
Bull
Technical Reference

Base Operating System and Extensions

Volume 2/2

AIX

86 A2 82AP 05

ORDER REFERENCE

Bull
Technical Reference

Base Operating System and Extensions

Volume 2/2

AIX

Software

February 1999

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

86 A2 82AP 05

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America

and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and

making derivative works.

Copyright Bull S.A. 1992, 1999

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you

are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

Year 2000

The product documented in this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors

contained herein, or for incidental or consequential damages in connection with the use of this material.

iiiPreface

Table of Contents

About This Book xi.

Base Operating System (BOS) Runtime Services (Q–Z) 1-935.

qsort Subroutine 1-937.

quotactl Subroutine 1-938.

raise Subroutine 1-941.

rand or srand Subroutine 1-942.

rand_r Subroutine 1-944.

random, srandom, initstate, or setstate Subroutine 1-945.

read, readx, readv, or readvx Subroutine 1-947.

readdir_r Subroutine 1-953.

readlink Subroutine 1-955.

read_real_time or time_base_to_time Subroutine 1-957.

realpath Subroutine 1-959.

reboot Subroutine 1-960.

re_comp or re_exec Subroutine 1-962.

regcmp or regex Subroutine 1-964.

regcomp Subroutine 1-967.

regerror Subroutine 1-969.

regexec Subroutine 1-971.

regfree Subroutine 1-975.

reltimerid Subroutine 1-976.

__remap Subroutine 1-977.

__remap_identity Subroutine 1-979.

REMAP, REMAP_VOID macros 1-981.

REMAP_DCL macro 1-983.

REMAP_IDENTITY, REMAP_IDENTITY_VOID macros 1-985.

REMAP_SETUP, REMAP_SETUP_WITH_LEN macros 1-987.

remove Subroutine 1-989.

rename Subroutine 1-990.

revoke Subroutine 1-993.

rmdir Subroutine 1-995.

rpmatch Subroutine 1-997.

rsqrt Subroutine 1-998.

rstat Subroutines 1-1000.

_safe_fetch Subroutine 1-1001.

scandir or alphasort Subroutine 1-1002.

scanf, fscanf, sscanf, or wsscanf Subroutine 1-1004.

sched_yield Subroutine 1-1010.

select Subroutine 1-1011.

semctl Subroutine 1-1015.

semget Subroutine 1-1019.

semop Subroutine 1-1022.

setacldb or endacldb Subroutine 1-1025.

setaudithostdb or endaudithostdb Subroutine 1-1026.

setbuf, setvbuf, setbuffer, or setlinebuf Subroutine 1-1027.

setcsmap Subroutine 1-1029.

setgid, setrgid, setegid, or setregid Subroutine 1-1030.

setgroups Subroutine 1-1032.

iv Technical Reference: Base Operating System

setjmp or longjmp Subroutine 1-1034.

setlocale Subroutine 1-1036.

setpcred Subroutine 1-1040.

setpenv Subroutine 1-1042.

setpgid or setpgrp Subroutine 1-1046.

setpri Subroutine 1-1048.

setpwdb or endpwdb Subroutine 1-1049.

 setroledb or endroledb Subroutine 1-1051.

setsid Subroutine 1-1052.

setuid, setruid, seteuid, or setreuid Subroutine 1-1053.

setuserdb or enduserdb Subroutine 1-1055.

sgetl or sputl Subroutine 1-1057.

shmat Subroutine 1-1058.

shmctl Subroutine 1-1062.

shmdt Subroutine 1-1065.

shmget Subroutine 1-1067.

sigaction, sigvec, or signal Subroutine 1-1070.

sigaltstack Subroutine 1-1081.

sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember Subroutine 1-1083.

siginterrupt Subroutine 1-1085.

sigpending Subroutine 1-1086.

sigprocmask, sigsetmask, or sigblock Subroutine 1-1087.

sigset, sighold, sigrelse, or sigignore Subroutine 1-1090.

sigsetjmp or siglongjmp Subroutine 1-1094.

sigstack Subroutine 1-1095.

sigsuspend or sigpause Subroutine 1-1097.

sigthreadmask Subroutine 1-1099.

sigwait Subroutine 1-1102.

sin, sinl, cos, cosl, tan, or tanl Subroutine 1-1103.

sinh, sinhl, cosh, coshl, tanh, or tanhl Subroutine 1-1105.

sleep, nsleep or usleep Subroutine 1-1106.

snprintf Subroutine 1-1108.

sqrt, sqrtl, or cbrt Subroutine 1-1113.

src_err_msg Subroutine 1-1115.

src_err_msg_r Subroutine 1-1116.

srcrrqs_r Subroutine 1-1118.

srcrrqs Subroutine 1-1121.

srcsbuf Subroutine 1-1123.

srcsbuf_r Subroutine 1-1127.

srcsrpy Subroutine 1-1133.

srcsrqt Subroutine 1-1137.

srcsrqt_r Subroutine 1-1141.

srcstat Subroutine 1-1146.

srcstat_r Subroutine 1-1149.

srcstathdr Subroutine 1-1153.

srcstattxt Subroutine 1-1154.

srcstattxt_r Subroutine 1-1155.

srcstop Subroutine 1-1156.

srcstrt Subroutine 1-1159.

ssignal or gsignal Subroutine 1-1162.

statacl or fstatacl Subroutine 1-1164.

statfs, fstatfs, or ustat Subroutine 1-1167.

statvfs or fstatvfs Subroutine 1-1169.

statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine 1-1171

strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine 1-1176.

vPreface

strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine 1-1179.

strerror Subroutine 1-1181.

strfmon Subroutine 1-1182.

strftime Subroutine 1-1185.

strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok Subroutine 1-1189.

strncollen Subroutine 1-1192.

strptime Subroutine 1-1193.

strtol, strtoul, strtoll, strtoull, atol, or atoi Subroutine 1-1197.

stty or gtty Subroutine 1-1199.

swab Subroutine 1-1200.

swapon Subroutine 1-1201.

swapqry Subroutine 1-1202.

symlink Subroutine 1-1203.

sync Subroutine 1-1205.

_sync_cache_range Subroutine 1-1206.

sysconf Subroutine 1-1207.

sysconfig Subroutine 1-1212.

srcsrqt Subroutine 1-1214.

SYS_CFGDD sysconfig Operation 1-1218.

SYS_CFGKMOD sysconfig Operation 1-1220.

SYS_GETPARMS sysconfig Operation 1-1222.

SYS_KLOAD sysconfig Operation 1-1223.

SYS_KULOAD sysconfig Operation 1-1226.

SYS_QDVSW sysconfig Operation 1-1228.

SYS_QUERYLOAD sysconfig Operation 1-1230.

SYS_SETPARMS sysconfig Operation 1-1231.

SYS_SINGLELOAD sysconfig Operation 1-1233.

syslog, openlog, closelog, or setlogmask Subroutine 1-1234.

syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine 1-1238.

system Subroutine 1-1242.

tcb Subroutine 1-1244.

tcdrain Subroutine 1-1246.

tcflow Subroutine 1-1247.

tcflush Subroutine 1-1249.

tcgetattr Subroutine 1-1251.

tcgetpgrp Subroutine 1-1252.

tcsendbreak Subroutine 1-1253.

thread_setsched Subroutine 1-1255.

tcsetattr Subroutine 1-1257.

tcsetpgrp Subroutine 1-1259.

termdef Subroutine 1-1260.

thread_self Subroutine 1-1262.

timezone Subroutine 1-1263.

tmpfile Subroutine 1-1264.

tmpnam or tempnam Subroutine 1-1265.

towctrans Subroutine 1-1268.

towlower Subroutine 1-1269.

towupper Subroutine 1-1270.

t_rcvreldata Subroutine 1-1271.

t_rcvv Subroutine 1-1273.

t_rcvvudata Subroutine 1-1275.

t_sndreldata Subroutine 1-1278.

t_sndv Subroutine 1-1280.

t_sndvudata Subroutine 1-1283.

t_sysconf Subroutine 1-1286.

vi Technical Reference: Base Operating System

trcgen or trcgent Subroutine 1-1287.

trchook or utrchook Subroutine 1-1289.

trcoff Subroutine 1-1291.

trcon Subroutine 1-1292.

trcstart Subroutine 1-1293.

trcstop Subroutine 1-1294.

truncate, truncate64, ftruncate, or ftruncate64 Subroutine 1-1295.

tsearch, tdelete, tfind or twalk Subroutine 1-1299.

ttylock, ttywait, ttyunlock, or ttylocked Subroutine 1-1301.

ttyname or isatty Subroutine 1-1303.

ttyslot Subroutine 1-1305.

ulimit Subroutine 1-1306.

umask Subroutine 1-1309.

umount or uvmount Subroutine 1-1310.

uname or unamex Subroutine 1-1312.

ungetc or ungetwc Subroutine 1-1314.

unlink Subroutine 1-1316.

unload Subroutine 1-1318.

unlockpt Subroutine 1-1320.

usrinfo Subroutine 1-1321.

utimes or utime Subroutine 1-1323.

varargs Macros 1-1325.

vfwprintf, vwprintf Subroutine 1-1328.

vmount or mount Subroutine 1-1329.

vsnprintf Subroutine 1-1333.

vwsprintf Subroutine 1-1334.

wait, waitpid, wait3, or wait364 Subroutine 1-1335.

wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine 1-1339.

wcscoll Subroutine 1-1341.

wcsftime Subroutine 1-1343.

wcsid Subroutine 1-1348.

wcslen Subroutine 1-1349.

wcsncat, wcsncmp, or wcsncpy Subroutine 1-1350.

wcspbrk Subroutine 1-1351.

wcsrchr Subroutine 1-1352.

wcsrtombs Subroutine 1-1353.

wcsspn Subroutine 1-1355.

wcsstr Subroutine 1-1356.

wcstod Subroutine 1-1357.

wcstok Subroutine 1-1359.

wcstol or wcstoll Subroutine 1-1361.

wcstombs Subroutine 1-1364.

wcstoul or wcstoull Subroutine 1-1365.

wcswcs Subroutine 1-1367.

wcswidth Subroutine 1-1368.

wcsxfrm Subroutine 1-1370.

wctob Subroutine 1-1372.

wctomb Subroutine 1-1373.

wctrans Subroutine 1-1374.

 wctype or get_wctype Subroutine 1-1375.

wcwidth Subroutine 1-1377.

wmemchr Subroutine 1-1379.

wmemcmp Subroutine 1-1380.

wmemcpy Subroutine 1-1381.

wmemmove Subroutine 1-1382.

viiPreface

wmemset Subroutine 1-1383.

wordexp Subroutine 1-1384.

wordfree Subroutine 1-1387.

write, writex, writev, writevx or pwrite Subroutines 1-1388.

wstring Subroutine 1-1394.

wstrtod or watof Subroutine 1-1397.

wstrtol, watol, or watoi Subroutine 1-1398.

yield Subroutine 1-1400.

Curses Subroutines 2-1.

addch, mvaddch, mvwaddch, or waddch Subroutine 2-3.

addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr,
or waddstr Subroutine 2-5.

attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine 2-7.

attron or wattron Subroutine 2-9.

attrset or wattrset Subroutine 2-10.

baudrate Subroutine 2-12.

beep Subroutine 2-13.

box Subroutine 2-14.

can_change_color, color_content, has_colors,init_color, init_pair, start_color
or pair_content Subroutine 2-15.

cbreak, nocbreak, noraw, or raw Subroutine 2-19.

clear, erase, wclear or werase Subroutine 2-21.

clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine 2-23.

clrtobot or wclrtobot Subroutine 2-27.

clrtoeol or wclrtoeol Subroutine 2-28.

color_content Subroutine 2-29.

copywin Subroutine 2-31.

curs_set Subroutine 2-33.

def_prog_mode, def_shell_mode, reset_prog_mode or reset_shell_mode
Subroutine 2-34.

def_shell_mode Subroutine 2-36.

del_curterm, restartterm, set_curterm, or setupterm Subroutine 2-37.

delay_output Subroutine 2-39.

delch, mvdelch, mvwdelch or wdelch Subroutine 2-40.

deleteln or wdeleteln Subroutine 2-41.

delwin Subroutine 2-42.

derwin, newwin, or subwin Subroutine 2-43.

echo or noecho Subroutine 2-45.

echochar or wechochar Subroutines 2-46.

endwin Subroutine 2-47.

erase or werase Subroutine 2-48.

erasechar, erasewchar, killchar, and killwchar Subroutine 2-49.

filter Subroutine 2-51.

flash Subroutine 2-52.

flushinp Subroutine 2-53.

garbagedlines Subroutine 2-54.

getbegyx, getmaxyx, getparyx, or getyx Subroutine 2-55.

getch, mvgetch, mvwgetch, or wgetch Subroutine 2-57.

getmaxyx Subroutine 2-62.

getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr,
or wgetstr Subroutine 2-63.

getsyx Subroutine 2-66.

getyx Macro 2-67.

halfdelay Subroutine 2-68.

has_colors Subroutine 2-69.

viii Technical Reference: Base Operating System

has_ic and has_il Subroutine 2-70.

has_il Subroutine 2-71.

idlok Subroutine 2-72.

inch, mvinch, mvwinch, or winch Subroutine 2-73.

init_color Subroutine 2-75.

init_pair Subroutine 2-77.

initscr and newterm Subroutine 2-78.

insch, mvinsch, mvwinsch, or winsch Subroutine 2-80.

insertln or winsertln Subroutine 2-82.

intrflush Subroutine 2-83.

keyname, key_name Subroutine 2-84.

keypad Subroutine 2-86.

killchar or killwchar Subroutine 2-87.

_lazySetErrorHandler Subroutine 2-88.

leaveok Subroutine 2-90.

longname Subroutine 2-91.

makenew Subroutine 2-92.

meta Subroutine 2-93.

move or wmove Subroutine 2-95.

mvcur Subroutine 2-96.

mvwin Subroutine 2-98.

newpad, pnoutrefresh, prefresh, or subpad Subroutine 2-100.

derwin, newwin, or subwin Subroutine 2-103.

newterm Subroutine 2-106.

nl or nonl Subroutine 2-108.

nodelay Subroutine 2-109.

notimeout, timeout, wtimeout Subroutine 2-110.

overlay or overwrite Subroutine 2-112.

pair_content Subroutine 2-113.

prefresh or pnoutrefresh Subroutine 2-114.

printw, wprintw, mvprintw, or mvwprintw Subroutine 2-116.

putp, tputs Subroutine 2-118.

raw or noraw Subroutine 2-120.

refresh or wrefresh Subroutine 2-121.

reset_prog_mode Subroutine 2-122.

reset_shell_mode Subroutine 2-123.

resetterm Subroutine 2-124.

resetty, savetty Subroutine 2-125.

restartterm Subroutine 2-126.

ripoffline Subroutine 2-127.

savetty Subroutine 2-129.

scanw, wscanw, mvscanw, or mvwscanw Subroutine 2-130.

scr_dump, scr_init, scr_restore, scr_set Subroutine 2-132.

scr_init Subroutine 2-134.

scr_restore Subroutine 2-136.

scrl, scroll, wscrl Subroutine 2-137.

scrollok Subroutine 2-138.

set_curterm Subroutine 2-139.

setscrreg or wsetscrreg Subroutine 2-140.

setsyx Subroutine 2-141.

set_term Subroutine 2-142.

setupterm Subroutine 2-143.

_showstring Subroutine 2-145.

ixPreface

slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear, slk_color,
slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch,
slk_wset, Subroutine 2-146.

slk_init Subroutine 2-150.

slk_label Subroutine 2-151.

slk_noutrefresh Subroutine 2-152.

slk_refresh Subroutine 2-153.

slk_restore Subroutine 2-154.

slk_set Subroutine 2-155.

slk_touch Subroutine 2-156.

standend, standout, wstandend, or wstandout Subroutine 2-157.

start_color Subroutine 2-159.

subpad Subroutine 2-160.

subwin Subroutine 2-161.

tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine 2-163.

tgetflag Subroutine 2-165.

tgetnum Subroutine 2-166.

tgetstr Subroutine 2-167.

tgoto Subroutine 2-168.

tigetflag, tigetnum, tigetstr, or tparm Subroutine 2-169.

tigetnum Subroutine 2-171.

tigetstr Routine 2-172.

is_linetouched, is_wintouched, touchline, touchwin, untouchwin,
or wtouchin Subroutine 2-173.

touchoverlap Subroutine 2-175.

touchwin Subroutine 2-176.

tparm Subroutine 2-177.

tputs Subroutine 2-178.

typeahead Subroutine 2-179.

unctrl Subroutine 2-180.

ungetch, unget_wch Subroutine 2-181.

vidattr, vid_attr, vidputs, or vid_puts Subroutine 2-182.

doupdate, refresh, wnoutrefresh, or wrefresh Subroutines 2-184.

FORTRAN Basic Linear Algebra Subroutines (BLAS) 3-1.

SDOT or DDOT Function 3-3.

CDOTC or ZDOTC Function 3-4.

CDOTU or ZDOTU Function 3-5.

SAXPY, DAXPY, CAXPY, or ZAXPY Subroutine 3-6.

SROTG, DROTG, CROTG, or ZROTG Subroutine 3-7.

SROT, DROT, CSROT, or ZDROT Subroutine 3-8.

SCOPY, DCOPY, CCOPY, or ZCOPY Subroutine 3-9.

SSWAP, DSWAP, CSWAP, or ZSWAP Subroutine 3-10.

SNRM2, DNRM2, SCNRM2, or DZNRM2 Function 3-11.

SASUM, DASUM, SCASUM, or DZASUM Function 3-12.

SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL Subroutine 3-13.

ISAMAX, IDAMAX, ICAMAX, or IZAMAX Function 3-14.

SDSDOT Function 3-15.

SROTM or DROTM Subroutine 3-16.

SROTMG or DROTMG Subroutine 3-18.

SGEMV, DGEMV, CGEMV, or ZGEMV Subroutine 3-19.

SGBMV, DGBMV, CGBMV, or ZGBMV Subroutine 3-21.

CHEMV or ZHEMV Subroutine 3-23.

CHBMV or ZHBMV Subroutine 3-25.

CHPMV or ZHPMV Subroutine 3-27.

x Technical Reference: Base Operating System

SSYMV or DSYMV Subroutine 3-29.

SSBMV or DSBMV Subroutine 3-31.

SSPMV or DSPMV Subroutine 3-33.

STRMV, DTRMV, CTRMV, or ZTRMV Subroutine 3-35.

STBMV, DTBMV, CTBMV, or ZTBMV Subroutine 3-37.

STPMV, DTPMV, CTPMV, or ZTPMV Subroutine 3-40.

STRSV, DTRSV, CTRSV, or ZTRSV Subroutine 3-42.

STBSV, DTBSV, CTBSV, or ZTBSV Subroutine 3-44.

STPSV, DTPSV, CTPSV, or ZTPSV Subroutine 3-47.

SGER or DGER Subroutine 3-49.

CGERU or ZGERU Subroutine 3-50.

CGERC or ZGERC Subroutine 3-51.

CHER or ZHER Subroutine 3-52.

CHPR or ZHPR Subroutine 3-54.

CHER2 or ZHER2 Subroutine 3-56.

CHPR2 or ZHPR2 Subroutine 3-58.

SSYR or DSYR Subroutine 3-60.

SSPR or DSPR Subroutine 3-62.

SSYR2 or DSYR2 Subroutine 3-64.

SSPR2 or DSPR2 Subroutine 3-66.

SGEMM, DGEMM, CGEMM, or ZGEMM Subroutine 3-68.

SSYMM, DSYMM, CSYMM, or ZSYMM Subroutine 3-71.

CHEMM or ZHEMM Subroutine 3-74.

SSYRK, DSYRK, CSYRK, or ZSYRK Subroutine 3-76.

CHERK or ZHERK Subroutine 3-78.

SSYR2K, DSYR2K, CSYR2K, or ZSYR2K Subroutine 3-80.

CHER2K or ZHER2K Subroutine 3-83.

STRMM, DTRMM, CTRMM, or ZTRMM Subroutine 3-86.

STRSM, DTRSM, CTRSM, or ZTRSM Subroutine 3-89.

Appendix A. Base Operating System Error Codes for Services That Require
Path–Name Resolution A-1.

Appendix B. ODM Error Codes B-1.

Index X-1.

xiPreface

About This Book

This book provides information on Base Operating System and Extensions Technical
Reference, Volumes 1 and 2. Topics covered provide information on application
programming interfaces to the Advanced Interactive Executive Operating System (referred
to in this text as AIX).

These two books are part of the six–volume technical reference set, AIX Technical
Reference, 86 A2 81AP to 86 A2 91AP, which provides information on system calls, kernel
extension calls, and subroutines in the following volumes:

• Base Operating System and Extensions, Volumes 1 and 2 provide information on system
calls, subroutines, functions, macros, and statements associated with AIX base operating
system runtime services.

• Communications, Volumes 1 and 2 provide information on entry points, functions, system
calls, subroutines, and operations related to communications services.

• Kernel and Subsystems, Volumes 1 and 2 provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration
subsystem, the communications subsystem, the low function terminal (LFT) subsystem,
the logical volume subsystem, the M–audio capture and playback adapter subsystem, the
printer subsystem, the SCSI subsystem, and the serial DASD subsystem.

Who Should Use This Book
This book is intended for experienced C programmers. To use the book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files.

Before You Begin
Before you begin the tasks discussed in this book, you should see AIX 4.3 System
Management Guide: Operating System and Devices and AIX 4.3 System Management
Guide: Communications and Networks for more information.

How to Use This Book

Overview of Contents
This book contains the following chapters and appendixes:

• Base Operating System and Extension Technical Reference, Volumes 1 and 2 contain
alphabetically arranged system calls (called subroutines), subroutines, functions, macros,
and statements on Base Operating System Runtime (BOS) Services.

• Volume 2 also contains alphabetically arranged Fortran Basic Linear Algebra Subroutines
(BLAS).

xii Technical Reference: Base Operating System

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures,
directories, and other items whose names are predefined by the
system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied
by the user.

Monospace Identifies examples of specific data values, examples of text similar to
what you might see displayed, examples of portions of program code
similar to what you might write as a programmer, messages from the
system, or information you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of
this product.

AIX 32–Bit Support for the X/Open UNIX95 Specification
Beginning with AIX Version 4.2, the operating system is designed to support the X/Open
UNIX95 Specification for portability of UNIX–based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Beginning with Version 4.2, AIX is even more open and portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per–system, per–user, or per–process basis.

To determine the proper way to develop a UNIX95–portable application, you may need to
refer to the X/Open UNIX95 Specification, which can be obtained on a CD–ROM by
ordering the printed copy of AIX Commands Reference, order number 86 A2 38JX to 86 A2
43JX, or by ordering Go Solo: How to Implement and Go Solo with the Single Unix
Specification, a book which includes the X/Open UNIX95 Specification on a CD–ROM.

AIX 32–Bit and 64–Bit Support for the UNIX98 Specification
Beginning with AIX Version 4.3, the operating system is designed to support the X/Open
UNIX98 Specification for portability of UNIX–based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Making AIX Version 4.3 even more open and portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per–system, per–user, or per–process basis.

To determine the proper way to develop a UNIX98–portable application, you may need to
refer to the X/Open UNIX98 Specification, which can be obtained on a CD–ROM by
ordering the printed copy of AIX Commands Reference, order number 86 A2 38JX to 86 A2
43JX, or by ordering Go Solo: How to Implement and Go Solo with the Single Unix
Specification, a book which includes the X/Open UNIX98 Specification on a CD–ROM.

Related Publications
The following books contain information about or related to application programming
interfaces:

• AIX General Programming Concepts : Writing and Debugging Programs, Order Number
86 A2 34JX.

• AIX Communications Programming Concepts, Order Number 86 A2 35JX.

xiiiPreface

• AIX Kernel Extensions and Device Support Programming Concepts, Order Number 86
A2 36JX.

• AIX Files Reference, Order Number 86 A2 79AP.

• AIX Version 4.3 Problem Solving Guide and Reference, Order Number 86 A2 32JX.

• Hardware Technical Information-General Architectures, Order Number 86 A1 09WD.

Ordering Publications
You can order publications from your sales representative or from your point of sale.

To order additional copies of this book, use the following order numbers:

• AIX Technical Reference, Volume 1: Base Operating System and Extensions Order
Number 86 A2 81AP.

• AIX Technical Reference, Volume 2: Base Operating System and Extensions, Order
Number 86 A2 82AP.

Use AIX and Related Products Documentation Overview,order number 86 A2 71WE, for
information on related publications and how to obtain them.

xiv Technical Reference: Base Operating System

Base

1-935Base Operating System Runtime Services (Q-Z)

Base Operating System (BOS) Runtime Services (Q–Z)

Base

1-936 Technical Reference: Base Operating System

qsort

1-937Base Operating System Runtime Services (Q-Z)

qsort Subroutine

Purpose
Sorts a table of data in place.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

void qsort (Base, NumberOfElements, Size, ComparisonPointer)
void *Base;
size_t NumberOfElements, Size;
int (*ComparisonPointer)(const void*, const void*);

Description
The qsort subroutine sorts a table of data in place. It uses the quicker–sort algorithm.

Parameters

Base Points to the element at the base of the table.

NumberOfElem
ents

 Specifies the number of elements in the table.

Size Specifies the size of each element.

ComparisonPoi
nter

 Points to the comparison function, which is passed two parameters that
point to the objects being compared. The qsort subroutine sorts the
array in ascending order according to the comparison function.

Return Values
The comparison function compares its parameters and returns a value as follows:

• If the first parameter is less than the second parameter, the ComparisonPointer
parameter returns a value less than 0.

• If the first parameter is equal to the second parameter, the ComparisonPointer parameter
returns 0.

• If the first parameter is greater than the second parameter, the ComparisonPointer
parameter returns a value greater than 0.

Because the comparison function need not compare every byte, the elements can contain
arbitrary data in addition to the values being compared.

Note: If two items are the same when compared, their order in the output of this subroutine
is unpredictable.

The pointer to the base of the table should be of type pointer–to–element, and cast to type
pointer–to–character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The bsearch subroutine, lsearch subroutine.

Searching and Sorting Example Program, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

quotactl

1-938 Technical Reference: Base Operating System

quotactl Subroutine

Purpose
Manipulates disk quotas.

Library
Standard C Library (libc.a)

Syntax
#include <jfs/quota.h>

int quotactl (Path, Cmd, ID, Addr)
int Cmd, ID;
char *Addr, *Path;

Description
The quotactl subroutine enables, disables, and manipulates disk quotas for file systems on
which quotas have been enabled.

Currently, disk quotas are supported only by the Journaled File System (JFS).

quotactl

1-939Base Operating System Runtime Services (Q-Z)

Parameters

Path Specifies the path name of any file within the mounted file system to
which the quota control command is to be applied.

Cmd

Specifies the quota control command to be applied and whether it is
applied to a user or group quota.

For JFSs, the Cmd parameter can be constructed through use of the
QCMD(Cmd, type) macro contained within the jfs/quota.h file. The
Cmd parameter specifies the quota control command. The type
parameter specifies either user (USRQUOTA) or group (GRPQUOTA)
quota type.

The valid JFS specific quota control values for the Cmd parameter are:

Q_QUOTAON Enables disk quotas for the file system specified by the
Path parameter. The Addr parameter specifies a file
from which to take the quotas. The quota file must
exist; it is normally created with the quotacheck
command. The ID parameter is unused. Root user
authority is required to enable quotas.

Q_QUOTAOFF Disables disk quotas for the file system specified by
the Path parameter. The Addr and ID arguments are
unused. Root user authority is required to disable
quotas.

Q_GETQUOTA Gets disk quota limits and current usage for a user or
group specified by the ID parameter. The Addr
parameter points to a dqblk buffer to hold the returned
information. The dqblk structure is defined in the
jfs/quota.h file. Root user authority is required if the ID
value is not the current ID of the caller.

Q_SETQUOTA Sets disk quota limits for the user or group specified by
the ID parameter. The Addr parameter points to a
dqblk buffer containing the new quota limits. The
dqblk structure is defined in the jfs/quota.h file. Root
user authority is required to set quotas.

Q_SETUSE Sets disk usage limits for the user or group specified
by the ID parameter. The Addr parameter points to a
dqblk buffer containing the new usage limits. The
dqblk structure is defined in the jfs/quota.h file. Root
user authority is required to set disk usage limits.

ID Specifies the user or group ID to which the quota control command
applies. The ID parameter is interpreted by the specified quota type.
The JFS file system supports quotas for IDs within the range of
MINDQUID through MAXDQID.

Addr Points to the address of an optional, command specific, data structure
that is copied in or out of the system. The interpretation of the Addr
parameter for each quota control command is given above.

Return Values
A successful call returns 0, otherwise the value –1 is returned and the errno global variable
indicates the reason for the failure.

quotactl

1-940 Technical Reference: Base Operating System

Error Codes
A quotactl subroutine will fail when one of the following occurs:

EACCES In the Q_QUOTAON command, the quota file is not a regular file.

EACCES Search permission is denied for a component of a path prefix.

EFAULT An invalid Addr parameter is supplied; the associated structure could
not be copied in or out of the kernel.

EFAULT The Path parameter points outside the process’s allocated address
space.

EINVAL The specified quota control command or quota type is invalid.

EINVAL Path name contains a character with the high–order bit set.

EINVAL The ID parameter is outside of the supported range (MINDQID
through MAXDQID).

EIO An I/O error occurred while reading from or writing to a file
containing quotas.

ELOOP Too many symbolic links were encountered in translating a path
name.

ENAMETOOLONG A component of either path name exceeded 255 characters, or the
entire length of either path name exceeded 1023 characters.

ENOENT A file name does not exist.

ENOTBLK Mounted file system is not a block device.

ENOTDIR A component of a path prefix is not a directory.

EOPNOTSUPP The file system does not support quotas.

EPERM The quota control commands is privileged and the caller did not
have root user authority.

EROFS In the Q_QUOTAON command, the quota file resides on a
read–only file system.

EUSERS The in–core quota table cannot be expanded.

Related Information
The quotacheck command.

Disk Quota System Overview and How to Set Up the Disk Quota System in AIX 4.3 System
Management Guide: Operating System and Devices.

raise

1-941Base Operating System Runtime Services (Q-Z)

raise Subroutine

Purpose
Sends a signal to the currently running program.

Libraries
Standard C Library (libc.a)

Threads Library (libpthreads.a)

Syntax
#include <sys/signal.h>

int raise (Signal)
int Signal;

Description
The raise subroutine sends the signal specified by the Signal parameter to the executing
process or thread, depending if the POSIX threads API (the libpthreads.a library) is used or
not. When the program is not linked with the threads library, the raise subroutine sends the
signal to the calling process as follows:

return kill(getpid(), Signal);

When the program is linked with the threads library, the raise subroutine sends the signal to
the calling thread as follows:

return pthread_kill(pthread_self(), Signal);

Parameter

Signal Specifies a signal number.

Return Values
Upon successful completion of the raise subroutine, a value of 0 is returned. Otherwise, a
nonzero value is returned, and the errno global variable is set to indicate the error.

Error Code

EINVAL The value of the sig argument is an invalid signal number

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

When using the threads library, it is important to ensure that the threads library is linked
before the standard C library.

Related Information
The _exit subroutine, kill subroutine, pthread_kill subroutine, sigaction subroutine.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs provides more information about signal management in multi–threaded
processes.

rand

1-942 Technical Reference: Base Operating System

rand or srand Subroutine

Purpose
Generates pseudo–random numbers.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int rand

void srand (Seed)
unsigned int Seed;

Description
Attention: Do not use the rand subroutine in a multithreaded environment. See the
multithread alternative in the rand_r subroutine article.

The rand subroutine generates a pseudo–random number using a multiplicative
congruential algorithm. The random–number generator has a period of 2**32, and it returns
successive pseudo–random numbers in the range from 0 through (2**15) –1.

The srand subroutine resets the random–number generator to a new starting point. It uses
the Seed parameter as a seed for a new sequence of pseudo–random numbers to be
returned by subsequent calls to the rand subroutine. If you then call the srand subroutine
with the same seed value, the rand subroutine repeats the sequence of pseudo–random
numbers. When you call the rand subroutine before making any calls to the srand
subroutine, it generates the same sequence of numbers that it would if you first called the
srand subroutine with a seed value of 1.

Note: The rand subroutine is a simple random–number generator. Its spectral
properties, a mathematical measurement of randomness, are somewhat limited. See the
drand48 subroutine or the random subroutine for more elaborate random–number
generators that have greater spectral properties.

Parameter

Seed Specifies an initial seed value.

Return Values
Upon successful completion, the rand subroutine returns the next random number in
sequence. The srand subroutine returns no value.

There are better random number generators, as noted above; however, the rand and srand
subroutines are the interfaces defined for the ANSI C library.

rand

1-943Base Operating System Runtime Services (Q-Z)

Example
The following functions define the semantics of the rand and srand subroutines, and are
included here to facilitate porting applications from different implementations:

static unsigned int next = 1;

int rand()

{

next = next

*

 1103515245 + 12345;

return ((next >>16) & 32767);

}

void srand (Seed)

unsigned

int Seed;

{

next = Seed;

}

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, or
lcong48 subroutine, random, srandom, initstate, or setstate subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

rand_r

1-944 Technical Reference: Base Operating System

rand_r Subroutine

Purpose
Generates pseudo–random numbers.

Libraries
Thread–Safe C Library (libc_r.a)

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <stdlib.h>

int rand_r (Seed)
unsigned int *Seed;

Description
The rand_r subroutine generates and returns a pseudo–random number using a
multiplicative congruential algorithm. The random–number generator has a period of 2**32,
and it returns successive pseudo–random numbers.

Note: The rand_r subroutine is a simple random–number generator. Its spectral
properties (the mathematical measurement of the randomness of a number sequence)
are limited. See the drand48 subroutine or the random subroutine for more elaborate
random–number generators that have greater spectral properties.

Parameter

Seed Specifies an initial seed value.

Return Values

0 Indicates that the subroutines was successful.

–1 Indicates that the subroutines was not successful.

Error Codes
If the following condition occurs, the rand_r subroutine sets the errno global variable to the
corresponding value.

EINVAL The Seed parameter specifies a null value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs using this subroutine must link to the libpthreads.a library.

File

/usr/include/sys/types.h Defines system macros, data types, and subroutines.

Related Information
The drand48, erand48_r, lrand48_r, nrand48_r, mrand48_r, jrand48_r, srand48_r,
seed48_r, or lcong48_r subroutine, random, srandom_r, initstate_r, or setstate_r
subroutine.

Subroutines Overview and List of Multithread Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

random

1-945Base Operating System Runtime Services (Q-Z)

random, srandom, initstate, or setstate Subroutine

Purpose
Generates pseudo–random numbers more efficiently.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

long random ()

void srandom (Seed)
unsigned int Seed;

char *initstate (Seed, State, Number)
unsigned int Seed;
char *State;
size_t Number;

char *setstate (State)
const char *State;

Description
Attention: Do not use the random, srandom, initstate, or setstate subroutine in a
multithreaded environment. See the multithread alternatives in the random_r,
srandom_r, initstate_r, or setstate_r subroutine article.

Attention: Do not use the random, srandom, initstate, or setstate subroutine in a
multithreaded environment.

The random subroutine uses a non–linear additive feedback random–number generator
employing a default–state array size of 31 long integers to return successive
pseudo–random numbers in the range from 0 to 2**31–1. The period of this random number
generator is very large, approximately 16 * (2**31–1). The size of the state array determines
the period of the random number generator. Increasing the state array size increases the
period.

With a full 256 bytes of state information, the period of the random–number generator is
greater than 2**69, which should be sufficient for most purposes.

The random and srandom subroutines have almost the same calling sequence and
initialization properties as the rand and srand subroutines. The difference is that the rand
subroutine produces a much less random sequence; in fact, the low dozen bits generated
by the rand subroutine go through a cyclic pattern. All the bits generated by the random
subroutine are usable. For example, random()&01 produces a random binary value.

The srandom subroutine, unlike the srand subroutine, does not return the old seed
because the amount of state information used is more than a single word. The initstate
subroutine and setstate subroutine handle restarting and changing random–number
generators. Like the rand subroutine, however, the random subroutine by default produces
a sequence of numbers that can be duplicated by calling the srandom subroutine with 1 as
the seed.

The initstate subroutine allows a state array, passed in as an argument, to be initialized for
future use. The size of the state array (in bytes) is used by the initstate subroutine, to
decide how sophisticated a random–number generator it should use; the larger the state
array, the more random are the numbers. Values for the amount of state information are 8,
32, 64, 128, and 256 bytes. For amounts greater than or equal to 8 bytes, or less than 32
bytes, the random subroutine uses a simple linear congruential random number generator,

random

1-946 Technical Reference: Base Operating System

while other amounts are rounded down to the nearest known value. The Seed parameter
specifies a starting point for the random–number sequence and provides for restarting at the
same point. The initstate subroutine returns a pointer to the previous state information
array.

Once a state has been initialized, the setstate subroutine allows rapid switching between
states. The array defined by State parameter is used for further random–number generation
until the initstate subroutine is called or the setstate subroutine is called again. The
setstate subroutine returns a pointer to the previous state array.

After initialization, a state array can be restarted at a different point in one of two ways:

• The initstate subroutine can be used, with the desired seed, state array, and size of the
array.

• The setstate subroutine, with the desired state, can be used, followed by the srandom
subroutine with the desired seed. The advantage of using both of these subroutines is
that the size of the state array does not have to be saved once it is initialized.

Parameters

Seed Specifies an initial seed value.

State Points to the array of state information.

Number Specifies the size of the state information array.

Error Codes
If the initstate subroutine is called with less than 8 bytes of state information, or if the
setstate subroutine detects that the state information has been damaged, error messages
are sent to standard error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or
srand48 subroutine, rand or srand subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

read

1-947Base Operating System Runtime Services (Q-Z)

read, readx, readv, or readvx Subroutine

Purpose
Reads from a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

ssize_t read (FileDescriptor,
 Buffer, NBytes)
int FileDescriptor;
void *Buffer;
size_t NBytes;

int readx (FileDescriptor,
;Buffer, NBytes, Extension)
int FileDescriptor;
char * Buffer;
unsigned int NBytes;
int Extension;

#include <sys/uio.h>

ssize_t readv (FileDescriptor,
iov, iovCount)
int FileDescriptor;
const struct iovec *iov;
int iovCount;

int readvx (FileDescriptor, iov, iovCount, Extension)
int FileDescriptor;
struct iovec *iov;
int iovCount;
int Extension;

#include <unistd.h>

ssize_t pread (int fildes, void *buf, size_t nbyte, off_t
offset);

Description
The read subroutine attempts to read NBytes of data from the file associated with the
FileDescriptor parameter into the buffer pointed to by the Buffer parameter.

The readv subroutine performs the same action but scatters the input data into the iovCount
buffers specified by the array of iovec structures pointed to by the iov parameter. Each
iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv subroutine always fills an area completely before proceeding to the
next.

The readx and readvx subroutines are the same as the read and readv subroutines,
respectively, with the addition of an Extension parameter, which is needed when reading
from some device drivers and when reading directories. While directories can be read
directly, it is recommended that the opendir and readdir calls be used instead, as this is a
more portable interface.

read

1-948 Technical Reference: Base Operating System

On regular files and devices capable of seeking, the read starts at a position in the file given
by the file pointer associated with the FileDescriptor parameter. Upon return from the read
subroutine, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a
file pointer associated with such a file is undefined.

On directories, the readvx subroutine starts at the position specified by the file pointer
associated with the FileDescriptor parameter. The value of this file pointer must be either 0
or a value which the file pointer had immediately after a previous call to the readvx
subroutine on this directory. Upon return from the readvx subroutine, the file pointer
increments by a number that may not correspond to the number of bytes copied into the
buffers.

When attempting to read from an empty pipe (first–in–first–out (FIFO)):

• If no process has the pipe open for writing, the read returns 0 to indicate end–of–file.

• If some process has the pipe open for writing:

– If O_NDELAY and O_NONBLOCK are clear (the default), the read blocks until some
data is written or the pipe is closed by all processes that had opened the pipe for
writing.

– If O_NDELAY is set, the read subroutine returns a value of 0.

– If O_NONBLOCK is set, the read subroutine returns a value of –1 and sets the global
variable errno to EAGAIN.

When attempting to read from a character special file that supports nonblocking reads, such
as a terminal, and no data is currently available:

• If O_NDELAY and O_NONBLOCK are clear (the default), the read subroutine blocks
until data becomes available.

• If O_NDELAY is set, the read subroutine returns 0.

• If O_NONBLOCK is set, the read subroutine returns –1 and sets the errno global
variable to EAGAIN if no data is available.

When attempting to read a regular file that supports enforcement mode record locks, and all
or part of the region to be read is currently locked by another process:

• If O_NDELAY and O_NONBLOCK are clear, the read blocks the calling process until the
lock is released.

• If O_NDELAY or O_NONBLOCK is set, the read returns –1 and sets the global variable
errno to EAGAIN.

The behavior of an interrupted read subroutine depends on how the handler for the arriving
signal was installed.

Note: A read from a regular file is not interruptible. Only reads from objects that may
block indefinitely, such as FIFOs, sockets, and some devices, are generally interruptible.

If the handler was installed with an indication that subroutines should not be restarted, the
read subroutine returns a value of –1 and the global variable errno is set to EINTR (even if
some data was already consumed).

read

1-949Base Operating System Runtime Services (Q-Z)

If the handler was installed with an indication that subroutines should be restarted:

• If no data had been read when the interrupt was handled, this read will not return a value
(it is restarted).

• If data had been read when the interrupt was handled, this read subroutine returns the
amount of data consumed.

 The pread function performs the same action as read, except that it reads from a given
position in the file without changing the file pointer. The first three arguments to pread are
the same as read with the addition of a fourth argument offset for the desired position inside
the file. An attempt to perform a pread on a file that is incapable of seeking results in an
error.

read

1-950 Technical Reference: Base Operating System

Parameters

FileDescriptor A file descriptor identifying the object to be read.

Extension Provides communication with character device drivers that require
additional information or return additional status. Each driver interprets
the Extension parameter in a device–dependent way, either as a value
or as a pointer to a communication area. Drivers must apply reasonable
defaults when the value of the Extension parameter is 0.

For directories, the Extension parameter determines the format in which
directory entries should be returned:

• If the value of the Extension parameter is 0, the format in which
directory entries are returned depends on the value of the real
directory read flag (described in the ulimit subroutine).

• If the calling process does not have the real directory read flag set,
the buffers are filled with an array of directory entries truncated to fit
the format of the System V directory structure. This provides
compatibility with programs written for UNIX System V.

• If the calling process has the real directory read flag set (see the
ulimit subroutine), the buffers are filled with an image of the
underlying implementation of the directory.

• If the value of the Extension parameter is 1, the buffers are filled with
consecutive directory entries in the format of a dirent structure. This
is logically equivalent to the readdir subroutine.

• Other values of the Extension parameter are reserved.

For tape devices, the Extension parameter determines the response of
the readx subroutine when the tape drive is in variable block mode and
the read request is for less than the tape’s block size.

• If the value of the Extension parameter is TAPE_SHORT_READ, the
readx subroutine returns the number of bytes requested and sets the
errno global variable to a value of 0.

• If the value of the Extension parameter is 0, the readx subroutine
returns a value of 0 and sets the errno global variable to ENOMEM.

iov Points to an array of iovec structures that identifies the buffers into
which the data is to be placed. The iovec structure is defined in the
sys/uio.h file and contains the following members:

caddr_t iov_base;

size_t iov_len;

read

1-951Base Operating System Runtime Services (Q-Z)

iovCount Specifies the number of iovec structures pointed to by the iov
parameter.

Buffer Points to the buffer.

NBytes Specifies the number of bytes read from the file associated with the
FileDescriptor parameter.

Note: When reading tapes, the read subroutines consume a
physical tape block on each call to the subroutine. If the physical
data block size is larger than specified by the Nbytes parameter, an
error will be returned, since all of the data from the read will not fit
into the buffer specified by the read.

To avoid read errors due to unknown blocking sizes on tapes, set the
NBytes parameter to a very large value (such as 32K bytes).

Return Values
Upon successful completion, the read, readx, readv, readvx, and pread subroutines return
the number of bytes actually read and placed into buffers. The system guarantees to read
the number of bytes requested if the descriptor references a normal file that has the same
number of bytes left before the end of the file is reached, but in no other case.

A value of 0 is returned when the end of the file has been reached. (For information about
communication files, see the ioctl and termio files.)

Otherwise, a value of –1 is returned, the global variable errno is set to identify the error, and
the content of the buffer pointed to by the Buffer or iov parameter is indeterminate.

Error Codes
The read, readx, readv, readvx, and pread subroutines are unsuccessful if one or more of
the following are true:

EBADMSG The file is a STREAM file that is set to control–normal mode and the
message waiting to be read includes a control part.

EBADF The FileDescriptor parameter is not a valid file descriptor open for
reading.

EINVAL The file position pointer associated with the FileDescriptor parameter
was negative.

EINVAL The sum of the iov_len values in the iov array was negative or
overflowed a 32–bit integer.

EINVAL The value of the iovCount parameter was not between 1 and 16,
inclusive.

EINVAL The STREAM or multiplexer referenced by FileDescriptor is linked
(directly or indirectly) downstream from a multiplexer.

EAGAIN The file was marked for non–blocking I/O, and no data was ready to be
read.

EFAULT The Buffer or part of the iov points to a location outside of the allocated
address space of the process.

EDEADLK A deadlock would occur if the calling process were to sleep until the
region to be read was unlocked.

EINTR A read was interrupted by a signal before any data arrived, and the
signal handler was installed with an indication that subroutines are not
to be restarted.

read

1-952 Technical Reference: Base Operating System

EIO An I/O error occurred while reading from the file system.

EIO The process is a member of a background process attempting to read
from its controlling terminal, and either the process is ignoring or
blocking the SIGTTIN signal or the process group has no parent
process.

Note: The EOVERFLOW error code applies to Version 4.2 and later releases.

EOVERFLOW An attempt was made to read from a regular file where NBytes was
greater than zero and the starting offset was before the end–of–file and
was greater than or equal to the offset maximum established in the
open file description associated with FileDescriptor.

The read, readx, readv, readvx and pread subroutines may be unsuccessful if the
following is true:

ENXIO A request was made of a nonexistent device, or the request was
outside the capabilities of the device.

ESPIPE fildes is associated with a pipe or FIFO.

If Network File System (NFS) is installed on the system, the read system call can also fail if
the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fcntl, dup, or dup2 subroutine, ioctl subroutine, lockfx subroutine, lseek subroutine,
open, openx, or creat subroutine, opendir, readdir, or seekdir subroutine, pipe
subroutine, poll subroutine, socket subroutine, socketpair subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

readdir_r

1-953Base Operating System Runtime Services (Q-Z)

readdir_r Subroutine

Purpose
Reads a directory.

Library
Thread–Safe C Library (libc_r.a)

Syntax
#include <sys/types.h>
#include <dirent.h>

int readdir_r (DirectoryPointer, Entry, Result)
DIR *DirectoryPointer;
struct dirent *Entry;
struct dirent **Result;

Description
The readdir_r subroutine returns the directory entry in the structure pointed to by the Result
parameter. The readdir_r subroutine returns entries for the . (dot) and .. (dot–dot)
directories, if present, but never returns an invalid entry (with d_ino set to 0). When it
reaches the end of the directory, or when it detects an invalid seekdir operation, the
readdir_r subroutine returns a 9.

Note: The readdir subroutine is reentrant when an application program uses different
DirectoryPointer parameter values (returned from the opendir subroutine). Use the
readdir_r subroutine when multiple threads use the same directory pointer.

Using the readdir_r subroutine after the closedir subroutine, for the structure pointed to by
the DirectoryPointer parameter, has an undefined result. The structure pointed to by the
DirectoryPointer parameter becomes invalid for all threads, including the caller.

Parameters

DirectoryPointer Points to the DIR structure of an open directory.

Entry Points to a structure that contains the next directory entry.

Result Points to the directory entry specified by the Entry parameter.

Return Values

0 Indicates that the subroutines was successful.

9 Indicates that the subroutines was not successful.

Error Codes
If the readdir_r subroutine is unsuccessful, the errno global variable is set to one of the
following values:

EACCES Search permission is denied for any component of the structure
pointed to by the DirectoryPointer parameter, or read permission is
denied for the structure pointed to by the DirectoryPointer parameter.

ENAMETOOLONG The length of the DirectoryPointer parameter exceeds the value of
the PATH_MAX variable, or a path–name component is longer than
the value of NAME_MAX variable while the _POSIX_NO_TRUNC
variable is in effect.

readdir_r

1-954 Technical Reference: Base Operating System

ENOENT The named directory does not exist.

ENOTDIR A component of the structure pointed to by the DirectoryPointer
parameter is not a directory.

EMFILE Too many file descriptors are currently open for the process.

ENFILE Too many file descriptors are currently open in the system.

EBADF The structure pointed to by the DirectoryPointer parameter does not
refer to an open directory stream.

Examples
To search a directory for the entry name,enter:

len = strlen(name);

DirectoryPointer = opendir(”.”);

for (readdir_r(DirectoryPointer, &Entry,

&Result); Result != NULL;

 readdir_r(DirectoryPointer, &Entry, &Result))

 if (dp–>d_namlen == len && !strcmp(dp–>d_name, name)) {

 closedir(DirectoryPointer);

 return FOUND;

 }

closedir(DirectoryPointer);

return NOT_FOUND;

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs using this subroutine must link to the libpthreads.a library.

Related Information
The close subroutine, exec subroutines, fork subroutine, lseek subroutine, openx, open,
or creat subroutine, read, readv, readx, or readvx subroutine, scandir or alphasort
subroutine.

The opendir, readdir, telldir, seekdir, rewinddir, or closedir subroutine.

Subroutines Overview, List of File and Directory Manipulation Services, and List of
Multithread Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

readlink

1-955Base Operating System Runtime Services (Q-Z)

readlink Subroutine

Purpose
Reads the contents of a symbolic link.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
int readlink (Path, Buffer, BufferSize)
const char *Path;
char *Buffer;
size_t BufferSize;

Description
The readlink subroutine copies the contents of the symbolic link named by the Path
parameter in the buffer specified in the Buffer parameter. The BufferSize parameter
indicates the size of the buffer in bytes. If the actual length of the symbolic link is less than
the number of bytes specified in the BufferSize parameter, the string copied into the buffer
will be null–terminated. If the actual length of the symbolic link is greater than the number of
bytes specified in the Buffersize parameter, an error is returned. The length of a symbolic
link cannot exceed 1023 characters or the value of the PATH_MAX constant. PATH_MAX is
defined in the limits.h file.

Parameters

Path Specifies the path name of the destination file or directory.

Buffer Points to the user’s buffer. The buffer should be at least as large as the
BufferSize parameter.

BufferSize Indicates the size of the buffer. The contents of the link are
null–terminated, provided there is room in the buffer.

Return Values
Upon successful completion, the readlink subroutine returns a count of the number of
characters placed in the buffer (not including any terminating null character). If the readlink
subroutine is unsuccessful, the buffer is not modified, a value of –1 is returned, and the
errno global variable is set to indicate the error.

Error Codes
The readlink subroutine fails if one or both of the following are true:

ENOENT The file named by the Path parameter does not exist, or the path points
to an empty string.

EINVAL The file named by the Path parameter is not a symbolic link.

ERANGE The path name in the symbolic link is longer than the BufferSize value.

The readlink subroutine can also fail due to additional errors. See Appendix A,”Base
Operating System Error Codes for Services That Require Path–Name Resolution” on page
A–1 for a list of additional error codes.

If Network File System (NFS) is installed on the system, the readlink subroutine can also
fail if the following is true:

readlink

1-956 Technical Reference: Base Operating System

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ln command.

The link subroutine, statx, stat, fstatx, fstat, fullstat, or ffullstat subroutine, symlink
subroutine, unlink subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

read_real_time

1-957Base Operating System Runtime Services (Q-Z)

read_real_time or time_base_to_time Subroutine

Purpose
Read the processor real time clock or time base registers to obtain high–resolution elapsed
time.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include (sys/systemcfg.h>

int read_real_time(timebasestruct_t *t,
 size_t size_of_timebasestruct_t);

int time_base_to_time(timebasestruct_t *t,
 size_t size_of_timebasestruct_t);

Description
These subroutines are designed to be used for making high–resolution measurement of
elapsed time, using the processor real time clock or time base registers. The
read_real_time subroutine reads the value of the appropriate registers and stores them in a
structure. The time_base_to_time subroutine converts time base data to real time, if
necessary. This process is divided into two steps because the process of reading the time is
usually part of the timed code, and so the conversion from time base to real time can be
moved out of the timed code.

The read_real_time subroutine reads either the processor real time clock (for POWER or
PowerPC 601 RISC Microprocessor) or the time base register (in the case of PowerPC
processors other than the PowerPC 601 RISC Microprocessor). The t argument is a pointer
to a timebasestruct_t, where the time values are recorded.

After calling read_real_time, if running on a processor with a real time clock, t–>tb_high
and t–>tb_low contain the current clock values (seconds and nanoseconds), and t–>flag
contains the RTC_POWER.

If running on a processor with a time base register, t–>tb_high and t–tb_low contain the
current values of the time base register, and t–>flag contains RTC_POWER_PPC.

The time_base_to_time subroutine converts time base information to real time, if
necessary. It is recommended that applications unconditionally call the time_base_to_time
subroutine rather than performing a check to see if it is necessary.

If t–>flag is RTC_POWER, the subroutine simply returns (the data is already in real time
format).

If t–>flag is RTC_POWER_PPC, the time base information in t–>tb_high and t–>tb_low is
converted to seconds and nanoseconds; t–>tb_high is replaced by the seconds; t–>tb_low
is replaced by the nanoseconds; and t–>flag is changed to RTC_POWER.

Parameters

t Points to a timebasestruct_t.

Return Values
The read_real_time subroutine returns RTC_POWER if the contents of the real time clock
has been recorded in the timebasestruct, or returns RTC_POWER_PPC if the content of the
time base registers has been recorded in the timebasestruct.

The time_base_to_time subroutine returns 0 if the conversion to real time is successful (or
not necessary), otherwise –1 is returned.

read_real_time

1-958 Technical Reference: Base Operating System

Examples
This example shows the time it takes for print_f to print the comment between the begin
and end time codes:

#include <stdio.h>

#include <sys/time.h>

int

main(void)

{

 timebasestruct_t start, finish;

 int val = 3;

 int secs, n_secs;

 /* get the time before the operation begins */

 read_real_time(&start, TIMEBASE_SZ);

 /* begin code to be timed */

 (void) printf(”This is a sample line %d \n”, val);

 /* end code to be timed */

 /* get the time after the operation is complete */

 read_real_time(&finish, TIMEBASE_SZ);

 /*

 * Call the conversion routines unconditionally, to ensure

 * that both values are in seconds and nanoseconds regardless

 * of the hardware platform.

 */

 time_base_to_time(&start, TIMEBASE_SZ);

 time_base_to_time(&finish, TIMEBASE_SZ);

 /* subtract the starting time from the ending time */

 secs = finish.tb_high – start.tb_high;

 n_secs = finish.tb_low – start.tb_low;

 /*

 * If there was a carry from low–order to high–order during

 * the measurement, we may have to undo it.

 */

 if (n_secs < 0) {

 secs––;

 n_secs += 1000000000;

 }

 (void) printf(”Sample time was %d seconds %d nanoseconds\n”,

 secs, n_secs);

 exit(0);

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The gettimer, settimer, restimer, stime, or time Subroutines.

The getrusage, times, or vtimes Subroutines.

High–Resolution Time Measurements Using PowerPC Time Base or POWER Real–Time
Clock in AIX General Programming Concepts : Writing and Debugging Programs.

realpath

1-959Base Operating System Runtime Services (Q-Z)

realpath Subroutine

Purpose
Resolves path names.

Library
Standard C Library (libc.a)

Syntax #include <stdlib.h>
char *realpath (const char *file_name,
char *resolved_name)

Description
The realpath subroutine performs filename expansion and path name resolution in
file_name and stores it in resolved_name.

The realpath subroutine can handle both relative and absolute path names. For both
absolute and relative path names, the realpath subroutine returns the resolved absolute
path name.

The character pointed to by resolved_name must be big enough to contain the fully resolved
path name. The value of PATH_MAX (defined in limits.h header file may be used as an
appropriate array size.

Return Values
On successful completion, the realpath subroutine returns a pointer to the resolved name.
Otherwise, it returns a null pointer, and sets errno to indicate the error. If the realpath
subroutine encounters an error, the contents of resolved_name are undefined.

Error Codes
Under the following conditions, the realpath subroutine fails and sets errno to:

EACCES Read or search permission was denied for a component of the path
name.

EINVAL File_name or resolved_name is a null pointer.

ELOOP Too many symbolic links are encountered in translating file_name.

ENAMETOOLO
NG

The length of file_name or resolved_name exceeds PATH_MAX or a
path name component is longer than NAME_MAX.

ENOENT The file_name parameter does not exist or points to an empty string.

ENOTDIR A component of the file_name prefix is not a directory.

The realpath subroutine may fail if:

ENOMEM Insufficient storage space is available.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getcwd or sysconf subroutine.

reboot

1-960 Technical Reference: Base Operating System

reboot Subroutine

Purpose
Restarts the system.

Library
Standard C Library (libc.a)

Syntax
#include <sys/reboot.h>

void reboot (HowTo, Argument)
int HowTo;
void *Argument;

Description
The reboot subroutine restarts or re–initial program loads (IPL) the system. The startup is
automatic and brings up /unix in the normal, nonmaintenance mode.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is
passed in case of 64–bit application calling 32–bit kernel interface.

The calling process must have root user authority in order to run this subroutine
successfully.

Attention: Users of the reboot subroutine are not portable. The reboot subroutine is
intended for use only by the halt, reboot, and shutdown commands.

Parameters

HowTo

 Specifies one of the following values:

RB_SOFTIPL Soft IPL.

RB_HALT Halt operator; turn the power off.

RB_POWIPL Halt operator; turn the power off. Wait a specified length
of time, and then turn the power on.

Argument Specifies the amount of time (in seconds) to wait between turning the
power off and turning the power on. This option is not supported on all
models. Please consult your hardware technical reference for more details.

Return Values
Upon successful completion, the reboot subroutine does not return a value. If the reboot
subroutine fails, a value of –1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The reboot subroutine is unsuccessful if any of the following is true:

reboot

1-961Base Operating System Runtime Services (Q-Z)

EPERM The calling process does not have root user authority.

EINVAL The HowTo value is not valid.

EFAULT The Argument value is not a valid address.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The halt command, reboot command, shutdown command.

re_comp

1-962 Technical Reference: Base Operating System

re_comp or re_exec Subroutine

Purpose
Regular expression handler.

Library
Standard C Library (libc.a)

Syntax
char *re_comp(String)
const char *String;

int re_exec(String)
const char *String;

Description
Attention: Do not use the re_comp or re_exec subroutine in a multithreaded
environment. See the multithread alternatives in the re_comp_r or re_exec_r subroutine
article.

Attention: Do not use the re_comp or re_exec subroutine in a multithreaded
environment.

The re_comp subroutine compiles a string into an internal form suitable for pattern
matching. The re_exec subroutine checks the argument string against the last string
passed to the re_comp subroutine.

The re_comp subroutine returns 0 if the string pointed to by the String parameter was
compiled successfully; otherwise a string containing an error message is returned. If the
re_comp subroutine is passed 0 or a null string, it returns without changing the currently
compiled regular expression.

The re_exec subroutine returns 1 if the string pointed to by the String parameter matches
the last compiled regular expression, 0 if the string pointed to by the String parameter failed
to match the last compiled regular expression, and –1 if the compiled regular expression
was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec subroutines may have trailing or
embedded newline characters; they are terminated by nulls. The regular expressions
recognized are described in the manual entry for the ed command, given the above
difference.

Parameters

String Points to a string that is to be matched or compiled.

Return Values
If an error occurs, the re_exec subroutine returns a –1, while the re_comp subroutine
returns one of the following strings:

• No previous regular expression

• Regular expression too long

• unmatched \(

• missing]

• too many \(\) pairs

• unmatched \)

re_comp

1-963Base Operating System Runtime Services (Q-Z)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The compile, step, or advance subroutine, regcmp or regex subroutine.

The ed command, sed command, grep command.

National Language Support Overview for Programming and Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

regcmp

1-964 Technical Reference: Base Operating System

regcmp or regex Subroutine

Purpose
Compiles and matches regular–expression patterns.

Libraries
Standard C Library (libc.a)

Programmers Workbench Library (libPW.a)

Syntax
#include <libgen.h>

char *regcmp (String [, String, . . .], (char *) 0)
const char *String, . . . ;

const char *regex (Pattern, Subject [, ret, . . .])
char *Pattern, *Subject, *ret, . . . ;
extern char *__loc1;

Description
The regcmp subroutine compiles a regular expression (or Pattern) and returns a pointer to
the compiled form. The regcmp subroutine allows multiple String parameters. If more than
one String parameter is given, then the regcmp subroutine treats them as if they were
concatenated together. It returns a null pointer if it encounters an incorrect parameter.

You can use the regcmp command to compile regular expressions into your C program,
frequently eliminating the need to call the regcmp subroutine at run time.

The regex subroutine compares a compiled Pattern to the Subject string. Additional
parameters are used to receive values. Upon successful completion, the regex subroutine
returns a pointer to the next unmatched character. If the regex subroutine fails, a null
pointer is returned. A global character pointer, __loc1, points to where the match began.

The regcmp and regex subroutines are borrowed from the ed command; however, the
syntax and semantics have been changed slightly. You can use the following symbols with
the regcmp and regex subroutines:

[] * . ^ These symbols have the same meaning as they do in the ed command.

– The minus sign (or hyphen) within brackets used with the regex
subroutine means ”through,” according to the current collating
sequence. For example, [a–z] can be equivalent to [abcd . . . xyz] or
[aBbCc . . . xYyZz]. You can use the – by itself if the – is the last or first
character. For example, the character class expression [] –] matches
the] (right bracket) and – (minus) characters.

The regcmp subroutine does not use the current collating sequence,
and the minus sign in brackets controls only a direct ASCII
sequence. For example, [a–z] always means [abc . . . xyz] and [A–Z]
always means [ABC . . . XYZ] . If you need to control the specific
characters in a range using the regcmp subroutine, you must list
them explicitly rather than using the minus sign in the character class
expression.

$ Matches the end of the string. Use the \n character to match a new–line
character.

regcmp

1-965Base Operating System Runtime Services (Q-Z)

+ A regular expression followed by + (plus sign) means one or more
times. For example, [0–9] + is equivalent to [0–9] [0–9] *.

[m] [m,] [m, u] Integer values enclosed in [] (braces) indicate the number of times to
apply the preceding regular expression. The m character is the
minimum number and the u character is the maximum number. The u
character must be less than 256. If you specify only m, it indicates the
exact number of times to apply the regular expression. [m,] is equivalent
to [m,u.] and matches m or more occurrences of the expression. The +
(plus sign) and * (asterisk) operations are equivalent to [1,] and [0,],
respectively.

(. . .)$n This stores the value matched by the enclosed regular expression in the
(n+1)th ret parameter. Ten enclosed regular expressions are allowed.
The regex subroutine makes the assignments unconditionally.

(. . .) Parentheses group subexpressions. An operator, such as *, +, or []
works on a single character or on a regular expression enclosed in
parentheses. For example, (a*(cb+)*)$0.

All of the preceding defined symbols are special. You must precede them with a \
(backslash) if you want to match the special symbol itself. For example, \$ matches a dollar
sign.

Note: The regcmp subroutine uses the malloc subroutine to make the space for the
vector. Always free the vectors that are not required. If you do not free the unneeded
vectors, you can run out of memory if the regcmp subroutine is called repeatedly.
Use the following as a replacement for the malloc subroutine to reuse the same
vector, thus saving time and space:

/* . . . Your Program . . . */

malloc(n)

 int n;

{

 static int rebuf[256] ;

 return ((n <= sizeof(rebuf)) ? rebuf : NULL);

}

The regcmp subroutine produces code values that the regex subroutine can interpret as
the regular expression. For instance, [a–z] indicates a range expression which the regcmp
subroutine compiles into a string containing the two end points (a and z).

The regex subroutine interprets the range statement according to the current collating
sequence. The expression [a–z] can be equivalent either to [abcd . . . xyz] , or to
[aBbCcDd . . . xXyYzZ], as long as the character preceding the minus sign has a lower
collating value than the character following the minus sign.

The behavior of a range expression is dependent on the collation sequence. If you want to
match a specific set of characters, you should list each one. For example, to select letters a,
b, or c, use [abc] rather than [a–c] .

Notes:

1. No assumptions are made at compile time about the actual characters contained in the
range.

2. Do not use multibyte characters.

3. You can use the] (right bracket) itself within a pair of brackets if it immediately follows
the leading [(left bracket) or [^ (a left bracket followed immediately by a circumflex).

4. You can also use the minus sign (or hyphen) if it is the first or last character in the
expression. For example, the expression [] –0] matches either the right bracket (]), or
the characters – through 0.

regcmp

1-966 Technical Reference: Base Operating System

Matching a Character Class in National Language Support
A common use of the range expression is matching a character class. For example, [0–9]
represents all digits, and [a–z, A–Z] represents all letters. This form may produce
unexpected results when ranges are interpreted according to the current collating
sequence.

Instead of the range expression shown above, use a character class expression within
brackets to match characters. The system interprets this type of expression according to the
current character class definition. However, you cannot use character class expressions in
range expressions.

The following exemplifies the syntax of a character class expression:

[:charclass:]

that is, a left bracket followed by a colon, followed by the name of the character class,
followed by another colon and a right bracket.

National Language Support supports the following character classes:

[:upper:] ASCII uppercase letters.

[:lower:] ASCII lowercase letters.

[:alpha:] ASCII uppercase and lowercase letters.

[:digit:] ASCII digits.

[:alnum:] ASCII uppercase and lowercase letters, and digits.

[:xdigit:] ASCII hexadecimal digits.

[:punct:] ASCII punctuation character (neither a control character nor an
alphanumeric character).

[:space:] ASCII space, tab, carriage return, new–line, vertical tab, or form feed
character.

[:print:] ASCII printing characters.

Parameters

Subject Specifies a comparison string.

String Specifies the Pattern to be compiled.

Pattern Specifies the expression to be compared.

ret Points to an address at which to store comparison data. The regex
subroutine allows multiple ret String parameters.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ctype subroutine, compile, step, or advance subroutine, malloc, free, realloc, calloc,
mallopt, mallinfo, or alloca subroutine, regcomp, regex subroutine.

The ed command, regcmp command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

regcomp

1-967Base Operating System Runtime Services (Q-Z)

regcomp Subroutine

Purpose
Compiles a specified basic or extended regular expression into an executable string.

Library
Standard C Library (libc. a)

Syntax
#include <regex.h>

int regcomp (Preg, Pattern, CFlags)
const char *Preg;
const char *Pattern;
int CFlags;

Description
The regcomp subroutine compiles the basic or extended regular expression specified by
the Pattern parameter and places the output in the structure pointed to by the Preg
parameter.

Parameters

Preg Specifies the structure to receive the compiled output of the regcomp
subroutine.

Pattern Contains the basic or extended regular expression to be compiled by
the regcomp subroutine.

The default regular expression type for the Pattern parameter is a
basic regular expression. An application can specify extended
regular expressions with the REG_EXTENDED flag.

CFlags

Contains the bitwise inclusive OR of 0 or more flags for the regcomp
subroutine. These flags are defined in the regex.h file:

REG_EXTENDED
Uses extended regular expressions.

REG_ICASE Ignores case in match.

REG_NOSUB Reports only success or failure in the regexec
subroutine. If this flag is not set, the regcomp
subroutine sets the re_nsub structure to the number of
parenthetic expressions found in the Pattern parameter.

REG_NEWLINE
Prohibits . (period) and nonmatching bracket
expression from matching a new–line character. The ^
(circumflex) and $ (dollar sign) will match the
zero–length string immediately following or preceding a
new–line character.

Return Values
If successful, the regcomp subroutine returns a value of 0. Otherwise, it returns another
value indicating the type of failure, and the content of the Preg parameter is undefined.

regcomp

1-968 Technical Reference: Base Operating System

Error Codes
The following macro names for error codes may be written to the errno global variable
under error conditions:

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class–type reference that is not valid.

REG_EESCAPE Indicates a trailing \ in pattern.

REG_ESUBREG Indicates a number in \digit is not valid or in error.

REG_EBRACK Indicates a [] imbalance.

REG_EPAREN Indicates a \(\) or () imbalance.

REG_EBRACE Indicates a \{\} imbalance.

REG_BADBR Indicates the content of \{\} is unusable: not a number, number too
large, more than two numbers, or first number larger than second.

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not
preceded by valid basic or extended regular expression.

If the regcomp subroutine detects an illegal basic or extended regular expression, it can
return either the REG_BADPAT error code or another that more precisely describes the
error.

Examples
The following example illustrates how to match a string (specified in the string parameter)
against an extended regular expression (specified in the Pattern parameter):

#include <sys/types.h>

#include <regex.h>

int

match(char *string, char *pattern)

{

 int status;

 regex_t re;

 if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {

 return(0) ; /* report error */

 }

 status = regexec(&re, string, (size_t) 0, NULL, 0);

 regfree(&re);

 if (status != 0) {

 return(0) ; /* report error */

 }

 return(1);

}

In the preceding example, errors are treated as no match. When there is no match or error,
the calling process can get details by calling the regerror subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The regerror subroutine, regexec subroutine, regfree subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines
in AIX General Programming Concepts : Writing and Debugging Programs.

regerror

1-969Base Operating System Runtime Services (Q-Z)

regerror Subroutine

Purpose
Returns a string that describes the ErrCode parameter.

Library
Standard C Library (libc. a)

Syntax
#include <regex.h>

size_t regerror (ErrCode, Preg, ErrBuf, ErrBuf_Size)
int ErrCode;
const regex_t *Preg;
char *ErrBuf;
size_t ErrBuf_Size;

Description
The regerror subroutine provides a mapping from error codes returned by the regcomp
and regexec subroutines to printable strings. It generates a string corresponding to the
value of the ErrCode parameter, which is the last nonzero value returned by the regcomp
or regexec subroutine with the given value of the Preg parameter. If the ErrCode parameter
is not such a value, the content of the generated string is unspecified. The string generated
is obtained from the regex.cat message catalog.

If the ErrBuf_Size parameter is not 0, the regerror subroutine places the generated string
into the buffer specifier by the ErrBuf parameter, whose size in bytes is specified by the
ErrBuf_Size parameter. If the string (including the terminating null character) cannot fit in the
buffer, the regerror subroutine truncates the string and null terminates the result.

Parameters

ErrCode Specifies the error for which a description string is to be returned.

Preg Specifies the structure that holds the previously compiled output of the
regcomp subroutine.

ErrBuf Specifies the buffer to receive the string generated by the regerror
subroutine.

ErrBuf_Size Specifies the size of the ErrBuf parameter.

Return Values
The regerror subroutine returns the size of the buffer needed to hold the entire generated
string, including the null termination. If the return value is greater than the value of the
ErrBuf_Size variable, the string returned in the ErrBuf buffer is truncated.

Error Codes
If the ErrBuf_Size value is 0, the regerror subroutine ignores the ErrBuf parameter, but
returns the one of the following error codes. These error codes defined in the regex.h file.

REG_NOMATCH Indicates the basic or extended regular expression was unable to
find a match.

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class–type reference that is not valid.

regerror

1-970 Technical Reference: Base Operating System

REG_EESCAPE Indicates a trailing \ in pattern.

REG_ESUBREG Indicates a number in \digit is not valid or in error.

REG_EBRACK Indicates a [] imbalance.

REG_EPAREN Indicates a \(\) or () imbalance.

REG_EBRACE Indicates a \{\} imbalance.

REG_BADBR Indicates the content of \{\} is unusable: not a number, number too
large, more than two numbers, or first number larger than second.

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not
preceded by valid basic or extended regular expression.

REG_ENEWLINE Indicates a new–line character was found before the end of the
regular or extended regular expression, and REG_NEWLINE was
not set.

If the Preg parameter passed to the regexec subroutine is not a compiled basic or extended
regular expression returned by the regcomp subroutine, the result is undefined.

Examples
An application can use the regerror subroutine (with the parameters (Code, Preg, null,
(size_t) 0) passed to it) to determine the size of buffer needed for the generated string, call
the malloc subroutine to allocate a buffer to hold the string, and then call the regerror
subroutine again to get the string. Alternately, this subroutine can allocate a fixed, static
buffer that is large enough to hold most strings (perhaps 128 bytes), and then call the
malloc subroutine to allocate a larger buffer if necessary.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The regcomp subroutine, regexec subroutine, regfree subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines
in AIX General Programming Concepts : Writing and Debugging Programs.

regexec

1-971Base Operating System Runtime Services (Q-Z)

regexec Subroutine

Purpose
Compares the null–terminated string specified by the value of the String parameter against
the compiled basic or extended regular expression Preg, which must have previously been
compiled by a call to the regcomp subroutine.

Library
Standard C Library (libc. a)

Syntax
#include <regex.h>

int regexec (Preg, String, NMatch, PMatch, EFlags)
const regex_t *Preg;
const char *String;
size_t NMatch;
regmatch_t *PMatch;
int EFlags;

Description
The regexec subroutine compares the null–terminated string in the String parameter with
the compiled basic or extended regular expression in the Preg parameter initialized by a
previous call to the regcomp subroutine. If a match is found, the regexec subroutine
returns a value of 0. The regexec subroutine returns a nonzero value if it finds no match or
it finds an error.

If the NMatch parameter has a value of 0, or if the REG_NOSUB flag was set on the call to
the regcomp subroutine, the regexec subroutine ignores the PMatch parameter.
Otherwise, the PMatch parameter points to an array of at least the number of elements
specified by the NMatch parameter. The regexec subroutine fills in the elements of the
array pointed to by the PMatch parameter with offsets of the substrings of the String
parameter. The offsets correspond to the parenthetic subexpressions of the original pattern
parameter that was specified to the regcomp subroutine.

The pmatch.rm_so structure is the byte offset of the beginning of the substring, and the
pmatch.rm_eo structure is one greater than the byte offset of the end of the substring.
Subexpression i begins at the i th matched open parenthesis, counting from 1. The 0
element of the array corresponds to the entire pattern. Unused elements of the PMatch
parameter, up to the value PMatch[NMatch–1], are filled with –1. If more than the number of
subexpressions specified by the NMatch parameter (the pattern parameter itself counts as a
subexpression), only the first NMatch–1 subexpressions are recorded.

When a basic or extended regular expression is being matched, any given parenthetic
subexpression of the pattern parameter might match several different substrings of the
String parameter. Otherwise, it might not match any substring even though the pattern as a
whole did match.

The following rules are used to determine which substrings to report in the PMatch
parameter when regular expressions are matched:

• If a subexpression in a regular expression participated in the match several times, the
offset of the last matching substring is reported in the PMatch parameter.

• If a subexpression did not participate in a match, the byte offset in the PMatch parameter
is a value of –1. A subexpression does not participate in a match if any of the following
are true:

– An * (asterisk) or \{\} (backslash, left brace, backslash, right brace) appears
immediately after the subexpression in a basic regular expression.

regexec

1-972 Technical Reference: Base Operating System

– An * (asterisk), ? (question mark), or { } (left and right braces) appears immediately
after the subexpression in an extended regular expression and the subexpression did
not match (matched 0 times).

– A | (pipe) is used in an extended regular expression to select either the subexpression
that didn’t match or another subexpression, and the other subexpression matched.

• If a subexpression is contained in a subexpression, the data in the PMatch parameter
refers to the last such subexpression.

• If a subexpression is contained in a subexpression and the byte offsets in the PMatch
parameter have a value of –1, the pointers in the PMatch parameter also have a value of
–1.

• If a subexpression matched a zero–length string, the offsets in the PMatch parameter
refer to the byte immediately following the matching string.

If the REG_NOSUB flag was set in the cflags parameter in the call to the regcomp
subroutine, and the NMatch parameter is not equal to 0 in the call to the regexec
subroutine, the content of the PMatch array is unspecified.

