vi –print > /dev/tty) >& /dev/null

> >File

> >! File

> >& File

> >&! File Uses the specified File as standard output like >, but appends
output to the end of File. If the noclobber shell variable is set, an
error results if File does not exist, unless one of the forms including
an ! (exclamation point) is given. Otherwise, it is similar to >.

11-115 Shells

A command receives the environment in which the shell was invoked, as changed by the
input/output parameters and the presence of the command as a pipeline. Thus, unlike some
previous shells, commands that run from a shell script do not have access to the text of the
commands by default. Rather, they receive the original standard input of the shell. Use the
<< mechanism to present inline data. This lets shell command files function as components
of pipelines and also lets the shell block read its input. Note that the default standard input
for a command run detached is not changed to the empty /dev/null file. Rather, the
standard input remains the original standard input of the shell.

To redirect the standard error through a pipe with the standard output, use the form |& (pipe,
ampersand) rather than just the | (pipe).

Control Flow
The shell contains commands that can be used to regulate the flow of control in command
files (shell scripts) and (in limited but useful ways) from shell command–line input. These
commands all operate by forcing the shell to repeat, or skip, in its input.

The foreach, switch, and while statements, and the if–then–else form of the if statement,
require that the major keywords appear in a single simple command on an input line.

If the shell input is not searchable, the shell buffers input whenever a loop is being read and
searches the internal buffer to do the rereading implied by the loop. To the extent that this is
allowed, backward gotos succeed on inputs that you cannot search.

• C Shell Related Information

11-116 AIX System User’s Guide – OS & Devices

Job Control in the C Shell
The shell associates a job number with each process. It keeps a table of current jobs and
assigns them small integer numbers. When you start a job in the background with an &
(ampersand), the shell prints a line that looks like:

[1] 1234

This line indicates that the job number is 1 and that the job is composed of a single process
with a process ID of 1234. Use the built–in jobs command to see the table of current jobs.

A job running in the background competes for input if it tries to read from the workstation.
Background jobs can also produce output for the workstation that gets interleaved with the
output of other jobs.

There are several ways to refer to jobs in the shell. Use the % (percent) character to
introduce a job name. This name can be either the job number or the command name that
started the job, if this name is unique. So, for example, if a make process is running as job
1, you can refer to it as %1. You can also refer to it as %make, if there is only one suspended
job with a name that begins with the string make. You can also use:

%?String

to specify a job whose name contains the String variable, if there is only one such job.

The shell detects immediately whenever a process changes state. If a job becomes blocked
so that further progress is impossible, the shell sends a message to the workstation. This
message is displayed only after you press the Enter key. If, however, the notify shell
variable is set, the shell immediately issues a message that indicates changes in the status
of background jobs. Use the built–in notify command to mark a single process so that its
status changes are promptly reported. By default, the notify command marks the current
process.

• C Shell Related Information

12-1 Miscellaneous Tools and Utilities

Chapter 12. Miscellaneous Tools and Utilities

The following are some common tasks that you can perform by using operating system
commands. The command and an example of how to use the command are presented for
each of the following:

• Locating a Command by Keyword (apropos Command), on page 12-1

• Displaying a Calendar (cal Command), on page 12-2

• Displaying Reminder Messages (calendar Command), on page 12-2

• Displaying Help Information for New Users (help Command), on page 12-3

• Starting Computer-Aided Instruction Courses (learn Command), on page 12-3

• Reminding Yourself When to Leave (leave Command), on page 12-4

• Factoring a Number (factor Command), on page 12-4

• Converting Units of Measure (units Command), on page 12-5

• Sending Messages to Another Logged-in User (write Command), on page 12-7

• Command Summary for Miscellaneous Tools and Utilities, on page 12-9

Locating a Command by Keyword (apropos Command)
You can display the manual sections that contain any of the given Keywords in their title with
the apropos command. The apropos command considers each word separately and does
not take into account if a letter is in uppercase or lowercase. Words that are part of other
words are also displayed. For example, when looking for the word compile, the apropos
command also finds all instances of the word compiler.

The apropos command is equivalent to using the man command with the –k option.

For example, to find the manual sections that contain the word password in their titles,
enter:

apropos password

See the apropos command in the AIX Commands Reference for the exact syntax.

12-2 AIX System User’s Guide – OS & Devices

Displaying a Calendar (cal Command)
The cal command writes to standard output a calendar for the specified year or month.

The Month parameter names the month for which you want the calendar. It can be a
number from 1 through 12 for January through December, respectively. If no Month is
specified, the cal command defaults to the current month.

The Year parameter names the year for which you want the calendar. Because the cal
command can display a calendar for any year from 1 through 9999, enter the full year rather
than just the last two digits. If no Year is specified, the cal command defaults to the present
year.

For example, to display a calendar for February 1984 at your workstation, enter:

cal 2 1984

For example, to print a calendar for 1984, enter:

cal 1984 | qprt

For example, to display a calendar for the year 84 A.D., enter:

cal 84

See the cal command in the AIX Commands Reference for the exact syntax.

Displaying Reminder Messages (calendar Command)
You can read a file named calendar, which you create in your home directory with the
calendar command. The command writes to standard output any line in the file that
contains today’s or tomorrow’s date.

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also recognizes
the special character * (asterisk) when it is followed by a / (slash). It interprets */7, for
example, as signifying the seventh day of every month.

On Fridays, the calendar command writes all lines containing the dates for Friday,
Saturday, Sunday, and Monday. It does not, however, recognize holidays, so it will function
as usual and give only the next day’s schedule.

A typical calendar file might look like the following:

*/25 – Prepare monthly report

Aug. 12 – Fly to Denver

aug 23 – board meeting

Martha out of town – 8/23, 8/24, 8/25

8/24 – Mail car payment

sat aug/25 – beach trip

August 27 – Meet with Simmons

August 28 – Meet with Wilson

If today is Friday, August 24, then the calendar command displays the following:

*/25 – Prepare monthly report

Martha out of town – 8/23, 8/24, 8/25

8/24 – Mail car payment

sat aug/25 – beach trip

August 27 – Meet with Simmons

See the calendar command in the AIX Commands Reference for the exact syntax.

12-3 Miscellaneous Tools and Utilities

Displaying Help Information for New Users (help Command)
You can present a one–page display of information with the help command.

At the prompt, enter:

help

The system displays information similar to the following:

Look in a printed manual for general help if you can. You should

have someone show you some things and then read ”Using and

Managing AIX” manual.

The commands:

 man –k keyword lists commands relevant to a keyword

 man command prints out the manual pages for a command

 are helpful; other basic commands are:

 cat – concatenates files (and just prints

 them out)

 ex – text editor

 ls – lists contents of directory

 mail – sends and receives mail

 msgs – system messages and junk mail

 passwd – changes login password

 sccshelp – views information on the Source Code

 Control System

 smit – system management interface tool

 tset – sets terminal modes

 who – who is on the system

 write – writes to another user

You could find programs about mail by the command: man –k

mail and print out the man command documentation via: man mail

You can log out by typing ”exit”.

See the help command in the AIX Commands Reference for the exact syntax.

Starting Computer-Aided Instruction Courses (learn
Command)

You can practice for using files, editors, macros, and other features with the learn
command, which provides computer-aided instruction courses. The first time you use the
learn command, you are guided through a series of questions to determine what type of
instruction you want to receive. After the first time, you are positioned at the place where
you ended your previous learn command session.

The learn command searches for the first lesson containing the subject you specified. You
can specify any of the following as subjects:

• Files

• Editor

• More files

• Macros

• EQN

• C.

For example, to take the online lesson about files, enter:

learn files

You will then be prompted for further input.

See the learn command in the AIX Commands Reference for the exact syntax.

12-4 AIX System User’s Guide – OS & Devices

Reminding Yourself When to Leave (leave Command)
You can have the system remind you to leave at a specified time with the leave command.
You are reminded at 5 minutes and 1 minute before the actual time, then again at the
specified time, and at every minute thereafter. When you log off, the leave command exits
just before it would have displayed the next message.

If you do not specify a time, the leave command prompts with When do you have to
leave? A reply of newline causes the leave command to exit; otherwise, the reply is
assumed to be a time. This form is suitable for inclusion in a .login or .profile file.

Enter the time in the hhmm format. All times are converted to a 12-hour clock and assumed
to relate to the next 12 hours. You can use the + flag to set the number of hours and
minutes from the current time for the alarm to go off.

Note: The leave command ignores interrupt, quit, and terminate operations. To clear the
leave command, you should either log off or use the kill –9 command and provide
the process ID.

For example, to remind yourself to leave at 3:45, enter:

leave 345

For example, to remind yourself to leave in 20 minutes, enter:

leave +0020

See the leave command in the AIX Commands Reference for the exact syntax.

Factoring a Number (factor Command)
You can factor numbers with the factor command. When called without specifying a value
for the Number parameter, the factor command waits for you to enter a positive number
less than 1E14 (100,000,000,000,000). It then writes the prime factors of that number to
standard output. It displays each factor the proper number of times. To exit, enter 0 (zero) or
any non-numeric character.

When called with an argument, the factor command determines the prime factors of the
Number parameter, writes the results to standard output, and exits.

For example, to calculate the prime factors of 123, enter:

factor 123

The following is displayed:

123

3

41

See the factor command in the AIX Commands Reference for the exact syntax.

12-5 Miscellaneous Tools and Utilities

Converting Units of Measure (units Command)
You can convert quantities expressed in one measurement to their equivalents in another
with the units command. The units command is an interactive command. It prompts you for
the unit you want to convert from and the unit you want to convert to.

Note: This command only does multiplicative scale changes. That is, it can convert from
one value to another only when the conversion involves a multiplication. For
example, it cannot convert between degrees Fahrenheit and degrees Celsius
because the value of 32 must be added or subtracted in the conversion.

The units command recognizes lb as a unit of mass, but considers pound to be the British
pound sterling. Compound names are run together (such as lightyear). Prefix British units
differing from their American counterparts with br (brgallon, for instance). The
/usr/share/lib/unittab file contains a complete list of the units that the units command
uses. You can also define new units in the unittab file or create and use your own File that
overrides the standard conversion factor values in the unittab file.