If the REG_NEWLINE flag was not set in the cflags parameter when the regcomp
subroutine was called, then a new–line character in the pattern or String parameter is
treated as an ordinary character. If the REG_NEWLINE flag was set when the regcomp
subroutine was called, the new–line character is treated as an ordinary character except as
follows:

• A new–line character in the String parameter is not matched by a period outside of a
bracket expression or by any form of a nonmatching list. A nonmatching list expression
begins with a ^ (circumflex) and specifies a list that matches any character or collating
element and the expression in the list after the leading caret. For example, the regular
expression [^abc] matches any character except a, b, or c. The circumflex has this
special meaning only when it is the first character in the list, immediately following the left
bracket.

• A ^ (circumflex) in the pattern parameter, when used to specify expression anchoring,
matches the zero–length string immediately after a new–line character in the String
parameter, regardless of the setting of the REG_NOTBOL flag.

• A $ (dollar sign) in the pattern parameter, when used to specify expression anchoring,
matches the zero–length string immediately before a new–line character in the String
parameter, regardless of the setting of the REG_NOTEOL flag.

Parameters

Preg Contains the compiled basic or extended regular expression to compare
against the String parameter.

String Contains the data to be matched.

NMatch Contains the number of subexpressions to match.

regexec

1-973Base Operating System Runtime Services (Q-Z)

PMatch Contains the array of offsets into the String parameter that match the
corresponding subexpression in the Preg parameter.

EFlags

Contains the bitwise inclusive OR of 0 or more of the flags controlling
the behavior of the regexec subroutine capable of customizing.

The EFlags parameter modifies the interpretation of the contents of
the String parameter. It is the bitwise inclusive OR of 0 or more of the
following flags, which are defined in the regex.h file:

REG_NOTBOL The first character of the string pointed to by the String
parameter is not the beginning of the line. Therefore,
the ^ (circumflex), when used as a special character,
does not match the beginning of the String parameter.

REG_NOTEOL The last character of the string pointed to by the String
parameter is not the end of the line. Therefore, the $
(dollar sign), when used as a special character, does
not match the end of the String parameter.

Return Values
On successful completion, the regexec subroutine returns a value of 0 to indicate that the
contents of the String parameter matched the contents of the pattern parameter, or to
indicate that no match occurred. The REG_NOMATCH error is defined in the regex.h file.

Error Codes
If the regexec subroutine is unsuccessful, it returns a nonzero value indicating the type of
problem. The following macros for possible error codes that can be returned are defined in
the regex.h file:

REG_NOMATCH Indicates the basic or extended regular expression was unable to
find a match.

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class–type reference that is not valid.

REG_EESCAPE Indicates a trailing \ (backslash) in the pattern.

REG_ESUBREG Indicates a number in \digit is not valid or is in error.

REG_EBRACK Indicates a [] (left and right brackets) imbalance.

REG_EPAREN Indicates a \ (\) (backslash, left parenthesis, backslash, right
parenthesis) or () (left and right parentheses) imbalance.

REG_EBRACE Indicates a \ { \ } (backslash, left brace, backslash, right brace)
imbalance.

REG_BADBR Indicates the content of \ { \ } (backslash, left brace, backslash, right
brace) is unusable (not a number, number too large, more than two
numbers, or first number larger than second).

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not
preceded by valid basic or extended regular expression.

If the value of the Preg parameter to the regexec subroutine is not a compiled basic or
extended regular expression returned by the regcomp subroutine, the result is undefined.

regexec

1-974 Technical Reference: Base Operating System

Examples
The following example demonstrates how the REG_NOTBOL flag can be used with the
regexec subroutine to find all substrings in a line that match a pattern supplied by a user.
(For simplicity, very little error–checking is done in this example.)

(void) regcomp (&re, pattern, 0) ;

/* this call to regexec finds the first match on the line */

error = regexec (&re, &buffer[0], 1, &pm, 0) ;

while (error = = 0) { /* while matches found */

<subString found between pm.r._sp and pm.rm_ep>

/* This call to regexec finds the next match */

error = regexec (&re, pm.rm_ep, 1, &pm, REG_NOTBOL) ;

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The regcomp subroutine, regerror subroutine, regfree subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines
in AIX General Programming Concepts : Writing and Debugging Programs.

regfree

1-975Base Operating System Runtime Services (Q-Z)

regfree Subroutine

Purpose
Frees any memory allocated by the regcomp subroutine associated with the Preg
parameter.

Library
Standard C Library (libc. a)

Syntax
#include <regex.h>

void regfree (Preg)
regex_t *Preg;

Description
The regfree subroutine frees any memory allocated by the regcomp subroutine associated
with the Preg parameter. An expression defined by the Preg parameter is no longer treated
as a compiled basic or extended regular expression after it is given to the regfree
subroutine.

Parameters

Preg Structure containing the compiled output of the regcomp subroutine.
Memory associated with this structure is freed by the regfree
subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The regcomp subroutine, regerror subroutine, regexec subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines
in AIX General Programming Concepts : Writing and Debugging Programs.

reltimerid

1-976 Technical Reference: Base Operating System

reltimerid Subroutine

Purpose
Releases a previously allocated interval timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/events.h>

int reltimerid (TimerID)
timer_t TimerID;

Description
The reltimerid subroutine is used to release a previously allocated interval timer, which is
returned by the gettimerid subroutine. Any pending timer event generated by this interval
timer is cancelled when the call returns.

Parameters

TimerID Specifies the ID of the interval timer being released.

Return Values
The reltimerid subroutine returns a 0 if it is successful. If an error occurs, the value –1 is
returned and errno is set.

Error Codes
If the reltimerid subroutine fails, a –1 is returned and errno is set with the following error
code:

EINVAL The timer ID specified by the Timerid parameter is not a valid timer ID.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The gettimerid subroutine.

List of Time Data Manipulation Services in AIX 4.3 System Management Guide: Operating
System and Devices.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

_remap

1-977Base Operating System Runtime Services (Q-Z)

__remap Subroutine

Purpose
Remap 64–bit addresses into 32–bit addresses.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/remap.h>

int __remap(uvp, kp, hp, nparms)
void *uvp;
kremap *kp;
remap_handle *hp;
int *nparms;

Description
The __remap subroutine remaps 64–bit addresses into 32–bit addresses suitable for
passing to the kernel. The REMAP macro should be used rather than calling this subroutine
directly.

The remap_addr structs in the uremap struct on input should contain 64–bit addresses with
their corresponding lengths, to be remapped. __remap will map these addresses to 32–bit
quantities, and return these mappings in the remap_addr structs for each 64–bit address.
These 32–bit addresses should be passed as the addresses for the respective system call
parameters.

Additionally, the kremap struct will be filled in with all the 64–bit address to 32–bit address
mappings.

The remap_handle will be constructed to allow the most efficient transfer of these
remappings to the kernel. In the case of all the 64–bit segment numbers mapping to the
same 32–bit segment number (1 remapping), this single remapping will be included directly
in the remap_handle structure and the kremap structure will not be used. Similarly, if there
are 2 remappings and if there are few enough parameters to pass on the system call, then
both remappings will be included directly in the remap_handle structure. This will avoid a
copyin64 in the kernel. If there are more than 2 remappings, or 2 remappings but too many
parameters to pass them in–line, the remap_handle structure will have a pointer to the
kremap structure with all the remappings.

The remap_handle structure must be passed across the system call to the remap_64
kernel service. The structure must be broken up into 32–bit register values for use in the
kernel.

The caller of __remap should use the REMAP_DCL(), REMAP_SETUP(), REMAP(),
REMAPPED() and REMAP_HANDLEx macros described in sys/remap.h to simplify the
declaration, initialization, calling, and passing of the remap_handle structure.

This service may only be called from a 64–bit user process.

Parameters

uvp pointer to a list of 64–bit addresses to remap.

kp address of where the output kernel remappings are to be stored.

hp pointer to remap_handle to be passed to kernel, eventually to
remap_64 kernel service

nparms the number of (32–bit) parameters to be passed on this system call

_remap

1-978 Technical Reference: Base Operating System

Return Values

0 Successful completion.

–1 Unable to complete the remapping due to insufficient resources. In this
case ERRNO is set to EINVAL.

Implementation Specifics
The __remap subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The __remap_identity subroutine, remap_64 kernel service, the as_remap64 kernel
service, the as_unremap64 kernel service.

 Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX
Version 4 Kernel Extensions and Device Support Programming Concepts.

_remap_identity

1-979Base Operating System Runtime Services (Q-Z)

__remap_identity Subroutine

Purpose
Remaps 64–bit addresses into 32–bit addresses. Any of the 64–bit addresses with the
most–significant 32 bits all zeroes will be remapped to the identical 32–bit addresses.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/remap.h>

int __remap_identity(uvp, kp, hp, nparms)
void *uvp;
kremap *kp;
remap_handle *hp;
int nparms;

Description
The __remap_identity subroutine remaps 64–bit addresses into 32–bit addresses suitable
for passing to the kernel. Any of the 64–bit addresses with the most–significant 32 bits all
zeroes will be remapped to the identical 32–bit addresses. The REMAP_IDENTITY macro
should be used rather than calling this subroutine directly.

The remap_addr structs in the uremap struct on input should contain 64–bit addresses with
their corresponding lengths, to be remapped. __remap will map these addresses to 32–bit
quantities, and return these mappings in the remap_addr structs for each 64–bit address.
These 32–bit addresses should be passed as the addresses for the respective system call
parameters.

Additionally, the kremap struct will be filled in with all the 64–bit address to 32–bit address
mappings.

The remap_handle will be constructed to allow the most efficient transfer of these
remappings to the kernel. In the case of all the 64–bit segment numbers mapping to the
same 32–bit segment number (1 remapping), this single remapping will be included directly
in the remap_handle structure and the kremap structure will not be used. Similarly, if there
are 2 remappings and if there are few enough parameters to pass on the system call, then
both remappings will be included directly in the remap_handle structure. This will avoid a
copyin64 in the kernel. If there are more than 2 remappings, or 2 remappings but too many
parameters to pass them in–line, the remap_handle structure will have a pointer to the
kremap structure with all the remappings.

The remap_handle structure must be passed across the system call to the remap_64
kernel service. The structure must be broken up into 32–bit register values for use in the
kernel.

The caller of __remap_identity should use the REMAP_DCL, REMAP_SETUP,
REMAP_IDENTITY, REMAPPED and REMAP_HANDLEx macros described in
sys/remap.h to simplify the declaration, initialization, calling, and passing of the
remap_handle structure.

This service may only be called from a 64–bit user process.

Parameters

uvp pointer to a list of 64–bit addresses to remap.

kp address of where the output kernel remappings are to be stored.

_remap_identity

1-980 Technical Reference: Base Operating System

hp pointer to remap_handle to be passed to kernel, eventually to
remap_64 kernel service

nparms the number of (32–bit) parameters to be passed on this system call

Return Values

0 Successful completion.

–1 Unable to complete the remapping due to insufficient resources. In this
case ERRNO is set to EINVAL.

Implementation Specifics
The __remap_identity subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The __remap subroutine, remap_64 kernel service, the as_remap64 kernel service, the
as_unremap64 kernel service.

 Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX
Version 4 Kernel Extensions and Device Support Programming Concepts.

REMAP

1-981Base Operating System Runtime Services (Q-Z)

REMAP, REMAP_VOID macros

Purpose
Call __remap to remap 64–bit addresses into 32–bit addresses.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/remap.h>

REMAP(nparms)
int nparms;

REMAP_VOID(nparms)
int nparms;

Description
The REMAP macro calls the __remap subroutine to remap 64–bit addresses into 32–bit
addresses suitable for passing to the kernel. This macro should be used in conjunction with
the REMAP_DCL(), REMAP_SETUP(), REMAPPED(), and REMAP_HANDLEx macros.
The macro is dependent on structures declared by REMAP_DCL and initialized by
REMAP_SETUP.

Here is an example of the usage of REMAP:

int

naccept (int s,

struct sockaddr * name,

int * anamelan)

{

 REMAP_DCL (2); <––2 addrs to

remap

 int rc;

 REMAP_SETUP_WITH_LEN(0, name, *anamelan); <––1st addr,

explicit len

 REMAP_SETUP (1, anamelen); <––2nd addr,

implied len

 REMAP (3); <–––––––+––––––––––––––––––3 parameters

to pass

 V

 rc = __naccept (REMAP_HANDLE3, s, REMAPPED(0), REMAPPED(1));

 return rc; ^ ^

} |

 |

1st remapped addr 2nd remapped

addr

In the example shown, there are 2 addresses to be remapped (name and anamelen).
REMAP_DCL(2) is used to declare the structures necessary for the remapping of 2
addresses. The first address range to be remapped (name) is defined to be of length

REMAP

1-982 Technical Reference: Base Operating System

*anamelen. Therefore REMAP_SETUP_WITH_LEN is called to set up the first remapping
(remapping #0) so the length can be specified. The length of the 2nd range (remapping #1)
is implied by the type (int), so REMAP_SETUP is used.

REMAP is then called, and nparms is 3 since there are a total of 3 parameters for the
naccept system call. Finally, the 32–bit system call is called passing the remap_handle
structure followed by the parameters, including the remapped addresses. The
REMAP_HANDLE3 macro is used to pass the remap_handle structure appropriate for a
system call with 3 parameters. The REMAPPED macros are used to pass remapped
address #0 (name) and remapped address #1 (anamelen).

This service may only be called from a 64–bit user process.

Parameters

nparms the number of (32–bit) parameters to be passed on this
system call.

Return Values
On error, the errno value has been set by __remap and the REMAP macro calls return to
return –1 to the caller of the system call. If the system call is a void, the REMAP_VOID
macro should be used (same syntax). In this case, if there is an error the REMAP_VOID
macro simply calls return with no value.

0 Successful completion.

–1 Unable to complete the remapping due to insufficient
resources. In this case ERRNO is set to EINVAL.

Implementation Specifics
The __remap subroutine is part of Base Operating System (BOS) Runtime. The REMAP
macro is defined in sys/remap.h.

Related Information
The REMAP_IDENTITY macro, REMAP_DCL macro, REMAP_SETUP macro, __remap
subroutine, remap_64 kernel service, the as_remap64 kernel service, the as_unremap64
kernel service.

 Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX
Version 4 Kernel Extensions and Device Support Programming Concepts.

REMAP_DCL

1-983Base Operating System Runtime Services (Q-Z)

REMAP_DCL macro

Purpose
Declare structures used by the REMAP macro to call the __remap subroutine.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/remap.h>

REMAP_DCL(nremaps)
int nremaps;

Description
The REMAP_DCL macro declares the structures necessary to use the REMAP macro to
call the __remap subroutine. This macro should be used in conjunction with the
REMAP_SETUP, REMAP, REMAPPED, and REMAP_HANDLEx macros. The macro
declares several structures and must therefore be used in the declaration section of the
routine.

Here is an example of the usage of REMAP_DCL:

int

naccept (int s,

struct sockaddr * name,

int * anamelan)

{

REMAP_DCL (2); <––2 addrs to remap

int rc;

REMAP_SETUP_WITH_LEN(0, name, *anamelan); <––1st addr,

explicit len

REMAP_SETUP (1, anamelen); <––2nd addr,

implied len

REMAP (3); <–––––––+––––––––––––––––––3 parameters

to pass

V

rc = __naccept (REMAP_HANDLE3, s, REMAPPED(0), REMAPPED(1));

return rc; ^ ^

} |

 |

1st remapped addr 2nd remapped addr

In the example shown, there are 2 addresses to be remapped (name and anamelen).
REMAP_DCL(2) is used to declare the structures necessary for the remapping of 2
addresses. The first address range to be remapped (name) is defined to be of length
*anamelen. Therefore REMAP_SETUP_WITH_LEN is called to set up the first remapping
(remapping #0) so the length can be specified. The length of the 2nd range (remapping #1)
is implied by the type (int), so REMAP_SETUP is used.

REMAP_DCL

1-984 Technical Reference: Base Operating System

REMAP is then called, and nparms is 3 since there are a total of 3 parameters for the
naccept system call. Finally, the 32–bit system call is called passing the remap_handle
structure followed by the parameters, including the remapped addresses. The
REMAP_HANDLE3 macro is used to pass the remap_handle structure appropriate for a
system call with 3 parameters. The REMAPPED macros are used to pass remapped
address #0 (name) and remapped address #1 (anamelen).

This service may only be called from a 64–bit user process.

Parameters

nremaps the number of addresses to be remapped for this system
call.

Return Values
Since REMAP_DCL is a declaration statement, not an expression, there is no return value.

Implementation Specifics
The REMAP_DCL macro is defined in sys/remap.h.

Related Information
The REMAP macro, REMAP_SETUP macro, __remap subroutine, remap_64 kernel
service, the as_remap64 kernel service, the as_unremap64 kernel service.

 Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX
Version 4 Kernel Extensions and Device Support Programming Concepts.

REMAP_IDENTITY

1-985Base Operating System Runtime Services (Q-Z)

REMAP_IDENTITY, REMAP_IDENTITY_VOID macros

Purpose
Call __remap_identity to remap 64–bit addresses into 32–bit addresses. Any of the 64–bit
addresses with the most–significant 32 bits all zeroes will be remapped to the identical
32–bit addresses.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/remap.h>

REMAP_IDENTITY(nparms)
int nparms;

REMAP_IDENTITY_VOID(nparms)
int nparms;

Description
The REMAP_IDENTITY macro calls the __remap_identity subroutine to remap 64–bit
addresses into 32–bit addresses suitable for passing to the kernel. Any of the 64–bit
addresses with the most–significant 32 bits all zeroes will be remapped to the identical
32–bit addresses. This is useful in a situation such as the ioctl arg parameter. If the
most–significant 32–bits are all zeroes, it can not be known by the remapping wrapper
subroutine whether this parameter is a pointer or an integer because it is device–specific.
REMAP_IDENTITY can be used in this case to remap the arg parameter in case it is a
pointer, and remap it to the identical 32–bit value in case it is an integer.

This macro should be used in conjunction with the REMAP_DCL(), REMAP_SETUP(),
REMAPPED(), and REMAP_HANDLEx macros. The macro is dependent on structures
declared by REMAP_DCL and initialized by REMAP_SETUP.

The REMAP_IDENTITY macro is used exactly the same as the REMAP macro. Please see
the description of the REMAP macro for example usage.

This service may only be called from a 64–bit user process.

Parameters

nparms the number of (32–bit) parameters to be passed on this system call.

Return Values
On error, the errno value has been set by __remap_identity and the REMAP_IDENTITY
macro calls return to return –1 to the caller of the system call. If the system call is a void, the
REMAP_IDENTITY_VOID macro should be used (same syntax). In this case, if there is an
error the REMAP_IDENTITY_VOID macro simply calls return with no value.

0 Successful completion.

–1 Unable to complete the remapping due to insufficient resources. In this
case ERRNO is set to EINVAL.

Implementation Specifics
The __remap_identity subroutine is part of Base Operating System (BOS) Runtime. The
REMAP_IDENTITY macro is defined in sys/remap.h.

REMAP_IDENTITY

1-986 Technical Reference: Base Operating System

Related Information
The REMAP macro, REMAP_DCL macro, REMAP_SETUP macro, __remap_identity
subroutine, remap_64 kernel service, the as_remap64 kernel service, the as_unremap64
kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX
Version 4 Kernel Extensions and Device Support Programming Concepts.

REMAP_SETUP

1-987Base Operating System Runtime Services (Q-Z)

REMAP_SETUP, REMAP_SETUP_WITH_LEN macros

Purpose
Initialize structures used by the REMAP macro to call the __remap subroutine.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/remap.h>

REMAP_SETUP(remap_num, remap_addr)
int remap_num;
void * remap_addr;

REMAP_SETUP_WITH_LEN(remap_num, remap_addr, length)
int remap_num;
void * remap_addr;
unsigned int length;

Description
The REMAP_SETUP macro initializes the structures used by the REMAP macro to call the
__remap subroutine. This macro should be used in conjunction with the REMAP_DCL(),
REMAP(), REMAPPED(), and REMAP_HANDLEx macros. The macro depends on the
structures declared by REMAP_DCL.

Here is an example of the usage of REMAP_SETUP:

int

naccept (int s,

struct sockaddr * name,

int * anamelan)

{

 REMAP_DCL (2); <––2 addrs to

remap

 int rc;

 REMAP_SETUP_WITH_LEN(0, name, *anamelan); <––1st addr,

explicit len

 REMAP_SETUP (1, anamelen); <––2nd addr,

implied len

 REMAP (3); <–––––––+––––––––––––––––––3 parameters

to pass

 V

 rc = __naccept (REMAP_HANDLE3, s, REMAPPED(0), REMAPPED(1));

 return rc; ^ ^

} |

 |

1st remapped addr 2nd remapped

addr

REMAP_SETUP

1-988 Technical Reference: Base Operating System

In the example shown, there are 2 addresses to be remapped (name and anamelen).
REMAP_DCL(2) is used to declare the structures necessary for the remapping of 2
addresses. The first address range to be remapped (name) is defined to be of length
*anamelen. Therefore REMAP_SETUP_WITH_LEN is called to set up the first remapping
(remapping #0) so the length can be specified. The length of the 2nd range (remapping #1)
is implied by the type (int), so REMAP_SETUP is used.

REMAP is then called, and nparms is 3 since there are a total of 3 parameters for the
naccept system call. Finally, the 32–bit system call is called passing the remap_handle
structure followed by the parameters, including the remapped addresses. The
REMAP_HANDLE3 macro is used to pass the remap_handle structure appropriate for a
system call with 3 parameters. The REMAPPED macros are used to pass remapped
address #0 (name) and remapped address #1 (anamelen).

This service may only be called from a 64–bit user process.

Parameters

remap_num the sequential number (count starts at 0) indicating which
remapping this is.

remap_addr the address of the start of the range to be remapped.

length the size of the address range to be remapped.

Return Values
Since REMAP_SETUP is a statement and not an expression, it has no return value.

Implementation Specifics
The REMAP_SETUP macro is defined in sys/remap.h.

Related Information
The REMAP macro, REMAP_DCL macro, __remap subroutine, remap_64 kernel service,
the as_remap64 kernel service, the as_unremap64 kernel service.

 Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX
Version 4 Kernel Extensions and Device Support Programming Concepts.

remove

1-989Base Operating System Runtime Services (Q-Z)

remove Subroutine

Purpose
Removes a file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int remove(FileName)
const char *FileName;

Description
The remove subroutine makes a file named by FileName inaccessible by that name. An
attempt to open that file using that name does not work unless you recreate it. If the file is
open, the subroutine does not remove it.

If the file designated by the FileName parameter has multiple links, the link count of files
linked to the removed file is reduced by 1.

Parameters

FileName Specifies the name of the file being removed.

Return Values
Upon successful completion, the remove subroutine returns a value of 0; otherwise it
returns a nonzero value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The link subroutine, rename subroutine.

The link or unlink command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

rename

1-990 Technical Reference: Base Operating System

rename Subroutine

Purpose
Renames a directory or a file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int rename (FromPath, ToPath)
const char *FromPath, *ToPath;

Description
The rename subroutine renames a directory or a file within a file system.

To use the rename subroutine, the calling process must have write and search permission
in the parent directories of both the FromPath and ToPath parameters. If the path defined in
the FromPath parameter is a directory, the calling process must have write and search
permission to the FromPath directory as well.

If the FromPath and ToPath parameters both refer to the same existing file, the rename
subroutine returns successfully and performs no other action.

The components of both the FromPath and ToPath parameters must be of the same type
(that is, both directories or both non–directories) and must reside on the same file system. If
the ToPath file already exists, it is first removed. Removing it guarantees that a link named
ToPath will exist throughout the operation. This link refers to the file named by either the
ToPath or FromPath parameter before the operation began.

If the final component of the FromPath parameter is a symbolic link, the symbolic link (not
the file or directory to which it points) is renamed. If the ToPath is a symbolic link, the link is
destroyed.

If the parent directory of the FromPath parameter has the Sticky bit attribute (described in
the sys/mode.h file), the calling process must have an effective user ID equal to the owner
ID of the FromPath parameter, or to the owner ID of the parent directory of the FromPath
parameter.

A user who is not the owner of the file or directory must have root user authority to use the
rename subroutine.

If the FromPath and ToPath parameters name directories, the following must be true:

• The directory specified by the FromPath parameter is not an ancestor of ToPath. For
example, the FromPath path name must not contain a path prefix that names the
directory specified by the ToPath parameter.

• The directory specified in the FromPath parameter must be well–formed. A well–formed
directory contains both . (dot) and .. (dot dot) entries. That is, the . (dot) entry in the
FromPath directory refers to the same directory as that in the FromPath parameter.
The .. (dot dot) entry in the FromPath directory refers to the directory that contains an
entry for FromPath.

• The directory specified by the ToPath parameter, if it exists, must be well–formed (as
defined previously).

rename

1-991Base Operating System Runtime Services (Q-Z)

Parameters

FromPath Identifies the file or directory to be renamed.

ToPath Identifies the new path name of the file or directory to be renamed. If
ToPath is an existing file or empty directory, it is replaced by FromPath.
If ToPath specifies a directory that is not empty, the rename subroutine
exits with an error.

Return Values
Upon successful completion, the rename subroutine returns a value of 0. Otherwise, a
value of –1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The rename subroutine is unsuccessful and the file or directory name remains unchanged if
one or more of the following are true:

EACCES Creating the requested link requires writing in a directory mode that
denies the process write permission.

EBUSY The directory named by the FromPath or ToPath parameter is currently
in use by the system, or the file named by FromPath or ToPath is a
named STREAM.

EDQUOT The directory that would contain the path specified by the ToPath
parameter cannot be extended because the user’s or group’s quota of
disk blocks on the file system containing the directory is exhausted.

EEXIST The ToPath parameter specifies an existing directory that is not empty.

EINVAL The path specified in the FromPath or ToPath parameter is not a
well–formed directory (FromPath is an ancestor of ToPath), or an
attempt has been made to rename . (dot) or .. (dot dot).

EISDIR The ToPath parameter names a directory and the FromPath parameter
names a non–directory.

EMLINK The FromPath parameter names a directory that is larger than the
maximum link count of the parent directory of the ToPath parameter.

ENOENT A component of either path does not exist, the file named by the
FromPath parameter does not exist, or a symbolic link was named, but
the file to which it refers does not exist.

ENOSPC The directory that would contain the path specified in the ToPath
parameter cannot be extended because the file system is out of space.

ENOTDIR The FromPath parameter names a directory and the ToPath parameter
names a non–directory.

ENOTEMPTY The ToPath parameter specifies an existing directory that is not empty.

EROFS The requested operation requires writing in a directory on a read–only
file system.

ETXTBSY The ToPath parameter names a shared text file that is currently being
used.

EXDEV The link named by the ToPath parameter and the file named by the
FromPath parameter are on different file systems.

If Network File System (NFS) is installed on the system, the rename subroutine can be
unsuccessful if the following is true:

ETIMEDOUT The connection timed out.

rename

1-992 Technical Reference: Base Operating System

The rename subroutine can be unsuccessful for other reasons. See Appendix A, ”Base
Operating System Error Codes For Services That Require Path–Name Resolution” on page
A–1 for a list of additional errors.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, link subroutine, mkdir subroutine, rmdir subroutine, unlink
subroutine.

The chmod command, mkdir command, mv command, mvdir command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

revoke

1-993Base Operating System Runtime Services (Q-Z)

revoke Subroutine

Purpose
Revokes access to a file.

Library
Standard C Library (libc.a)

Syntax
int revoke (Path)
char *Path;

Description
The revoke subroutine revokes access to a file by all processes.

All accesses to the file are revoked. Subsequent attempts to access the file using a file
descriptor established before the revoke subroutine fail and cause the process to receive a
return value of –1, and the errno global variable is set to EBADF.

A process can revoke access to a file only if its effective user ID is the same as the file
owner ID, or if the calling process is privileged.

Note: The revoke subroutine has no affect on subsequent attempts to open the file. To
assure exclusive access to the file, the caller should change the access mode of the file
before issuing the revoke subroutine. Currently the revoke subroutine works only on
terminal devices. The chmod subroutine changes file access modes.

Parameters

Path Path name of the file for which access is to be revoked.

Return Values
Upon successful completion, the revoke subroutine returns a value of 0.

If the revoke subroutine fails, a value of –1 returns and the errno global variable is set to
indicate the error.

Error Codes
The revoke subroutine fails if any of the following are true:

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ENOENT A component of the path prefix does not exist, or the process has
the disallow truncation attribute (see the ulimit subroutine).

ENOENT The path name is null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ESTALE The process’s root or current directory is located in a virtual file
system that has been unmounted.

EFAULT The Path parameter points outside of the process’s address space.

ELOOP Too many symbolic links were encountered in translating the path
name.

revoke

1-994 Technical Reference: Base Operating System

ENAMETOOLONG A component of a path name exceeds 255 characters, or an entire
path name exceeds 1023 characters.

EIO An I/O error occurred during the operation.

EPERM The effective user ID of the calling process is not the same as the
file’s owner ID.

EINVAL Access rights revocation is not implemented for this file.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, frevoke subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

rmdir

1-995Base Operating System Runtime Services (Q-Z)

rmdir Subroutine

Purpose
Removes a directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int rmdir (Path)
const char *Path;

Description
The rmdir subroutine removes the directory specified by the Path parameter. If Network File
System (NFS) is installed on your system, this path can cross into another node.

For the rmdir subroutine to execute successfully, the calling process must have write
access to the parent directory of the Path parameter.

In addition, if the parent directory of Path has the Sticky bit attribute (described in the
sys/mode.h file), the calling process must have one of the following:

• An effective user ID equal to the directory to be removed

• An effective user ID equal to the owner ID of the parent directory of Path

• Root user authority.

Parameters

Path

Specifies the directory path name. The directory you specify must be:

Empty The directory contains no entries other than . (dot)
and .. (dot dot).

Well–formed If the . (dot) entry in the Path parameter exists, it must
refer to the same directory as Path. Exactly one
directory has a link to the Path parameter, excluding
the self–referential . (dot). If the .. (dot dot) entry in Path
exists, it must refer to the directory that contains an
entry for Path.

Return Values
Upon successful completion, the rmdir subroutine returns a value of 0. Otherwise, a value
of –1 is returned, the specified directory is not changed, and the errno global variable is set
to indicate the error.

Error Codes
The rmdir subroutine fails and the directory is not deleted if the following errors occur:

EACCES There is no search permission on a component of the path prefix, or
there is no write permission on the parent directory of the directory
to be removed.

EBUSY The directory is in use as a mount point.

rmdir

1-996 Technical Reference: Base Operating System

EEXIST or
ENOTEMPTY

The directory named by the Path parameter is not empty.

ENAMETOOLONG The length of the Path parameter exceeds PATH_MAX; or a
path–name component longer than NAME_MAX and
POSIX_NO_TRUNC is in effect.

ENOENT The directory named by the Path parameter does not exist, or the
Path parameter points to an empty string.

ENOTDIR A component specified by the Path parameter is not a directory.

EINVAL The directory named by the Path parameter is not well–formed.

EROFS The directory named by the Path parameter resides on a read–only
file system.

The rmdir subroutine can be unsuccessful for other reasons. See Appendix A, ”Base
Operating System Error Codes For Services That Require Path–Name Resolution” on page
A–1 for a list of additional errors.

If NFS is installed on the system, the rmdir subroutine fails if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod or fchmod subroutine, mkdir subroutine, remove subroutine, rename
subroutine, umask subroutine, unlink subroutine.

The rm command, rmdir command.

Files, Directories, and File Systems For Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

rpmatch

1-997Base Operating System Runtime Services (Q-Z)

rpmatch Subroutine

Purpose
Determines whether the response to a question is affirmative or negative.

Library
Standard C Library (libc. a)

Syntax
#include <stdlib.h>

int rpmatch (Response)
const char *Response;

Description
The rpmatch subroutine determines whether the expression in the Response parameter
matches the affirmative or negative response specified by the LC_MESSAGES category in
the current locale. Both expressions can be extended regular expressions.

Parameters

Response Specifies input entered in response to a question that requires an
affirmative or negative reply.

Return Values
This subroutine returns a value of 1 if the expression in the Response parameter matches
the locale’s affirmative expression. It returns a value of 0 if the expression in the Response
parameter matches the locale’s negative expression. If neither expression matches the
expression in the Response parameter, a –1 is returned.

Examples
The following example shows an affirmative expression in the En_US locale. This example
matches any expression in the Response parameter that begins with a y or Y followed by
zero or more alphabetic characters, or it matches the letter o followed by the letter k.

^[yY][:alpha:]* | ok

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The localeconv subroutine, nl_langinfo subroutine, regcomp subroutine, regexec
subroutine, setlocale subroutine.

National Language Support Overview for Programming and Understanding Locale
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

rsqrt

1-998 Technical Reference: Base Operating System

rsqrt Subroutine

Purpose
Computes the reciprocal of the square root of a number.

Libraries
IEEE Math Library (libm.a)

System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double rsqrt(double x)

Description
The rsqrt command computes the reciprocal of the square root of a number x; that is, 1.0
divided by the square root of x (1.0/sqrt(x)). On some platforms, using the rsqrt subroutine
is faster than computing 1.0 / sqrt(x). The rsqrt subroutine uses the same rounding mode
used by the calling program.

When using the libm.a library, the rsqrt subroutine responds to special values of x in the
following ways:

• If x is NaN, then the rsqrt subroutine returns NaN. If x is a signaling Nan (NaNS), then
the rsqrt subroutine returns a quiet NaN and sets the VX and VXSNAN (signaling NaN
invalid operation exception) flags in the FPSCR (Floating–Point Status and Control
register) to 1.

• If x is +/– 0.0, then the rsqrt subroutine returns +/– INF and sets the ZX (zero divide
exception) flag in the FPSCR to 1.

• If x is negative, then the rsqrt subroutine returns NaN, sets the errno global variable to
EDOM, and sets the VX and VXSQRT (square root of negative number invalid operation
exception) flags in the FPSCR to 1.

When using the libmsaa.a library, the rsqrt subroutine responds to special values of x in
the following ways:

• If x is +/– 0.0, then the rsqrt subroutine returns +/–HUGE_VAL and sets the errno global
variable to EDOM. The subroutine invokes the matherr subroutine, which prints a
message indicating a singularity error to standard error output.

• If x is negative, then the rsqrt subroutine returns 0.0 and sets the errno global variable to
EDOM. The subroutine invokes the matherr subroutine, which prints a message
indicating a domain error to standard error output.

When compiled with libmsaa.a, a program can use the matherr subroutine to change these
error–handling procedures.

Parameter

x Specifies a double–precision floating–point value.

rsqrt

1-999Base Operating System Runtime Services (Q-Z)

Return Values
Upon successful completion, the rsqrt subroutine returns the reciprocal of the square root
of x.

1.0 If x is 1.0.

+0.0 If x is +INF.

Error Codes
When using either the libm.a or libmsaa.a library, the rsqrt subroutine may return the
following error code:

EDOM The value of x is negative.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine, sqrt or cbrt subroutine.

rstat

1-1000 Technical Reference: Base Operating System

rstat Subroutines

Purpose
Gets performance data from remote kernels.

Library
(librpcsvc.a)

Syntax
#include <rpcsvc/rstat.h>

rstat (host, statp)
char *host;
struct statstime *statp;

Description
The rstat subroutine gathers statistics from remote kernels. These statistics are available
on items such as paging, swapping and CPU utilization.

Parameters

host Specifies the name of the machine going to be contacted to obtain
statistics found in the statp parameter.

statp Contains statistics from host.

Return Values
If successful, the rstat subroutine fills in the statstime for host and returns a value of 0.

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Files

/usr/include/rpcsvc/rstat.x

Related Information
The rup command.

The rstatd daemon

_safe_fetch

1-1001Base Operating System Runtime Services (Q-Z)

_safe_fetch Subroutine

Purpose
Reads the value of a single word variable protected by a lock.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

int _safe_fetch (word_addr)
atomic_p word_addr;

Parameter

word_addr Specifies the address of the single word variable.

Description
The _safe_fetch subroutine safely reads and returns a single word value that is protected
by a lock. This subroutine is used to read protected data before releasing the lock word with
the _clear_lock subroutine. If _safe_fetch is not used, instructions that access data just
before a lock release could actually before performed after the lock release.

Note: The word variable must be aligned on a full word boundary.

Return Values
This subroutine returns the value of the single word variable.

Implementation Specifics
The _safe_fetch subroutine is part of Base Operating System (BOS) Runtime.

Note that the _safe_fetch subroutine is intended for use only with the _check_lock and
_clear_clock subroutines.

Related Information
The _check_lock subroutine, _clear_lock subroutine.

Locking Kernel Services in AIX Kernel Extensions and Device Support Programming
Concepts

scandir

1-1002 Technical Reference: Base Operating System

scandir or alphasort Subroutine

Purpose
Scans or sorts directory contents.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/dir.h>

int scandir(DirectoryName,NameList,Select,Compare)
char *DirectoryName;
struct dirent * (*NameList []);
int (*Select) (struct dirent *);
int (*Compare)(void *, void *);

int alphasort (Directory1,Directory2)
void *Directory1, *Directory2;

Description
The scandir subroutine reads the directory pointed to by the DirectoryName parameter, and
then uses the malloc subroutine to create an array of pointers to directory entries. The
scandir subroutine returns the number of entries in the array and, through the NameList
parameter, a pointer to the array.

The Select parameter points to a user–supplied subroutine that is called by the scandir
subroutine to select which entries to include in the array. The selection routine is passed a
pointer to a directory entry and should return a nonzero value for a directory entry that is
included in the array. If the Select parameter is a null value, all directory entries are
included.

The Compare parameter points to a user–supplied subroutine. This routine is passed to the
qsort subroutine to sort the completed array. If the Compare parameter is a null value, the
array is not sorted. The alphasort subroutine provides comparison functions for sorting
alphabetically.

The memory allocated to the array can be deallocated by freeing each pointer in the array,
and the array itself, with the free subroutine.

The alphasort subroutine treats Directory1 and Directory2 as pointers to dirent pointers
and alphabetically compares them. This subroutine can be passed as the Compare
parameter to either the scandir subroutine or the qsort subroutine, or a user–supplied
subroutine can be used.

Parameters

DirectoryName Points to the directory name.

NameList Points to the array of pointers to directory entries.

Select Points to a user–supplied subroutine that is called by the scandir
subroutine to select which entries to include in the array.

Compare Points to a user–supplied subroutine that sorts the completed array.

Directory1,
Directory2

Point to dirent structures.

scandir

1-1003Base Operating System Runtime Services (Q-Z)

Return Values
The scandir subroutine returns the value –1 if the directory cannot be opened for reading or
if the malloc subroutine cannot allocate enough memory to hold all the data structures. If
successful, the scandir subroutine returns the number of entries found.

The alphasort subroutine returns the following values:

Less than 0 The dirent structure pointed to by the Directory1 parameter is lexically
less than the dirent structure pointed to by the Directory2 parameter.

0 The dirent structures pointed to by the Directory1 parameter and the
Directory2 parameter are equal.

Greater than 0 The dirent structure pointed to by the Directory1 parameter is lexically
greater than the dirent structure pointed to by the Directory2 parameter.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The malloc, free, realloc, calloc, mallopt, mallinfo, or alloca subroutine, opendir,
readdir, telldir, seekdir, rewinddir, or closedir subroutine, qsort subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

scanf

1-1004 Technical Reference: Base Operating System

scanf, fscanf, sscanf, or wsscanf Subroutine

Purpose
Converts formatted input.

Library
Standard C Library (libc.a)

or (libc128.a)

Syntax
#include <stdio.h>

int scanf (Format [, Pointer, ...])
const char *Format;

int fscanf (Stream, Format [, Pointer, ...])
FILE *Stream;
const char *Format;

int sscanf (String, Format [, Pointer, ...])
const char *String, *Format;

int wsscanf (wcs, Format [, Pointer, ...])
const wchar_t * wcs
const char *Format;

Description
The scanf, fscanf, sscanf, and wsscanf subroutines read character data, interpret it
according to a format, and store the converted results into specified memory locations. If the
subroutine receives insufficient arguments for the format, the results are unreliable. If the
format is exhausted while arguments remain, the subroutine evaluates the excess
arguments but otherwise ignores them.

These subroutines read their input from the following sources:

scanf Reads from standard input (stdin).

fscanf Reads from the Stream parameter.

sscanf Reads from the character string specified by the String parameter.

wsscanf Reads from the wide character string specified by the wcs parameter.

The scanf, fscanf, sscanf, and wsscanf subroutines can detect a language–dependent
radix character, defined in the program’s locale (LC_NUMERIC), in the input string. In the C
locale, or in a locale that does not define the radix character, the default radix character is a
full stop . (period).

Parameters

wcs Specifies the wide–character string to be read.

Stream Specifies the input stream.

String Specifies input to be read.

Pointer Specifies where to store the interpreted data.

Format Contains conversion specifications used to interpret the input. If there
are insufficient arguments for the Format parameter, the results are un-
reliable. If the Format parameter is exhausted while arguments remain,
the excess arguments are evaluated as always but are otherwise ig-
nored.

scanf

1-1005Base Operating System Runtime Services (Q-Z)

The Format parameter can contain the following:

• Space characters (blank, tab, new–line, vertical–tab, or form–feed characters) that,
except in the following two cases, read the input up to the next nonwhite space character.
Unless a match in the control string exists, trailing white space (including a new–line
character) is not read.

• Any character except a % (percent sign), which must match the next character of the
input stream.

• A conversion specification that directs the conversion of the next input field. The
conversion specification consists of the following:

– The % (percent sign) or the character sequence %n$.

Note: The %n$ character sequence is an X/Open numbered argument specifier.
Guidelines for use of the %n% specifier are:

– The value of n in %n$ must be a decimal number without leading 0’s and must be in
the range from 1 to the NL_ARGMAX value, inclusive. See the limits.h file for more
information about the NL_ARGMAX value. Using leading 0’s (octal numbers) or a
larger n value can have unpredictable results.

– Mixing numbered and unnumbered argument specifications in a format string can have
unpredictable results. The only exceptions are %% (two percent signs) and %*
(percent sign, asterisk), which can be mixed with the %n$ form.

– Referencing numbered arguments in the argument list from the format string more
than once can have unpredictable results.

– The optional assignment–suppression character * (asterisk).

– An optional decimal integer that specifies the maximum field width.

– An optional character that sets the size of the receiving variable for some flags. Use
the following optional characters:

l Long integer rather than an integer when preceding the d, i, or n
conversion codes; unsigned long integer rather than unsigned integer when
preceding the o, u, or x conversion codes; double rather than float when
preceding the e, f, or g conversion codes.

ll Long long integer rather than an integer when preceding the d, i, or n
conversion codes; unsigned long long integer rather than unsigned integer
when preceding the o, u, or x conversion codes.

L A long double rather than a float, when preceding the e, f, or g conversion
codes; long integer rather than an integer when preceding the d, i, or n
conversion codes; unsigned long integer rather than unsigned integer when
preceding the o, u, or x conversion codes.

h Short integer rather than an integer when preceding the d, i, and n
conversion codes; unsigned short integer (half integer) rather than an
unsigned integer when preceding the o, u, or x conversion codes.

– A conversion code that specifies the type of conversion to be applied.

The conversion specification takes the form:

%[*][width][size]convcode

The results from the conversion are placed in the memory location designated by the
Pointer parameter unless you specify assignment suppression with an * (asterisk).
Assignment suppression provides a way to describe an input field to be skipped. The
input field is a string of nonwhite space characters. It extends to the next inappropriate
character or until the field width, if specified, is exhausted.

scanf

1-1006 Technical Reference: Base Operating System

The conversion code indicates how to interpret the input field. The corresponding Pointer
parameter must be a restricted type. Do not specify the Pointer parameter for a
suppressed field. You can use the following conversion codes:

% Accepts a single % (percent sign) input at this point; no assignment or
conversion is done. The complete conversion specification should be %%
(two percent signs).

d Accepts an optionally signed decimal integer with the same format as that
expected for the subject sequence of the strtol subroutine with a value of
10 for the base parameter. If no size modifier is specified, the Pointer
parameter should be a pointer to an integer.

i Accepts an optionally signed integer with the same format as that expected
for the subject sequence of the strtol subroutine with a value of 0 for the
base parameter. If no size modifier is specified, the Pointer parameter
should be a pointer to an integer.

u Accepts an optionally signed decimal integer with the same format as that
expected for the subject sequence of the strtoul subroutine with a value of
10 for the base parameter. If no size modifier is specified, the Pointer
parameter should be a pointer to an unsigned integer.

o Accepts an optionally signed octal integer with the same format as that
expected for the subject sequence of the strtoul subroutine with a value of
8 for the base parameter. If no size modifier is specified, the Pointer
parameter should be a pointer to an unsigned integer.

x Accepts an optionally signed hexadecimal integer with the same format as
that expected for the subject sequence of the strtoul subroutine with a
value of 16 for the base parameter. If no size modifier is specified, the
Pointer parameter should be a pointer to an integer.

e, f, or g Accepts an optionally signed floating–point number with the same format
as that expected for the subject sequence of the strtod subroutine. The
next field is converted accordingly and stored through the corresponding
parameter; if no size modifier is specified, this parameter should be a
pointer to a float. The input format for floating–point numbers is a string of
digits, with some optional characteristics:

– It can be a signed value.

– It can be an exponential value, containing a decimal rational number followed by an
exponent field, which consists of an E or an e followed by an (optionally signed)
integer.

– It can be one of the special values INF, NaNQ, or NaNS. This value is translated into
the IEEE–754 value for infinity, quiet NaN, or signaling NaN, respectively.

p Matches an unsigned hexadecimal integer, the same as the %p conversion
of the printf subroutine. The corresponding parameter is a pointer to a void
pointer. If the input item is a value converted earlier during the same
program execution, the resulting pointer compares equal to that value;
otherwise, the results of the %p conversion are unpredictable.

n Consumes no input. The corresponding parameter is a pointer to an
integer into which the scanf, fscanf, sscanf, or wsscanf subroutine writes
the number of characters (including wide characters) read from the input
stream. The assignment count returned at the completion of this function is
not incremented.

s Accepts a sequence of nonwhite space characters (scanf, fscanf, and
sscanf subroutines). The wsscanf subroutine accepts a sequence of
nonwhite–space wide–character codes; this sequence is converted to a
sequence of characters in the same manner as the wcstombs subroutine.

scanf

1-1007Base Operating System Runtime Services (Q-Z)

The Pointer parameter should be a pointer to the initial byte of a char,
signed char, or unsigned char array large enough to hold the sequence
and a terminating null–character code, which is automatically added.

S Accepts a sequence of nonwhite space characters (scanf, fscanf, and
sscanf subroutines). This sequence is converted to a sequence of
wide–character codes in the same manner as the mbstowcs subroutine.
The wsscanf subroutine accepts a sequence of nonwhite–space wide
character codes. The Pointer parameter should be a pointer to the initial
wide character code of an array large enough to accept the sequence and a
terminating null wide character code, which is automatically added. If the
field width is specified, it denotes the maximum number of characters to
accept.

c Accepts a sequence of bytes of the number specified by the field width
(scanf, fscanf and sscanf subroutines); if no field width is specified, 1 is
the default. The wsscanf subroutine accepts a sequence of wide–character
codes of the number specified by the field width; if no field width is
specified, 1 is the default. The sequence is converted to a sequence of
characters in the same manner as the wcstombs subroutine. The Pointer
parameter should be a pointer to the initial bytes of an array large enough
to hold the sequence; no null byte is added. The normal skip over white
space does not occur.

C Accepts a sequence of characters of the number specified by the field
width (scanf, fscanf, and sscanf subroutines); if no field width is specified,
1 is the default. The sequence is converted to a sequence of wide character
codes in the same manner as the mbstowcs subroutine. The wsscanf
subroutine accepts a sequence of wide–character codes of the number
specified by the field width; if no field width is specified, 1 is the default. The
Pointer parameter should be a pointer to the initial wide character code of
an array large enough to hold the sequence; no null wide–character code is
added.

[scanset] Accepts a nonempty sequence of bytes from a set of expected bytes
specified by the scanset variable (scanf, fscanf, and sscanf subroutines).
The wsscanf subroutine accepts a nonempty sequence of wide–character
codes from a set of expected wide–character codes specified by the
scanset variable. The sequence is converted to a sequence of characters in
the same manner as the wcstombs subroutine. The Pointer parameter
should be a pointer to the initial character of a char, signed char, or
unsigned char array large enough to hold the sequence and a terminating
null byte, which is automatically added. In the scanf, fscanf, and sscanf
subroutines, the conversion specification includes all subsequent bytes in
the string specified by the Format parameter, up to and including the] (right
bracket). The bytes between the brackets comprise the scanset variable,
unless the byte after the [(left bracket) is a ^ (circumflex). In this case, the
scanset variable contains all bytes that do not appear in the scanlist
between the ^ (circumflex) and the] (right bracket). In the wsscanf
subroutine, the characters between the brackets are first converted to wide
character codes in the same manner as the mbtowc subroutine. These
wide character codes are then used as described above in place of the
bytes in the scanlist. If the conversion specification begins with [] or [^], the
right bracket is included in the scanlist and the next right bracket is the
matching right bracket that ends the conversion specification. You can also:

– Represent a range of characters by the construct First–Last. Thus, you can express
[0123456789] as [0–9]. The First parameter must be lexically less than or equal to the
Last parameter or else the – (dash) stands for itself. The – also stands for itself
whenever it is the first or the last character in the scanset variable.

scanf

1-1008 Technical Reference: Base Operating System

– Include the] (right bracket) as an element of the scanset variable if it is the first
character of the scanset. In this case it is not interpreted as the bracket that closes the
scanset variable. If the scanset variable is an exclusive scanset variable, the] is
preceded by the ^ (circumflex) to make the] an element of the scanset. The
corresponding Pointer parameter should point to a character array large enough to
hold the data field and that ends with a null character (\0). The \0 is added
automatically.

A scanf conversion ends at the end–of–file (EOF character), the end of the control string, or
when an input character conflicts with the control string. If it ends with an input character
conflict, the conflicting character is not read from the input stream.

Unless a match in the control string exists, trailing white space (including a new–line
character) is not read.

The success of literal matches and suppressed assignments is not directly determinable.

The National Language Support (NLS) extensions to the scanf subroutines can handle a
format string that enables the system to process elements of the argument list in variable
order. The normal conversion character % is replaced by %n$, where n is a decimal
number. Conversions are then applied to the specified argument (that is, the nth argument),
rather than to the next unused argument.

The first successful run of the fgetc, fgets, fread, getc, getchar, gets, scanf, or fscanf
subroutine using a stream that returns data not supplied by a prior call to the ungetc
subroutine marks the st_atime field for update.

Return Values
These subroutines return the number of successfully matched and assigned input items.
This number can be 0 if an early conflict existed between an input character and the control
string. If the input ends before the first conflict or conversion, only EOF is returned. If a read
error occurs, the error indicator for the stream is set, EOF is returned, and the errno global
variable is set to indicate the error.

Error Codes
The scanf, fscanf, sscanf, and wsscanf subroutines are unsuccessful if either the file
specified by the Stream, String, or wcs parameter is unbuffered or data needs to be read
into the file’s buffer and one or more of the following conditions is true:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file
specified by the Stream, String, or wcs parameter, and the process
would be delayed in the scanf, fscanf, sscanf, or wsscanf operation.

EBADF The file descriptor underlying the file specified by the Stream, String, or
wcs parameter is not a valid file descriptor open for reading.

EINTR The read operation was terminated due to receipt of a signal, and either
no data was transferred or a partial transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine may
return EINTR. Refer to the signal subroutine regarding SA_RESTART.

EIO The process is a member of a background process group attempting to
perform a read from its controlling terminal, and either the process is
ignoring or blocking the SIGTTIN signal or the process group has no
parent process.

EINVAL The subroutine received insufficient arguments for the Format
parameter.

scanf

1-1009Base Operating System Runtime Services (Q-Z)

EILSEQ A character sequence that is not valid was detected, or a
wide–character code does not correspond to a valid character.

ENOMEM Insufficient storage space is available.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The atof, atoff, strtod, or strtof subroutine, fread subroutine, getc, fgetc, getchar, or
getw subroutine, gets or fgets subroutine, getwc, fgetwc, or getwchar subroutine,
mbstowcs subroutine, mbtowc subroutine, printf, fprintf, sprintf, wsprintf, vprintf,
vfprintf, vsprintf, or vwsprintf subroutine, setlocale subroutine, strtol, strtoul, atol, or
atoi subroutine, ungetc subroutine, wcstombs subroutine.

Input and Output Handling Programmer’s Overview, National Language Support Overview
for Programming in AIX General Programming Concepts : Writing and Debugging
Programs.

sched_yield

1-1010 Technical Reference: Base Operating System

sched_yield Subroutine

Purpose
Yield processor.

Library
Standard Library (libc.a)

Syntax
#include <sched.h>

int sched_yield (void) ;

Description
The sched_yield function forces the running thread to relinquish the processor until it again
becomes the head of its thread list. It takes no arguments.

Return Values
The sched_yield function returns 0 if it completes successfully, or it returns a value of –1
and sets errno to indicate the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The sched.h file.

select

1-1011Base Operating System Runtime Services (Q-Z)

select Subroutine

Purpose
Checks the I/O status of multiple file descriptors and message queues.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/select.h>
#include <sys/types.h>

int select (Nfdsmsgs, ReadList, WriteList, ExceptList, TimeOut)
int Nfdsmsgs;
struct sellist *ReadList, *WriteList, *ExceptList;
struct timeval *TimeOut;

Description
The select subroutine checks the specified file descriptors and message queues to see if
they are ready for reading (receiving) or writing (sending), or if they have an exceptional
condition pending.

When selecting on an unconnected stream socket, select returns when the connection is
made. If selecting on a connected stream socket, then the ready message indicates that
data can be sent or received. Files descriptors of regular files always select true for read,
write, and exception conditions. For more information on sockets, refer to ”Understanding
Socket Connections” and the related ”Checking for Pending Connections Example Program”
dealing with pending connections in AIX Communications Programming Concepts.

Parameters

Nfdsmsgs Specifies the number of file descriptors and the number of message
queues to check. The low–order 16 bits give the length of a bit mask that
specifies which file descriptors to check; the high–order 16 bits give the
size of an array that contains message queue identifiers. If either half of
the Nfdsmsgs parameter is equal to a value of 0, the corresponding bit
mask or array is assumed not to be present.

select

1-1012 Technical Reference: Base Operating System

TimeOut Specifies either a null pointer or a pointer to a timeval structure that
specifies the maximum length of time to wait for at least one of the
selection criteria to be met. The timeval structure is defined in the
/usr/include/sys/time.h file and it contains the following members:

struct timeval {

 int tv_sec; /* seconds */

 int tv_usec; /* microseconds */

 };

The number of microseconds specified in TimeOut. tv_usec , a value
from 0 to 999999, is set to one millisecond by Version 3 of the operating
system if the process does not have root user authority and the value is
less than one millisecond.

If the TimeOut parameter is a null pointer, the select subroutine waits
indefinitely, until at least one of the selection criteria is met. If the TimeOut
parameter points to a timeval structure that contains zeros, the file and
message queue status is polled, and the select subroutine returns
immediately.

select

1-1013Base Operating System Runtime Services (Q-Z)

ReadList, WriteList, ExceptList

 Specify what to check for reading, writing, and exceptions, respectively.
Together, they specify the selection criteria. Each of these parameters
points to a sellist structure, which can specify both file descriptors and
message queues. Your program must define the sellist structure in the
following form:

struct sellist

{

int fdsmask[F]; /* file descriptor bit mask

*/

int msgids[M]; /* message queue identifiers

*/

};

The fdsmask array is treated as a bit string in which each bit
corresponds to a file descriptor. File descriptor n is represented by the bit
(1 << (n mod bits)) in the array element fdsmask [n / BITS(int)]. (The
BITS macro is defined in the values.h file.) Each bit that is set to 1
indicates that the status of the corresponding file descriptor is to be
checked.

Note: The low–order 16 bits of the Nfdsmsgs parameter specify the
number of bits (not elements) in the fdsmask array that make up the
file descriptor mask. If only part of the last int is included in the mask,
the appropriate number of low–order bits are used, and the remaining
high–order bits are ignored. If you set the low–order 16 bits of the
Nfdsmsgs parameter to 0, you must not define an fdsmask array in
the sellist structure.

Each int of the msgids array specifies a message queue identifier whose
status is to be checked. Elements with a value of –1 are ignored. The
high–order 16 bits of the Nfdsmsgs parameter specify the number of
elements in the msgids array. If you set the high–order 16 bits of the
Nfdsmsgs parameter to 0, you must not define a msgids array in the
sellist structure.

Note: The arrays specified by the ReadList, WriteList, and ExceptList
parameters are the same size because each of these parameters
points to the same sellist structure type. However, you need not specify
the same number of file descriptors or message queues in each. Set
the file descriptor bits that are not of interest to 0, and set the extra
elements of the msgids array to –1.

You can use the SELLIST macro defined in the sys/select.h file to define
the sellist structure. The format of this macro is:

SELLIST(f, m) declarator . . . ;

where f specifies the size of the fdsmask array, m specifies the size of
the msgids array, and each declarator is the name of a variable to be
declared as having this type.

Return Values
Upon successful completion, the select subroutine returns a value that indicates the total
number of file descriptors and message queues that satisfy the selection criteria. The
fdsmask bit masks are modified so that bits set to 1 indicate file descriptors that meet the
criteria. The msgids arrays are altered so that message queue identifiers that do not meet
the criteria are replaced with a value of –1.

select

1-1014 Technical Reference: Base Operating System

The return value is similar to the Nfdsmsgs parameter in that the low–order 16 bits give the
number of file descriptors, and the high–order 16 bits give the number of message queue
identifiers. These values indicate the sum total that meet each of the read, write, and
exception criteria. Therefore, the same file descriptor or message queue can be counted up
to three times. You can use the NFDS and NMSGS macros found in the sys/select.h file to
separate out these two values from the return value. For example, if rc contains the value
returned from the select subroutine, NFDS(rc) is the number of files selected, and
NMSGS(rc) is the number of message queues selected.

If the time limit specified by the TimeOut parameter expires, the select subroutine returns a
value of 0.

If a connection–based socket is specified in the Readlist parameter and the connection
disconnects, the select subroutine returns successfully, but the recv subroutine on the
socket will return a value of 0 to indicate the socket connection has been closed.

If the select subroutine is unsuccessful, it returns a value of –1 and sets the global variable
errno to indicate the error. In this case, the contents of the structures pointed to by the
ReadList, WriteList, and ExceptList parameters are unpredictable.

Error Codes
The select subroutine is unsuccessful if one of the following are true:

EBADF An invalid file descriptor or message queue identifier was specified.

EAGAIN Allocation of internal data structures was unsuccessful.

EINTR A signal was caught during the select subroutine and the signal handler
was installed with an indication that subroutines are not to be restarted.

EINVAL One of the parameters to the select subroutine contained a value that is
not valid.

EFAULT The ReadList, WriteList, ExceptList, or TimeOut parameter points to a
location outside of the address space of the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

The select subroutine is also supported for compatibility with previous releases of this
operating system and with BSD systems.

Related Information
The poll subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

semctl

1-1015Base Operating System Runtime Services (Q-Z)

semctl Subroutine

Purpose
Controls semaphore operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sem.h>

int semctl (SemaphoreID, SemaphoreNumber, Command, arg)
OR

int semctl (SemaphoreID, SemaphoreNumber, Command)

int SemaphoreID;
int SemaphoreNumber;
int Command;
union semun {

 int val;

 struct semid_ds *buf;

 unsigned short *array;

} arg;

 If the fourth argument is required for the operation requested, it must be of type union
semun and explicitly declared as shown above.

Description
The semctl subroutine performs a variety of semaphore control operations as specified by
the Command parameter.

The following limits apply to semaphores:

• Maximum number of semaphore IDs is 4096 for AIX releases before 4.3.2 and 131072
for AIX 4.3.2 and following.

• Maximum number of semaphores per ID is 65,535.

• Maximum number of operations per call by the semop subroutine is 1024.

• Maximum number of undo entries per procedure is 1024.

• Maximum semaphore value is 32,767.

• Maximum adjust–on–exit value is 16,384.

Parameters

SemaphoreID Specifies the semaphore identifier.

SemaphoreNumbe
r

 Specifies the semaphore number.

arg.val Specifies the value for the semaphore for the SETVAL command.

arg.buf Specifies the buffer for status information for the IPC_STAT and
IPC_SET commands.

arg.array Specifies the values for all the semaphores in a set for the GETALL
and SETALL commands.

semctl

1-1016 Technical Reference: Base Operating System

Command Specifies semaphore control operations.

The following Command parameter values are executed with respect
to the semaphore specified by the SemaphoreID and
SemaphoreNumber parameters. These operations get and set the
values of a sem structure, which is defined in the sys/sem.h file.

GETVAL Returns the semval value, if the current process
has read permission.

SETVAL Sets the semval value to the value specified by the
arg.val parameter, if the current process has write
permission. When this Command parameter is
successfully executed, the semadj value
corresponding to the specified semaphore is cleared
in all processes.

GETPID Returns the value of the sempid field, if the
current process has read permission.

GETNCNT Returns the value of the semncnt field, if the
current process has read permission.

GETZCNT Returns the value of the semzcnt field, if the
current process has read permission.

The following Command parameter values return and set every
semval value in the set of semaphores. These operations get and
set the values of a sem structure, which is defined in the sys/sem.h
file.

GETALL Stores semvals values into the array pointed to by
the arg.array parameter, if the current process has
read permission.

SETALL Sets semvals values according to the array pointed
to by the arg.array parameter, if the current process
has write permission. When this Command
parameter is successfully executed, the semadj
value corresponding to each specified semaphore is
cleared in all processes.

The following Commands parameter values get and set the values of
a semid_ds structure, defined in the sys/sem.h file. These
operations get and set the values of a sem structure, which is
defined in the sys/sem.h file.

IPC_STAT Obtains status information about the semaphore
identified by the SemaphoreID parameter. This
information is stored in the area pointed to by the
arg.buf parameter.

IPC_SET Sets the owning user and group IDs, and the
access permissions for the set of semaphores
associated with the SemaphoreID parameter. The
IPC_SET operation uses as input the values found
in the arg.buf parameter structure.

semctl

1-1017Base Operating System Runtime Services (Q-Z)

IPC_SET sets the following fields:

sem_perm.uid User ID of the owner

sem_perm.gid Group ID of the owner

sem_perm.mode Permission bits only

sem_perm.cuid Creator’s user ID

IPC_SET can only be executed by a process that has root user
authority or an effective user ID equal to the value of the
sem_perm.uid or sem_perm.cuid field in the data structure
associated with the SemaphoreID parameter.

IPC_RMID Removes the semaphore identifier specified by the SemaphoreID
parameter from the system and destroys the set of semaphores and data
structures associated with it. This Command parameter can only be
executed by a process that has root user authority or an effective user ID
equal to the value of the sem_perm.uid or sem_perm.cuid field in the
data structure associated with the SemaphoreID parameter.

Return Values
Upon successful completion, the value returned depends on the Command parameter as
follows:

Command Return Value

GETVAL Returns the value of the semval field.

GETPID Returns the value of the sempid field.

GETNCNT Returns the value of the semncnt field.

GETZCNT Returns the value of the semzcnt field.

All Others Return a value of 0.

If the semctl subroutine is unsuccessful, a value of –1 is returned and the global variable
errno is set to indicate the error.

Error Codes
The semctl subroutine is unsuccessful if any of the following is true:

EINVAL The SemaphoreID parameter is not a valid semaphore identifier.

EINVAL The SemaphoreNumber parameter is less than 0 or greater than or
equal to the sem_nsems value.

EINVAL The Command parameter is not a valid command.

EACCES The calling process is denied permission for the specified operation.

ERANGE The Command parameter is equal to the SETVAL or SETALL value
and the value to which semval value is to be set is greater than the
system–imposed maximum.

EPERM The Command parameter is equal to the IPC_RMID or IPC_SET
value and the calling process does not have root user authority or an
effective user ID equal to the value of the sem_perm.uid or
sem_perm.cuid field in the data structure associated with the
SemaphoreID parameter.

semctl

1-1018 Technical Reference: Base Operating System

EFAULT The arg.buf or arg.array parameter points outside of the allocated
address space of the process.

ENOMEM The system does not have enough memory to complete the
subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The semget subroutine, semop subroutine.

semget

1-1019Base Operating System Runtime Services (Q-Z)

semget Subroutine

Purpose
Gets a set of semaphores.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sem.h>

int semget (Key, NumberOfSemaphores, SemaphoreFlag)
key_t Key;
int NumberOfSemaphores, SemaphoreFlag;

Description
The semget subroutine returns the semaphore identifier associated with the Key parameter
value.

The semget subroutine creates a data structure for the semaphore ID and an array
containing the NumberOfSemaphores parameter semaphores if one of the following
conditions is true:

• The Key parameter is equal to the IPC_PRIVATE operation.

• The Key parameter does not already have a semaphore identifier associated with it, and
the IPC_CREAT value is set.

Upon creation, the data structure associated with the new semaphore identifier is initialized
as follows:

• The sem_perm.cuid and sem_perm.uid fields are set equal to the effective user ID
of the calling process.

• The sem_perm.cgid and sem_perm.gid fields are set equal to the effective group
ID of the calling process.

• The low–order 9 bits of the sem_perm.mode field are set equal to the low–order 9 bits
of the SemaphoreFlag parameter.

• The sem_nsems field is set equal to the value of the NumberOfSemaphores parameter.

• The sem_otime field is set equal to 0 and the sem_ctime field is set equal to the
current time.

The data structure associated with each semaphore in the set is not initialized. The semctl
subroutine (with the Command parameter values SETVAL or SETALL) can be used to
initialize each semaphore.

If the Key parameter value is not IPC_PRIVATE, the IPC_EXCL value is not set, and a
semaphore identifier already exists for the specified Key parameter, the value of the
NumberOfSemaphores parameter specifies the number of semaphores that the current
process needs.

If the NumberOfSemaphores parameter has a value of 0, any number of semaphores is
acceptable. If the NumberOfSemaphores parameter is not 0, the semget subroutine is
unsuccessful if the set contains fewer than the value of the NumberOfSemaphores
parameter.

The following limits apply to semaphores:

semget

1-1020 Technical Reference: Base Operating System

• Maximum number of semaphore IDs is 4096 for AIX releases before 4.3.2 and 131072
for AIX 4.3.2 and following.

• Maximum number of semaphores per ID is 65,535.

• Maximum number of operations per call by the semop subroutine is 1024.

• Maximum number of undo entries per procedure is 1024.

• Maximum semaphore value is 32,767.

• Maximum adjust–on–exit value is 16,384.

Parameters

Key Specifies either the IPC_PRIVATE value or an IPC key
constructed by the ftok subroutine (or a similar algorithm).

NumberOfSemaphores Specifies the number of semaphores in the set.

SemaphoreFlag

 Constructed by logically ORing one or more of the following
values:

IPC_CREAT Creates the data structure if it does not already
exist.

IPC_EXCL Causes the semget subroutine to fail if the
IPC_CREAT value is also set and the data
structure already exists.

S_IRUSR Permits the process that owns the data
structure to read it.

S_IWUSR Permits the process that owns the data
structure to modify it.

S_IRGRP Permits the group associated with the data
structure to read it.

S_IWGRP Permits the group associated with the data
structure to modify it.

S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the
sys/mode.h file and are a subset of the access permissions
that apply to files.

Return Values
Upon successful completion, the semget subroutine returns a semaphore identifier.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The semget subroutine is unsuccessful if one or more of the following conditions is true:

EACCES A semaphore identifier exists for the Key parameter but operation
permission, as specified by the low–order 9 bits of the
SemaphoreFlag parameter, is not granted.

EINVAL A semaphore identifier does not exist and the
NumberOfSemaphores parameter is less than or equal to a value of
0, or greater than the system–imposed value.

semget

1-1021Base Operating System Runtime Services (Q-Z)

EINVAL A semaphore identifier exists for the Key parameter, but the number
of semaphores in the set associated with it is less than the value of
the NumberOfSemaphores parameter and the
NumberOfSemaphores parameter is not equal to 0.

ENOENT A semaphore identifier does not exist for the Key parameter and the
IPC_CREAT value is not set.

ENOSPC Creating a semaphore identifier would exceed the maximum number
of identifiers allowed systemwide.

EEXIST A semaphore identifier exists for the Key parameter, but both the
IPC_CREAT and IPC_EXCL values are set.

ENOMEM There is not enough memory to complete the operation.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ftok subroutine, semctl subroutine, semop subroutine.

The mode.h file.

semop

1-1022 Technical Reference: Base Operating System

semop Subroutine

Purpose
Performs semaphore operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sem.h>

int semop (SemaphoreID, SemaphoreOperations,
NumberOfSemaphoreOperations)
int SemaphoreID;
struct sembuf *SemaphoreOperations;
size_t NumberOfSemaphoreOperations;

Description
The semop subroutine performs operations on the set of semaphores associated with the
semaphore identifier specified by the SemaphoreID parameter. The sembuf structure is
defined in the usr/include/sys/sem.h file.

Each sembuf structure specified by the SemaphoreOperations parameter includes the
following fields:

sem_num Semaphore number

sem_op Semaphore operation

sem_flg Operation flags

Each semaphore operation specified by the sem_op field is performed on the semaphore
specified by the SemaphoreID parameter and the sem_num field. The sem_op field
specifies one of three semaphore operations.

1. If the sem_op field is a negative integer and the calling process has permission to alter,
one of the following conditions occurs:

– If the semval variable (see the /usr/include/sys/sem.h file) is greater than or equal to
the absolute value of the sem_op field, the absolute value of the sem_op field is
subtracted from the semval variable. In addition, if the SEM_UNDO flag is set in the
sem_flg field, the absolute value of the sem_op field is added to the semadj value
of the calling process for the specified semaphore.

– If the semval variable is less than the absolute value of the sem_op field and the
IPC_NOWAIT value is set in the sem_flg field, the semop subroutine returns
immediately.

– If the semval variable is less than the absolute value of the sem_op field and the
IPC_NOWAIT value is not set in the sem_flg field, the semop subroutine
increments the semncnt field associated with the specified semaphore and
suspends the calling process until one of the following conditions occurs:

– The value of the semval variable becomes greater than or equal to the absolute
value of the sem_op field. The value of the semncnt field associated with the
specified semaphore is then decremented, and the absolute value of the sem_op
 field is subtracted from the semval variable. In addition, if the SEM_UNDO flag
is set in the sem_flg field, the absolute value of the sem_op field is added to
the semadj value of the calling process for the specified semaphore.

semop

1-1023Base Operating System Runtime Services (Q-Z)

– The SemaphoreID parameter for which the calling process is awaiting action is
removed from the system. When this occurs, the errno global variable is set to
the EIDRM flag and a value of –1 is returned.

– The calling process received a signal that is to be caught. When this occurs, the
semop subroutine decrements the value of the semncnt field associated with
the specified semaphore. When the semzcnt field is decremented, the calling
process resumes as prescribed by the sigaction subroutine.

2. If the sem_op field is a positive integer and the calling process has alter permission, the
value of the sem_op field is added to the semval variable. In addition, if the
SEM_UNDO flag is set in the sem_flg field, the value of the sem_op field is
subtracted from the calling process’s semadj value for the specified semaphore.

3. If the value of the sem_op field is 0 and the calling process has read permission, one of
the following occurs:

– If the semval variable is 0, the semop subroutine returns immediately.

– If the semval variable is not equal to 0 and IPC_NOWAIT value is set in the sem_flg
 field, the semop subroutine returns immediately.

– If the semval variable is not equal to 0 and the IPC_NOWAIT value is set in the
sem_flg field, the semop subroutine increments the semzcnt field associated
with the specified semaphore and suspends execution of the calling process until one
of the following occurs:

– The value of the semval variable becomes 0. When this occurs, the value of the
semzcnt field associated with the specified semaphore is decremented.

– The SemaphoreID parameter for which the calling process is awaiting action is
removed from the system. If this occurs, the errno global variable is set to the
EIDRM error code and a value of –1 is returned.

– The calling process received a signal that is to be caught. When this occurs, the
semop subroutine decrements the value of the semzcnt field associated with
the specified semaphore. When the semzcnt field is decremented, the calling
process resumes execution as prescribed by the sigaction subroutine.

The following limits apply to semaphores:

• Maximum number of semaphore IDs is 4096 for AIX releases before 4.3.2 and 131072
for AIX 4.3.2 and following.

• Maximum number of semaphores per ID is 65,535.

• Maximum number of operations per call by the semop subroutine is 1024.

• Maximum number of undo entries per procedure is 1024.

• Maximum capacity of a semaphore value is 32,767 bytes.

• Maximum adjust–on–exit value is 16,384 bytes.

Parameters

SemaphoreID Specifies the semaphore identifier.

NumberOfSemaphoreOperation
s

 Specifies the number of structures in the array.

SemaphoreOperations Points to an array of structures, each of which specifies
a semaphore operation.

semop

1-1024 Technical Reference: Base Operating System

Return Values
Upon successful completion, the semop subroutine returns a value of 0. Also, the
SemaphoreID parameter value for each semaphore that is operated upon is set to the
process ID of the calling process.

If the semop subroutine is unsuccessful, a value of –1 is returned and the errno global
variable is set to indicate the error. If the SEM_ORDER flag was set in the sem_flg field
for the first semaphore operation in the SemaphoreOperations array, the SEM_ERR value is
set in the sem_flg field for the unsuccessful operation.

If the SemaphoreID parameter for which the calling process is awaiting action is removed
from the system, the errno global variable is set to the EIDRM error code and a value of –1
is returned.

Error Codes
The semop subroutine is unsuccessful if one or more of the following are true for any of the
semaphore operations specified by the SemaphoreOperations parameter. If the operations
were performed individually, the discussion of the SEM_ORDER flag provides more
information about error situations.

EINVAL The SemaphoreID parameter is not a valid semaphore identifier.

EFBIG The sem_num value is less than 0 or it is greater than or equal to the
number of semaphores in the set associated with the SemaphoreID
parameter.

E2BIG The NumberOfSemaphoreOperations parameter is greater than the
system–imposed maximum.

EACCES The calling process is denied permission for the specified operation.

EAGAIN The operation would result in suspension of the calling process, but the
IPC_NOWAIT value is set in the sem_flg field.

ENOSPC The limit on the number of individual processes requesting a SEM_UNDO
flag would be exceeded.

EINVAL The number of individual semaphores for which the calling process
requests a SEM_UNDO flag would exceed the limit.

ERANGE An operation would cause a semval value to overflow the
system–imposed limit.

ERANGE An operation would cause a semadj value to overflow the
system–imposed limit.

EFAULT The SemaphoreOperations parameter points outside of the address space
of the process.

EINTR A signal interrupted the semop subroutine.

EIDRM The semaphore identifier SemaphoreID parameter has been removed
from the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, exit subroutine, fork subroutine, semctl subroutine, semget
subroutine, sigaction subroutine.

setacldb

1-1025Base Operating System Runtime Services (Q-Z)

setacldb or endacldb Subroutine

Purpose
Opens and closes the SMIT ACL database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setacldb(Mode)
int Mode;

int endacldb;

Description
These functions may be used to open and close access to the user SMIT ACL database.
Programs that call the getusraclattr or getgrpaclattr subroutines should call the setacldb
subroutine to open the database and the endacldb subroutine to close the database.

The setacldb subroutine opens the database in the specified mode, if it is not already open.
The open count is increased by 1.

The endacldb subroutine decreases the open count by 1 and closes the database when
this count goes to 0. Any uncommitted changed data is lost.

Parameters

Mode

Specifies the mode of the open. This parameter may contain one or
more of the following values defined in the usersec.h file:

S_READ Specifies read access.

S_WRITE Specifies update access.

Return Values
The setacldb and endacldb subroutines return a value of 0 to indicate success. Otherwise,
a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setacldb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Security Files Accessed: The calling process must have access to the SMIT ACL data.

Mode File rw/etc/security/smitacl.user

Related Information
The getgrpaclattr, nextgrpacl, or putgrpaclattr subroutine, getusraclattr, nextusracl, or
putusraclattr subroutine.

setaudithostdb

1-1026 Technical Reference: Base Operating System

setaudithostdb or endaudithostdb Subroutine

Purpose
Opens and closes the host identifier auditing file.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>
int setaudithostdb (int Mode);
int endaudithostdb (void;

Description
These functions can be used to open and close access to the host auditing information
database. Programs that call either the getaudithostattr or putaudithostattr subroutine,
call setaudithostdb to open the host database and the endaudithostdb subroutine to
close the host database.

The setaudithostdb subroutine opens the host database in the specified mode, if it is not
already open. The open count is increased by 1.

The enduserdb subroutine decreases the open count by 1 and closes the host database
when this count goes to 0. Any uncommitted changed data is lost.

Parameter

Mode

Specifies the mode of the open. This parameter may contain one or more
of the following values defined in the usersec.h files:

S_READ Specifies read access.

S_WRITE Specifies write access.

Return Values
On successful completion, the setaudithostdb or endaudithostdb subroutine returns 0. If
unsuccessful, the subroutine returns non–zero.

Error Codes
The setaudithostdp or endaudithostdb subroutine fails if the following is true:

EINVAL If Mode is not one of the valid values.

Related Information

The auditmerge command, auditpr command, auditselect command, auditstream
command.

The auditread subroutine, getaudithostattr, IDtohost, hosttoID, nexthost or
putaudithostattr subroutine.

setbuf

1-1027Base Operating System Runtime Services (Q-Z)

setbuf, setvbuf, setbuffer, or setlinebuf Subroutine

Purpose
Assigns buffering to a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

void setbuf (Stream, Buffer)
FILE *Stream;
char *Buffer;

int setvbuf (Stream, Buffer, Mode, Size)
FILE *Stream;
char *Buffer;
int Mode;
size_t Size;

void setbuffer (Stream, Buffer, Size)
FILE *Stream;
char *Buffer;
size_t Size;

void setlinebuf (Stream)
FILE *Stream;

Description
The setbuf subroutine causes the character array pointed to by the Buffer parameter to be
used instead of an automatically allocated buffer. Use the setbuf subroutine after a stream
has been opened, but before it is read or written.

If the Buffer parameter is a null character pointer, input/output is completely unbuffered.

A constant, BUFSIZ, defined in the stdio.h file, tells how large an array is needed:

char buf[BUFSIZ];

For the setvbuf subroutine, the Mode parameter determines how the Stream parameter is
buffered:

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line–buffered. The buffer is flushed when a new
line is written, the buffer is full, or input is requested.

_IONBF Causes input/output to be completely unbuffered.

If the Buffer parameter is not a null character pointer, the array it points to is used for
buffering. The Size parameter specifies the size of the array to be used as a buffer, but all of
the Size parameter’s bytes are not necessarily used for the buffer area. The constant
BUFSIZ in the stdio.h file is one buffer size. If input/output is unbuffered, the subroutine
ignores the Buffer and Size parameters. The setbuffer subroutine, an alternate form of the
setbuf subroutine, is used after Stream has been opened, but before it is read or written.
The character array Buffer, whose size is determined by the Size parameter, is used instead
of an automatically allocated buffer. If the Buffer parameter is a null character pointer,
input/output is completely unbuffered.

The setbuffer subroutine is not needed under normal circumstances because the default
file I/O buffer size is optimal.

setbuf

1-1028 Technical Reference: Base Operating System

The setlinebuf subroutine is used to change the stdout or stderr file from block buffered or
unbuffered to line–buffered. Unlike the setbuf and setbuffer subroutines, the setlinebuf
subroutine can be used any time Stream is active.

A buffer is normally obtained from the malloc subroutine at the time of the first getc
subroutine or putc subroutine on the file, except that the standard error stream, stderr, is
normally not buffered.

Output streams directed to terminals are always either line–buffered or unbuffered.

Note: A common source of error is allocating buffer space as an automatic variable in a
code block, and then failing to close the stream in the same block.

Parameters

Stream Specifies the input/output stream.

Buffer Points to a character array.

Mode Determines how the Stream parameter is buffered.

Size Specifies the size of the buffer to be used.

Return Values
Upon successful completion, setvbuf returns a value of 0. Otherwise it returns a nonzero
value if a value that is not valid is given for type, or if the request cannot be honored.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The setbuffer and setlinebuf subroutines are included for compatibility with Berkeley
System Distribution (BSD).

Related Information
The fopen, freopen, or fdopen subroutine, fread subroutine, getc, fgetc, getchar, or getw
subroutine, getwc, fgetwc, or getwchar subroutine, malloc, free, realloc, calloc, mallopt,
mallinfo, or alloca subroutine, putc, putchar, fputc, or putw subroutine, putwc,
putwchar, or fputwc subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

setcsmap

1-1029Base Operating System Runtime Services (Q-Z)

setcsmap Subroutine

Purpose
Reads a code–set map file and assigns it to the standard input device.

Library
Standard C Library (libc.a)

Syntax
#include <sys/termios.h>

int setcsmap (Path);
char *Path;

Description
The setcsmap subroutine reads in a code–set map file. The path parameter specifies the
location of the code–set map file. The path is usually composed by forming a string with the
csmap directory and the code set, as in the following example:

n=sprintf(path,”%s%s”,CSMAP_DIR,nl_langinfo(CODESET));

The file is processed and according to the included informations, the setcsmap subroutine
changes the tty configuration. Multibyte processing may be enabled, and converter modules
may be pushed onto the tty stream.

Parameter

Path Names the code–set map file.

Return Values
If a code set–map file is successfully opened and compiled, a value of 0 is returned. If an
error occurred, a value of 1 is returned and the errno global variable is set to identify the
error.

Error Codes

EINVAL Indicates an invalid value in the code set map.

EIO An I/O error occurred while the file system was being read.

ENOMEM Insufficient resources are available to satisfy the request.

EFAULT A kernel service, such as copyin, has failed.

ENOENT The named file does not exist.

EACCESS The named file cannot be read.

Implementation Specifics
The setcsmap function is part of Base Operating System (BOS) Runtime.

Related Information
The setmaps command.

The setmaps file format.

tty Subsystem Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

setgid

1-1030 Technical Reference: Base Operating System

setgid, setrgid, setegid, or setregid Subroutine

Purpose
Sets the process group IDs.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int setgid (GID)
gid_t GID;

int setrgid (RGID)
gid_t RGID;

int setegid (EGID)
gid_t EGID;

int setregid (RGID, EGID)
gid_t RGID;
gid_t EGID;

Description
The setgid, setrgid, setegid, and setregid subroutines set the process group IDs of the
calling process. The following semantics are supported:

setgid If the effective user ID of the process is the root user, the process’s real,
effective, and saved group IDs are set to the value of the GID
parameter. Otherwise, the process effective group ID is reset if the GID
parameter is equal to either the current real or saved group IDs, or one
of its supplementary group IDs. Supplementary group IDs of the calling
process are not changed.

setegid The process effective group ID is reset if one of the following conditions
is met:

• The EGID parameter is equal to either the current real or saved
group IDs.

• The EGID parameter is equal to one of its supplementary group IDs.

• The effective user ID of the process is the root user.

setrgid The EPERM error code is always returned.

setregid

The RGID and EGID parameters can have one of the following
relationships:

RGID != EGID If the EGID parameter is equal to either the process’s
real or saved group IDs, the process effective group ID
is set to the EGID parameter. Otherwise, the EPERM
error code is returned.

RGID= = EGID If the effective user ID of the process is the root user,
the process’s real and effective group IDs are set to the
EGID parameter. If the EGID parameter is equal to the
process’s real or saved group IDs, the process effective
group ID is set to EGID. Otherwise, the EPERM error
code is returned.

setgid

1-1031Base Operating System Runtime Services (Q-Z)

The setegid, setrgid, and setregid subroutines are thread–safe. To use these subroutines
in a multithreaded environment, use the libc_r.a library.

The setegid, setrgid, and setregid subroutines are thread–safe.

Parameters

GID Specifies the value of the group ID to set.

RGID Specifies the value of the real group ID to set.

EGID Specifies the value of the effective group ID to set.

Return Values

0 Indicates that the subroutine was successful.

–1 Indicates the subroutine failed. The errno global variable is set to
indicate the error.

Error Codes
If either the setgid or setegid subroutine fails, one or more of the following are returned:

EPERM Indicates the process does not have appropriate privileges and the GID
or EGID parameter is not equal to either the real or saved group IDs of
the process.

EINVAL Indicates the value of the GID or EGID parameter is invalid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The operating system does not support setuid or setgid shell scripts.

Related Information
The getgid subroutine, getgroups subroutine, setgroups subroutine, setuid subroutine.

The setgroups command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

setgroups

1-1032 Technical Reference: Base Operating System

setgroups Subroutine

Purpose
Sets the supplementary group ID of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <grp.h>

int setgroups (NumberGroups, GroupIDSet)
int NumberGroups;
gid_t *GroupIDSet;

Description
The setgroups subroutine sets the supplementary group ID of the process. The setgroups
subroutine cannot set more than NGROUPS_MAX groups in the group set.
(NGROUPS_MAX is a constant defined in the limits.h file.)

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is
passed in case of 64–bit application calling 32–bit kernel interface.

Parameters

GroupIDSet Pointer to the array of group IDs to be established.

NumberGroups Indicates the number of entries in the GroupIDSet
parameter.

Return Values
Upon successful completion, the setgroups subroutine returns a value of 0. Otherwise, a
value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setgroups subroutine fails if any of the following are true:

EFAULT The NumberGroups and GroupIDSet parameters specify
an array that is partially or completely outside of the
process’ allocated address space.

EINVAL The NumberGroups parameter is greater than the
NGROUPS_MAX value.

EPERM A group ID in the GroupIDSet parameter is not presently in
the supplementary group ID, and the invoker does not have
root user authority.

Security
Auditing Events:

Event Information

PROC_SetGroups NumberGroups, GroupIDSet

setgroups

1-1033Base Operating System Runtime Services (Q-Z)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getgid subroutine, getgroups subroutine, initgroups subroutine, setgid subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

setjmp

1-1034 Technical Reference: Base Operating System

setjmp or longjmp Subroutine

Purpose
Saves and restores the current execution context.

Library
Standard C Library (libc.a)

Syntax
#include <setjmp.h>
int setjmp (Context)
jmp_buf Context;

void longjmp (Context, Value)
jmp_buf Context;
int Value;

int _setjmp (Context)
jmp_buf Context;

void _longjmp (Context, Value)
jmp_buf Context;
int Value;

Description
The setjmp subroutine and the longjmp subroutine are useful when handling errors and
interrupts encountered in low–level subroutines of a program.

The setjmp subroutine saves the current stack context and signal mask in the buffer
specified by the Context parameter.

The longjmp subroutine restores the stack context and signal mask that were saved by the
setjmp subroutine in the corresponding Context buffer. After the longjmp subroutine runs,
program execution continues as if the corresponding call to the setjmp subroutine had just
returned the value of the Value parameter. The subroutine that called the setjmp subroutine
must not have returned before the completion of the longjmp subroutine. The setjmp and
longjmp subroutines save and restore the signal mask sigmask (2), while _setjmp and
_longjmp manipulate only the stack context.

Parameters

Context Specifies an address for a jmp_buf structure.

Value Indicates any integer value.

Return Values
The setjmp subroutine returns a value of 0, unless the return is from a call to the longjmp
function, in which case setjmp returns a nonzero value.

The longjmp subroutine cannot return 0 to the previous context. The value 0 is reserved to
indicate the actual return from the setjmp subroutine when first called by the program. The
longjmp subroutine does not return from where it was called, but rather, program execution
continues as if the corresponding call to setjmp was returned with a returned value of
Value.

If the longjmp subroutine is passed a Value parameter of 0, then execution continues as if
the corresponding call to the setjmp subroutine had returned a value of 1. All accessible
data have values as of the time the longjmp subroutine is called.

setjmp

1-1035Base Operating System Runtime Services (Q-Z)

Attention: If the longjmp subroutine is called with a Context parameter that was not
previously set by the setjmp subroutine, or if the subroutine that made the
corresponding call to the setjmp subroutine has already returned, then the results of the
longjmp subroutine are undefined. If the longjmp subroutine detects such a condition, it
calls the longjmperror routine. If longjmperror returns, the program is aborted. The
default version of longjmperror prints the message: longjmp or siglongjmp
used outside of saved context to standard error and returns. Users wishing to
exit in another manner can write their own version of the longjmperror program.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

If a process is using the AT&T System V sigset interface, then the setjmp and longjmp
subroutines do not save and restore the signal mask. In such a case, their actions are
identical to those of the _setjmp and _longjmp subroutines.

Related Information
The sigsetjmp, siglongjmp subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

setlocale

1-1036 Technical Reference: Base Operating System

setlocale Subroutine

Purpose
Changes or queries the program’s entire current locale or portions thereof.

Library
Standard C Library (libc.a)

Syntax
#include <locale.h>

char *setlocale (Category, Locale)
int Category;
const char *Locale;

Description
The setlocale subroutine selects all or part of the program’s locale specified by the
Category and Locale parameters. The setlocale subroutine then changes or queries the
specified portion of the locale. The LC_ALL value for the Category parameter names the
entire locale (all the categories). The other Category values name only a portion of the
program locale.

The Locale parameter specifies a string that provides information needed to set certain
conventions in the Category parameter. The components of the Locale parameter are
language and territory. Values allowed for the locale argument are the predefined
language_territory combinations or a user–defined locale.

If a user defines a new locale, a uniquely named locale definition source file must be
provided. The character collation, character classification, monetary, numeric, time, and
message information should be provided in this file. The locale definition source file is
converted to a binary file by the localedef command. The binary locale definition file is
accessed in the directory specified by the LOCPATH environment variable.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The default locale at program startup is the C locale. A call to the setlocale subroutine must
be made explicitly to change this default locale environment. See Understanding Locale
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs for
setlocale subroutine examples.

 The locale state is common to all threads within a process.

Parameters
Category Specifies a value representing all or part of the locale for a program.

Depending on the value of the Locale parameter, these categories may be
initiated by the values of environment variables with corresponding names.
Valid values for the Category parameter, as defined in the locale.h file, are:

LC_ALL Affects the behavior of a program’s entire locale.

LC_COLLATE Affects the behavior of regular expression and collation subroutines.

LC_CTYPE Affects the behavior of regular expression, character–classification,
case–conversion, and wide character subroutines.

LC_MESSAGES
Affects the content of messages and affirmative and negative responses.

LC_MONETARY
Affects the behavior of subroutines that format monetary values.

setlocale

1-1037Base Operating System Runtime Services (Q-Z)

LC_NUMERIC Affects the behavior of subroutines that format nonmonetary numeric
values.

LC_TIME Affects the behavior of time–conversion subroutines.

Locale Points to a character string containing the required setting for the Category
parameter.

The following are special values for the Locale parameter:

”C” The C locale is the locale all programs inherit at program startup.

”POSIX” Specifies the same locale as a value of ”C”.

”” Specifies categories be set according to locale environment variables.

NULL Queries the current locale environment and returns the name of the locale.

The Language Territory Table contains supported language_territory values for the Locale
parameter:

Language Territory Table

Locale Value Language Territory Code Set

Ar_AA Arabic Arabic Countries IBM–1046

ar_AA Arabic Arabic Countries ISO8859–6

bg_BG Bulgarian Bulgaria ISO8856-5

cs_CZ Czech Czech Republic ISO8859-2

Da_DK Danish Denmark IBM–850

da_DK Danish Denmark ISO8859–1

De_CH German Switzerland IBM–850

de_CH German Switzerland ISO8859–1

De_DE German Germany IBM–850

de_DE German Germany ISO8859–1

el_GR Greek Greece ISO8859–7

En_GB English Great Britain IBM–850

en_GB English Great Britain ISO8859–1

En_US English United States IBM–850

en_US English United States ISO8859–1

Es_ES Spanish Spain IBM–850

es_ES Spanish Spain ISO8859–1

Fi_FI Finnish Finland IBM–850

fi_FI Finnish Finland ISO8859–1

Fr_BE French Belgium IBM–850

fr_BE French Belgium ISO8859–1

Fr_CA French Canada IBM–850

fr_CA French Canada ISO8859–1

Fr_FR French France IBM–850

fr_FR French France ISO8859–1

Fr_CH French Switzerland IBM–850

fr_CH French Switzerland ISO8859–1

setlocale

1-1038 Technical Reference: Base Operating System

Language Territory Table

Locale Value Code SetTerritoryLanguage

hr_HR Croatian Croatia ISO8859–2

hu_HU Hungarian Hungary ISO8859–2

Is_IS Icelandic Iceland IBM–850

is_IS Icelandic Iceland ISO8859–1

It_IT Italian Italy IBM–850

it_IT Italian Italy ISO8859–1

Iw_IL Hebrew Israel IBM–856

iw_IL Hebrew Israel ISO8859–8

Ja_JP Japanese Japan IBM–943

ja_JP Japanese Japan IBM–eucJP

ko_KR Korean Korea IBM_eucKR

mk_MK Macedonian Former Yugoslav Republic of Macedonia ISO8859-5

Nl_BE Dutch Belgium IBM–850

nl_BE Dutch Belgium ISO8859–1

Nl_NL Dutch Netherlands IBM–850

nl_NL Dutch Netherlands ISO8859–1

No_NO Norwegian Norway IBM–850

no_NO Norwegian Norway ISO8859–1

pl_PL Polish Poland ISO8859–2

Pt_PT Portuguese Portugal IBM–850

pt_PT Portuguese Portugal ISO8859–1

ro_RO Romanian Romania ISO8859–2

ru_RU Russian Russia ISO8859–5

sh_SP Serbian Lat-
in

Yugoslavia ISO8859–2

sl_SI Slovene Slovenia ISO8859–2

sk_SK Slovak Slovakia ISO8859–2

sr_SP Serbian
Cyrillic

Yugoslavia ISO8859–5

Zh_CN Simplified
Chinese

PRC GBK

Sv_SE Swedish Sweden IBM–850

sv_SE Swedish Sweden ISO8859–1

tr_TR Turkish Turkey ISO8859–9

zh_TW Chinese
(trad)

Republic of China IBM_eucTW

Return Values
If a pointer to a string is given for the Locale parameter and the selection can be honored,
the setlocale subroutine returns the string associated with the specified Category

setlocale

1-1039Base Operating System Runtime Services (Q-Z)

parameter for the new locale. If the selection cannot be honored, a null pointer is returned
and the program locale is unchanged.

If a null is used for the Locale parameter, the setlocale subroutine returns the string
associated with the Category parameter for the program’s current locale. The program’s
locale is not changed.

A subsequent call with the string returned by the setlocale subroutine, and its associated
category, will restore that part of the program locale. The string returned is not modified by
the program, but can be overwritten by a subsequent call to the setlocale subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The localeconv subroutine, nl_langinfo subroutine, rpmatch subroutine.

The localedef command.

National Language Support Overview for Programming and Understanding Locale
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

setpcred

1-1040 Technical Reference: Base Operating System

setpcred Subroutine

Purpose
Sets the current process credentials.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setpcred (User, Credentials)
char **Credentials;
char *User;

Description
The setpcred subroutine sets a process’ credentials according to the Credentials
parameter. If the User parameter is specified, the credentials defined for the user in the user
database are used. If the Credentials parameter is specified, the credentials in this string
are used. If both the User and Credentials parameters are specified, both the user’s and the
supplied credentials are used. However, the supplied credentials of the Credentials
parameter will override those of the user. At least one parameter must be specified.

The setpcred subroutine requires the setpenv subroutine to follow it.

Note: If the auditwrite subroutine is to be called from a program invoked from the
inittab file, the setpcred subroutine should be called first to establish the process’
credentials.

User Specifies the user for whom credentials are being established.

Credentials Defines specific credentials to be established. This parameter points to an
array of null-terminated character strings that may contain the following
values. The last character string must be null.

LOGIN_USER=%s Login user name
REAL_USER=%s Real user name
REAL_GROUP=%s Real group name
GROUPS=%s Supplementary group ID
AUDIT_CLASSES=%s Audit classes
RLIMIT_CPU=%d Process soft CPU limit
RLIMIT_FSIZE=%d Process soft file size
RLIMIT_DATA=%d Process soft data segment size
RLIMIT_STACK=%d Process soft stack segment size
RLIMIT_CORE=%d Process soft core file size
RLIMIT_RSS=%d Process soft resident set size
RLIMIT_CORE_HARD=%d Process hard core file size
RLIMIT_CPU_HARD=%d Process hard CPU limit
RLIMIT_DATA_HARD=%d Process hard data segment size
RLIMIT_FSIZE_HARD=%d Process hard file size
RLIMIT_RSS_HARD=%d Process hard resident set size
RLIMIT_STACK_HARD=%d Process hard stack segment size
UMASK=%o Process umask (file creation mask)
A process must have root user authority to set all credentials except the
UMASK credential.

Resource Hard Soft

RLIMIT_CORE unlimited %d

setpcred

1-1041Base Operating System Runtime Services (Q-Z)

RLIMIT_CPU %d %d

RLIMIT_DATA unlimited %d

RLIMIT_FSIZE %d %d

RLIMIT_RSS unlimited %d

RLIMIT_STACK unlimited %d

The soft limit credentials will override the equivalent hard limit credentials
that may proceed them. To set the hard limits, the hard limit credentials
should follow the soft limit credentials.

Return Values
Upon successful return, the setpcred subroutine returns a value of 0. If setpcred fails, a
value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpcred subroutine fails if one or more of the following are true:

EINVAL The Credentials parameter contains invalid credentials specifications.

EINVAL The User parameter is null and the Credentials parameter is either null
or points to an empty string.

EPERM The process does not have the proper authority to set the requested
credentials.

Other errors may be set by subroutines invoked by the setpcred subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditwrite subroutine, ckuseracct subroutine, ckuserID subroutine, getpcred
subroutine, getpenv subroutine, setpenv subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

setpenv

1-1042 Technical Reference: Base Operating System

setpenv Subroutine

Purpose
Sets the current process environment.

Library
Security Library (libc.a)

Syntax #include <usersec.h>
int setpenv (User, Mode, Environment, Command)
char *User;
int Mode;
char **Environment;
char *Command;

Description
The setpenv subroutine first sets the environment of the current process according to its
parameter values, and then sets the working directory and runs a specified command. If the
User parameter is specified, the process environment is set to that of the specified user, the
user’s working directory is set, and the specified command run. If the User parameter is not
specified, then the environment and working directory are set to that of the current process,
and the command is run from this process. The environment consists of both user–state
and system–state environment variables.

Note: The setpenv subroutine requires the setpcred subroutine to precede it.

The setpenv subroutine performs the following steps:

Setting the Process Environment
The first step involves changing the user-state and system-state
environment. Since this is dependent on the values of the Mode and
Environment parameters, see the description for the Mode parameter for
more information.

Setting the Process Current Working Directory
After the user-state and system-state environment is set, the working
directory of the process may be set. If the Mode parameter includes the
PENV_INIT value, the current working directory is changed to the user’s
initial login directory (defined in the /etc/passwd file). Otherwise, the
current working directory is unchanged.

Executing the Initial Program
After the working directory of the process is reset, the initial program
(usually the shell interpreter) is executed. If the Command parameter is
null, the shell from the user database is used. If the parameter is not
defined, the shell from the user-state environment is used and the
Command parameter defaults to the /usr/bin/sh file. If the Command
parameter is not null, it specifies the command to be executed. If the Mode
parameter contains the PENV_ARGV value, the Command parameter is
assumed to be in the argv structure and is passed to the execve
subroutine. The string contained in the Command parameter is used as the
Path parameter of the execve subroutine. If the Mode parameter does not
contain PENV_ARGV value, the Command parameter is parsed into an

setpenv

1-1043Base Operating System Runtime Services (Q-Z)

argv structure and executed. If the Command parameter contains the
$SHELL value, substitution is done prior to execution.

Note: This step will fail if the Command parameter contains the $SHELL
value but the user-state environment does not contain the SHELL
value.

Parameters
Command Specifies the command to be executed. If the Mode parameter contains the

PENV_ARGV value, then the Command parameter is assumed to be a
valid argument vector for the execv subroutine.

Environment Specifies the value of user-state and system-state environment variables in
the same format returned by the getpenv subroutine. The user-state
variables are prefaced by the keyword USRENVIRON:, and the
system-state variables are prefaced by the keyword SYSENVIRON:. Each
variable is defined by a string of the form var=value, which is an array of
null-terminated character pointers.

Mode Specifies how the setpenv subroutine is to set the environment and run the
command. This parameter is a bit mask and must contain only one of the
following values, which are defined in the usersec.h file:

PENV_INIT The user-state environment is initialized as follows:

AUTHSTATE Retained from the current environment. If the
AUTHSTATE value is not present, it is
defaulted to the compat value.

KRB5CCNAME
Retained from the current environment. This
value is defined if you authenticated through
the Distributed Computing Environment
(DCE).

USER Set to the name specified by the User
parameter or to the name corresponding to
the current real user ID. The name is
shortened to a maximum of 8 characters.

LOGIN Set to the name specified by the User
parameter or to the name corresponding to
the current real user ID. If set by the User
parameter, this value is the complete login
name, which may include a DCE cell name.

LOGNAME Set to the current system environment
variable LOGNAME.

TERM Retained from the current environment. If the
TERM value is not present, it is defaulted to
an IBM6155.

SHELL Set from the initial program defined for the
real user ID of the current process. If no
program is defined, then the /usr/bin/sh shell
is used as the default.

HOME Set from the home directory defined for the
real user ID of the current process. If no
home directory is defined, the default is
/home/guest.

setpenv

1-1044 Technical Reference: Base Operating System

PATH Set initially to the value for the PATH value in
the /etc/environment file. If not set, it is
destructively replaced by the default value of
PATH=/usr/bin:$HOME:. (The final period
specifies the working directory). The PATH
variable is destructively replaced by the
usrenv attribute for this user in the
/etc/security/environ file if the PATH value
exists in the /etc/environment file.

The following files are read for additional environment
variables:

/etc/environment Variables defined in this file are
added to the environment.

/etc/security/environ Environment variables defined for
the user in this file are added to
the user-state environment.

The user-state variables in the Environment parameter are
added to the user-state environment. These are preceded by
the USRENVIRON: keyword.

The system-state environment is initialized as follows:

LOGNAME
Set to the current LOGNAME value in the
protected user environment. The login (tsm)
command passes this value to the setpenv
subroutine to ensure correctness.

NAME Set to the login name corresponding to the real
user ID.

TTY Set to the TTY name corresponding to standard
input.

The following file is read for additional environment variables:

/etc/security/environ The system-state environment
variables defined for the user in
this file are added to the
environment. The system-state
variables in the Environment
parameter are added to the
environment. These are preceded
by the SYSENVIRON keyword.

PENV_DELTA
The existing user-state and system-state environment
variables are preserved and the variables defined in the
Environment parameter are added.

PENV_RESET
The existing environment is cleared and totally replaced by
the content of the Environment parameter.

PENV_KLEEN
Closes all open file descriptors, except 0, 1, and 2, before
executing the command. This value must be logically ORed
with PENV_DELTA, PENV_RESET, or PENV_INIT. It cannot
be used alone.

For both system-state and user-state environments, variable substitution is
performed.

setpenv

1-1045Base Operating System Runtime Services (Q-Z)

The Mode parameter may also contain:

PENV_ARGV
Specifies that the Command parameter is already in argv
format and need not be parsed. This value must be logically
ORed with PENV_DELTA, PENV_RESET, or PENV_INIT. It
cannot be used alone.

User Specifies the user name whose environment and working directory is to be
set and the specified command run. If a null pointer is given, the current
real uid is used to determine the name of the user.

Return Values
If the environment was successfully established, this function does not return. If the
setpenv subroutine fails, a value of –1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The setpenv subroutine fails if one or more of the following are true:

EINVAL The Mode parameter contains values other than PENV_INIT,
PENV_DELTA, PENV_RESET, or PENV_ARGV.

EINVAL The Mode parameter contains more than one of PENV_INIT,
PENV_DELTA, or PENV_RESET values.

EINVAL The Environment parameter is neither null nor empty, and does not
contain a valid environment string.

EPERM The caller does not have read access to the environment defined for the
system, or the user does not have permission to change the specified
attributes.

Other errors may be set by subroutines invoked by the setpenv subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The execl, execv, execle, execve, execlp, execvp, or exect subroutine, getpenv
subroutine, setpcred subroutine.

The login command, su command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

setpgid

1-1046 Technical Reference: Base Operating System

setpgid or setpgrp Subroutine

Purpose
Sets the process group ID.

Libraries
setpgid: Standard C Library (libc.a)

setpgrp: Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

Berkeley Thread Safe Library (libbsd_r.a) (4.2.1 and later versions)

Syntax
#include <unistd.h>

int setpgid (ProcessID, ProcessGroupID)
pid_t ProcessID, ProcessGroupID;

int setpgrp ()

Description
The setpgid subroutine is used either to join an existing process group or to create a new
process group within the session of the calling process. The process group ID of a session
leader does not change. Upon return, the process group ID of the process having a process
ID that matches the ProcessID value is set to the ProcessGroupID value. As a special case,
if the ProcessID value is 0, the process ID of the calling process is used. If ProcessGroupID
value is 0, the process ID of the indicated process is used.

This function is implemented to support job control.

The setpgrp subroutine in the libc.a library supports a subset of the function of the setpgid
subroutine. It has no parameters. It sets the process group ID of the calling process to be
the same as its process ID and returns the new value.

Parameters

ProcessID Specifies the process whose process group ID is to be changed.

ProcessGroupID Specifies the new value of calling process group ID.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The setpgid subroutine is unsuccessful if one or more of the following is true:

EACCES The value of the ProcessID parameter matches the process ID of a
child process of the calling process and the child process has
successfully executed one of the exec subroutines.

EINVAL The value of the ProcessGroupID parameter is less than 0, or is not a
valid value.

ENOSYS The setpgid subroutine is not supported by this implementation.

EPERM The process indicated by the value of the ProcessID parameter is a
session leader.

setpgid

1-1047Base Operating System Runtime Services (Q-Z)

EPERM The value of the ProcessID parameter matches the process ID of a
child process of the calling process and the child process is not in the
same session as the calling process.

EPERM The value of the ProcessGroupID parameter is valid, but does not
match the process ID of the process indicated by the ProcessID
parameter. There is no process with a process group ID that matches
the value of the ProcessGroupID parameter in the same session as the
calling process.

ESRCH The value of the ProcessID parameter does not match the process ID of
the calling process of a child process of the calling process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

In BSD systems, the setpgrp subroutine is defined with two parameters, as follows:

int setpgrp (ProcessID, ProcessGroup)
int ProcessID, ProcessGroup;

BSD systems set the process group to the value specified by the ProcessGroup parameter.
If the ProcessID value is 0, the call applies to the current process. In the Version 3
Operating System, this version of the setpgrp subroutine must be compiled with the
Berkeley Compatibility Library (libbsd.a) or, for versions 4.2.1 and later, the Berkeley
Thread Safe Library (libbsd_r.a) and is implemented as a call to the setpgid subroutine.
The restrictions that apply to the setpgid subroutine also apply to the setpgrp subroutine.

BSD systems set the process group to the value specified by the ProcessGroup parameter.
If the ProcessID value is 0, the call applies to the current process. In the Version 3
Operating System, this version of the setpgrp subroutine must be compiled with the
Berkeley Compatibility Library (libbsd.a) and is implemented as a call to the setpgid
subroutine. The restrictions that apply to the setpgid subroutine also apply to the setpgrp
subroutine.

BSD systems set the process group to the value specified by the ProcessGroup parameter.
If the ProcessID value is 0, the call applies to the current process. In the Version 3
Operating System, this version of the setpgrp subroutine must be compiled with the
Berkeley Compatibility Library (libbsd.a) and is implemented as a call to the setpgid
subroutine. The restrictions that apply to the setpgid subroutine also apply to the setpgrp
subroutine.

Related Information
The getpid subroutine.

setpri

1-1048 Technical Reference: Base Operating System

setpri Subroutine

Purpose
Sets a process scheduling priority to a constant value.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sched.h>

int setpri (ProcessID, Priority)
pid_t ProcessID;
int Priority;

Description
The setpri subroutine sets the scheduling priority of all threads in a process to be a
constant. All threads have their scheduling policies changed to SCHED_RR. A process nice
value and CPU usage can no longer be used to determine a process scheduling priority.
Only processes that have root user authority can set a process scheduling priority to a
constant.

Parameters

ProcessID Specifies the process ID. If this value is 0 then the current process
scheduling priority is set to a constant.

Priority Specifies the scheduling priority for the process. A lower number value
designates a higher scheduling priority. The Priority parameter must be
in the range PRIORITY_MIN < Priority < PRIORITY_MAX. (See the
sys/sched.h file.)

Return Values
Upon successful completion, the setpri subroutine returns the former scheduling priority of
the process just changed. Otherwise, a value of –1 is returned and the errno global variable
is set to indicate the error.

Error Codes
The setpri subroutine is unsuccessful if one or more of the following is true:

EINVAL The priority specified by the Priority parameter is outside the range of
acceptable priorities.

EPERM The process executing the setpri subroutine call does not have root
user authority.

ESRCH No process can be found corresponding to that specified by the
ProcessID parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getpri subroutine.

setpwdb

1-1049Base Operating System Runtime Services (Q-Z)

setpwdb or endpwdb Subroutine

Purpose
Opens or closes the authentication database.

Library
Security Library (libc.a)

Syntax
#include <userpw.h>

int setpwdb (Mode)
int Mode;

int endpwdb ()

Description
These functions are used to open and close access to the authentication database.
Programs that call either the getuserpw or putuserpw subroutine should call the setpwdb
subroutine to open the database and the endpwdb subroutine to close the database.

The setpwdb subroutine opens the authentication database in the specified mode, if it is
not already open. The open count is increased by 1.

The endpwdb subroutine decreases the open count by one and closes the authentication
database when this count drops to 0. Subsequent references to individual data items can
cause a memory access violation. The endpwdb subroutine also frees the space that was
allocated by either the getuserpw, putuserpw, or putuserpwhist subroutine. For security
reasons, freeing the space clears the password field. Any uncommitted changed data is
lost.

Parameters

Mode

Specifies the mode of the open. This parameter may contain one or
more of the following values, defined in the usersec.h file:

S_READ Specifies read access.

S_WRITE Specifies update access.

Return Values
The setpwdb and endpwdb subroutines return a value of 0 to indicate success. Otherwise,
a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpwdb and endpwdb subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

Both of these functions return errors from other subroutines.

Security
Access Control: The calling process must have access to the authentication data.

setpwdb

1-1050 Technical Reference: Base Operating System

Files Accessed:

Modes File

rw /etc/security/passwd

rw /etc/passwd

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getgroupattr subroutine, getuserattr subroutine, getuserpw, putuserpw, or
putuserpwhist subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

setroledb

1-1051Base Operating System Runtime Services (Q-Z)

setroledb or endroledb Subroutine

Purpose
Opens and closes the role database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setroledb(Mode)
int Mode;

int endroledb

Description
These functions may be used to open and close access to the role database. Programs that
call the getroleattr subroutine should call the setroledb subroutine to open the role
database and the endroledb subroutine to close the role database.

The setroledb subroutine opens the role database in the specified mode, if it is not already
open. The open count is increased by 1.

The endroledb subroutine decreases the open count by 1 and closes the role database
when this count goes to 0. Any uncommitted changed data is lost.

Parameters

Mode

Specifies the mode of the open. This parameter may contain one or
more of the following values defined in the usersec.h file:

S_READ Specifies read access.

S_WRITE Specifies update access.

Return Values
The setroledb and endroledb subroutines return a value of 0 to indicate success.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setroledb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Files Accessed: The calling process must have access to the role data.

Mode File rw/etc/security/roles

Related Information
The getroleattr, nextrole, or putroleattr subroutine.

setsid

1-1052 Technical Reference: Base Operating System

setsid Subroutine

Purpose
Creates a session and sets the process group ID.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t setsid (void)

Description
The setsid subroutine creates a new session if the calling process is not a process group
leader. Upon return, the calling process is the session leader of this new session, the
process group leader of a new process group, and has no controlling terminal. The process
group ID of the calling process is set equal to its process ID. The calling process is the only
process in the new process group and the only process in the new session.

Return Values
Upon successful completion, the value of the new process group ID is returned. Otherwise,
(pid_t) –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setsid subroutine is unsuccessful if the following is true:

EPERM The calling process is already a process group leader, or the process
group ID of a process other than the calling process matches the
process ID of the calling process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fork subroutine, getpid, getpgrp, or getppid subroutine, setpgid subroutine, setpgrp
subroutine.

setuid

1-1053Base Operating System Runtime Services (Q-Z)

setuid, setruid, seteuid, or setreuid Subroutine

Purpose
Sets the process user IDs.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int setuid (UID)
uid_t UID;

int setruid (RUID)
uid_t RUID;

int seteuid (EUID)
uid_t EUID;

int setreuid (RUID, EUID)
uid_t RUID;
uid_t EUID;

Description
The setuid, setruid, seteuid, and setreuid subroutines reset the process user IDs. The
following semantics are supported:

setuid If the effective user ID of the process is the root user, the process’s real,
effective, and saved user IDs are set to the value of the UID parameter.
Otherwise, the process effective user ID is reset if the UID parameter
specifies either the current real or saved user IDs.

seteuid The process effective user ID is reset if the UID parameter is equal to
either the current real or saved user IDs or if the effective user ID of the
process is the root user.

setruid The EPERM error code is always returned. Processes cannot reset only
their real user IDs.

setreuid

The RUID and EUID parameters can have the following two
possibilities:

RUID != EUID If the EUID parameter specifies either the process’s
real or saved user IDs, the process effective user ID is
set to the EUID parameter. Otherwise, the EPERM
error code is returned.

RUID= = EUID If the process effective user ID is the root user, the
process’s real and effective u ser IDs are set to the
EUID parameter. Otherwise, the EPERM error code is
returned.

The real and effective user ID parameters can have a value of –1. If the value is –1, the
actual value for the UID parameter is set to the corresponding current the UID parameter of
the process.

setuid

1-1054 Technical Reference: Base Operating System

Parameters

UID Specifies the user ID to set.

EUID Specifies the effective user ID to set.

RUID Specifies the real user ID to set.

Return Values
Upon successful completion, the setuid, seteuid, and setreuid subroutines return a value
of 0. Otherwise, a value of –1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The setuid, seteuid, and setreuid subroutines are unsuccessful if either of the following is
true:

EINVAL The value of the UID or EUID parameter is not valid.

EPERM The process does not have the appropriate privileges and the UID and
EUID parameters are not equal to either the real or saved user IDs of
the process.

Implementation Specifics
The operating system does not support setuid or setgid shell scripts.

These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getuid or geteuid subroutine, setgid subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

setuserdb

1-1055Base Operating System Runtime Services (Q-Z)

setuserdb or enduserdb Subroutine

Purpose
Opens and closes the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setuserdb (Mode)
int Mode;

int enduserdb ()

Description
These functions may be used to open and close access to the user database. Programs
that call either the getuserattr or getgroupattr subroutine should call the setuserdb
subroutine to open the user database and the enduserdb subroutine to close the user
database.

The setuserdb subroutine opens the user database in the specified mode, if it is not
already open. The open count is increased by 1.

The enduserdb subroutine decreases the open count by 1 and closes the user database
when this count goes to 0. Any uncommitted changed data is lost.

 Note: These subroutines are not safe for use with multiple threads. To call one of these
subroutines from a threaded application, enclose the call with the _libs_rmutex lock.
See ”Making a Subroutine Safe for Multiple Threads” in AIX General Programming
Concepts : Writing and Debugging Programs for more information about this lock.

Parameters

Mode

Specifies the mode of the open. This parameter may contain one or
more of the following values defined in the usersec.h file:

S_READ Specifies read access

S_WRITE Specifies update access.

Return Values
The setuserdb and enduserdb subroutines return a value of 0 to indicate success.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setuserdb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

setuserdb

1-1056 Technical Reference: Base Operating System

Security
Files Accessed: The calling process must have access to the user data. Depending on the
actual attributes accessed, this may include:

Modes File

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/group

rw /etc/security/environ

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getgroupattr subroutine, getuserattr subroutine, getuserpw subroutine, setpwdb
subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

sgetl

1-1057Base Operating System Runtime Services (Q-Z)

sgetl or sputl Subroutine

Purpose
Accesses long numeric data in a machine–independent fashion.

Library
Object File Access Routine Library (libld.a)

Syntax
long sgetl (Buffer)
char *Buffer;

void sputl (Value, Buffer)
long Value;
char *Buffer;

Description
The sgetl subroutine retrieves four bytes from memory starting at the location pointed to by
the Buffer parameter. It then returns the bytes as a long Value with the byte ordering of the
host machine.

The sputl subroutine stores the four bytes of the Value parameter into memory starting at
the location pointed to by the Buffer parameter. The order of the bytes is the same across all
machines.

Using the sputl and sgetl subroutines together provides a machine–independent way of
storing long numeric data in an ASCII file. For example, the numeric data stored in the
portable archive file format can be accessed with the sputl and sgetl subroutines.

Parameters

Value Specifies a 4–byte value to store into memory.

Buffer Points to a location in memory.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ar command, dump command.

The ar file format, a.out file format.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

shmat

1-1058 Technical Reference: Base Operating System

shmat Subroutine

Purpose
Attaches a shared memory segment or a mapped file to the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

void *shmat (SharedMemoryID, SharedMemoryAddress,
SharedMemoryFlag)
intSharedMemoryID, SharedMemoryFlag;
const void *SharedMemoryAddress;

Description
The shmat subroutine attaches the shared memory segment or mapped file specified by
the SharedMemoryID parameter (returned by the shmget subroutine), or file descriptor
specified by the SharedMemoryID parameter (returned by the openx subroutine) to the
address space of the calling process.

The following limits apply to shared memory:

• Maximum shared–memory segment size is 256M bytes before AIX release 4.3.1 and 2G
bytes from AIX 4.3.1.

• Minimum shared–memory segment size is 1 byte.

• Maximum number of shared memory IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

Note: The following applies to AIX Version 4.2.1 and later releases for 32–bit processes
only.

An extended shmat capability is available. If an environment variable EXTSHM=ON is
defined then processes executing in that environment will be able to create and attach more
than eleven shared memory segments.

The segments can be of size from 1 byte to 2GB, although for segments larger than 256MB
in size the environment variable EXTSHM=ON is ignored. The process can attach these
segments into the address space for the size of the segment. Another segment could be
attached at the end of the first one in the same 256MB segment region. The address at
which a process can attach is at page boundaries – a multiple of SHMLBA_EXTSHM bytes.
For segments larger than 256MB in size, the address at which a process can attach is at
256MB boundaries, which is a multiple of SHMLBA bytes.

The segments can be of size from 1 byte to 256MB. The process can attach these
segments into the address space for the size of the segment. Another segment could be
attached at the end of the first one in the same 256MB segment region. The address at
which a process can attach will be at page boundaries – a multiple of SHMLBA_EXTSHM
bytes.

The maximum address space available for shared memory with or without the environment
variable and for memory mapping is 2.75GB. An additional segment register ”0xE” is
available so that the address space is from 0x30000000 to 0xE0000000. However, a 256MB
region starting from 0xD0000000 will be used by the shared libraries and is therefore
unavailable for shared memory regions or mmapped regions.

shmat

1-1059Base Operating System Runtime Services (Q-Z)

There are some restrictions on the use of the extended shmat feature. These shared
memory regions can not be used as I/O buffers where the unpinning of the buffer occurs in
an interrupt handler. The restrictions on the use are the same as that of mmap buffers.

The smaller region sizes are not supported for mapping files. Regardless of whether
EXTSHM=ON or not, mapping a file will consume at least 256MB of address space.

The SHM_SIZE shmctl command is not supported for segments created with
EXTSHM=ON.

A segment created with EXTSHM=ON can be attached by a process without EXTSHM=ON.
This will consume a 256MB area of the address space irrespective of the size of the shared
memory region.

A segment created without EXTSHM=ON can be attached by a process with EXTSHM=ON.
This will consume a 256MB area of the address space irrespective of the size of the shared
memory region.

The environment variable provides the option of executing an application either with the
additional functionality of attaching more than 11 segments when EXTSHM=ON, or the
higher–performance access to 11 or fewer segments when the environment variable is not
set.

Parameters

SharedMemoryID Specifies an identifier for the shared memory segment.

SharedMemoryAddress Identifies the segment or file attached at the address specified
by the SharedMemoryAddress parameter, as follows:

• If the SharedMemoryAddress parameter is not equal to 0,
and the SHM_RND flag is set in the SharedMemoryFlag
parameter, the segment or file is attached at the next lower
segment boundary. This address is given by
(SharedMemoryAddress –(SharedMemoryAddress modulo
SHMLBA_EXTSHM if environment variable EXTSHM=ON
or SHMLBA if not.)

• If the SharedMemoryAddress parameter is not equal to 0 and
the SHM_RND flag is not set in the SharedMemoryFlag
parameter, the segment or file is attached at the address
given by the SharedMemoryAddress parameter. If this
address does not point to a SHMLBA_EXTSHM boundary if
the environment variable EXTSHM=ON or SHMLBA
boundary if not, the shmat subroutine returns the value –1
and sets the errno global variable to the EINVAL error code.

shmat

1-1060 Technical Reference: Base Operating System

SharedMemoryFlag
 Specifies several options. Its value is either 0 or is constructed
by logically ORing one or more of the following values:

SHM_COPY Changes an open file to deferred update (see
the openx subroutine). Included only for
compatibility with previous versions of the
operating system.

SHM_MAP Maps a file onto the address space instead of
a shared memory segment. The
SharedMemoryID parameter must specify an
open file descriptor in this case.

SHMLBA Specifies the low boundary address multiple of
a segment.

SHM_RDONLY Specifies read–only mode instead of the
default read–write mode.

SHM_RND Rounds the address given by the
SharedMemoryAddress parameter to the next
lower segment boundary, if necessary.

The shmat program makes a shared memory segment
addressable by the current process. The segment is attached
for reading if the SHM_RDONLY flag is set and the current
process has read permission. If the SHM_RDONLY flag is not
set and the current process has both read and write permission,
it is attached for reading and writing.

If the SHM_MAP flag is set, file mapping takes place. In this
case, the shmat subroutine maps the file open on the file
descriptor specified by the SharedMemoryID onto a segment.
The file must be a regular file. The segment is then mapped into
the address space of the process. A file of any size can be
mapped if there is enough space in the user address space.

When file mapping is requested, the SharedMemoryFlag
parameter specifies how the file should be mapped. If the
SHM_RDONLY flag is set, the file is mapped read–only. To map
read–write, the file must have been opened for writing.

All processes that map the same file read–only or read–write
map to the same segment. This segment remains mapped until
the last process mapping the file closes it.

A mapped file opened with the O_DEFER update has deferred
update. That is, changes to the shared segment do not affect
the contents of the file resident in the file system until an fsync
subroutine is issued to the file descriptor for which the mapping
was requested. Setting the SHM_COPY flag changes the file to
the deferred state. The file remains in this state until all
processes close it. The SHM_COPY flag is provided only for
compatibility with Version 2 of the operating system. New
programs should use the O_DEFER open flag.

A file descriptor can be used to map the corresponding file only
once. To map a file several times requires multiple file
descriptors.

When a file is mapped onto a segment, the file is referenced by
accessing the segment. The memory paging system
automatically takes care of the physical I/O. References beyond
the end of the file cause the file to be extended in page–sized
increments.

shmat

1-1061Base Operating System Runtime Services (Q-Z)

Return Values
When successful, the segment start address of the attached shared memory segment or
mapped file is returned. Otherwise, the shared memory segment is not attached, the errno
global variable is set to indicate the error, and a value of –1 is returned.

Error Codes
The shmat subroutine is unsuccessful and the shared memory segment or mapped file is
not attached if one or more of the following are true:

EACCES The calling process is denied permission for the specified operation.

EAGAIN The file to be mapped has enforced locking enabled, and the file is
currently locked.

EBADF A file descriptor to map does not refer to an open regular file.

EEXIST The file to be mapped has already been mapped.

EINVAL The SHM_RDONLY and SHM_COPY flags are both set.

EINVAL The SharedMemoryID parameter is not a valid shared memory
identifier.

EINVAL The SharedMemoryAddress parameter is not equal to 0, and the
value of (SharedMemoryAddress – (SharedMemoryAddress modulo
SHMLBA_EXTSHM if the environment variable EXTSHM=ON or
SHMLBA if not) points outside the address space of the process.

EINVAL The SharedMemoryAddress parameter is not equal to 0, the
SHM_RND flag is not set in the SharedMemoryFlag parameter, and
the SharedMemoryAddress parameter points to a location outside of
the address space of the process.

EMFILE The number of shared memory segments attached to the calling
process exceeds the system–imposed limit.

ENOMEM The available data space in memory is not large enough to hold the
shared memory segment.

ENOMEM The available data space in memory is not large enough to hold the
mapped file data structure.

ENOMEM The requested address and length crosses a segment boundary.
This is not supported when the environment variable EXTSHM=ON.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, exit subroutine, fclear subroutine, fork subroutine, fsync subroutine,
mmap subroutine, munmap subroutine, openx subroutine, truncate subroutine, readvx
subroutine, shmctl subroutine, shmdt subroutine, shmget subroutine, writevx subroutine.

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory
Mapping in AIX General Programming Concepts : Writing and Debugging Programs.

shmctl

1-1062 Technical Reference: Base Operating System

shmctl Subroutine

Purpose
Controls shared memory operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/shm.h>

int shmctl (SharedMemoryID, Command, Buffer)
int SharedMemoryID,Command;
struct shmid_ds *Buffer;

Description
The shmctl subroutine performs a variety of shared–memory control operations as
specified by the Command parameter.

The following limits apply to shared memory:

• Maximum shared–memory segment size is 256M bytes before AIX release 4.3.1 and 2G
bytes from AIX 4.3.1.

• Minimum shared–memory segment size is 1 byte.

• Maximum number of shared memory IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters

SharedMemoryID Specifies an identifier returned by the shmget subroutine.

Buffer Indicates a pointer to the shmid_ds structure. The shmid_ds
structure is defined in the sys/shm.h file.

Command The following commands are available:

IPC_STAT Obtains status information about the shared memory
segment identified by the SharedMemoryID
parameter. This information is stored in the area
pointed to by the Buffer parameter. The calling
process must have read permission to run this
command.

IPC_ SET Sets the user and group IDs of the owner as well as
the access permissions for the shared memory
segment identified by the SharedMemoryID
parameter. This command sets the following fields:

shm_perm.uid /* owning user ID */

shm_perm.gid /* owning group ID */

shm_perm.mode /* permission bits only */

You must have an effective user ID equal to root or to the value of
the shm_perm.cuid or shm_perm.uid field in the shmid_ds
data structure identified by the SharedMemoryID parameter.

shmctl

1-1063Base Operating System Runtime Services (Q-Z)

IPC_RMID Removes the shared memory identifier specified by
the SharedMemoryID parameter from the system
and erases the shared memory segment and data
structure associated with it. This command is only
executed by a process that has an effective user ID
equal either to that of a process with the appropriate
privileges or to the value of the shm_perm.uid or
shm_perm.cuid field in the data structure
identified by the SharedMemoryID parameter.

SHM_SIZE Sets the size of the shared memory segment to the
value specified by the shm_segsz field of the
structure specified by the Buffer parameter. This
value can be larger or smaller than the current size.
The limit is the maximum shared–memory segment
size. This command is only executed by a process
that has an effective user ID equal either to that of a
process with the appropriate privileges or to the
value of the shm_perm.uid or shm_perm.cuid
field in the data structure identified by the
SharedMemoryID parameter. This command is not
supported for regions created with the environment
variable EXTSHM=ON. This will result in a return
value of –1 with errno set to EINVAL.

SHM_SIZE Sets the size of the shared memory segment to the
value specified by the shm_segsz field of the
structure specified by the Buffer parameter. This
value can be larger or smaller than the current size.
The limit is the maximum shared–memory segment
size. This command is only executed by a process
that has an effective user ID equal either to that of a
process with the appropriate privileges or to the
value of the shm_perm.uid or shm_perm.cuid
field in the data structure identified by the
SharedMemoryID parameter. This command is not
supported for regions created with the environment
variable EXTSHM=ON. This results in a return value
of –1 with errno set to EINVAL. Attempting to use
the SHM_SIZE on a shared memory region larger
than 256MB or attempting to increase the size of a
shared memory region larger than 256MB results in
a return value of –1 with errno set to EINVAL.

Return Values
When completed successfully, the shmctl subroutine returns a value of 0. Otherwise, it
returns a value of –1 and the errno global variable is set to indicate the error.

Error Codes
The shmctl subroutine is unsuccessful if one or more of the following are true:

EACCES The Command parameter is equal to the IPC_STAT value and read
permission is denied to the calling process.

EFAULT The Buffer parameter points to a location outside the allocated address
space of the process.

EINVAL The SharedMemoryID parameter is not a valid shared memory identifier.

shmctl

1-1064 Technical Reference: Base Operating System

EINVAL The Command parameter is not a valid command.

EINVAL The Command parameter is equal to the SHM_SIZE value and the value
of the shm_segsz field of the structure specified by the Buffer parameter
is not valid.

EINVAL The Command parameter is equal to the SHM_SIZE value and the shared
memory region was created with the environment variable EXTSHM=ON.

ENOMEM The Command parameter is equal to the SHM_SIZE value, and the
attempt to change the segment size is unsuccessful because the system
does not have enough memory.

EPERM The Command parameter is equal to the IPC_RMID or SHM_SIZE value,
and the effective user ID of the calling process is not equal to the value of
the shm_perm.uid or shm_perm.cuid field in the data structure
identified by the SharedMemoryID parameter. The effective user ID of the
calling process is not the root user ID.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The disclaim subroutine, shmat subroutine, shmdt subroutine, shmget subroutine.

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory
Mapping in AIX General Programming Concepts : Writing and Debugging Programs.

shmdt

1-1065Base Operating System Runtime Services (Q-Z)

shmdt Subroutine

Purpose
Detaches a shared memory segment.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

int shmdt (SharedMemoryAddress)
const void *SharedMemoryAddress;

Description
The shmdt subroutine detaches from the data segment of the calling process the shared
memory segment located at the address specified by the SharedMemoryAddress
parameter.

Mapped file segments are automatically detached when the mapped file is closed. However,
you can use the shmdt subroutine to explicitly release the segment register used to map a
file. Shared memory segments must be explicitly detached with the shmdt subroutine.

If the file was mapped for writing, the shmdt subroutine updates the mtime and ctime time
stamps.

The following limits apply to shared memory:

• Maximum shared–memory segment size is 256M bytes before AIX release 4.3.1 and 2G
bytes from AIX 4.3.1.

• Minimum shared–memory segment size is 1 byte.

• Maximum number of shared memory IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters

SharedMemoryAddress Specifies the data segment start address of a shared
memory segment.

Return Values
When successful, the shmdt subroutine returns a value of 0. Otherwise, the shared
memory segment at the address specified by the SharedMemoryAddress parameter is not
detached, a value of 1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The shmdt subroutine is unsuccessful if the following condition is true:

EINVAL The value of the SharedMemoryAddress parameter is not
the data–segment start address of a shared memory
segment.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

shmdt

1-1066 Technical Reference: Base Operating System

Related Information
The exec subroutine, exit subroutine, fork subroutine, fsync subroutine, mmap subroutine,
munmap subroutine, shmat subroutine, shmctl subroutine, shmget subroutine.

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory
Mapping in AIX General Programming Concepts : Writing and Debugging Programs.

shmget

1-1067Base Operating System Runtime Services (Q-Z)

shmget Subroutine

Purpose
Gets shared memory segments.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

int shmget (Key, Size, SharedMemoryFlag)
key_t Key;
size_t Size
int SharedMemoryFlag;

Description
The shmget subroutine returns the shared memory identifier associated with the specified
Key parameter.

The following limits apply to shared memory:

• Maximum shared–memory segment size is 256M bytes before AIX release 4.3.1 and 2G
bytes from AIX 4.3.1.

• Minimum shared–memory segment size is 1 byte.

• Maximum number of shared memory IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters

Key Specifies either the IPC_PRIVATE value or an IPC key
constructed by the ftok subroutine (or by a similar algorithm).

Size Specifies the number of bytes of shared memory required.

shmget

1-1068 Technical Reference: Base Operating System

SharedMemoryFlag

 Constructed by logically ORing one or more of the following
values:

IPC_CREAT Creates the data structure if it does not already
exist.

IPC_EXCL Causes the shmget subroutine to be
unsuccessful if the IPC_CREAT flag is also set,
and the data structure already exists.

S_IRUSR Permits the process that owns the data structure
to read it.

S_IWUSR Permits the process that owns the data structure
to modify it.

S_IRGRP Permits the group associated with the data
structure to read it.

S_IWGRP Permits the group associated with the data
structure to modify it.

S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the
sys/mode.h file and are a subset of the access permissions that
apply to files.

A shared memory identifier, its associated data structure, and a
shared memory segment equal in number of bytes to the value of
the Size parameter are created for the Key parameter if one of the
following is true:

• The Key parameter is equal to the IPC_PRIVATE value.

• The Key parameter does not already have a shared memory
identifier associated with it, and the IPC_CREAT flag is set in
the SharedMemoryFlag parameter.

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

• The shm_perm.cuid and shm_perm.uid fields are set to
the effective user ID of the calling process.

• The shm_perm.cgid and shm_perm.gid fields are set to
the effective group ID of the calling process.

• The low–order 9 bits of the shm_perm.mode field are set to
the low–order 9 bits of the SharedMemoryFlag parameter.

• The shm_segsz field is set to the value of the Size parameter.

• The shm_lpid , shm_nattch , shm_atime , and
shm_dtime fields are set to 0.

• The shm_ctime field is set to the current time.

Note: Once created, a shared memory segment is
deleted only when the system reboots or by
issuing the following shmctl command:

if (shmctl (id, IPC_RMID, 0) == –1)

 perror (”error in closing segment”),exit (1);

shmget

1-1069Base Operating System Runtime Services (Q-Z)

Return Values
Upon successful completion, a shared memory identifier is returned. Otherwise, the shmget
subroutine returns a value of –1 and sets the errno global variable to indicate the error.

Error Codes
The shmget subroutine is unsuccessful if one or more of the following are true:

EACCES A shared memory identifier exists for the Key parameter,
but operation permission as specified by the low–order 9
bits of the SharedMemoryFlag parameter is not granted.

EEXIST A shared memory identifier exists for the Key parameter,
and both the IPC_CREAT and IPC_EXCL flags are set in
the SharedMemoryFlag parameter.

EINVAL A shared memory identifier does not exist and the Size
parameter is less than the system–imposed minimum or
greater than the system–imposed maximum.

EINVAL A shared memory identifier exists for the Key parameter,
but the size of the segment associated with it is less than
the Size parameter, and the Size parameter is not equal to
0.

ENOENT A shared memory identifier does not exist for the Key
parameter, and the IPC_CREAT flag is not set in the
SharedMemoryFlag parameter.

ENOMEM A shared memory identifier and associated shared memory
segment are to be created but the amount of available
physical memory is not sufficient to meet the request.

ENOSPC A shared memory identifier will be created, but the
system–imposed maximum of shared memory identifiers
allowed will be exceeded.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ftok subroutine, mmap subroutine, munmap subroutine, shmat subroutine, shmctl
subroutine, shmdt subroutine.

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory
Mapping in AIX General Programming Concepts : Writing and Debugging Programs.

sigaction

1-1070 Technical Reference: Base Operating System

sigaction, sigvec, or signal Subroutine

Purpose
Specifies the action to take upon delivery of a signal.

Libraries

sigaction Standard C Library (libc.a)

signal, sigvec Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

Berkeley Thread Safe Library (libbsd_r.a) (4.2.1 and later versions)

Syntax

#include <signal.h>

int sigaction (Signal, Action, OAction)
int Signal;
struct sigaction *Action, *OAction;

int sigvec (Signal, Invec, Outvec)
int Signal;
struct sigvec *Invec, *Outvec;

void (*signal (Signal, Action)) ()
int Signal;
void (*Action) (int);

Description
The sigaction subroutine allows a calling process to examine and change the action to be
taken when a specific signal is delivered to the process issuing this subroutine.

Note: The sigaction subroutine must not be used concurrently to the sigwait subroutine
on the same signal.

The Signal parameter specifies the signal. If the Action parameter is not null, it points to a
sigaction structure that describes the action to be taken on receipt of the Signal parameter
signal. If the OAction parameter is not null, it points to a sigaction structure in which the
signal action data in effect at the time of the sigaction subroutine call is returned. If the
Action parameter is null, signal handling is unchanged; thus, the call can be used to inquire
about the current handling of a given signal.

The sigaction structure has the following fields:

Member Type Member Name Description

void(*) (int) sa_handler SIG_DFL, SIG_IGN or
pointer to a function.

sigset_t sa_mask Additional set of signals to
be blocked during execution
of signal–catching function.

int sa_flags Special flags to affect
behaviour of signal.

void(*) (int, siginfo_t *, void
*)

sa_sigaction Signal–catching function.

sigaction

1-1071Base Operating System Runtime Services (Q-Z)

The sa_handler field can have a SIG_DFL or SIG_IGN value, or it can be a pointer to a
function. A SIG_DFL value requests default action to be taken when a signal is delivered. A
value of SIG_IGN requests that the signal have no effect on the receiving process. A pointer
to a function requests that the signal be caught; that is, the signal should cause the function
to be called. These actions are more fully described in ”Parameters”.

The sa_mask field can be used to specify that individual signals, in addition to those in the
process signal mask, be blocked from being delivered while the signal handler function
specified in the sa_handler field is operating. The sa_flags field can have the
SA_ONSTACK, SA_OLDSTYLE, or SA_NOCLDSTOP bits set to specify further control
over the actions taken on delivery of a signal.

If the SA_ONSTACK bit is set, the system runs the signal–catching function on the signal
stack specified by the sigstack subroutine. If this bit is not set, the function runs on the
stack of the process to which the signal is delivered.

If the SA_OLDSTYLE bit is set, the signal action is set to SIG_DFL label prior to calling the
signal–catching function. This is supported for compatibility with old applications, and is not
recommended since the same signal can recur before the signal–catching subroutine is
able to reset the signal action and the default action (normally termination) is taken in that
case.

If a signal for which a signal–catching function exists is sent to a process while that process
is executing certain subroutines, the call can be restarted if the SA_RESTART bit is set for
each signal. The only affected subroutines are the following:

• read, readx, readv, or readvx

• write, writex, writev, or writevx

• ioctl or ioctlx

• fcntl, lockf, or flock

• wait, wait3, or waitpid

Other subroutines do not restart and return EINTR label, independent of the setting of the
SA_RESTART bit. If SA_SIGINFO is cleared and the signal is caught, the signal–catching
function will be entered as:

 void func(int signo);

 where signo is the only argument to the signal catching function. In this case the
sa_handler member must be used to describe the signal catching function and the
application must not modify the sa_sigaction member. If SA_SIGINFO is set and the signal
is caught, the signal–catching function will be entered as:

 void func(int signo, siginfo_t * info, void * context);

where two additional arguments are passed to the signal catching function. The second
argument will point to an object of type siginfo_t explaining the reason why the signal was
generated; the third argument can be cast to a pointer to an object of type ucontext_t to
refer to the receiving process’ context that was interrupted when the signal was delivered. In
this case the sa_sigaction member must be used to describe the signal catching function
and the application must not modify the sa_handler member.

 The si_signo member contains the system–generated signal number.

The si_errno member may contain implementation–dependent additional error information;
if non–zero, it contains an error number identifying the condition that caused the signal to be
generated.

 The si_code member contains a code identifying the cause of the signal. If the value of
si_code is less than or equal to 0, then the signal was generated by a process and si_pid
and si_uid respectively indicate the process ID and the real user ID of the sender. The
signal.h header description contains information about the signal specific contents of the
elements of the siginfo_t type.

sigaction

1-1072 Technical Reference: Base Operating System

 If SA_NOCLDWAIT is set, and sig equals SIGCHLD, child processes of the calling
processes will not be transformed into zombie processes when they terminate. If the calling
process subsequently waits for its children, and the process has no unwaited for children
that were transformed into zombie processes, it will block until all of its children terminate,
and wait, wait3, waitid and waitpid will fail and set errno to ECHILD. Otherwise,
terminating child processes will be transformed into zombie processes, unless SIGCHLD is
set to SIG_IGN.

 If SA_RESETHAND is set, the disposition of the signal will be reset to SIG_DFL and the
SA_SIGINFO flag will be cleared on entry to the signal handler.

 If SA_NODEFER is set and sig is caught, sig will not be added to the process’ signal mask
on entry to the signal handler unless it is included in sa_mask. Otherwise, sig will always be
added to the process’ signal mask on entry to the signal handler. If sig is SIGCHLD and the
SA_NOCLDSTOP flag is not set in sa_flags , and the implementation supports the
SIGCHLD signal, then a SIGCHLD signal will be generated for the calling process whenever
any of its child processes stop. If sig is SIGCHLD and the SA_NOCLDSTOP flag is set in
sa_flags , then the implementation will not generate a SIGCHLD signal in this way.

When a signal is caught by a signal–catching function installed by sigaction, a new signal
mask is calculated and installed for the duration of the signal–catching function (or until a
call to either sigprocmask orsigsuspend is made). This mask is formed by taking the
union of the current signal mask and the value of the sa_mask for the signal being delivered
unless SA_NODEFER or SA_RESETHAND is set, and then including the signal being
delivered. If and when the user’s signal handler returns normally, the original signal mask is
restored.

 Once an action is installed for a specific signal, it remains installed until another action is
explicitly requested (by another call to sigaction ()), until the SA_RESETHAND flag causes
resetting of the handler, or until one of the exec functions is called.

 If the previous action for sig had been established by signal, the values of the fields
returned in the structure pointed to by oact are unspecified, and in particular
oact–>sa_handler is not necessarily the same value passed to signal. However, if a
pointer to the same structure or a copy thereof is passed to a subsequent call to sigaction
via the act argument, handling of the signal will be as if the original call to signal were
repeated. If sigaction fails, no new signal handler is installed. It is unspecified whether an
attempt to set the action for a signal that cannot be caught or ignored to SIG_DFL is ignored
or causes an error to be returned with errno set to EINVAL.

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig
when it is already pending is implementation–dependent; the signal–catching function will
be invoked with a single argument.

The sigvec and signal subroutines are provided for compatibility to older operating
systems. Their function is a subset of that available with sigaction.

The sigvec subroutine uses the sigvec structure instead of the sigaction structure. The
sigvec structure specifies a mask as an int instead of a sigset_t . The mask for the
sigvec subroutine is constructed by setting the i–th bit in the mask if signal i is to be
blocked. Therefore, the sigvec subroutine only allows signals between the values of 1 and
31 to be blocked when a signal–handling function is called. The other signals are not
blocked by the signal–handler mask.

The sigvec structure has the following members:

int (*sv_handler)();

/* signal handler */

int sv_mask;

/* signal mask */

int sv_flags;

/* flags */

sigaction

1-1073Base Operating System Runtime Services (Q-Z)

The sigvec subroutine in the libbsd.a or libbsd_r.a (4.2.1 and later versions) library
interprets the SV_INTERRUPT flag and inverts it to the SA_RESTART flag of the sigaction
subroutine. The sigvec subroutine in the libc.a library always sets the SV_INTERRUPT flag
regardless of what was passed in the sigvec structure.

The sigvec subroutine in the libbsd.a library interprets the SV_INTERRUPT flag and
inverts it to the SA_RESTART flag of the sigaction subroutine. The sigvec subroutine in
the libc.a library always sets the SV_INTERRUPT flag regardless of what was passed in
the sigvec structure.

The sigvec subroutine in the libbsd.a library interprets the SV_INTERRUPT flag and
inverts it to the SA_RESTART flag of the sigaction subroutine. The sigvec subroutine in
the libc.a library always sets the SV_INTERRUPT flag regardless of what was passed in
the sigvec structure.

The signal subroutine in the libc.a library allows an action to be associated with a signal.
The Action parameter can have the same values that are described for the sv_handler
field in the sigaction structure of the sigaction subroutine. However, no signal handler
mask or flags can be specified; the signal subroutine implicitly sets the signal handler mask
to additional signals and the flags to be SA_OLDSTYLE.

Upon successful completion of a signal call, the value of the previous signal action is
returned. If the call fails, a value of –1 is returned and the errno global variable is set to
indicate the error as in the sigaction call.

 The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the
signal whose action is being specified, and sets flags to SA_OLDSTYLE. The Berkeley
Software Distribution (BSD) version of signal sets the SA_RESTART flag and preserves
the current settings of the signal mask and flags. The BSD version can be used by
compiling with the Berkeley Compatibility Library (libbsd.a) or, in versions 4.2.1 and later,
the Berkeley Thread Safe Library (libbsd_r.a).

 The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the
signal whose action is being specified, and sets flags to SA_OLDSTYLE. The Berkeley
Software Distribution (BSD) version of signal sets the SA_RESTART flag and preserves
the current settings of the signal mask and flags. The BSD version can be used by
compiling with the Berkeley Compatibility Library (libbsd.a).

The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the
signal whose action is being specified, and sets flags to SA_OLDSTYLE. The Berkeley
Software Distribution (BSD) version of signal sets the SA_RESTART flag and preserves
the current settings of the signal mask and flags. The BSD version can be used by
compiling with the Berkeley Compatibility Library (libbsd.a).

Parameters

Signal Defines the signal. The following list describes signal names and the
specification for each. The value of the Signal parameter can be any signal
name from this list or its corresponding number except the SIGKILL name.
If you use the signal name, you must include the signal.h file, because the
name is correlated in the file with its corresponding number.

Note: The symbols in the following list of signals represent
these actions:

* Specifies the default action that includes creating a
core dump file.

@ Specifies the default action that stops the process
receiving these signals.

! Specifies the default action that restarts or continues
the process receiving these signals.

sigaction

1-1074 Technical Reference: Base Operating System

+ Specifies the default action that ignores these signals.

% Indicates a likely shortage of paging space.

See Terminal Programming for more information on the
use of these signals.

SIGHUP Hang–up. (1)

SIGINT Interrupt. (2)

SIGQUIT Quit. (3*)

SIGILL Invalid instruction (not reset when caught). (4*)

SIGTRAP Trace trap (not reset when caught). (5*)

SIGIOT End process (see the abort subroutine). (6*)

SIGEMT EMT instruction. (7*)

SIGFPE Arithmetic exception, integer divide by 0, or
floating–point exception. (8*)

SIGKILL Kill (cannot be caught or ignored). (9*)

SIGBUS Specification exception. (10*)

SIGSEGV Segmentation violation. (11*)

SIGSYS Parameter not valid to subroutine. (12*)

SIGPIPE Write on a pipe when there is no process to read it.
(13)

SIGALRM Alarm clock. (14)

SIGTERM Software termination signal. (15)

SIGURG Urgent condition on I/O channel. (16+)

SIGSTOP Stop (cannot be caught or ignored). (17@)

SIGTSTP Interactive stop. (18@)

SIGCONT Continue if stopped. (19!)

SIGCHLD To parent on child stop or exit. (20+)

SIGTTIN Background read attempted from control terminal.
(21@)

SIGTTOU Background write attempted from control terminal.
(22@)

SIGIO Input/output possible or completed. (23+)

SIGXCPU CPU time limit exceeded (see the setrlimit
subroutine). (24)

SIGXFSZ File size limit exceeded (see the setrlimit
subroutine). (25)

sigaction

1-1075Base Operating System Runtime Services (Q-Z)

reserved (26)

SIGMSG Input data has been stored into the input ring buffer.
(27#)

SIGWINCH Window size change. (28+)

SIGPWR Power–fail restart. (29+)

SIGUSR1 User–defined signal 1. (30)

SIGUSR2 User–defined signal 2. (31)

SIGPROF Profiling timer expired. (see the setitimer
subroutine). (32)

SIGDANGER Paging space low. (33+%)

SIGVTALRM Virtual time alarm (see the setitimer subroutine).
(34)

SIGMIGRATE Migrate process. (35)

SIGPRE Programming exception (user defined). (36)

reserved (37–58)

SIGGRANT Monitor access wanted. (60#)

SIGRETRACT Monitor access should be relinquished. (61#)

SIGSOUND A sound control has completed execution. (62#)

SIGSAK Secure attention key. (63)

Action Points to a sigaction structure that describes the action to be taken upon
receipt of the Signal parameter signal.

The three types of actions that can be associated with a signal (SIG_DFL,
SIG_IGN, or a pointer to a function) are described as follows:

• SIG_DFL Default action: signal–specific default action.

Except for those signal numbers marked with a + (plus sign), @ (at
sign), or ! (exclamation point), the default action for a signal ends the
receiving process with all of the consequences described in the _exit
subroutine. In addition, a memory image file is created in the current
directory of the receiving process if an asterisk appears with a Signal
parameter and the following conditions are met:

– The saved user ID and the real user ID of the receiving process are
equal.

– An ordinary file named core exists in the current directory and is
writable, or it can be created. If the file is created, it must have the
following properties:

The access permission code 0666 (0x1B6), modified by the
file–creation mask (see the umask subroutine)

A file owner ID that is the same as the effective user ID of the
receiving process

sigaction

1-1076 Technical Reference: Base Operating System

 For signal numbers marked with a ! (exclamation point), the default action
restarts the receiving process if it has stopped, or continues to run the
receiving process.

For signal numbers marked with a @ (at sign), the default action stops
the execution of the receiving process temporarily. When a process
stops, a SIGCHLD signal is sent to its parent process, unless the
parent process has set the SA_NOCLDSTOP bit. While a process has
stopped, any additional signals that are sent are not delivered until the
process has started again. An exception to this is the SIGKILL signal,
which always terminates the receiving process. Another exception is
the SIGCONT signal, which always causes the receiving process to
restart or continue running. A process whose parent process has ended
is sent a SIGKILL signal if the SIGTSTP, SIGTTIN, or SIGTTOU signals
are generated for that process.

A new signal mask is calculated and installed for the duration of the
signal–catching function (or until sigprocmask or sigsuspend
subroutine is made). This mask is formed by joining the process–signal
mask (the mask associated with the action for the signal being
delivered) and the mask corresponding to the signal being delivered.
The mask associated with the signal–catching function is not allowed to
block those signals that cannot be ignored. This is enforced by the
kernel without causing an error to be indicated. If and when the
signal–catching function returns, the original signal mask is restored
(modified by any sigprocmask calls that were made since the
signal–catching function was called) and the receiving process resumes
execution at the point it was interrupted.

For signal numbers marked with a +, the default action ignores the
signal. In this case, the delivery of a signal does not affect the receiving
process.

If a signal action is set to SIG_DFL while the signal is pending, the
signal remains pending.

• SIG_IGN Ignore signal.

Delivery of the signal does not affect the receiving process. If a signal
action is set to the SIG_IGN action while the signal is pending, the
pending signal is discarded. An exception to this is the SIGCHLD signal
whose SIG_DFL action ignores the signal. If the action for the
SIGCHLD signal is set to SIG_IGN, child processes of the calling
processes will not be transformed into zombie processes when they
terminate. If the calling process subsequently waits for its children, and
the process has no unwaited for children that were transformed into
zombie processes, it will block until all of its children terminate, and
wait, wait3, waitid and waitpid will fail and set errno to ECHILD.

Note: The SIGKILL and SIGSTOP signals cannot be ignored.

• Pointer to a function, catch signal.

sigaction

1-1077Base Operating System Runtime Services (Q-Z)

Upon delivery of the signal, the receiving process runs the
signal–catching function specified by the pointer to function. The
signal–handler subroutine can be declared as follows:

handler(Signal,
Code, SCP)
int Signal, Code;
struct sigcontext *SCP;

 The Signal parameter is the signal number. The Code parameter is
provided only for compatibility with other UNIX–compatible systems.
The Code parameter value is always 0. The SCP parameter points to
the sigcontext structure that is later used to restore the previous
execution context of the process. The sigcontext structure is defined in
the signal.h file.

The signal–catching function can cause the process to resume in a
different context by calling the longjmp subroutine. When the longjmp
subroutine is called, the process leaves the signal stack, if it is currently
on the stack, and restores the process signal mask to the state when
the corresponding setjmp subroutine was made.

Once an action is installed for a specific signal, it remains installed until
another action is explicitly requested (by another call to the sigaction
subroutine), or until one of the exec subroutines is called. An exception
to this is when the SA_OLDSTYLE bit is set. In this case the action of a
caught signal gets set to the SIG_DFL action before the
signal–catching function for that signal is called.

If a signal action is set to a pointer to a function while the signal is
pending, the signal remains pending.