Most familiar units, abbreviations, and metric prefixes are recognized by the units
command, as well as the following:

pi Ratio of circumference to diameter

c Speed of light

e Charge on an electron

g Acceleration of gravity

force Same as g

mole Avogadro’s number

water Pressure head per unit height of water

au Astronomical unit

For example, to display conversion factors for inches to centimeters, enter:

units

you have: in

you want: cm

The units command returns the following values:

* 2.540000e+00

/ 3.937008e–01

The output tells you to multiply the number of inches by 2.540000e+00 to get centimeters,
and to multiply the number of centimeters by 3.937008e–01 to get inches.

These numbers are in standard exponential notation, so 3.937008e–01 means 3.937008
x 10–1, which is the same as 0.3937008.

Note: The second number is always the reciprocal of the first; for example, 2.54 equals
1/0.3937008.

For example, to convert a measurement to different units, enter:

units

you have: 5 years

you want: microsec

The units command returns the following values:

* 1.577846e+14

/ 6.337753e–15

The output shows that 5 years equals 1.577846 x 1014 microseconds, and that one
microsecond equals 6.337753 x 10–15 years.

12-6 AIX System User’s Guide – OS & Devices

For example, to give fractions in measurements, enter:

units

you have: 1|3 mi

you want: km

The units command returns the following values:

* 5.364480e–01

/ 1.864114e+00

The | (vertical bar) indicates division, so 1|3 means one-third. This shows that one-third
mile is the same as 0.536448 kilometers.

For example, to include exponents in measurements, enter:

units

you have: 1.2–5 gal

you want: floz

The units command returns the following values:

* 1.536000e–03

/ 6.510417e+02

The expression 1.2–5 gal is the equivalent of 1.2 x 10–5. Do not type an e before the
exponent (that is, 1.2e–5 gal is not valid). This example shows that 1.2 x 10–5
(0.000012) gallons equal 1.536 x 10–3 (0.001536) fluid ounces.

If the units you specify after you have: and you want: are incompatible:

you have: ft

you want: lb

The units command returns the following message and values:

conformability

3.048000e–01 m

4.535924e–01 kg

The conformability message means the units you specified cannot be converted. Feet
measure length, and pounds measure mass, so converting from one to the other does not
make sense. Therefore, the units command displays the equivalent of each value in
standard units.

In other words, this example shows that one foot equals 0.3048 meters and that one
pound equals 0.4535924 kilograms. The units command shows the equivalents in meters
and kilograms because the command considers these units to be the standard measures of
length and mass.

See the units command in the AIX Commands Reference for the exact syntax.

12-7 Miscellaneous Tools and Utilities

Sending Messages to Another Logged-In User (write
Command)

You can send messages to other users over the system in real time with the write
command. It provides conversation-like communication with another logged-in user. Each
user alternately sends and receives short messages from the other workstation. Long
messages can be sent by putting the complete message in a file and then redirecting that
file as input to the write command.

When the write command is issued, it immediately sends the following message, along with
an attention-getting sound (the ASCII BEL character) to the message recipient or target:

Message from SenderID on SenderHostname (ttynn) [Date] ...

With a successful connection, the write command sends two ASCII BEL characters to both
workstations. The beep alerts the sender that the message can begin, and it alerts the
receiving user that a message is coming.

For example, to write a message to user june who is logged in, enter:

write june

Press the Enter key and type:

I need to see you! Meet me in the computer room at 12:30.

Then press the Ctrl–D key sequence to terminate the write command mode.

If your user ID is karen and you are using workstation tty3, june’s workstation displays:

Message from karen on trek tty3 Aug 17 11:55:24 ...

I need to see you! Meet me in the computer room at 12:30.

<EOT>

For example, to hold a conversation with user june, enter:

write june

Press the Enter key and type:

Meet me in the computer room at 12:30.

o

This starts the conversation. The o at the beginning of the next line means the message is
over. It tells June that you are waiting for a response. Do not press Ctrl–D if you wish to
continue.

Now June replies by typing:

write karen

She presses the Enter key and types:

I’m running tests at 12:30. Can we meet at 3?

o

And you might respond:

OK––the computer room at 3.

oo

12-8 AIX System User’s Guide – OS & Devices

The oo means ”over and out,” telling June that you have nothing more to say. If June is also
finished oo, then you both press Ctrl–D to end the conversation.

For example, to write user june a prepared message, enter:

write june < message.text

This writes the contents of the message.text file to june’s workstation.

For example, to write to the person using the workstation console, enter:

write console

Press the Enter key and type:

The printer in building 998 has jammed.

Please send help.

Then press the Ctrl–D key sequence.

This writes the message to the person logged in at the workstation /dev/console.

You can use the write command to converse with users on other hosts. You can identify a
user on a remote host by using the –nHostname flag or the User@Host parameter. In order
to write to a user on a remote host, the writesrv daemon must be running on both the
current host and the remote host.

For example, to send a message to user spuds at remote host partya, enter:

write –n partya spuds

Press the Enter key and type:

Your new tape has just arrived,

come see me to pick it up.

Thanks!

Then press the Ctrl–D key sequence.

OR

write spuds@partya

Press the Enter key and type:

Your new tape has just arrived,

come see me to pick it up.

Thanks!

Then press the Ctrl–D key sequence.

See the write command in the AIX Commands Reference for the exact syntax.

12-9 Miscellaneous Tools and Utilities

Command Summary for Miscellaneous Tools and Utilities

apropos Locates commands by keyword lookup.

cal Displays a calendar.

calendar Writes reminder messages to standard output.

factor Factors a number.

help Provides help information for new users.

learn Provides computer-aided instruction courses and practice for using
files, editors, macros, and other features.

leave Provides reminder messages.

units Converts units in one measure to equivalent units in another measure.

write Sends messages to other users on the system.

12-10 AIX System User’s Guide – OS & Devices

13-1 Documentation Search Service

Chapter 13. Documentation Library Service

Using the AIX Online Documentation
The AIX online documentation is delivered on one of two CD-ROMs:
 – 86 A2 72JX: Hypertext Library. Basic Subset for AIX 4.3
 – 86 X2 73JX: Hypertext Library. Full Set for AIX 4.3

Instructions for installing the Hypertext Library are contained in the CD-ROM booklet and
must be scrupulously followed.

The Hypertext Library comes with a set of tools called Hypertext Library Utilities. This set of
tools contains a Search function allowing to search for information through the entire
Library and a Multi-Print capability allowing to print several documents with a single click in
the Search Results window.

The Hypertext Library and the Hypertext Library Utilities have both a graphical and
character interface.

The contents of the Hypertext Library and the Hypertext Library Utilities are described in the
Hypertext Library home page.

More information can be found in the leaflet: ”About the Documentation CD-ROM”.

The following information in this chapter does not concern the Hypertext Library. In
particular, do not use the Search Service or the Library Service described herafter with the
Hypertext Library.

13-2 AIX System User’s Guide – OS & Devices

A-1Accessing Information with InfoExplorer

Appendix A. Accessing Information with InfoExplorer

This section describes the different types of documentation available in the Hypertext
Information Base Library and how you can use InfoExplorer to access information.

Using the InfoExplorer ASCII Interface
The InfoExplorer program ASCII interface provides a tutorial for first-time users and
contains procedures for performing other tasks as described in the following overview.

The InfoExplorer program is the tool you use to learn about the AIX operating system and
other software. As an ASCII interface user, you have access to many volumes of software
and hardware documentation. Since InfoExplorer information is hypertext, you can read this
information without turning a single page. Instead, you view the information on your display
and select links to move from one ”article” to another. This way, you can choose your own
path through the hypertext documentation.

Using InfoExplorer Screens
In the InfoExplorer ASCII interface, different screens contain different types of information.
For example, you use some screens specifically for moving around. These screens, which
include the Topic & Task Index and the Books, are navigation screens. The InfoExplorer
program displays one navigation screen at a time. The contents of this screen are replaced
each time you select a function that displays its information in this location.

Another type of screen contains the text you want to read. These are called reading
screens. Reading screens provide conceptual, procedural, or reference information. They
display articles that teach you about a topic, explain how to do something, or provide you
with information about commands, calls, subroutines, files, or file formats.

From navigation and reading screens you can open other screens to perform specific tasks.
The InfoExplorer program provides the following task-oriented screens:

Simple Search Handles searches on a title or information base for a single set of
words.

Compound Search Handles searches on compound search strings within one or
more selected information bases.

Search Matches List Displays where search matches were found, how many matches
were found, and the number of articles in which they were found.

Glossary Displays a glossary term or phrase selected from a reading
screen.

Defaults Editor Allows you to set default values for various InfoExplorer functions.

Preferences Editor Provides a way to customize InfoExplorer program options.

List of Links Allows you to select a previous link and access the information,
delete a previous link from the list, clear all of the lists, or rename
a previous link.

List of Files Allows you to load a previously saved file, save a list to a file, or
delete a file.

When you start a session, the InfoExplorer program displays first the navigation screen and
then the reading screen. The reading screen contains the ”Welcome to the InfoExplorer
ASCII Interface” article, which shows you how to perform basic operations and explains how
to access InfoExplorer Help, copyrights, and trademarks. Return to the navigation screen by
typing Ctrl–w.

A-2 AIX System User’s Guide – OS & Devices

Using Menus
The InfoExplorer ASCII interface displays a menu bar at the top of each screen. You select
options in the menus to access specific InfoExplorer features.

Getting Help
To get more information on how to use the InfoExplorer program, you can use InfoExplorer
Help. By using Help, you can find out more information on using the current screen. Or you
can move to a list of articles that explain how the InfoExplorer program works.

To get Help, press the Ctrl–O key sequence, use the arrow keys to highlight the word Help,
and press the Enter key. You can then choose between the following options:

On Screen Displays specific help information for the screen you are viewing,
including links to articles that describe the screen, as well as functions
available from that screen and a list of menus available in the screen,
with links to descriptions of the menu options.