When signal–catching functions are invoked asynchronously with
process execution, the behavior of some of the functions defined by this
standard is unspecified if they are called from a signal–catching
function. The following set of functions are reentrant with respect to
signals; that is, applications can invoke them, without restriction, from
signal–catching functions:

_exit

access

alarm

cfgetispeed

cfgetospeed

cfsetispeed

cfsetospeed

chdir

chmod

chown

close

creat

dup

sigaction

1-1078 Technical Reference: Base Operating System

dup2

exec

execle

execve

fcntl

fork

fpathconf

fstat

getegid

geteuid

getgid

getgroups

getpgrp

getpid

getppid

getuid

kill

link

lseek

mkdir

mkfifo

open

pathconf

pause

pipe

raise

read

readx

rename

rmdir

setgid

setpgid

setpgrp

setsid

setuid

sigaction

sigaddset

sigdelset

sigemptyset

sigaction

1-1079Base Operating System Runtime Services (Q-Z)

sigismember

signal

sigpending

sigprocmask

sigsuspend

sleep

stat

statx

sysconf

tcdrain

tcflow

tcflush

tcgetattr

tcgetpgrp

tcsendbreak

tcsetattr

tcsetpgrp

time

times

umask

uname

unlink

ustat

utime

wait

waitpid

write

All other subroutines should not be called from signal–catching functions
since their behavior is undefined.

OAction Points to a sigaction structure in which the signal action data in effect at
the time of the sigaction subroutine is returned.

Invec Points to a sigvec structure that describes the action to be taken upon
receipt of the Signal parameter signal.

Outvec Points to a sigvec structure in which the signal action data in effect at the
time of the sigvec subroutine is returned.

Action Specifies the action associated with a signal.

Return Values
Upon successful completion, the sigaction subroutine returns a value of 0. Otherwise, a
value of SIG_ERR is returned and the errno global variable is set to indicate the error.

sigaction

1-1080 Technical Reference: Base Operating System

Error Codes
The sigaction subroutine is unsuccessful and no new signal handler is installed if one of
the following occurs:

EFAULT The Action or OAction parameter points to a location outside of the
allocated address space of the process.

EINVAL The Signal parameter is not a valid signal number.

EINVAL An attempt was made to ignore or supply a handler for the SIGKILL,
SIGSTOP, and SIGCONT signals.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acct subroutine, _exit, exit, or atexit subroutine, getinterval, incinterval, absinterval,
resinc, resabs, alarm, ualarm, getitimer, or setitimer subroutine, getrlimit, setrlimit, or
vlimit subroutine, kill subroutine, longjmp or setjmp subroutine, pause subroutine, ptrace
subroutine, sigpause or sigsuspend subroutine, sigprocmask, sigsetmask, or sigblock
subroutine, sigstack subroutine, sigwait subroutine, umask subroutine, wait, waitpid, or
wait3 subroutine.

The kill command.

The core file.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs provides more information about signal management in multi–threaded
processes.

sigaltstack

1-1081Base Operating System Runtime Services (Q-Z)

sigaltstack Subroutine

Purpose
Allows a process to define and examine the state of an alternate stack for signal handlers.

Library
(libc.a)

Syntax
#include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *oss);

Description
The sigaltstack subroutine allows a process to define and examine the state of an alternate
stack for signal handlers. Signals that have been explicitly declared to execute on the
alternate stack will be delivered on the alternate stack.

If ss is not null pointer, it points to a stack_t structure that specifies the alternate signal
stack that will take effect upon return from sigaltstack subroutine. The ss_flags member
specifies the new stack state. If it is set to SS_DISABLE, the stack is disabled and ss_sp
and ss_ssize are ignored. Otherwise the stack will be enabled, and the ss_sp and ss_size
members specify the new address and size of the stack.

The range of addresses starting at ss_sp, up to but not including ss_sp + ss_size, is
available to the implementation for use as the stack.

If oss is not a null pointer, on successful completion it will point to a stack_t structure that
specifies the alternate signal stack that was in effect prior to the sigaltstack subroutine. The
ss_sp and ss_size members specify the address and size of the stack. The ss_flags
member specifies the stack’s state, and may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack.
Attempts to modify the alternate signal stack while the process is
executing or it fails. This flag must not be modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value of SIGSTKSZ is a system default specifying the number of bytes that would be
used to cover the usual case when manually allocating an alternate stack area. The value
MINSIGSTKSZ is defined to be the minimum stack size for a signal handler. In computing
an alternate stack size, a program should add that amount to its stack requirements to allow
for the system implementation overhead.

After a successful call to one of the exec functions, there are no alternate stacks in the new
process image.

Parameters

ss A pointer to a stack_t structure specifying the alternate stack to use
during signal handling.

oss A pointer to a stack_t structure that will indicate the alternate stack
currently in use.

Return Values
Upon successful completion, sigaltstack subroutine returns 0. Otherwise, it returns –1 and
set errno to indicate the error.

sigaltstack

1-1082 Technical Reference: Base Operating System

–1 Not successful and the errno global variable is set to one of the
following error codes.

Error Codes

EINVAL The ss parameter is not a null pointer, and the ss_flags member
pointed to by ss contains flags other that SS_DISABLE.

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.

EPERM An attempt was made to modify an active stack.

Related Information
The sigaction subroutine, sigsetjump subroutine.

sigemptyset

1-1083Base Operating System Runtime Services (Q-Z)

sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember
Subroutine

Purpose
Creates and manipulates signal masks.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigemptyset (Set)
sigset_t *Set;

int sigfillset (Set)
sigset_t *Set;

int sigaddset (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

int sigdelset (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

int sigismember (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

Description
The sigemptyset, sigfillset, sigaddset, sigdelset, and sigismember subroutines
manipulate sets of signals. These functions operate on data objects addressable by the
application, not on any set of signals known to the system, such as the set blocked from
delivery to a process or the set pending for a process.

The sigemptyset subroutine initializes the signal set pointed to by the Set parameter such
that all signals are excluded. The sigfillset subroutine initializes the signal set pointed to by
the Set parameter such that all signals are included. A call to either the sigfillset or
sigemptyset subroutine must be made at least once for each object of the sigset_t type
prior to any other use of that object.

The sigaddset and sigdelset subroutines respectively add and delete the individual signal
specified by the SignalNumber parameter from the signal set specified by the Set
parameter. The sigismember subroutine tests whether the SignalNumber parameter is a
member of the signal set pointed to by the Set parameter.

Parameters

Set Specifies the signal set.

SignalNumber Specifies the individual signal.

sigemptyset

1-1084 Technical Reference: Base Operating System

Examples
To generate and use a signal mask that blocks only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;

sigset_t newset;

sigset_t *newset_p;

 . . .

newset_p = &newset;

sigemptyset(newset);

sigaddset(newset, SIGINT);

return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Return Values
Upon successful completion, the sigismember subroutine returns a value of 1 if the
specified signal is a member of the specified set, or the value of 0 if not. Upon successful
completion, the other subroutines return a value of 0. For all the preceding subroutines, if an
error is detected, a value of –1 is returned and the errno global variable is set to indicate
the error.

Error Codes
The sigfillset, sigdelset, sigismember, and sigaddset subroutines are unsuccessful if the
following is true:

EINVAL The value of the SignalNumber parameter is not a valid signal number.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The sigaction, sigvec, or signal subroutine, sigprocmask subroutine, sigsuspend
subroutine.

siginterrupt

1-1085Base Operating System Runtime Services (Q-Z)

siginterrupt Subroutine

Purpose
Sets restart behavior with respect to signals and subroutines.

Library
Standard C Library (libc.a)

Syntax
int siginterrupt (Signal, Flag)
 int Signal, Flag;

Description
The siginterrupt subroutine is used to change the subroutine restart behavior when a
subroutine is interrupted by the specified signal. If the flag is false (0), subroutines are
restarted if they are interrupted by the specified signal and no data has been transferred yet.

If the flag is true (1), the restarting of subroutines is disabled. If a subroutine is interrupted
by the specified signal and no data has been transferred, the subroutine will return a value
of –1 with the errno global variable set to EINTR. Interrupted subroutines that have started
transferring data return the amount of data actually transferred. Subroutine interrupt is the
signal behavior found on 4.1 BSD and AT&T System V UNIX systems.

Note that the BSD signal–handling semantics are not altered in any other way. Most notably,
signal handlers always remain installed until explicitly changed by a subsequent sigaction
or sigvec call, and the signal mask operates as documented in the sigaction subroutine.
Programs can switch between restartable and interruptible subroutine operations as often
as desired in the running of a program.

Issuing a siginterrupt call during the running of a signal handler causes the new action to
take place on the next signal caught.

Restart does not occur unless it is explicitly specified with the sigaction or sigvec
subroutine in the libc.a library.

Parameters

Signal Indicates the signal.

 Flag Indicates true or false.

Return Values
A value of 0 indicates that the call succeeded. A value of –1 indicates that the supplied
signal number is not valid.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

This subroutine uses an extension of the sigvec subroutine that is not available in the
BSD 4.2; hence, it should not be used if backward compatibility is needed.

Related Information
The sigaction or sigvec subroutine, sigpause subroutine, sigsetmask or sigblock
subroutine.

sigpending

1-1086 Technical Reference: Base Operating System

sigpending Subroutine

Purpose
Returns a set of signals that are blocked from delivery.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigpending (Set)
sigset_t *Set;

Description
The sigpending subroutine stores a set of signals that are blocked from delivery and
pending for the calling process, in the space pointed to by the Set parameter.

 The sigpending subroutine stores a set of signals that are blocked from delivery and
pending for the calling thread, in the space pointed to by the Set parameter.

Parameters

Set Specifies the set of signals.

Return Values
Upon successful completion, the sigpending subroutine returns a value of 0. Otherwise, a
value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The sigpending subroutine is unsuccessful if the following is true:

EINVAL The input parameter is outside the user’s address space.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The sigprocmask subroutine.

sigprocmask

1-1087Base Operating System Runtime Services (Q-Z)

sigprocmask, sigsetmask, or sigblock Subroutine

Purpose
Sets the current signal mask.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigprocmask (How, Set, OSet)
int How;
const sigset_t *Set;
sigset *OSet;

intsigsetmask (SignalMask)
int SignalMask;

intsigblock (SignalMas
k)
int SignalMask;

Description
Note: The sigprocmask, sigsetmask, and sigblock subroutines must not be used in a
multi–threaded application. The sigthreadmask subroutine must be used instead.

 The sigprocmask subroutine is used to examine or change the signal mask of the calling
thread.

The sigprocmask subroutine is used to examine or change the signal mask of the calling
process.

Typically, you should use the sigprocmask(SIG_BLOCK) subroutine to block signals during
a critical section of code. Then use the sigprocmask(SIG_SETMASK) subroutine to restore
the mask to the previous value returned by the sigprocmask(SIG_BLOCK) subroutine.

If there are any pending unblocked signals after the call to the sigprocmask subroutine, at
least one of those signals will be delivered before the sigprocmask subroutine returns.

The sigprocmask subroutine does not allow the SIGKILL or SIGSTOP signal to be
blocked. If a program attempts to block either signal, the sigprocmask subroutine gives no
indication of the error.

sigprocmask

1-1088 Technical Reference: Base Operating System

Parameters

How

Indicates the manner in which the set is changed. It can have one of the
following values:

SIG_BLOCK The resulting set is the union of the current set and the
signal set pointed to by the Set parameter.

SIG_UNBLOCK
The resulting set is the intersection of
the current set and the complement of
the signal set pointed to by the Set
parameter.

SIG_SETMASK The resulting set is the signal set
pointed to by the Set parameter.

Set Specifies the signal set. If the value of the Set parameter is not null, it
points to a set of signals to be used to change the currently blocked set.
If the value of the Set parameter is null, the value of the How parameter
is not significant and the process signal mask is unchanged. Thus, the
call can be used to inquire about currently blocked signals.

OSet If the OSet parameter is not the null value, the signal mask in effect at
the time of the call is stored in the space pointed to by the OSet
parameter.

SignalMask Specifies the signal mask of the process.

Compatibility Interfaces
The sigsetmask subroutine allows changing the process signal mask for signal values
1 to 31. This same function can be accomplished for all values with the
sigprocmask(SIG_SETMASK) subroutine. The signal of value i will be blocked if the ith bit
of SignalMask parameter is set.

Upon successful completion, the sigsetmask subroutine returns the value of the previous
signal mask. If the subroutine fails, a value of –1 is returned and the errno global variable is
set to indicate the error as in the sigprocmask subroutine.

The sigblock subroutine allows signals with values 1 to 31 to be logically ORed into the
current process signal mask. This same function can be accomplished for all values with the
sigprocmask(SIG_BLOCK) subroutine. The signal of value i will be blocked, in addition to
those currently blocked, if the i–th bit of the SignalMask parameter is set.

It is not possible to block a SIGKILL or SIGSTOP signal using the sigblock or sigsetmask
subroutine. This restriction is silently imposed by the system without causing an error to be
indicated.

Upon successful completion, the sigblock subroutine returns the value of the previous
signal mask. If the subroutine fails, a value of –1 is returned and the errno global variable is
set to indicate the error as in the sigprocmask subroutine.

Return Values
Upon completion, a value of 0 is returned. If the sigprocmask subroutine fails, the signal
mask of the process is unchanged, a value of –1 is returned, and the global variable errno
is set to indicate the error.

sigprocmask

1-1089Base Operating System Runtime Services (Q-Z)

Error Codes
The sigprocmask subroutine is unsuccessful if the following is true:

EPERM The user does not have the privilege to change the signal’s mask.

EINVAL The value of the How parameter is not equal to one of the defined
values.

EFAULT The user’s mask is not in the process address space.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;

sigset_t newset;

sigset_t *newset_p;

 . . .

newset_p = &newset;

sigemptyset(newset_p);

sigaddset(newset_p, SIGINT);

return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The kill or killpg subroutine, sigaction, sigvec, or signal subroutine, sigaddset,
sigdelset, sigemptyset, sigfillset, sigismember subroutine, sigpause subroutine,
sigpending subroutine, sigsuspend subroutine.

sigset

1-1090 Technical Reference: Base Operating System

sigset, sighold, sigrelse, or sigignore Subroutine

Purpose
Enhance the signal facility and provide signal management.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>
void (*sigset(Signal, Function))()
int Signal;
void (*Function)();
int sighold (Signal)
int Signal;
int sigrelse (Signal)
int Signal;
int sigignore (Signal)
int Signal;

Description
The sigset, sighold, sigrelse, and sigignore subroutines enhance the signal facility and
provide signal management for application processes.

The sigset subroutine specifies the system signal action to be taken upon receiving a
Signal parameter.

The sighld and sigrelse subroutines establish critical regions of code. A call to the sighold
subroutine is analogous to raising the priority level and deferring or holding a signal until the
priority is lowered by sigrelse. The sigrelse subroutine restores the system signal action to
the action that was previously specified by the sigset structure.

The sigignore subroutine sets the action for the Signal parameter to SIG_IGN.

The other signal management routine, signal, should not be used in conjunction with these
routines for a particular signal type.

sigset

1-1091Base Operating System Runtime Services (Q-Z)

Parameters

Signal

Specifies the signal. The Signal parameter can be assigned any one of
the following signals:

SIGHUP Hang up

SIGINT Interrupt

SIGQUIT Quit*

SIGILL Illegal instruction (not reset when caught)*

SIGTRAP Trace trap (not reset when caught)*

SIGABRT Abort*

SIGFPE Floating point exception*, or arithmetic exception,
integer divide by 0

SIGSYS Bad argument to routine*

SIGPIPE Write on a pipe with no one to read it

SIGALRM Alarm clock

SIGTERM Software termination signal

SIGUSR1 User–defined signal 1

SIGUSR2 User–defined signal 2.

* The default action for these signals is an abnormal
termination.

For portability, application programs should use or catch only the signals listed above. Other
signals are hardware–dependant and implementation–dependant and may have very
different meanings or results across systems. For example, the System V signals (SIGEMT,
SIGBUS, SIGSEGV, and SIGIOT) are implementation–dependent and are not listed above.
Specific implementations may have other implementation–dependent signals.

sigset

1-1092 Technical Reference: Base Operating System

Function

Specifies the choice. The Function parameter is declared as a type
pointer to a function returning void. The Function parameter is assigned
one of four values: SIG_DFL, SIG_IGN, SIG_HOLD, or an address of a
signal–catching function. Definitions of the actions taken by each of the
values are:

SIG_DFL Terminate process upon receipt of a signal.

Upon receipt of the signal specified by the Signal
parameter, the receiving process is to be terminated
with all of the consequences outlined in the _exit
subroutine. In addition, if Signal is one of the signals
marked with an asterisk above,
implementation–dependent abnormal process
termination routines, such as a core dump, can be
invoked.

SIG_IGN Ignore signal.

Any pending signal specified by the Signal parameter is
discarded. A pending signal is a signal that has
occurred but for which no action has been taken. The
system signal action is set to ignore future occurrences
of this signal type.

SIG_HOLD Hold signal.

The signal specified by the Signal parameter is to be
held. Any pending signal of this type remains held. Only
one signal of each type is held.

sigset

1-1093Base Operating System Runtime Services (Q-Z)

address Catch signal.

Upon receipt of the signal specified by the Signal
parameter, the receiving process is to execute the
signal–catching function pointed to by the Function
parameter. Any pending signal of this type is released.
This address is retained across calls to the other signal
management functions, sighold and sigrelse. The
signal number Signal is passed as the only argument to
the signal–catching function. Before entering the
signal–catching function, the value of the Function
parameter for the caught signal is set to SIG_HOLD.
During normal return from the signal–catching handler,
the system signal action is restored to the Function
parameter and any held signal of this type is released.
If a nonlocal goto (see the setjmp subroutine) is taken,
the sigrelse subroutine must be invoked to restore the
system signal action and to release any held signal of
this type.

Upon return from the signal–catching function, the
receiving process will resume execution at the point at
which it was interrupted, except for
implementation–defined signals in which this may not
be true.

When a signal to be caught occurs during a nonatomic
operation such as a call to the read, write, open, or
ioctl subroutine on a slow device (such as a terminal);
during a pause subroutine; during a wait subroutine
that does not return immediately, the signal–catching
function is executed. The interrupted routine then
returns a value of –1 to the calling process with the
errno global variable set to EINTR.

Return Values
Upon successful completion, the sigset subroutine returns the previous value of the system
signal action for the specified Signal. Otherwise, it returns SIG_ERR and the errno global
variable is set to indicate the error.

For the sighold, sigrelse, and sigignore subroutines, a value of 0 is returned upon
success. Otherwise, a value of –1 is returned and the errno global variable is set to indicate
the error.

Error Codes
The sigset, sighold, sigrelse, or sigignore subroutine is unsuccessful if the following is
true:

EINVAL The Signal value is either an illegal signal number, or the default
handling of Signal cannot be changed.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exit subroutine, kill subroutine, setjmp subroutine, signal subroutine, wait subroutine.

sigsetjmp

1-1094 Technical Reference: Base Operating System

sigsetjmp or siglongjmp Subroutine

Purpose
Saves or restores stack context and signal mask.

Library
Standard C Library (libc.a)

Syntax
#include <setjmp.h>

int sigsetjmp (Environment, SaveMask)
sigjmp_buf Environment;
int SaveMask;

void siglongjmp (Environment, Value)
sigjmp_buf Environment;
int Value;

Description
The sigsetjmp subroutine saves the current stack context, and if the value of the SaveMask
parameter is not 0, the sigsetjmp subroutine also saves the current signal mask of the
process as part of the calling environment.

The siglongjmp subroutine restores the saved signal mask only if the Environment
parameter was initialized by a call to the sigsetjmp subroutine with a nonzero SaveMask
parameter argument.

Parameters

Environment Specifies an address for a sigjmp_buf structure.

SaveMask Specifies the flag used to determine if the signal mask is to be saved.

Value Specifies the return value from the siglongjmp subroutine.

Return Values
The sigsetjmp subroutine returns a value of 0. The siglongjmp subroutine returns a
nonzero value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The setjmp or longjmp subroutine, sigaction subroutine, sigprocmask subroutine,
sigsuspend subroutine.

sigstack

1-1095Base Operating System Runtime Services (Q-Z)

sigstack Subroutine

Purpose
Sets and gets signal stack context.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigstack (InStack, OutStack)
struct sigstack *InStack, *OutStack;

Description
The sigstack subroutine defines an alternate stack on which signals are to be processed.

When a signal occurs and its handler is to run on the signal stack, the system checks to see
if the process is already running on that stack. If so, it continues to do so even after the
handler returns. If not, the signal handler runs on the signal stack, and the original stack is
restored when the handler returns.

Use the sigvec or sigaction subroutine to specify whether a given signal–handler routine is
to run on the signal stack.

Attention: A signal stack does not automatically increase in size as a normal stack
does. If the stack overflows, unpredictable results can occur.

Parameters

InStack Specifies the stack pointer of the new signal stack.

If the value of the InStack parameter is nonzero, it points to a sigstack
structure, which has the following members:

caddr_t ss_sp;

int ss_onstack;

The value of InStack–>ss_sp specifies the stack pointer of the new
signal stack. Since stacks grow from numerically greater addresses to
lower ones, the stack pointer passed to the sigstack subroutine should
point to the numerically high end of the stack area to be used.
InStack–>ss_onstack should be set to a value of 1 if the process is
currently running on that stack; otherwise, it should be a value of 0.

If the value of the InStack parameter is 0 (that is, a null pointer), the
signal stack state is not set.

OutStack Points to structure where current signal stack state is stored.

If the value of the OutStack parameter is nonzero, it points to a
sigstack structure into which the sigstack subroutine stores the current
signal stack state.

If the value of the OutStack parameter is 0, the previous signal stack
state is not reported.

Return Values
Upon successful completion, the sigstack subroutine returns a value of 0. Otherwise, a
value of –1 is returned and the errno global variable is set to indicate the error.

sigstack

1-1096 Technical Reference: Base Operating System

Error Codes
The sigstack subroutine is unsuccessful and the signal stack context remains unchanged if
the following is true:

EFAULT The InStack or OutStack parameter points outside of the address space
of the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Thelongjmp subroutine, setjmp subroutine, sigaction, signal, or sigvec subroutine.

sigsuspend

1-1097Base Operating System Runtime Services (Q-Z)

sigsuspend or sigpause Subroutine

Purpose
Automatically changes the set of blocked signals and waits for a signal.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigsuspend (SignalMask)
const sigset_t *SignalMask;

int sigpause (SignalMask)
int SignalMask;

Description
The sigsuspend subroutine replaces the signal mask of a thread with the set of signals
pointed to by the SignalMask parameter. It then suspends execution of the thread until a
signal is delivered that executes a signal–catching function or terminates the process. The
sigsuspend subroutine does not allow the SIGKILL or SIGSTOP signal to be blocked. If a
program attempts to block one of these signals, the sigsuspend subroutine gives no
indication of the error.

If delivery of a signal causes the process to end, the sigsuspend subroutine does not
return. If delivery of a signal causes a signal–catching function to start, the sigsuspend
subroutine returns after the signal–catching function returns, with the signal mask restored
to the set that existed prior to the sigsuspend subroutine.

The sigsuspend subroutine sets the signal mask and waits for an unblocked signal as one
atomic operation. This means that signals cannot occur between the operations of setting
the mask and waiting for a signal. If a program invokes the sigprocmask (SIG_SETMASK)
and pause subroutines separately, a signal that occurs between these subroutines might
not be noticed by the pause subroutine.

In normal usage, a signal is blocked by using the sigprocmask(SIG_BLOCK,...) subroutine
for single–threaded applications, or the sigthreadmask(SIG_BLOCK,...) subroutine for
multi–threaded applications (using the libpthreads.a threads library) at the beginning of a
critical section. The process/thread then determines whether there is work for it to do. If no
work is to be done, the process/thread waits for work by calling the sigsuspend subroutine
with the mask previously returned by the sigprocmask or sigthreadmask subroutine.

Parameter

SignalMask Points to a set of signals.

Return Values
If a signal is caught by the calling thread and control is returned from the signal handler, the
calling thread resumes execution after the sigsuspend or sigpause subroutine, which
always return a value of –1 and set the errno global variable to EINTR.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The sigpause subroutine is provided for compatibility with older UNIX systems; its function
is a subset of the sigsuspend subroutine.

sigsuspend

1-1098 Technical Reference: Base Operating System

Related Information
The pause subroutine, sigprocmask subroutine, sigaction or signal subroutine,
sigthreadmask subroutine.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs provides more information about signal management in multi–threaded
processes.

sigthreadmask

1-1099Base Operating System Runtime Services (Q-Z)

sigthreadmask Subroutine

Purpose
Sets the signal mask of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <signal.h>

int sigthreadmask(how, set, old_set)
int how;
const sigset_t *set;
sigset_t *old_set;

Description
The sigthreadmask subroutine is used to examine or change the signal mask of the calling
thread. The sigprocmask subroutine must not be used in a multi–threaded process.

Typically, the sigthreadmask(SIG_BLOCK) subroutine is used to block signals during a
critical section of code. The sigthreadmask(SIG_SETMASK) subroutine is then used to
restore the mask to the previous value returned by the sigthreadmask(SIG_BLOCK)
subroutine.

If there are any pending unblocked signals after the call to the sigthreadmask subroutine,
at least one of those signals will be delivered before the sigthreadmask subroutine returns.

The sigthreadmask subroutine does not allow the SIGKILL or SIGSTOP signal to be
blocked. If a program attempts to block either signal, the sigthreadmask subroutine gives
no indication of the error.

Note: The pthread.h header file must be the first included file of each source file using
the threads library.

sigthreadmask

1-1100 Technical Reference: Base Operating System

Parameters

how

Indicates the manner in which the set is changed. It can have one of the
following values:

SIG_BLOCK The resulting set is the union of the current set and the
signal set pointed to by the set parameter.

SIG_UNBLOCK
The resulting set is the intersection of the current set
and the complement of the signal set pointed to by the
set parameter.

SIG_SETMASK The resulting set is the signal set pointed to by the set
parameter.

set Specifies the signal set. If the value of the Set parameter is not null, it
points to a set of signals to be used to change the currently blocked set.
If the value of the Set parameter is null, the value of the How parameter
is not significant and the process signal mask is unchanged. Thus, the
call can be used to inquire about currently blocked signals.

old_set If the old_set parameter is not the null value, the signal mask in effect at
the time of the call is stored in the spaced pointed to by the old_set
parameter.

Return Values
Upon completion, a value of 0 is returned. If the sigthreadmask subroutine fails, the signal
mask of the process is unchanged, a value of –1 is returned, and the global variable errno
is set to indicate the error.

Error Codes
The sigthreadmask subroutine is unsuccessful if the following is true:

EFAULT The set or old_set pointers are not in the process address space.

EINVAL The value of the how parameter is not supported.

EPERM The calling thread does not have the privilege to change the signal’s
mask.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <pthread.h>

#include <signal.h>

int return_value;

sigset_t newset;

sigset_t *newset_p;

 . . .

newset_p = &newset;

sigemptyset(newset_p);

sigaddset(newset_p, SIGINT);

return_value = sigthreadmask(SIG_SETMASK, newset_p, NULL);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

sigthreadmask

1-1101Base Operating System Runtime Services (Q-Z)

Related Information
The kill or killpg subroutine, pthread_kill subroutine, sigaction, sigvec, or signal
subroutine, sigpause subroutine, sigpending subroutine, sigwait subroutine, sigsuspend
subroutine.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs.

sigwait

1-1102 Technical Reference: Base Operating System

sigwait Subroutine

Purpose
Blocks the calling thread until a specified signal is received.

Library
Threads Library (libpthreads.a)

Syntax
#include </usr/include/dce/cma_sigwait.h>

int sigwait (set, sig)
const sigset_t *set;
int *sig;

Description
The sigwait subroutine blocks the calling thread until one of the signal in the signal set set
is received by the thread. Only asynchronous signals can be waited for.

The signal can be either sent directly to the thread, using the pthread_kill subroutine, or to
the process. In that case, the signal will be delivered to exactly one thread that has not
blocked the signal.

Concurrent use of sigaction and sigwait subroutines on the same signal is forbidden.

Parameters

set Specifies the set of signals to wait on.

sig Points to where the received signal number will be stored.

Return Values
Upon successful completion, the received signal number is returned via the sig parameter,
and 0 is returned. Otherwise, an error code is returned.

Error Code
The sigwait subroutine is unsuccessful if the following is true:

EINVAL The set parameter contains an invalid or unsupported signal number.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The kill subroutine, pthread_kill subroutine, sigaction subroutine, sigthreadmask
subroutine.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs .

sin

1-1103Base Operating System Runtime Services (Q-Z)

sin, sinl, cos, cosl, tan, or tanl Subroutine

Purpose
Computes the trigonometric functions.

Libraries
IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double sin (x)
double x;

long double sinl (x)
long double x;

double cos (x)
double x;

long double cosl (x)
long double x;

double tan (x)
double x;

long double tanl (x)
long double x;

Description
The sin, cos, and tan subroutines return the sine, cosine, and tangent, respectively, of their
parameters, which are in radians. The sinl subroutine, cosl subroutine, and tanl subroutine
return the same values, but these subroutines take and return numbers of the long double
data type.

Parameters

x Specifies some double–precision floating–point value. For the sinl,
cosl, and tanl subroutines, specifies a long double–precision
floating–point value.

y Specifies some double–precision floating–point value. For the sinl
subroutine, cosl subroutine, and tanl subroutine, specifies a long
double–precision floating–point value.

Error Codes
The sin, sinl, cos, cosl, tan, and tanl subroutines lose accuracy when passed a large
value for the x parameter. In the sin subroutine, for example, values of x that are greater
than pi are argument–reduced by first dividing them by the machine value for 2 * pi , and
then using the IEEE remainder of this division in place of x. Since the machine value of pi
can only approximate its infinitely precise value, the remainder of x/(2 * pi) becomes less
accurate as x becomes larger. Similar loss of accuracy occurs for the sinl, cos, cosl, tan,
and tanl subroutines during argument reduction of large arguments.

sin

1-1104 Technical Reference: Base Operating System

sin, cos, When the x parameter is extremely large, these functions return 0 when
there would be a complete loss of significance. In this case, a message
indicating TLOSS error is printed on the standard error output. For less
extreme values causing partial loss of significance, a PLOSS error is
generated but no message is printed. In both cases, the errno global
variable is set to a ERANGE value.

These error–handling procedures may be changed with the matherr subroutine when using
the libmsaa.a (–lmsaa) library.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine, sinh, sinhl, cosh, coshl, tanh, or tanhl subroutines.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

sinh

1-1105Base Operating System Runtime Services (Q-Z)

sinh, sinhl, cosh, coshl, tanh, or tanhl Subroutine

Purpose
Computes hyperbolic functions.

Libraries
IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

long double sinhl (x)
double x;

long double coshl (x)
double x;

long double tanhl (x)
double x;

Description
The sinh, cosh, and tanh subroutines compute the hyperbolic trigonometric functions of
their parameters. The sinhl, coshl, and tanhl subroutines compute these functions for
parameters expressed in the long double data type.

Note: Compile any routine that uses subroutines from the libm.a library with the –lm flag.
To compile the tanh.c file, for example, enter:

cc tanh.c –lm

Parameters

x Specifies a double–precision floating–point value.

Error Codes
If the correct value overflows, the sinh, sinhl, cosh, and coshl subroutines return a
correctly signed HUGE_VAL, and the errno global variable is set to ERANGE.

These error–handling procedures should be changed with the matherr subroutine when the
libmsaa.a (–lmsaa) library is used.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine, sin, cos, tan, asin, acos, atan, or atan2 subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

sleep

1-1106 Technical Reference: Base Operating System

sleep, nsleep or usleep Subroutine

Purpose
Suspends a current process from execution.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
unsigned int sleep (Seconds)

#include <sys/time.h>
int nsleep (Rqtp, Rmtp)
struct timestruc_t *Rqtp, *Rmtp;

int usleep (Useconds)
useconds_t Useconds;

Description
The nsleep subroutine is an extended form of the sleep subroutine. The sleep or nsleep
subroutines suspend the current process until:

• The time interval specified by the Rqtp parameter elapses.

• A signal is delivered to the calling process that invokes a signal–catching function or
terminates the process.

• The process is notified of an event through an event notification function.

The suspension time may be longer than requested due to the scheduling of other activity
by the system. Upon return, the location specified by the Rmtp parameter shall be updated
to contain the amount of time remaining in the interval, or 0 if the full interval has elapsed.

Parameters

Rqtp Time interval specified for suspension of execution.

Rmtp Specifies the time remaining on the interval timer or 0.

Seconds Specifies time interval in seconds.

Useconds Specifies time interval in microseconds.

Compatibility Interfaces
 The sleep and usleep subroutines are provided to ensure compatibility with older versions
of AIX, AT&T System V and BSD systems. They are implemented simply as front–ends to
the nsleep subroutine. Programs linking with the libbsd.a library or, in versions 4.2.1 and
later, the Berkeley Thread Safe Library (libbsd_r.a), get a BSD compatible version of the
sleep subroutine. The return value from the BSD compatible sleep subroutine has no
significance and should be ignored.

 The sleep and usleep subroutines are provided to ensure compatibility with older versions
of AIX, AT&T System V and BSD systems. They are implemented simply as front–ends to
the nsleep subroutine. Programs linking with the libbsd.a library get a BSD compatible
version of the sleep subroutine. The return value from the BSD compatible sleep
subroutine has no significance and should be ignored.

sleep

1-1107Base Operating System Runtime Services (Q-Z)

Return Values
The nsleep, sleep, and usleep subroutines return a value of 0 if the requested time has
elapsed.

If the nsleep subroutine returns a value of –1, the notification of a signal or event was
received and the Rmtp parameter is updated to the requested time minus the time actually
slept (unslept time), and the errno global variable is set.

If the sleep subroutine returns because of a premature arousal due to delivery of a signal,
the return value will be the unslept amount (the requested time minus the time actually
slept) in seconds.

Error Codes
If the nsleep subroutine fails, a value of –1 is returned and the errno global variable is set
to one of the following error codes:

EINTR A signal was caught by the calling process and control has been
returned from the signal–catching routine, or the process has been
notified of an event through an event notification function.

EINVAL The Rqtp parameter specified a nanosecond value less than zero or
greater than or equal to one second.

The sleep subroutine is always successful and no return value is reserved to indicate an
error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The alarm subroutine, pause subroutine, sigaction subroutine.

snprintf

1-1108 Technical Reference: Base Operating System

snprintf Subroutine

Purpose
Print formatted output. int snprintf(char *s, size_t n, const char * format, . . .);

Library
Standard library (libc.a)

Syntax
#include <stdio.h>

int snprintf (char *s, size_t n, const char *format, . . .) ;

Description
The fprintf function places output on the named output stream. The printf function places
output on the standard output stream stdout. The sprintf function places output followed by
the null byte, ’\0’, in consecutive bytes starting at *s; it is the user’s responsibility to ensure
that enough space is available.

 snprintf is identical to sprintf with the addition of the n argument, which states the size of
the buffer referred to by s.

Each of these functions converts, formats and prints its arguments under control of the
format. The format is a character string, beginning and ending in its initial shift state, if any.
The format is composed of zero or more directives: ordinary characters, which are simply
copied to the output stream and conversion specifications , each of which results in the
fetching of zero or more arguments. The results are undefined if there are insufficient
arguments for the format. If the format is exhausted while arguments remain, the excess
arguments are evaluated but are otherwise ignored.

 Conversions can be applied to the nth argument after the format in the argument list,
rather than to the next unused argument. In this case, the conversion character % (see
below) is replaced by the sequence %n$, where n is a decimal integer in the range [1,
{NL_ARGMAX}], giving the position of the argument in the argument list. This feature
provides for the definition of format strings that select arguments in an order appropriate to
specific languages (see the EXAMPLES section).

 In format strings containing the %n$ form of conversion specifications, numbered
arguments in the argument list can be referenced from the format string as many times as
required.

 In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

 All forms of the fprintf functions allow for the insertion of a language–dependent radix
character in the output string. The radix character is defined in the program’s locale
(category LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is
not defined, the radix character defaults to a period (.).

Each conversion specification is introduced by the % characteror by the character sequence
%n$, after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer bytes than the field
width, it will be padded with spaces by default on the left; it will be padded on the right, if
the left–adjustment flag (–), described below, is given to the field width. The field width
takes the form of an asterisk (*), described below, or a decimal integer.

snprintf

1-1109Base Operating System Runtime Services (Q-Z)

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x and X conversions; the number of digits to appear after the radix character for the e, E
and f conversions; the maximum number of significant digits for the g and G conversions;
or the maximum number of bytes to be printed from a string in s and S conversions. The
precision takes the form of a period (.) followed either by an asterisk (*), described below,
or an optional decimal digit string, where a null digit string is treated as 0. If a precision
appears with any other conversion character, the behavior is undefined.

• An optional h specifying that a following d, i, o, u, x or X conversion character applies to a
type short int or type unsigned short int argument (the argument will have been promoted
according to the integral promotions, and its value will be converted to type short int or
unsigned short int before printing); an optional h specifying that a following n conversion
character applies to a pointer to a type short int argument; an optional l (ell) specifying
that a following d, i, o, u, x or X conversion character applies to a type long int or
unsigned long int argument; an optional l (ell) specifying that a following n conversion
character applies to a pointer to a type long int argument; or an optional L specifying that
a following e, E, f, g or G conversion character applies to a type long double argument. If
an h, l or L appears with any other conversion character, the behavior is undefined.

• An optional l specifying that a following c conversion character applies to a wint_t
argument; an optional l specifying that a following s conversion character applies to a
pointer to a wchar_t argument.

• A conversion character that indicates the type of conversion to be applied.

 A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted.
A negative field width is taken as a – flag followed by a positive field width. A negative
precision is taken as if the precision were omitted. In format strings containing the %n$ form
of a conversion specification, a field width or precision may be indicated by the sequence
*m$, where m is a decimal integer in the range [1, {NL_ARGMAX}] giving the position in the
argument list (after the format argument) of an integer argument containing the field width or
precision, for example:

 printf(”%1$d:%2$.*3$d:%4$.*3$d\n”, hour, min, precision, sec);

 The format can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing
numbered and unnumbered argument specifications in a format string are undefined. When
numbered argument specifications are used, specifying the Nth argument requires that all
the leading arguments, from the first to the (N–1)th, are specified in the format string.

 The flag characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f,
%g or %G) will be formatted with thousands’ grouping characters. For
other conversions the behavior is undefined. The non–monetary grouping
character is used.

– The result of the conversion will be left–justified within the field. The
conversion will be right–justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or –).
The conversion 8116 will begin with a sign only when a negative value is
converted if this flag is not specified.

space If the first character of a signed conversion is not a sign or if a signed
conversion results in no characters, a space will be prefixed to the result.
This means that if the space and + flags both appear, the space flag will be
ignored.

snprintf

1-1110 Technical Reference: Base Operating System

This flag specifies that the value is to be converted to an alternative form.
For o conversion, it increases the precision (if necessary) to force the first
digit of the result to be 0. For x or X conversions, a non–zero result will
have 0x (or 0X) prefixed to it. For e, E, f, g or G conversions, the result will
always contain a radix character, even if no digits follow the radix
character. Without this flag, a radix character appears in the result of these
conversions only if a digit follows it. For g and G conversions, trailing zeros
will not be removed from the result as they normally are. For other
conversions, the behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following
any indication of sign or base) are used to pad to the field width; no space
padding is performed. If the 0 and – flags both appear, the 0 flag will be
ignored. For d, i, o, u, x and X conversions, if a precision is specified, the 0
flag will be ignored. If the 0 and ’ flags both appear, the grouping
characters are inserted before zero padding. For other conversions, the
behavior is undefined.

 The conversion characters and their meanings are:

d, i The int argument is converted to a signed decimal in the style [–]dddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of converting 0 with an
explicit precision of 0 is no characters.

o The unsigned int argument is converted to unsigned octal format in the
style dddd. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The result
of converting 0 with an explicit precision of 0 is no characters.

u The unsigned int argument is converted to unsigned decimal format in the
style dddd. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The result
of converting 0 with an explicit precision of 0 is no characters

x The unsigned int argument is converted to unsigned hexadecimal format in
the style dddd; the letters abcdef are used. The precision specifies the
minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The
default precision is 1. The result of converting 0 with an explicit precision of
0 is no characters. /TD>

X Behaves the same as the x conversion character except that letters
ABCDEF are used instead of abcdef.

f The double argument is converted to decimal notation in the style
[–]ddd.ddd, where the number of digits after the radix character is equal to
the precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly 0 and no # flag is present, no radix character
appears. If a radix character appears, at least one digit appears before it.
The value is rounded to the appropriate number of digits.

The fprintf family of functions may make available character string
representations for infinity and NaN.

snprintf

1-1111Base Operating System Runtime Services (Q-Z)

e, E The double argument is converted in the style [–]d.ddde +/– dd, where
there is one digit before the radix character (which is non–zero if the
argument is non–zero) and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is 0
and no # flag is present, no radix character appears. The value is rounded
to the appropriate number of digits. The E conversion character will
produce a number with E instead of e introducing the exponent. The
exponent always contains at least two digits. If the value is 0, the exponent
is 0

The fprintf family of functions may make available character string
representations for infinity and NaN.

 g, G The double argument is converted in the style f or e (or in the style E in the
case of a G conversion character), with the precision specifying the
number of significant digits. If an explicit precision is 0, it is taken as 1. The
style used depends on the value converted; style e (or E) will be used only
if the exponent resulting from such a conversion is less than –4 or greater
than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a radix character appears only if it is
followed by a digit.

The fprintf family of functions may make available character string
representations for infinity and NaN.

c The int argument is converted to an unsigned char, and the resulting byte
is written.

If an l (ell) qualifier is present, the wint_t argument is converted as if by an
ls conversion specification with no precision and an argument that points to
a two–element array of type wchar_t, the first element of which contains
the wint_t argument to the ls conversion specification and the second
element contains a null wide–character.

s The argument must be a pointer to an array of char. Bytes from the array
are written up to (but not including) any terminating null byte. If the
precision is specified, no more than that many bytes are written. If the
precision is not specified or is greater than the size of the array, the array
must contain a null byte.

 If an l (ell) qualifier is present, the argument must be a pointer to an array
of type wchar_t. Wide–characters from the array are converted to
characters (each as if by a call to the wcrtomb function, with the
conversion state described by an mbstate_t object initialized to zero
before the first wide–character is converted) up to and including a
terminating null wide–character. The resulting characters are written up to
(but not including) the terminating null character (byte). If no precision is
specified, the array must contain a null wide–character. If a precision is
specified, no more than that many characters (bytes) are written (including
shift sequences, if any), and the array must contain a null wide–character
if, to equal the character sequence length given by the precision, the
function would need to access a wide–character one past the end of the
array. In no case is a partial character written.

p The argument must be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in an
implementation–dependent manner. n The argument must be a pointer to
an integer into which is written the number of bytes written to the output so
far by this call to one of the fprintf functions. No argument is converted.

C Same as lc.

snprintf

1-1112 Technical Reference: Base Operating System

S Same as ls.

% Print a %; no argument is converted. The entire conversion specification
must be %%.

 If a conversion specification does not match one of the above forms, the behavior is
undefined.

 In no case does a non–existent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. Characters generated by fprintf and printf are printed as if fputc had
been called.

 The st_ctime and st_mtime fields of the file will be marked for update between the call to
a successful execution of fprintf or printf and the next successful completion of a call to
fflush or fclose on the same stream or a call to exit or abort.

Return Values
Upon successful completion, these functions return the number of bytes transmitted
excluding the terminating null in the case of sprintf or snprintf or a negative value if an
output error was encountered.

If the value of n is zero on a call to snprintf, an unspecified value less than 1 is returned.

Error Codes
For the conditions under which fprintf and printf will fail and may fail, refer to fputc or
fputwc.

 In addition, all forms of fprintf may fail if:

EILSEQ A wide–character code that does not correspond to a valid
character has been detected.

EINVAL There are insufficient arguments.

In addition, printf and fprintf may fail if:

ENOMEM Insufficient storage space is available.

Implementation Specifics
If the application calling fprintf has any objects of type wint_t or wchar_t, it must also
include the header wchar.h to have these objects defined. This subroutine is part of the
Base Operating System (BOS) subroutine.

Related Information
The fputc subroutine.

The fscanf subroutine.

The setlocale subroutine.

The wcrtomb subroutine.

The stdio.h file.

The wchar.h file.

The XBD specification, Chapter 5, Locale file.

sqrt

1-1113Base Operating System Runtime Services (Q-Z)

sqrt, sqrtl, or cbrt Subroutine

Purpose
Computes square root and cube root functions.

Libraries
IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax
#include <math.h>
double sqrt (x)
double x;

long double sqrtl (x)
long double x;

double cbrt (x)
double x;

Description
The sqrt subroutine, sqrtl subroutine, and cbrt subroutine compute the square root and
cube root, respectively, of their parameters.

Note: Compile any routine that uses subroutines from the libm.a library with
the –lm flag. To compile the sqrt.c file, for example, enter:

cc sqrt.c –lm

Parameters

x Specifies some double–precision floating–point value.

Return Values
The sqrt (–0.0) = –0.0.

The sqrtl (–0.0) = –0.0.

Error Codes
When using libm.a (–lm):

For the sqrt subroutine, if the value of x is negative, a NaNQ is returned and the errno
global variable is set to a EDOM value.

When using libmsaa.a (–lmsaa):

For the sqrt and the sqrtl subroutines, if the value of x is negative, a 0 is returned and the
errno global variable is set to a EDOM value. A message indicating a DOMAIN error is
printed on the standard error output.

These error–handling procedures may be changed with the matherr subroutine when using
the libmsaa.a (–lmsaa) library.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The cbrt subroutine is not part of the ANSI C Library.

sqrt

1-1114 Technical Reference: Base Operating System

Related Information
The exp, expm1, log, log10, log1p, or pow subroutine.

Subroutines Overview AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format AIX General Programming Concepts : Writing
and Debugging Programs.

src_err_msg

1-1115Base Operating System Runtime Services (Q-Z)

src_err_msg Subroutine

Purpose
Retrieves a System Resource Controller (SRC) error message.

Library
System Resource Controller Library (libsrc.a)

Syntax
int src_err_msg (errno, ErrorText)
int errno;
char **ErrorText;

Description
The src_err_msg subroutine retrieves a System Resource Controller (SRC) error message.

Parameters

errno Specifies the SRC error code.

ErrorText Points to a character pointer to place the SRC error message.

Return Values
Upon successful completion, the src_err_msg subroutine returns a value of 0. Otherwise, a
value of –1 is returned. No error message is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The addssys subroutine, chssys subroutine, delssys subroutine, defssys subroutine,
getsubsvr subroutine, getssys subroutine, srcsbuf subroutine, srcrrqs subroutine,
srcsrpy subroutine, srcsrqt subroutine, srcstat subroutine, srcstathdr subroutine,
srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

src_err_msg_r

1-1116 Technical Reference: Base Operating System

src_err_msg_r Subroutine

Purpose
Gets the System Resource Controller (SRC) error message corresponding to the specified
SRC error code.

Library
System Resource Controller (libsrc.a)

Syntax

#include <spc.h>

int src_err_msg_r (srcerrno, ErrorText)
int srcerrno;
char **ErrorText;

int src_err_msg_r (srcerrno, ErrorText)
int srcerrno;
char **ErrorText;

Description
The src_err_msg_r subroutine returns the message corresponding to the input srcerrno
value in a caller–supplied buffer. This subroutine is threadsafe and reentrant.

The src_err_msg_r subroutine returns the address of a malloc’ed buffer containing the
message corresponding to the input srcerrno value. The caller must free the buffer. This
subroutine is threadsafe and reentrant.

Parameters

srcerrno Specifies the SRC error code.

ErrorText Pointer to a variable containing the address of a caller–supplied buffer
where the message will be returned. If the length of the message is
unknown, the maximum message length can be used when allocating the
buffer. The maximum message length is SRC_BUF_MAX in
/usr/include/spc.h (2048 bytes).

ErrorText Pointer to a variable in which the address of the message is returned. The
calling program must free the buffer.

Return Values
Upon successful completion, the src_err_msg_r subroutine returns a value of 0. Otherwise,
no error message is returned and the subroutine returns a value of –1.

Upon successful completion, the src_err_msg_r subroutine returns a value of 0. Otherwise,
a value of –1 is returned and ErrorText is set to NULL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The srcsbuf_r, srcsrqt_r, srcrrqs_r, srcstat_r, and srcstattxt_r subroutines.

src_err_msg_r

1-1117Base Operating System Runtime Services (Q-Z)

The srcsbuf_r, srcsrqt_r, srcrrqs_r, srcstat_r, srcstattxt_r, srcstop_r, and srcstrt_r
subroutines.

srcrrqs_r

1-1118 Technical Reference: Base Operating System

srcrrqs_r Subroutine

Purpose
Copies the System Resource Controller (SRC) request header to the specified buffer. The
SRC request header contains the return address where the caller sends responses for this
request.

Library
System Resource Controller (libsrc.a)

Syntax

#include <spc.h>

struct srchdr *srcrrqs_r (Packet, SRChdr)
char *Packet;
struct srchdr *SRChdr;

#include <spc.h>

int srcrrqs_r (Packet, SRChdr)
char **Packet;
struct srchdr *SRChdr;

Description
The srcrrqs_r subroutine saves the SRC request header (srchdr) information contained in
the packet the subsystem received from the Source Resource Controller. The srchdr
structure is defined in the spc.h file. This routine must be called by the subsystem to
complete the reception process of any packet received from the SRC. The subsystem
requires this information to reply to any request that the subsystem receives from the SRC.

This subroutine is threadsafe and reentrant.

Parameters

Packet Points to the SRC request packet received by the
subsystem. If the subsystem received the packet on a
message queue, the Packet parameter must point past the
message type of the packet to the start of the request
information. If the subsystem received the information on a
socket, the Packet parameter points to the start of the
packet received on the socket.

SRChdr Points to a caller–supplied buffer. The srcrrqs_r subroutine
copies the request header to this buffer.

Examples
The following will obtain the subsystem reply information:

srcrrqs_r

1-1119Base Operating System Runtime Services (Q-Z)

int rc;

struct sockaddr addr;

int addrsz;

struct srcreq packet;

struct srchdr *header;

struct srchdr *rtn_addr;

/*wait to receive packet from SRC daemon */

rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz;

/* grab the reply information from the SRC packet */

if (rc>0)

{

 header = (struct srchdr *)malloc(sizeof(struct srchdr));

 rtn_addr = srcrrqs_r(&packet,header);

 if (rtn_addr == NULL)

 {

 /* handle error */

 .

 .

 }

int rc;

struct sockaddr addr;

int addrsz;

struct srcreq packet;

struct srchdr *header;

/*wait to receive packet from SRC daemon */

rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz;

/* grab the reply information from the SRC packet */

if (rc>0)

{

 header = (struct srchdr *)malloc(sizeof(struct srchdr);

 rc = srcrrqs_r(&packet, header);

Return Values
Upon successful completion, the srcrrq_r subroutine returns the address of the
caller–supplied buffer.

Upon successful completion, the srcrrq_r subroutine returns the value of SRC_OK.
Otherwise, a value of –1 is returned and ErrorText is set to NULL.

Error Codes
If either of the input addresses is NULL, the srcrrqs_r subroutine fails and returns a value
of NULL.

The srcrrqs_r subroutine fails if the following is true:

SRC_PARM One of the input addresses is NULL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

srcrrqs_r

1-1120 Technical Reference: Base Operating System

Related Information
The src_err_msg_r, srcsbuf_r, srcsrqt_r, srcstat_r, and srcstattxt_r subroutines.

The src_err_msg_r, srcsbuf_r, srcsrqt_r, srcstat_r, srcstattxt_r, srcstop_r, and
srcstrt_r subroutines.

srcrrqs

1-1121Base Operating System Runtime Services (Q-Z)

srcrrqs Subroutine

Purpose
Gets subsystem reply information from the System Resource Controller (SRC) request
received.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

struct srchdr *srcrrqs (Packet)
char *Packet;

Description
The srcrrqs subroutine saves the srchdr information contained in the packet the
subsystem received from the System Resource Controller (SRC). The srchdr structure is
defined in the spc.h file. This routine must be called by the subsystem to complete the
reception process of any packet received from the SRC. The subsystem requires this
information to reply to any request that the subsystem receives from the SRC.

Note: The saved srchdr information is overwritten each time this subroutine is called.

Parameters

Packet Points to the SRC request packet received by the subsystem. If the
subsystem received the packet on a message queue, the Packet
parameter must point past the message type of the packet to the start
of the request information. If the subsystem received the information on
a socket, the Packet parameter points to the start of the packet received
on the socket.

Return Values
The srcrrqs subroutine returns a pointer to the static srchdr structure, which contains the
return address for the subsystem response.

Examples
The following will obtain the subsystem reply information:

int rc;

struct sockaddr addr;

int addrsz;

struct srcreq packet;

/* wait to receive packet from SRC daemon */

rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz);

/* grab the reply information from the SRC packet */

if (rc>0)

 srchdr=srcrrqs (&packet);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

srcrrqs

1-1122 Technical Reference: Base Operating System

Files

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine, srcstat subroutine,
srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

srcsbuf

1-1123Base Operating System Runtime Services (Q-Z)

srcsbuf Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

intsrcsbuf(Host,Type,SubsystemName,
SubserverObject,SubsystemPID,
StatusType,StatusFrom,StatusText,Continued)

char *Host, *SubsystemName;

char *SubserverObject, **StatusText;

short Type, StatusType;
int SubsystemPID, StatusFrom, *Continued;

Description
The srcsbuf subroutine gets the status of a subserver or subsystem and returns printable
text for the status in the address pointed to by the StatusText parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM,
the srcstat subroutine is called to get the status of one or more subsystems. When the
StatusType parameter is LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt
subroutine is called to get the long status of one subsystem. When the Type parameter is
not SUBSYSTEM, the srcsrqt subroutine is called to get the long or short status of a
subserver.

Parameters

Host Specifies the foreign host on which this status action is requested. If
the host is null, the status request is sent to the System Resource
Controller (SRC) on the local host. The local user must be running as
”root”. The remote system must be configured to accept remote
System Resource Controller requests. That is, the srcmstr daemon
(see /etc/inittab) must be started with the –r flag and the
/etc/hosts.equiv or .rhosts file must be configured to allow remote
requests.

Type Specifies whether the status request applies to the subsystem or
subserver. If the Type parameter is set to SUBSYSTEM, the status
request is for a subsystem. If not, the status request is for a
subserver and the Type parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get
the status of all subsystems, use the SRCALLSUBSYS constant. To
get the status of a group of subsystems, the SubsystemName
parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you
specify a null SubsystemName parameter, you must specify a
SubsystemPID parameter.

srcsbuf

1-1124 Technical Reference: Base Operating System

SubserverObject Specifies a subserver object. The SubserverObject parameter
modifies the Type parameter. The SubserverObject parameter is
ignored if the Type parameter is set to SUBSYSTEM. The use of the
SubserverObject parameter is determined by the subsystem and the
caller. This parameter will be placed in the objname field of the
subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as
returned by the srcstrt subroutine. You must specify the
SubsystemPID parameter if multiple instances of the subsystem are
active and you request a long subsystem status or subserver status.
If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short
status.

StatusFrom Specifies whether status errors and messages are to be printed to
standard output or just returned to the caller. When the StatusFrom
parameter is SSHELL, the errors are printed to standard output.

StatusText Allocates memory for the printable text and sets the StatusText
parameter to point to this memory. After it prints the text, the calling
process must free the memory allocated for this buffer.

Continued Specifies whether this call to the srcsbuf subroutine is a
continuation of a status request. If the Continued parameter is set to
NEWREQUEST, a request for status is sent and the srcsbuf
subroutine then waits for another. On return, the srcsbuf subroutine
is updated to the new continuation indicator from the reply packet
and the Continued parameter is set to END or STATCONTINUED by
the subsystem. If the Continued parameter is set to something other
than END, this field must remain equal to that value; otherwise, this
function will not be able to receive any more packets for the original
status request. The calling process should not set the value of the
Continued parameter to a value other than NEWREQUEST. The
Continued parameter should not be changed while more responses
are expected.

Return Values
If the srcsbuf subroutine succeeds, it returns the size (in bytes) of printable text pointed to
by the StatusText parameter.

Error Codes
The srcsbuf subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem
because of some socket failure.

SRC_CONT The subsystem uses signals. The request cannot
complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory
it needs.

srcsbuf

1-1125Base Operating System Runtime Services (Q-Z)

SRC_NOCONTINUE The Continued parameter was not set to
NEWREQUEST, and no continuation is currently
active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_SOCK There is a problem with SRC socket
communications.

SRC_STPG The request was not passed to the subsystem. The
subsystem is stopping.

SRC_UDP The SRC port is not defined in the /etc/services
file.

SRC_UHOST The foreign host is not known.

SRC_WICH There are multiple instances of the subsystem
active.

Examples
1. To get the status of a subsystem, enter:

char *status;

int continued=NEWREQUEST;

int rc;

do {

 rc=srcsbuf(”MaryC”, SUBSYSTEM, ”srctest”, ””, 0,

 SHORTSTAT, SSHELL, &status, continued);

 if (status!=0)

 {

 printf(status);

 free(status);

 status=0;

 }

} while (rc>0);

 This gets short status of the srctest subsystem on the MaryC machine and prints
the formatted status to standard output.

2. To get the status of a subserver, enter:

char *status;

int continued=NEWREQUEST;

int rc;

do {

 rc=srcsbuf(””, 12345, ”srctest”, ””, 0,

 LONGSTAT, SSHELL, &status, continued);

 if (status!=0)

 {

 printf(status);

 free(status);

 status=0;

 }

} while (rc>0);

srcsbuf

1-1126 Technical Reference: Base Operating System

 This gets long status for a specific subserver belonging to subsystem srctest . The
subserver is the one having code point 12345 . This request is processed on the local
machine. The formatted status is printed to standard output.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The srcrrqs subroutine, srcsrpy subroutine, srcsrqt subroutine, srcstat subroutine,
srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

srcsbuf_r

1-1127Base Operating System Runtime Services (Q-Z)

srcsbuf_r Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcsbuf_r(Host, Type, SubsystemName, SubserverObject,
SubsystemPID, StatusType, StatusFrom, StatusText, Continued,
SRCHandle)

char *Host, *SubsystemName;
char *SubserverObject, **StatusText;
short Type, StatusType;
pid_t SubsystemPID;
int StatusFrom *Continued;
char **SRCHandle;

#include <spc.h>

int srcsbuf_r(Host, Type, SubsystemName, SubserverObject,
SubsystemPID, StatusType, StatusText, Continued, SRCHandle)

char *Host, *SubsystemName;
char *SubserverObject, **StatusText;
short Type, StatusType;
pid_t SubsystemPID;
int *Continued;
char **SRCHandle;

Description
The srcsbuf_r subroutine gets the status of a subserver or subsystem and returns printable
text for the status in the address pointed to by the StatusText parameter. The srcsbuf_r
subroutine supports all the functions of the srcbuf subroutine except the StatusFrom
parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM,
the srcstat_r subroutine is called to get the status of one or more subsystems. When the
StatusType parameter is LONGSTAT and the Type parameter is SUBSYSTEM, the
srcrsqt_r subroutine is called to get the long status of one subsystem. When the Type
parameter is not SUBSYSTEM, the srcsrqt_r subroutine is called to get the long or short
status of a subserver.

This routine is threadsafe and reentrant.

srcsbuf_r

1-1128 Technical Reference: Base Operating System

Parameters

Host Specifies the foreign host on which this status action is requested. If
the host is null, the status request is sent to the System Resource
Controller (SRC) on the local host.

Type Specifies whether the status request applies to the subsystem or
subserver. If the Type parameter is set to SUBSYSTEM, the status
request is for a subsystem. If not, the status request is for a
subserver and the Type parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get
the status of all subsystems, use the SRCALLSUBSYS constant. To
get the status of a group of subsystems, the SubsystemName
parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you
specify a null SubsystemName parameter, you must specify a
SubsystemPID parameter.

SubserverObject Specifies a subserver object. The SubserverObject parameter
modifies the Type parameter. The SubserverObject parameter is
ignored if the Type parameter is set to SUBSYSTEM. The use of the
SubserverObject parameter is determined by the subsystem and the
caller. This parameter will be placed in the objname field of the
subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as
returned by the srcstrt subroutine. You must specify the
SubsystemPID parameter if multiple instances of the subsystem are
active and you request a long subsystem status or subserver status.
If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short
status.

StatusFrom Specifies whether status errors and messages are to be printed to
standard output or just returned to the caller. When the StatusFrom
parameter is SSHELL, the errors are printed to standard output. The
SSHELL value is not recommended in a multithreaded environment
since error messages to standard output may be interleaved in an
unexpected manner.

StatusText Allocates memory for the printable text and sets the StatusText
parameter to point to this memory. After it prints the text, the calling
process must free the memory allocated for this buffer.

srcsbuf_r

1-1129Base Operating System Runtime Services (Q-Z)

Continued Specifies whether this call to the srcsbuf_r subroutine is a
continuation of a status request. If the Continued parameter is set to
NEWREQUEST, a request for status is sent and the srcsbuf_r
subroutine then waits for a reply. On return from the srcsbuf_r
subroutine, the Continued parameter is updated to the new
continuation indicator from the reply packet. The continuation
indicator in the reply packet will be set to END or STATCONTINUED
by the subsystem. If the Continued parameter is set to something
other than END, the caller should not change that value; otherwise,
this function will not be able to receive any more packets for the
original status request. The calling process should not set the value
of the Continued parameter to a value other than NEWREQUEST. In
normal processing, the Continued parameter should not be changed
while more responses are expected. The caller must continue to call
the srcsbuf_r subroutine until END is received. As an alternative,
call the srcsbuf_r subroutine with Continued=SRC_CLOSE to
discard the remaining data, close the socket, and free the internal
buffers.

Continued Specifies whether this call to the srcsbuf_r subroutine is a
continuation of a status request. If the Continued parameter is set to
NEWREQUEST, a request for status is sent and the srcsbuf_r
subroutine then waits for another request. On return, the srcsbuf_r
subroutine is updated to the new continuation indicator from the reply
packet. On return, the Continued parameter is set to END or
STATCONTINUED by the subsystem. If the Continued parameter is
set to something other than END, this field must remain equal to that
value; otherwise, this function will not be able to receive any more
packets for the original status request. The calling process should
not set the value of the Continued parameter to a value other than
NEWREQUEST. The Continued parameter should not be changed
while more responses are expected.

SRCHandle Identifies a request and its associated responses. Set to NULL by the
caller for a NEWREQUEST. The srcsbuf_r subroutine saves a
value in SRCHandle to allow srcsbuf_r continuation calls to use the
same socket and internal buffers. The SRCHandle parameter should
not be changed by the caller except for NEWREQUESTs.

SRCHandle Identifies a request and its associated responses. Set to NULL by the
caller for a NEWREQUEST. The SRCHandle parameter should not
be changed while more responses are expected.

Return Values
If the srcsbuf_r subroutine succeeds, it returns the size (in bytes) of printable text pointed
to by the StatusText parameter.

Error Codes
The srcsbuf_r subroutine fails and returns the corresponding error code if one of the
following error conditions is detected:

The srcsbuf_r subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem
because of some socket failure.

SRC_CONT The subsystem uses signals. The request cannot
complete.

SRC_DMNA The SRC daemon is not active.

srcsbuf_r

1-1130 Technical Reference: Base Operating System

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory
it needs.

SRC_NOCONTINUE The Continued parameter was not set to
NEWREQUEST, and no continuation is currently
active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_SOCK There is a problem with SRC socket
communications.

SRC_STPG The request was not passed to the subsystem. The
subsystem is stopping.

SRC_UDP The SRC port is not defined in the /etc/services
file.

SRC_UHOST The foreign host is not known.

SRC_WICH There are multiple instances of the subsystem
active.

Examples
1. To get the status of a subsystem, enter:

char *status;

int continued=NEWREQUEST;

int rc;

char *handle

do {

 rc=srcsbuf_r(”MaryC”, SUBSYSTEM, ”srctest”, ””, 0,

 SHORTSTAT, SDAEMON, &status, continued, &handle);

 if (status!=0)

 {

 printf(status);

 free(status);

 status=0;

 }

} while (rc>0);

if (rc<0)

{

 ...handle error from srcsbuf_r...

}

srcsbuf_r

1-1131Base Operating System Runtime Services (Q-Z)

char *status;

int continued=NEWREQUEST;

int rc;

char *handle

do {

 rc=srcsbuf_r(”MaryC”, SUBSYSTEM, ”srctest”, ””, 0,

 SHORTSTAT, SSHELL, &status, continued, &handle);

 if (status!=0)

 {

 printf(status);

 free(status);

 status=0;

 }

} while (rc>0);

This gets short status of the srctest subsystem on the MaryC machine and prints
the formatted status to standard output.

Caution: In a multithreaded environment, the caller must manage the sharing of
standard output between threads. Set the StatusFrom parameter to SDAEMON to
prevent unexpected error messages from being printed to standard output.

2. To get the status of a subserver, enter:

char *status;

int continued=NEWREQUEST;

int rc;

char *handle

do {

 rc=srcsbuf_r(””, 12345, ”srctest”, ””, 0,

 LONGSTAT, SDAEMON, &status, continued, &handle);

 if (status!=0)

 {

 printf(status);

 free(status);

 status=0;

 }

} while (rc>0);

if (rc<0)

{

 ...handle error from srcsbuf_r...

}

srcsbuf_r

1-1132 Technical Reference: Base Operating System

char *status;

int continued=NEWREQUEST;

int rc;

char *handle

do {

 rc=srcsbuf_r(””, 12345, ”srctest”, ””, 0,

 LONGSTAT, SSHELL, &status, continued, &handle);

 if (status!=0)

 {

 printf(status);

 free(status);

 status=0;

 }

} while (rc>0);

This gets long status for a specific subserver belonging to subsystem srctest . The
subserver is the one having code point 12345 . This request is processed on the local
machine. The formatted status is printed to standard output.

Caution: In a multithreaded environment, the caller must manage the sharing of
standard output between threads. Set the StatusFrom parameter to SDAEMON to
prevent unexpected error messages from being printed to standard output.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The src_err_msg_r, srcsrqt_r, srcrrqs_r, srcstat_r, and srcstattxt_r subroutines.

The src_err_msg_r, srcsrqt_r, srcrrqs_r, srcstat_r, srcstattxt_r, srcstop_r, and
srcstrt_r subroutines.

srcsrpy

1-1133Base Operating System Runtime Services (Q-Z)

srcsrpy Subroutine

Purpose
Sends a reply to a request from the System Resource Controller (SRC) back to the client
process.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

int srcsrpy (SRChdr, PPacket, PPacketSize, Continued)

struct srchdr *SRChdr;
char *PPacket;
int PPacketSize;
ushort Continued;

Description
The srcsrpy subroutine returns a subsystem reply to a System Resource Controller (SRC)
subsystem request. The format and content of the reply are determined by the subsystem
and the requester, but must start with a srchdr structure. This structure and all others
required for subsystem communication with the SRC are defined in the /usr/include/spc.h
file. The subsystem must reply with a pre–defined format and content for the following
requests: START, STOP, STATUS, REFRESH, and TRACE. The START, STOP, REFRESH,
and TRACE requests must be answered with a srcrep structure. The STATUS request
must be answered with a reply in the form of a statbuf structure.

Note: The srcsrpy subroutine creates its own socket to send the subsystem reply
packets.

Parameters

SRChdr Points to the reply address buffer as returned by the srcrrqs
subroutine.

PPacket Points to the reply packet. The first element of the reply packet is a
srchdr structure. The cont element of the PPacket–>srchdr structure
is modified on returning from the srcsrpy subroutine. The second
element of the reply packet should be a svrreply structure, an array of
statcode structures, or another format upon which the subsystem and
the requester have agreed.

srcsrpy

1-1134 Technical Reference: Base Operating System

PPacketSize Specifies the number of bytes in the reply packet pointed to by the
PPacket parameter. The PPacketSize parameter may be the size of a
short, or it may be between the size of a srchdr structure and the
SRCPKTMAX value, which is defined in the spc.h file.

Continued

Indicates whether this reply is to be continued. If the Continued
parameter is set to the constant END, no more reply packets are sent
for this request. If the Continued parameter is set to CONTINUED, the
second element of what is indicated by the PPacket parameter must be
a svrreply structure, since the rtnmsg element of the svrreply
structure is printed to standard output. For a status reply, the Continued
parameter is set to STATCONTINUED, and the second element of what
is pointed to by the PPacket parameter must be an array of statcode
structures. If a STOP subsystem request is received, only one reply
packet can be sent and the Continued parameter must be set to END.
Other types of continuations, as determined by the subsystem and the
requester, must be defined using positive values for the Continued
parameter. Values other than the following must be used:

0 END

1 CONTINUED

2 STATCONTINUED

Return Values
If the srcsrpy subroutine succeeds, it returns the value SRC_OK.

Error Codes
The srcsrpy subroutine fails if one or both of the following are true:

SRC_SOCK There is a problem with SRC socket communications.

SRC_REPLYSZ SRC reply size is invalid.

Examples
1. To send a STOP subsystem reply, enter:

struct srcrep return_packet;

struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));

return_packet.svrreply.rtncode=SRC_OK;

strcpy(return_packet.svrreply,”srctest”);

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

 This entry sends a message that the subsystem srctest is stopping successfully.

2. To send a START subserver reply, enter:

srcsrpy

1-1135Base Operating System Runtime Services (Q-Z)

struct srcrep return_packet;

struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));

return_packet.svrreply.rtncode=SRC_SUBMSG;

strcpy(return_packet.svrreply,objname,”mysubserver”);

strcpy(return_packet.svrreply,objtext,”The subserver,\

mysubserver, has been started”);

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

The resulting message indicates that the start subserver request was successful.

3. To send a status reply, enter:

int rc;

struct sockaddr addr;

int addrsz;

struct srcreq packet;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[10];

} status;

struct srchdr *srchdr;

struct srcreq packet;

 .

 .

 .

/* grab the reply information from the SRC packet */

srchdr=srcrrqs(&packet);

bzero(&status.statcode[0].objname,

/* get SRC status header */

srcstathdr(status.statcode[0].objname,

 status.statcode[0].objtext);

 .

 .

 .

/* send status packet(s) */

srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

 .

 .

 .

srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

/* send final packet */

srcsrpy(srchdr,&status,sizeof(struct srchdr),END);

This entry sends several status packets.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/dev/.SRC–unix Specifies the location for temporary socket files.

srcsrpy

1-1136 Technical Reference: Base Operating System

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrqt subroutine, srcstat subroutine,
srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

srcsrqt

1-1137Base Operating System Runtime Services (Q-Z)

srcsrqt Subroutine

Purpose
Sends a request to a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h> srcsrqt(Host, SubsystemName, SubsystemPID,
RequestLength, SubsystemRequest, ReplyLength, ReplyBuffer,
StartItAlso, Continued)

char *Host, *SubsystemName;

char *SubsystemRequest, *ReplyBuffer;

int SubsystemPID, StartItAlso, * Continued;

short RequestLength, *ReplyLength;

Description
The srcsrqt subroutine sends a request to a subsystem, waits for a response, and returns
one or more replies to the caller. The format of the request and the reply is determined by
the caller and the subsystem.

Note: The srcsrqt subroutine creates its own socket to send a request to the
subsystem. The socket that this function opens remains open until an error or an end
packet is received.

Two types of continuation are returned by the srcsrqt subroutine:

No continuation ReplyBuffer–> srchdr.continued is set to the END constant.

Reply continuation ReplyBuffer–> srchdr.continued is not set to the END
constant, but to a positive value agreed upon by the calling process
and the subsystem. The packet is returned to the caller.

Parameters

SubsystemPID The process ID of the subsystem.

Host Specifies the foreign host on which this subsystem request is to
be sent. If the host is null, the request is sent to the subsystem
on the local host. The local user must be running as ”root”. The
remote system must be configured to accept remote System
Resource Controller requests. That is, the srcmstr daemon
(see /etc/inittab) must be started with the –r flag and the
/etc/hosts.equiv or .rhosts file must be configured to allow
remote requests.

SubsystemName Specifies the name of the subsystem to which this request is to
be sent. You must specify a SubsystemName if you do not
specify a SubsystemPID.

srcsrqt

1-1138 Technical Reference: Base Operating System

RequestLength Specifies the length, in bytes, of the request to be sent to the
subsystem. The maximum value in bytes for this parameter is
2000 bytes.

SubsystemRequest Points to the subsystem request packet.

ReplyLength Specifies the maximum length, in bytes, of the reply to be
received from the subsystem. On return from the srcsrqt
subroutine, the ReplyLength parameter is set to the actual
length of the subsystem reply packet.

ReplyBuffer Points to a buffer for the receipt of the reply packet from the
subsystem.

StartItAlso Specifies whether the subsystem should be started if it is
nonactive. When nonzero, the System Resource Controller
(SRC) attempts to start a nonactive subsystem, and then
passes the request to the subsystem.

Continued Specifies whether this call to the srcsrqt subroutine is a
continuation of a previous request. If the Continued parameter
is set to NEWREQUEST, a request for it is sent to the
subsystem and the subsystem is notified that another response
is expected. The calling process should never set Continued to
any value other than NEWREQUEST. The last response from
the subsystem will set Continued to END.

Return Values
If the srcsrqt subroutine is successful, the value SRC_OK is returned.

Error Codes
The srcsrqt subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem
because of a socket failure.

SRC_CONT The subsystem uses signals. The request cannot
complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory
it needs.

SRC_NOCONTINUE The Continued parameter was not set to
NEWREQUEST, and no continuation is currently
active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_REQLEN2BIG The RequestLength is greater than the maximum
2000 bytes.

SRC_SOCK There is a problem with SRC socket
communications.

SRC_STPG The request was not passed to the subsystem. The
subsystem is stopping.

srcsrqt

1-1139Base Operating System Runtime Services (Q-Z)

SRC_UDP The SRC port is not defined in the /etc/services
file.

SRC_UHOST The foreign host is not known.

Examples
1. To request long subsystem status, enter:

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=STATUS;

subreq.object=SUBSYSTEM;

subreq.parm1=LONGSTAT;

strcpy(subreq.objname,”srctest”);

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt(”MaryC”, ”srctest”, 0, reqlen, &subreq, &replen,

&statbuf, SRC_NO, &cont);

 This entry gets long status of the subsystem srctest on the MaryC machine. The
subsystem keeps sending status packets until statbuf.srchdr.cont=END .

2. To start a subserver, enter:

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt(””, ””, 987, reqlen, &subreq, &replen, &statbuf,

SRC_NO, &cont);

 This entry starts the subserver with the code point of 1234 , but only if the subsystem is
already active.

3. To start a subserver and a subsystem, enter:

srcsrqt

1-1140 Technical Reference: Base Operating System

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt(””, ””, 987, reqlen, &subreq, &replen, &statbuf,

SRC_YES, &cont);

 This entry starts the subserver with the code point of 1234. If the subsystem to which
this subserver belongs is not active, the subsystem is started.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcstat subroutine,
srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System
Resource Controller (SRC) Overview for Programmers in AIX General Programming
Concepts: Writing and Debugging Programs.

srcsrqt_r

1-1141Base Operating System Runtime Services (Q-Z)

srcsrqt_r Subroutine

Purpose
Sends a request to a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

srcsrqt_r(Host, SubsystemName, SubsystemPID, RequestLength,
SubsystemRequest, ReplyLength, ReplyBuffer, StartItAlso,
Continued, SRCHandle)
char *Host, *SubsystemName;
char *SubsystemRequest, *ReplyBuffer;
pid_t SubsystemPID,
int, StartItAlso, *Continued;
short RequestLength, *ReplyLength;
char **SRCHandle;

Description
The srcsrqt_r subroutine sends a request to a subsystem, waits for a response and returns
one or more replies to the caller. The format of the request and the reply is determined by
the caller and the subsystem.

The srcsrqt_r subroutine sends a request to a subsystem, waits for a response, then
returns one or more replies to the caller. The format of the request and the reply is
determined by the caller and the subsystem.

Note: For each NEWREQUEST, the srcsrqt_r subroutine creates its own socket to send
a request to the subsystem. The socket that this function opens remains open until an
error or an end packet is received.