You can select links to display information that you want to read. To
return to the help information screen after selecting a link, use the Path
or .History menu option on the menu bar.

List of Helps Displays the List of Helps, a list of hypertext links to articles that
describe key aspects of the InfoExplorer program and documentation,
along with links to the helps for each individual screen.

A-3Accessing Information with InfoExplorer

Getting Started (InfoExplorer ASCII)
The InfoExplorer program is a powerful text retrieval tool with several information navigation
aids to help you find and manage information. Learning just a few of these aids, however, is
all you need to begin using it. Use the basic procedures that you learn in this section to
explore in the InfoExplorer information base where you will find useful information.

Follow the tutorial step–by–step using the Page Up and Page Down keys on the keyboard,
or link to individual procedures.

In this article you learn about:

• Starting the InfoExplorer ASCII program, on page A-3

• Recognizing Screen Types (InfoExplorer ASCII), on page A-3

• Selecting a Hypertext Link (InfoExplorer ASCII), on page A-4

• Scrolling Information (InfoExplorer ASCII), on page A-5

• Selecting a Menu Option (InfoExplorer ASCII), on page A-5

• Returning to a Previous Location (InfoExplorer ASCII), on page A-6

• Searching for Information (InfoExplorer ASCII), on page A-6

• Printing Information (InfoExplorer ASCII), on page A-8

• Accessing Help (InfoExplorer ASCII), on page A-9

• Using Special Keys and Key Sequences (InfoExplorer ASCII), on page A-10

• Starting an Alternate InfoExplorer Library (InfoExplorer ASCII), on page A-12

• Stopping the InfoExplorer ASCII Program, on page A-13

Starting the InfoExplorer ASCII Program
To start the InfoExplorer program, type info at an operating system command prompt and
press the Enter key.

Note: If you want to start InfoExplorer ASCII within an AIX window, type info –a at an
operating system prompt, and press the Enter key.

Either the ”Welcome to the InfoExplorer ASCII Interface” article or the default navigation
article displays in the reading screen. The welcome screen explains how to do basic screen
operations and how to access InfoExplorer Help, copyrights, and trademarks.

Recognizing Screen Types (InfoExplorer ASCII)
Two primary screen types exist in the InfoExplorer program: the navigation screen, and the
reading screen.

Navigation Screen
The navigation screen is the starting point for finding documentation about the operating
system and other programs available on your workstation and contains information
designed to assist you in finding the desired documentation. Information is organized by
topic and task, by book, or alphabetically by commands or programming reference item.
The primary navigation routes display in the navigation screen:

Topic & Task Index Displays information by task. It is the default navigation
article.

Commands Displays an alphabetical list of available commands.

A-4 AIX System User’s Guide – OS & Devices

Books Displays articles in book order.

Programming Reference Displays lists of programming functions in alphabetical
order by functional categories.

Note: The navigation information in this section applies to the InfoExplorer program. The
navigation information may or may not apply to other libraries.

The first line of the screen contains the menu bar, and the second line displays a
reverse–video title bar. The title of the screen displays at the right end of the title bar. This
title bar also separates the menu options from the article text.

While you are viewing the InfoExplorer program through the ASCII interface, only one
navigation screen is available at a time. Each time you select a link to another navigation
article, the contents of the article you select replace the contents of the original article. For
example, if you are viewing the Topic &Task Index and decide to view Commands, a list of
commands replaces the Topic & Task index in the navigation screen.

Reading Screen
The reading screen contains procedural, conceptual, and reference information. Procedural
information explains how to accomplish a task, conceptual information discusses various
topics, and reference information provides you with information about commands,
subroutines, and so on.

As in the navigation screen, the first line of the screen displays the menu options, and the
second line displays a reverse–video title bar. ”Info Document” displays at the right end of
the title bar. This title bar also separates the menu options from the article text.

While you are viewing the InfoExplorer program through the ASCII interface, only one
reading screen is available at a time. Each time you select a link to another article, the
contents of the article you select replace the contents of the original article. For example, if
you are viewing the ”Starting the InfoExplorer Program (ASCII Interface)” article and decide
to view the info command article, the info command article replaces the ”Starting the
InfoExplorer Program (ASCII Interface)” article in the reading screen.

To Move between the Screens
To display the navigation screen from the reading screen (or to go back to a current reading
screen from the navigation screen), press and hold the Control key (Ctrl) and press the w
key (Ctrl–w). The Ctrl–w key sequence toggles between the navigation screen and the
reading screen. You can also move between the screens using menu options available on
the menu bar.

Before you continue, toggle back and forth a few times between the navigation and reading
screens. Note the differences between them.

Some additional screen types are search, glossary, file, and utility. To find out more about
the various screen types, see the online InfoExplorer article Accessing Help on a Specific
Screen.

Selecting a Hypertext Link (InfoExplorer ASCII)
Suppose you need information about how to print a file on a line printer. You could start the
search with a primary navigation route such as the List of Tasks. From the List of Tasks, you
can follow hypertext links until you reach the screen containing the information you want.

A hypertext link is a connection between one piece of information and another. These links
display as underlined text. When you move to a link, the link changes to reverse video. To
display the target or connected piece of information, press the Enter key.

The Welcome screen displays five links. They appear as a list of five underlined items.

To move to the next hypertext link, press either the Tab key or the Ctrl–f key sequence. If
the next link is not currently visible on the screen, the screen is updated to show the link. To
move back to the previous link, press the Ctrl–b key sequence.

A-5Accessing Information with InfoExplorer

To select a hypertext link, follow these steps:

1. If the text cursor is not in the text area of the screen, press the Ctrl–o key sequence.

2. Move to the next hypertext link by pressing the Tab key or the Ctrl–f key sequence.

3. Move to the previous link by pressing the Ctrl–b key sequence.

4. To select the link, press the Enter key. The target text appears on the screen.

Practice moving the cursor from one link to another with the Ctrl–f and Ctrl–b key
sequences. Before you continue with the next section, try selecting one of the links in the
Welcome screen. Remember that you can return to the primary navigation screen by
pressing the Ctrl–w key sequence.

Note: To avoid losing this screen, do not select any links in this article.

You cannot display artwork on an ASCII terminal. When a link to a piece of artwork is
selected, a pop–up panel displays with a message that the artwork cannot be displayed.
The message prompts you to press a key to continue. For example, command articles
contain syntax diagrams that can only be viewed on a graphics display. However, you can
view the brackets–and–braces version of the syntax on an ASCII terminal.

Scrolling Information (InfoExplorer ASCII)
You can move forward and backward through text displayed in either the navigation screen
or in the reading screen by using keys and key sequences that have been defined for this
purpose.

• To move to the previous screen, use either the Page Up key or the Ctrl–P key sequence.

• To move to the next screen, use either the Page Down key or the Ctrl–N key sequence.

• To move the text cursor up one line, press the Up Arrow key.

• To move the text cursor down one line, press the Down Arrow key.

Before you continue, try moving up and down through the text on the terminal screen.

Selecting a Menu Option (InfoExplorer ASCII)
Each InfoExplorer screen contains a menu bar that is located across the top of the screen.
The menu bars contain many of the menus that you need to use InfoExplorer features. For
example, the Display menu allows you to choose the navigation document you want to
display in the navigation screen and the Help menu provides you with help on using the
InfoExplorer program.

To select a menu option, do the following:

1. Activate the menu bar by pressing the Ctrl–O key sequence.

2. Use the Left and Right Arrow keys to highlight the title of the menu you want to display
and press Enter, or type the underlined character in the menu title. The menu is
displayed as a pull–down panel with several options.

3. Use the Up and Down Arrow keys to highlight a menu option and press Enter, or type the
underlined character in the menu option. The option you select is invoked or another
menu is displayed in a pop–up panel. The menu options are displayed in the menu bar
of this menu.

After you display a menu, you may want to remove it without selecting an option. To do this,
press the Ctrl–O key sequence. The cursor returns to the screen.

To select an option in a pop–up panel, do the following:

1. Activate the menu bar as you normally would, using the Ctrl–O key sequence.

2. Highlight an option by either typing the underlined character in the option that you want,
or by using the Left and Right Arrow keys.

A-6 AIX System User’s Guide – OS & Devices

3. Select the option by pressing the Enter key. The pop–up panel closes and the
appropriate action is taken.

After you display a pop–up panel, you may want to remove it without selecting an option. To
do this, press the Ctrl–O key sequence and select Quit in the menu bar.

Before you continue with the next section, practice using menus. Try displaying the Path
menu and selecting the Show List option. A pop–up panel displays the Path list. To close
the pop–up panel, select Quit in the menu bar.

Note: To avoid losing this article, do not select a location from the Path list.

Returning to a Previous Location (InfoExplorer ASCII)
During the InfoExplorer session, the InfoExplorer program keeps two different records of
where you have previously been: the History List and the Path List. These lists enable you
to return to previous locations in the information base.

The History List records every location that you have been in the information base. To view
the History List, display the .History menu and select the List All option. To learn how to use
the History List, go to the Help menu and select the List of Helps from the pull–down menu.
Finding Information in InfoExplorer in the List of Helps provides information about the
History function.

The Path List keeps track of your navigation route starting with a primary navigation article
(Topic & Task Index, Books, Commands, or Programming Reference). Every time you return
to a primary navigation screen, your previous path list is overwritten.

The Path menu contains three options: Show List, Previous, and Next. Use the Show List
option to display the Path List. Use the Previous and Next options to jump to the previous
or next location without displaying the Path List.

To return to a previous location in the InfoExplorer program, do the following:

1. Activate the menu bar by pressing the Ctrl–O key sequence.

2. Type P to display the Path menu.

3. Type S to display the Path List. A pop–up box displays a list of locations in the path. If
you are in a primary navigation screen, you receive a message stating that the Path List
is empty.

4. Highlight the location that you want to return by using the Up and Down Arrow keys.

5. Select the Go to option in the menu bar. The text displays in the reading screen.

Before you continue, try following the path up and down using the Next and Previous
options. Remember, if you follow the path back to a primary navigation article (such as the
Task Index), your path list is wiped out and you are unable to follow a path down until you
start a new path. If you want to return to a location that is not in the current path, use the
History function.

Note: To avoid losing this screen, do not use the Path function from this screen.

Searching for Information (InfoExplorer ASCII)
The early part of this chapter described how to find information using primary navigation
routes. But what if you do not know what the task or command is or in which book the
information might be? You can search on virtually every word in the InfoExplorer information
base. Using the InfoExplorer search facility, you can look for information by word or phrase.

Two types of searches are available in the InfoExplorer program: the simple search and the
compound search. The simple search allows you to search on a word or string of words (in
exact order) in text, article titles, or both. (In the ASCII version of InfoExplorer, the Article
Title selection on the Search menu gives you a simple search of article titles.) The
compound search allows you to search on a word, set of words, or several sets of words.
You can further specify the search with the following options:

A-7Accessing Information with InfoExplorer

• AND, OR, and BUT NOT connective options

• Proximity options

• Search categories

You can specify the information bases to be searched for both simple and compound
searches. There are two ways to specify an information base selection:

• You can specify a temporary information base selection from the Compound Search
window. This selection applies to both simple and compound searches, and stays in
effect for the current session of InfoExplorer, or until you change it during the session.

• You can specify an information base selection as a default by choosing Defaults from the
info menu, and selecting the DBselect option. An information base selection made from
the Defaults window applies to both simple and compound searches, and stays in effect
for future sessions of Info. (Temporary information base selections made from the
Compound Search window can override the default selection during an InfoExplorer
session, but the default selection returns when you restart InfoExplorer.)

As an example, the following steps take you through a simple search for the qprt command,
and then further specify the search with a database selection from the Compound Search
menu.

Note: To avoid losing this article, do not attempt to perform a search from this screen. If
your system is set up to print, you can print a copy of this article using the info menu
by selecting the Print Article option. Use the printed copy to follow the procedure.

To perform a simple search for the qprt command, follow these steps:

1. Display the Search menu in the menu bar.

2. Select the Simple option in the Search menu. The Simple Search pop–up panel
displays.

3. In the Find field, type qprt command and press the Enter key. The Search Match List
pop–up panel displays the following information:

– Information bases where search matches were found

– The number of matches that were found

– The number of articles in which they were found

4. Using the Up and Down Arrow keys, highlight AIX User Guides, System Management
Guides, and Commands Reference from the list of information bases and press the
Enter key. The Search: List of Titles pop–up panel displays with the list of article titles
that contain the search string (qprt).

Note: If only one article contains the search string, that article displays in a reading
screen (no pop–up panels are displayed).

5. Select the second title on the list qprt Command, and press the Enter key. The article
displays in the reading screen. Notice that the phrase ”qprt Command” is highlighted to
show where the word is discussed in the article.

6. To display the next match, go to the menu bar and select the Search menu.

7. Select the Next Match menu option and press the Enter key. The next match for ”qprt
command” displays. This function lets you move up and down through the information
base to other places in the article or to other articles where the phrase ”qprt command” is
discussed.

8. To display the previous match, select the Previous Match option in the Search menu,
and press the Enter key. The previous match for ”qprt Command” displays.

9. To display the list of titles again, select the Show Hit List option from the Search menu,
and press the Enter key. The list of titles displays again.

A-8 AIX System User’s Guide – OS & Devices

If there are many matches, it can be difficult to find the right information. You may have
to read through several articles to find the information you want. Or, you can use a
compound search to narrow down the search. To learn about a compound search, use
the InfoExplorer List of Helps, which allows you to view step–by–step instructions to
commonly used InfoExplorer procedures. From the List of Helps, select Performing a
Compound Search.

Another way to narrow the scope of the search even further is to go to the compound
search menu and select the database that is most likely to contain the information that you
want. There are several databases to choose from depending on your system. For example,
if you want to limit your search to information about using and managing, choose the Using,
Managing, and Commands database.

To specify a database from the compound search pop–up panel, follow these steps:

1. Press the Ctrl–O key sequence to go to the menu bar.

2. Select the DBselect option. The Databases List displays.

3. A > (greater than) sign displayed to the left of an information base in this list indicates
that the information base is included in the current compound search.

4. Mark the databases that you want to exclude from the search by doing the following:

a. Use the Up and Down Arrow keys to select a database currently included in the
search that you do not want to search. The database is highlighted.

b. Press the Ctrl–O key sequence to go to the menu bar in the Databases List pop–up
panel.

c. Select the Bypass option. The > is removed from the margin.

Repeat this procedure for each database that you do not want to search.

5. Mark the databases that you want to include from the search by doing the following:

a. Use the Up and Down Arrow keys to select a database currently not included in the
search. The database is highlighted.

b. Press the Ctrl–O key sequence to go to the menu bar in the Databases List pop–up
panel.

c. Select the Select option. The > is displayed to the left of the selected database.

Repeat this procedure for each database that you want to search.

6. When you have finished selecting databases, press the Ctrl–O key sequence to go to the
menu bar and select the Quit option. The Compound Search pop–up panel is displayed
again (with all information bases displayed in the Search Field) and you can
continue with your search.

When you specify a database selection from the Compound Search menu, the selection is
retained until you change it again, or until you quit the InfoExplorer session. This database
selection will apply to both simple and compound searches. You can save a database
selection for future sessions of InfoExplorer from the Defaults window under the info menu.

Printing Information (InfoExplorer ASCII)
You can print the following information from the InfoExplorer ASCII interface:

• An article from a reading screen

• An article from a navigation screen

• References from a navigation screen

• Articles from a Search Match list

• Public and private notes

Note: You must have one or more printers configured for your system.

A-9Accessing Information with InfoExplorer

To Print an Article from a Reading Screen
1. Press the Ctrl–O key sequence to activate the menu bar. The info menu option is the

default and is highlighted.

2. Press the Enter key to display the info menu options.

3. Press the P key to select the Print Article option. The article currently displayed in the
reading screen is printed.

To Print an Article from a Navigation Screen
1. Press the Ctrl–O key sequence to activate the menu bar. The info menu option is the

default and is highlighted.

2. Press the Enter key to display the info menu options. The Print Article option is the
default and is highlighted.

3. Press the Enter key. The current navigation article is printed.

To Print References from a Navigation Screen
1. Press the Ctrl–O key sequence to activate the menu bar. The info menu option is the

default and is highlighted.

2. Press the Enter key to display the info menu options.

3. Press the Down Arrow key until the Print References option is highlighted.

4. Press the Enter key to print all referenced articles in the navigation screen.

To Print Articles from a Search Match List
1. Press the Ctrl–O key sequence to activate the menu bar. The info option is the default

and is highlighted.

2. Press the S key to select the Search menu option.

3. Press the Down Arrow key until the Show Hit List option is highlighted, then press the
Enter key. The Search: List of Titles pop–up panel is displayed.

4. Press the Ctrl–O key sequence to activate the menu bar in the Search: List of Titles
pop–up panel.

5. Press the P key to select the Print option. All articles referred to in the Search: List of
Titles pop–up panel are printed.

To Print Public and Private Notes
1. Press the Ctrl–O key sequence to activate the menu bar. The info option is the default

and is highlighted.

2. Press the N key to select the Notes option. The List All option is the default and is
highlighted.

3. Press the Enter key to display the Notes List pop–up panel.

4. Press the Ctrl–O key sequence to activate the menu bar in the Notes List pop–up panel.

5. Press the P key to select the Print option. All notes in the Notes List pop–up panel are
printed.

Accessing Help (InfoExplorer ASCII)
From an InfoExplorer screen, you can view help information about the functions and options
available on the InfoExplorer screen you are viewing or you can search through a list of
topics for which help information is provided.

A-10 AIX System User’s Guide – OS & Devices

To Access Help on a Specific Screen
The InfoExplorer program uses many different kinds of screens in addition to the basic
navigation and reading screens, such as:

• Glossary screens

• List of links screens

• File screens

• Simple and compound search screens

Each screen type serves a different purpose and provides a different function. The Help
menu in each screen contains an On Screen option, which displays an article describing the
function that is available in the current screen.

To display Help on a specific screen, do the following:

1. Activate the menu bar by pressing the Ctrl–O key sequence.

2. Use the arrow keys to highlight Help and press the Enter key to display the Help menu.

3. Use the arrow keys to select the On Screen option and press the Enter key. A Help
article replaces the current reading article.

Before you continue with the next section, try looking at the Help articles available for the
screens currently open. Use the Path function to return to this screen.

To Access the List of Helps
The Help menu provides two help options, the List of Helps and On Screen. On Screen
allows you to find out about the current screen. For more information about this option, see
”Accessing Help on a Specific Screen.” The List of Helps option in the Help menu displays
a list of InfoExplorer help topics. To use the list of helps, do the following:

1. Activate the menu bar by pressing the Ctrl–O key sequence.

2. Use the arrow keys to highlight the Help menu and press the Enter key. The Help menu
displays.

3. Select the List of Helps option to display the list of helps.

4. Select a help topic and press the Enter key.

The list of helps contains step–by–step procedures for a wide range of tasks. Before you go
on to the next section, select an option or two in the list of helps. See what is available, and
then try using the helps to learn and practice some new skills.

Using Special Keys and Key Sequences (InfoExplorer ASCII)
In the InfoExplorer ASCII Interface, you use special keys and key sequences to move within
a screen, select items from a menu, access additional screens, and start processes.
Different keys and key sequences are active depending on whether you are working from a
text area, or a menu bar.

Keys and Key Sequences Used in Text Areas
You can use the following keys and key sequences in text areas:

Keys Action

Ctrl–W Moves between the navigation screen and the reading
screen. If the navigation screen is displayed, you can press
the Ctrl–W key sequence to display the reading screen. If
the reading screen is displayed, you can press the Ctrl–W
key sequence to display the navigation screen.

Ctrl–F or Tab Moves to the next hypertext link.

Ctrl–B Moves to the previous hypertext link.