Note: The srcsrqt_r subroutine creates its own socket to send a request to the
subsystem. The socket that this function opens remains open until an error or an end
packet is received.

This system is threadsafe and reentrant.

Two types of continuation are returned by the srcsrqt_r subroutine:

No continuation ReplyBuffer–> srchdr.continued is set to the END
constant.

Reply continuation ReplyBuffer–> srchdr.continued is not set to the
END constant, but to a positive value agreed upon by the
calling process and the subsystem. The packet is returned
to the caller.

srcsrqt_r

1-1142 Technical Reference: Base Operating System

Parameters

SubsystemPID The process ID of the subsystem.

Host Specifies the foreign host on which this subsystem request
is to be sent. If the host is null, the request is sent to the
subsystem on the local host.

SubsystemName Specifies the name of the subsystem to which this request
is to be sent. You must specify a SubsystemName if you do
not specify a SubsystemPID.

RequestLength Specifies the length, in bytes, of the request to be sent to
the subsystem. The maximum length is 2000 bytes.

RequestLength Specifies the length, in bytes (maximum value 2000 bytes),
of the request to be sent to the subsystem.

SubsystemRequest Points to the subsystem request packet.

ReplyLength Specifies the maximum length, in bytes, of the reply to be
received from the subsystem. On return from the srcsrqt
subroutine, the ReplyLength parameter is set to the actual
length of the subsystem reply packet.

ReplyBuffer Points to a buffer for the receipt of the reply packet from
the subsystem.

StartItAlso Specifies whether the subsystem should be started if it is
nonactive. When nonzero, the System Resource Controller
(SRC) attempts to start a nonactive subsystem, and then
passes the request to the subsystem.

Continued Specifies whether this call to the srcsrqt subroutine is a
continuation of a previous request. If the Continued
parameter is set to NEWREQUEST, a request for it is sent
to the subsystem and the subsystem is notified that a
response is expected. Under normal circumstances, the
calling process should never set Continued to any value
other than NEWREQUEST. The last response from the
subsystem will set Continued to END. The caller must
continue to call the srcsrqt_r subroutine until END is
received. Otherwise, the socket will not be closed and the
internal buffers freed. As an alternative, set
Continued=SRC_CLOSE to discard the remaining data,
close the socket, and free the internal buffers.

Continued Specifies whether this call to the srcsrqt_r subroutine is a
continuation of a previous request. If the Continued
parameter is set to NEWREQUEST, a request for it is sent
to the subsystem and the subsystem is notified that another
response is expected. The calling process should never set
Continued to any value other than NEWREQUEST. The last
response from the subsystem will set Continued to END.

SRCHandle Identifies a request and its associated responses. Set to
NULL by the caller for a NEWREQUEST. The srcsrqt_r
subroutine saves a value in SRCHandle to allow srcsrqt_r
continuation calls to use the same socket and internal
buffers. The SRCHandle parameter should not be changed
by the caller except for NEWREQUESTs.

SRCHandle Identifies a request and its associated responses. Set to
NULL by the caller for a NEWREQUEST. The SRCHandle
parameter should not be changed while more responses
are expected.

srcsrqt_r

1-1143Base Operating System Runtime Services (Q-Z)

Return Values
If the srcsrqt_r subroutine is successful, the value SRC_OK is returned.

Error Codes
The srcsrqt_r subroutine fails and returns the corresponding error code if one of the
following error conditions is detected:

The srcsrqt_r subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem
because of a socket failure.

SRC_CONT The subsystem uses signals. The request cannot
complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOS
T

 The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it
needs.

SRC_NOCONTINUE The Continued parameter was not set to
NEWREQUEST, and no continuation is currently
active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_REQLEN2BIG The RequestLength is greater than the maximum
2000 bytes.

SRC_SOCK There is a problem with SRC socket communications.

SRC_STPG The request was not passed to the subsystem. The
subsystem is stopping.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples
1. To request long subsystem status, enter:

srcsrqt_r

1-1144 Technical Reference: Base Operating System

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

char *handle;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=STATUS;

subreq.object=SUBSYSTEM;

subreq.parm1=LONGSTAT;

strcpy(subreq.objname,”srctest”);

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt_r(”MaryC”, ”srctest”, 0, reqlen, &subreq, &replen,

&statbuf, SRC_NO, &cont, &handle);

 This entry gets long status of the subsystem srctest on the MaryC machine. The
subsystem keeps sending status packets until statbuf.srchdr.cont=END .

2. To start a subserver, enter:

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

char *handle;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt_r(””, ””, 987, reqlen, &subreq, &replen, &statbuf,

SRC_NO, &cont, &handle);

 This entry starts the subserver with the code point of 1234 , but only if the subsystem is
already active.

3. To start a subserver and a subsystem, enter:

srcsrqt_r

1-1145Base Operating System Runtime Services (Q-Z)

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

char *handle;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt(””, ””, 987, reqlen, &subreq, &replen, &statbuf,

SRC_YES, &cont, &handle);

 This entry starts the subserver with the code point of 1234. If the subsystem to which
this subserver belongs is not active, the subsystem is started.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The src_err_msg_r, srcsbuf_r, srcrrqs_r, srcstat_r, and srcstattxt_r subroutines.

The src_err_msg_r, srcsbuf_r, srcrrqs_r, srcstat_r, srcstattxt_r, srcstop_r and
srcstrt_r subroutines.

srcstat

1-1146 Technical Reference: Base Operating System

srcstat Subroutine

Purpose
Gets short status on a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

int srcstat(Host,
SubsystemName,SubsystemPID, ReplyLength,
StatusReply,Continued)
char *Host, *SubsystemName;
int SubsystemPID, *Continued;
short *ReplyLength;
struct statrep *StatusReply;

Description
The srcstat subroutine sends a short status request to the System Resource Controller
(SRC) and returns status for one or more subsystems to the caller.

Parameters

Host Specifies the foreign host on which this status action is requested. If
the host is null, the status request is sent to the SRC on the local
host. The local user must be running as ”root”. The remote system
must be configured to accept remote System Resource Controller
requests. That is, the srcmstr daemon (see /etc/inittab) must be
started with the –r flag and the /etc/hosts.equiv or .rhosts file must
be configured to allow remote requests.

SubsystemName Specifies the name of the subsystem on which to get short status.
To get status of all subsystems, use the SRCALLSUBSYS constant.
To get status of a group of subsystems, the SubsystemName
parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you
specify a null SubsystemName parameter, you must specify a
SubsystemPID parameter.

SubsystemPID Specifies the PID of the subsystem on which to get status as
returned by the srcstat subroutine. You must specify the
SubsystemPID parameter if multiple instances of the subsystem are
active and you request a long subsystem status or subserver status.
If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

ReplyLength Specifies size of a srchdr structure plus the number of statcode
structures times the size of one statcode structure. On return from
the srcstat subroutine, this value is updated.

srcstat

1-1147Base Operating System Runtime Services (Q-Z)

StatusReply Specifies a pointer to a statrep code structure containing a
statcode array that receives the status reply for the requested
subsystem. The first element of the returned statcode array contains
the status title line. The statcode structure is defined in the spc.h
file.

Continued Specifies whether this call to the srcstat subroutine is a continuation
of a previous status request. If the Continued parameter is set to
NEWREQUEST, a request for short subsystem status is sent to the
SRC and srcstat waits for the first status response. The calling
process should never set Continued to a value other than
NEWREQUEST. The last response for the SRC sets Continued to
END.

Return Values
If the srcstat subroutine succeeds, it returns a value of 0. An error code is returned if the
subroutine is unsuccessful.

Error Codes
The srcstat subroutine fails if one or more of the following are true:

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory
it needs.

SRC_NOCONTINUE Continued was not set to NEWREQUEST and no
continuation is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_SOCK There is a problem with SRC socket
communications.

SRC_UDP The SRC port is not defined in the /etc/services
file.

SRC_UHOST The foreign host is not known.

Examples
1. To request the status of a subsystem, enter:

intcont=NEWREQUEST;

struct statcode statcode[20];

short replen=sizeof(statcode);

srcstat(”MaryC”,”srctest”,0,&replen,statcode,&cont);

This entry requests short status of all instances of the subsystem srctest on the
MaryC machine.

2. To request the status of all subsystems, enter:

srcstat

1-1148 Technical Reference: Base Operating System

intcont=NEWREQUEST;

struct statcode statcode[20];

short replen=sizeof(statcode);

srcstat(””,SRCALLSUBSYS,0,&replen,statcode,&cont);

This entry requests short status of all subsystems on the local machine.

3. To request the status for a group of subsystems, enter:

intcont=NEWREQUEST;

struct statcode statcode[20];

short replen=sizeof(statcode);

char subsysname[30];

strcpy(subsysname,SRCGROUP);

strcat(subsysname,”tcpip”);

srcstat(””,subsysname,0,&replen,statcode, &cont);

 This entry requests short status of all members of the subsystem group tcpip on the
local machine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines the sockets and protocols used for Internet
services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine,
srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System
Resource Controller (SRC) Overview for Programmers in AIX General Programming
Concepts: Writing and Debugging Programs.

srcstat_r

1-1149Base Operating System Runtime Services (Q-Z)

srcstat_r Subroutine

Purpose
Gets short status on a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcstat_r(Host, SubsystemName, SubsystemPID, ReplyLength,
StatusReply, Continued, SRCHandle)
char *Host, *SubsystemName;
pid_t SubsystemPID;
int *Continued;
short *ReplyLength;
struct statrep *StatusReply;
char **SRCHandle;

Description
The srcstat_r subroutine sends a short status request to the System Resource Controller
(SRC) and returns status for one or more subsystems to the caller. This subroutine is
threadsafe and reentrant.

Parameters

Host Specifies the foreign host on which this status action is requested. If
the host is null, the status request is sent to the SRC on the local
host.

SubsystemName Specifies the name of the subsystem on which to get short status.
To get status of all subsystems, use the SRCALLSUBSYS constant.
To get status of a group of subsystems, the SubsystemName
parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you
specify a null SubsystemName parameter, you must specify a
SubsystemPID parameter.

SubsystemPID Specifies the PID of the subsystem on which to get status as
returned by the srcstat_r subroutine. You must specify the
SubsystemPID parameter if multiple instances of the subsystem are
active and you request a long subsystem status or subserver status.
If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

ReplyLength Specifies size of a srchdr structure plus the number of statcode
structures times the size of one statcode structure. On return from
the srcstat_r subroutine, this value is updated.

StatusReply Specifies a pointer to a statrep code structure containing a
statcode array that receives the status reply for the requested
subsystem. The first element of the returned statcode array contains
the status title line. The statcode structure is defined in the spc.h
file.

srcstat_r

1-1150 Technical Reference: Base Operating System

Continued Specifies whether this call to the srcstat_r subroutine is a
continuation of a previous status request. If the Continued parameter
is set to NEWREQUEST, a request for short subsystem status is sent
to the SRC and srcstat_r waits for the first status response. During
NEWREQUEST processing, the srcstat_r subroutine opens a
socket, mallocs internal buffers, and saves a value in SRCHandle. In
normal circumstances, the calling process should never set
Continued to a value other than NEWREQUEST. When the srcstat_r
subroutine returns with Continued=STATCONTINUED, call srcstat_r
without changing the Continued and SRCHandle parameters to
receive additional data. The last response from the SRC sets
Continued to END. The caller must continue to call srcstat_r until
END is received. Otherwise, the socket will not be closed and the
internal buffers freed. As an alternative, call srcstat_r with
Continued=STATCONTINUED to discard the remaining data, close
the socket, and free the internal buffers.

Continued Specifies whether this call to the srcstat_r subroutine is a
continuation of a previous status request. If the Continued parameter
is set to NEWREQUEST, a request for short subsystem status is sent
to the SRC and srcstat_r waits for the first status response. The
calling process should never set Continued to a value other than
NEWREQUEST. The last response for the SRC sets Continued to
END.

SRCHandle Identifies a request and its associated responses. Set to NULL by the
caller for a NEWREQUEST. The srcstat_r subroutine saves a value
in SRCHandle to allow subsequent srcstat_r calls to use the same
socket and internal buffers. The SRCHandle parameter should not
be changed by the caller except for NEWREQUESTs.

SRCHandle Identifies a request and its associated responses. Set to NULL by the
caller for a NEWREQUEST. The SRCHandle parameter should not
be changed while more responses are expected.

Return Values
If the srcstat_r subroutine succeeds, it returns a value of 0. An error code is returned if the
subroutine is unsuccessful.

Error Codes
The srcstat_r subroutine fails and returns the corresponding error code if one of the
following error conditions is detected:

The srcstat_r subroutine fails if one or more of the following are true:

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOS
T

 The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it
needs.

SRC_NOCONTINUE Continued was not set to NEWREQUEST and no
continuation is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_SOCK There is a problem with SRC socket communications.

srcstat_r

1-1151Base Operating System Runtime Services (Q-Z)

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples
1. To request the status of a subsystem, enter:

int cont=NEWREQUEST;

struct statcode statcode[20];

short replen=sizeof(statcode);

char *handle;

srcstat_r(”MaryC”,”srctest”,0,&replen,statcode, &cont, &handle);

This entry requests short status of all instances of the subsystem srctest on the
MaryC machine.

2. To request the status of all subsystems, enter:

int cont=NEWREQUEST;

struct statcode statcode[20];

short replen=sizeof(statcode);

char *handle;

srcstat_r(””,SRCALLSUBSYS,0,&replen,statcode, &cont, &handle);

This entry requests short status of all subsystems on the local machine.

3. To request the status for a group of subsystems, enter:

int cont=NEWREQUEST;

struct statcode statcode[20];

short replen=sizeof(statcode);

char subsysname[30];

char *handle;

strcpy(subsysname,SRCGROUP);

strcat(subsysname,”tcpip”);

srcstat_r(””,subsysname,0,&replen,statcode, &cont, &handle);

 This entry requests short status of all members of the subsystem group tcpip on the
local machine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines the sockets and protocols used for Internet
services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The src_err_msg_r, srcsbuf_r, srcsrqt_r, srcrrqs_r, and srcstattxt_r subroutines.

srcstat_r

1-1152 Technical Reference: Base Operating System

The src_err_msg_r, srcsbuf_r, srcsrqt_r, srcrrqs_r, srcstattxt_r, srcstop_r, and
srcstrt_r subroutines.

srcstathdr

1-1153Base Operating System Runtime Services (Q-Z)

srcstathdr Subroutine

Purpose
Gets the title line of the System Resource Controller (SRC) status text.

Library
System Resource Controller Library (libsrc.a)

Syntax
void srcstathdr (Title1, Title2)
char *Title1, *Title2;

Description
The srcstathdr subroutine retrieves the title line, or header, of the SRC status text.

Parameters

Title1 Specifies the objname field of a statcode structure. The subsystem
name title is placed here.

Title2 Specifies the objtext field of a statcode structure. The remaining
titles are placed here.

Return Values
The subsystem name title is returned in the Title1 parameter. The remaining titles are
returned in the Title2 parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine,
srcstat subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System
Resource Controller (SRC) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

srcstattxt

1-1154 Technical Reference: Base Operating System

srcstattxt Subroutine

Purpose
Gets the System Resource Controller (SRC) status text representation for a status code.

Library
System Resource Controller Library (libsrc.a)

Syntax
char *srcstattxt (StatusCode)
short StatusCode;

Description
The srcstattxt subroutine, given an SRC status code, gets the text representation and
returns a pointer to this text.

Parameters

StatusCode Specifies an SRC status code to be translated into meaningful text.

Return Values
The srcstattxt subroutine returns a pointer to the text representation of a status code.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine,
srcstat subroutine, srcstathdr subroutine, srcstop subroutine, srcstrt subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System
Resource Controller (SRC) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

srcstattxt_r

1-1155Base Operating System Runtime Services (Q-Z)

srcstattxt_r Subroutine

Purpose
Gets the status text representation for an SRC status code.

Library
System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

char *srcstattxt_r (StatusCode, Text)
short StatusCode;
char *Text;

int srcstattxt_r (StatusCode, Text)
short StatusCode;
char **Text;

Description
The srcstattxt_r subroutine, given an SRC status code, gets the text representation and
returns it in a caller–supplied buffer. This routine is threadsafe and reentrant.

The srcstattxt_r subroutine, given an SRC status code, gets the text representation, and
returns the address of a malloc’ed buffer in Text. This routine is threadsafe and reentrant.

Parameters

StatusCode Specifies an SRC status code to be translated into meaningful text.

Text Points to a caller–supplied buffer where the text will be returned. If the
length of the text is unknown, the maximum text length can be used when
allocating the buffer. The maximum text length is SRC_STAT_MAX in
/usr/include/spc.h (64 bytes).

Text Points to a variable in which the address of the text will be returned. The
calling program must free the buffer.

Return Values
Upon successful completion, the srcstattxt_r subroutine returns the address of the
caller–supplied buffer. Otherwise, no text is returned and the subroutine returns NULL.

Upon successful completion, the srcstattxt_r subroutine returns the value SRC_OK.
Otherwise, it returns –1 and Text is set to NULL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The src_err_msg_r, srcsbuf_r, srcsrqt_r, srcrrqs_r, and srcstat_r subroutines.

The src_err_msg_r, srcsbuf_r, srcsrqt_r, srcrrqs_r, srcstat_r, srcstop_r, and srcstrt_r
subroutines.

srcstop

1-1156 Technical Reference: Base Operating System

srcstop Subroutine

Purpose
Stops a System Resource Controller (SRC) subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

srcstop(Host, SubsystemName, SubsystemPID, StopType)
srcstop(ReplyLength, ServerReply, StopFrom)
char *Host, *SubsystemName;
int SubsystemPID, StopFrom;
short StopType, *ReplyLength;
struct srcrep *ServerReply;

Description
The srcstop subroutine sends a stop subsystem request to a subsystem and waits for a
stop reply from the System Resource Controller (SRC) or the subsystem. The srcstop
subroutine can only stop a subsystem that was started by the SRC.

Parameters

Host Specifies the foreign host on which this stop action is requested. If
the host is the null value, the request is sent to the SRC on the local
host. The local user must be running as ”root”. The remote system
must be configured to accept remote System Resource Controller
requests. That is, the srcmstr daemon (see /etc/inittab) must be
started with the –r flag and the /etc/hosts.equiv or .rhosts file must
be configured to allow remote requests.

SubsystemName Specifies the name of the subsystem to stop.

SubsystemPID Specifies the process ID of the system to stop as returned by the
srcstrt subroutine. If you specify a null SubsystemPID parameter,
you must specify a SubsystemName parameter.

srcstop

1-1157Base Operating System Runtime Services (Q-Z)

StopType

 Specifies the type of stop requested of the subsystem. If this
parameter is null, a normal stop is assumed. The StopType
parameter must be one of the following values:

CANCEL Requires a quick stop of the subsystem. The
subsystem is sent a SIGTERM signal. After the wait
time defined in the subsystem object, the SRC
issues a SIGKILL signal to the subsystem. This
waiting period allows the subsystem to clean up all
its resources and terminate. The stop reply is
returned by the SRC.

FORCE Requests a quick stop of the subsystem and all its
subservers. The stop reply is returned by the SRC
for subsystems that use signals and by the
subsystem for other communication types.

NORMAL Requests the subsystem to terminate after all
current subsystem activity has completed. The stop
reply is returned by the SRC for subsystems that use
signals and by the subsystem for other
communication types.

ReplyLength Specifies the maximum length, in bytes, of the stop reply. On return
from the srcstop subroutine, this field is set to the actual length of
the subsystem reply packet received.

ServerReply Points to an svrreply structure that will receive the subsystem stop
reply.

StopFrom Specifies whether the srcstop subroutine is to display stop results
to standard output. If the StopFrom parameter is set to SSHELL, the
stop results are displayed to standard output and the srcstop
subroutine returns successfully. If the StopFrom parameter is set to
SDAEMON, the stop results are not displayed to standard output, but
are passed back to the caller.

Return Values
Upon successful completion, the srcstop subroutine returns SRC_OK or SRC_STPOK.

Error Codes
The srcstop subroutine fails if one or more of the following are true:

SRC_BADFSIG The stop force signal is an invalid signal.

SRC_BADNSIG The stop normal signal is an invalid signal.

SRC_BADSOCK The stop request could not be passed to the
subsystem on its communication socket.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOS
T

 The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it
needs.

SRC_NORPLY The request timed out waiting for a response.

SRC_NOTROOT The SRC daemon is not running as root.

srcstop

1-1158 Technical Reference: Base Operating System

SRC_SOCK There is a problem with SRC socket communications.

SRC_STPG The request was not passed to the subsystem. The
subsystem is stopping.

SRC_SVND The subsystem is unknown to the SRC daemon.

SRC_UDP The remote SRC port is not defined in the
/etc/services file.

SRC_UHOST The foreign host is not known.

SRC_PARM Invalid parameter passed.

Examples
1. To stop all instances of a subsystem, enter:

int rc;

struct svrreply svrreply;

short replen=sizeof(svrreply);

rc=srcstop(”MaryC”,”srctest”,0,FORCE,&replen,&svrreply,SDAEMON);

 This request stops a subsystem with a stop type of FORCE for all instances of the
subsystem srctest on the MaryC machine and does not print a message to
standard output about the status of the stop.

2. To stop a single instance of a subsystem, enter:

struct svrreply svrreply;

short replen=sizeof(svrreply);

rc=srcstop(””,””,999,CANCEL,&replen,&svrreply,SSHELL);

 This request stops a subsystem with a stop type of CANCEL , with the process ID of
999 on the local machine and prints a message to standard output about the status of
the stop.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine,
srcstat subroutine, srcstathdr subroutine, srcstattxt subroutine, srcstrt subroutine.

srcstrt

1-1159Base Operating System Runtime Services (Q-Z)

srcstrt Subroutine

Purpose
Starts a System Resource Controller (SRC) subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include<spc.h>

srcstrt (Host, SubsystemName, Environment, Arguments, Restart,
StartFrom)

char *Host, *SubsystemName;

char *Environment, *Arguments;

unsigned int Restart;
int StartFrom;

Description
The srcstrt subroutine sends a start subsystem request packet and waits for a reply from
the System Resource Controller (SRC).

Parameters

Host Specifies the foreign host on which this start subsystem action is
requested. If the host is null, the request is sent to the SRC on the
local host. The local user must be running as ”root”. The remote
system must be configured to accept remote System Resource
Controller requests. That is, the srcmstr daemon (see /etc/inittab)
must be started with the –r flag and the /etc/hosts.equiv or .rhosts
file must be configured to allow remote requests.

SubsystemName Specifies the name of the subsystem to start.

Environment Specifies a string that is placed in the subsystem environment when
the subsystem is executed. The combined values of the Environment
and Arguments parameters cannot exceed a maximum of 2400
characters. Otherwise, the srcstrt subroutine will fail. The
environment string is parsed by the SRC according to the same rules
used by the shell. For example, quoted strings are passed as a
single Environment value, and blanks outside a quoted string delimit
each environment value.

srcstrt

1-1160 Technical Reference: Base Operating System

Arguments Specifies a string that is passed to the subsystem when the
subsystem is executed. The string is parsed from the command line
and appended to the command line arguments from the subsystem
object class. The combined values of the Environment and
Arguments parameters cannot exceed a maximum of 2400
characters. Otherwise, the srcstrt subroutine will fail. The command
argument is parsed by the SRC according to the same rules used by
the shell. For example, quoted strings are passed as a single
argument, and blanks outside a quoted string delimit each argument.

Restart Specifies override on subsystem restart. If the Restart parameter is
set to SRCNO, the subsystem’s restart definition from the subsystem
object class is used. If the Restart parameter is set to SRCYES, the
restart of a subsystem is not attempted if it terminates abnormally.

StartFrom Specifies whether the srcstrt subroutine is to display start results to
standard output. If the StartFrom parameter is set to SSHELL, the
start results are displayed to standard output, and the srcstrt
subroutine always returns successfully. If the StartFrom parameter is
set to SDAEMON, the start results are not displayed to standard
output but are passed back to the caller.

Return Values
When the StartFrom parameter is set to SSHELL, the srcstrt subroutine returns the value
SRC_OK. Otherwise, it returns the subsystem process ID.

Error Codes
The srcstrt subroutine fails if any of the following are true:

SRC_AUDITID The audit user ID is invalid.

SRC_DMNA The SRC daemon is not active.

SRC_FEXE The subsystem could not be forked and execed.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_INPT The subsystem standard input file could not be
established.

SRC_MMRY An SRC component could not allocate the memory
it needs.

SRC_MSGQ The subsystem message queue could not be
created.

SRC_MULT Multiple instance of the subsystem are not allowed.

SRC_NORPLY The request timed out waiting for a response.

SRC_OUT The subsystem standard output file could not be
established.

SRC_PIPE A pipe could not be established for the subsystem.

SRC_SERR The subsystem standard error file could not be
established.

SRC_SUBSOCK The subsystem communication socket could not be
created.

SRC_SUBSYSID The system user ID is invalid.

srcstrt

1-1161Base Operating System Runtime Services (Q-Z)

SRC_SOCK There is a problem with SRC socket
communications.

SRC_SVND The subsystem is unknown to the SRC daemon.

SRC_UDP The SRC port is not defined in the /etc/services
header file.

SRC_UHOST The foreign host is not known.

Examples
1. To start a subsystem passing the Environment and Arguments parameters, enter:

rc=srcstrt(””,”srctest”,”HOME=/tmpTERM=ibm6155”,

”–z\”thezflagargument\””,SRC_YES,SSHELL);

 This starts the srctest subsystem on the local host, placing HOME=/tmp,
TERM=ibm6155 in the environment and using –z and thezflagargument as two
arguments to the subsystem. This also displays the results of the start command to
standard output and allows the SRC to restart the subsystem should it end abnormally.

2. To start a subsystem on a foreign host, enter:

rc=srcstrt(”MaryC”,”srctest”,””,””,SRC_NO,SDAEMON);

 This starts the srctest subsystem on the MaryC machine. This does not display the
results of the start command to standard output and does not allow the SRC to restart
the subsystem should it end abnormally.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine,
srcstat subroutine, srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System
Resource Controller (SRC) Overview for Programmers in AIX General Programming
Concepts: Writing and Debugging Programs.

ssignal

1-1162 Technical Reference: Base Operating System

ssignal or gsignal Subroutine

Purpose
Implements a software signal facility.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

void (*ssignal (Signal, Action))()
int Signal;
void (*Action)();

int gsignal (Signal)
int Signal;

Description
Attention: Do not use the ssignal or gsignal subroutine in a multithreaded
environment. See the multithread alternatives in the ssignal_r or gsignal_r subroutine
article.

Attention: Do not use the ssignal or gsignal subroutine in a multithreaded
environment.

The ssignal and gsignal subroutines implement a software facility similar to that of the
signal and kill subroutines. However, there is no connection between the two facilities.
User programs can use the ssignal and gsignal subroutines to handle exceptional
processing within an application. The signal subroutine and related subroutines handle
system–defined exceptions.

The software signals available are associated with integers in the range 1 through 16. Other
values are reserved for use by the C library and should not be used.

The ssignal subroutine associates the procedure specified by the Action parameter with the
software signal specified by the Signal parameter. The gsignal subroutine raises the Signal,
causing the procedure specified by the Action parameter to be taken.

The Action parameter is either a pointer to a user–defined subroutine, or one of the
constants SIG_DFL (default action) and SIG_IGN (ignore signal). The ssignal subroutine
returns the procedure that was previously established for that signal. If no procedure was
established before, or if the signal number is illegal, then the ssginal subroutine returns the
value of SIG_DFL.

The gsignal subroutine raises the signal specified by the Signal parameter by doing the
following:

• If the procedure for the Signal parameter is SIG_DFL, the gsignal subroutine returns a
value of 0 and takes no other action.

• If the procedure for the Signal parameter is SIG_IGN, the gsignal subroutine returns a
value of 1 and takes no other action.

• If the procedure for the Signal parameter is a subroutine, the Action value is reset to the
SIG_DFL procedure and the subroutine is called, with the Signal value passed as its
parameter. The gsignal subroutine returns the value returned by the signal–handling
routine.

• If the Signal parameter specifies an illegal value or if no procedure is specified for that
signal, the gsignal subroutine returns a value of 0 and takes no other action.

ssignal

1-1163Base Operating System Runtime Services (Q-Z)

Parameters

Signal Specifies a signal.

Action Specifies a procedure.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The kill or killpg subroutine, signal subroutine.

statacl

1-1164 Technical Reference: Base Operating System

statacl or fstatacl Subroutine

Purpose
Retrieves the access control information for a file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/acl.h>
#include <sys/stat.h>

int statacl (Path, Command, ACL, ACLSize)
char *Path;
int Command;
struct acl *ACL;
int ACLSize;

int fstatacl (FileDescriptor, Command, ACL, ACLSize)
int FileDescriptor;
int Command;
struct acl *ACL;
int ACLSize;

Description
The statacl and fstatacl subroutines return the access control information for a file system
object.

Parameters

Path Specifies a pointer to the path name of a file.

FileDescriptor Specifies the file descriptor of an open file.

Command Specifies the mode of the path interpretation for Path, specifically
whether to retrieve information about a symbolic link or mount point.
Valid values for the Command parameter are defined in the stat.h file
and include:

• STX_LINK

• STX_MOUNT

• STX_NORMAL

Continued../...

statacl

1-1165Base Operating System Runtime Services (Q-Z)

ACL

Specifies a pointer to a buffer to contain the Access Control List (ACL)
of the file system object. The format of an ACL is defined in the
sys/acl.h file and includes the following members:

acl_len Size of the Access Control List (ACL).

Note: The entire ACL for a file cannot exceed one
memory page (4096 bytes).

acl_mode File mode.

Note: The valid values for the acl_mode are
defined in the sys/mode.h file.

u_access Access permissions for the file owner.

g_access Access permissions for the file group.

o_access Access permissions for default class others.

acl_ext[] An array of the extended entries for this access control
list.

The members for the base ACL (owner, group, and
others) may contain the following bits, which are
defined in the sys/access.h file:

R_ACC Allows read permission.

W_ACC Allows write permission.

X_ACC Allows execute or search permission.

ACLSize Specifies the size of the buffer to contain the ACL. If this value is too
small, the first word of the ACL is set to the size of the buffer needed.

Return Values
On successful completion, the statacl and fstatacl subroutines return a value of 0.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The statacl subroutine fails if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

ELOOP Too many symbolic links were encountered in translating the
Path parameter.

ENOENT A symbolic link was named, but the file to which it refers does
not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters,
or the entire Path parameter exceeded 1023 characters.

statacl

1-1166 Technical Reference: Base Operating System

The fstatacl subroutine fails if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

The statacl or fstatacl subroutine fails if one or more of the following are true:

EFAULT The ACL parameter points to a location outside of the allocated address
space of the process.

EINVAL The Command parameter is not a value of STX_LINK, STX_MOUNT,
STX_NORMAL.

ENOSPC The ACLSize parameter indicates the buffer at ACL is too small to hold
the Access Control List. In this case, the first word of the buffer is set to
the size of the buffer required.

EIO An I/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the statacl and fstatacl
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The chacl subroutine, stat subroutine.

The acl_chg subroutine, acl_get subroutine, acl_put subroutine, acl_set subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts: Writing and Debugging Programs.

statfs

1-1167Base Operating System Runtime Services (Q-Z)

statfs, fstatfs, or ustat Subroutine

Purpose
Gets file system statistics.

Library
Standard C Library (libc.a)

Syntax
#include <sys/statfs.h>

int statfs (Path, StatusBuffer)
char *Path;
struct statfs *StatusBuffer;

int fstatfs (FileDescriptor, StatusBuffer)
int FileDescriptor;
struct statfs *StatusBuffer;

#include <sys/types.h>
#include <ustat.h>

int ustat (Device, Buffer)
dev_t Device;
struct ustat *Buffer;

Description
The statfs and fstatfs subroutines return information about the mounted file system that
contains the file named by the Path or FileDescriptor parameters. The returned information
is in the format of a statfs structure, described in the sys/statfs.h file.

The ustat subroutine also returns information about a mounted file system identified by
Device. This device identifier is for any given file and can be determined by examining the
st_dev field of the stat structure defined in the sys/stat.h file. The returned information is
in the format of a ustat structure, described in the ustat.h file. The ustat subroutine is
superseded by the statfs and fstatfs subroutines. Use one of these (statfs and fstatfs)
subroutines instead.

Parameters

Path The path name of any file within the mounted file system.

FileDescriptor A file descriptor obtained by a successful open or fcntl subroutine. A
file descriptor is a small positive integer used instead of a file name.

StatusBuffer A pointer to a statfs buffer for the returned information from the statfs
or fstatfs subroutine.

Device The ID of the device. It corresponds to the st_rdev field of the
structure returned by the stat subroutine. The stat subroutine and the
sys/stat.h file provide more information about the device driver.

Buffer A pointer to a ustat buffer to hold the returned information.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned,
and the errno global variable is set to indicate the error.

statfs

1-1168 Technical Reference: Base Operating System

Error Codes
The statfs, fstatfs, and ustat subroutines fail if the following is true:

EFAULT The Buffer parameter points to a location outside of the allocated
address space of the process.

The fstatfs subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

EIO An I/O error occurred while reading from the file system.

The statfs subroutine can be unsuccessful for other reasons. For a list of additional errors,
see Appendix A, ”Base Operating System Error Codes for Services That Require
Path–Name Resolution” , on page 0.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The stat subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

statvfs

1-1169Base Operating System Runtime Services (Q-Z)

statvfs or fstatvfs Subroutine

Purpose
Returns information about a file system.

Library
Standard C Library (libc.a)

Syntax
#include <sys/statvfs.h>

int statvfs (Path, Buf)
const char *Path;
struct statvfs *Buf;

int fstatvfs (Fildes, Buf)
int Fildes;
struct statvfs *Buf;

Description
The statvfs and fstatvfs subroutines return descriptive information about a mounted file
system containing the file referenced by the Path or Fildes parameters. The Buf parameter
is a pointer to a structure which will by filled by the subroutine call.

The Path and Fildes parameters must reference a file which resides on the file system.
Read, write, or execute permission of the named file is not required, but all directories listed
in the pathname leading to the file must be searchable.

Parameters

Path The path name identifying the file.

Buf A pointer to a statvfs structure in which information is returned. The
statvfs structure is described in the sys/statvfs.h header file.

Fildes The file descriptor identifying the open file.

Return Values

0 Successful completion.

–1 Not successful and errno set to one of the following.

Error Codes

EACCES Search permission is denied on a component of the path.

EBADF The file referred to by the Fildes parameter is not an open file
descriptor.

EIO An I/O error occurred while reading from the filesystem.

ELOOP Too many symbolic links encountered in translating path.

ENAMETOOLO
NG

The length of the pathname exceeds PATH_MAX, or name component
is longer than NAME_MAX.

ENOENT The file referred to by the Path parameter does not exist.

ENOMEM A memory allocation failed during information retrieval.

statvfs

1-1170 Technical Reference: Base Operating System

ENOTDIR A component of the Path parameter prefix is not a directory.

EOVERFLOW One of the values to be returned cannot be represented correctly in the
structure pointed to by buf.

Related Information
The stat subroutine, statfs subroutine.

statx

1-1171Base Operating System Runtime Services (Q-Z)

statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or
fstat64 Subroutine

Purpose
Provides information about a file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int stat (Path, Buffer)
const char *Path;
struct stat *Buffer;

int lstat (Path, Buffer)
const char *Path;
struct stat *Buffer;

int fstat (FileDescriptor, Buffer)
int FileDescriptor;
struct stat *Buffer;

int statx (Path, Buffer, Length, Command)
char *Path;
struct stat *Buffer;
int Length;
int Command;

int fstatx (FileDescriptor, Buffer, Length, Command)
int FileDescriptor;
struct stat *Buffer;
int Length;
int Command;

#include <sys/fullstat.h>

int fullstat (Path, Command, Buffer)
struct fullstat *Buffer;
char *Path;
int Command;

int ffullstat (FileDescriptor, Command, Buffer)
struct fullstat *Buffer;
int FileDescriptor;
int Command;

Note: The stat64, lstat64, and fstat64 subroutines apply to Version 4.2 and later
releases.

int stat64 (Path, Buffer)
const char *Path;
struct stat64 *Buffer;

int lstat64 (Path, Buffer)
const char *Path;
struct stat64 *Buffer;

int fstat64 (FileDescriptor, Buffer)
int FileDescriptor;
struct stat64 *Buffer;

statx

1-1172 Technical Reference: Base Operating System

Description
Note: The stat64, lstat64, and fstat64 subroutines apply to Version 4.2 and later
releases.

The stat subroutine obtains information about the file named by the Path parameter. Read,
write, or execute permission for the named file is not required, but all directories listed in the
path leading to the file must be searchable. The file information, which is a subset of the
stat structure, is written to the area specified by the Buffer parameter.

The lstat subroutine obtains information about a file that is a symbolic link. The lstat
subroutine returns information about the link, while the stat subroutine returns information
about the file referenced by the link.

The fstat subroutine obtains information about the open file referenced by the
FileDescriptor parameter. The fstatx subroutine obtains information about the open file
referenced by the FileDescriptor parameter, as in the fstat subroutine.

The st_mode, st_dev, st_uid, st_gid, st_atime, st_ctime, and st_mtime fields of
the stat structure have meaningful values for all file types. The statx, stat, lstat, fstatx,
fstat, fullstat, or ffullstat subroutine sets the st_nlink field to a value equal to the
number of links to the file.

The statx subroutine obtains a greater set of file information than the stat subroutine. The
Path parameter is processed differently, depending on the contents of the Command
parameter. The Command parameter provides the ability to collect information about
symbolic links (as with the lstat subroutine) as well as information about mount points and
hidden directories. The statx subroutine returns the amount of information specified by the
Length parameter.

The fullstat and ffullstat subroutines are interfaces maintained for backward compatibility.
With the exception of some field names, the fullstat structure is identical to the stat
structure.

The stat64, lstat64, and fstat64 subroutines are similar to the stat, lstat, fstat subroutines
except that they return file information in a stat64 structure instead of a stat structure. The
information is identical except that the st_size field is defined to be a 64–bit size. This
allows stat64, lstat64, and fstat64 to return file sizes which are greater than OFF_MAX (2
gigbytes minus 1).

In the large file enabled programming environment, stat is redefined to be stat64, lstat is
redefined to be lstat64 and fstat is redefined to be fstat64.

Parameters
Path Specifies the path name identifying the file. This name is interpreted

differently depending on the interface used.

FileDescriptor Specifies the file descriptor identifying the open file.

Buffer Specifies a pointer to the stat structure in which information is returned.
The stat structure is described in the sys/stat.h file.

Length Indicates the amount of information, in bytes, to be returned. Any value
between 0 and the value returned by the STATXSIZE macro, inclusive, may
be specified. The following macros may be used:

STATSIZE Specifies the subset of the stat structure that is
normally returned for a stat call.

FULLSTATSIZE Specifies the subset of the stat (fullstat) structure
that is normally returned for a fullstat call.

STATXSIZE Specifies the complete stat structure. 0 specifies the
complete stat structure, as if STATXSIZE had been
specified.

statx

1-1173Base Operating System Runtime Services (Q-Z)

Command Specifies a processing option. For the statx subroutine, the Command
parameter determines how to interpret the path name provided, specifically,
whether to retrieve information about a symbolic link, hidden directory, or
mount point. Flags can be combined by logically ORing them together. The
following options are possible values:

STX_LINK If the Command parameter specifies the STX_LINK
flag and the Path parameter is a path name that refers
to a symbolic link, the statx subroutine returns
information about the symbolic link. If the STX_LINK
flag is not specified, the statx subroutine returns
information about the file to which the link refers.

If the Command parameter specifies the STX_LINK

flag and the Path value refers to a symbolic link, the
st_mode field of the returned stat structure indicates
that the file is a symbolic link.

STX_HIDDEN If the Command parameter specifies the
STX_HIDDEN flag and the Path value is a path name
that refers to a hidden directory, the statx subroutine
returns information about the hidden directory. If the
STX_HIDDEN flag is not specified, the statx
subroutine returns information about a subdirectory of
the hidden directory.

If the Command parameter specifies the

STX_HIDDEN flag and Path refers to a hidden
directory, the st_mode field of the returned stat
structure indicates that this is a hidden directory.

STX_MOUNT If the Command parameter specifies the
STX_MOUNT flag and the Path value is the name of
a file or directory that has been mounted over, the
statx subroutine returns information about the
mounted-over file. If the STX_MOUNT flag is not
specified, the statx subroutine returns information
about the mounted file or directory (the root directory
of a virtual file system).

If the Command parameter specifies the

STX_MOUNT flag, the FS_MOUNT bit in the
st_flag field of the returned stat structure is set if,
and only if, this file is mounted over.

If the Command parameter does not specify the

STX_MOUNT flag, the FS_MOUNT bit in the
st_flag field of the returned stat structure is set if,
and only if, this file is the root directory of a virtual file
system.

STX_NORMAL If the Command parameter specifies the
STX_NORMAL flag, then no special processing is
performed on the Path value. This option should be
used when STX_LINK, STX_HIDDEN, and
STX_MOUNT flags are not desired.

For the fstatx subroutine, there are currently no

special processing options. The only valid value for
the Command parameter is the STX_NORMAL flag.

statx

1-1174 Technical Reference: Base Operating System

For the fullstat and ffullstat subroutines, the

Command parameter may specify the FL_STAT flag,
which is equivalent to the STX_NORMAL flag, or the
FL_NOFOLLOW flag, which is equivalent to
STX_LINK flag.

Note: The STX_64 flag applies to Version 4.2 and later releases.

STX_64 If the Command parameter specifies the STX_64 flag
and the file size is greater than OFF_MAX, then statx
succeeds and returns the file size. Otherwise, statx
fails and sets the errno to EOVERFLOW.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The stat, lstat, statx, and fullstat subroutines are unsuccessful if one or more of the
following are true:

EACCES Search permission is denied for one component of the path
prefix.

ENAMETOOLONG The length of the path prefix exceeds the PATH_MAX flag
value or a path name is longer than the NAME_MAX flag value
while the POSIX_NO_TRUNC flag is in effect.

ENOTDIR A component of the path prefix is not a directory.

EFAULT Either the Path or the Buffer parameter points to a location
outside of the allocated address space of the process.

ENOENT The file named by the Path parameter does not exist.

EOVERFLOW The size of the file is larger than can be represented in the stat
structure pointed to by the Buffer parameter.

The fstat, fstatx, and ffullstat subroutines fail if one or more of the following are true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

EFAULT The Buffer parameter points to a location outside the allocated address
space of the process.

EIO An input/output (I/O) error occurred while reading from the file system.

The statx and fstatx subroutines are unsuccessful if one or more of the following are true:

EINVAL The Length value is not between 0 and the value returned by the
STATSIZE macro, inclusive.

EINVAL The Command parameter contains an unacceptable value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/usr/include/sys/fullstat.h

 Contains the fullstat structure.

statx

1-1175Base Operating System Runtime Services (Q-Z)

/usr/include/sys/mode.h

 Defines values on behalf of the stat.h file.

Related Information
The chmod subroutine, chown subroutine, link subroutine, mknod subroutine, mount
subroutine, openx, open, or creat subroutine, pipe subroutine, symlink subroutine, vtimes
subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts: Writing and Debugging Programs.

strcat

1-1176 Technical Reference: Base Operating System

strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine

Purpose
Copies and appends strings in memory.

Library
Standard C Library (libc.a)

Syntax #include <string.h>

char *strcat (String1, String2)
char *String1;
const char *String2;

char *strncat (String1, String2, Number)
char *String1;
const char *String2;
size_t Number;

size_t strxfrm (String1, String2, Number)
 char *String1;
const char *String2;
size_t Number;

char *strcpy (String1, String2)
char *String1;
const char *String2;

char *strncpy (String1, String2, Number)
char *String1;
const char *String2;
size_t Number;

char *strdup (String1)
const char *String1;

Description
The strcat, strncat, strxfrm, strcpy, strncpy, and strdup subroutines copy and append
strings in memory.

The String1 and String2 parameters point to strings. A string is an array of characters
terminated by a null character. The strcat, strncat, strcpy, and strncpy subroutines all
alter the string in the String1 parameter. However, they do not check for overflow of the
array to which the String1 parameter points. String movement is performed on a
character–by–character basis and starts at the left. Overlapping moves toward the left work
as expected, but overlapping moves to the right may give unexpected results. All of these
subroutines are declared in the string.h file.

The strcat subroutine adds a copy of the string pointed to by the String2 parameter to the
end of the string pointed to by the String1 parameter. The strcat subroutine returns a
pointer to the null–terminated result.

strcat

1-1177Base Operating System Runtime Services (Q-Z)

The strncat subroutine copies a number of bytes specified by the Number parameter from
the String2 parameter to the end of the string pointed to by the String1 parameter. The
subroutine stops copying before the end of the number of bytes specified by the Number
parameter if it encounters a null character in the String2 parameter’s string. The strncat
subroutine returns a pointer to the null–terminated result. The strncat subroutine returns the
value of the String1 parameter.

The strxfrm subroutine transforms the string pointed to by the String2 parameter and
places it in the array pointed to by the String1 parameter. The strxfrm subroutine
transforms the entire string if possible, but places no more than the number of bytes
specified by the Number parameter in the array pointed to by the String1 parameter.
Consequently, if the Number parameter has a value of 0, the String1 parameter can be a
null pointer. The strxfrm subroutine returns the length of the transformed string, not
including the terminating null byte. If the returned value is equal to or more than that of the
Number parameter, the contents of the array pointed to by the String1 parameter are
indeterminable. If the number of bytes specified by the Number parameter is 0, the strxfrm
subroutine returns the length required to store the transformed string, not including the
terminating null byte. The strxfrm subroutine is determined by the LC_COLLATE category.

The strcpy subroutine copies the string pointed to by the String2 parameter to the character
array pointed to by the String1 parameter. Copying stops after the null character is copied.
The strcpy subroutine returns the value of the String1 parameter, if successful. Otherwise,
a null pointer is returned.

The strncpy subroutine copies the number of bytes specified by the Number parameter
from the string pointed to by the String2 parameter to the character array pointed to by the
String1 parameter. If the String2 parameter value is less than the specified number of
characters, then the strncpy subroutine pads the String1 parameter with trailing null
characters to a number of bytes equaling the value of the Number parameter. If the String2
parameter is exactly the specified number of characters or more, then only the number of
characters specified by the Number parameter are copied and the result is not terminated
with a null byte. The strncpy subroutine returns the value of the String1 parameter.

The strdup subroutine returns a pointer to a new string, which is a duplicate of the string
pointed to by the String1 parameter. Space for the new string is obtained by using the
malloc subroutine. A null pointer is returned if the new string cannot be created.

Parameters

Number Specifies the number of bytes in a string to be copied or transformed.

String1 Points to a string to which the specified data is copied or appended.

String2 Points to a string which contains the data to be copied, appended, or
transformed.

Error Codes
The strcat, strncat, strxfrm, strcpy, strncpy, and strdup subroutines fail if the following
occurs:

EFAULT A string parameter is an invalid address.

In addition, the strxfrm subroutine fails if:

EINVAL A string parameter contains characters outside the domain of the
collating sequence.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

strcat

1-1178 Technical Reference: Base Operating System

Related Information
The memccpy, memchr, memcmp, memcpy, or memmove subroutine, setlocale
subroutine, strcmp, strncmp, strcasecmp, strncasecmp, or strcoll subroutine, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok subroutine, swab subroutine.

strcmp

1-1179Base Operating System Runtime Services (Q-Z)

strcmp, strncmp, strcasecmp, strncasecmp, or strcoll
Subroutine

Purpose
Compares strings in memory.

Library
Standard C Library (libc.a)

Syntax #include <string.h>

int strcmp (String1, String2)
const char *String1, *String2;

int strncmp (String1, String2, Number)
const char *String1, *String2;
size_t Number;

int strcoll (String1, String2)
const char *String1, *String2;

#include <strings.h>

int strcasecmp (String1, String2)
const char *String1, *String2;

int strncasecmp (String1, String2, Number)
const char *String1, *String2;
size_t Number;

Description
The strcmp, strncmp, strcasecmp, strncasecmp, and strcoll subroutines compare
strings in memory.

The String1 and String2 parameters point to strings. A string is an array of characters
terminated by a null character.

The strcmp subroutine performs a case–sensitive comparison of the string pointed to by
the String1 parameter and the string pointed to by the String2 parameter, and analyzes the
extended ASCII character set values of the characters in each string. The strcmp
subroutine compares unsigned char data types. The strcmp subroutine then returns a
value that is:

• Less than 0 if the value of string String1 is lexicographically less than string String2.

• Equal to 0 if the value of string String1 is lexicographically equal to string String2.

• Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncmp subroutine makes the same comparison as the strcmp subroutine, but
compares up to the maximum number of pairs of bytes specified by the Number parameter.

The strcasecmp subroutine performs a character–by–character comparison similar to the
strcmp subroutine. However, the strcasecmp subroutine is not case–sensitive. Uppercase

strcmp

1-1180 Technical Reference: Base Operating System

and lowercase letters are mapped to the same character set value. The sum of the mapped
character set values of each string is used to return a value that is:

• Less than 0 if the value of string String1 is lexicographically less than string String2.

• Equal to 0 if the value of string String1 is lexicographically equal to string String2.

• Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncasecmp subroutine makes the same comparison as the strcasecmp subroutine,
but compares up to the maximum number of pairs of bytes specified by the Number
parameter.

Note: Both the strcasecmp and strncasecmp subroutines only work with 7–bit ASCII
characters.

The strcoll subroutine works the same as the strcmp subroutine, except that the
comparison is based on a collating sequence determined by the LC_COLLATE category. If
the strcmp subroutine is used on transformed strings, it returns the same result as the
strcoll subroutine for the corresponding untransformed strings.

Parameters

Number The number of bytes in a string to be examined.

String1 Points to a string which is compared.

String2 Points to a string which serves as the source for comparison.

Error Codes
The strcmp, strncmp, strcasecmp, strncasecmp, and strcoll subroutines fail if the
following occurs:

EFAULT A string parameter is an invalid address.

In addition, the strcoll subroutine fails if:

EINVAL A string parameter contains characters outside the domain of the
collating sequence.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The memccpy, memchr, memcmp, memcpy, or memmove subroutine, setlocale
subroutine, strcat, strncat, strxfrm, strcpy, strncpy, or strdup subroutine, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strstr, or strtok subroutine, swab subroutine.

strerror

1-1181Base Operating System Runtime Services (Q-Z)

strerror Subroutine

Purpose
Maps an error number to an error message string.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

char *strerror (ErrorNumber)
int ErrorNumber;

Description
Attention: Do not use the strerror subroutine in a multithreaded environment. See the
multithread alternative in the strerror_r subroutine article.

Attention: Do not use the strerror subroutine in a multithreaded environment.

The strerror subroutine maps the error number in the ErrorNumber parameter to the error
message string. The strerror subroutine retrieves an error message based on the current
value of the LC_MESSAGES category. If the specified message catalog cannot be opened,
the default message is returned. The returned message does not contain a new line (”\n”).

Parameters

ErrorNumber Specifies the error number to be associated with the error message.

Return Values
The strerror subroutine returns a pointer to the error message.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The perror subroutine.

The clearerr macro, feof macro, ferror macro, fileno macro.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

strfmon

1-1182 Technical Reference: Base Operating System

strfmon Subroutine

Purpose
Formats monetary strings.

Library
Standard C Library (libc. a)

Syntax
#include <monetary.h>

ssize_t strfmon (S, MaxSize, Format, ...)
char *S;
size_t MaxSize;
const char *Format, ...;

Description
The strfmon subroutine converts numeric values to monetary strings according to the
specifications in the Format parameter. This parameter also contains numeric values to be
converted. Characters are placed into the S array, as controlled by the Format parameter.
The LC_MONETARY category governs the format of the conversion.

The strfmon subroutine can be called multiple times by including additional format
structures, as specified by the Format parameter.

The Format parameter specifies a character string that can contain plain characters and
conversion specifications. Plain characters are copied to the output stream. Conversion
specifications result in the fetching of zero or more arguments, which are converted and
formatted.

If there are insufficient arguments for the Format parameter, the results are undefined. If
arguments remain after the Format parameter is exhausted, the excess arguments are
ignored.

A conversion specification consists of the following items in the following order: a % (percent
sign), optional flags, optional field width, optional left precision, optional right precision, and
a required conversion character that determines the conversion to be performed.

Parameters

S Contains the output of the strfmon subroutine.

MaxSize Specifies the maximum number of bytes (including the null terminating
byte) that may be placed in the S parameter.

Format Contains characters and conversion specifications.

Flags
One or more of the following flags can be specified to control the conversion:

=f An = (equal sign) followed by a single character that specifies the
numeric fill character. The default numeric fill character is the space
character. This flag does not affect field–width filling, which always uses
the space character. This flag is ignored unless a left precision is
specified.

^ Does not use grouping characters when formatting the currency
amount. The default is to insert grouping characters if defined for the
current locale.

strfmon

1-1183Base Operating System Runtime Services (Q-Z)

+ or (Determines the representation of positive and negative currency
amounts. Only one of these flags may be specified. The locale’s
equivalent of + (plus sign) and – (negative sign) are used if + is
specified. The locale’s equivalent of enclosing negative amounts within
parentheses is used if ((left parenthesis) is specified. If neither flag is
included, a default specified by the current locale is used.

– Left–justifies all fields (pads to the right). The default is
right–justification.

! Suppresses the currency symbol from the output conversion.

Field Width

w The decimal–digit string w specifies the minimum field width in which
the result of the conversion is right–justified. If –w is specified, the result
is left–justified. The default is a value of 0.

Left Precision

#n A # (pound sign) followed by a decimal–digit string, n, specifies the
maximum number of digits to be formatted to the left of the radix
character. This option can be specified to keep formatted output from
multiple calls to the strfmon subroutine aligned in the same columns. It
can also be used to fill unused positions with a special character (for
example, $***123.45). This option causes an amount to be formatted
as if it has the number of digits specified by the n variable. If more than
n digit positions are required, this option is ignored. Digit positions in
excess of those required are filled with the numeric fill character set with
the =f flag.

If defined for the current locale and not suppressed with the ^ flag,
the subroutine inserts grouping characters before fill characters (if
any). Grouping characters are not applied to fill characters, even if
the fill character is a digit. In the example:

$0000001,234.56

grouping characters do not appear after the first or fourth 0 from the
left.

To ensure alignment, any characters appearing before or after the
number in the formatted output, such as currency or sign symbols,
are padded as necessary with space characters to make their
positive and negative formats equal in length.

Right Precision

.p A . (period) followed by a decimal digit string, p, specifies the number of
digits after the radix character. If the value of the p variable is 0, no
radix character is used. If a right precision is not specified, a default
specified by the current locale is use. The amount being formatted is
rounded to the specified number of digits prior to formatting.

strfmon

1-1184 Technical Reference: Base Operating System

Conversion Characters

i The double argument is formatted according to the current locale’s
international currency format; for example, in the U.S.: 1,234.56.

n The double argument is formatted according to the current locale’s
national currency format; for example, in the U.S.: $1,234.56.

% No argument is converted; the conversion specification %% is replaced
by a single %.

Return Values
If successful, and if the number of resulting bytes (including the terminating null character) is
not more than the number of bytes specified by the MaxSize parameter, the strfmon
subroutine returns the number of bytes placed into the array pointed to by the S parameter
(not including the terminating null byte). Otherwise, a value of –1 is returned and the
contents of the S array are indeterminate.

Error Codes
The strfmon subroutine may fail if the following is true:

E2BIG Conversion stopped due to lack of space in the buffer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The scanf subroutine, strftime subroutine, strptime subroutine, wcsftime subroutine.

National Language Support Overview for Programming, Understanding Time and Monetary
Formatting Subroutines, Subroutines Overview in AIX General Programming Concepts :
Writing and Debugging Programs.

strftime

1-1185Base Operating System Runtime Services (Q-Z)

strftime Subroutine

Purpose
Formats time and date.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

size_t strftime (String, Length, Format, TmDate)
char *String;
size_t Length;
const char *Format;
const struct tm *TmDate;

Description
The strftime subroutine converts the internal time and date specification of the tm structure,
which is pointed to by the TmDate parameter, into a character string pointed to by the String
parameter under the direction of the format string pointed to by the Format parameter. The
actual values for the format specifiers are dependent on the current settings for the
LC_TIME category. The tm structure values may be assigned by the user or generated by
the localtime or gmtime subroutine. The resulting string is similar to the result of the printf
Format parameter, and is placed in the memory location addressed by the String parameter.
The maximum length of the string is determined by the Length parameter and terminates
with a null character.

Many conversion specifications are the same as those used by the date command. The
interpretation of some conversion specifications is dependent on the current locale of the
process.

The Format parameter is a character string containing two types of objects: plain characters
that are simply placed in the output string, and conversion specifications that convert
information from the TmDate parameter into readable form in the output string. Each
conversion specification is a sequence of this form:

% type

• A % (percent sign) introduces a conversion specification.

• The type of conversion is specified by one or two conversion characters. The characters
and their meanings are:

%a Represents the locale’s abbreviated weekday name (for example, Sun) defined
by the abday statement in the LC_TIME category.

%A Represents the locale’s full weekday name (for example, Sunday) defined by
the day statement in the LC_TIME category.

%b Represents the locale’s abbreviated month name (for example, Jan) defined by
the abmon statement in the LC_TIME category.

%B Represents the locale’s full month name (for example, January) defined by the
mon statement in the LC_TIME category.

%c Represents the locale’s date and time format defined by the d_t_fmt statement in
the LC_TIME category.

strftime

1-1186 Technical Reference: Base Operating System

%C Represents the century number (the year divided by 100 and truncated to an
integer) as a decimal number (00 through 99).

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

%e Represents the day of the month as a decimal number (01 to 31). The %e field
descriptor uses a two–digit field. If the day of the month is not a two–digit number,
the leading digit is filled with a space character.

%E Represents the locale’s combined alternate era year and name, respectively, in
%o %N format.

%h Represents the locale’s abbreviated month name (for example, Jan) defined by
the abmon statement in the LC_TIME category. This field descriptor is a synonym
for the %b field descriptor.

%H Represents the 24–hour–clock hour as a decimal number (00 to 23).

%I Represents the 12–hour–clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Specifies a new–line character.

%N Represents the locale’s alternate era name.

%o Represents the alternate era year.

%p Represents the locale’s a.m. or p.m. string defined by the am_pm statement in
the LC_TIME category.

%r Represents 12–hour clock time with a.m./p.m. notation as defined by the
t_fmt_ampm statement. The usual format is %I:%M:%S %p.

%R Represents 24–hour clock time in %H:%M format.

%S Represents the seconds of the minute as a decimal number (00 to 59).

%t Specifies a tab character.

%T Represents 24–hour–clock time in the format %H:%M:%S (for example,
16:55:15).

%u Represents the weekday as a decimal number (1 to 7). Monday or its equivalent
is considered the first day of the week for calculating the value of this field
descriptor.

%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its
equivalent as defined by the day statement in the LC_TIME category, is
considered the first day of the week for calculating the value of this field
descriptor.

%V Represents the week number of the year (with Monday as the first day of the
week) as a decimal number (01 to 53). If the week containing January 1 has four
or more days in the new year, then it is considered week 1; otherwise, it is
considered week 53 of the previous year, and the next week is week 1 of the new
year.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its
equivalent as defined by the day statement, is considered as 0 for calculating the
value of this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its
equivalent as defined by the day statement, is considered the first day of the
week for calculating the value of this field descriptor.

%x Represents the locale’s date format as defined by the d_fmt statement.

%X Represents the locale’s time format as defined by the t_fmt statement.

strftime

1-1187Base Operating System Runtime Services (Q-Z)

%y Represents the year of the century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year
within the century. When a century is not otherwise specified, values in the
range 69–99 refer to years in the twentieth century (1969 to 1999, inclusive);
values in the range 00–68 refer to 2000 to 2068, inclusive.

%Y Represents the year as a decimal number (for example, 1989).

%Z Represents the time–zone name if one can be determined (for example, EST).
No characters are displayed if a time zone cannot be determined.

%% Specifies a % (percent sign).

Some conversion specifiers can be modified by the E or O modifier characters to indicate
that an alternative format or specification should be used. If the alternative format or
specification does not exist for the current locale, the behavior will be the same as with the
unmodified conversion specification. The following modified conversion specifiers are
supported:

%Ec Represents the locale’s alternative appropriate date and time as defined by the
era_d_t_fmt statement.

%EC Represents the name of the base year (or other time period) in the locale’s
alternative form as defined by the era statement under the era_name category of
the current era.

%Ex Represents the locale’s alternative date as defined by the era_d_fmt statement.

%EX Represents the locale’s alternative time as defined by the era_t_fmt statement.

%Ey Represents the offset from the %EC modified conversion specifier (year only) in
the locale’s alternative form.

%EY Represents the full alternative–year form.

%Od Represents the day of the month, using the locale’s alternative numeric symbols,
filled as needed with leading 0’s if an alternative symbol for 0 exists. If an
alternative symbol for 0 does not exist, the %Od modified conversion specifier
uses leading space characters.

%Oe Represents the day of the month, using the locale’s alternative numeric symbols,
filled as needed with leading 0’s if an alternative symbol for 0 exists. If an
alternative symbol for 0 does not exist, the %Oe modified conversion specifier
uses leading space characters.

%OH Represents the hour in 24–hour clock time, using the locale’s alternative numeric
symbols.

%OI Represents the hour in 12–hour clock time, using the locale’s alternative numeric
symbols.

%Om Represents the month, using the locale’s alternative numeric symbols.

%OM Represents the minutes, using the locale’s alternative numeric symbols.

%OS Represents the seconds, using the locale’s alternative numeric symbols.

%Ou Represents the weekday as a number using the locale’s alternative numeric
symbols.

%OU Represents the week number of the year, using the locale’s alternative numeric
symbols. Sunday is considered the first day of the week. Use the rules
corresponding to the %U conversion specifier.

%OV Represents the week number of the year (Monday as the first day of the week,
rules corresponding to %V) using the locale’s alternative numeric symbols.

%OV Represents the week number of the year, using the locale’s alternative numeric
symbols. Monday is considered the first day of the week. Use the rules
corresponding to the %V conversion specifier.

strftime

1-1188 Technical Reference: Base Operating System

%Ow Represents the number of the weekday (with Sunday equal to 0), using the
locale’s alternative numeric symbols.

%OW Represents the week number of the year using the locale’s alternative numeric
symbols. Monday is considered the first day of the week. Use the rules
corresponding to the %W conversion specifier.

%Oy Represents the year (offset from %C) using the locale’s alternative numeric
symbols.

%Oy Represents the year of the century (offset from the %C conversion specifier),
using the locale’s alternative numeric symbols.

Parameters

String Points to the string to hold the formatted time.

Length Specifies the maximum length of the string pointed to by the String
parameter.

Format Points to the format character string.

TmDate Points to the time structure that is to be converted.

Return Values
If the total number of resulting bytes, including the terminating null byte, is not more than the
Length value, the strftime subroutine returns the number of bytes placed into the array
pointed to by the String parameter, not including the terminating null byte . Otherwise, a
value of 0 is returned and the contents of the array are indeterminate.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The localtime subroutine, gmtime subroutine, mbstowcs subroutine, printf subroutine,
strfmon subroutine, strptime subroutine, wcsftime subroutine.

The date command.

LC_TIME Category for the Locale Definition Source File Format in AIX Files Reference.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

strlen

1-1189Base Operating System Runtime Services (Q-Z)

strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok
Subroutine

Purpose
Determines the size, location, and existence of strings in memory.

Library
Standard C Library (libc.a)

Syntax #include <string.h>
size_t strlen (String)
const char *String;

char *strchr (String, Character)
const char *String;
int Character;

char *strrchr (String, Character)
const char *String;
int Character;

char *strpbrk (String1, String2)
const char *String1, *String2;

size_t strspn (String1, String2)
const char *String1, *String2;

size_t strcspn (String1, String2)
const char *String1, *String2;char *

strstr (String1, String2)
const char *String1, *String2;

char *strtok (String1, String2)
char *String1;
const char *String2;

char *index (String, Character)
const char *String;
int Character;

char *rindex (String, Character)
const char *String;
int Character;

Description
Attention: Do not use the strtok subroutine in a multithreaded environment. See the
multithread alternative in the strtok_r subroutine article.

Attention: Do not use the strtok subroutine in a multithreaded environment.

The strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, and strtok subroutines
determine such values as size, location, and the existence of strings in memory.

The String1, String2, and String parameters point to strings. A string is an array of
characters terminated by a null character.

strlen

1-1190 Technical Reference: Base Operating System

The strlen subroutine returns the number of bytes in the string pointed to by the String
parameter, not including the terminating null bytes.

The strchr subroutine returns a pointer to the first occurrence of the character specified by
the Character (converted to an unsigned character) parameter in the string pointed to by the
String parameter. A null pointer is returned if the character does not occur in the string. The
null byte that terminates a string is considered to be part of the string.

The strrchr subroutine returns a pointer to the last occurrence of the character specified by
the Character (converted to a character) parameter in the string pointed to by the String
parameter. A null pointer is returned if the character does not occur in the string. The null
byte that terminates a string is considered to be part of the string.

The strpbrk subroutine returns a pointer to the first occurrence in the string pointed to by
the String1 parameter of any bytes from the string pointed to by the String2 parameter. A
null pointer is returned if no bytes match.

The strspn subroutine returns the length of the initial segment of the string pointed to by the
String1 parameter, which consists entirely of bytes from the string pointed to by the String2
parameter.

The strcspn subroutine returns the length of the initial segment of the string pointed to by
the String1 parameter, which consists entirely of bytes not from the string pointed to by the
String2 parameter.

The strstr subroutine finds the first occurrence in the string pointed to by the String1
parameter of the sequence of bytes specified by the string pointed to by the String2
parameter (excluding the terminating null character). It returns a pointer to the string found
in the String1 parameter, or a null pointer if the string was not found. If the String2
parameter points to a string of 0 length, the strstr subroutine returns the value of the
String1 parameter.

The strtok subroutine breaks the string pointed to by the String1 parameter into a sequence
of tokens, each of which is delimited by a byte from the string pointed to by the String2
parameter. The first call in the sequence takes the String1 parameter as its first argument
and is followed by calls that take a null pointer as their first argument. The separator string
pointed to by the String2 parameter may be different from call to call.

The first call in the sequence searches the String1 parameter for the first byte that is not
contained in the current separator string pointed to by the String2 parameter. If no such byte
is found, no tokens exist in the string pointed to by the String1 parameter, and a null pointer
is returned. If such a byte is found, it is the start of the first token.

The strtok subroutine then searches from the first token for a byte that is contained in the
current separator string. If no such byte is found, the current token extends to the end of the
string pointed to by the String1 parameter, and subsequent searches for a token return a
null pointer. If such a byte is found, the strtok subroutine overwrites it with a null byte, which
terminates the current token. The strtok subroutine saves a pointer to the following byte,
from which the next search for a token will start. The subroutine returns a pointer to the first
byte of the token.

Each subsequent call with a null pointer as the value of the first argument starts searching
from the saved pointer, using it as the first token. Otherwise, the subroutine’s behavior does
not change.

Parameters

Character Specifies a character for which to return a pointer.

String Points to a string from which data is returned.

String1 Points to a string from which an operation returns results.

String2 Points to a string which contains source for an operation.

strlen

1-1191Base Operating System Runtime Services (Q-Z)

Error Codes
The strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, and strtok subroutines fail if
the following occurs:

EFAULT A string parameter is an invalid address.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The index and rindex subroutines are included for compatibility with BSD and are not part
of the ANSI C Library. The index subroutine is implemented as a call to the strchr
subroutine. The rindex subroutine is implemented as a call to the strrchr subroutine.

Related Information
The memccpy, memchr, memcmp, memcpy, or memmove subroutine, setlocale
subroutine, strcat, strncat, strxfrm, strcpy, strncpy, or strdup subroutine, strcmp,
strncmp, strcasecmp, strncasecmp, or strcoll subroutine, swab subroutine.

strncollen

1-1192 Technical Reference: Base Operating System

strncollen Subroutine

Purpose
Returns the number of collation values for a given string.

Library
Standard C Library (libc.a)

Syntax
include <string.h>

int strncollen (String, Number)
const char *String;
const int Number;

Description
The strncollen subroutine returns the number of collation values for a given string pointed
to by the String parameter. The count of collation values is terminated when either a null
character is encountered or when the number of bytes indicated by the Number parameter
have been examined.

The collation values are set by the setlocale subroutine for the LC_COLLATE category. For
example, if the locale is set to Es_ES (Spanish spoken in Spain) for the LC_COLLATE
category, where ‘ch’ has one collation value, then strncollen (’abchd’, 5) returns 4.

In German, the <Sharp–S> character has two collation values, so substituting the
<Sharp–S> character for B in the following example, strncollen (’straBa’, 6) returns
7.

If a character has no collation value, its collation length is 0.

Parameters

Number The number of bytes in a string to be examined.

String Pointer to a string to be examined for collation value.

Return Values
Upon successful completion, the strncollen subroutine returns the collation value for a
given string, pointed to by the String parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setlocale subroutine, strcat, strncat, strxfrm, strcpy, strncpy, or strdup subroutine,
strcmp, strncmp, strcasecmp, strncasecmp, or strcoll subroutine, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strstr, or strtok subroutine.

strptime

1-1193Base Operating System Runtime Services (Q-Z)

strptime Subroutine

Purpose
Converts a character string to a time value.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

char *strptime (Buf, Format, Tm)
const char *Buf, *Format;
struct tm *Tm;

Description
The strptime subroutine converts the characters in the Buf parameter to values that are
stored in the Tm structure, using the format specified by the Format parameter.

Parameters

Buf Contains the character string to be converted by the strptime subroutine.

Format Contains format specifiers for the strptime subroutine. The Format
parameter contains 0 or more specifiers. Each specifier is composed of
one of the following elements:

• One or more white–space characters

• An ordinary character (neither % [percent sign] nor a white–space
character)

• A format specifier

Note: If more than one format specifier is present, they must be separated by white
space or a non–% [percent sign]/non–alphanumeric ordinary character.

The LC_TIME category defines the locale values for the format specifiers. The following
format specifiers are supported:

%a Represents the weekday name, either abbreviated as specified by the abday
statement or full as specified by the day statement.

%A Represents the weekday name, either abbreviated as specified by the abday
statement or full as specified by the day statement.

%b Represents the month name, either abbreviated as specified by the abmon
statement or full as specified by the month statement.

%B Represents the month name, either abbreviated as specified by the abmon
statement or full as specified by the month statement.

%c Represents the date and time format defined by the d_t_fmt statement in the
LC_TIME category.

%C Represents the century number (0 through 99); leading zeros are permitted but
not required.

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

strptime

1-1194 Technical Reference: Base Operating System

%e Represents the day of the month as a decimal number (01 to 31).

%E Represents the combined alternate era year and name, respectively, in %o %N
format.

%h Represents the month name, either abbreviated as specified by the abmon
statement or full as specified by the month statement.

%H Represents the 24–hour–clock hour as a decimal number (00 to 23).

%I Represents the 12–hour–clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Represents any white space.

%N Represents the alternate era name.

%o Represents the alternate era year.

%p Represents the a.m. or p.m. string defined by the am_pm statement in the
LC_TIME category.

%r Represents 12–hour–clock time with a.m./p.m. notation as defined by the
t_fmt_ampm statement, usually in the format %I:%M:%S %p.

%S Represents the seconds of the minute as a decimal number (00 to 61). The
decimal number range of 00 to 61 provides for leap seconds.

%t Represents any white space.

%T Represents 24–hour–clock time in the format %H:%M:%S (for example,
16:55:15).

%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its
equivalent as defined by the day statement, is considered the first day of the
week for calculating the value of this field descriptor.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its
equivalent as defined by the day statement in the LC_TIME category, is
considered to be 0 for calculating the value of this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its
equivalent as defined by the day statement in the LC_TIME category, is
considered the first day of the week for calculating the value of this field
descriptor.

%x Represents the date format defined by the d_fmt statement in the LC_TIME
category.

%X Represents the time format defined by the t_fmt statement in the LC_TIME
category.

%y Represents the year of the century (00 to 99).

%y Represents the year within century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year
within the century. When a century is not otherwise specified, values in the
range 69–99 refer to years in the twentieth century (1969 to 1999, inclusive);
values in the range 00–68 refer to 2000 to 2068, inclusive.

%Y Represents the year as a decimal number (for example, 1989).

%Z Represents the time–zone name, if one can be determined (for example, EST).
No characters are displayed if a time zone cannot be determined.

%% Specifies a % (percent sign) character.

Some format specifiers can be modified by the E and O modifier characters to indicate an
alternative format or specification. If the alternative format or specification does not exist in

strptime

1-1195Base Operating System Runtime Services (Q-Z)

the current locale, the behavior will be as if the unmodified format specifier were used. The
following modified format specifiers are supported:

%Ec Represents the locale’s alternative appropriate date and time as defined by the
era_d_t_fmt statement.

%EC Represents the base year (or other time period) in the locale’s alternative form as
defined by the era statement under the era_name category of the current era.

%Ex Represents the alternative date as defined by the era_d_fmt statement.

%EX Represents the locale’s alternative time as defined by the era_t_fmt statement.

%Ey Represents the offset from the %EC format specifier (year only) in the locale’s
alternative form.

%EY Represents the full alternative–year format.

%Od Represents the month using the locale’s alternative numeric symbols. Leading
0’s are permitted but not required.

%Oe Represents the month using the locale’s alternative numeric symbols. Leading
0’s are permitted but not required.

%OH Represents the hour in 24–hour–clock time using the locale’s alternative numeric
symbols.

%OI Represents the hour in 12–hour–clock time using the locale’s alternative numeric
symbols.

%Om Represents the month using the locale’s alternative numeric symbols.

%OM Represents the minutes using the locale’s alternative numeric symbols.

%OS Represents the seconds using the locale’s alternative numeric symbols.

%OU Represents the week number of the year using the locale’s alternative numeric
symbols. Sunday is considered the first day of the week. Use the rules
corresponding to the %U format specifier.

%Ow Represents the day of the week using the locale’s alternative numeric symbols.
Sunday is considered the first day of the week.

%OW Represents the week number of the year using the locale’s alternative numeric
symbols. Monday is considered the first day of the week. Use the rules
corresponding to the %W format specifier.

%Oy Represents the year of the century using the locale’s alternative numeric
symbols.

%Oy Represents the year (offset from %C) using the locale’s alternative numeric
symbols.

A format specification consisting of white–space characters is performed by reading input
until the first nonwhite–space character (which is not read) or up to no more characters can
be read.

A format specification consisting of an ordinary character is performed by reading the next
character from the Buf parameter. If this character differs from the character comprising the
directive, the directive fails and the differing character and any characters following it remain
unread. Case is ignored when matching Buf items, such as month or weekday names.

A series of directives composed of %n format specifiers, %t format specifiers, white–space
characters, or any combination of the three items is processed by reading up to the first
character that is not white space (which remains unread), or until no more characters can
be read.

Tm Specifies the structure to contain the output of the strptime subroutine. If a
conversion fails, the contents of the Tm structure are undefined.

strptime

1-1196 Technical Reference: Base Operating System

Return Values
If successful, the strptime subroutine returns a pointer to the character following the last
character parsed. Otherwise, a null pointer is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The scanf subroutine, strfmon subroutine, strftime subroutine, time subroutine, wcsftime
subroutine.

LC_TIME Category in the Locale Definition Source File Format in AIX Files Reference.

National Language Support Overview for Programming, Understanding Time and Monetary
Formatting Subroutines, Subroutines Overview in AIX General Programming Concepts :
Writing and Debugging Programs.

strtol

1-1197Base Operating System Runtime Services (Q-Z)

strtol, strtoul, strtoll, strtoull, atol, or atoi Subroutine

Purpose
Converts a string to a signed or unsigned long integer or long long integer.

Library
Standard C Library (libc.a)

Syntax
long strtol (String, EndPointer, Base)
const char *String;
char **EndPointer;
int Base;

unsigned long strtoul (String, EndPointer, Base)
const char *String;
char **EndPointer;
int Base;

extern long long int strtoll (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

extern long long int strtoull (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

long atol (String)
const char *String;

int atoi (String)
const char *String;

Description
The strtol subroutine returns a long integer whose value is represented by the character
string to which the String parameter points. The strtol subroutine scans the string up to the
first character that is inconsistent with the Base parameter. Leading white–space characters
are ignored, and an optional sign may precede the digits.