A-11Accessing Information with InfoExplorer

Keys Action

Enter or Return Activates the operation. For example, if you have moved to
a hypertext link and press the Enter key, the system follows
the link and displays the target information.

Ctrl–L Refreshes the screen.

Ctrl–N or Page Down Scrolls vertically to the next screen.

Ctrl–P or Page Up Scrolls vertically to the previous screen.

Left Arrow Moves the text cursor one character to the left. If the text
can be scrolled horizontally and the text cursor is at the left
edge of the screen, the text scrolls one character.

Right Arrow Moves the text cursor one character to the right. If the text
can be scrolled horizontally and the text cursor is at the
right edge of the screen, the text scrolls one character.

Note: The Left and Right Arrow keys do not function for
the InfoExplorer program on WYSE terminals.

Up Arrow Moves the text cursor up one line. If the text cursor is on the
top line of the screen, the text scrolls vertically, one line at a
time.

Down Arrow Moves the text cursor down one line. If the text cursor is on
the last line of the screen, the text scrolls vertically, one line
at a time.

< Moves the text cursor 20 characters to the left. If the text
can be scrolled horizontally, the text scrolls 20 characters to
the left.

> Moves the text cursor 20 characters to the right. If the text
can be scrolled horizontally, the text scrolls 20 characters to
the right.

Keys and Key Sequences Used in Menu Bars
The following keys and key sequences help you work with items in the menu bar:

Keys Action

Ctrl–O Makes the menu bar active or inactive. If your text cursor is
located in the text area of the screen, you can press the
Ctrl–O key sequence to make the menu bar active. If the
menu bar is already active, you can press the Ctrl–O key
sequence to make it inactive, which moves the text cursor
to the text area.

Esc–Esc or Ctrl–O Closes a menu bar pull–down menu and places the cursor
in the text area.

Tab Moves to the next menu bar option in the menu bar. If a
pull–down menu is not displayed and you press the Right
Arrow key, the next menu bar option is displayed in reverse
video.

In pop–up screen menu bars, moves the cursor from the
menu bar into the text area if no menu bar pull–down
menus are currently selected.

A-12 AIX System User’s Guide – OS & Devices

Keys Action

Left Arrow Moves to the previous menu bar option. If a pull–down
menu is not displayed and you press the Left Arrow key, the
previous menu bar option is displayed in reverse video.

If a pull–down menu is displayed and you press the Left
Arrow key, the previous menu bar option is selected and its
pull–down menu is displayed.

Right Arrow Moves to the next menu bar option. If a pull–down menu is
not displayed and you press the Right Arrow key, the next
menu bar option is displayed in reverse video.

If a pull–down menu is displayed and you press the Right
Arrow key, the next menu bar option is selected and its
pull–down menu is displayed.

Up Arrow Displays the pull–down menu for the selected menu bar
option or moves the selection to the previous option in a
pull–down menu.

Down Arrow Displays the pull–down menu for the selected menu bar
option or moves the selection to the next option in a
pull–down menu.

Enter or Return Activates the selected operation. For example, if a menu
bar option is displayed in reverse video and you press the
Enter key, the pull–down menu is displayed. If a pull–down
menu is already displayed and you press the Enter key, the
appropriate action is taken on the item shown in reverse
video.

In some cases, the menu bar within a pop–up screen contains options that start or stop a
process. The following keys can also be used to move within a pop–up screen or to cycle
through options in the screen:

Keys Action

Tab Moves to the next field.

Left Arrow Moves to the previous option in an option ring.

Right Arrow Moves to the next option in an option ring.

Spacebar Cycles through the options in an option ring.

Up Arrow Selects the previous item in a list.

Down Arrow Selects the next item in a list.

Enter or Return Activates the selected operation or ends text entry and
advances to the next field.

Starting an Alternate InfoExplorer Library (InfoExplorer ASCII)
You can request the InfoExplorer program to load an alternate database library by using the
–l flag with the info command. For example, if you wish to start the InfoExplorer Library
containing C++, FORTRAN and Ada documentation, start that library with the following
command:

info –l compiler

A-13Accessing Information with InfoExplorer

Stopping the InfoExplorer ASCII Program
To leave the InfoExplorer program from either the navigation screen or the reading screen,
do the following:

1. Activate the menu bar by pressing the Ctrl–O key sequence.

2. Use the arrow keys to highlight the Exit menu and press the Enter key. The Exit menu
displays.

3. Select the Confirm option by pressing Enter. The operating system command prompt
displays and the InfoExplorer program stops.

A-14 AIX System User’s Guide – OS & Devices

Customizing the InfoExplorer ASCII Program
You can customize many features of the InfoExplorer program to suit your style and needs.
To do this, you set InfoExplorer defaults and preferences. For example, you can determine
which information bases to use and which printer to use as the default. You can also specify
your preferences for such things as the number of history events to track and the type of
print output.

The primary differences between defaults and preferences are that most defaults are
initiated by the program at startup and that different defaults can be specified for different
libraries, but preferences apply to all libraries. When you change some defaults, such as the
navigation article, you must exit and then restart. Defaults like print command take effect
when they are saved. When you set preferences, all changes take place immediately.

The following sections describe customizing the InfoExplorer ASCII Interface:

• Changing Defaults in the InfoExplorer ASCII Interface

• Changing Preferences

Changing Defaults in the InfoExplorer ASCII Interface
With the InfoExplorer program, you can set many defaults. These are the settings that the
InfoExplorer program uses at startup. You can select Defaults under Options in the
InfoExplorer pull–down menu to set defaults for:

• Navigation article

• Bookmark, history, and note files

• Note Template file

• Search databases

• Printers

Designating a Default Navigation Article
By system default, the InfoExplorer program initially displays the Topic & Task Index as the
primary navigation article. You can change this default to the navigation article that best
suits your purposes. Then, at startup, the InfoExplorer program automatically displays the
new default navigation article.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer
online help.

Designating Default Files
You may want a trainee to follow a specific path while using the InfoExplorer program, or
you may want to retrace your path from a previous session. To handle this, you can
designate a specific history file as the default history file. Then, when you use the .History
option, the default history file leads you or a trainee down the designated path.

You can also designate a bookmarks file or notes file as the default bookmarks or notes file
and then follow those specific paths in subsequent sessions.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer
online help.

Designating a Default Note Template File
When you create a note in the hypertext documentation, the editor screen is initially blank.
You can type the note into the blank screen. To use a specific form when writing notes, you
can specify a note template. If you have built and saved many note templates, you can
designate one of them as the default. Then, when you use the Note option, the InfoExplorer
program displays the default note template.

A-15Accessing Information with InfoExplorer

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer
online help.

Changing the Default Search Database
By default, when you search with the InfoExplorer program, the search includes the
information bases loaded with the program. However, it is not always necessary to include
every information base in your search. To make your searches more efficient, you can
specify which information bases to search during current and future sessions. You can also
easily reset the information base selection to its original form (system default) so the
information bases loaded with the program are again included in the search.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer
online help.

Designating Default Printers
Some printers are better suited for either simple or pretty print. In the InfoExplorer program,
you can designate a default printer for the different types of print: simple or pretty. The
Pretty Print option may use the troff program to convert a document to output for a
phototypesetter. When you issue a print command for a screen, the printer you have
designated automatically receives that particular command. If you don’t specify a print
queue, the default is to use the first queue specified in your /etc/qconfig file.

For example, if you have designated printer daves3812 as the printer and if your
preference has been set for pretty print, when you choose the Print option, the print job is
automatically sent to that printer.

Note: The troff document–formatting program must be installed on your system before
you can use the pretty print option.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer
online help.

Changing Preferences in the InfoExplorer ASCII Interface
With the InfoExplorer program, you can set many preferences. You use the Preferences
option in the info pull–down menu to set preferences for:

• History List size

• Notes editor

• Print output

Changing the History List Size
A history list can range in size from 0 (zero) to 1000 events. The system default for the
history list size is 100 events. You can change the default size to fit your particular situation.
You can then apply the changes to the current session only or save them for current and
future sessions.

For procedural information, see Setting Preferences (InfoExplorer ASCII) in the InfoExplorer
online help.

Choosing the Notes Editor
There are several notes editors available in the InfoExplorer ASCII interface, including INed
and vi. The system default notes editor is vi. If you prefer to use INed or another editor to
write your notes, you can change the default. You can then apply the changes to the current
session only or save them for current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer ASCII) in the InfoExplorer
online help.

A-16 AIX System User’s Guide – OS & Devices

Changing the Print Output
There are two types of print output available in the InfoExplorer ASCII Interface: simple and
pretty. The system default for print output is simple print, which does not support highlighting
or font differences. If you prefer to use pretty print, you can change the default.

Note: The troff document–formatting program must be installed on your system before
you can use the pretty print feature. The troff program converts a document to
output for a phototypesetter.

You can then apply the changes to the current session only or to current and future
sessions.

For procedural information, see Setting Preferences (InfoExplorer ASCII) in the InfoExplorer
online help.