The strtoul subroutine provides the same functions but returns an unsigned long integer.

The strtoll and strtoull subroutines provide the same functions but return long long
integers.

The atol subroutine is equivalent to the strtol subroutine where the value of the EndPointer
parameter is a null pointer and the Base parameter is a value of 10.

The atoi subroutine is equivalent to the strtol subroutine where the value of the EndPointer
parameter is a null pointer and the Base parameter is a value of 10.

If the value of the EndPointer parameter is not null, then a pointer to the character that
ended the scan is stored in EndPointer. If an integer cannot be formed, the value of the
EndPointer parameter is set to that of the String parameter.

If the Base parameter is a value between 2 and 36, the subject sequence’s expected form is
a sequence of letters and digits representing an integer whose radix is specified by the
Base parameter. This sequence is optionally preceded by a + (positive) or – (negative) sign.
Letters from a (or A) to z (or Z) inclusive are ascribed the values 10 to 35; only letters whose
ascribed values are less than that of the Base parameter are permitted. If the Base
parameter has a value of 16, the characters 0x or 0X optionally precede the sequence of
letters and digits, following the + (positive) or – (negative) sign if present.

strtol

1-1198 Technical Reference: Base Operating System

If the value of the Base parameter is 0, the string determines the base. Thus, after an
optional leading sign, a leading 0 indicates octal conversion, and a leading 0x or 0X
indicates hexadecimal conversion. The default is to use decimal conversion.

Parameters

String Points to the character string to be converted.

EndPointer Points to a character string that contains the first character not
converted.

Base Specifies the base to use for the conversion.

Return Values
Upon successful completion, the strtol, strtoul, strtoll, and strtoull subroutines return the
converted value. If no conversion could be performed, 0 is returned, and the errno global
variable is set to indicate the error. If the correct value is outside the range of representable
values, the strtol subroutine returns a value of LONG_MAX or LONG_MIN according to the
sign of the value, while the strtoul subroutine returns a value of ULONG_MAX.

Error Codes
The strtol and strtoul subroutines return the following error codes:

ERANGE The correct value of the converted number causes underflow or
overflow.

EINVAL The value of the Base parameter is not valid, or the string to be
converted is not a valid number.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The atof, atoff, strtod, or strtof subroutine, scanf, fscanf, sscanf, or wsscanf subroutine,
setlocale subroutine, wstrtod or watof subroutine, wstrtol, watol, or watoi subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

stty

1-1199Base Operating System Runtime Services (Q-Z)

stty or gtty Subroutine

Purpose
Sets or gets terminal state.

Library
Standard C Library (libc.a)

Syntax
#include <sgtty.h>

stty (FileDescriptor, Buffer)
int FileDescriptor;
struct sgttyb *Buffer;

gtty (FileDescriptor, Buffer)
int FileDescriptor;
struct sgttyb *Buffer;

Description
These subroutines have been made obsolete by the ioctl subroutine.

The stty subroutine sets the state of the terminal associated with the FileDescriptor
parameter. The gtty subroutine retrieves the state of the terminal associated with
FileDescriptor. To set the state of a terminal, the calling process must have write permission.

Use of the stty subroutine is equivalent to the ioctl (FileDescriptor, TIOSETP, Buffer)
subroutine, while use of the gtty subroutine is equivalent to the ioctl (FileDescriptor,
TIOGETP, Buffer) subroutine.

Parameters

FileDescriptor Specifies an open file descriptor.

Buffer Specifies the buffer.

Return Values
If the stty or gtty subroutine is successful, a value of 0 is returned. Otherwise, a value of –1
is returned and the errno global variable is set to indicate the error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

swab

1-1200 Technical Reference: Base Operating System

swab Subroutine

Purpose
Copies bytes.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

void swab (From, To, NumberOfBytes)
const void *From;
void *To;
ssize_t NumberOfBytes;

Description
The swab subroutine copies the number of bytes pointed to by the NumberOfBytes
parameter from the location pointed to by the From parameter to the array pointed to by the
To parameter, exchanging adjacent even and odd bytes.

The NumberOfBytes parameter should be even and nonnegative. If the NumberOfBytes
parameter is odd and positive, the swab subroutine uses NumberOfBytes –1 instead. If the
NumberOfBytes parameter is negative, the swab subroutine does nothing.

Parameters

From Points to the location of data to be copied.

To Points to the array to which the data is to be copied.

NumberOfBytes Specifies the number of even and nonnegative bytes to be copied.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The memccpy, memchr, memcmp, memmove, or memset subroutine, string subroutine.

swapon

1-1201Base Operating System Runtime Services (Q-Z)

swapon Subroutine

Purpose
Activates paging or swapping to a designated block device.

Library
Standard C Library (libc.a)

Syntax
int swapon (PathName)
char *PathName;

Description
The swapon subroutine makes the designated block device available to the system for
allocation for paging and swapping.

The specified block device must be a logical volume on a disk device. The paging space
size is determined from the current size of the logical volume.

Parameters

PathName Specifies the full path name of the block device.

Error Codes
If an error occurs, the errno global variable is set to indicate the error:

EINTR Signal was received during processing of a request.

EINVAL Invalid argument (size of device is invalid).

ENOENT The PathName file does not exist.

ENOMEM The maximum number of paging space devices (16) are already
defined, or no memory is available.

ENOTBLK Block device required.

ENOTDIR A component of the PathName prefix is not a directory.

ENXIO No such device address.

Other errors are from calls to the device driver’s open subroutine or ioctl subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The swapqry subroutine.

The swapon command.

The Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

swapqry

1-1202 Technical Reference: Base Operating System

swapqry Subroutine

Purpose
Returns paging device status.

Library
Standard C Library (libc.a)

Syntax
#include <sys/vminfo.h>
int swapqry (PathName, Buffer)
char PathName;
struct pginfo *Buffer;

Description
The swapqry subroutine returns information to a user–designated buffer about active
paging and swap devices.

Parameters

PathName Specifies the full path name of the block device.

Buffer Points to the buffer into which the status is stored.

Return Values
The swapqry subroutine returns 0 if the PathName value is an active paging device. If the
Buffer value is not null, it also returns status information.

Error Codes
If an error occurs, the subroutine returns –1 and the errno global variable is set to indicate
the error, as follows:

EFAULT Buffer pointer is invalid.

EINVAL Invalid argument.

EINTR Signal was received while processing request.

ENODEV Device is not an active paging device.

ENOENT The PathName file does not exist.

ENOTBLK Block device required.

ENOTDIR A component of the PathName prefix is not a directory.

ENXIO No such device address.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The swapon subroutine.

The swapon command.

Paging Space Overview in AIX 4.3 System Management Guide: Operating System and
Devices.

Subroutines Overview and Understanding Paging Space Programming Requirements in AIX
General Programming Concepts : Writing and Debugging Programs.

symlink

1-1203Base Operating System Runtime Services (Q-Z)

symlink Subroutine

Purpose
Makes a symbolic link to a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int symlink (Path1, Path2)
const char *Path1;
const char *Path2;

Description
The symlink subroutine creates a symbolic link with the file named by the Path2 parameter,
which refers to the file named by the Path1 parameter.

As with a hard link (described in the link subroutine), a symbolic link allows a file to have
multiple names. The presence of a hard link guarantees the existence of a file, even after
the original name has been removed. A symbolic link provides no such assurance. In fact,
the file named by the Path1 parameter need not exist when the link is created. In addition, a
symbolic link can cross file system boundaries.

When a component of a path name refers to a symbolic link rather than a directory, the path
name contained in the symbolic link is resolved. If the path name in the symbolic link starts
with a / (slash), it is resolved relative to the root directory of the process. If the path name in
the symbolic link does not start with / (slash), it is resolved relative to the directory that
contains the symbolic link.

If the symbolic link is not the last component of the original path name, remaining
components of the original path name are resolved from the symbolic–link point.

If the last component of the path name supplied to a subroutine refers to a symbolic link, the
symbolic link path name may or may not be traversed. Most subroutines always traverse the
link; for example, the chmod, chown, link, and open subroutines. The statx subroutine
takes an argument that determines whether the link is to be traversed.

The following subroutines refer only to the symbolic link itself, rather than to the object to
which the link refers:

mkdir Fails with the EEXIST error code if the target is a symbolic link.

mknod Fails with the EEXIST error code if a symbolic link exists with the
same name as the target file as specified by the Path parameter in
the mknod and mkfifo subroutines.

open Fails with EEXIST error code when the O_CREAT and O_EXCL
flags are specified and a symbolic link exists for the path name
specified.

readlink Applies only to symbolic links.

rename Renames the symbolic link if the file to be renamed (the FromPath
parameter for the rename subroutine) is a symbolic link. If the new
name (the ToPath parameter for the rename subroutine) refers to an
existing symbolic link, the symbolic link is destroyed.

rmdir Fails with the ENOTDIR error code if the target is a symbolic link.

symlink

1-1204 Technical Reference: Base Operating System

symlink Running this subroutine causes an error if a symbolic link named by
the Path2 parameter already exists. A symbolic link can be created
that refers to another symbolic link; that is, the Path1 parameter can
refer to a symbolic link.

unlink Removes the symbolic link.

Since the mode of a symbolic link cannot be changed, its mode is ignored during the lookup
process. Any files and directories referenced by a symbolic link are checked for access
normally.

Parameters

Path1 Specifies the contents of the Path2 symbolic link. This value is a
null–terminated string representing the object to which the symbolic link
will point. Path1 cannot be the null value and cannot be more than
PATH_MAX characters long. PATH_MAX is defined in the limits.h file.

Path2 Names the symbolic link to be created.

Return Values
Upon successful completion, the symlink subroutine returns a value of 0. If the symlink
subroutine fails, a value of –1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The symlink subroutine fails if one or more of the following are true:

EEXIST Path2 already exists.

EACCES The requested operation requires writing in a directory with a mode that
denies write permission.

EROFS The requested operation requires writing in a directory on a read–only
file system.

ENOSPC The directory in which the entry for the symbolic link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

EDQUOT The directory in which the entry for the new symbolic link is being
placed cannot be extended or disk blocks could not be allocated for the
symbolic link because the user’s or group’s quota of disk blocks on the
file system containing the directory has been exhausted.

The symlink subroutine can be unsuccessful for other reasons. See ”Base Operating
System Error Codes For Services That Require Path–Name Resolution”, on page 0 for a list
of additional errors.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chown, fchown, chownx, or fchown subroutine, link subroutine, mkdir subroutine,
mknod subroutine, openx, open, or create subroutine, readlink subroutine, rename
subroutine, rmdir subroutine, statx subroutine, unlink subroutine.

The ln command.

The limits.h file.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

sync

1-1205Base Operating System Runtime Services (Q-Z)

sync Subroutine

Purpose
Updates all file systems.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

void sync ()

Description
The sync subroutine causes all information in memory that should be on disk to be written
out. The writing, although scheduled, is not necessarily complete upon return from this
subroutine. Types of information to be written include modified superblocks, i–nodes, data
blocks, and indirect blocks.

The sync subroutine should be used by programs that examine a file system, such as the
df and fsck commands.

If Network File System (NFS) is installed on your system, information in memory that relates
to remote files is scheduled to be sent to the remote node.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fsync subroutine.

The df command, sync command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

_sync_cache_range

1-1206 Technical Reference: Base Operating System

_sync_cache_range Subroutine

Purpose
Synchronizes the I cache with the D cache.

Library
Standard C Library (libc.a)

Syntax
void _sync_cache_range (eaddr, count)
caddr_t eaddr;
uint count;

Description
The _sync_cache_range subroutine synchronizes the I cache with the D cache, given an
effective address and byte count. Programs performing instruction modification can call this
routine to ensure that the most recent instructions are fetched for the address range.

Parameters

eaddr Specifies the starting effective address of the address range.

count Specifies the byte count of the address range.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The clf (Cache Line Flush) Instruction in AIX Assembler Language Reference.

sysconf

1-1207Base Operating System Runtime Services (Q-Z)

sysconf Subroutine

Purpose
Determines the current value of a specified system limit or option.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

long int sysconf (Name)
int Name;

Description
The sysconf subroutine determines the current value of certain system parameters, the
configurable system limits, or whether optional features are supported. The Name
parameter represents the system variable to be queried.

Parameters

Name Specifies which system variable setting should be returned. The valid
values for the Name parameter are defined in the limits.h, time.h, and
unistd.h files and are described below:

_SC_AIO_LISTIO_MAX Maximum number of Input and Output operations
that can be specified in a list Input and Output
call.

_SC_AIO_MAX Maximum number of outstanding asychronous
Input and Output operations.

_SC_ASYNCHRONOUS_IO Implementation supports the Asynchronous Input
and Output option.

_SC_ARG_MAX Specifies the maximum byte length of the
arguments for one of the exec functions,
including environment data.

_SC_BC_BASE_MAX Specifies the maximum number ibase and obase
variables allowed by the bc command.

_SC_BC_DIM_MAX Specifies the maximum number of elements
permitted in an array by the bc command.

_SC_BC_SCALE_MAX Specifies the maximum scale variable allowed by
the bc command.

_SC_BC_STRING_MAX Specifies the maximum length of a string constant
allowed by the bc command.

_SC_CHILD_MAX Specifies the number of simultaneous processes
per real user ID.

_SC_CLK_TCK Indicates the clock–tick increment as defined by
the CLK_TCK in the time.h file.

_SC_COLL_WEIGHTS_MAX Specifies the maximum number of weights that
can be assigned to an entry of the LC_COLLATE
keyword in the locale definition file.

_SC_DELAYTIMER_MAX Maximum number of Timer expiration overruns.

sysconf

1-1208 Technical Reference: Base Operating System

_SC_EXPR_NEST_MAX Specifies the maximum number of expressions
that can be nested within parentheses by the
expr command.

_SC_JOB_CONTROL If this symbol is defined, job control is supported.

_SC_IOV_MAX Specifies the maximum number of iovec
structures one process has available for use with
the readv and writev subroutines.

_SC_LINE_MAX Specifies the maximum byte length of a
command’s input line (either standard input or
another file) when a command is described as
processing text files. The length includes room for
the trailing new–line character.

_SC_LOGIN_NAME_MAX Maximum length of a login name.

_SC_MQ_OPEN_MAX Maximum number of open message queue
descriptors.

_SC_MQ_PRIO_MAX Maximum number of message priorities.

_SC_MEMLOCK Implementation supports the Process Memory
Locking option.

_SC_MEMLOCK_RANGE Implementation supports the Range Memory
Locking option.

_SC_MEMORY_PROTECTION Implementation supports the Memory Protection
option.

_SC_MESSAGE_PASSING Implementation supports the Message Passing
option.

_SC_NGROUPS_MAX Specifies the maximum number of simultaneous
supplementary group IDs per process.

_SC_OPEN_MAX Specifies the maximum number of files that one
process can have open at any one time.

_SC_PASS_MAX Specifies the maximum number of significant
characters in a password (not including the
terminating null character).

_SC_PASS_MAX Maximum number of significant bytes in a
password.

_SC_PAGESIZE Equivalent to _SC_PAGE_SIZE.

_SC_PAGE_SIZE Size in bytes of a page.

_SC_PRIORITIZED_IO Implementation supports the Prioritized Input and
Output option.

_SC_PRIORITY_SCHEDULING Implementation supports the Process Scheduling
option.

_SC_RE_DUP_MAX Specifies the maximum number of repeated
occurrences of a regular expression permitted
when using the \{ m, n \} interval notation.

_SC_RTSIG_MAX Maximum number of Realtime Signals reserved
for applications use.

_SC_REALTIME_SIGNALS Implementation supports the Realtime Signals
Extension option.

_SC_SAVED_IDS If this symbol is defined, each process has a
saved set–user ID and set–group ID.

_SC_SEM_NSEMS_MAX Maximum number of Semaphores per process.

_SC_SEM_VALUE_MAX Maximum value a Semaphore may have.

sysconf

1-1209Base Operating System Runtime Services (Q-Z)

_SC_SEMAPHORES Implementation supports the Semaphores option.

_SC_SHARED_MEMORY_OBJECTS Implementation supports the Shared Memory
Objects option.

_SC_SIGQUEUE_MAX Maximum number of signals a process may send
and have pending at any time.

_SC_STREAM_MAX Specifies the maximum number of streams that
one process can have open simultaneously.

_SC_SYNCHRONIZED_IO Implementation supports the Synchronised Input
and Output option.

_SC_TIMER_MAX Maximum number of per–process Timers.

_SC_TIMERS Implementation supports the Timers option.

_SC_TZNAME_MAX Specifies the maximum number of bytes
supported for the name of a time zone (not of the
TZ value).

_SC_VERSION Indicates that the version or revision number of
the POSIX standard is implemented to indicate
the 4–digit year and 2–digit month that the
standard was approved by the IEEE Standards
Board. This value is currently the long integer
198808.

_SC_XBS5_ILP32_OFF32 Implementation provides a C–language
compilation environment with 32–bit int, long,
pointer and off_t types.

_SC_XBS5_ILP32_OFFBIG Implementation provides a C–language
compilation environment with 32–bit int, long and
pointer types and an off_t type using at least 64
bits.

_SC_XBS5_LP64_OFF64 Implementation provides a C–language
compilation environment with 32–bit int and
64–bit long, pointer and off_t types.

_SC_XBS5_LPBIG_OFFBIG Implementation provides a C–language
compilation environment with an int type using at
least 32 bits and long, pointer and off_t types
using at least 64 bits.

_SC_XOPEN_CRYPT Indicates that the system supports the X/Open
Encryption Feature Group.

_SC_XOPEN_LEGACY The implementation supports the Legacy Feature
Group.

_SC_XOPEN_REALTIME The implementation supports the X/Open
Realtime Feature Group.

_SC_XOPEN_REALTIME_THREADS The implementation supports the X/Open
Realtime Threads Feature Group.

_SC_XOPEN_ENH_I18N Indicates that the system supports the X/Open
Enhanced Internationalization Feature Group.

_SC_XOPEN_SHM Indicates that the system supports the X/Open
Shared Memory Feature Group.

_SC_XOPEN_VERSION Indicates that the version or revision number of
the X/Open standard is implemented.

_SC_XOPEN_XCU_VERSION Specifies the value describing the current version
of the XCU specification.

sysconf

1-1210 Technical Reference: Base Operating System

_SC_ATEXIT_MAX Specifies the maximum number of register
functions for the atexit subroutine.

_SC_PAGE_SIZE Specifies page–size granularity of memory.

_SC_AES_OS_VERSION Indicates OSF AES version.

_SC_2_VERSION Specifies the value describing the current version
of POSIX.2.

_SC_2_C_BIND Indicates that the system supports the C
Language binding option.

_SC_2_C_CHAR_TERM Indicates that the system supports at least one
terminal type.

_SC_2_C_DEV Indicates that the system supports the C
Language Development Utilities Option.

_SC_2_C_VERSION Specifies the value describing the current version
of POSIX.2 with the C Language binding.

_SC_2_FORT_DEV Indicates that the system supports the FORTRAN
Development Utilities Option.

_SC_2_FORT_RUN Indicates that the system supports the FORTRAN
Development Utilities Option.

_SC_2_LOCALEDEF Indicates that the system supports the creation of
locales.

_SC_2_SW_DEV Indicates that the system supports the Software
Development Utilities Option.

_SC_2_UPE Indicates that the system supports the User
Portability Utilities Option.

_SC_NPROCESSORS_CONF Number of processors configured.

_SC_NPROCESSORS_ONLN Number of processors online.

_SC_THREAD_DATAKEYS_MAX Maximum number of data keys that can be
defined in a process.

_SC_THREAD_DESTRUCTOR_ITERATIONS Maximum number attempts made to
destroy a thread’s thread–specific data.

_SC_THREAD_KEYS_MAX Maximum number of data keys per
process.

_SC_THREAD_STACK_MIN Minimum value for the threads stack size.

_SC_THREAD_THREADS_MAX Maximum number of threads within a
process.

_SC_REENTRANT_FUNCTIONS System supports reentrant functions
(reentrant functions must be used in
multi–threaded applications).

_SC_THREADS System supports POSIX threads.

_SC_THREAD_ATTR_STACKADDR System supports the stack address
option for POSIX threads (stackaddr
attribute of threads).

_SC_THREAD_ATTR_STACKSIZE System supports the stack size option for
POSIX threads (stacksize attribute of
threads).

_SC_THREAD_PRIORITY_SCHEDULING System supports the priority scheduling
for POSIX threads.

sysconf

1-1211Base Operating System Runtime Services (Q-Z)

_SC_THREAD_PRIO_INHERIT System supports the priority inheritance
protocol for POSIX threads (priority
inversion protocol for mutexes).

_SC_THREAD_PRIO_PROTECT System supports the priority ceiling
protocol for POSIX threads (priority
inversion protocol for mutexes).

_SC_THREAD_PROCESS_SHARED System supports the process sharing
option for POSIX threads (pshared
attribute of mutexes and conditions).

_SC_TTY_NAME_MAX Maximum length of a terminal device
name.

Note: The _SYNCHRONIZED_IO, _SC_FSYNC, and SC_MAPPED_FILES commands
apply to AIX Version 4.3 and later releases.

_SC_SYNCHRONIZED_IO Implementation supports the
Synchronized Input and Output option.

_SC_FSYNC Implementation supports the File
Sychronization option.

_SC_MAPPED_FILES Implementation supports the Memory
Mapped Files option.

The values returned for the variables supported by the system do not change during the
lifetime of the process making the call.

Return Values
If the sysconf subroutine is successful, the current value of the system variable is returned.
The returned value cannot be more restrictive than the corresponding value described to the
application by the limits.h, time.h, or unistd.h file at compile time. The returned value does
not change during the lifetime of the calling process. If the sysconf subroutine is
unsuccessful, a value of –1 is returned.

Error Codes
If the Name parameter is invalid, a value of –1 is returned and the errno global variable is
set to indicate the error. If the Name parameter is valid but is a variable not supported by the
system, a value of –1 is returned, and the errno global variable is set to a value of EINVAL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

File

/usr/include/limits.h Contains system–defined limits.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The confstr subroutine, pathconf subroutine.

The bc command, expr command.

sysconfig

1-1212 Technical Reference: Base Operating System

sysconfig Subroutine

Purpose
Provides a service for controlling system/kernel configuration.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/sysconfig.h>

int sysconfig (Cmd, Parmp, Parmlen)
int Cmd;
void *Parmp;
int Parmlen;

Description
The sysconfig subroutine is used to customize the operating system. This subroutine
provides a means of loading, unloading, and configuring kernel extensions. These kernel
extensions can be additional kernel services, system calls, device drivers, or file systems.
The sysconfig subroutine also provides the ability to read and set system run–time
operating parameters.

Use of the sysconfig subroutine requires appropriate privilege.

The particular operation that the sysconfig subroutine provides is defined by the value of
the Cmd parameter. The following operations are defined:

SYS_KLOAD Loads a kernel extension object file into kernel memory.

SYS_SINGLELOAD Loads a kernel extension object file only if it is not already loaded.

SYS_QUERYLOAD Determines if a specified kernel object file is loaded.

SYS_KULOAD Unloads a previously loaded kernel object file.

SYS_QDVSW Checks the status of a device switch entry in the device switch
table.

SYS_CFGDD Calls the specified device driver configuration routine (module entry
point).

SYS_CFGKMOD Calls the specified module at its module entry point for
configuration purposes.

SYS_GETPARMS Returns a structure containing the current values of run–time
system parameters found in the var structure.

SYS_SETPARMS Sets run–time system parameters from a caller–provided structure.

In addition, the SYS_64BIT flag can be bitwise or’ed with the Cmd parameter (if the Cmd
parameter is SYS_KLOAD or SYS_SINGLELOAD). For kernel extensions, this indicates
that the kernel extension does not export 64–bit system calls, but that all 32–bit system calls
also work for 64–bit applications. For device drivers, this indicates that the device driver can
be used by 64–bit applications.

”Loader Symbol Binding Support”, on page 1-1223 explains the symbol binding support
provided when loading kernel object files.

sysconfig

1-1213Base Operating System Runtime Services (Q-Z)

Parameters

Cmd Specifies the function that the sysconfig subroutine is to perform.

Parmp Specifies a user–provided structure.

Parmlen Specifies the length of the user–provided structure indicated by the
Parmp parameter.

Return Values
These sysconfig operations return a value of 0 upon successful completion of the
subroutine. Otherwise, a value of –1 is returned and the errno global variable is set to
indicate the error.

Any sysconfig operation requiring a structure from the caller fails if the structure is not
entirely within memory addressable by the calling process. A return value of –1 is passed
back and the errno global variable is set to EFAULT.

Related Information
The ddconfig device driver entry point.

Device Driver Kernel Extension Overview, Device Configuration Subsystem Programming
Introduction, Programming in the Kernel Environment Overview, Understanding Kernel
Extension Binding, Understanding the Device Switch Table in AIX Kernel Extensions and
Device Support Programming Concepts.

srcsrqt

1-1214 Technical Reference: Base Operating System

srcsrqt Subroutine

Purpose
Sends a request to a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

srcsrqt(Host,SubsystemName,SubsystemPID,RequestLength,
 SubsystemRequest,ReplyLength,ReplyBuffer,StartItAlso,Continued)

char *Host, *SubsystemName;

char *SubsystemRequest, *ReplyBuffer;

int SubsystemPID, StartItAlso, * Continued;

short RequestLength, *ReplyLength;

Description
The srcsrqt subroutine sends a request to a subsystem and returns one or more replies to
the caller. The format of the request and the reply is determined by the caller and the
subsystem.

Note: The srcsrqt subroutine creates its own socket to send a request to the
subsystem. The socket that this function opens remains open until an error or an end
packet is received.

Two types of continuation are returned by the srcsrqt subroutine:

No continuation ReplyBuffer–>srchdr.continued is set to the END constant.

Reply continuation ReplyBuffer–>srchdr.continued is not set to the END constant,
but to a positive value agreed upon by the calling process and the
subsystem. The packet is returned to the caller.

Parameters

SubsystemPID The process ID of the subsystem.

Host Specifies the foreign host on which this subsystem request is to
be sent. If the host is null, the request is sent to the subsystem
on the local host.

SubsystemName Specifies the name of the subsystem to which this request is to
be sent. You must specify a SubsystemName if you do not
specify a SubsystemPID.

RequestLength Specifies the length, in bytes, of the request to be sent to the
subsystem.

SubsystemRequest Points to the subsystem request packet.

ReplyLength Specifies the maximum length, in bytes, of the reply to be
received from the subsystem. On return from the srcsrqt
subroutine, the ReplyLength parameter is set to the actual
length of the subsystem reply packet.

ReplyBuffer Points to a buffer for the receipt of the reply packet from the
subsystem.

srcsrqt

1-1215Base Operating System Runtime Services (Q-Z)

StartItAlso Specifies whether the subsystem should be started if it is
nonactive. When nonzero, the System Resource Controller
(SRC) attempts to start a nonactive subsystem, and then
passes the request to the subsystem.

Continued Specifies whether this call to the srcsrqt subroutine is a
continuation of a previous request. If the Continued parameter
is set to NEWREQUEST, a request for it is sent to the
subsystem and the subsystem is notified that another response
is expected. The calling process should never set Continued to
any value other than NEWREQUEST. The last response from
the subsystem will set Continued to END.

Return Values
If the srcsrqt subroutine is successful, the value SRC_OK is returned.

Error Codes
The srcsrqt subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem
because of a socket failure.

SRC_CONT The subsystem uses signals. The request cannot
complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv
file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it
needs.

SRC_NOCONTINUE The Continued parameter was not set to
NEWREQUEST, and no continuation is currently
active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_REQLEN2BIG The RequestLength is greater than the maximum
2000 bytes.

SRC_SOCK There is a problem with SRC socket
communications.

SRC_STPG The request was not passed to the subsystem. The
subsystem is stopping.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples
1. To request long subsystem status, enter:

srcsrqt

1-1216 Technical Reference: Base Operating System

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=STATUS;

subreq.object=SUBSYSTEM;

subreq.parm1=LONGSTAT;

strcpy(subreq.objname,”srctest”);

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt(”MaryC”, ”srctest”, 0, reqlen, &subreq, &replen,

&statbuf, SRC_NO, &cont);

 This entry gets long status of the subsystem srctest on the MaryC machine. The
subsystem keeps sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver, enter:

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt(””, ””, 987, reqlen, &subreq, &replen, &statbuf,

SRC_NO, &cont);

 This entry starts the subserver with the code point of 1234, but only if the subsystem is
already active.

3. To start a subserver and a subsystem, enter:

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

{

 struct srchdr srchdr;

 struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt(””, ””, 987, reqlen, &subreq, &replen, &statbuf, SRC_Y

ES, &cont);

srcsrqt

1-1217Base Operating System Runtime Services (Q-Z)

This entry starts the subserver with the code point of 1234. If the subsystem to which
this subserver belongs is not active, the subsystem is started.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcstat subroutine,
srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System
Resource Controller (SRC) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

SYS_CFGDD

1-1218 Technical Reference: Base Operating System

SYS_CFGDD sysconfig Operation

Purpose
Calls a previously loaded device driver at its module entry point.

Description
The SYS_CFGDD sysconfig operation calls a previously loaded device driver at its module
entry point. The device driver’s module entry point, by convention, is its ddconfig entry
point. The SYS_CFGDD operation is typically invoked by device configure or unconfigure
methods to initialize or terminate a device driver, or to request device vital product data.

The sysconfig subroutine puts no restrictions on the command code passed to the device
driver. This allows the device driver’s ddconfig entry point to provide additional services, if
desired.

The parmp parameter on the SYS_CFGDD operation points to a cfg_dd structure defined
in the sys/sysconfig.h file. The parmlen parameter on the sysconfig system call should be
set to the size of this structure.

If the kmid variable in the cfg_dd structure is 0, the desired device driver is assumed to be
already installed in the device switch table. The major portion of the device number (passed
in the devno field in the cfg_dd structure) is used as an index into the device switch table.
The device switch table entry indexed by this devno field contains the device driver’s
ddconfig entry point to be called.

If the kmid variable is not 0, it contains the module ID to use in calling the device driver. A
uio structure is used to pass the address and length of the device–dependent structure,
specified by the cfg_dd.ddsptr and cfg_dd.ddslen fields, to the device driver being
called.

The ddconfig device driver entry point provides information on how to define the ddconfig
subroutine.

The device driver to be called is responsible for using the appropriate routines to copy the
device–dependent structure (DDS) from user to kernel space.

Return Values
If the SYS_CFGDD operation successfully calls the specified device driver, the return code
from the ddconfig subroutine determines the value returned by this subroutine. If the
ddconfig routine’s return code is 0, then the value returned by the sysconfig subroutine is
0. Otherwise the value returned is a –1, and the errno global variable is set to the return
code provided by the device driver ddconfig subroutine.

Error Codes
Errors detected by the SYS_CFGDD operation result in the following values for the errno
global variable:

EACESS The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
system call. This error is also returned if an I/O error occurred when
accessing data in this area.

EINVAL Invalid module ID.

ENODEV Module ID specified by the cfg_dd.kmid field was 0, and an invalid or
undefined devno value was specified.

SYS_CFGDD

1-1219Base Operating System Runtime Services (Q-Z)

Related Information
The sysconfig subroutine.

The ddconfig device driver entry point.

The uio structure.

Device Configuration Subsystem Programming Introduction, Device Dependent Structure
(DDS) Overview, Device Driver Kernel Extension Overview, Programming in the Kernel
Environment Overview, Understanding Kernel Extension Binding, Understanding the Device
Switch Table in AIX Kernel Extensions and Device Support Programming Concepts.

SYS_CFGKMOD

1-1220 Technical Reference: Base Operating System

SYS_CFGKMOD sysconfig Operation

Purpose
Invokes a previously loaded kernel object file at its module entry point.

Description
The SYS_CFGKMOD sysconfig operation invokes a previously loaded kernel object file at
its module entry point, typically for initialization or termination functions. The SYS_CFGDD
operation performs a similar function for device drivers.

The parmp parameter on the sysconfig subroutine points to a cfg_kmod structure, which
is defined in the sys/sysconfig.h file. The kmid field in this structure specifies the kernel
module ID of the module to invoke. This value is returned when using the SYS_KLOAD or
SYS_SINGLELOAD operation to load the object file.

The cmd field in the cfg_kmod structure is a module–dependent parameter specifying the
action that the routine at the module’s entry point should perform. This is typically used for
initialization and termination commands after loading and prior to unloading the object file.

The mdiptr field in the cfg_kmod structure points to a module–dependent structure whose
size is specified by the mdilen field. This field is used to provide module–dependent
information to the module to be called. If no such information is needed, the mdiptr field
can be null.

If the mdiptr field is not null, then the SYS_CFGKMOD operation builds a uio structure
describing the address and length of the module–dependent information in the caller’s
address space. The mdiptr and mdilen fields are used to fill in the fields of this uio
structure. The module is then called at its module entry point with the cmd parameter and a
pointer to the uio structure. If there is no module–dependent information to be provided, the
uiop parameter passed to the module’s entry point is set to null.

The module’s entry point should be defined as follows:

int module_entry(cmd, uiop)
int cmd;
struct uio *uiop;

The definition of the module–dependent information and its length is specific to the module
being configured. The called module is responsible for using the appropriate routines to
copy the module–dependent information from user to kernel space.

Return Values
If the kernel module to be invoked is successfully called, its return code determines the
value that is returned by the SYS_CFGKMOD operation. If the called module’s return code
is 0, then the value returned by the sysconfig subroutine is 0. Otherwise the value returned
is –1 and the errno global variable is set to the called module’s return code.

Error Codes
Errors detected by the SYS_CFGKMOD operation result in the following values for the
errno global variable:

EINVAL Invalid module ID.

EACESS The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
system call. This error is also returned if an I/O error occurred when
accessing data in this area.

SYS_CFGKMOD

1-1221Base Operating System Runtime Services (Q-Z)

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig subroutine.

The SYS_CFGDD sysconfig operation, SYS_KLOAD sysconfig operation,
SYS_SINGLELOAD sysconfig operation.

The uio structure.

Device Driver Introduction in AIX Kernel Extensions and Device Support Programming
Concepts.

Device Driver Kernel Extension Overview in AIX Version 4 Kernel Extensions and Device
Support Programming Concepts

Device Configuration Subsystem Programming Introduction in AIX Kernel Extensions and
Device Support Programming Concepts

Programming in the Kernel Environment Overview in AIX Kernel Extensions and Device
Support Programming Concepts

Understanding Kernel Extension Binding in AIX Kernel Extensions and Device Support
Programming Concepts

SYS_GETPARMS

1-1222 Technical Reference: Base Operating System

SYS_GETPARMS sysconfig Operation

Purpose
Copies the system parameter structure into a user–specified buffer.

Description
The SYS_GETPARMS sysconfig operation copies the system parameter var structure into
a user–allocated buffer. This structure may be used for informational purposes alone or prior
to setting specific system parameters.

In order to set system parameters, the required fields in the var structure must be modified,
and then the SYS_SETPARMS operation can be called to change the system run–time
operating parameters to the desired state.

The parmp parameter on the sysconfig subroutine points to a buffer that is to contain all or
part of the var structure defined in the sys/var.h file. The fields in the var_hdr part of the
var structure are used for parameter update control.

The parmlen parameter on the system call should be set to the length of the var structure or
to the number of bytes of the structure that is desired. The complete definition of the system
parameters structure can be found in the sys/var.h file.

Return Values
The SYS_GETPARMS operation returns a value of –1 if an error occurs and the errno
global variable is set to one of the following error codes.

Error Codes

EACCES The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
subroutine. This error is also returned if an I/O error occurred when
accessing data in this area.

File

sys/var.h Contains structure definitions.

Related Information
The sysconfig subroutine.

The SYS_SETPARMS sysconfig operation.

Programming in the Kernel Environment Overview in AIX Kernel Extensions and Device
Support Programming Concepts.

SYS_KLOAD

1-1223Base Operating System Runtime Services (Q-Z)

SYS_KLOAD sysconfig Operation

Purpose
Loads a kernel extension into the kernel.

Description
The SYS_KLOAD sysconfig operation is used to load a kernel extension object file
specified by a path name into the kernel. A kernel module ID for that instance of the module
is returned. The SYS_KLOAD operation loads a new copy of the object file into the kernel
even though one or more copies of the specified object file may have already been loaded
into the kernel. The returned module ID can then be used for any of these three functions:

• Subsequent invocation of the module’s entry point (using the SYS_CFGKMOD operation)

• Invocation of a device driver’s ddconfig subroutine (using the SYS_CFGDD operation)

• Unloading the kernel module (using the SYS_KULOAD operation).

The parmp parameter on the sysconfig subroutine must point to a cfg_load structure,
(defined in the sys/sysconfig.h file), with the path field specifying the path name for a
valid kernel object file. The parmlen parameter should be set to the size of the cfg_load
structure.

Note: A separate sysconfig operation, the SYS_SINGLELOAD operation, also loads
kernel extensions. This operation, however, only loads the requested object file if not
already loaded.

Loader Symbol Binding Support
The following information describes the symbol binding support provided when loading
kernel object files.

Importing Symbols
Symbols imported from the kernel name space are resolved with symbols that exist in the
kernel name space at the time of the load. (Symbols are imported from the kernel name
space by specifying the #!/unix character string as the first field in an import list at
link–edit time.)

Kernel modules can also import symbols from other kernel object files. These other kernel
object files are loaded along with the specified object file if they are required to resolve the
imported symbols.

Finding Directory Locations for Unqualified File Names

If the module header contains an unqualified base file name for the symbol (that is, no /
[slash] characters in the name), a libpath search string is used to find the location of the
shared object file required to resolve imported symbols. This libpath search string can be
taken from one of two places. If the libpath field in the cfg_load structure is not null, then
it points to a character string specifying the libpath to be used. However, if the libpath
field is null, then the libpath is taken from the module header of the object file specified by
the path field in the same (cfg_load) structure.

The libpath specification found in object files loaded in order to resolve imported symbols is
not used.

The kernel loader service does not support deferred symbol resolution. The load of the
kernel object file is terminated with an error if any imported symbols cannot be resolved.

Exporting Symbols
Any symbols exported by the specified kernel object file are added to the kernel name
space. This makes these symbols available to other subsequently loaded kernel object files.

SYS_KLOAD

1-1224 Technical Reference: Base Operating System

Any symbols specified with the SYSCALL keyword in the export list at link–edit time are
added to the system call table at load time. These symbols are then available to application
programs as a system call.

Any symbols exported by the specified kernel object file are added to the kernel name
space. This makes these symbols available to other subsequently loaded kernel object files.
Any symbols specified with the SYSCALL keyword in the export list at link–edit time are
added to the system call table at load time. These symbols are then available to application
programs as a system call. Symbols can be added to the 32–bit and 64–bit system call
tables separately by using the syscall32 and syscall64 keywords. Symbols can be added
to both system call tables by using the syscall3264 keyword. A kernel extension that just
exports 32–bit system calls can have all its system calls exported to 64–bit as well by
passing the SYS_64BIT flag or’ed with the SYS_KLOAD command to sysconfig.

Kernel object files loaded on behalf of the specified kernel object file to resolve imported
symbols do not have their exported symbols added to the kernel name space.

These object files are considered private since they do not export symbols to the global
kernel name space. For these types of object files, a new copy of the object file is loaded on
each SYS_KLOAD operation of a kernel extension that imports symbols from the private
object file. In order for a kernel extension to add its exported symbols to the kernel name
space, it must be explicitly loaded with the SYS_KLOAD operation before any other object
files using the symbols are loaded. For kernel extensions of this type (those exporting
symbols to the kernel name space), typically only one copy of the object file should ever be
loaded.

Return Values
If the object file is loaded without error, the module ID is returned in the kmid variable within
the cfg_load structure and the subroutine returns a value of 0.

Error Codes
On error, the subroutine returns a value of –1 and the errno global variable is set to one of
the following values:

EACESS One of the following reasons applies:

• The calling process does not have the required privilege.

• An object module to be loaded is not an ordinary file.

• The mode of the object module file denies read–only permission.

EFAULT The calling process does not have sufficient authority to access the data area
described by the parmp and parmlen parameters provided on the system call. This
error is also returned if an I/O error occurred when accessing data in this area.

ENOEXEC The program file has the appropriate access permission, but has an invalid XCOFF
object file indication in its header. The SYS_KLOAD operation only supports loading
of XCOFF object files. This error is also returned if the loader is unable to resolve an
imported symbol.

EINVAL The program file has a valid XCOFF indicator in its header, but the header is
damaged or is incorrect for the machine on which the file is to be run.

ENOMEM The load requires more kernel memory than is allowed by the system–imposed
maximum.

ETXTBSY The object file is currently open for writing by some process.

File

sys/sysconfig.h Contains structure definitions.

SYS_KLOAD

1-1225Base Operating System Runtime Services (Q-Z)

Related Information
The sysconfig subroutine.

The SYS_SINGLELOAD sysconfig operation, SYS_KULOAD sysconfig operation,
SYS_CFGDD sysconfig operation, SYS_CFGKMOD sysconfig operation.

The ddconfig device driver entry point.

Device Configuration Subsystem Programming Introduction in AIX Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment Overview in AIX Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding in AIX Kernel Extensions and Device Support
Programming Concepts.

SYS_KULOAD

1-1226 Technical Reference: Base Operating System

SYS_KULOAD sysconfig Operation

Purpose
Unloads a loaded kernel object file and any imported kernel object files that were loaded
with it.

Description
The SYS_KULOAD sysconfig operation unloads a previously loaded kernel file and any
imported kernel object files that were automatically loaded with it. It does this by
decrementing the load and use counts of the specified object file and any object file having
symbols imported by the specified object file.

The parmp parameter on the sysconfig subroutine should point to a cfg_load structure, as
described for the SYS_KLOAD operation. The kmid field should specify the kernel module
ID that was returned when the object file was loaded by the SYS_KLOAD or
SYS_SINGLELOAD operation. The path and libpath fields are not used for this
command and can be set to null. The parmlen parameter should be set to the size of the
cfg_load structure.

Upon successful completion, the specified object file (and any other object files containing
symbols that the specified object file imports) will have their load and use counts
decremented. If there are no users of any of the module’s exports and its load count is 0,
then the object file is immediately unloaded.

However, if there are users of this module (that is, modules bound to this module’s exported
symbols), the specified module is not unloaded. Instead, it is unloaded on some subsequent
unload request, when its use and load counts have gone to 0. The specified module is not in
fact unloaded until all current users have been unloaded.

Notes:

1. Care must be taken to ensure that a subroutine has freed all of its system resources
before being unloaded. For example, a device driver is typically prepared for unloading
by using the SYS_CFGDD operation and specifying termination.

2. If the use count is not 0, and you cannot force it to 0, the only way to terminate operation
of the kernel extension is to reboot the machine.

”Loader Symbol Binding Support”, on page 1-1223 explains the symbol binding support
provided when loading kernel object files.

Return Values
If the unload operation is successful or the specified object file load count is successfully
decremented, a value of 0 is returned.

Error Codes
On error, the specified file and any imported files are not unloaded, nor are their load and
use counts decremented. A value of –1 is returned and the errno global variable is set to
one of the following:

EACESS The calling process does not have the required privilege.

EINVAL Invalid module ID or the specified module is no longer loaded or already
has a load count of 0.

EFAULT The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided to the
subroutine. This error is also returned if an I/O error occurred when
accessing data in this area.

SYS_KULOAD

1-1227Base Operating System Runtime Services (Q-Z)

Related Information
The SYS_CFGDD sysconfig operation, SYS_KLOAD sysconfig operation,
SYS_SINGLELOAD sysconfig operation.

The sysconfig subroutine.

Device Driver Kernel Extension Overview in AIX Kernel Extensions and Device Support
Programming Concepts.

Device Configuration Subsystem Programming Introduction in AIX Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment Overview in AIX Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding in AIX Kernel Extensions and Device Support
Programming Concepts.

SYS_QDVSW

1-1228 Technical Reference: Base Operating System

SYS_QDVSW sysconfig Operation

Purpose
Checks the status of a device switch entry in the device switch table.

Description
The SYS_QDVSW sysconfig operation checks the status of a device switch entry in the
device switch table.

The parmp parameter on the sysconfig subroutine points to a qry_devsw structure defined
in the sys/sysconfig.h file. The parmlen parameter on the subroutine should be set to the
length of the qry_devsw structure.

The qry_devsw field in the qry_devsw structure is modified to reflect the status of the
device switch entry specified by the qry_devsw field. (Only the major portion of the devno
field is relevant.) The following flags can be returned in the status field:

DSW_UNDEFINED The device switch entry is not defined if this flag has a value of
0 on return.

DSW_DEFINED The device switch entry is defined.

DSW_CREAD The device driver in this device switch entry provides a routine
for character reads or raw input. This flag is set when the device
driver provides a ddread entry point.

DSW_CWRITE The device driver in this device switch entry provides a routine
for character writes or raw output. This flag is set when the
device driver provides a ddwrite entry point.

DSW_BLOCK The device switch entry is defined by a block device driver. This
flag is set when the device driver provides a ddstrategy entry
point.

DSW_MPX The device switch entry is defined by a multiplexed device
driver. This flag is set when the device driver provides a ddmpx
entry point.

DSW_SELECT The device driver in this device switch entry provides a routine
for handling the select or poll subroutines. This flag is set when
the device driver provides a ddselect entry point.

DSW_DUMP The device driver defined by this device switch entry provides
the capability to support one or more of its devices as targets for
a kernel dump. This flag is set when the device driver has
provided a dddump entry point.

DSW_CONSOLE The device switch entry is defined by the console device driver.

DSW_TCPATH The device driver in this device switch entry supports devices
that are considered to be in the trusted computing path and
provides support for the revoke and frevoke subroutines. This
flag is set when the device driver provides a ddrevoke entry
point.

DSW_OPENED The device switch entry is defined and the device has
outstanding opens. This flag is set when the device driver has at
least one outstanding open.

The DSW_UNDEFINED condition is indicated when the device switch entry has not been
defined or has been defined and subsequently deleted. Multiple status flags may be set for
other conditions of the device switch entry.

SYS_QDVSW

1-1229Base Operating System Runtime Services (Q-Z)

Return Values
If no error is detected, this operation returns with a value of 0. If an error is detected, the
return value is set to a value of –1.

Error Codes
When an error is dected, the errno global variable is also set to one of the following values:

EACESS The calling process does not have the required privilege.

EINVAL Device number exceeds the maximum allowed by the kernel.

EFAULT The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
system call. This error is also returned if an I/O error occurred when
accessing data in this area.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig subroutine.

The ddread device driver entry point, ddwrite device driver entry point, ddstrategy device
driver entry point, ddmpx device driver entry point, ddselect device driver entry point,
dddump device driver entry point, ddrevoke device driver entry point.

The console special file.

Understanding the Device Switch Table in AIX Kernel Extensions and Device Support
Programming Concepts.

Device Driver Kernel Extension Overview in AIX Kernel Extensions and Device Support
Programming Concepts.

Device Configuration Subsystem Programming Introduction in AIX Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment Overview in AIX Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding in AIX Kernel Extensions and Device Support
Programming Concepts.

SYS_QUERYLOAD

1-1230 Technical Reference: Base Operating System

SYS_QUERYLOAD sysconfig Operation

Purpose
Determines if a kernel object file has already been loaded.

Description
The SYS_QUERYLOAD sysconfig operation performs a query operation to determine if a
given object file has been loaded. This object file is specified by the path field in the
cfg_load structure passed in with the parmp parameter. This operation utilizes the same
cfg_load structure that is specified for the SYS_KLOAD operation.

If the specified object file is not loaded, the kmid field in the cfg_load structure is set to a
value of 0 on return. Otherwise, the kernel module ID of the module is returned in the kmid
field. If multiple instances of the module have been loaded into the kernel, the module ID of
the one most recently loaded is returned.

The libpath field in the cfg_load structure is not used for this option.

Note: A path–name comparison is done to determine if the specified object file has been
loaded. However, this operation will erroneously return a not loaded condition if the path
name to the object file is expressed differently than it was on a previous load request.

”Loader Symbol Binding Support”, on page 1-1223 explains the symbol binding support
provided when loading kernel object files.

Return Values
If the specified object file is found, the module ID is returned in the kmid variable within the
cfg_load structure and the subroutine returns a 0. If the specified file is not found, a kmid
variable of 0 is returned with a return code of 0.

Error Codes
On error, the subroutine returns a –1 and the errno global variable is set to one of the
following values:

EACCES The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
subroutine. This error is also returned if an I/O error occurred when
accessing data in this area.

EFAULT The path parameter points to a location outside of the allocated address
space of the process.

EIO An I/O error occurred during the operation.

Related Information
The sysconfig subroutine.

The SYS_SINGLELOAD sysconfig operation, SYS_KLOAD sysconfig operation.

Programming in the Kernel Environment Overview in AIX Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding Overview in AIX Kernel Extensions and Device
Support Programming Concepts.

SYS_SETPARMS

1-1231Base Operating System Runtime Services (Q-Z)

SYS_SETPARMS sysconfig Operation

Purpose
Sets the kernel run–time tunable parameters.

Description
The SYS_SETPARMS sysconfig operation sets the current system parameters from a copy
of the system parameter var structure provided by the caller. Only the run–time tunable
parameters in the var structure can be set by this subroutine.

If the var_vers and var_gen values in the caller–provided structure do not match the
var_vers and var_gen values in the current system var structure, no parameters are
modified and an error is returned. The var_vers, var_gen, and var_size fields in the
structure should not be altered. The var_vers value is assigned by the kernel and is used
to insure that the correct version of the structure is being used. The var_gen value is a
generation number having a new value for each read of the structure. This provides
consistency between the data read by the SYS_GETPARMS operation and the data written
by the SYS_SETPARMS operation.

The parmp parameter on the sysconfig subroutine points to a buffer that contains all or part
of the var structure as defined in the sys/var.h file.

The parmlen parameter on the subroutine should be set either to the length of the var
structure or to the size of the structure containing the parameters to be modified. The
number of system parameters modified by this operation is determined either by the
parmlen parameter value or by the var_size field in the caller–provided var structure.
(The smaller of the two values is used.)

The structure provided by the caller must contain at least the header fields of the var
structure. Otherwise, an error will be returned. Partial modification of a parameter in the var
structure can occur if the caller’s data area does not contain enough data to end on a field
boundary. It is up to the caller to ensure that this does not happen.

Return Values
The SYS_SETPARMS sysconfig operation returns a value of –1 if an error occurred.

Error Codes
When an error occurs, the errno global variable is set to one of the following values:

EACESS The calling process does not have the required privilege.

EINVAL One of the following error situations exists:

• The var_vers version number of the provided structure does not
match the version number of the current var structure.

• The structure provided by the caller does not contain enough data to
specify the header fields within the var structure.

• One of the specified variable values is invalid or not allowed. On the
return from the subroutine, the var_vers field in the caller–provided
buffer contains the byte offset of the first variable in the structure that
was detected in error.

SYS_SETPARMS

1-1232 Technical Reference: Base Operating System

EAGAIN The var_gen generation number in the structure provided does not
match the current generation number in the kernel. This occurs if
consistency is lost between reads and writes of this structure. The caller
should repeat the read, modify, and write operations on the structure.

EFAULT The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided to the
subroutine. This error is also returned if an I/O error occurred when
accessing data in this area.

File

sys/var.h Contains structure definitions.

Related Information
The sysconfig subroutine.

The SYS_GETPARMS sysconfig operation.

Programming in the Kernel Environment Overview in AIX Kernel Extensions and Device
Support Programming Concepts.

SYS_SINGLELOAD

1-1233Base Operating System Runtime Services (Q-Z)

SYS_SINGLELOAD sysconfig Operation

Purpose
Loads a kernel extension module if it is not already loaded.

Description
The SYS_SINGLELOAD sysconfig operation is identical to the SYS_KLOAD operation,
except that the SYS_SINGLELOAD operation loads the object file only if an object file with
the same path name has not already been loaded into the kernel.

If an object file with the same path name has already been loaded, the module ID for that
object file is returned in the kmid field and its load count incremented. If the object file is not
loaded, this operation performs the load request exactly as defined for the SYS_KLOAD
operation.

This option is useful in supporting global kernel routines where only one copy of the routine
and its data can be present. Typically routines that export symbols to be added to the kernel
name space are of this type.

Note: A path name comparison is done to determine if the same object file has already
been loaded. However, this function will erroneously load a new copy of the object file
into the kernel if the path name to the object file is expressed differently than it was on a
previous load request.

”Loader Symbol Binding Support”, on page 1-1223 explains the symbol binding support
provided when loading kernel object files.

Return Values
The SYS_SINGLELOAD operation returns the same set of error codes that the
SYS_KLOAD operation returns.

Related Information
The sysconfig subroutine.

The SYS_KLOAD sysconfig operation.

Programming in the Kernel Environment Overview, and Understanding Kernel Extension
Binding in AIX Kernel Extensions and Device Support Programming Concepts.

syslog

1-1234 Technical Reference: Base Operating System

syslog, openlog, closelog, or setlogmask Subroutine

Purpose
Controls the system log.

Library
Standard C Library (libc.a)

Syntax#include <syslog.h>
void openlog (ID, LogOption, Facility)
const char *ID;
int LogOption, Facility;

void syslog (Priority, Value,...)
int Priority;
const char *Value;

int closelog ()

int setlogmask(MaskPriority)
int MaskPriority;

void bsdlog (Priority, Value,...)
int Priority;
const char *Value;

Description
Attention: Do not use the syslog, openlog, closelog, or setlogmask subroutine in a
multithreaded environment. See the multithread alternatives in the syslog_r, openlog_r,
closelog_r, or setlogmask_r subroutine article. The syslog subroutine is not
threadsafe; for threadsafe programs the syslog_r subroutine should be used instead.

The syslog subroutine writes messages onto the system log maintained by the syslogd
command.

The message is similar to the printf fmt string, with the difference that %m is replaced by
the current error message obtained from the errno global variable. A trailing new–line can
be added to the message if needed.

Messages are read by the syslogd command and written to the system console or log file,
or forwarded to the syslogd command on the appropriate host.

If special processing is required, the openlog subroutine can be used to initialize the log
file.

Messages are tagged with codes indicating the type of Priority for each. A Priority is
encoded as a Facility, which describes the part of the system generating the message, and
as a level, which indicates the severity of the message.

If the syslog subroutine cannot pass the message to the syslogd command, it writes the
message on the /dev/console file, provided the LOG_CONS option is set.

The closelog subroutine closes the log file.

The setlogmask subroutine uses the bit mask in the MaskPriority parameter to set the new
log priority mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the
priority mask. Calls to the syslog subroutine with a priority mask that does not allow logging
of that particular level of message causes the subroutine to return without logging the
message.

syslog

1-1235Base Operating System Runtime Services (Q-Z)

Parameters

ID Contains a string that is attached to the beginning of every message. The
Facility parameter encodes a default facility from the previous list to be
assigned to messages that do not have an explicit facility encoded.

LogOption

 Specifies a bit field that indicates logging options. The values of LogOption
are:

LOG_CONS Sends messages to the console if unable to send them to
the syslogd command. This option is useful in daemon
processes that have no controlling terminal.

LOG_NDELAY Opens the connection to the syslogd command
immediately, instead of when the first message is logged.
This option is useful for programs that need to manage the
order in which file descriptors are allocated.

LOG_NOWAIT Logs messages to the console without waiting for forked
children. Use this option for processes that enable
notification of child termination through SIGCHLD;
otherwise, the syslog subroutine may block, waiting for a
child process whose exit status has already been
collected.

LOG_ODELAY Delays opening until the syslog subroutine is called.

LOG_PID Logs the process ID with each message. This option is
useful for identifying daemons.

Facility

 Specifies which of the following values generated the message:

LOG_AUTH Indicates the security authorization system: the login
command, the su command, and so on.

LOG_DAEMON Logs system daemons.

LOG_KERN Logs messages generated by the kernel. Kernel
processes should use the bsdlog routine to generate
syslog messages. The syntax of bsdlog is identical to
syslog. The bsdlog messages can only be created by
kernel processes and must be of LOG_KERN priority.

LOG_LPR Logs the line printer spooling system.

LOG_LOCAL0 through LOG_LOCAL7
Reserved for local use.

LOG_MAIL Logs the mail system.

LOG_NEWS Logs the news subsystem.

LOG_RFS Logs the remote file systems (Andrew File System and
RVD).

LOG_UUCP Logs the UUCP subsystem.

LOG_USER Logs messages generated by user processes. This is the
default facility when none is specified.

syslog

1-1236 Technical Reference: Base Operating System

Priority

 Specifies the part of the system generating the message, and as a level,
indicates the severity of the message. The level of severity is selected from
the following list:

LOG_ALERT Indicates a condition that should be corrected
immediately; for example, a corrupted database.

LOG_CRIT Indicates critical conditions; for example, hard device
errors.

LOG_DEBUG Displays messages containing information useful to
debug a program.

LOG_EMERG Indicates a panic condition reported to all users; system is
unusable.

LOG_ERR Indicated error conditions.

LOG_INFO Indicates general information messages.

LOG_NOTICE Indicates a condition requiring special handling, but not
an error condition.

LOG_WARNING
Logs warning messages.

MaskPriority Enables logging for the levels indicated by the bits in the mask that are set
and disabled where the bits are not set. The default mask allows all
priorities to be logged.

Value Specifies the values given in the Value parameters and follows the the
same syntax as the printf subroutine Format parameter.

Examples
1. To log an error message concerning a possible security breach, such as the following,

enter:

syslog (LOG_ALERT, ”who:internal error 23”);

2. To initialize the log file, set the log priority mask, and log an error message, enter:

openlog (”ftpd”, LOG_PID, LOG_DAEMON);

setlogmask (LOG_UPTO (LOG_ERR));

syslog (LOG_INFO);

3. To log an error message from the system, enter:

syslog (LOG_INFO | LOG_LOCAL2, ”foobar error: %m”);

Implementation Specifics
These subroutines are part of the operating system.

Related Information
The profil subroutine.

The cc command, prof command.

The syslogd daemon.

syslog

1-1237Base Operating System Runtime Services (Q-Z)

_end, _etext, or edata identifiers.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

syslog_r

1-1238 Technical Reference: Base Operating System

syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine

Purpose
Controls the system log.

Library
Standard C Library (libc.a)

Syntax

#include <syslog.h>

int syslog_r (Priority, SysLogData, Format, . . .)
int Priority;
struct syslog_data *SysLogData;
const char *Format;

int openlog_r (ID, LogOption, Facility, SysLogData)
const char *ID;
intLogOption;
int Facility;

struct syslog_data *SysLogData;
void closelog_r (SysLogData)
struct syslog_data *SysLogData;

int setlogmask_r (MaskPriority, SysLogData)
int MaskPriority;
struct syslog_data *SysLogData;

Description
The syslog_r subroutine writes messages onto the system log maintained by the syslogd
daemon.

The messages are similar to the Format parameter in the printf subroutine, except that the
%m field is replaced by the current error message obtained from the errno global variable.
A trailing new–line character can be added to the message if needed.

Messages are read by the syslogd daemon and written to the system console or log file, or
forwarded to the syslogd daemon on the appropriate host.

If a program requires special processing, you can use the openlog_r subroutine to initialize
the log file.

The syslog_r subroutine takes as a second parameter a variable of the type struct
syslog_data, which should be provided by the caller. When that variable is declared, it
should be set to the SYSLOG_DATA_INIT value, which specifies an initialization macro
defined in the sys/syslog.h file. Without initialization, the data structure used to support the
thread safety is not set up and the syslog_r subroutine does not work properly.

Messages are tagged with codes indicating the type of Priority for each. A Priority is
encoded as a Facility, which describes the part of the system generating the message, and
as a level, which indicates the severity of the message.

If the syslog_r subroutine cannot pass the message to the syslogd daemon, it writes the
message the /dev/console file, provided the LOG_CONS option is set.

The closelog_r subroutine closes the log file.

syslog_r

1-1239Base Operating System Runtime Services (Q-Z)

The setlogmask_r subroutine uses the bit mask in the MaskPriority parameter to set the
new log priority mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the
priority mask. Calls to the syslog_r subroutine with a priority mask that does not allow
logging of that particular level of message causes the subroutine to return without logging
the message.

Parameters

Priority Specifies the part of the system generating the message and indicates the
level of severity of the message. The level of severity is selected from the
following list:

• A condition that should be corrected immediately, such as a corrupted
database.

• A critical condition, such as hard device errors.

• A message containing information useful to debug a program.

• A panic condition reported to all users, such as an unusable system.

• An error condition.

• A general information message.

• A condition requiring special handling, other than an error condition.

• A warning message.

SysLogData Specifies a structure that contains the following information:

• The file descriptor for the log file.

• The status bits for the log file.

• A string for tagging the log entry.

• The mask of priorities to be logged.

• The default facility code.

• The address of the local logger.

Format Specifies the format, given in the same format as for the printf subroutine.

ID Contains a string attached to the beginning of every message. The Facility
parameter encodes a default facility from the previous list to be assigned to
messages that do not have an explicit facility encoded.

syslog_r

1-1240 Technical Reference: Base Operating System

LogOption

Specifies a bit field that indicates logging options. The values of LogOption
are:

LOG_CONS Sends messages to the console if unable to send them to
the syslogd command. This option is useful in daemon
processes that have no controlling terminal.

LOG_NDELAY Opens the connection to the syslogd command
immediately, instead of when the first message is logged.
This option is useful for programs that need to manage the
order in which file descriptors are allocated.

LOG_NOWAIT Logs messages to the console without waiting for forked
children. Use this option for processes that enable
notification of child termination through SIGCHLD;
otherwise, the syslog subroutine may block, waiting for a
child process whose exit status has already been
collected.

LOG_ODELAY Delays opening until the syslog subroutine is called.

LOG_PID Logs the process ID with each message. This option is
useful for identifying daemons.

Facility

 Specifies which of the following values generated the message:

LOG_AUTH Indicates the security authorization system: the login
command, the su command, and so on.

LOG_DAEMON Logs system daemons.

LOG_KERN Logs messages generated by the kernel. Kernel
processes should use the bsdlog routine to generate
syslog messages. The syntax of bsdlog is identical to
syslog. The bsdlog messages can only be created by
kernel processes and must be of LOG_KERN priority.

LOG_LPR Logs the line printer spooling system.

LOG_LOCAL0 through LOG_LOCAL7
Reserved for local use.

LOG_MAIL Logs the mail system.

LOG_NEWS Logs the news subsystem.

LOG_RFS Logs the remote file systems (Andrew File System and
RVD).

LOG_UUCP Logs the UUCP subsystem.

LOG_USER Logs messages generated by user processes. This is the
default facility when none is specified.

– Remote file systems, such as the Andrew File System (AFS).

– The UUCP subsystem.

– Messages generated by user processes. This is the default facility
when none is specified.

MaskPriority Enables logging for the levels indicated by the bits in the mask that are set,
and disables logging where the bits are not set. The default mask allows all
priorities to be logged.

syslog_r

1-1241Base Operating System Runtime Services (Q-Z)

Return Values

0 Indicates that the subroutine was successful.

–1 Indicates that the subroutine was not successful.

Examples
1. To log an error message concerning a possible security breach, enter:

syslog_r (LOG_ALERT, syslog_data_struct, ”%s”, ”who:internal

error 23”);

2. To initialize the log file, set the log priority mask, and log an error message, enter:

openlog_r (”ftpd”, LOG_PID, LOG_DAEMON, syslog_data_struct);

setlogmask_r (LOG_UPTO (LOG_ERR), syslog_data_struct);

syslog_r (LOG_INFO, syslog_data_struct, ””);

3. To log an error message from the system, enter:

syslog_r (LOG_INFO | LOG_LOCAL2, syslog_data_struct, ”system

error: %m”);

Implementation Specifics
These subroutines are part of the operating system.

Programs using this subroutine must link to the libpthreads.a library.

Related Information
The cc command, prof command.

The syslogd daemon. The printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or
vwsprintf subroutine.

Subroutines Overview and List of Multithread Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

system

1-1242 Technical Reference: Base Operating System

system Subroutine

Purpose
Runs a shell command.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int system (String)
const char *String;

Description
The system subroutine passes the String parameter to the sh command as input. Then the
sh command interprets the String parameter as a command and runs it.

The system subroutine calls the fork subroutine to create a child process that in turn uses
the execl subroutine to run the /usr/bin/sh command, which interprets the shell command
contained in the String parameter. When invoked on the Trusted Path, the system
subroutine runs the Trusted Path shell (/usr/bin/tsh). The current process waits until the
shell has completed, then returns the exit status of the shell. The exit status of the shell is
returned in the same manner as a call to the wait or waitpid subroutine, using the
structures in the sys/wait.h file.

The system subroutine ignores the SIGINT and SIGQUIT signals, and blocks the
SIGCHILD signal while waiting for the command specified by the String parameter to
terminate. If this might cause the application to miss a signal that would have killed it, the
application should use the value returned by the system subroutine to take the appropriate
action if the command terminated due to receipt of a signal. The system subroutine does
not affect the termination status of any child of the calling process unless that process was
created by the system subroutine. The system subroutine does not return until the child
process has terminated.

Parameters

String Specifies a valid sh shell command.

Note: The system subroutine runs only sh shell commands. The results are
unpredictable if the String parameter is not a valid sh shell command.

Return Values
Upon successful completion, the system subroutine returns the exit status of the shell. The
exit status of the shell is returned in the same manner as a call to the wait or waitpid
subroutine, using the structures in the sys/wait.h file.

If the String parameter is a null pointer and a command processor is available, the system
subroutine returns a nonzero value. If the fork subroutine fails or if the exit status of the
shell cannot be obtained, the system subroutine returns a value of –1. If the execl
subroutine fails, the system subroutine returns a value of 127. In all cases, the errno global
variable is set to indicate the error.

Error Codes
The system subroutine fails if any of the following are true:

system

1-1243Base Operating System Runtime Services (Q-Z)

EAGAIN The system–imposed limit on the total number of running processes,
either systemwide or by a single user ID, was exceeded.

EINTR The system subroutine was interrupted by a signal that was caught
before the requested process was started. The EINTR error code will
never be returned after the requested process has begun.

ENOMEM Insufficient storage space is available.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The execl subroutine, exit subroutine, fork subroutine, pipe subroutine, wait subroutine,
waitpid subroutine.

The sh command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

tcb

1-1244 Technical Reference: Base Operating System

tcb Subroutine

Purpose
Alters the Trusted Computing Base (TCB) status of a file.

Library
Security Library (libc.a)

Syntax
#include <sys/tcb.h>

int tcb (Path, Flag)
char *Path;
int Flag;

Description
The tcb subroutine provides a mechanism to query or set the TCB attributes of a file.

This subroutine is not safe for use with multiple threads. To call this subroutine from a
threaded application, enclose the call with the _libs_rmutex lock. See ”Making a Subroutine
Safe for Multiple Threads” in AIX General Programming Concepts : Writing and Debugging
Programs for more information about this lock.

Parameters

Path Specifies the path name of the file whose TCB status is to be changed.

Flag

Specifies the function to be performed. Valid values are defined in the
sys/tcb.h file and include the following:

TCB_ON Enables the TCB attribute of a file.

TCB_OFF Disables the Trusted Process and TCB attributes of a
file.

TCB_QUERY Queries the TCB status of a file. This function returns
one of the preceding values.

Return Values
Upon successful completion, the tcb subroutine returns a value of 0 if the Flags parameter
is either TCB_ON or TCB_OFF. If the Flags parameter is TCB_QUERY, the current status is
returned. If the tcb subroutine fails, a value of –1 is returned and the errno global variable is
set to indicate the error.

Error Codes
The tcb subroutine fails if one of the following is true:

EINVAL The Flags parameter is not one of TCB_ON, TCB_OFF, or
TCB_QUERY.

EPERM Not authorized to perform this operation.

ENOENT The file specified by the Path parameter does not exist.

EROFS The file system is read–only.

EBUSY The file specified by the Path parameter is currently open for writing.

EACCES Access permission is denied for the file specified by the Path parameter.

tcb

1-1245Base Operating System Runtime Services (Q-Z)

Security
Access Control: The calling process must have search permission for the object named by
the Path parameter. Only the root user can set the tcb attributes of a file.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod or fchmod subroutine, statx, stat, lstat, fstatx, fstat, fullstat, or ffullstat
subroutine.

The chmod command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

tcdrain

1-1246 Technical Reference: Base Operating System

tcdrain Subroutine

Purpose
Waits for output to complete.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcdrain(FileDescriptor)
int FileDescriptor;

Description
The tcdrain subroutine waits until all output written to the object referred to by the
FileDescriptor parameter has been transmitted.

Parameter

FileDescriptor Specifies an open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The tcdrain subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINTR A signal interrupted the tcdrain subroutine.

EIO The process group of the writing process is orphaned, and the writing
process does not ignore or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To wait until all output has been transmitted, enter:

rc = tcdrain(stdout);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcflow subroutine, tcflush subroutine, tcsendbreak subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

tcflow

1-1247Base Operating System Runtime Services (Q-Z)

tcflow Subroutine

Purpose
Performs flow control functions.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcflow(FileDescriptor, Action)
int FileDescriptor;
int Action;

Description
The tcflow subroutine suspends transmission or reception of data on the object referred to
by the FileDescriptor parameter, depending on the value of the Action parameter.

Parameters

FileDescriptor Specifies an open file descriptor.

Action

Specifies one of the following:

TCOOFF Suspend output.

TCOON Restart suspended output.

TCIOFF Transmit a STOP character, which is intended to cause
the terminal device to stop transmitting data to the
system. See the description of IXOFF in the Input
Modes section of the termios.h file.

TCION Transmit a START character, which is intended to
cause the terminal device to start transmitting data to
the system. See the description of IXOFF in the Input
Modes section of the termios.h file.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The tcflow subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINVAL The Action parameter does not specify a proper value.

EIO The process group of the writing process is orphaned, and the writing
process does not ignore or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

tcflow

1-1248 Technical Reference: Base Operating System

Example
To restart output from a terminal device, enter:

rc = tcflow(stdout, TCION);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcdrain subroutine, tcflush subroutine, tcsendbreak subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

tcflush

1-1249Base Operating System Runtime Services (Q-Z)

tcflush Subroutine

Purpose
Discards data from the specified queue.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcflush(FileDescriptor, QueueSelector)
int FileDescriptor;
int QueueSelector;

Description
The tcflush subroutine discards any data written to the object referred to by the
FileDescriptor parameter, or data received but not read by the object referred to by
FileDescriptor, depending on the value of the QueueSelector parameter.

Parameters

FileDescriptor Specifies an open file descriptor.

QueueSelector

Specifies one of the following:

TCIFLUSH Flush data received but not read.

TCOFLUSH Flush data written but not transmitted.

TCIOFLUSH Flush both of the following:

• Data received but not read

• Data written but not transmitted

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The tcflush subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINVAL The QueueSelector parameter does not specify a proper value.

EIO The process group of the writing process is orphaned, and the writing
process does not ignore or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To flush the output queue, enter:

rc = tcflush(2, TCOFLUSH);

tcflush

1-1250 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcdrain subroutine, tcflow subroutine, tcsendbreak subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts: Writing and Debugging Programs.

tcgetattr

1-1251Base Operating System Runtime Services (Q-Z)

tcgetattr Subroutine

Purpose
Gets terminal state.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcgetattr (FileDescriptor, TermiosPointer)
int FileDescriptor;
struct termios *TermiosPointer;

Description
The tcgetattr subroutine gets the parameters associated with the object referred to by the
FileDescriptor parameter and stores them in the termios structure referenced by the
TermiosPointer parameter. This subroutine is allowed from a background process; however,
the terminal attributes may subsequently be changed by a foreground process.

Whether or not the terminal device supports differing input and output baud rates, the baud
rates stored in the termios structure returned by the tcgetattr subroutine reflect the actual
baud rates, even if they are equal.

Note: If differing baud rates are not supported, returning a value of 0 as the input baud
rate is obsolete.

Parameters

FileDescriptor Specifies an open file descriptor.

TermiosPointer Points to a termios structure.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The tcgetattr subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples
To get the current terminal state information, enter:

rc = tcgetattr(stdout, &my_termios);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcsetattr subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

tcgetpgrp

1-1252 Technical Reference: Base Operating System

tcgetpgrp Subroutine

Purpose
Gets foreground process group ID.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t tcgetpgrp (FileDescriptor)
int FileDescriptor;

Description
The tcgetpgrp subroutine returns the value of the process group ID of the foreground
process group associated with the terminal. The function can be called from a background
process; however, the foreground process can subsequently change the information.

Parameters

FileDescriptor Indicates the open file descriptor for the terminal special file.

Return Values
Upon successful completion, the process group ID of the foreground process is returned. If
there is no foreground process group, a value greater than 1 that does not match the
process group ID of any existing process group is returned. Otherwise, a value of –1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The tcgetpgrp subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor argument is not a valid file descriptor.

EINVAL The function is not appropriate for the file associated with the FileDescriptor
argument.

ENOTTY The calling process does not have a controlling terminal or the file is not the
controlling terminal.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setpgid subroutine, setsid subroutine, tcsetpgrp subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

tcsendbreak

1-1253Base Operating System Runtime Services (Q-Z)

tcsendbreak Subroutine

Purpose
Sends a break on an asynchronous serial data line.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcsendbreak(FileDescriptor, Duration)
int FileDescriptor;
int Duration;

Description
If the terminal is using asynchronous serial data transmission, the tcsendbreak subroutine
causes transmission of a continuous stream of zero–valued bits for a specific duration.

If the terminal is not using asynchronous serial data transmission, the tcsendbreak
subroutine returns without taking any action.

Parameters

FileDescriptor Specifies an open file descriptor.

Duration Specifies the number of milliseconds that zero–valued bits are
transmitted. If the value of the Duration parameter is 0, it causes
transmission of zero–valued bits for at least 250 milliseconds and not
longer than 500 milliseconds. If Duration is not 0, it sends
zero–valued bits for Duration milliseconds.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The tcsendbreak subroutine is unsuccessful if one or both of the following are true:

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.

EIO The process group of the writing process is orphaned, and the writing
process does not ignore or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples
1. To send a break condition for 500 milliseconds, enter:

rc = tcsendbreak(stdout,500);

2. To send a break condition for 25 milliseconds, enter:

tcsendbreak

1-1254 Technical Reference: Base Operating System

rc = tcsendbreak(1,25);

 This could also be performed using the default Duration by entering:

rc = tcsendbreak(1, 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Pseudo–terminals and LFT do not generate a break condition. They return without taking
any action.

Related Information
The tcdrain subroutine, tcflow subroutine, tcflush subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts: Writing and Debugging Programs.

thread_setsched

1-1255Base Operating System Runtime Services (Q-Z)

thread_setsched Subroutine

Purpose
Changes the scheduling policy and priority of a kernel thread.

Library
Standard C library (libc.a)

Syntax

#include <sys/sched.h>
#include <sys/pri.h>
#include <sys/types.h>

int thread_setsched (tid, priority, policy)
tid_t tid;
int priority;
int policy;

Description
The thread_setsched subroutine changes the scheduling policy and priority of a kernel
thread. User threads (pthreads) have their own scheduling attributes that in some cases
allow a pthread to execute on top of multiple kernel threads. Therefore, if the policy or
priority change is being granted on behalf of a pthread, then the pthread’s contention scope
should be PTHREAD_SCOPE_SYSTEM.

Note: Caution must be exercised when using the thread_setsched subroutine, since
improper use may result in system hangs. See sys/pri.h for restrictions on thread
priorities.

Parameters

tid Specifies the kernel thread ID of the thread whose priority and policy are to
be changed.

priority Specifies the priority to use for this kernel thread. The priority parameter is
ignored if the policy is being set to SCHED_OTHER. The priority
parameter must have a value in the range 0 to PRI_LOW. PRI_LOW is
defined in sys/pri.h. See sys/pri.h for more information on thread
priorities.

policy

Specifies the policy to use for this kernel thread. The policy parameter can
be one of the following values, which are defined in sys/sched.h:

SCHED_OTHER
Default AIX scheduling policy

SCHED_FIFO First in–first out scheduling policy

SCHED_RR Round–robin scheduling policy

Return Values
Upon successful completion, the thread_setsched subroutine returns a value of zero. If the
thread_setsched subroutine is unsuccessful, a value of –1 is returned and the errno global
variable is set to indicate the error.

thread_setsched

1-1256 Technical Reference: Base Operating System

Error Codes
The thread_setsched subroutine is unsuccessful if one or more of the following is true:

ESRCH The kernel thread id tid is invalid.

EINVAL The policy or priority is invalid.

EPERM The caller does not have enough privilege to change the policy or
priority.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

tcsetattr

1-1257Base Operating System Runtime Services (Q-Z)

tcsetattr Subroutine

Purpose
Sets terminal state.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcsetattr (FileDescriptor, OptionalActions, TermiosPointer)
int FileDescriptor, OptionalActions;
const struct termios * TermiosPointer;

Description
The tcsetattr subroutine sets the parameters associated with the object referred to by the
FileDescriptor parameter (unless support required from the underlying hardware is
unavailable), from the termios structure referenced by the TermiosPointer parameter.

The value of the OptionalActions parameter determines how the tcsetattr subroutine is
handled.

The 0 baud rate (B0) is used to terminate the connection. If B0 is specified as the output
baud rate when the tcsetattr subroutine is called, the modem control lines are no longer
asserted. Normally, this disconnects the line.

Using 0 as the input baud rate in the termios structure to cause tcsetattr to change the
input baud rate to the same value as that specified by the value of the output baud rate, is
obsolete.

If an attempt is made using the tcsetattr subroutine to set:

• An unsupported baud rate

• Baud rates, such that the input and output baud rates differ and the hardware does not
support that combination

• Other features not supported by the hardware

but the tcsetattr subroutine is able to perform some of the requested actions, then the
subroutine returns successfully, having set all supported attributes and leaving the above
unsupported attributes unchanged.

If no part of the request can be honored, the tcsetattr subroutine returns a value of –1 and
the errno global variable is set to EINVAL.

If the input and output baud rates differ and are a combination that is not supported, neither
baud rate is changed. A subsequent call to the tcgetattr subroutine returns the actual state
of the terminal device (reflecting both the changes made and not made in the previous
tcsetattr call). The tcsetattr subroutine does not change the values in the termios
structure whether or not it actually accepts them.

If the tcsetattr subroutine is called by a process which is a member of a background
process group on a FileDescriptor associated with its controlling terminal, a SIGTTOU signal
is sent to the background process group. If the calling process is blocking or ignoring
SIGTTOU signals, the process performs the operation and no signal is sent.

tcsetattr

1-1258 Technical Reference: Base Operating System

Parameters

FileDescriptor Specifies an open file descriptor.

OptionalActions

Specifies one of the following values:

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output written to the object
referred to by FileDescriptor has been transmitted. This
function should be used when changing parameters
that affect output.

TCSAFLUSH The change occurs after all output written to the object
referred to by FileDescriptor has been transmitted. All
input that has been received but not read is discarded
before the change is made.

TermiosPointer Points to a termios structure.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The tcsetattr subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINTR A signal interrupted the tcsetattr subroutine.

EINVAL The OptionalActions argument is not a proper value, or an attempt was
made to change an attribute represented in the termios structure to an
unsupported value.

EIO The process group of the writing process is orphaned, and the writing
process does not ignore or block the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To set the terminal state after the current output completes, enter:

rc = tcsetattr(stdout, TCSADRAIN, &my_termios);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The cfgetispeed subroutine, tcgetattr subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

tcsetpgrp

1-1259Base Operating System Runtime Services (Q-Z)

tcsetpgrp Subroutine

Purpose
Sets foreground process group ID.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int tcsetpgrp (FileDescriptor, ProcessGroupID)
int FileDescriptor;
pid_t ProcessGroupID;

Description
If the process has a controlling terminal, the tcsetpgrp subroutine sets the foreground
process group ID associated with the terminal to the value of the ProcessGroupID
parameter. The file associated with the FileDescriptor parameter must be the controlling
terminal of the calling process, and the controlling terminal must be currently associated
with the session of the calling process. The value of the ProcessGroupID parameter must
match a process group ID of a process in the same session as the calling process.

Parameters

FileDescriptor Specifies an open file descriptor.

ProcessGroupID Specifies the process group identifier.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
This function is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

EINVAL The ProcessGroupID parameter is invalid.

ENOTTY The calling process does not have a controlling terminal, or the file is
not the controlling terminal, or the controlling terminal is no longer
associated with the session of the calling process.

EPERM The ProcessGroupID parameter is valid, but does not match the
process group ID of a process in the same session as the calling
process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcgetpgrp subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

termdef

1-1260 Technical Reference: Base Operating System

termdef Subroutine

Purpose
Queries terminal characteristics.

Library
Standard C Library (libc.a)

Syntax
char *termdef (FileDescriptor, Characteristic)
int FileDescriptor;
char Characteristic;

Description
The termdef subroutine returns a pointer to a null–terminated, static character string that
contains the value of a characteristic defined for the terminal specified by the FileDescriptor
parameter.

Asynchronous Terminal Support
Shell profiles usually set the TERM environment variable each time you log in. The stty
command allows you to change the lines and columns (by using the lines and cols options).
This is preferred over changing the LINES and COLUMNS environment variables, since the
termdef subroutine examines the environment variables last. You consider setting LINES
and COLUMNS environment variables if:

• You are using an asynchronous terminal and want to override the lines and cols setting in
the terminfo database

OR

• Your asynchronous terminal has an unusual number of lines or columns and you are
running an application that uses the termdef subroutine but not an application which
uses the terminfo database (for example, curses).

This is because the curses initialization subroutine, setupterm, calls the termdef
subroutine to determine the number of lines and columns on the display. If the termdef
subroutine cannot supply this information, the setupterm subroutine uses the values in
the terminfo database.

termdef

1-1261Base Operating System Runtime Services (Q-Z)

Parameters

FileDescriptor Specifies an open file descriptor.

Characteristic

Specifies the characteristic that is to be queried. The following values can be
specified:

c Causes the termdef subroutine to query for the number of
”columns” for the terminal. This is determined by performing the
following actions:

1. It requests a copy of the terminal’s winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_col is not 0, the ws_col value is used.

2. If the TIOCGWINSZ ioctl is unsuccessful or if ws_col is 0, the termdef
subroutine attempts to use the value of the COLUMNS environment variable.

3. If the COLUMNS environment variable is not set, the termdef subroutine returns
a pointer to a null string.

l Causes the termdef subroutine to query for the number of ”lines”
(or rows) for the terminal. This is determined by performing the
following actions:

1. It requests a copy of the terminal’s winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_row is not 0, the ws_row value is used.

2. If the TIOCGWINSZ ioctl is unsuccessful or if ws_row is 0, the termdef
subroutine attempts to use the value of the LINES environment variable.

3. If the LINES environment variable is not set, the termdef subroutine returns a
pointer to a null string.

Characters other than c or l
Cause the termdef subroutine to query for the ”terminal type” of the
terminal. This is determined by performing the following actions:

1. The termdef subroutine attempts to use the value of the TERM environment
variable.

2. If the TERM environment variable is not set, the termdef subroutine returns a
pointer to string set to ”dumb”.

Examples
1. To display the terminal type of the standard input device, enter:

printf(”%s\n”, termdef(0, ’t’));

2. To display the current lines and columns of the standard output device, enter:

printf(”lines\tcolumns\n%s\t%s\n”, termdef(2, ’l’),

 termdef(2, ’c’));

Note: If the termdef subroutine is unable to determine a value for lines or columns, it
returns pointers to null strings.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setupterm subroutine.
The stty command.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

thread_self

1-1262 Technical Reference: Base Operating System

thread_self Subroutine

Purpose
Returns the caller’s kernel thread ID.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

tid_t thread_self ()

Description
The thread_self subroutine returns the caller’s kernel thread ID. The kernel thread ID may
be useful for the bindprocessor and ptrace subroutines. The ps, trace, and vmstat
commands also report kernel thread IDs, thus this subroutine can be useful for debugging
multi–threaded programs.

The kernel thread ID is unrelated with the thread ID used in the threads library
(libpthreads.a) and returned by the pthread_self subroutine.

Return Values
The thread_self subroutine returns the caller’s kernel thread ID.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The bindprocessor subroutine, pthread_self subroutine, ptrace subroutine.

timezone_no_r

1-1263Base Operating System Runtime Services (Q-Z)

timezone Subroutine
Attention: Do not use the tzset subroutine, from libc.a, when linkning libc.a libbsd.a.
The tzset subroutine uses the global external variable timezone which conflicts with the
timezone subroutine in libbsd.a. This name collision can cause unpredictable results.

Purpose
Returns the name of the timezone associated with the first arguement.

Library
Berkeley compatability library (libbsd.a) (for timezone only)

Syntax
#include <time.h>
char *timezone(zone, dst)
int zone;
int dst;

#include <time.h>
#include <limits.h>
int zone;
int dst;
char czone[TZNAME_MAX+1];

Description
The timezone subroutine returns the name of the timezone associated with the first
argument which is measured in minutes westward frow Greenwich. If the environment
variable TZ is set, the first argument is ignored and the current timezone is calculated from
the value of TZ. If the second argument is 0, the standard name is returned otherwise the
Daylight Saving Time name is returned. If TZ is not set, then the internal table is searched
for a matching timezone. If the timezone does not appear in the built in table then difference
from GMT is produced.

Timezone returns a pointer to static data that will be overwritten by subsequent calls.

Parameters

zone Specifies minutes westward from Greenwich.

dst Specifies whether to return Standard time or Daylight Savings time.

czone Specifies a buffer of size TZNAME_MAX+1, that the result is placed in.

Return Values
timezone returns a pointer to static data that contains the name of the timezone.

Errors
There are no errors defined.

Implementations Specifics
These subroutines are part of Base Operation System (BOS) Runtime.

Related Information
Subroutines Overview

List of Multi–threaded Programming Subroutines

tmpfile

1-1264 Technical Reference: Base Operating System

tmpfile Subroutine

Purpose
Creates a temporary file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

FILE *tmpfile ()

Description
The tmpfile subroutine creates a temporary file and opens a corresponding stream. The file
is opened for update. The temporary file is automatically deleted when all references (links)
to the file have been closed.

The stream refers to a file which has been unlinked. If the process ends in the period
between file creation and unlinking, a permanent file may remain.

Return Values
The tmpfile subroutine returns a pointer to the stream of the file that is created if the call is
successful. Otherwise, it returns a null pointer and sets the errno global variable to indicate
the error.

Error Codes
The tmpfile subroutine fails if one of the following occurs:

EINTR A signal was caught during the tmpfile subroutine.

EMFILE The number of file descriptors currently open in the calling process is
already equal to OPEN_MAX.

ENFILE The maximum allowable number of files is currently open in the system.

ENOSPEC The directory or file system which would contain the new file cannot be
expanded.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, fdopen subroutines, mktemp subroutine, tmpnam or tempnam
subroutine, unlink subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

tmpnam

1-1265Base Operating System Runtime Services (Q-Z)

tmpnam or tempnam Subroutine

Purpose
Constructs the name for a temporary file.

Library
Standard C Library (libc.a)

Thread Safe C Library (libc_r.a)

Syntax
#include <stdio.h>
char *tmpnam (String)
char *String;

char *tempnam (Directory, FileXPointer)
const char *Directory, *FileXPointer;

Description
Attention: The tmpnam and tempnam subroutines generate a different file name each
time they are called. If called more than 16,384 (TMP_MAX) times by a single process,
these subroutines recycle previously used names.

The tmpnam and the tempnam subroutines generate file names for temporary files. The
tmpnam subroutine generates a file name using the path name defined as P_tmpdir in the
stdio.h file.

Files created using the tmpnam subroutine reside in a directory intended for temporary use.
The file names are unique. The application must create and remove the file.

The tempnam subroutine enables you to define the directory. The Directory parameter
points to the name of the directory in which the file is to be created. If the Directory
parameter is a null pointer or points to a string that is not a name for a directory, the path
prefix defined as P_tmpdir in the stdio.h file is used. For an application that has temporary
files with initial letter sequences, use the FileXPointer parameter to define the sequence.
The FileXPointer parameter (a null pointer or a string of up to 5 bytes) is used as the
beginning of the file name.

Between the time a file name is created and the file is opened, another process can create
a file with the same name. Name duplication is unlikely if the other process uses these
subroutines or the mktemp subroutine, and if the file names are chosen to avoid duplication
by other means.

tmpnam

1-1266 Technical Reference: Base Operating System

Parameters

String Specifies the address of an array of at least the number of bytes
specified by L_tmpnam, a constant defined in the stdio.h file.

If the String parameter has a null value, the tmpnam subroutine places
its result into an internal static area and returns a pointer to that area.
The next call to this subroutine destroys the contents of the area.

Note: If tmpnam is linked to the libc_r.a library, string cannot be a
null value.

If the String parameter’s value is not null, the tmpnam subroutine
places its results into the specified array and returns the value of the
String parameter.

Directory Points to the path name of the directory in which the file is to be
created.

The tempnam subroutine controls the choice of a directory. If the
Directory parameter is a null pointer or points to a string that is not a
path name for an appropriate directory, the path name defined as
P_tmpdir in the stdio.h file is used. If that path name is not accessible,
the /tmp directory is used. You can bypass the selection of a path name
by providing an environment variable, TMPDIR, in the user’s
environment. The value of the TMPDIR environment variable is a path
name for the desired temporary–file directory.

FileXPointer A pointer to an initial character sequence with which the file name
begins. The FileXPointer parameter value can be a null pointer, or it can
point to a string of characters to be used as the first characters of the
temporary–file name. The number of characters allowed is file system
dependent, but 5 bytes is the maximum allowed.

Return Values
Upon completion, the tempnam subroutine allocates space for the string using the malloc
subroutine, puts the generated path name in that space, and returns a pointer to the space.
Otherwise, it returns a null pointer and sets the errno global variable to indicate the error.
The pointer returned by tempnam may be used in the free subroutine when the space is no
longer needed.

 If the tmpnam subroutine linked to the librc_r.a library is passed a null value, it returns a
NULL and sets errno to ENINVAL.

Error Codes
The tempnam subroutine returns the following error code if unsuccessful:

ENOMEM Insufficient storage space is available.

 The tmpnam subroutine linked to the libc_r.a library returns the following error code if
unsuccessful:

ENINVAL Indicates an invalid string value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, fdopen subroutines, malloc, free, realloc, calloc, mallopt, mallinfo,
or alloca subroutine, mktemp subroutine, mkstemp subroutine, openx, open, creat
subroutines, tmpfile subroutine, unlink subroutine.

The environment file.

tmpnam

1-1267Base Operating System Runtime Services (Q-Z)

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts: Writing and Debugging Programs.

towctrans

1-1268 Technical Reference: Base Operating System

towctrans Subroutine

Purpose
Character transliteration.

Library
Standard library (libc.a)

Syntax
#include <wctype.h>

wint_t towctrans (wint_t wc, wctrans_t desc) ;

Description
The towctrans function transliterates the wide–character code wc using the mapping
described by desc. The current setting of the LC_CTYPE category should be the same as
during the call to wctrans that returned the value desc. If the value of desc is invalid (that is,
not obtained by a call to wctrans or desc is invalidated by a subsequent call to setlocale
that has affected category LC_CTYPE) the result is implementation–dependent.

Return Values
If successful, the towctrans function returns the mapped value of wc using the mapping
described by desc. Otherwise it returns wc unchanged.

Error Codes
The towctrans function may fail if:

EINVAL desc contains an invalid transliteration descriptor.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The towlower, towupper, and wctrans subroutines, the wctype.h file.

towlower

1-1269Base Operating System Runtime Services (Q-Z)

towlower Subroutine

Purpose
Converts an uppercase wide character to a lowercase wide character.

Library
Standard C Library (libc.a)

Syntax #include <wchar.h>
wint_t towlower (WC)
wint_t WC;

Description
The towlower subroutine converts the uppercase wide character specified by the WC
parameter into the corresponding lowercase wide character. The LC_CTYPE category
affects the behavior of the towlower subroutine.

Parameters

WC Specifies the wide character to convert to lowercase.

Return Values
If the WC parameter contains an uppercase wide character that has a corresponding
lowercase wide character, that wide character is returned. Otherwise, the WC parameter is
returned unchanged.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The iswalnum subroutine, iswalpha subroutine, iswcntrl subroutine, iswctype subroutine,
iswdigit subroutine, iswgraph subroutine, iswlower subroutine, iswprint subroutine,
iswpunct subroutine, iswspace subroutine, iswupper subroutine, iswxdigit subroutine,
setlocale subroutine, towupper subroutine, wctype subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Classification Subroutines in AIX General Programming
Concepts: Writing and Debugging Programs.

towupper

1-1270 Technical Reference: Base Operating System

towupper Subroutine

Purpose
Converts a lowercase wide character to an uppercase wide character.

Library
Standard C Library (libc.a)

Syntax #include <wchar.h>
wint_t towupper (WC)
wint_t WC;

Description
The towupper subroutine converts the lowercase wide character specified by the WC
parameter into the corresponding uppercase wide character. The LC_CTYPE category
affects the behavior of the towupper subroutine.

Parameters

WC Specifies the wide character to convert to uppercase.

Return Values
If the WC parameter contains a lowercase wide character that has a corresponding
uppercase wide character, that wide character is returned. Otherwise, the WC parameter is
returned unchanged.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The iswalnum subroutine, iswalpha subroutine, iswcntrl subroutine, iswctype subroutine,
iswdigit subroutine, iswgraph subroutine, iswlower subroutine, iswprint subroutine,
iswpunct subroutine, iswspace subroutine, iswupper subroutine, iswxdigit subroutine,
setlocale subroutine, towlower subroutine, wctype subroutine.

Subroutines Overview in AIX General Programming Concepts: Writing and Debugging
Programs.

t_rcvreldata

1-1271Base Operating System Runtime Services (Q-Z)

t_rcvreldata Subroutine

Purpose
Receive an orderly release indication or confirmation containing user data.

Library

Syntax

#include <xti.h>

int t_rcvreldata(
 int fd,

 struct t_discon *discon)

Description
This function is used to receive an orderly release indication for the incoming direction of
data transfer and to retrieve any user data sent with the release. The argument fd identifies
the local transport endpoint where the connection exists, and discon points to a t_discon
structure containing the following members:

struct netbuf udata;

int reason;

int sequence;

After receipt of this indication, the user may not attempt to receive more data via t_rcv or
t_rcvv. Such an attempt will fail with t_error set to [TOUTSTATE]. However, the user may
continue to send data over the connection if t_sndrel or t_sndreldata has not been called
by the user.

The field reason specifies the reason for the disconnection through a protocol–dependent
reason code, and udata identifies any user data that was sent with the disconnection; the
field sequence is not used.

If a user does not care if there is incoming data and does not need to know the value of
reason, discon may be a null pointer, and any user data associated with the disconnection
will be discarded.

If discon–>udata.maxlen is greater than zero and less than the length of the value,
t_rcvreldata fails with t_errno set to [TBUFOVFLW].

This function is an optional service of the transport provider, only supported by providers of
service type T_COTS_ORD. The flag T_ORDRELDATA in the info–>flag field returned by
t_open or t_getinfo indicates that the provider supports orderly release user data; when the
flag is not set, this function behaves as t_rcvrel and no user data is returned.

This function may not be available on all systems.

Parameters Before call After call

fd x /

discon–> udata.maxlen x

discon–> udata.len /

discon–> udata.buf ?

t_rcvreldata

1-1272 Technical Reference: Base Operating System

discon–> reason /

discon–> sequence /

Valid States
T_DATAXFER, T_OUTREL

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

Error Codes
On failure, the t_errno subroutine is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is greater than 0
but not sufficient to store the data, and the disconnection information to be
returned in discon will be discarded. The provider state, as seen by the
user, will be changed as if the data was successfully retrieved.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNOREL No orderly release indication currently exists on the specified transport
endpoint.

TNOTSUPPORT
Orderly release is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information
The t_getinfo, t_open, t_sndreldata, t_rcvrel, t_sndrel subroutines.

t_rcvv

1-1273Base Operating System Runtime Services (Q-Z)

t_rcvv Subroutine

Purpose
Receive data or expedited data sent over a connection and put the data into one or more
non–contiguous buffers.

Library
libxti.*

Syntax
#include <xti.h>

int t_rcvv (int fd, struct t_iovec *iov, unsigned int iovcount,
int *flags) ;

Description
 This function receives either normal or expedited data. The argument fd identifies the local
transport endpoint through which data will arrive, iov points to an array of buffer
address/buffer size pairs (iov_base, iov_len). The t_rcvv function receives data into the
buffers specified by iov[0].iov_base, iov[1].iov_base, through iov[iovcount–1].iov_base,
always filling one buffer before proceding to the next.

 Note: The limit on the total number of bytes available in all buffers passed (that is,
iov(0).iov_len + . . + iov(iovcount–1).iov_len) may be constrained by implementation
limits. If no other constraint applies, it will be limited by [INT_MAX]. In practice, the
availability of memory to an application is likely to impose a lower limit on the amount of
data that can be sent or received using scatter/gather functions.

 The argument iovcount contains the number of buffers which is limited to T_IOV_MAX (an
implementation–defined value of at least 16). If the limit is exceeded, the function will fail
with [TBADDATA].

 The argument flags may be set on return from t_rcvv and specifies optional flags as
described below.

 By default, t_rcvv operates in synchronous mode and will wait for data to arrive if none is
currently available. However, if O_NONBLOCK is set (via t_open or fcntl, t_rcvv will
execute in asynchronous mode and will fail if no data is available (see [TNODATA] below).

On return from the call, if T_MORE is set in flags, this indicates that there is more data, and
the current transport service data unit (TSDU) or expedited transport service data unit
(ETSDU) must be received in multiple t_rcvv or t_rcv calls. In the asynchronous mode, or
under unusual conditions (for example, the arrival of a signal or T_EXDATA event), the
T_MORE flag may be set on return from the t_rcvv call even when the number of bytes
received is less than the total size of all the receive buffers. Each t_rcvv with the T_MORE
flag set indicates that another t_rcvv must follow to get more data for the current TSDU.
The end of the TSDU is identified by the return of a t_rcvv call with the T_MORE flag not
set. If the transport provider does not support the concept of a TSDU as indicated in the info
argument on return from t_open ort_getinfo , the T_MORE flag is not meaningful and
should be ignored. If the amount of buffer space passed in iov is greater than zero on the
call to t_rcvv, then t_rcvv will return 0 only if the end of a TSDU is being returned to the
user.

 On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it
indicates that the number of expedited bytes exceeded nbytes, a signal has interrupted the
call, or that an entire ETSDU was not available (only for transport protocols that support
fragmentation of ETSDUs). The rest of the ETSDU will be returned by subsequent calls to

t_rcvv

1-1274 Technical Reference: Base Operating System

t_rcvv which will return with T_EXPEDITED set in flags. The end of the ETSDU is identified
by the return of a t_rcvv call with T_EXPEDITED set and T_MORE cleared. If the entire
ETSDU is not available it is possible for normal data fragments to be returned between the
initial and final fragments of an ETSDU.

 If a signal arrives, t_rcvv returns, giving the user any data currently available. If no data is
available, t_rcvv returns –1, sets t_errno to [TSYSERR] and errno to [EINTR]. If some data
is available, t_rcvv returns the number of bytes received and T_MORE is set in flags.

 In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for the T_DATA or T_EXDATA events using
the t_look function. Additionally, the process can arrange to be notified via the EM interface.

Parameters Before call After call

fd X /

iov X/

iovcount X /

iov[0].iov_base X(/) =(X)

iov[0].iov_len X =

iov[iovcount–1].iov_base X(/) =(X)

iov[iovcount–1].iov_len X =

Return Values
On successful completion, t_rcvv returns the number of bytes received. Otherwise, it
returns –1 on failure and t_errno is set to indicate the error.

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNODATA O_NONBLOCK was set, but no data is currently available from the
transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the
states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which there is
no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The fcntl subroutine, t_getinfo subroutine, t_look subroutine, t_open subroutine, t_rcv
subroutine, t_snd subroutine, and t_sndv subroutine.

t_rcvvudata

1-1275Base Operating System Runtime Services (Q-Z)

t_rcvvudata Subroutine

Purpose
Receive a data unit into one or more noncontiguous buffers.

Library
Standard library (libxti.a)

Syntax
#include <xti.h>
 int t_rcvvudata (
 int fd,

 struct t_unitdata *unitdata,

 struct t_iovec *iov,

 unsigned int iovcount,

 int *flags)

Description
 This function is used in connectionless mode to receive a data unit from another transport
user. The argument fd identifies the local transport endpoint through which data will be
received, unitdata holds information associated with the received data unit, iovcount
contains the number of non–contiguous udata buffers which is limited to T_IOV_MAX (an
implementation–defined value of at least 16), and flags is set on return to indicate that the
complete data unit was not received. If the limit on iovcount is exceeded, the function fails
with [TBADDATA]. The argument unitdata points to a t_unitdata structure containing the
following members:

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

 The maxlen field of addr and opt must be set before calling this function to indicate the
maximum size of the buffer for each. The udata field of t_unitdata is not used. The iov_len
and iov_base fields of iov[0] through iov[iovcount–1] must be set before calling
t_rcvvudata to define the buffer where the userdata will be placed. If the maxlen field of
addr or opt is set to zero then no information is returned in the buf field for this parameter.

 On return from this call, addr specifies the protocol address of the sending user, opt
identifies options that were associated with this data unit, and iov[0].iov_base through
iov[iovcount–1]. iov_base contains the user data that was received. The return value of
t_rcvvudata is the number of bytes of user data given to the user.

Note: The limit on the total number of bytes available in all buffers passed (that is,
 iov(0).iov_len + . . + iov(iovcount–1).iov_len) may be constrained by implementation
limits. If no other constraint applies, it will be limited by [INT_MAX]. In practice, the
availability of memory to an application is likely to impose a lower limit on the amount of
data that can be sent or received using scatter/gather functions.

 By default, t_rcvvudata operates in synchronous mode and waits for a data unit to arrive if
none is currently available. However, if O_NONBLOCK is set (via t_open or fcntl),
t_rcvvudata executes in asynchronous mode and fails if no data units are available. If the
buffers defined in the iov[] array are not large enough to hold the current data unit, the
buffers will be filled and T_MORE will be set in flags on return to indicate that another
t_rcvvudata should be called to retrieve the rest of the data unit. Subsequent calls to
t_rcvvudata will return zero for the length of the address and options, until the full data unit
has been received.

t_rcvvudata

1-1276 Technical Reference: Base Operating System

Parameters Before call After call

fd X /

unitdata–>addr.maxlen X =

unitdata–>addr.len / X

unitdata–>addr.buf ?(/) =(/)

unitdata–>opt.maxlen X =

unitdata–>opt.len / X

unitdata–>opt.buf ?(/) =(?)

unitdata–>udata.maxlen / =

unitdata–>udata.len / =

unitdata–>udata.buf / =

iov[0].iov_base X =(X)

iov[0].iov_len X =

iov[iovcount–1].iov_base X(/) =(X)

iov[iovcount–1].iov_len X =

iovcoun X /

flags / /

Return Values
On successful completion, t_rcvvudata returns the number of bytes received. Otherwise, it
returns –1 on failure and t_errno is set to indicate the error.

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol address
or options (maxlen) is greater than 0 but not sufficient to store the
information. The unit data information to be returned in unitdata
will be discarded.

TLOOK An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

TNODATA O_NONBLOCK was set, but no data units are currently available
from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of
the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which there is
no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

t_rcvvudata

1-1277Base Operating System Runtime Services (Q-Z)

Related Information
The fcntl subroutine.

The t_alloc subroutine.

The t_open subroutine.

The t_rcvudata subroutine.

The t_rcvuderr subroutine.

The t_sndudata subroutine.

The t_sndvudata subroutine.

t_sndreldata

1-1278 Technical Reference: Base Operating System

t_sndreldata Subroutine

Purpose
Initiate/respond to an orderly release with user data.

Library

Syntax

#include <xti.h>

int t_sndreldata(int fd, struct t_discon *discon)

Description
This function is used to initiate an orderly release of the outgoing direction of data transfer
and to send user data with the release. The argument fd identifies the local transport
endpoint where the connection exists, and discon points to a t_discon structure containing
the following members:

struct netbuf udata;

int reason;

int sequence;

After calling t_sndreldata, the user may not send any more data over the connection.
However, a user may continue to receive data if an orderly release indication has not been
received.

The field reason specifies the reason for the disconnection through a protocol–dependent
reason code, and udata identifies any user data that is sent with the disconnection; the
field sequence is not used.

The udata structure specifies the user data to be sent to the remote user. The amount of
user data must not exceed the limits supported by the transport provider, as returned in the
discon field of the info argument of t_open or t_getinfo. If the len field of udata is zero or if
the provider did not return T_ORDRELDATA in the t_open flags, no data will be sent to the
remote user.

If a user does not wish to send data and reason code to the remote user, the value of
discon may be a null pointer.

This function is an optional service of the transport provider, only supported by providers of
service type T_COTS_ORD. The flag T_ORDRELDATA in the info–>flag field returned by
t_open or t_getinfo indicates that the provider supports orderly release user data; when the
flag is not set, this function behaves as t_rcvrel and no user data is returned.

This function may not be available on all systems.

Parameters Before call After call

fd x /

discon–> udata.maxlen /

discon–> udata.len x

discon–> udata.buf ?(?)

t_sndreldata

1-1279Base Operating System Runtime Services (Q-Z)

discon–> reason ?

discon–> sequence /

Valid States
T_DATAXFER, T_INREL

Error Codes
On failure, t_errno is set to one of the following:

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider, or user data was supplied and the provider did not
return T_ORDRELDATA in the t_open flags.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting the function at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT]
Orderly release is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

[TSYSERR] A system error has occurred during execution of this function.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

Related Information
The t_getinfo, t_open, t_rcvreldata, t_rcvrel, and t_sndrel subroutines.

t_sndv

1-1280 Technical Reference: Base Operating System

t_sndv Subroutine

Purpose
Send data or expedited data, from one or more non–contiguous buffers, on a connection.

Library
Standard library (libxti.a)

Syntax

#include <xti.h>
int t_sndv (int fd, const struct t_iovec *iov, unsigned it
iovcount, int flags)

Description

Parameters Before call After call

fd X /

iovec X /

iovcount X /

iov[0].iov_base X(X) /

iov[0].iov_len X /

iov[iovcount–1].iov_base X(X) /

iov[iovcount–1].iov_len X =

flags X /

This function is used to send either normal or expedited data. The argument fd identifies the
local transport endpoint over which data should be sent, iov points to an array of buffer
address/buffer length pairs. t_sndv sends data contained in buffers iov[0], iov[1], through
iov[iovcount–1]. iovcount contains the number of non–contiguous data buffers which is
limited to T_IOV_MAX (an implementation–defined value of at least 16). If the limit is
exceeded, the function fails with [TBADDATA].

Note: The limit on the total number of bytes available in all buffers passed (that is:
iov(0).iov_len + . . + iov(iovcount–1).iov_len) may be constrained by implementation
limits. If no other constraint applies, it will be limited by [INT_MAX]. In practice, the
availability of memory to an application is likely to impose a lower limit on the amount of
data that can be sent or received using scatter/gather functions.

The argument flags specifies any optional flags described below:

T_EXPEDITED If set in flags, the data will be sent as expedited data and will be subject to
the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the transport
service data unit (TSDU) (or expedited transport service data unit ETSDU)
is being sent through multiple t_sndv calls. Each t_sndv with the T_MORE
flag set indicates that another t_sndv (or t_snd) will follow with more data
for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_sndv call with the
T_MORE flag not set. Use of T_MORE enables a user to break up large
logical data units without losing the boundaries of those units at the other
end of the connection. The flag implies nothing about how the data is

t_sndv

1-1281Base Operating System Runtime Services (Q-Z)

packaged for transfer below the transport interface. If the transport provider
does not support the concept of a TSDU as indicated in the info argument
on return from t_open ort_getinfo, the T_MORE flag is not meaningful and
will be ignored if set.

The sending of a zero–length fragment of a TSDU or ETSDU is only
permitted where this is used to indicate the end of a TSDU or ETSDU, that
is, when the T_MORE flag is not set. Some transport providers also forbid
zero–length TSDUs and ETSDUs. See Appendix A for a fuller explanation.

If set in flags, requests that the provider transmit all data that it has accumulated but not
sent. The request is a local action on the provider and does not affect any similarly named
protocol flag (for example, the TCP PUSH flag). This effect of setting this flag is
protocol–dependent, and it may be ignored entirely by transport providers which do not
support the use of this feature.

Note: The communications provider is free to collect data in a send buffer until it
accumulates a sufficient amount for transmission.

By default, t_sndv operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is
made. However, if O_NONBLOCK is set (via t_open or fcntl), t_sndv executes in
asynchronous mode, and will fail immediately if there are flow control restrictions. The
process can arrange to be informed when the flow control restrictions are cleared via either
t_look or the EM interface.

 On successful completion, t_sndv returns the number of bytes accepted by the transport
provider. Normally this will equal the total number of bytes to be sent, that is,

 (iov[0].iov_len + . . + iov[iovcount–1].iov_len)

However, the interface is constrained to send at most INT_MAX bytes in a single send.
When t_sndv has submitted INT_MAX (or lower constrained value, see the note above)
bytes to the provider for a single call, this value is returned to the user. However, if
O_NONBLOCK is set or the function is interrupted by a signal, it is possible that only part of
the data has actually been accepted by the communications provider. In this case, t_sndv
returns a value that is less than the value of nbytes. If t_sndv is interrupted by a signal
before it could transfer data to the communications provider, it returns –1 with t_errno set to
[TSYSERR] and errno set to [EINTR].

If the number of bytes of data in the iov array is zero and sending of zero octets is not
supported by the underlying transport service, t_sndv returns –1 with t_errno set to
[TBADDATA].

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as
specified by the current values in the TSDU or ETSDU fields in the info argument returned
by t_getinfo.

The error [TLOOK] is returned for asynchronous events. It is required only for an incoming
disconnect event but may be returned for other events.

Return Values
On successful completion, t_sndv returns the number of bytes accepted by the transport
provider. Otherwise, –1 is returned on failure and t_errno is set to indicate the error.

Notes:

1. In synchronous mode, if more than INT_MAX bytes of data are passed in the iov array,
only the first INT_MAX bytes will be passed to the provider.

2. If the number of bytes accepted by the communications provider is less than the number
of bytes requested, this may either indicate that O_NONBLOCK is set and the
communications provider is blocked due to flow control, or that O_NONBLOCK is clear
and the function was interrupted by a signal.

t_sndv

1-1282 Technical Reference: Base Operating System

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA Illegal amount of data:

• A single send was attempted specifying a TSDU (ETSDU) or fragment TSDU (ETSDU)
greater than that specified by the current values of the TSDU or ETSDU fields in the info
argument.

• A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU (ETSDU) is not
supported by the provider.

• Multiple sends were attempted resulting in a TSDU (ETSDU) larger than that specified
by the current value of the TSDU or ETSDU fields in the info argument the ability of an
XTI implementation to detect such an error case is implementation–dependent (see
CAVEATS, below).

• iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented
the transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the
states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which there is
no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The t_getinfo subroutine.

The t_open subroutine.

The t_rcvv subroutine.

The t_rcv subroutine.

The t_snd subroutine.

t_sndvudata

1-1283Base Operating System Runtime Services (Q-Z)

t_sndvudata Subroutine

Purpose
Send a data unit from one or more noncontiguous buffers.

Library

Syntax

#include <xti.h>

int t_sndvudata(
 int fd,

 struct t_unitdata *unitdata,

 struct t_iovec *iov,

 unsigned int iovcount)

Description
This function is used in connectionless mode to send a data unit to another transport user.
The argument fd identifies the local transport endpoint through which data will be sent,
iovcount contains the number of non–contiguous udata buffers and is limited to an
implementation–defined value given by T_IOV_MAX, which is at least 16, and unitdata
points to a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

If the limit on iovcount is exceeded, the function fails with [TBADDATA].

In unitdata, addr specifies the protocol address of the destination user, and opt identifies
options that the user wants associated with this request. The udata field is not used. The
user may choose not to specify what protocol options are associated with the transfer by
setting the len field of opt to zero. In this case, the provider may use default options.

The data to be sent is identified by iov[0] through iov[iovcount–1].

The limit on the total number of bytes available in all buffers passed (that is:

iov(0).iov_len + . . + iov(iovcount–1).iov_len)

 may be constrained by implementation limits. If no other constraint applies, it will be limited
by [INT_MAX]. In practice, the availability of memory to an application is likely to impose a
lower limit on the amount of data that can be sent or received using scatter/gather functions.

By default, t_sndvudata operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the time
the call is made. However, if O_NONBLOCK is set (via t_open or fcntl, t_sndvudata
executes in asynchronous mode and will fail under such conditions. The process can
arrange to be notified of the clearance of a flow control restriction via either t_look or the
EM interface.

If the amount of data specified in iov[0] through iov[iovcount–1] exceeds the TSDU size
as returned in the tsdu field of the info argument of t_open or t_getinfo, or is zero and
sending of zero octets is not supported by the underlying transport service, a [TBADDATA]
error is generated. If t_sndvudata is called before the destination user has activated its
transport endpoint (see t_bind), the data unit may be discarded.

t_sndvudata

1-1284 Technical Reference: Base Operating System

If it is not possible for the transport provider to immediately detect the conditions that cause
the errors [TBADDADDR] and [TBADOPT], these errors will alternatively be returned by
t_rcvuderr. An application must therefore be prepared to receive these errors in both of
these ways.

Parameters Before call After call

fd x /

unitdata–> addr.maxlen /

unitdata–> addr.len x

unitdata–> addr.buf x(x)

unitdata–> opt.maxlen /

unitdata–> opt.len x

unitdata–> opt.buf ?(?)

unitdata–> udata.maxlen /

unitdata–> udata.len /

unitdata–> udata.buf /

iov[0].iov_base x(x) =(=)

left>iov[0].iov_len x =

iov[iovcount–1].iov_base x(x) =(=)

iov[iovcount–1].iov_len x =

iovcount x /

Valid States
T_IDLE

Error Codes
On failure, t_errno is set to one of the following:

[TBADADDR] The specified protocol address was in an incorrect format or
contained illegal information.

[TBADDATA] Illegal amount of data.

• A single send was attempted specifying a TSDU greater
than that specified in the info argument, or a send of a
zero byte TSDU is not supported by the provider.

• iovcount is greater than T_IOV_MAX.

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TBADOPT] The specified options were in an incorrect format or
contained illegal information.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism
prevented the transport provider from accepting any data at
this time.

[TLOOK] An asynchronous event has occurred on this transport
endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport
provider.

t_sndvudata

1-1285Base Operating System Runtime Services (Q-Z)

[TOUTSTATE] The communications endpoint referenced by fd is not in
one of the states in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has
been detected between XTI and the transport provider for
which there is no other suitable XTI error (t_errno).

[TSYSERR] A system error has occurred during execution of this
function.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

Related Information
The fcntl, t_alloc, t_open, t_rcvudata, t_rcvvudata, t_rcvuderr, t_sndudata subroutines.

t_sysconf

1-1286 Technical Reference: Base Operating System

t_sysconf Subroutine

Purpose
Get configurable XTI variables.

Library
Standard library (libxti.a)

Syntax
#include <xti.h>

int t_sysconf (int name)

Description

Parameters Before call After call

name X /

 The t_sysconf function provides a method for the application to determine the current
value of configurable and implementation–dependent XTI limits or options.

 The name argument represents the XTI system variable to be queried. The following table
lists the minimal set of XTI system variables from xti.h that can be returned by t_sysconf,
and the symbolic constants, defined in xti.h that are the corresponding values used for
name.

Variable Value of Name

T_IOV_MAX _SC_T_IOV_MAX

Return Values
If name is valid, t_sysconf returns the value of the requested limit/option (which might be
–1) and leaves t_errno unchanged. Otherwise, a value of –1 is returned and t_errno is set
to indicate an error.

Error Codes
On failure, t_errno is set to the following:

TBADFLAG name has an invalid value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The –t_rcvv subroutine.

The t_rcvvudata subroutine.

The t_sndv subroutine.

The t_sndvudata subroutine.

trcgen

1-1287Base Operating System Runtime Services (Q-Z)

trcgen or trcgent Subroutine

Purpose
Records a trace event for a generic trace channel.

Library
Runtime Services Library (librts.a)

Syntax
#include <sys/trchkid.h>

void trcgen(Channel, HkWord, DataWord, Length, Buffer)
unsigned int Channel, HkWord, DataWord, Length;
char *Buffer;

void trcgent(Channel, HkWord, DataWord, Length, Buffer)
unsigned int Channel, HkWord, DataWord, Length;
char *Buffer;

Description
The trcgen subroutine records a trace event for a generic trace entry consisting of a hook
word, a data word, and a variable number of bytes of trace data. The trcgent subroutine
records a trace event for a generic trace entry consisting of a hook word, a data word, a
variable number of bytes of trace data, and a time stamp.

The trcgen subroutine and trcgent subroutine are located in pinned kernel memory.

Parameters

Buffer Specifies a pointer to a buffer of trace data. The maximum size of the trace data is
4096 bytes.

Channel Specifies a channel number for the trace session, obtained from the trcstart
subroutine.

DataWord Specifies a word of user–defined data.

trcgen

1-1288 Technical Reference: Base Operating System

HkWord

 Specifies an integer consisting of two bytes of user–defined data (HkData), a hook
ID (HkID), and a hook type (Hk_Type).

HkData Specifies two bytes of user–defined data.

HkID Specifies a hook identifier. For user programs, the
hook ID value ranges from 010 to 0FF.

Hk_Type Specifies a 4–bit value that identifies the amount of
trace data to be recorded:

Value Records

1 Hook word

9 Hook word and a time stamp

2 Hook word and one data word

A Hook word, one data word, and a time stamp

6 Hook word and up to five data words

E Hook word, up to five data words, and a time
stamp.

Length Specifies the length in bytes of the Buffer parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The trchook subroutine, trcoff subroutine, trcon subroutine, trcstart subroutine, trcstop
subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

trchook

1-1289Base Operating System Runtime Services (Q-Z)

trchook or utrchook Subroutine

Purpose
Records a trace event.

Library
Runtime Services Library (librts.a)

Syntax
#include <sys/trchkid.h>

void trchook(HkWord, d1, d2, d3, d4, d5)
unsigned int HkWord, d1, d2, d3, d4, d5;

void utrchook(HkWord, d1, d2, d3, d4, d5)
unsigned int HkWord, d1, d2, d3, d4, d5;

Description
The trchook subroutine records a trace event if a trace session is active. Input parameters
include a hook word (HkWord) and from 0 to 5 words of data.

The utrchook subroutine uses a special FAST–SVC path to improve performance and is
intended for programs running at user (application) level.

Parameters

d1, d2, d3, d4, d5 Up to 5 words of data from the calling program.

HkWord

 An unsigned integer consisting of a hook ID (HkID), a hook type
(Hk_Type), and two bytes of data from the calling program
(HkData).

HkID A hook ID is a 12–bit value. For user programs,
the hook ID may be a value from 0x010 to 0x0FF.
Hook identifiers are defined in the
/usr/include/sys/trchkid.h file.

Hk_Type A 4–bit value that identifies the amount of trace
data to be recorded:

Value Records

1 Hook word

9 Hook word and a time stamp

2 Hook word and one data word

A Hook word, one data word, and a
time stamp

6 Hook word and up to five data
words

E Hook word, up to five data
words, and a time stamp.

HkData Two bytes of data from the calling program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

trchook

1-1290 Technical Reference: Base Operating System

Related Information
The trcgen subroutine, trcgent subroutine, trcoff subroutine, trcon subroutine, trcstart
subroutine, trcstop subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

trcoff

1-1291Base Operating System Runtime Services (Q-Z)

trcoff Subroutine

Purpose
Halts the collection of trace data from within a process.

Library
Runtime Services Library (librts.a)

Syntax
int trcoff(Channel)
int Channel;

Description
The trcoff subroutine issues an ioctl subroutine to the trace device driver to stop trace data
collection for a particular trace channel. The trace session must have already been started
using the trace command or the trcstart subroutine.

Parameters

Channel Channel number for the trace session.

Return Values

0 The ioctl subroutine was successful. Trace data collection stops.

–1 The ioctl subroutine was not successful.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine, trcgen subroutine, trchook subroutine, trcon subroutine, trcstart
subroutine, trcstop subroutine.

The trace daemon.

trcgenk kernel service, trcgenkt kernel service.

trcon

1-1292 Technical Reference: Base Operating System

trcon Subroutine

Purpose
Starts the collection of trace data.

Library
Runtime Services Library (librts.a)

Syntax
int trcon(Channel)
int Channel;

Description
The trcon subroutine issues an ioctl subroutine to the trace device driver to start trace data
collection for a particular trace channel. The trace session must have already been started
using the trace command or the trcstart subroutine.

Parameters

Channel Specifies one of eight trace channels. Channel number 0 always refers
to the Event/Performance trace. Channel numbers 1 through 7 specify
generic trace channels.

Return Values

0 The ioctl subroutine was successful. Trace data collection starts.

–1 The ioctl subroutine was not successful.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine, trcgen subroutine, trchook subroutine, trcoff subroutine, trcstart
subroutine, trcstop subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

trcstart

1-1293Base Operating System Runtime Services (Q-Z)

trcstart Subroutine

Purpose
Starts a trace session.

Library
Runtime Services Library (librts.a)

Syntax
int trcstart(Argument)
char *Argument;

Description
The trcstart subroutine starts a trace session. The Argument parameter points to a
character string containing the flags invoked with the trace daemon. To specify that a
generic trace session is to be started, include the –g flag.

Parameters

Argument Character pointer to a string holding valid arguments from the trace
daemon.

Return Values
If the trace daemon is started successfully, the channel number is returned. Channel
number 0 is returned if a generic trace was not requested. If the trace daemon is not started
successfully, a value of –1 is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/dev/trace Trace special file.

Related Information
The trcon subroutine.

The trace daemon.

trcstop

1-1294 Technical Reference: Base Operating System

trcstop Subroutine

Purpose
Stops a trace session.

Library
Runtime Services Library (librts.a)

Syntax
int trcstop(Channel)
int Channel;

Description
The trcstop subroutine stops a trace session for a particular trace channel.

Parameters

Channel Specifies one of eight trace channels. Channel number 0 always refers
to the Event/Performance trace. Channel numbers 1 through 7 specify
generic trace channels.

Return Values

0 The trace session was stopped successfully.

–1 The trace session did not stop.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine, trcgen subroutine, trchook subroutine, trcoff subroutine, trcon
subroutine, trcstart subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

truncate

1-1295Base Operating System Runtime Services (Q-Z)

truncate, truncate64, ftruncate, or ftruncate64 Subroutine

Purpose
Changes the length of regular files.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int truncate (Path, Length)
const char *Path;
off_t Length;

int ftruncate (FileDescriptor, Length)
int FileDescriptor;
off_t Length;

Note: The truncate64 and ftruncate64 subroutines apply to Version 4.2 and later
releases.

int truncate64 (Path, Length)
const char *Path;
off64_t Length;

int ftruncate64 (FileDescriptor, Length)
int FileDescriptor;
off64_t Length;

Description
Note: The truncate64 and ftruncate64 subroutines apply to Version 4.2 and later
releases.

The truncate and ftruncate subroutines change the length of regular files.

The Path parameter must point to a regular file for which the calling process has write
permission. The Length parameter specifies the desired length of the new file in bytes.

The Length parameter measures the specified file in bytes from the beginning of the file. If
the new length is less than the previous length, all data between the new length and the
previous end of file is removed. If the new length in the specified file is greater than the
previous length, data between the old and new lengths is read as zeros. Full blocks are
returned to the file system so that they can be used again, and the file size is changed to
the value of the Length parameter.

If the file designated in the Path parameter names a symbolic link, the link will be traversed
and path–name resolution will continue.

These subroutines do not modify the seek pointer of the file.

These subroutines cannot be applied to a file that a process has open with the O_DEFER
flag.

Successful completion of the truncate or ftruncate subroutine updates the st_ctime and
st_mtime fields of the file. Successful completion also clears the SetUserID bit (S_ISUID)
of the file if any of the following are true:

• The calling process does not have root user authority.

• The effective user ID of the calling process does not match the user ID of the file.

• The file is executable by the group (S_IXGRP) or others (S_IXOTH).

truncate

1-1296 Technical Reference: Base Operating System

These subroutines also clear the SetGroupID bit (S_ISGID) if:

• The file does not match the effective group ID or one of the supplementary group IDs of
the process

• OR

• The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the subroutine
fails because the data in the file was modified before the error was detected.

truncate and ftruncate can be used to specify any size up to OFF_MAX. truncate64 and
ftruncate64 can be used to specify any length up to the maximum file size for the file.

In the large file enabled programming environment, truncate is redefined to be truncate64
and ftruncate is redefined to be ftruncate64.

Parameters

Path Specifies the name of a file that is opened, truncated, and then closed.

FileDescriptor Specifies the descriptor of a file that must be open for writing.

Length Specifies the new length of the truncated file in bytes.

Return Values
Upon successful completion, a value of 0 is returned. If the truncate or ftruncate
subroutine is unsuccessful, a value of –1 is returned and the errno global variable is set to
indicate the nature of the error.

Error Codes
The truncate and ftruncate subroutines fail if the following is true:

EROFS An attempt was made to truncate a file that resides on a read–only file
system.

Note: In addition, the truncate subroutine can return the same errors as the open
subroutine if there is a problem opening the file.

The truncate and ftruncate subroutines fail if one of the following is true:

EAGAIN The truncation operation fails due to an enforced write lock on a portion
of the file being truncated. Because the target file was opened with the
O_NONBLOCK or O_NDELAY flags set, the subroutine fails
immediately rather than wait for a release.

EDQUOT New disk blocks cannot be allocated for the truncated file. The quota of
the user’s or group’s allotted disk blocks has been exhausted on the
target file system.

EFBIG An attempt was made to write a file that exceeds the process’ file size
limit or the maximum file size. If the user has set the environment
variable XPG_SUS_ENV=ON prior to execution of the process, then the
SIGXFSZ signal is posted to the process when exceeding the process’
file size limit.

EFBIG The file is a regular file and length is greater thatn the offset maximum
established in the open file description associated with fildes.

EINVAL The file is not a regular file.

EINVAL The Length parameter was less than zero.

EISDIR The named file is a directory.

EINTR A signal was caught during execution.

EIO An I/O error occured while reading from or writing to the file system.

EMFILE The file is open with O_DEFER by one or more processes.

truncate

1-1297Base Operating System Runtime Services (Q-Z)

ENOSPC New disk blocks cannot be allocated for the truncated file. There is no
free space on the file system containing the file.

ETXTBSY The file is part of a process that is running.

EROFS The named file resides on a read–only file system.

Notes:

1. The truncate subroutine can also be unsuccessful for other reasons. For a list of
additional errors, see ”Base Operating System Error Codes For Services That Require
Path–Name Resolution”, on page 0.

2. The truncate subroutine can return the same errors as the open subroutine if there is a
problem opening the file.

The ftruncate subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor open for
writing.

EINVAL The FileDescriptor argument references a file that was opened without
write permission.

The truncate function will fail if:

EACCES A component of the path
prefix denies search
permission, or write
permission is denied on the
file.

EISDIR The named file is a
directory.

ELOOP Too many symbolic links
were encountered in
resolving path.

ENAMETOOLONG The length of the specified
pathname exceeds
PATH_MAX bytes, or the
length of a component of the
pathname exceeds
NAME_MAX bytes.

ENOENT A component of path does
not name an existing file or
path is an empty string.

ENTDIR A component of the path
prefix of path is not a
directory.

EROFS The named file resides on a
read–only file system.

The truncate function may fail if:

ENAMETOOLONG Pathname resolution of a
symbolic link produced an
intermediate result whose
length exceeds PATH_MAX.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

truncate

1-1298 Technical Reference: Base Operating System

Related Information
The fclear subroutine, openx, open, or creat subroutine.

Appendix A, ”Base Operating System Error Codes for Services That Require Path–Name
Resolution.”

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts: Writing and Debugging Programs.

tsearch

1-1299Base Operating System Runtime Services (Q-Z)

tsearch, tdelete, tfind or twalk Subroutine

Purpose
Manages binary search trees.

Library
Standard C Library (libc.a)

Syntax
#include <search.h>

void *tsearch (Key, RootPointer, ComparisonPointer)
const void *Key;
void **RootPointer;
int (*ComparisonPointer) (const void *Element1, const void
*Element2);

void *tdelete (Key, RootPointer, ComparisonPointer)
const void *Key;
void **RootPointer;
int (*ComparisonPointer) (const void *Element1, const void
*Element2);

void *tfind (Key, RootPointer, ComparisonPointer)
const void *Key;
void *const *RootPointer;
int (*ComparisonPointer) (const void *Element1, const void
*Element2);

void twalk (Root, Action)
const void *Root;
void (*Action) (const void *Node, VISIT Type, int Level);

Description
The tsearch, tdelete, tfind and twalk subroutines manipulate binary search trees.
Comparisons are made with the user–supplied routine specified by the ComparisonPointer
parameter. This routine is called with two parameters, the pointers to the elements being
compared.

The tsearch subroutine performs a binary tree search, returning a pointer into a tree
indicating where the data specified by the Key parameter can be found. If the data specified
by the Key parameter is not found, the data is added to the tree in the correct place. If there
is not enough space available to create a new node, a null pointer is returned. Only pointers
are copied, so the calling routine must store the data. The RootPointer parameter points to
a variable that points to the root of the tree. If the RootPointer parameter is the null value,
the variable is set to point to the root of a new tree. If the RootPointer parameter is the null
value on entry, then a null pointer is returned.

The tdelete subroutine deletes the data specified by the Key parameter. The RootPointer
and ComparisonPointer parameters perform the same function as they do for the tsearch
subroutine. The variable pointed to by the RootPointer parameter is changed if the deleted
node is the root of the binary tree. The tdelete subroutine returns a pointer to the parent
node of the deleted node. If the data is not found, a null pointer is returned. If the
RootPointer parameter is null on entry, then a null pointer is returned.

The tfind subroutine searches the binary search tree. Like the tsearch subroutine, the tfind
subroutine searches for a node in the tree, returning a pointer to it if found. However, if it is
not found, the tfind subroutine will return a null pointer. The parameters for the tfind
subroutine are the same as for the tsearch subroutine.

The twalk subroutine steps through the binary search tree whose root is pointed to by the
RootPointer parameter. (Any node in a tree can be used as the root to step through the tree

tsearch

1-1300 Technical Reference: Base Operating System

below that node.) The Action parameter is the name of a routine to be invoked at each
node. The routine specified by the Action parameter is called with three parameters. The
first parameter is the address of the node currently being pointed to. The second parameter
is a value from an enumeration data type:

typedef enum [preorder, postorder, endorder, leaf] VISIT;

(This data type is defined in the search.h file.) The actual value of the second parameter
depends on whether this is the first, second, or third time that the node has been visited
during a depth–first, left–to–right traversal of the tree, or whether the node is a leaf. A leaf is
a node that is not the parent of another node. The third parameter is the level of the node in
the tree, with the root node being level zero.

Although declared as type pointer–to–void, the pointers to the key and the root of the tree
should be of type pointer–to–element and cast to type pointer–to–character. Although
declared as type pointer–to–character, the value returned should be cast into type
pointer–to–element.

Parameters

Key Points to the data to be located.

ComparisonPointer Points to the comparison function, which is called with two
parameters that point to the elements being compared.

RootPointer Points to a variable that in turn points to the root of the tree.

Action Names a routine to be invoked at each node.

Root Points to the roots of a binary search node.

Return Values
The comparison function compares its parameters and returns a value as follows:

• If the first parameter is less than the second parameter, the ComparisonPointer
parameter returns a value less than 0.

• If the first parameter is equal to the second parameter, the ComparisonPointer parameter
returns a value of 0.

• If the first parameter is greater than the second parameter, the ComparisonPointer
parameter returns a value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained
in the elements in addition to the values being compared.

If the node is found, the tsearch and tfind subroutines return a pointer to it. If the node is
not found, the tsearch subroutine returns a pointer to the inserted item and the tfind
subroutine returns a null pointer. If there is not enough space to create a new node, the
tsearch subroutine returns a null pointer.

If the RootPointer parameter is a null pointer on entry, a null pointer is returned by the
tsearch and tdelete subroutines.

The tdelete subroutine returns a pointer to the parent of the deleted node. If the node is not
found, a null pointer is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The bsearch subroutine, hsearch subroutine, lsearch subroutine.

Searching and Sorting Example Program, Subroutines Overview in AIX General
Programming Concepts: Writing and Debugging Programs.

ttylock

1-1301Base Operating System Runtime Services (Q-Z)

ttylock, ttywait, ttyunlock, or ttylocked Subroutine

Purpose
Controls tty locking functions.

Library
Standard C Library (libc.a)

Syntax
int ttylock (DeviceName)
char *DeviceName;

int ttywait (DeviceName)
char *DeviceName;

int ttyunlock (DeviceName)
char *DeviceName;

int ttylocked (DeviceName)
char *DeviceName;

Description
The ttylock subroutine creates the LCK..DeviceName file in the /etc/locks directory and
writes the process ID of the calling process in that file. If LCK..DeviceName exists and the
process whose ID is contained in this file is active, the ttylock subroutine returns an error.

There are programs like uucp and connect that create tty locks in the /etc/locks directory.
The convention followed by these programs is to call the ttylock subroutine with an
argument of DeviceName for locking the /dev/DeviceName file. This convention must be
followed by all callers of the ttylock subroutine to make the locking mechanism work.

The ttywait subroutine blocks the calling process until the lock file associated with
DeviceName, the /etc/locks/LCK..DeviceName file, is removed.

The ttyunlock subroutine removes the lock file, /etc/locks/LCK..DeviceName, if it is held
by the current process.

The ttylocked subroutine checks to see if the lock file, /etc/locks/LCK..DeviceName, exists
and the process that created the lock file is still active. If the process is no longer active, the
lock file is removed.

Parameters

DeviceName Specifies the name of the device.

Return Values
Upon successful completion, the ttylock subroutine returns a value of 0. Otherwise, a value
of –1 is returned.

The ttylocked subroutine returns a value of 0 if no process has a lock on device.
Otherwise, a value of –1 is returned.

Examples
1. To create a lock for /dev/tty0, use the following statement:

rc = ttylock(”tty0”);

2. To lock /dev/tty0 device and wait for lock to be cleared if it exists, use the following
statements:

ttylock

1-1302 Technical Reference: Base Operating System

if (ttylock(”tty0”))

 ttywait(”tty0”);

rc = ttylock(”tty0”);

3. To remove the lock file for device /dev/tty0 created by a previous call to the ttylock
subroutine, use the following statement:

ttyunlock(”tty0”);

4. To check for a lock on /dev/tty0, use the following statement:

rc = ttylocked(”tty0”);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The /etc/locks directory.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts: Writing and Debugging Programs.

ttyname

1-1303Base Operating System Runtime Services (Q-Z)

ttyname or isatty Subroutine

Purpose
Gets the name of a terminal or determines if the device is a terminal.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

char *ttyname(FileDescriptor)
int FileDescriptor;

int isatty(FileDescriptor)
int FileDescriptor;

Description
Attention: Do not use the ttyname subroutine in a multithreaded environment. See the
multithread alternative in the ttyname_r subroutine article.

Attention: Do not use the ttyname subroutine in a multithreaded environment.

The ttyname subroutine gets the path name of a terminal.

The isatty subroutine determines if the file descriptor specified by the FileDescriptor
parameter is associated with a terminal.

The isatty subroutine does not necessarily indicate that a person is available for interaction,
since nonterminal devices may be connected to the communications line.

Parameters

FileDescriptor Specifies an open file descriptor.

Return Values
The ttyname subroutine returns a pointer to a string containing the null–terminated path
name of the terminal device associated with the file descriptor specified by the
FileDescriptor parameter. A null pointer is returned and the errno global variable is set to
indicate the error if the file descriptor does not describe a terminal device in the /dev
directory.

The return value of the ttyname subroutine may point to static data whose content is
overwritten by each call.

If the specified file descriptor is associated with a terminal, the isatty subroutine returns a
value of 1. If the file descriptor is not associated with a terminal, a value of 0 is returned and
the errno global variable is set to indicate the error.

Error Codes
The ttyname and isatty subroutines are unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

ENOTTY The FileDescriptor parameter does not specify a terminal device.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

ttyname

1-1304 Technical Reference: Base Operating System

Files

/dev/* Terminal device special files.

Related Information
The ttyslot subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts: Writing and Debugging Programs.

ttyslot

1-1305Base Operating System Runtime Services (Q-Z)

ttyslot Subroutine

Purpose
Finds the slot in the utmp file for the current user.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
int ttyslot (void)

Description
The ttyslot subroutine returns the index of the current user’s entry in the /etc/utmp file. The
ttyslot subroutine scans the /etc/utmp file for the name of the terminal associated with the
standard input, the standard output, or the error output file descriptors (0, 1, or 2).

The ttyslot subroutine returns –1 if an error is encountered while searching for the terminal
name, or if none of the first three file descriptors (0, 1, and 2) is associated with a terminal
device.

Files

/etc/inittab The path to the inittab file, which controls the initialization process.

/etc/utmp The path to the utmp file, which contains a record of users logged in to
the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getutent subroutine, ttyname or isatty subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts: Writing and Debugging Programs.

ulimit

1-1306 Technical Reference: Base Operating System

ulimit Subroutine

Purpose
Sets and gets user limits.

Library
Standard C Library (libc.a)

Syntax
The syntax for the ulimit subroutine when the Command parameter specifies a value of
GET_FSIZE or SET_FSIZE is:

#include <ulimit.h>

long int ulimit (Command, NewLimit)
int Command;
off_t NewLimit;

The syntax for the ulimit subroutine when the Command parameter specifies a value of
GET_DATALIM, SET_DATALIM, GET_STACKLIM, SET_STACKLIM, GET_REALDIR, or
SET_REALDIR is:

#include <ulimit.h>

long int ulimit (Command, NewLimit)
int Command;
int NewLimit;

Description
The ulimit subroutine controls process limits.

Even with remote files, the ulimit subroutine values of the process on the client node are
used.

Note: Raising the data ulimit does not necessarily raise the program break value. If the
proper memory segments are not initialized at program load time, raising your memory
limit will not allow access to this memory. Also, without these memory segments
initialized, the value returned after such a change may not be the proper break value. If
your data limit is RLIM_INFINITY, this value will never advance past the segment size,
even if that data is available. Use the –bmaxdata flag of the ld command to set up these
segments at load time.

ulimit

1-1307Base Operating System Runtime Services (Q-Z)

Parameters

Command

 Specifies the form of control. The following Command parameter values require that
the NewLimit parameter be declared as an off_t structure:

GET_FSIZE (1) Returns the process file size limit. The limit is in
units of UBSIZE blocks (see the sys/param.h file)
and is inherited by child processes. Files of any size
can be read. The process file size limit is returned in
the off_t structure specified by the NewLimit
parameter.

SET_FSIZE (2) Sets the process file size limit to the value in the
off_t structure specified by the NewLimit parameter.
Any process can decrease this limit, but only a
process with root user authority can increase the
limit. The new file size limit is returned.

The following Command parameter values require that the NewLimit
parameter be declared as an integer:

GET_DATALIM (3)
Returns the maximum possible break value (as
described in the brk or sbrk subroutine).

SET_DATALIM (1004)
Sets the maximum possible break value (described
in the brk and sbrk subroutines). Returns the new
maximum break value, which is the NewLimit
parameter rounded up to the nearest page
boundary.

GET_STACKLIM (1005)
Returns the lowest valid stack address.

Note: Stacks grow from high addresses to low addresses.

SET_STACKLIM (1006)
Sets the lowest valid stack address. Returns the
new minimum valid stack address, which is the
NewLimit parameter rounded down to the nearest
page boundary.

GET_REALDIR (1007)
Returns the current value of the real directory read
flag. If this flag is a value of 0, a read system call (or
readx with Extension parameter value of 0) against
a directory returns fixed–format entries compatible
with the System V UNIX operating system.
Otherwise, a read system call(or readx with
Extension parameter value of 0) against a directory
returns the underlying physical format.

SET_REALDIR (1008)
Sets the value of the real directory read flag. If the
NewLimit parameter is a value of 0, this flag is
cleared; otherwise, it is set. The old value of the real
directory read flag is returned.

 NewLimit Specifies the new limit. The value and data type or structure of the NewLimit
parameter depends on the Command parameter value that is used.

ulimit

1-1308 Technical Reference: Base Operating System

Examples
To increase the size of the stack by 4096 bytes (use 4096 or PAGESIZE), and set the rc to
the new lowest valid stack address, enter:

rc = ulimit(SET_STACKLIM, ulimit(GET_STACKLIM, 0) – 4096);

Return Values
Upon successful completion, the value of the requested limit is returned. Otherwise, a value
of –1 is returned and the errno global variable is set to indicate the error.

All return values are permissible if the ulimit subroutine is successful. To check for error
situations, an application should set the errno global variable to 0 before calling the ulimit
subroutine. If the ulimit subroutine returns a value of –1, the application should check the
errno global variable to verify that it is nonzero.

Error Codes
The ulimit subroutine is unsuccessful and the limit remains unchanged if one of the
following is true:

EPERM A process without root user authority attempts to increase the file size
limit.

EINVAL The Command parameter is a value other than GET_FSIZE,
SET_FSIZE, GET_DATALIM, SET_DATALIM, GET_STACKLIM,
SET_STACKLIM, GET_REALDIR, or SET_REALDIR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The brk subroutine, sbrk subroutine, getrlimit or setrlimit subroutine, pathconf
subroutine, read subroutines, vlimit subroutine, write subroutine.

umask

1-1309Base Operating System Runtime Services (Q-Z)

umask Subroutine

Purpose
Sets and gets the value of the file creation mask.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

mode_t umask (CreationMask)
mode_t CreationMask;

Description
The umask subroutine sets the file–mode creation mask of the process to the value of the
CreationMask parameter and returns the previous value of the mask.

Whenever a file is created (by the open, mkdir, or mknod subroutine), all file permission
bits set in the file mode creation mask are cleared in the mode of the created file. This
clearing allows users to restrict the default access to their files.

The mask is inherited by child processes.

Parameters

CreationMask Specifies the value of the file mode creation mask. The CreationMask
parameter is constructed by logically ORing file permission bits defined
in the sys/mode.h file. Nine bits of the CreationMask parameter are
significant.

Return Values
If successful, the file permission bits returned by the umask subroutine are the previous
value of the file–mode creation mask. The CreationMask parameter can be set to this value
in subsequent calls to the umask subroutine, returning the mask to its initial state.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, mkdir subroutine, mkfifo subroutine, mknod subroutine, openx,
open, or creat subroutine, stat subroutine.

The sh command, ksh command.

The sys/mode.h file.

Shells Overview in AIX 4.3 System User’s Guide: Operating System and Devices.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

umount

1-1310 Technical Reference: Base Operating System

umount or uvmount Subroutine

Purpose
Removes a virtual file system from the file tree.

Library
Standard C Library (libc.a)

Syntax
int umount (Device)
char *Device;

#include <sys/vmount.h>

int uvmount (VirtualFileSystemID, Flag)
int VirtualFileSystemID;
int Flag;

Description
The umount and uvmount subroutines remove a virtual file system (VFS) from the file tree.

The umount subroutine unmounts only file systems mounted from a block device (a special
file identified by its path to the block device).

In addition to local devices, the uvmount subroutine unmounts local or remote directories,
identified by the VirtualFileSystemID parameter.

Only a calling process with root user authority or in the system group and having write
access to the mount point can unmount a device, file and directory mount.

Parameters

Device The path name of the block device to be unmounted for the
umount subroutine.

VirtualFileSystemID The unique identifier of the VFS to be unmounted for the uvmount
subroutine. This value is returned when a VFS is created by the
vmount subroutine and may subsequently be obtained by the
mntctl subroutine. The VirtualFileSystemID is also reported in the
stat subroutine st_vfs field.

Flag

 Specifies special action for the uvmount subroutine. Currently only
one value is defined:

UVMNT_FORCE
Force the unmount. This flag is
ignored for device mounts.

Return Values
Upon successful completion a value of 0 is returned. Otherwise, a value of –1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The uvmount subroutine fails if one of the following is true:

umount

1-1311Base Operating System Runtime Services (Q-Z)

EPERM The calling process does not have write permission to the root of the
VFS, the mounted object is a device or remote, and the calling
process does not have root user authority.

EINVAL No VFS with the specified VirtualFileSystemID parameter exists.

EBUSY A device that is still in use is being unmounted.

The umount subroutine fails if one of the following is true:

EPERM The calling process does not have root user authority.

ENOENT The Device parameter does not exist.

ENOBLK The Device parameter is not a block device.

EINVAL The Device parameter is not mounted.

EINVAL The Device parameter is not local.

EBUSY A process is holding a reference to a file located on the file system.

The umount subroutine can be unsuccessful for other reasons. For a list of additional
errors, see Appendix A, ”Base Operating System Error Codes for Services That Require
Path–Name Resolution.”

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mount subroutine.

The mount command, umount command.

Mounting Overview in AIX 4.3 System Management Guide: Operating System and Devices.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

Understanding Mount Helpers in AIX General Programming Concepts : Writing and
Debugging Programs explains and examines the execution syntax of mount helpers.

uname

1-1312 Technical Reference: Base Operating System

uname or unamex Subroutine

Purpose
Gets the name of the current operating system.

Library
Standard C Library (libc.a)

Syntax
#include <sys/utsname.h>
int uname (Name)
struct utsname *Name;
int unamex (Name)
struct xutsname *Name;

Description
The uname subroutine stores information identifying the current system in the structure
pointed to by the Name parameter.

The uname subroutine uses the utsname structure, which is defined in the sys/utsname.h
file, and contains the following members:

char sysname[SYS_NMLN];

char nodename[SYS_NMLN];

char release[SYS_NMLN];

char version[SYS_NMLN];

char machine[SYS_NMLN];

The uname subroutine returns a null–terminated character string naming the current system
in the sysname character array. The nodename array contains the name that the system is
known by on a communications network. The release and version arrays further identify
the system. The machine array identifies the system unit hardware being used.

The unamex subroutine uses the xutsname structure, which is defined in the
sys/utsname.h file, and contains the following members:

unsigned long nid;

long reserved[3];

The xutsname.nid field is the binary form of the utsname.machine field. For local area
networks in which a binary node name is appropriate, the xutsname.nid field contains
such a name.

Release and version variable numbers returned by the uname and unamex subroutines
may change when new BOS software levels are installed. This change affects applications
using these values to access licensed programs. Machine variable changes are due to
hardware fixes or upgrades.

Contact the appropriate support organization if your application is affected.

Parameters

 Name A pointer to the utsname or xutsname structure.

Return Values
Upon successful completion, the uname or unamex subroutine returns a nonnegative
value. Otherwise, a value of –1 is returned and the errno global variable is set to indicate
the error.

uname

1-1313Base Operating System Runtime Services (Q-Z)

Error Codes
The uname and unamex subroutines is unsuccessful if the following is true:

EFAULT The Name parameter points outside of the process address space.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The uname command.

ungetc

1-1314 Technical Reference: Base Operating System

ungetc or ungetwc Subroutine

Purpose
Pushes a character back into the input stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int ungetc (Character, Stream)
int Character;
FILE *Stream;

wint_t ungetwc (Character, Stream)
wint_t Character;
FILE *Stream;

Description
The ungetc and ungetwc subroutines insert the character specified by the Character
parameter (converted to an unsigned character in the case of the ungetc subroutine) into
the buffer associated with the input stream specified by the Stream parameter. This causes
the next call to the getc or getwc subroutine to return the Character value. A successful
intervening call (with the stream specified by the Stream parameter) to a file–positioning
subroutine (fseek, fsetpos, or rewind) discards any inserted characters for the stream. The
ungetc and ungetwc subroutines return the Character value, and leaves the file (in its
externally stored form) specified by the Stream parameter unchanged.

You can always push one character back onto a stream, provided that something has been
read from the stream or the setbuf subroutine has been called. If the ungetc or ungetwc
subroutine is called too many times on the same stream without an intervening read or
file–positioning operation, the operation may not be successful. The fseek subroutine
erases all memory of inserted characters.

The ungetc and ungetwc subroutines return a value of EOF or WEOF if a character cannot
be inserted.

A successful call to the ungetc or ungetwc subroutine clears the end–of–file indicator for
the stream specified by the Stream parameter. The value of the file–position indicator after
all inserted characters are read or discarded is the same as before the characters were
inserted. The value of the file–position indicator is decreased after each successful call to
the ungetc or ungetwc subroutine. If its value was 0 before the call, its value is
indeterminate after the call.

Parameters

Character Specifies a character.

Stream Specifies the input stream.

Return Values
The ungetc and ungetwc subroutines return the inserted character if successful; otherwise,
EOF or WEOF is returned, respectively.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

ungetc

1-1315Base Operating System Runtime Services (Q-Z)

Related Information
Other wide character I/O subroutines: fgetwc subroutine, fgetws subroutine, fputwc
subroutine, fputws subroutine, getwc subroutine, getwchar subroutine, getws subroutine,
putwc subroutine, putwchar subroutine, putws subroutine.

Related standard I/O subroutines: fdopen subroutine, fgets subroutine, fopen subroutine,
fprintf subroutine, fputc subroutine, fputs subroutine, fread subroutine, freopen
subroutine, fwrite subroutine, gets subroutine, printf subroutine, putc subroutine, putchar
subroutine, puts subroutine, putw subroutine, sprintf subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Input/Output Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

unlink

1-1316 Technical Reference: Base Operating System

unlink Subroutine

Purpose
Removes a directory entry.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int unlink (Path)
const char *Path;

Description
The unlink subroutine removes the directory entry specified by the Path parameter and
decreases the link count of the file referenced by the link. If Network File System (NFS) is
installed on your system, this path can cross into another node.

Attention: Removing a link to a directory requires root user authority. Unlinking of
directories is strongly discouraged since erroneous directory structures can result. The
rmdir subroutine should be used to remove empty directories.

When all links to a file are removed and no process has the file open, all resources
associated with the file are reclaimed, and the file is no longer accessible. If one or more
processes have the file open when the last link is removed, the directory entry disappears.
However, the removal of the file contents is postponed until all references to the file are
closed.

If the parent directory of Path has the sticky attribute (described in the mode.h file), the
calling process must have root user authority or an effective user ID equal to the owner ID of
Path or the owner ID of the parent directory of Path.

The st_ctime and st_mtime fields of the parent directory are marked for update if the
unlink subroutine is successful. In addition, if the file’s link count is not 0, the st_ctime
field of the file will be marked for update.

Applications should use the rmdir subroutine to remove a directory. If the Path parameter
names a symbolic link, the link itself is removed.

Parameters

Path Specifies the directory entry to be removed.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned,
the errno global variable is set to indicate the error, and the specified file is not changed.

Error Codes
The unlink subroutine fails and the named file is not unlinked if one of the following is true:

ENOENT The named file does not exist.

EACCES Write permission is denied on the directory containing the link to be
removed.

EPERM The named file is a directory, and the calling process does not have
root user authority.

unlink

1-1317Base Operating System Runtime Services (Q-Z)

EBUSY The entry to be unlinked is the mount point for a mounted filesystem,
or the file named by Path is a named STREAM.

EPERM The file specified by the Path parameter is a directory, and the calling
process does not have root user authority.

EROFS The entry to be unlinked is part of a read–only file system.

The unlink subroutine can be unsuccessful for other reasons. For a list of additional errors,
see Appendix A, ”Base Operating System Error Codes for Service That Require Path–Name
Resolution”

If NFS is installed on the system, the unlink subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The close subroutine, link subroutine, open subroutine, remove subroutine, rmdir
subroutine.

The rm command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

unload

1-1318 Technical Reference: Base Operating System

unload Subroutine

Purpose
Unloads a module.

Library
Standard C Library (libc.a)

Syntax
#include <sys/ldr.h>

int unload(FunctionPointer)
int (*FunctionPointer)();

Description
The unload subroutine unloads the specified module and its dependents. The value
returned by the load subroutine is passed to the unload subroutine as FunctionPointer.

If the program calling the unload subroutine was linked on 4.2 or a later release, the
unload subroutine calls termination routines (fini routines) for the specified module and any
of its dependents that are not being used by any other module.