A-17Accessing Information with InfoExplorer

X Resources Available for the InfoExplorer Program
You can customize window color, position, and size in the InfoExplorer program by setting X
resources in the .Xdefaults file. You can do this for the following types of windows:

Window Type Resource Name

Bookmark List blistTopLevelShell

Citations citTopLevelShell

Compound Search compoundTopLevelShell

Database Selection dbSelectionTopLevelShell

Defaults Editor defTopLevelShell

Document (Reading) docTopLevelShell

File (file link) fileTopLevelShell

File Selection fileSelTopLevelShell

Footnote footTopLevelShell

Glossary glossaryTopLevelShell

Graphic graphicTopLevelShell

History List hlistTopLevelShell

Introduction introTopLevelShell

Library Definition libinstTopLevelShell

Library Selection libSelTopLevelShell

List of Titles tlistTopLevelShell

Message messageTopLevelShell

Match List mlSelectionTopLevelShell

Navigation navTopLevelShell

Note Editor neditTopLevelShell

Note List nlistTopLevelShell

Outline outlineTopLevelShell

Path List plistTopLevelShell

Preferences prefTopLevelShell

References refTopLevelShell

Simple Search searchTopLevelShell

The highest–level resource name in InfoExplorer is Info–gr. For example, to change the
window width for the navigation window, add the following resource name to your .xdefaults
file:

Info_gr.navTopLevelShell.width: 800

To display ISOfonts, add the following resource name to your .xdefaults file:

Info_gr.fontfilestr: isofonts

A-18 AIX System User’s Guide – OS & Devices

Index X-1

Index

Symbols
. (dot) directories, 5-7
.. (dot,dot) directories, 5-7
.env file, 10-5
.mwmrc file, 10-8
.profile file, 10-4, 10-5
.Xdefaults file, 10-7
.xinitrc file, 10-6
$HOME directory, 5-7
/dev/rfd0 device, 8-3
/dev/rmt0 device, tape device, using, 8-3
/etc/environment file, 10-4
/etc/profile file, 10-3
~ (home) directory, 5-7

Numbers
410ap148416, 11-85

A
access control

displaying information, 9-12
editing information, 9-12
extended permissions, 9-9
lists, 9-9, 9-10
setting information, 9-12

access modes
base permissions, 9-9
controlling, 9-4
default

numeric representation for, 9-6
symbolic representation for, 9-5

directories, 9-4
files, 9-4
group information, displaying, 9-6
representation of

numeric, 9-6
symbolic, 9-5

user classes, 9-4
acledit command, 9-12
aclget command, 9-12
aclput command, 9-12
aixterm command, 2-8
alias command, 3-11
alias substitution, C shell, 11-106
aliasing, command, Korn or POSIX shell, 11-15
append redirection operator (>>), 4-3
apropos command, 12-1
arguments, 3-4
arithmetic

converting units, 12-5
factoring numbers, 12-4

arithmetic evaluation, Korn or POSIX shell, 11-24
artwork, display preference, 10-15
ASCII files, printing on PostScript printer, 7-16
ASCII interface

customizing, overview, A-14
defaults, overview, A-14
overview, A-1

ASCII to PostScript
automating conversion, 7-18
converting files, 7-18

at command, 3-19, 3-20
atq command, 3-20
auto–hold feature, Window interface, 10-15

B
backend, printer, 7-3
background processes, definition, 3-14
backup

command, 8-10
compressing files before, 8-7
guidelines, 8-2
how to, 8-10
purpose of, 8-1
tapes, advantages of, 8-3
using smit command, 8-11

banner command, 4-8
base permissions, 9-9
bidirectional languages, 2-8
Bourne shell

command substitution, 11-80
commands

built–in, 11-74
list, 11-73
using, 11-71

conditional substitution, 11-86
environment, 11-68
file name substitution, 11-87
pattern matching, 11-87
positional parameters, 11-87
quoting characters, 11-72
redirecting input and output, 11-89
reserved words, 11-73
signal handling, 11-72
special commands, 11-74
starting, 11-68
variables, 11-82

predefined special, 11-85
substitution, 11-81
user–defined, 11-81

bsh command, 11-4, 11-68
built–in commands, 11-37

Bourne shell, 11-74
C shell, 11-92

bytes, counting number of, 6-11

C
C shell

alias substitution, 11-106
command substitution, 11-102
commands

built–in, 11-92
using, 11-92

expressions, 11-100
file name substitution, 11-109
history substitution, 11-103
job control, 11-116

X-2 AIX System User’s Guide – OS & Devices

limitations, 11-91
operators, 11-100
predefined and environmental variables, 11-111
redirecting input and output, 11-114
signal handling, 11-91
starting, 11-90
variable substitution, 11-107

cal command, 12-2
calendar

command, 12-2
displaying, 12-2

capture command, 4-7
cat command, 4-3, 6-10
cd command, 5-6, 5-9
CD–ROM file system (CDRFS), 5-2
CDRFS, 5-2
chfont command, 10-11
chmod command, 9-8
chown command, 9-4
chpq command, 7-18
classes, user, 9-4
clear command, 4-6
clearing your screen, 4-6
colrm command, 6-14
command aliasing, Korn or POSIX shell, 11-15

tilde substitution, 11-16
command history, Korn or POSIX shell, 11-11
command list, nice, 3-17
command substitution

Bourne shell, 11-80
C shell, 11-102
Korn or POSIX shell, 11-23

commands
alias, creating, 3-11
Bourne shell, 11-71
built–in, 11-37

Bourne shell, 11-74
C shell, 11-92

C shell, 11-92
case–sensitive, 3-3
command name, definition, 3-4
entering, 3-3
flags, using, 3-4
function, description, 3-8
history, editing, 3-10
information about, displaying, 3-8
Korn or POSIX shell, 11-32
long commands on multiple lines, entering, 3-4
multiple commands on one line, entering, 3-3
overview, 3-3
parameters, 3-4
repeating, 3-10
saving entered, 3-8
shortcut names, creating, 3-11
spaces between, 3-3
substituting strings, 3-10
syntax, 3-3
syntax diagrams, 3-5
text–formatting, 3-12
usage statements, 3-7

commands list
>, 4-2
>>, 4-3
<<<<, 4-3

|, 4-5
acledit, 9-12
aclget, 9-12
aclput, 9-12
aixterm, 2-8
alias, 3-11
apropos, 12-1
at, 3-19, 3-20
atq, 3-20
backup, 8-10
banner, 4-8
bsh, 11-4, 11-68
cal, 12-2
calendar, 12-2
capture, 4-7
cat, 4-3, 6-10
cd, 5-6, 5-9
chfont, 10-11
chmod, 9-8
chown, 9-4
chpq, 7-18
clear, 4-6
colrm, 6-14
compress, 8-7
cp, 5-9, 6-7
cpio –i, 8-6
cpio –o command, 8-6
csh, 11-4, 11-90
cut, 6-12
del, 6-5, 6-17
df, 5-4
diff, 6-11
dircmp, 5-13
dosdel, 6-19
dosdir, 6-19
dosread, 6-18
doswrite, 6-18
echo, 4-7
env, 2-7
exit, 1-5
export, 10-11
factor, 12-4
fc, 11-11
fdformat, 8-4
file, 6-8
find, 6-8
flcopy, 8-5
format, 8-4
fsck, 8-5
grep, 4-6, 6-10
groups, 9-4
head, 6-12
help, 12-3
history, 3-8
id, 1-7
kill, 3-21
ksh, 11-4, 11-10

regular built–in commands, 11-44, 11-45,
11-46, 11-47, 11-48

special built–in commands, 11-37, 11-38,
11-39, 11-41, 11-42, 11-43

learn, 12-3
leave, 12-4
li, 5-10

Index X-3

ln, 6-16
lock, 9-13
login, 1-4
logname, 1-6
logout, 1-5
ls, 5-11
lscfg, 2-2
lscons, 2-3
lsdisp, 2-4
lsfont, 2-4
lsgroup, 9-6
lskbd, 2-4
lslpp, 2-5
man, 3-8
mkdir, 5-8
more, 6-9
mv, 6-6
mvdir, 5-8
mwm, 10-6
nice, 3-17
nl, 6-14
pack, 8-7
page, 6-9
passwd, 1-9
paste, 6-13
pg, 6-9
pr, 7-14
printenv, 2-8
ps, 3-15
psh, 11-4, 11-10
pwd, 5-9
qcan, web-based system manager command,

7-7
qchk, web–based system manager command,

7-9
qhld, 7-12
qmov, 7-13
qpri, 7-11
qprt, 7-4
r, 3-10
renice, 3-17
restore, 8-12
rm, 6-6, 6-17
rmdir, 5-12
Rsh, 11-4, 11-70
rsh, 11-4
script, 4-8
sh, 11-4
shutdown, 1-5
smit, 3-7, 7-7, 8-11
sort, 6-10
stty, 2-6, 10-12
su, 1-4
tail, 6-12
tapechk, 8-7
tar, 8-14
tcopy, 8-7
tee, 4-6
touch, 1-4
tsh, 11-4
tty, 2-3
uname, 1-7
uncompress, 8-9
units, 12-5

unpack, 8-9
virscan, 9-14
wc, 6-11
whatis, 3-8
whereis, 3-7
who, 1-7
who am i, 1-6
whoami, 1-6
write, 12-7
xlock, 9-13

comparing files, 6-11
compress command, 8-7
compressing files, 8-7
computer–aided instruction, 12-3
concatenating text files, 4-3
conditional substitution, Bourne shell, 11-86
console, displaying name, 2-3
control keys

changing, 10-12
displaying settings, 2-6

converting units of measure, units command, 12-5
coprocess facility, Korn or POSIX shell, 11-29
copying

files from tape or disk, 8-6
files to tape or disk, 8-6
to or from diskettes, 8-5
to or from tape, 8-7

copying screen to file, 4-7
cp command, 5-9, 6-7
cpio –i command, 8-6
cpio –o command, 8-6
csh command, 11-4, 11-90
customizing

InfoExplorer
ASCII interface, A-14
Window interface, 10-13

system environment, 10-11
cut command, 6-12
cutting sections, 6-12

D
daemon process, description, 3-14
defaults

InfoExplorer bookmark file
ASCII interface, A-14
Window interface, 10-13

InfoExplorer history file
ASCII interface, A-14
Window interface, 10-13

InfoExplorer information bases
ASCII interface, A-15
Window interface, 10-14

InfoExplorer navigation article
ASCII interface, A-14
Window interface, 10-13

InfoExplorer note template
ASCII interface, A-14
Window interface, 10-14, A-14

InfoExplorer notes file
ASCII interface, A-14
Window interface, 10-13

InfoExplorer printers
ASCII interface, A-15

X-4 AIX System User’s Guide – OS & Devices

Window interface, 10-14
del command, 6-5, 6-17
deleting

directories, 5-12
files, 6-5

devices, displaying information about, 2-2
df command, 5-4
diff command, 6-11
dircmp command, 5-13
directories, 5-6

abbreviations, 5-7
access modes, 9-4
changing, 5-9
changing ownership, 9-4
changing permissions, 9-8
comparing contents, 5-13
copying, 5-9
creating, 5-8
definition, 5-1
deleting, 5-12
displaying

contents, 5-10
current, 5-9

home, 5-6
linking, 6-15
listing DOS files, 6-19
listing files, 5-10
moving, 5-8
naming conventions, 5-6
organization, 5-6
overview, 5-5
parent, 5-6
path names, 5-6
removing, 5-12
renaming, 5-8
root, definition, 5-1
specifying with abbreviations, 5-7
structure, 5-6
subdirectories, 5-6
types, 5-5
working, 5-6

discarding output, 4-4
diskettes

copying to or from, 8-5
formatting, 8-4
handling, 8-3

displaying
access control information, 9-12
calendar, 12-2
console name, 2-3
displays available, 2-4
file contents, 6-9
file directory

contents, 5-10
current, 5-9

files
first lines, 6-12
last lines, 6-12

fonts available, 2-4
help information, 12-3
login name, 1-6
reminder messages, 12-2
software products, 2-5
system name, 1-7

terminal name, 2-3
text in large letters on screen, 4-8
user group information, 9-6
user ID, 1-7

displays, listing currently available on system, 2-4
DOS files

converting, 6-18
copying, 6-18
deleting, 6-19
listing contents, 6-19

dosdel command, 6-19
dosdir command, 6-19
dosread command, 6-18
doswrite command, 6-18

E
echo command, 4-7
ed editor, 6-5
editing, inline, Korn or POSIX shell, 11-53
editors, 6-5, 11-53
education, computer–aided instruction, 12-3
emacs editor, 11-53
env command, 2-7
environment

displaying current, 2-7
setting, user, 10-4
system, 2-1

environment file, 10-4
environment variables, displaying values, 2-8
exit command, 1-5
exit status, Korn or POSIX shell, 11-31
export command, 10-11
expressions, finding files with matching, 6-8
extended permissions, 9-9

F
factor command, 12-4
factoring numbers, factor command, 12-4
fc command, 11-11
fdformat command, 8-4
file

command, 6-8
descriptors, 4-4
permissions, 9-4
trees, 5-2

file name substitution
Bourne shell, 11-87
C shell, 11-109
Korn or POSIX shell, 11-26

file systems
checking for consistency, 8-5
conducting interactive repairs, 8-5
definition, 5-1
example, illustration, 6-3
overview, 5-2
root, 5-3
space available, showing, 5-4
structure, 5-2
types

journaled file system (JFS), 5-2
network file system (NFS), 5-2

files
access mode, setting, 6-15

Index X-5

access modes, 9-4
appending single line of text, 4-7
archiving, 8-14
ASCII, 6-2
backing up, 8-10
binary, 6-2
changing

from a linked file, 6-15
ownership, 9-4
permissions, 9-8

columns, removing, 6-14
comparing, 5-13, 6-11
compressing, 8-7
concatenating, 4-3
copying, 6-7

from DOS, 6-18
from screen, 4-7
from tape or disk, 8-6
to DOS, 6-18

counting
bytes, 6-11
lines, 6-11
words, 6-11

creating with redirection from keyboard, 4-3
cutting selected fields from, 6-12
definition, 5-1
deleting, 6-5
deleting DOS, 6-19
displaying

contents, 6-9
first lines, 6-12
last lines, 6-12

environment, 10-4
executable, 6-2
expanding, 8-9
formatting

for display, 6-9
for printing, 7-14

handling, 6-5
identifying type, 6-8
joining, 4-3
linked, removing, 6-17
linking, 6-15, 6-16
locating sections, 3-7
matching expressions, finding, 6-8
merging the lines of several, 6-13
metacharacters, 6-4
moving, 6-6
naming conventions, 6-3
numbering lines, 6-14
overview, 6-1
ownership, 6-15, 9-4
packing, 8-7
pasting text, 6-13
path names, 5-6, 6-3
permissions, 6-2
regular expressions, 6-4
removing, 6-5
renaming, 6-6
restoring, using smit command, 8-13
restoring backed–up, 8-12
retrieving from storage, 8-14
searching for a string, 6-10
sorting text, 6-10

types
directory, 6-2
regular, 6-2
showing, 6-8
special, 6-2

uncompressing, 8-9
unpacking, 8-9
wildcards, 6-3
writing to output, from specified point, 6-12

filters, definition, 4-5
find command, 6-8
flags, in commands, 3-4
flcopy command, 8-5
font, changing, 10-11

Window interface, 10-14
fonts, listing available for use, 2-4
foreground processes, definition, 3-14
format command, 8-4
formatting diskettes, 8-4
fsck command, 8-5

G
grep command, 4-6, 6-10
groups command, 9-4

H
head command, 6-12
help

command, 12-3
displaying information, 12-3

here document, 4-5, 11-28
history

command, 3-8
editing, 3-10
event, changing size, 10-15
list, setting size, A-15
substitution, C shell, 11-103

I
i–node number, 5-5, 6-2, 6-15
I/O redirection

Bourne shell, 11-89
C shell, 11-114
Korn or POSIX shell, 11-28

id command, 1-7
IDs, user, 9-4
index node reference number, 5-5
InEd editor, 6-5
InfoExplorer ASCII interface

alternate libraries, starting, A-12
exiting, A-13
help, A-2, A-9
hypertext links, selecting, A-4
menu options, selecting, A-5
moving through text, A-5
printing, A-8
screens

moving between, A-4
types, A-3

searching, A-6
stopping, A-13

InfoExplorer ASCII program
customizing, A-14

X-6 AIX System User’s Guide – OS & Devices

defaults, changing, A-14
navigation article, designing default, A-14
notes editor, choosing, A-15
preferences, changing settings, A-15
print output, changing, A-16
printers, designating default, A-15
search database, changing default, A-15

InfoExplorer program
exiting, A-13
overview, ASCII interface, A-1
starting, A-3
stopping, A-13

InfoExplorer Windows program, customizing, 10-13
inline editing, Korn or POSIX shell, 11-53

emacs mode, 11-53
vi editing mode, 11-56

inline input documents, 4-5
input and output redirection, 11-89
input redirection, 4-2
input redirection operator (<<<<), 4-3
integer arithmetic, 11-24
international character support, text formatting,

3-12

J
JFS, 5-2
job control

C shell, 11-116
Korn or POSIX shell, 11-51

jobs
listing scheduled, 3-20
removing from schedule, 3-20
scheduling, 3-19

journaled file system (JFS), 5-2

K
keyboard maps, listing currently available, 2-4
keyword search, apropos command, 12-1
kill command, 3-21
Korn shell inline editing

emacs mode, 11-53
vi editing mode, 11-56

Korn shell or POSIX shell
arithmetic evaluation, 11-24
built–in commands, 11-37
command aliasing, 11-15

tilde substitution, 11-16
command history, 11-11
command substitution, 11-23
commands

built–in, 11-37
compound, 11-33
functions, 11-35
using, 11-32

conditional expressions, 11-49
coprocess facility, 11-29
coprocesses, redirecting input and output from,

11-30
editing, 11-53
environment, 11-10
exit status, 11-31
field splitting, 11-25
file name substitution, 11-26
job control, 11-51

parameter substitution, 11-17
pattern matching, 11-26
quote removal, 11-27
quoting, 11-12
redirecting input and output, 11-28
reserved words, 11-14
signal handling, 11-52
starting, 11-10
variables

predefined, 11-20
user–defined, 11-21

ksh command, 11-4, 11-10

L
languages, bidirectional, 2-8
learn command, 12-3
leave command, 12-4
li command, 5-10
library, preferred, Window interface, 10-15
line of text, appending to file, 4-7
lines, counting number of, 6-11
linked files, removing, 6-17
links

creating, 6-16
hard, 6-15
overview, 6-15
removing, 6-17
symbolic, 6-15
types, 6-15

ln command, 6-16
local printers, 7-3
lock command, 9-13
locking your terminal, 9-13
login

command, 1-4
how to, 1-3
messages, suppressing, 1-4
multiple on same system, 1-4
name, displaying, 1-6
remote, 1-1
user ID, as another, 1-4

login files
.env file, 10-5
.profile file, 10-4, 10-5
/etc/environment file, 10-4
/etc/profile file, 10-3

login messages, suppressing, 1-4
login user ID, 9-3
logname command, 1-6
logout

command, 1-5
how to, 1-5

ls command, 5-11
lscfg command, 2-2
lscons command, 2-3
lsdisp command, 2-4
lsfont command, 2-4
lsgroup command, 9-6
lskbd command, 2-4
lslpp command, 2-5

M
man command, 3-8
man pages, finding with keyword searches, 12-1

Index X-7

maps, keyboard, 2-4
messages

displaying on screen, 4-7
sending to other users, 12-7
sending to standard output, 4-7

metacharacters, 6-4
mkdir command, 5-8
more command, 6-9
multibyte character support, text formatting, 3-13
mv command, 6-6
mvdir command, 5-8
mwm command, 10-6

N
names, displaying

login, 1-6
operating system, 1-7

naming conventions
directories, 5-6
files, 6-3

network, displaying name, with uname command,
1-7

network file system (NFS), 5-2
NFS, 5-2
nice command, 3-17
nl command, 6-14
notes

printing, InfoExplorer, A-9
setting preferred editor, ASCII interface, A-15
template default, ASCII interface, A-14

O
operating system

displaying name, with uname command, 1-7
logging in, 1-3
logging out, 1-5

options, in commands, 3-4
output

discarding with /dev/null file, 4-4
redirecting to a file, 4-2

output redirection operator (>), 4-2

P
pack command, 8-7
page command, 6-9
parameters

in commands, 3-4
Korn or POSIX shell, 11-17

passwd command, 1-9
passwords

changing or setting, 1-9
guidelines, 1-8
setting to null, 1-10

paste command, 6-13
path names

absolute, 5-7, 6-3
definition, 6-3
directory, 5-6

paths, directory, 5-6
pattern matching

Bourne shell, 11-87
Korn or POSIX shell, 11-26

permissions
base, 9-9
directory, 9-8
extended, 9-9
file, 9-8

pg command, 6-9
PID number, description, 3-14
pipelining, definition, 3-3, 4-5
pipes, definition, 4-5
positional parameters, Bourne shell, 11-87
POSIX shell, 11-9
PostScript files, converting from ASCII, 7-18
PostScript printer, printing ASCII files, 7-16
pr command, 7-14
preferences, overview, Window interface, 10-14
print file types, overriding automatic determination,

7-18
print jobs

canceling, 7-7
definition, 7-2
displaying status, 7-9
formatting files for, 7-14
holding, 7-12
moving, 7-13
prioritizing, 7-11
releasing, 7-12
starting, 7-4

print spooler, 7-2
printenv command, 2-8
printers, 7-1

backend, 7-3
canceling a job, 7-7
default

ASCII interface, A-15
Window interface, 10-14

local, 7-3
qdaemon, 7-2
queue, 7-2
queue device, 7-2
real, 7-3
remote, 7-3
showing status of job, 7-11
spooler, 7-2
starting a job, 7-4
status conditions, 7-10
virtual, 7-3

printing, 7-1
ASCII files on PostScript printer, 7-16
formatting files for, 7-14
holding print jobs, 7-12
moving print jobs, web-based system manager

command, 7-13
releasing print jobs, 7-12

printing from InfoExplorer, A-8
process indentification number, 3-14
processes

background, 3-14
canceling, 3-18

foreground process, 3-18
changing priority, 3-17
daemon, 3-14
description, 3-14

X-8 AIX System User’s Guide – OS & Devices

displaying all active, 3-15
displaying status, 3-16
foreground, 3-14
listing scheduled, 3-20
removing from schedule, 3-20
restarting stopped, 3-18
scheduling for later operation, 3-19
setting initial priority, 3-17
starting, 3-15
stopping, 3-18

background process, 3-21
zombie, 3-15

profile files, using, 10-3
program, copying output into a file, 4-6
prompt, changing system, 10-12
ps command, 3-15
psh command, 11-4, 11-10
pwd command, 5-9

Q
qcan command, 7-7
qchk command, 7-9
qdaemon, 7-2
qhld command, 7-12
qmov command, 7-13
qpri command, 7-11
qprt command, 7-4
queue

device, 7-2
print, 7-2

quote removal, Korn or POSIX shell, 11-27
quoting characters

Bourne shell, 11-72
Korn or POSIX shell, 11-12

R
r (repeat) command, 3-10
reading the three–digit display, 1-3
real printers, 7-3
realtime messages, sending to other users, 12-7
redirecting

output to a file, 4-2
standard error output, 4-4
standard input, 4-3
standard output, 4-2

redirecting input and output, from coprocesses,
11-30

references, printing from InfoExplorer screens, A-9
regular expressions, 6-4
reminder messages, calendar command, 12-2
reminders to leave, leave command, 12-4
remote

login, 1-1
printers, 7-3

renaming
directories, 5-8
files, 6-6

renice command, 3-17
reserved words, Korn or POSIX shell, 11-14
resource files, modifying, 10-7, 10-8
resource names, Window interface, A-17
resources, description, 10-7
restore command, 8-12
restricted shell, starting, 11-70

rm command, 6-6, 6-17
rmdir command, 5-12
root file, 5-3
Rsh command, 11-4, 11-70
rsh command, 11-4

S
screens

clearing, 4-6
copying display to a file, 4-6
copying to file, 4-7
designating navigation default, A-14
displaying text in large letters, 4-8
displaying text one screen at a time, 6-9

script command, 4-8
searching

information base default, ASCII interface, A-15
keywords, 12-1

security
file, 9-1
system, 9-1
threats, 9-2

sh command, 11-4
shell

programs, 11-7
scripts

creating, 11-7
specifying a shell, 11-8

variables, exporting, 10-11
shells

available, 11-4
Bourne

built–in commands, 11-74
command substitution, 11-80
conditional substitution, 11-86
environment, 11-68
file name substitution, 11-87
positional parameters, 11-87
predefined special variables, 11-85
redirecting input and output, 11-89
starting, 11-68
user–defined variables, 11-81
variable substitution, 11-81
variables, 11-82

C
alias substitution, 11-106
built–in commands, 11-92
command substitution, 11-102
file name substitution, 11-109
history substitution, 11-103
job control, 11-116
predefined and environmental variables,

11-111
redirecting input and output, 11-114
signal handling, 11-91
starting, 11-90
variable substitution, 11-107

features, 11-3
Korn or POSIX

arithmetic evaluation, 11-24
built–in commands, 11-37
command, 11-11, 11-15, 11-23
compound commands, 11-33
conditional expressions, 11-49

Index X-9

coprocess facility, 11-29
environment, 11-10
exit status, 11-31
file name substitution, 11-26
inline editing, 11-53, 11-56
job control, 11-51
parameters, 11-17
quoting, 11-12
redirecting input and output, 11-28
reserved words, 11-14
signal handling, 11-52
starting, 11-10
using commands, 11-32

restricted, starting, 11-70
scripts, specifying a shell, 11-8
shell scripts, creating, 11-7
terms, definitions, 11-5
trusted, starting, 11-4
types, 11-4
understanding, 11-1

shortcut name for commands, creating, 3-11
shutdown command, 1-5
signal handling

Bourne shell, 11-72
C shell, 11-91
Korn or POSIX shell, 11-52

SMIT, printing, control of, 7-4
smit command, 3-7, 7-7, 8-11
software products, displaying information about,

2-5
sort command, 6-10
space, showing available, 5-4
special commands, Bourne shell, 11-74
standard error output, redirecting, 4-4
standard input

copying to a file, 4-6
definition, 4-2
redirecting, 4-3

standard output
appending to a file, 4-3
definition, 4-2
redirecting, 4-2

standard shell, conditional expressions, 11-49
starting

Bourne shell, 11-68
C shell, 11-90
Korn or POSIX shell, 11-10
windows Window Manager, 10-6
X, 10-6

startup, controlling windows and applications at,
10-6

startup files
C shell, 11-90
system, 10-3

strings, finding in text files, 6-10
stty command, 2-6, 10-12
su command, 1-4
switches, in commands, 3-4
syntax diagrams, for commands, 3-5
system

customizing environment, 10-11
default variables, 10-3
displaying name, 1-7
environment, 2-1

management, file systems tasks, 5-2
powering on, 1-3
prompt, changing, 10-12
security, 9-1
shutdown, 1-5
startup files, 10-3

T
tail command, 6-12
tapechk command, 8-7
tapes

checking consistency, 8-7
copying to or from, 8-7

tar command, 8-14
tcopy command, 8-7
tee command, 4-6
terminal

displaying name, 2-3
displaying settings, 2-8
locking, 9-13
reserving, using lock command, 9-13

text
appending to a file, 4-7
displaying in large letters, 4-8

text files
columns, removing, 6-14
concatenating, 4-3
creating from keyboard input, 4-3
finding strings, 6-10
lines, numbering, 6-14
sections

cutting, 6-12
pasting, 6-13

sorting, 6-10
text formatting

extended single–byte characters, 3-12
international character support, 3-12
multibyte character support, 3-13

text–formatting commands, 3-12
three–digit display, 1-3
tilde substitution, aliasing commands, Korn or

POSIX shell, 11-16
time management

creating reminders, 12-4
writing reminder messages, 12-2

touch command, 1-4
tsh command, 11-4
tty command, 2-3
types, CD–ROM file system (CDRFS), 5-2

U
uname command, 1-7
uncompress command, 8-9
units command, 12-5
units of measure, converting, 12-5
unpack command, 8-9

purpose of, 8-7
usage statements, for commands, 3-7
user

classes, 9-4
groups

definition, 9-4
displaying information, 9-6

X-10 AIX System User’s Guide – OS & Devices

ID, changing to another, 1-4
users

displaying current system, 1-7
displaying system ID, 1-7
sending messages to other, 12-7

V
variable substitution

Bourne shell, 11-81
C shell, 11-107
Korn or POSIX shell, 11-20

variables
Bourne shell, 11-82

predefined special, 11-85
user–defined, 11-81

C shell, predefined and environmental, 11-111
exporting shell, 10-11
Korn or POSIX shell

predefined, 11-20
user–defined, 11-21

vi editor, 11-56
virscan command, 9-14

adding virus signatures, 9-15
signature files format, 9-14

virtual printers, 7-3

viruses, testing files for, 9-14

W
wc command, 6-11
web–based system manager command, 7-12
whatis command, 3-8
whereis command, 3-7
who am i command, 1-6
who command, 1-7
whoami command, 1-6
wildcards, 6-3
Window interface

customizing, 10-13
X resources available in, A-17

windows Window Manager, starting, 10-6
words, counting number of, 6-11
write command, 12-7

X
X resources, Window interface, A-17
X Window System, starting, 10-6
xlock command, 9-13

Z
zombie process, 3-15

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull AIX 4.3 System User’s Guide OS & Devices

Nº Reférence / Reference Nº : 86 A2 97HX 02 Daté / Dated : October 1999

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

Technical Publications Ordering Form

Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:

Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL ELECTRONICS ANGERS
CEDOC
ATTN / MME DUMOULIN
34 Rue du Nid de Pie – BP 428
49004 ANGERS CEDEX 01
FRANCE

Managers / Gestionnaires :
Mrs. / Mme : C. DUMOULIN +33 (0) 2 41 73 76 65
Mr. / M : L. CHERUBIN +33 (0) 2 41 73 63 96

FAX : +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web site at: / Ou visitez notre site web à:

http://www–frec.bull.com (PUBLICATIONS, Technical Literature, Ordering Form)

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

86 A2 97HX 02

ORDER REFERENCE

P
L
A

C
E

 B
A

R
 C

O
D

E
 I

N
 L

O
W

E
R

L
E

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.

86 A2 97HX 02

AIX 4.3 System
User’s Guide
OS & Devices

86 A2 97HX 02

AIX 4.3 System
User’s Guide
OS & Devices

86 A2 97HX 02

AIX 4.3 System
User’s Guide
OS & Devices