The unload subroutine frees the storage used by the specified module only if the module is
no longer in use. A module is in use as long as any other module that is in use imports
symbols from it.

When a module is unloaded, any deferred resolution symbols that were bound to the
module remain bound. These bindings create references to the module that cannot be
undone, even with the unload subroutine.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a process is
executing under ptrace control, portions of the process’s address space are recopied after
the unload processing completes. For a 32–bit process, the main program text (loaded in
segment 1) and shared library modules (loaded in segment 13) are recopied. Any
breakpoints or other modifications to these segments must be reinserted after the unload
call. For a 64–bit process, shared library modules are recopied after an unload call. The
debugger will be notified by setting the W_SLWTED flag in the status returned by wait, so
that it can reinsert breakpoints.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process executing
under ptrace control calls unload, the debugger is notified by setting the W_SLWTED flag
in the status returned by wait. If a module loaded in the shared library is no longer in use by
the process, the module is deleted from the process’s copy of the shared library segment by
freeing the pages containing the module.

Parameters

FunctionPointer Specifies the name of the function returned by the load
subroutine.

Return Values
Upon successful completion, the unload subroutine returns a value of 0 , even if the
module couldn’t be unloaded because it is still in use.

unload

1-1319Base Operating System Runtime Services (Q-Z)

Error Codes
If the unload subroutine fails, a value of –1 is returned, the program is not unloaded, and
errno is set to indicate the error. errno may be set to one of the following:

EINVAL The FunctionPointer parameter does not correspond to a
program loaded by the load subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The load subroutine, loadbind subroutine, loadquery subroutine, dlclose subroutine.

The ld command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

unlockpt

1-1320 Technical Reference: Base Operating System

unlockpt Subroutine

Purpose
Unlocks a pseudo–terminal device.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int unlockpt (FileDescriptor)
int FileDescriptor;

Description
The unlockpt subroutine unlocks the slave peudo–terminal device associated with the
master peudo–terminal device defined by the FileDescriptor parameter. This subroutine has
no effect if the environment variable XPG_SUS_ENV is not set equal to the string ”ON”, or if
the BSD PTY driver is used.

Parameters

FileDescriptor Specifies the file descriptor of the master pseudo–terminal device.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The grantpt subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

usrinfo

1-1321Base Operating System Runtime Services (Q-Z)

usrinfo Subroutine

Purpose
Gets and sets user information about the owner of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <uinfo.h>

int usrinfo (Command, Buffer, Count)
int Command;
char *Buffer;
int Count;

Description
The usrinfo subroutine gets and sets information about the owner of the current process.
The information is a sequence of null–terminated name=value strings. The last string in the
sequence is terminated by two successive null characters. A child process inherits the user
information of the parent process.

Parameters

Command

 Specifies one of the following constants:

GETUINFO Copies user information, up to the number of
bytes specified by the Count parameter, into the
buffer pointed to by the Buffer parameter.

SETUINFO Sets the user information for the process to the
number of bytes specified by the Count
parameter in the buffer pointed to by the Buffer
parameter. The calling process must have root
user authority to set the user information.

The minimum user information consists of four strings typically
set by the login program:

NAME=UserName

LOGIN=LoginName

LOGNAME=LoginName

TTY=TTYName

If the process has no terminal, the TTYName parameter should
be null.

Buffer Specifies a pointer to a user buffer. This buffer is usually UINFOSIZ bytes long.

Count Specifies the number of bytes of user information copied from or to the user
buffer.

Return Values
If successful, the usrinfo subroutine returns a non–negative integer giving the number of
bytes transferred. Otherwise, a value of –1 is returned and the errno global variable is set to
indicate the error.

usrinfo

1-1322 Technical Reference: Base Operating System

Error Codes
The usrinfo subroutine fails if one of the following is true:

EPERM The Command parameter is set to SETUINFO, and the calling
process does not have root user authority.

EINVAL The Command parameter is not set to SETUINFO or GETUINFO.

EINVAL The Command parameter is set to SETUINFO, and the Count
parameter is larger than UINFOSIZ.

EFAULT The Buffer parameter points outside of the address space of the
process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getuinfo subroutine, setpenv subroutine.

The login command.

List of Security and Auditing Subroutines in AIX General Programming Concepts : Writing
and Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

utimes

1-1323Base Operating System Runtime Services (Q-Z)

utimes or utime Subroutine

Purpose
Sets file–access and modification times.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>

int utimes (Path, Times)
char *Path;
struct timeval Times[2];

#include <utime.h>

int utime (Path, Times)
const char *Path;
const struct utimbuf *Times;

Description
The utimes subroutine sets the access and modification times of the file pointed to by the
Path parameter to the value of the Times parameter. This subroutine allows time
specifications accurate to the second.

The utime subroutine also sets file access and modification times. Each time is contained in
a single integer and is accurate only to the nearest second. If successful, the utime
subroutine marks the time of the last file–status change (st_ctime) to be updated.

utimes

1-1324 Technical Reference: Base Operating System

Parameters

Path Points to the file.

Times Specifies the date and time of last access and of last modification. For the
utimes subroutine, this is an array of timeval structures, as defined in the
sys/time.h file. The first array element represents the date and time of last
access, and the second element represents the date and time of last
modification. The times in the timeval structure are measured in seconds and
microseconds since 00:00:00 Greenwich Mean Time (GMT), 1 January 1970,
rounded to the nearest second.

For the utime subroutine, this parameter is a pointer to a utimbuf structure, as
defined in the utime.h file. The first structure member represents the date and
time of last access, and the second member represents the date and time of
last modification. The times in the utimbuf structure are measured in seconds
since 00:00:00 Greenwich Mean Time (GMT), 1 January 1970.

If the Times parameter has a null value, the access and modification times of
the file are set to the current time. If the file is remote, the current time at the
remote node, rather than the local node, is used. To use the call this way, the
effective user ID of the process must be the same as the owner of the file or
must have root authority, or the process must have write permission to the file.

If the Times parameter does not have a null value, the access and modification
times are set to the values contained in the designated structure, regardless of
whether those times are the same as the current time. Only the owner of the file
or a user with root authority can use the call this way.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned,
the errno global variable is set to indicate the error, and the file times are not changed.

Error Codes
The utimes or utime subroutine fails if one of the following is true:

EPERM The Times parameter is not null and the calling process neither owns
the file nor has root user authority.

EACCES The Times parameter is null, effective user ID is neither the owner of
the file nor has root authority, or write access is denied.

EROFS The file system that contains the file is mounted read–only.

The utimes or utime subroutine can be unsuccessful for other reasons. For a list of
additional errors, see Appendix A, ”Base Operating System Error Codes For Services That
Require Path–Name Resolution.”

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Microsecond time stamps are not implemented, even though the utimes subroutine
provides a way to specify them.

Related Information
The stat subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts: Writing and Debugging Programs.

varargs

1-1325Base Operating System Runtime Services (Q-Z)

varargs Macros

Purpose
Handles a variable–length parameter list.

Library
Standard C Library (libc.a)

Syntax
#include <stdarg.h>

type va_arg (Argp, Type)
va_list Argp;

void va_start (Argp, ParmN)
va_list Argp;

void va_end (Argp)
va_list Argp;

OR

#include <varargs.h>

va_alist Argp;
va_dcl

void va_start (Argp)
va_list Argp;

type va_arg (Argp, Type)
va_list Argp;

void va_end (Argp)
va_list Argp;

Description
The varargs set of macros allows you to write portable subroutines that accept a variable
number of parameters. Subroutines that have variable–length parameter lists (such as the
printf subroutine), but that do not use the varargs macros, are inherently nonportable
because different systems use different parameter–passing conventions.

Note: Do not include both <stdarg.h> and <varargs.h>. Use of <varargs.h> is not
recommended. It is supplied for backwards compatibility.

For <stdarg.h>

va_start Initializes the Argp parameter to point to the beginning of the list. The
ParmN parameter identifies the rightmost parameter in the function
definition. For compatibility with previous programs, it defaults to the
address of the first parameter on the parameter list. Acceptable
parameters include: integer, double, and pointer. The va_start macro is
started before any access to the unnamed arguments.

varargs

1-1326 Technical Reference: Base Operating System

For <varargs.h>

va_alist A variable used as the parameter list in the function header.

va_argp A variable that the varargs macros use to keep track of the current
location in the parameter list. Do not modify this variable.

va_dcl Declaration for va_alist. No semicolon should follow va_dcl.

va_start Initializes the Argp parameter to point to the beginning of the list.

For <stdarg.h> and <varargs.h>

va_list Defines the type of the variable used to traverse the list.

va_arg Returns the next parameter in the list pointed to by the Argp parameter.

va_end Cleans up at the end.

Your subroutine can traverse, or scan, the parameter list more than once. Start each
traversal with a call to the va_start macro and end it with the va_end macro.

Note: The calling routine is responsible for specifying the number of parameters
because it is not always possible to determine this from the stack frame. For example,
execl is passed a null pointer to signal the end of the list. The printf subroutine
determines the number of parameters from its Format parameter.

Parameters

Argp Specifies a variable that the varargs macros use to keep track of the
current location in the parameter list. Do not modify this variable.

Type Specifies the type to which the expected argument will be converted
when passed as an argument. In C, arguments that are char or short
should be accessed as int; unsigned char or short arguments are
converted to unsigned int, and float arguments are converted to double.
Different types can be mixed, but it is up to the routine to know what
type of argument is expected, because it cannot be determined at
runtime.

ParmN Specifies a parameter that is the identifier of the rightmost parameter in
the function definition.

varargs

1-1327Base Operating System Runtime Services (Q-Z)

Examples
The following execl system call implementations are examples of the varargs macros
usage.

1. The following example includes <stdarg.h>:

#include <stdarg.h>

#define MAXargs 31

int execl (const char *path, ...)

{

 va_list Argp;

 char *array [MAXargs];

 int argno=0;

 va_start (Argp, path);

 while ((array[argno++] = va_arg(Argp, char*)) != (char*)0)

 ;

 va_end(Argp);

 return(execv(path, array));

}

main()

{

 execl(”/usr/bin/echo”, ”ArgV[0]”, ”This”, ”Is”, ”A”, ”Test”,

 ”\0”);

 /* ArguementV[0] will be discarded by the execv in main(): */

 /* by convention ArgV[0] should be a copy of path parameter */

}

2. The following example includes <varargs.h>:

#include <varargs.h>

#define MAXargS 100

/*

** execl is called by

** execl(file, arg1, arg2, . . . , (char *) 0);

*/

execl(va_alist)

 va_dcl

{ va_list ap;

 char *file;

 char *args[MAXargS];

 int argno = 0;

 va_start(ap);

 file = va_arg(ap, char *);

 while ((args[argno++] = va_arg(ap, char *)) != (char *) 0)

 ; /* Empty loop body */

 va_end(ap);

 return (execv(file, args));

}

Implementation Specifics
These macros are part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutines.

The printf subroutine.

vfwprintf

1-1328 Technical Reference: Base Operating System

vfwprintf, vwprintf Subroutine

Purpose
Wide–character formatted output of a stdarg argument list.

Library
Standard library (libc.a)

Syntax
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf ((const wchar_t * format, va_list arg) ;
int vfwprintf(FILE * stream, const wchar_t * format, va_list
arg);
int vswprintf (wchar_t * s, size_t n, const wchar_t * format,
va_list arg);

Description
The vwprintf, vfwprintf and vswprintf functions are the same as wprintf, fwprintf and
swprintf respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by stdarg.h.

 These functions do not invoke the va_end macro. However, as these functions do invoke
the va_arg macro, the value of ap after the return is indeterminate.

Return Values
Refer to fwprintf.

Error Codes
Refer to fwprintf.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The fwprintf subroutine.

The stdarg.h file.

The stdio.h file.

The wchar.h file.

vmount

1-1329Base Operating System Runtime Services (Q-Z)

vmount or mount Subroutine

Purpose
Makes a file system available for use.

Library
Standard C Library (libc.a)

Syntax
#include <sys/vmount.h>

int vmount (VMount, Size)
struct vmount *VMount;
int Size;

int mount
(Device, Path, Flags)
char *Device;
char *Path;
int Flags;

Description
The vmount subroutine mounts a file system, thereby making the file available for use. The
vmount subroutine effectively creates what is known as a virtual file system. After a file
system is mounted, references to the path name that is to be mounted over refer to the root
directory on the mounted file system.

A directory can only be mounted over a directory, and a file can only be mounted over a file.
(The file or directory may be a symbolic link.)

Therefore, the vmount subroutine can provide the following types of mounts:

• A local file over a local or remote file

• A local directory over a local or remote directory

• A remote file over a local or remote file

• A remote directory over a local or remote directory.

A mount to a directory or a file can be issued if the calling process has root user authority or
is in the system group and has write access to the mount point.

To mount a block device, remote file, or remote directory, the calling process must also have
root user authority.

The mount subroutine only allows mounts of a block device over a local directory with the
default file system type. The mount subroutine searches the /etc/filesystems file to find a
corresponding stanza for the desired file system.

Note: The mount subroutine interface is provided only for compatibility with previous
releases of the operating system. The use of the mount subroutine is strongly
discouraged by normal application programs.

If the directory you are trying to mount over has the sticky bit set to on, you must either own
that directory or be the root user for the mount to succeed. This restriction applies only to
directory–over–directory mounts.

Parameters
Device A path name identifying the block device (also called a special file) that

contains the physical file system.

vmount

1-1330 Technical Reference: Base Operating System

Path A path name identifying the directory on which the file system is to be
mounted.

Flags Values that define characteristics of the object to be mounted. Currently
these values are defined in the /usr/include/sys/vmount.h file:

MNT_READONLY Indicates that the object to be mounted is read-only
and that write access is not allowed. If this value is
not specified, writing is permitted according to
individual file accessibility.

MNT_NOSUID Indicates that setuid and setgid programs referenced
through the mount should not be executable. If this
value is not specified, setuid and setgid programs
referenced through the mount may be executable.

MNT_NODEV Indicates that opens of device special files referenced
through the mount should not succeed. If this value is
not specified, opens of device special files referenced
through the mount may succeed.

VMount A pointer to a variable-length vmount structure. This structure is defined in
the sys/vmount.h file.

The following fields of the VMount parameter must be initialized before the

call to the vmount subroutine:

vmt_revision The revision code in effect when the program that
created this virtual file system was compiled. This is
the value VMT_REVISION.

vmt_length The total length of the structure with all its data. This
must be a multiple of the word size (4 bytes) and
correspond with the Size parameter.

vmt_flags Contains the general mount characteristics. The
following value may be specified:

MNT_READONLY A read-only virtual file system is
to be created.

vmt_gfstype The type of the generic file system underlying the
VMT_OBJECT. Values for this field are defined in the
sys/vmount.h file and include:

MNT_JFS Indicates the native file system.

MNT_NFS Indicates a Network File System
client.

MNT_CDROM Indicates a CD-ROM file
system.

vmt_data An array of structures that describe variable length
data associated with the vmount structure. The
structure consists of the following fields:

vmt_off The offset of the data from the
beginning of the vmount
structure.

vmt_size The size, in bytes, of the data.

The array consists of the following fields:

vmt_data[VMT_OBJECT]
Specifies he name of the device, directory,
or file to be mounted.

vmount

1-1331Base Operating System Runtime Services (Q-Z)

vmt_data[VMT_STUB]
Specifies the name of the device, directory,
or file to be mounted over.

vmt_data[VMT_HOST]
Specifies the short (binary) name of the
host that owns the mounted object. This
need not be specified if VMT_OBJECT is
local (that is, it has the same
vmt_gfstype as / (root), the root of all file
systems).

vmt_data[VMT_HOSTNAME]
Specifies the long (character) name of the
host that owns the mounted object. This
need not be specified if VMT_OBJECT is
local.

vmt_data[VMT_INFO]
Specifies binary information to be passed
to the generic file-system implementation
that supports VMT_OBJECT. The
interpretation of this field is specific to the
gfs_type.

vmt_data[VMT_ARGS]
Specifies a character string representation
of VMT_INFO.

On return from the vmount subroutine, the following additional fields of the

VMount parameter are initialized:

vmt_fsid Specifies the two-word file system identifier; the
interpretation of this identifier depends on the
gfs_type.

vmt_vfsnumber Specifies the unique identifier of the virtual file
system. Virtual file systems do not survive the IPL;
neither does this identifier.

vmt_time Specifies the time at which the virtual file system was
created.

Size Specifies the size, in bytes, of the supplied data area.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The mount and vmount subroutines fail and the virtual file system is not created if any of
the following is true:

EACCES The calling process does not have write permission on the stub
directory (the directory to be mounted over).

EBUSY VMT_OBJECT specifies a device that is already mounted or an
object that is open for writing, or the kernel’s mount table is full.

EFAULT The VMount parameter points to a location outside of the allocated
address space of the process.

EFBIG The size of the file system is too big.

vmount

1-1332 Technical Reference: Base Operating System

EFORMAT An internal inconsistency has been detected in the file system.

EINVAL The contents of the VMount parameter are unintelligible (for
example, the vmt_gfstype is unrecognizable, or the file system
implementation does not understand the VMT_INFO provided).

ENOSYS The file system type requested has not been configured.

ENOTBLK The object to be mounted is not a file, directory, or device.

ENOTDIR The types of VMT_OBJECT and VMT_STUB are incompatible.

EPERM VMT_OBJECT specifies a block device, and the calling process
does not have root user authority.

EROFS An attempt has been made to mount a file system for read/write
when the file system cannot support writing.

The mount and vmount subroutines can also fail if additional errors, on page 0 occur.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mntctl subroutine, umount subroutine.

The mount command, umount command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

Understanding Mount Helpers in AIX General Programming Concepts : Writing and
Debugging Programs explains and examines the execution syntax of mount helpers.

vsnprintf

1-1333Base Operating System Runtime Services (Q-Z)

vsnprintf Subroutine

Purpose
Print formatted output.

Library
Standard library (libc.a)

Syntax
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char * s, size_t n, const char * format, va_list
ap)

Description
Refer to vfprintf.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

vwsprintf

1-1334 Technical Reference: Base Operating System

vwsprintf Subroutine

Purpose
Writes formatted wide characters.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>
#include <stdarg.h>

int vwsprintf (wcs, Format, arg)
wchar_t *wcs;
const char *Format;
va_list arg;

Description
The vwsprintf subroutine writes formatted wide characters. It is structured like the vsprintf
subroutine with a few differences. One difference is that the wcs parameter specifies a wide
character array into which the generated output is to be written, rather than a character
array. The second difference is that the meaning of the S conversion specifier is always the
same in the case where the # flag is specified. If copying takes place between objects that
overlap, the behavior is undefined.

Parameters

wcs Specifies the array of wide characters where the output is to be written.

Format

 Specifies a multibyte character sequence composed of zero or more
directives (ordinary multibyte characters and conversion specifiers). The
new formats added to handle the wide characters are:

%C Formats a single wide character.

%S Formats a wide character string.

arg Specifies the parameters to be printed.

Return Values
The vwsprintf subroutine returns the number of wide characters (not including the
terminating wide character null) written into the wide character array and specified by the
wcs parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The vsprintf subroutine.

The printf command.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

wait_waitpid_wait3_wait

1-1335Base Operating System Runtime Services (Q-Z)

wait, waitpid, wait3, or wait364 Subroutine

Purpose
Waits for a child process to stop or terminate.

Library
Standard C Library (libc.a)

Syntax
#include <sys/wait.h>
pid_t wait (StatusLocation)
int *StatusLocation;
pid_t wait ((void *) 0)

#include <sys/wait.h>

pid_t waitpid (ProcessID,
StatusLocation, Options)

int *StatusLocation;
pid_t ProcessID;
int Options;

#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3 (StatusLocation,
Options, ResourceUsage)

int *StatusLocation;
int Options;
struct rusage *ResourceUsage;

pid_t wait364 (StatusLocation,
Options, ResourceUsage)

int *StatusLocation;
int Options;
struct rusage64 *ResourceUsage;

Description
The wait subroutine suspends the calling thread until the process receives a signal that is
not blocked or ignored, or until any one of the calling process’ child processes stops or
terminates. The wait subroutine returns without waiting if the child process that has not
been waited for has already stopped or terminated prior to the call.

Note: The effect of the wait subroutine can be modified by the setting of the SIGCHLD
signal. See the sigaction subroutine for details.

The waitpid subroutine includes a ProcessID parameter that allows the calling thread to
gather status from a specific set of child processes, according to the following rules:

wait_waitpid_wait3_wait

1-1336 Technical Reference: Base Operating System

• If the ProcessID value is equal to a value of –1, status is requested for any child process.
In this respect, the waitpid subroutine is equivalent to the wait subroutine.

• A ProcessID value that is greater than 0 specifies the process ID of a single child process
for which status is requested.

• If the ProcessID parameter is equal to 0, status is requested for any child process whose
process group ID is equal to that of the calling thread’s process.

• If the ProcessID parameter is less than 0, status is requested for any child process
whose process group ID is equal to the absolute value of the ProcessID parameter.

The waitpid, wait3, and wait364 subroutine variants provide an Options parameter that can
modify the behavior of the subroutine. Two values are defined, WNOHANG and
WUNTRACED, which can be combined by specifying their bitwise–inclusive OR. The
WNOHANG option prevents the calling thread from being suspended even if there are child
processes to wait for. In this case, a value of 0 is returned indicating there are no child
processes that have stopped or terminated. If the WUNTRACED option is set, the call
should also return information when children of the current process are stopped because
they received a SIGTTIN, SIGTTOU, SIGSSTP, or SIGTSTOP signal. The wait364
subroutine can be called to make 64–bit rusage counters explicitly available in a 32–bit
environment.

When a 32–bit process is being debugged with ptrace, the status location is set to
W_SLWTED if the process calls load, unload, or loadbind. When a 64–bit process is being
debugged with ptrace, the status location is set to W_SLWTED if the process calls load or
unload.

If multiprocessing debugging mode is enabled, the status location is set to W_SEWTED if a
process is stopped during an exec subroutine and to W_SFWTED if the process is stopped
during a fork subroutine.

If more than one thread is suspended awaiting termination of the same child process,
exactly one thread returns the process status at the time of the child process termination.

If the WCONTINUED option is set, the call should return information when the children of
the current process have been continued from a job control stop but whose status has not
yet been reported.

Parameters

StatusLocation Points to integer variable that contains (or will contain) the
child process termination status, as defined in the
sys/wait.h file.

ProcessID Specifies the child process.

Options Modifies behavior of subroutine.

ResourceUsage Specifies the location of a structure to be filled in with
resource utilization information for terminated children.

Macros
The value pointed to by StatusLocation when wait, waitpid, or wait3 subroutines are
returned, can be used as the ReturnedValue parameter for the following macros defined in
the sys/wait.h file to get more information about the process and its child process.

WIFCONTINUED(ReturnedValue)
pid_t ReturnedValue;

Returns a nonzero value if status returned for a child process that has continued from a job
control stop.

wait_waitpid_wait3_wait

1-1337Base Operating System Runtime Services (Q-Z)

WIFSTOPPED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for a stopped child.

int
WSTOPSIG(ReturnedValue)
int ReturnedValue;

Returns the number of the signal that caused the child to stop.

WIFEXITED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for normal termination.

int
WEXITSTATUS(ReturnedValue)
int ReturnedValue;

Returns the low–order 8 bits of the child exit status.

WIFSIGNALED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for abnormal termination.

int
WTERMSIG(ReturnedValue)
int ReturnedValue;

Returns the number of the signal that caused the child to terminate.

Return Values
If the wait subroutine is unsuccessful, a value of –1 is returned and the errno global
variable is set to indicate the error. In addition, the waitpid, wait3, and wait364 subroutines
return a value of 0 if there are no stopped or exited child processes, and the WNOHANG
option was specified. The wait subroutine returns a 0 if there are no stopped or exited child
processes, also.

Error Codes
The wait, waitpid, wait3, and wait364 subroutines are unsuccessful if one of the following
is true:

ECHILD The calling thread’s process has no existing unwaited–for child
processes.

EINTR This subroutine was terminated by receipt of a signal.

EFAULT The StatusLocation or ResourceUsage parameter points to a
location outside of the address space of the process.

The waitpid subroutine is unsuccessful if the following is true:

ECHILD The process or process group ID specified by the ProcessID
parameter does not exist or is not a child process of the calling
process.

The waitpid and wait3 subroutines are unsuccessful if the following is true:

wait_waitpid_wait3_wait

1-1338 Technical Reference: Base Operating System

EINVAL The value of the Options parameter is not valid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, _exit, exit, or atexit subroutine, fork subroutine, getrusage
subroutine, pause subroutine, ptrace subroutine, sigaction subroutine.

wcscat

1-1339Base Operating System Runtime Services (Q-Z)

wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine

Purpose
Performs operations on wide–character strings.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

wchar_t *wcscat(WcString1, WcString2)
wchar_t *WcString1;
const wchar_t *WcString2;

wchar_t *wcschr(WcString, WideCharacter)
const wchar_t *WcString;
wchar_t WideCharacter;

int *wcscmp (WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

wchar_t *wcscpy(WcString1, WcString2)
wchar_t *WcString1;
const wchar_t
*
WcString2;

size_t wcscspn(WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description
The wcscat, wcschr, wcscmp, wcscpy, or wcscspn subroutine operates on
null–terminated wchar_t strings. These subroutines expect the string arguments to contain
a wchar_t null character marking the end of the string. A copy or concatenation operation
does not perform boundary checking.

The wcscat subroutine appends a copy of the wide–character string pointed to by the
WcString2 parameter (including the terminating null wide–character code) to the end of the
wide–character string pointed to by the WcString1 parameter. The initial wide–character
code of the WcString2 parameter overwrites the null wide–character code at the end of the
WcString1 parameter. If successful, the wcscat subroutine returns the WcString1
parameter.

The wcschr subroutine returns a pointer to the first occurrence of the WideCharacter
parameter in the WcString parameter. The character value may be a wchar_t null character.
The wchar_t null character at the end of the string is included in the search. The wcschr
subroutine returns a pointer to the wide character code, if found, or returns a null pointer if
the wide character is not found.

The wcscmp subroutine compares two wchar_t strings. It returns an integer greater than 0
if the WcString1 parameter is greater than the WcString2 parameter. It returns 0 if the two
strings are equivalent. It returns a number less than 0 if the WcString1 parameter is less
than the WcString2 parameter. The sign of the difference in value between the first pair of
wide–character codes that differ in the objects being compared determines the sign of a
nonzero return value.

The wcscpy subroutine copies the contents of the WcString2 parameter (including the
ending wchar_t null character) into the WcString1 parameter. If successful, the wcscpy
subroutine returns the WcString1 parameter. If the wcscpy subroutine copies between
overlapping objects, the result is undefined.

wcscat

1-1340 Technical Reference: Base Operating System

The wcscspn subroutine computes the number of wchar_t characters in the initial segment
of the string pointed to by the WcString1 parameter that do not appear in the string pointed
to by the WcString2 parameter. If successful, the wcscspn subroutine returns the number
of wchar_t characters in the segment.

Parameters

WcString1 Points to a wide–character string.

WcString2 Points to a wide–character string.

WideCharacter Specifies a wide character for location.

Return Values
Upon successful completion, the wcscat and wcscpy subroutines return a value of ws1.
The wcschr subroutine returns a pointer to the wide character code. Otherwise, a null
pointer is returned.

The wcscmp subroutine returns an integer greater than, equal to, or less than 0, if the wide
character string pointed to by the WcString1 parameter is greater than, equal to, or less
than the wide character string pointed to by the WcString2 parameter.

The wcscspn subroutine returns the length of the segment.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mbscat subroutine, mbschr subroutine, mbscmp subroutine, mbscpy subroutine,
mbsrchr subroutine, wcsncat subroutine, wcsncmp subroutine, wcsncpy subroutine,
wcsrchr subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Comparison Subroutines, Understanding Wide
Character String Copy Subroutines, Understanding Wide Character String Search
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

wcscoll

1-1341Base Operating System Runtime Services (Q-Z)

wcscoll Subroutine

Purpose
Compares wide character strings.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int wcscoll (WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description
The wcscoll subroutine compares the two wide–character strings pointed to by the
WcString1 and WcString2 parameters based on the collation values specified by the
LC_COLLATE environment variable of the current locale.

Note: The wcscoll subroutine differs from the wcscmp subroutine in that the wcscoll
subroutine compares wide characters based on their collation values, while the wcscmp
subroutine compares wide characters based on their ordinal values. The wcscoll
subroutine uses more time than the wcscmp subroutine because it obtains the collation
values from the current locale.

The wcscoll subroutine may be unsuccessful if the wide character strings specified by the
WcString1 or WcString2 parameter contains characters outside the domain of the current
collating sequence.

Parameters

WcString1 Points to a wide–character string.

WcString2 Points to a wide–character string.

Return Values
The wcscoll subroutine returns the following values:

< 0 The collation value of the WcString1 parameter is less than that of
the WcString2 parameter.

=0 The collation value of the WcString1 parameter is equal to that of the
WcString2 parameter.

>0 The collation value of the WcString1 parameter is greater than that
of the WcString2 parameter.

The wcscoll subroutine indicates error conditions by setting the errno global variable.
However, there is no return value to indicate an error. To check for errors, the errno global
variable should be set to 0, then checked upon return from the wcscoll subroutine. If the
errno global variable is nonzero, an error occurred.

Error Codes

EINVAL The WcString1 or WcString2 arguments contain wide–character codes
outside the domain of the collating sequence.

wcscoll

1-1342 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcscmp subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Collation Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcsftime

1-1343Base Operating System Runtime Services (Q-Z)

wcsftime Subroutine

Purpose
Converts date and time into a wide character string.

Library
Standard C Library (libc. a)

Syntax
#include <time.h>

size_t wcsftime (WcString, Maxsize, Format, TimPtr)
wchar_t *WcString;
size_t Maxsize;
const wchar_t *Format;
const struct tm *TimPtr;

size_t wcsftime (WcString, Maxsize, Format, TimPtr)
wchar_t *WcString;
size_t Maxsize;
const char *Format;
const struct tm *TimPtr;

Description
The wcsftime function is equivalent to the strftime function, except that:

• The argument wcs points to the initial element of an array of wide–characters into which
the generated output is to be placed.

• The argument maxsize indicates the maximum number of wide–characters to be placed
in the output array.

• The argument format is a wide–character string and the conversion specifications are
replaced by corresponding sequences of wide–characters.

• The return value indicates the number of wide–characters placed in the output array.

 If copying takes place between objects that overlap, the behaviour is undefined.

The wcsftime subroutine formats the data in the TimPtr parameter according to the
specification contained in the Format parameter and places the resulting wide character
string into the WcString parameter. Up to Maxsize–1 wide characters are placed into the
WcString parameter, terminated by a wide character null.

The wcsftime subroutine behaves as if the character string generated by the strftime
subroutine is passed to the mbstowcs subroutine as the character string parameter and the
mbstowcs subroutine places the result in the WcString parameter of the wcsftime
subroutine, up to the limit of wide character codes specified by the Maxsize parameter

Parameters
WcString Contains the output of the wcsftime subroutine.

Maxsize Specifies the maximum number of bytes (including the wide character
null-terminating byte) that may be placed in the WcString parameter.

Format Specifies format specifiers. The LC_TIME category defines the locale
values for the format specifiers. The Format parameter can use the
following format specifiers:

%a Represents the abbreviated weekday name (for example,
Sun) defined by the abday statement in the LC_TIME
category.

wcsftime

1-1344 Technical Reference: Base Operating System

%A Represents the full weekday name (for example, Sunday)
defined by the day statement in the LC_TIME category.

%b Represents the abbreviated month name (for example,
Jan) defined by the abmon statement in the LC_TIME
category.

%B Represents the full month name (for example, January)
defined by the mon statement in the LC_TIME category.

%c Represents the date and time format defined by the
d_t_fmt statement in the LC_TIME category.

%C Represents the century number (the year divided by 100
and truncated to an integer) as a decimal number (00
through 99).

%d Represents the day of the month as a decimal number (01
to 31).

%D Represents the date in %m/%d/%y format (for example,
01/31/91).

%e Represents the day of the month as a decimal number (01
to 31). The %e field descriptor uses a two-digit field. If the
day of the month is not a two-digit number, the leading digit
is filled with a space character.

%E Represents the combined alternate era year and name,
respectively, in %o %N format.

%h Represents the abbreviated month name (for example,
Jan) defined by the abmon statement in the LC_TIME
category. This field descriptor is a synonym for the %b field
descriptor.

%H Represents the 24-hour-clock hour as a decimal number
(00 to 23).

%I Represents the 12-hour-clock hour as a decimal number
(01 to 12).

%j Represents the day of the year as a decimal number (001
to 366).

%m Represents the month of the year as a decimal number (01
to 12).

%M Represents the minutes of the hour as a decimal number
(00 to 59).

%n Specifies a new-line character.

%N Represents the alternate era name.

%o Represents the alternate era year.

%p Represents the a.m. or p.m. string defined by the am_pm
statement in the LC_TIME category.

%r Represents 12-hour clock time with a.m./p.m. notation as
defined by the t_fmt_ampm statement. The usual format is
%I:%M:%S %p.

%R Represents 24-hour clock time in %H:%M format.

%S Represents the seconds of the minute as a decimal
number (00 to 59).

%t Specifies a tab character.

wcsftime

1-1345Base Operating System Runtime Services (Q-Z)

%T Represents 24-hour-clock time in the format %H:%M:%S
(for example, 16:55:15).

%u Represents the weekday as a decimal number (1 to 7).
Monday or its equivalent is considered the first day of the
week for calculating the value of this field descriptor.

%U Represents the week of the year as a decimal number (00
to 53). Sunday, or its equivalent as defined by the day
statement in the LC_TIME category, is considered the first
day of the week for calculating the value of this field
descriptor.

%V Represents the week number of the year (with Monday as
the first day of the week) as a decimal number (01 to 53). If
the week containing January 1 has four or more days in the
new year, then it is considered week 1; otherwise, it is
considered week 53 of the previous year, and the next
week is week 1 of the new year.

%w Represents the day of the week as a decimal number (0 to
6). Sunday, or its equivalent as defined by the day
statement in the LC_TIME category, is considered as 0 for
calculating the value of this field descriptor.

%W Represents the week of the year as a decimal number (00
to 53). Monday, or its equivalent as defined by the day
statement in the LC_TIME category, is considered the first
day of the week for calculating the value of this field
descriptor.

%x Represents the date format defined by the d_fmt statement
in the LC_TIME category.

%X Represents the time format defined by the t_fmt statement.

%y Represents the year of the century (00 to 99).

%Y Represents the year as a decimal number (for example,
1989).

%Z Represents the time-zone name, if one can be determined
(for example, EST). No characters are displayed if a time
zone cannot be determined.

%% Specifies a % (percent sign) character.

Some format specifiers can be modified by the E or O modifier characters
to indicate that an alternative format or specification should be used. If the
alternative format or specification does not exist for the current locale, the
behavior will be the same as with the unmodified format specification. The
following modified format specifiers are supported:

%Ec Represents the locale’s alternative appropriate date and
time as defined by the era_d_t_fmt statement.

%EC Represents the name of the base year (or other time
period) in the locale’s alternative form as defined by the era
statement under the era_name category of the current era.

%Ex Represents the locale’s alternative date as defined by the
era_d_fmt statement.

%EX Represents the locale’s alternative time as defined by the
era_t_fmt statement.

wcsftime

1-1346 Technical Reference: Base Operating System

%Ey Represents the offset from the %EC modified format
specifier (year only) in the locale’s alternative form.

%EY Represents the full alternative-year form.

%Od Represents the day of the month, using the locale’s
alternative numeric symbols, filled as needed with leading
0’s if an alternative symbol for 0 exists. If tan alternative
symbol for 0 does not exist, the %Od modified format
specifier uses leading space characters.

%Oe Represents the day of the month, using the locale’s
alternative numeric symbols, filled as needed with leading
0’s if an alternative symbol for 0 exists. If an alternative
symbol for 0 does not exist, the %Oe modified format
specifier uses leading space characters.

%OH Represents the hour in 24-hour clock time, using the
locale’s alternative numeric symbols.

%OI Represents the hour in 12-hour clock time, using the
locale’s alternative numeric symbols.

%Om Represents the month, using the locale’s alternative
numeric symbols.

%OM Represents the minutes, using the locale’s alternative
numeric symbols.

%OS Represents the seconds, using the locale’s alternative
numeric symbols.

%Ou Represents the weekday as a number, using the locale’s
alternative numeric symbols.

%OU Represents the week number of the year, using the locale’s
alternative numeric symbols. Sunday is considered the first
day of the week. Use the rules corresponding to the %U
format specifier.

%OV Represents the week number of the year, using the locale’s
alternative numeric symbols. Monday is considered the first
day of the week. Use the rules corresponding to the %V
format specifier.

%Ow Represents the number of the weekday (with Sunday equal
to 0), using the locale’s alternative numeric symbols.

%OW Represents the week number of the year using the locale’s
alternative numeric symbols. Monday is considered the first
day of the week. Use the rules corresponding to the %W
format specifier.

%Oy Represents the year of the century (offset from the %C
conversion specifier), using the locale’s alternative numeric
symbols.

TimPtr Contains the data to be converted by the wcsftime subroutine.

Return Values
If successful, and if the number of resulting wide characters (including the wide character
null–terminating byte) is no more than the number of bytes specified by the Maxsize
parameter, the wcsftime subroutine returns the number of wide characters (not including
the wide character null–terminating byte) placed in the WcString parameter. Otherwise, 0 is
returned and the contents of the WcString parameter are indeterminate.

wcsftime

1-1347Base Operating System Runtime Services (Q-Z)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbstowcs subroutine, strfmon subroutine, strftime subroutine, strptime subroutine.

National Language Support Overview for Programming, Understanding Time and Monetary
Formatting Subroutines, Subroutines Overview in AIX General Programming Concepts :
Writing and Debugging Programs.

wcsid

1-1348 Technical Reference: Base Operating System

wcsid Subroutine

Purpose
Returns the charsetID of a wide character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int wcsid (WC)
const wchar_t WC;

Description
The wcsid subroutine returns the charsetID of the wchar_t character. No validation of the
character is performed. The parameter must point to a value in the character range of the
current code set defined in the current locale.

Parameters

WC Specifies the character to be tested.

Return Values
Successful completion returns an integer value representing the charsetID of the character.
This integer can be a number from 0 through n, where n is the maximum character set
defined in the CHARSETID field of the charmap. See ”Understanding the Character Set
Description (charmap) Source File” in AIX General Programming Concepts : Writing and
Debugging Programs for more information.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The csid subroutine, mbstowcs subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code and Wide Character Code Conversion Subroutines,
Understanding the Character Set Description (charmap) Source File in AIX General
Programming Concepts : Writing and Debugging Programs.

wcslen

1-1349Base Operating System Runtime Services (Q-Z)

wcslen Subroutine

Purpose
Determines the number of characters in a wide–character string.

Library
Standard C Library (libc.a)

Syntax #include <wcstr.h>
size_t wcslen(WcString)
const wchar_t *WcString;

Description
The wcslen subroutine computes the number of wchar_t characters in the string pointed to
by the WcString parameter.

Parameters

WcString Specifies a wide–character string.

Return Values
The wcslen subroutine returns the number of wchar_t characters that precede the
terminating wchar_t null character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbslen subroutine, wctomb subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code and Wide Character Code Conversion Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

wcsncat

1-1350 Technical Reference: Base Operating System

wcsncat, wcsncmp, or wcsncpy Subroutine

Purpose
Performs operations on a specified number of wide characters from one string to another.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

wchar_t *wcsncat (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

wchar_t *wcsncmp (WcString1, WcString2, Number)
const wchar_t *WcString1, *WcString2;
size_t Number;

wchar_t *wcsncpy (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

Description
The wcsncat, wcsncmp and wcsncpy subroutines operate on null–terminated wide
character strings.

The wcsncat subroutine appends characters from the WcString2 parameter, up to the value
of the Number parameter, to the end of the WcString1 parameter. It appends a wchar_t null
character to the result and returns the WcString1 value.

The wcsncmp subroutine compares wide characters in the WcString1 parameter, up to the
value of the Number parameter, to the WcString2 parameter. It returns an integer greater
than 0 if the value of the WcString1 parameter is greater than the value of the WcString2
parameter. It returns a 0 if the strings are equivalent. It returns an integer less than 0 if the
value of the WcString1 parameter is less than the value of the WcString2 parameter.

The wcsncpy subroutine copies wide characters from the WcString2 parameter, up to the
value of the Number parameter, to the WcString1 parameter. It returns the value of the
WcString1 parameter. If the number of characters in the WcString2 parameter is less than
the Number parameter, the WcString1 parameter is padded out with wchar_t null
characters to a number equal to the value of the Number parameter.

Parameters

WcString1 Specifies a wide–character string.

WcString2 Specifies a wide–character string.

Number Specifies the range of characters to process.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mbsncat subroutine, mbsncmp subroutine, mbsncpy subroutine, wcscat subroutine,
wcscmp subroutine, wcscpy subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Comparison Subroutines, Understanding Wide
Character String Copy Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

wcspbrk

1-1351Base Operating System Runtime Services (Q-Z)

wcspbrk Subroutine

Purpose
Locates the first occurrence of characters in a string.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

wchar_t *wcspbrk(WcString1, WcString2)
const wchar_t *WcString1;
const wchar_t *WcString2;

Description
The wcspbrk subroutine locates the first occurrence in the wide character string pointed to
by the WcString1 parameter of any wide character from the string pointed to by the
WcString2 parameter.

Parameters

WcString1 Points to a wide–character string being searched.

WcString2 Points to a wide–character string.

Return Values
If no wchar_t character from the WcString2 parameter occurs in the WcString1 parameter,
the wcspbrk subroutine returns a pointer to the wide character, or a null value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbspbrk subroutine, wcschr subroutine, wcscspn subroutine, wcsrchr subroutine,
wcsspn subroutine, wcstok subroutine, wcswcs subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Search Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcsrchr

1-1352 Technical Reference: Base Operating System

wcsrchr Subroutine

Purpose
Locates a wchar_t character in a wide–character string.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

wchar_t *wcsrchr (WcString, WideCharacter)
const wchar_t *WcString;
wint_t WideCharacter;

Description
The wcsrchr subroutine locates the last occurrence of the WideCharacter value in the string
pointed to by the WcString parameter. The terminating wchar_t null character is considered
to be part of the string.

Parameters

WcString Points to a string.

WideCharacter Specifies a wchar_t character.

Return Values
The wcsrchr subroutine returns a pointer to the WideCharacter parameter value, or a null
pointer if that value does not occur in the specified string.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbschr subroutine, mbsrchr subroutine, wcschr subroutine, wcscspn subroutine,
wcspbrk subroutine, wcsspn subroutine, wcstok subroutine, wcswcs subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Search Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcsrtombs

1-1353Base Operating System Runtime Services (Q-Z)

wcsrtombs Subroutine

Purpose
Convert a wide–character string to a character string (restartable).

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

size_t wcsrtombs (char * dst, const wchar_t ** src, size_t len,
mbstate_t * ps);

Description
The wcsrtombs function converts a sequence of wide–characters from the array indirectly
pointed to by src into a sequence of corresponding characters, beginning in the conversion
state described by the object pointed to by ps.If dst is not a null pointer, the converted
characters are then stored into the array pointed to by dst. Conversion continues up to and
including a terminating null wide–character, which is also stored. Conversion stops earlier in
the following cases:

• When a code is reached that does not correspond to a valid character.

• When the next character would exceed the limit of len total bytes to be stored in the
array pointed to by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the wcrtomb function.

 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide–character) or the
address just past the last wide–character converted (if any). If conversion stopped due to
reaching a terminating null wide–character, the resulting state described is the initial
conversion state.

 If ps is a null pointer, the wcsrtombs function uses its own internal mbstate_t object, which
is initialised at program startup to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps is used to completely describe the current conversion state of the
associated character sequence. The implementation will behave as if no function defined in
this specification calls wcsrtombs.

 The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
If conversion stops because a code is reached that does not correspond to a valid
character, an encoding error occurs. In this case, the wcsrtombs function stores the value
of the macro EILSEQ in errno and returns (size_t)–1; the conversion state is undefined.
Otherwise, it returns the number of bytes in the resulting character sequence, not including
the terminating null (if any).

Error Codes
The wcsrtombs function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ A wide–character code does not correspond to a valid character.

wcsrtombs

1-1354 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wcrtomb subroutine.

The wchar.h file.

wcsspn

1-1355Base Operating System Runtime Services (Q-Z)

wcsspn Subroutine

Purpose
Returns the number of wide characters in the initial segment of a string.

Library
Standard C Library (libc.a)

Syntax #include <wcstr.h>
size_t wcsspn(WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description
The wcsspn subroutine computes the number of wchar_t characters in the initial segment
of the string pointed to by the WcString1 parameter. The WcString1 parameter consists
entirely of wchar_t characters from the string pointed to by the WcString2 parameter.

Parameters

WcString1 Points to the initial segment of a string.

WcString2 Points to a set of characters string.

Return Values
The wcsspn subroutine returns the number of wchar_t characters in the segment.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcschr subroutine, wcscspn subroutine, wcspbrk subroutine, wcsrchr subroutine,
wcstok subroutine, wcswcs subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Search Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcsstr

1-1356 Technical Reference: Base Operating System

wcsstr Subroutine

Purpose
Find a wide–character substring.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wcsstr (const wchar_t * ws1, const wchar_t * ws2);

Description
The wcsstr function locates the first occurrence in the wide–character string pointed to by
ws1 of the sequence of wide–characters (excluding the terminating null wide–character) in
the wide– character string pointed to by ws2.

Return Values
On successful completion, wcsstr returns a pointer to the located wide–character string, or
a null pointer if the wide–character string is not found.

If ws2 points to a wide–character string with zero length, the function returns ws1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wschr subroutine.

The wchar.h file.

wcstod

1-1357Base Operating System Runtime Services (Q-Z)

wcstod Subroutine

Purpose
Converts a wide character string to a double–precision number.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double wcstod (Nptr, Endptr)
const wchar_t *Nptr;
wchar_t **Endptr;

Description
The wcstod subroutine converts the initial portion of the wide character string pointed to by
the Nptr parameter to a double–precision number. The input wide character string is first
broken down into three parts:

1. An initial, possibly empty, sequence of white–space wide character codes (as specified
by the iswspace subroutine)

2. A subject sequence interpreted as a floating–point constant

3. A final wide character string of one or more unrecognized wide character codes
(including the terminating wide character null)

The subject sequence is then (if possible) converted to a floating–point number and
returned as the result of the wcstod subroutine.

The subject sequence is expected to consist of an optional + (plus sign) or – (minus sign), a
non–empty sequence of digits (which may contain a radix), and an optional exponent. The
exponent consists of e or E, followed by an optional sign, followed by one or more decimal
digits. The subject sequence is the longest initial sub–sequence of the input wide character
string (starting with the first non–white–space wide character code) that is of the expected
form. The subject sequence contains no wide character codes if the input wide character
string is empty or consists entirely of white–space wide character codes, or if the first
non–white–space wide character code is other than a sign, a digit, or a radix.

If the subject sequence is valid, the sequence of wide character codes starting with the first
digit or radix (whichever occurs first) is interpreted as a float or double constant. If the radix
is used in place of a period, and if either an exponent or radix does not appear, a radix is
assumed to follow the last digit in the wide character string. If the subject sequence begins
with a – (minus sign), the conversion value is negated. A pointer to the final wide character
string is stored in the object pointed to by the Endptr parameter, unless it specifies a null
pointer. The radix is defined by the LC_NUMERIC category. In the C locale, or in a locale
where the radix is not defined, the radix defaults to a period.

Parameters

Nptr Contains a pointer to the wide character string to be converted to a
double–precision value.

Endptr Contains a pointer to the position in the string specified by the Nptr
parameter where a wide character is found that is not a valid character
for the purpose of this conversion.

wcstod

1-1358 Technical Reference: Base Operating System

Return Values
The wcstod subroutine returns a converted double–precision value if a valid floating–point
constant is found. If no conversion could be performed, a value of 0 is returned. If the
converted value is outside the range (either too high or too low), the errno global variable is
set to ERANGE. In case of overflow, plus or minus HUGE_VAL is returned. In the case of
underflow, a value of 0 is returned. If the subject sequence is empty or does not have the
expected form, no conversion is performed. In this case, the value specified by the Nptr
parameter is stored in the object pointed to by the Endptr parameter, provided that the
Endptr parameter is not a null pointer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The iswspace subroutine, wcstol subroutine, wcstoul subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Conversion Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcstok

1-1359Base Operating System Runtime Services (Q-Z)

wcstok Subroutine

Purpose
Converts wide character strings to tokens.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

wchar_t *wcstok (WcString1, WcString2)
wchar_t *WcString1;
const wchar_t *WcString2;

Description
Attention: Do not use the wcstok subroutine in a multithreaded environment. See the
multithread alternative in the wcstok_r subroutine article.

Attention: Do not use the wcstok subroutine in a multithreaded environment.

The wcstok subroutine breaks the wide character string pointed to by the WcString1
parameter into a sequence of tokens. Each token is delimited by a wide character from the
wide character string that is pointed to by the WcString2 parameter.

Usually, the wcstok subroutine is called several times to extract the tokens in a wide
character string. The first time the wcstok subroutine is called, the WcString1 parameter
points to the input wide character string. The wide character string pointed to by the
WcString1 parameter is searched to locate the first wide character that does not occur in the
wide character string pointed to by the WcString2 parameter. If no such wide character is
found, the subroutine returns a null pointer. If a wide character is found, it is the start of the
first token.

The wcstok subroutine begins searching from that point for a wide character in the current
separator string (specified by the WcString2 parameter). If no such wide character is found,
the current token extends to the end of the wide character string pointed to by the
WcString1 parameter. Subsequent searches for a token return a wide null pointer. If such a
wide character separator is found, it is overwritten by a wide character null, which
terminates the current token.

The wcstok subroutine saves a pointer to the wide character following the null, from which
the next search for a token starts. Each subsequent call has the WcString1 parameter set to
a wide character null pointer. The second parameter, WcString2, can be set to different wide
character strings.

Parameters

WcString1 Contains a pointer to the wide character string to be searched.

WcString2 Contains a pointer to the string of wide character token delimiters.

Return Values
The wcstok subroutine returns a pointer to the first wide character of a token. A null pointer
is returned if there is no token.

Examples
To convert a wide character string to tokens, use the following:

wcstok

1-1360 Technical Reference: Base Operating System

#include <string.h>

#include <locale.h>

#include <stdlib.h>

main()

{

 wchar_t *WCString1 = L”?a???b,,,#c”;

 wchar_t *pwcs ;

 (void)setlocale(LC_ALL, ””);

 pwcs = wcstok(WCString1, L”?”);

 /* pws points to the token L”a”*/

 pwcs = wcstok((wchar_t *)NULL, L”,”);

 /* pws points to the token L”??b”*/

 pwcs = wcstok((wchar_t *)NULL, L”#,”);

 /* pws points to the token L”c”*/

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcschr subroutine, wcscspn subroutine, wcspbrk subroutine, wcsrchr subroutine,
wcsspn subroutine, wcstod subroutine, wcstol subroutine, wcstoul subroutine, wcswcs
subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Search Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcstol

1-1361Base Operating System Runtime Services (Q-Z)

wcstol or wcstoll Subroutine

Purpose

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

long int wcstol (Nptr, Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr;
int Base;

long long int wcstoll (*Nptr, **Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr:
int Base

Description
The wcstol subroutine converts a wide–character string to a long integer representation.
The wcstoll subroutine converts a wide–character string to a long long integer
representation.

1. An initial, possibly empty, sequence of white–space wide–character codes (as specified
by the iswspace subroutine)

2. A subject sequence interpreted as an integer and represented in a radix determined by
the Base parameter

3. A final wide–character string of one or more unrecognized wide–character codes,
including the terminating wide–character null of the input wide–character string

If possible, the subject is then converted to an integer, and the result is returned.

The Base parameter can take the following values: 0 through 9, or a (or A) through z (or Z).
There are potentially 36 values for the base. If the base value is 0, the expected form of the
subject string is that of a decimal, octal, or hexadecimal constant, any of which can be
preceded by a + (plus sign) or – (minus sign). A decimal constant starts with a non zero
digit, and is composed of a sequence of decimal digits. An octal constant consists of the
prefix 0 optionally followed by a sequence of the digits 0 to 7. A hexadecimal constant is
defined as the prefix 0x (or 0X) followed by a sequence of decimal digits and the letters a
(or A) to f (or F) with values ranging from 10 (for a or A) to 15 (for f or F).

If the base value is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer in the radix specified by the Base
parameter, optionally preceded by a + or –, but not including an integer suffix. The letters a
(or A) through z (or Z) are ascribed the values of 10 to 35. Only letters whose values are
less than that of the base are permitted. If the value of base is 16, the characters 0x or 0X
may optionally precede the sequence of letters or digits, following the sign, if present.

The wide–character string is parsed to skip the initial space characters (as determined by
the iswspace subroutine). Any non–space character signifies the start of a subject string
that may form an integer in the radix specified by the Base parameter. The subject
sequence is defined to be the longest initial substring that is a long integer of the expected
form. Any character not satisfying this form begins the final portion of the wide–character
string pointed to by the Endptr parameter on return from the call to the wcstol or wcstoll
subroutine.

wcstol

1-1362 Technical Reference: Base Operating System

Parameters

Nptr Contains a pointer to the wide–character string to be converted to a
long integer number.

Endptr Contains a pointer to the position in the Nptr parameter string where a
wide–character is found that is not a valid character.

Base Specifies the radix in which the characters are interpreted.

Return Values
The wcstol and wcstoll subroutines return the converted value of the long or long long
integer if the expected form is found. If no conversion could be performed, a value of 0 is
returned. If the converted value is outside the range of representable values, LONG_MAX
or LONG_MIN is returned (according to the sign of the value), and the value of errno is set
to ERANGE. If the base value specified by the Base parameter is not supported, EINVAL is
returned.

If the subject sequence has the expected form, it is interpreted as an integer constant in the
appropriate base. A pointer to the final string is stored in the Endptr parameter if that
parameter is not a null pointer.

If the subject sequence is empty or does not have a valid form, no conversion is done. The
value of the Nptr parameter is stored in the Endptr parameter if that parameter is not a null
pointer.

Since 0, LONG_MIN, and LONG_MAX are returned in the event of an error and are also
valid returns if the wcstol or wcstoll subroutine is successful, applications should set the
errno global variable to 0 before calling either subroutine, and then check errno after
return. If the errno global value has changed, an error occurred.

Examples
To convert a wide–character string to a signed long integer, use the following code:

#include <stdlib.h>

#include <locale.h>

#include <errno.h>

main()

{

 wchar_t *WCString, *endptr;

 long int retval;

 (void)setlocale(LC_ALL, ””);

 /**Set errno to 0 so a failure for wcstol can be

 **detected */

 errno=0;

 /*

 **Let WCString point to a wide character null terminated

 ** string containing a signed long integer value

 **

 */retval = wcstol (WCString &endptr, 0);
 /* Check errno, if it is non–zero, wcstol failed */

 if (errno != 0) {

 /*Error handling*/

 }

 else if (&WCString == endptr) {

 /* No conversion could be performed */

 /* Handle this case accordingly. */

 }

 /* retval contains long integer */

}

wcstol

1-1363Base Operating System Runtime Services (Q-Z)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The iswspace subroutine, wcstod subroutine, wcstoul subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Conversion Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcstombs

1-1364 Technical Reference: Base Operating System

wcstombs Subroutine

Purpose
Converts a sequence of wide characters into a sequence of multibyte characters.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

size_t wcstombs (String, WcString, Number)
char *String;
const wchar_t *WcString;
size_t Number;

Description
The wcstombs subroutine converts the sequence of wide characters pointed to by the
WcString parameter to a sequence of corresponding multibyte characters and places the
results in the area pointed to by the String parameter. The conversion is terminated when
the null wide character is encountered or when the number of bytes specified by the
Number parameter (or the value of the Number parameter minus 1) has been placed in the
area pointed to by the String parameter. If the amount of space available in the area pointed
to by the String parameter would cause a partial multibyte character to be stored, the
subroutine uses a number of bytes equalling the value of the Number parameter minus 1,
because only complete multibyte characters are allowed.

Parameters

String Points to the area where the result of the conversion is stored. If the
String parameter is a null pointer, the subroutine returns the number of
bytes required to hold the conversion.

WcString Points to a wide–character string.

Number Specifies a number of bytes to be converted.

Return Values
The wcstombs subroutine returns the number of bytes modified. If a wide character is
encountered that is not valid, a value of –1 is returned.

Error Codes
The wcstombs subroutine is unsuccessful if the following error occurs:

EILSEQ An invalid character sequence is detected, or a wide–character code
does not correspond to a valid character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbstowcs subroutine, mbtowc subroutine, wcslen subroutine, wctomb subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code and Wide Character Code Conversion Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

wcstoul

1-1365Base Operating System Runtime Services (Q-Z)

wcstoul or wcstoull Subroutine

Purpose
Converts wide character strings to unsigned long or long long integer representation.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

unsigned long int wcstoul (Nptr, Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr;
int Base;

unsigned long long int wcstoull (Nptr, Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr;
int Base;

Description
The wcstoul and wcstoull subroutines convert the initial portion of the wide character
string pointed to by the Nptr parameter to an unsigned long or long long integer
representation. To do this, it parses the wide character string pointed to by the Nptr
parameter to obtain a valid string (that is, subject string) for the purpose of conversion to an
unsigned long integer. It then points the Endptr parameter to the position where an
unrecognized character, including the terminating null, is found.

The base specified by the Base parameter can take the following values: 0 through 9, a (or
A) through z (or Z). There are potentially 36 values for the base. If the base value is 0, the
expected form of the subject string is that of an unsigned integer constant, with an optional
+ (plus sign) or – (minus sign), but not including the integer suffix. If the base value is
between 2 and 36, the expected form of the subject sequence is a sequence of letters and
digits representing an integer with the radix specified by the Base parameter, optionally
preceded by a + or –, but not including an integer suffix.

The letters a (or A) through z (or Z) are ascribed the values of 10 to 35. Only letters whose
values are less than that of the base are permitted. If the value of the base is 16, the
characters 0x (or 0X) may optionally precede the sequence of letters or digits, following a +
or – . present.

The wide character string is parsed to skip the initial white–space characters (as determined
by the iswspace subroutine). Any nonspace character signifies the start of a subject string
that may form an unsigned long integer in the radix specified by the Base parameter. The
subject sequence is defined to be the longest initial substring that is an unsigned long
integer of the expected form. Any character not satisfying this expected form begins the final
portion of the wide character string pointed to by the Endptr parameter on return from the
call to this subroutine.

Parameters

Nptr Contains a pointer to the wide character string to be converted to an
unsigned long integer.

Endptr Contains a pointer to the position in the Nptr string where a wide
character is found that is not a valid character for the purpose of this
conversion.

Base Specifies the radix in which the wide characters are interpreted.

wcstoul

1-1366 Technical Reference: Base Operating System

Return Values
The wcstoul and wcstoull subroutines return the converted value of the unsigned long or
long long integer if the expected form is found. If no conversion could be performed, a value
of 0 is returned. If the converted value is outside the range of representable values, a
ULONGLONG_MAX value is returned, and the value of the errno global variable is set to a
ERANGE value.

If the subject sequence has the expected form, it is interpreted as an integer constant in the
appropriate base. A pointer to the final string is stored in the Endptr parameter if that
parameter is not a null pointer. If the subject sequence is empty or does not have a valid
form, no conversion is done and the value of the Nptr parameter is stored in the Endptr
parameter if it is not a null pointer.

If the radix specified by the Base parameter is not supported, an EINVAL value is returned.
If the value to be returned is not representable, an ERANGE value is returned.

Examples
To convert a wide character string to an unsigned long integer, use the following code:

#include <stdlib.h>

#include <locale.h>

#include <errno.h>

extern int errno;

main()

{

 wchar_t *WCString, *EndPtr;

 unsigned long int retval;

 (void)setlocale(LC_ALL, ””);

 /*

 ** Let WCString point to a wide character null terminated

 ** string containing an unsigned long integer value.

 **

 */

 retval = wcstoul (WCString &EndPtr, 0);
 if(retval==0) {

 /* No conversion could be performed */

 /* Handle this case accordingly. */

 } else if(retval == ULONG_MAX) {

 /* Error handling */

 }

 /* retval contains the unsigned long integer value. */

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Conversion Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcswcs

1-1367Base Operating System Runtime Services (Q-Z)

wcswcs Subroutine

Purpose
Locates first occurrence of a wide character in a string.

Library
Standard C Library (libc.a)

Syntax#include <string.h>
wchar_t *wcswcs(WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description
The wcswcs subroutine locates the first occurrence, in the string pointed to by the
WcString1 parameter, of a sequence of wchar_t characters (excluding the terminating
wchar_t null character) from the string pointed to by the WcString2 parameter.

Parameters

WcString1 Points to the wide–character string being searched.

WcString2 Points to a wide–character string, which is a source string.

Return Values
The wcswcs subroutine returns a pointer to the located string, or a null value if the string is
not found. If the WcString2 parameter points to a string with 0 length, the function returns
the WcString1 value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbspbrk subroutine, wcschr subroutine, wcscspn subroutine, wcspbrk subroutine,
wcsrchr subroutine, wcsspn subroutine, wcstok subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Search Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcswidth

1-1368 Technical Reference: Base Operating System

wcswidth Subroutine

Purpose
Determines the display width of wide character strings.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int wcswidth (*Pwcs, n)
const wchar_t *Pwcs;
size_t n;

Description
The wcswidth subroutine determines the number of display columns to be occupied by the
number of wide characters specified by the N parameter in the string pointed to by the Pwcs
parameter. The LC_CTYPE category affects the behavior of the wcswidth subroutine.
Fewer than the number of wide characters specified by the N parameter are counted if a
null character is encountered first.

Parameters

N Specifies the maximum number of wide characters whose display width
is to be determined.

Pwcs Contains a pointer to the wide character string.

Return Values
The wcswidth subroutine returns the number of display columns to be occupied by the
number of wide characters (up to the terminating wide character null) specified by the N
parameter (or fewer) in the string pointed to by the Pwcs parameter. A value of zero is
returned if the Pwcs parameter is a wide character null pointer or a pointer to a wide
character null (that is, Pwcs or *Pwcs is null). If the Pwcs parameter points to an unusable
wide character code, –1 is returned.

Examples
To find the display column width of a wide character string, use the following:

#include <string.h>

#include <locale.h>

#include <stdlib.h>

main()

{

 wchar_t *pwcs;

 int retval, n ;

wcswidth

1-1369Base Operating System Runtime Services (Q-Z)

 (void)setlocale(LC_ALL, ””);

 /* Let pwcs point to a wide character null terminated

 ** string. Let n be the number of wide characters whose

 ** display column width is to be determined.

 */

 retval= wcswidth(pwcs, n);

 if(retval == –1){

 /* Error handling. Invalid wide character code

 ** encountered in the wide character string pwcs.

 */

 }

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcwidth subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Display Column Width Subroutines in AIX General
Programming Concepts : Writing and Debugging Programs.

wcsxfrm

1-1370 Technical Reference: Base Operating System

wcsxfrm Subroutine

Purpose
Transforms wide–character strings to wide–character codes of current locale.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

size_t wcsxfrm (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

Description
The wcsxfrm subroutine transforms the wide–character string specified by the WcString2
parameter into a string of wide–character codes, based on the collation values of the wide
characters in the current locale as specified by the LC_COLLATE category. No more than
the number of character codes specified by the Number parameter are copied into the array
specified by the WcString1 parameter. When two such transformed wide–character strings
are compared using the wcscmp subroutine, the result is the same as that obtained by a
direct call to the wcscoll subroutine on the two original wide–character strings.

Parameters

WcString1 Points to the destination wide–character string.

WcString2 Points to the source wide–character string.

Number Specifies the maximum number of wide–character codes to place into
the array specified by WcString1. To determine the necessary size
specification, set the Number parameter to a value of 0, so that the
WcString1 parameter becomes a null pointer. The return value plus 1 is
the size necessary for the conversion.

Return Values
If the WcString1 parameter is a wide–character null pointer, the wcsxfrm subroutine returns
the number of wide–character elements (not including the wide–character null terminator)
required to store the transformed wide character string. If the count specified by the Number
parameter is sufficient to hold the transformed string in the WcString1 parameter, including
the wide character null terminator, the return value is set to the actual number of wide
character elements placed in the WcString1 parameter, not including the wide character
null. If the return value is equal to or greater than the value specified by the Number
parameter, the contents of the array pointed to by the WcString1 parameter are
indeterminate. This occurs whenever the Number value parameter is too small to hold the
entire transformed string. If an error occurs, the wcsxfrm subroutine returns the size_t data
type with a value of –1 and sets the errno global variable to indicate the error.

If the wide character string pointed to by the WcString2 parameter contains wide character
codes outside the domain of the collating sequence defined by the current locale, the
wcsxfrm subroutine returns a value of EINVAL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

wcsxfrm

1-1371Base Operating System Runtime Services (Q-Z)

Related Information
The wcscmp subroutine, wcscoll subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character String Collation Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wctob

1-1372 Technical Reference: Base Operating System

wctob Subroutine

Purpose
Wide–character to single–byte conversion.

Library
Standard library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

int wctob (wint_t c);

Description
The wctob function determines whether c corresponds to a member of the extended
character set whose character representation is a single byte when in the initial shift state.

 The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The wctob function returns EOF if c does not correspond to a character with length one in
the initial shift state. Otherwise, it returns the single–byte representation of that character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The btowc subroutine.

The wchar.h file.

wctomb

1-1373Base Operating System Runtime Services (Q-Z)

wctomb Subroutine

Purpose
Converts a wide character into a multibyte character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int wctomb (Storage, WideCharacter)
char *Storage;
wchar_t WideCharacter;

Description
The wctomb subroutine determines the number of bytes required to represent the wide
character specified by the WideCharacter parameter as the corresponding multibyte
character. It then converts the WideCharacter value to a multibyte character and stores the
results in the area pointed to by the Storage parameter. The wctomb subroutine can store a
maximum of MB_CUR_MAX bytes in the area pointed to by the Storage parameter. Thus,
the length of the area pointed to by the Storage parameter should be at least
MB_CUR_MAX bytes. The MB_CUR_MAX macro is defined in the stdlib.h file.

Parameters

Storage Points to an area where the result of the conversion is stored.

WideCharacter Specifies a wide–character value.

Return Values
The wctomb subroutine returns a 0 if the Storage parameter is a null pointer. If the
WideCharacter parameter does not correspond to a valid multibyte character, a –1 is
returned. Otherwise, the number of bytes that comprise the multibyte character is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbtowc subroutine, mbstowcs subroutine, wcslen subroutine, wcstombs subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code and Wide Character Code Conversion Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

wctrans

1-1374 Technical Reference: Base Operating System

wctrans Subroutine

Purpose
Define character mapping.

Library
Standard library (libc.a)

Syntax
#include <wctype.h>

wctrans_t wctrans (const char * charclass);

Description
The wctrans function is defined for valid character mapping names identified in the current
locale. The charclass is a string identifying a generic character mapping name for which
codeset–specific information is required. The following character mapping names are
defined in all locales ”tolower” and ”toupper”.

 The function returns a value of type wctrans_t, which can be used as the second argument
to subsequent calls of towctrans. The wctrans function determines values of wctrans_t
according to the rules of the coded character set defined by character mapping information
in the program’s locale (category LC_CTYPE). The values returned by wctrans are valid
until a call to setlocale that modifies the category LC_CTYPE.

Return Values
The wctrans function returns 0 if the given character mapping name is not valid for the
current locale (category LC_CTYPE), otherwise it returns a non–zero object of type
wctrans_t that can be used in calls to towctrans.

Error Codes
The wctrans function may fail if:

EINVAL The character mapping name pointed to by charclass is not valid in
the current locale.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The towctrans subroutine.

The wctype.h file.

wctype

1-1375Base Operating System Runtime Services (Q-Z)

wctype or get_wctype Subroutine

Purpose
Obtains a handle for valid property names in the current locale for wide characters.

Library
Standard C library (libc.a).

Syntax
#include <wchar.h>

wctype_t wctype (Property)
const char *Property;

wctype_t get_wctype (Property)
char *Property;

Description
The wctype subroutine obtains a handle for valid property names for wide characters as
defined in the current locale. The handle is of data type wctype_t and can be used as the
WC_PROP parameter in the iswctype subroutine. Values returned by the wctype
subroutine are valid until the setlocale subroutine modifies the LC_CTYPE category. The
get_wctype subroutine is identical to the wctype subroutine.

Parameters

Property

 Points to a string that identifies a generic character class for which code set–specific
information is required. The basic character classes are:

alnum Alphanumeric character.

alpha Alphabetic character.

blank Space and tab characters.

cntrl Control character. No characters in alpha or print
are included.

digit Numeric digit character.

graph Graphic character for printing. Does not include the
space character or cntrl characters, but does
include all characters in digit and punct.

lower Lowercase character. No characters in cntrl, digit,
punct, or space are included.

print Print character. Includes characters in graph, but
does not include characters in cntrl.

punct Punctuation character. No characters in alpha,
digit, or cntrl, or the space character are included.

space Space characters.

upper Uppercase character.

xdigit Hexadecimal character.

wctype

1-1376 Technical Reference: Base Operating System

Return Values
Upon successful completion, the subroutine returns a value of type wctype_t, which is a
handle for valid property names in the current locale. Otherwise, it returns a value or – 1 if
the Property parameter specifies a character class that is not valid for the current locale.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

The wctype subroutine adheres to Systems Interface and Headers, Issue 4 of X/Open.

Related Information
The iswalnum subroutine, iswalpha subroutine, iswcntrl subroutine, iswctype subroutine,
iswdigit subroutine, iswgraph subroutine, iswlower subroutine, iswprint subroutine,
iswpunct subroutine, iswspace subroutine, iswupper subroutine, iswxdigit subroutine,
setlocale subroutine, towlower subroutine, towupper subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Classification Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

wcwidth

1-1377Base Operating System Runtime Services (Q-Z)

wcwidth Subroutine

Purpose
Determines the display width of wide characters.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int wcwidth (WC)

wchar_t WC;

Description
The wcwidth subroutine determines the number of display columns to be occupied by the
wide character specified by the WC parameter. The LC_CTYPE subroutine affects the
behavior of the wcwidth subroutine.

Parameters

WC Specifies a wide character.

Return Values
The wcwidth subroutine returns the number of display columns to be occupied by the WC
parameter. If the WC parameter is a wide character null, a value of 0 is returned. If the WC
parameter points to an unusable wide character code, –1 is returned.

Examples
To find the display column width of a wide character, use the following:

#include <string.h>

#include <locale.h>

#include <stdlib.h>

main()

{

 wchar_t wc;

 int retval;

 (void)setlocale(LC_ALL, ””);

 /* Let wc be the wide character whose

 ** display width is to be found.

 */

 retval= wcwidth(wc);

 if(retval == –1){

 /*

 ** Error handling. Invalid wide character in wc.

 */

 }

}

wcwidth

1-1378 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcswidth subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Display Column Width Subroutines in AIX General
Programming Concepts : Writing and Debugging Programs.

wmemchr

1-1379Base Operating System Runtime Services (Q-Z)

wmemchr Subroutine

Purpose
Find a wide–character in memory.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wmemchr (const wchar_t * ws, wchar_t wc, size_t n) ;

Description
The wmemchr function locates the first occurrence of wc in the initial n wide–characters of
the object pointed to be ws. This function is not affected by locale and all wchar_t values
are treated identically. The null wide–character and wchar_t values not corresponding to
valid characters are not treated specially.

 If n is zero, ws must be a valid pointer and the function behaves as if no valid occurrence
of wc is found.

Return Values
The wmemchr function returns a pointer to the located wide–character, or a null pointer if
the wide–character does not occur in the object.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wmemcmp subroutine.

The wmemcpy subroutine.

The wmemmove subroutine.

The wmemset subroutine.

The wchar.h file.

wmemcmp

1-1380 Technical Reference: Base Operating System

wmemcmp Subroutine

Purpose
Compare wide–characters in memory.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

int wmemcmp (const wchar_t * ws1, const wchar_t * ws2, size_t n);

Description
The wmemcmp function compares the first n wide–characters of the object pointed to by
ws1 to the first n wide–characters of the object pointed to by ws2. This function is not
affected by locale and all wchar_t values are treated identically. The null wide–character
and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers and the function behaves as if the two
objects compare equal.

Return Values
The wmemcmp function returns an integer greater than, equal to, or less than zero,
accordingly as the object pointed to by ws1 is greater than, equal to, or less than the object
pointed to by ws2.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) subroutine.

Related Information
The wmemchr subroutine.

The wmemcpy subroutine.

The wmemmove subroutine.

The wmemset subroutine.

The wchar.h file.

wmemcpy

1-1381Base Operating System Runtime Services (Q-Z)

wmemcpy Subroutine

Purpose
Copy wide–characters in memory.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wmemcpy (wchar_t * ws1, const wchar_t * ws2, size_t n) ;

Description
The wmemcpy function copies n wide–characters from the object pointed to by ws2 to the
object pointed to be ws1. This function is not affected by locale and all wchar_t values are
treated identically. The null wide–character and wchar_t values not corresponding to valid
characters are not treated specially.

 If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero
wide–characters.

Return Values
The wmemcpy function returns the value of ws1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wmemchr subroutine.

The wmemcmp subroutine.

The wmemmove subroutine.

The wmemset subroutine.

The wchar.h file.

wmemmove

1-1382 Technical Reference: Base Operating System

wmemmove Subroutine

Purpose
Copy wide–characters in memory with overlapping areas.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wmemmove (wchar_t * ws1, const wchar_t * ws2, size_t n)
;

Description
The wmemmove function copies n wide–characters from the object pointed to by ws2 to
the object pointed to by ws1. Copying takes place as if the n wide–characters from the
object pointed to by ws2 are first copied into a temporary array of n wide–characters that
does not overlap the objects pointed to by ws1 or ws2, and then the n wide–characters
from the temporary array are copied into the object pointed to by ws1.

 This function is not affected by locale and all wchar_t values are treated identically. The
null wide–character and wchar_t values not corresponding to valid characters are not
treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero
wide–characters.

Return Values
The wmemmove function returns the value of ws1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wmemchrsubroutine.

The wmemcmpsubroutine

The wmemcpysubroutine

The wmemsetsubroutine

The wchar.h file.

wmemset

1-1383Base Operating System Runtime Services (Q-Z)

wmemset Subroutine

Purpose
Set wide–characters in memory.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wmemset (wchar_t * ws, wchar_t wc, size_t n);

Description
The wmemset function copies the value of wc into each of the first n wide–characters of the
object pointed to by ws. This function is not affected by locale and all wchar_t values are
treated identically. The null wide–character and wchar_t values not corresponding to valid
characters are not treated specially. If n is zero, ws must be a valid pointer and the function
copies zero wide–characters.

Return Values
The wmemset functions returns the value of ws.

Implementation Specifics
This subroutine is part of Base Operating Systems (BOS) subroutine.

Related Information
The wmemchr subroutine.

The wmemcmp subroutine.

The wmemcpy subroutine.

The wmemmove subroutine.

The wchar.h file.

wordexp

1-1384 Technical Reference: Base Operating System

wordexp Subroutine

Purpose
Expands tokens from a stream of words.

Library
Standard C Library (libc.a)

Syntax
#include <wordexp.h>

int wordexp (Words, Pwordexp, Flags)
const char *Words;
wordexp_t *Pwordexp;
int Flags;

Description
The wordexp subroutine performs word expansions equivalent to the word expansion that
would be performed by the shell if the contents of the Words parameter were arguments on
the command line. The list of expanded words are placed in the Pwordexp parameter. The
expansions are the same as that which would be performed by the shell if the Words
parameter were the part of a command line representing the parameters to a command.
Therefore, the Words parameter cannot contain an unquoted <newline> character or any
of the unquoted shell special characters | (pipe), & (ampersand), ; (semicolon), < (less
than sign), or > (greater than sign), except in the case of command substitution. The Words
parameter also cannot contain unquoted parentheses or braces, except in the case of
command or variable substitution. If the Words parameter contains an unquoted comment
character # (number sign) that is the beginning of a token, the wordexp subroutine may
treat the comment character as a regular character, or may interpret it as a comment
indicator and ignore the remainder of the expression in the Words parameter.

The wordexp subroutine allows an application to perform all of the shell’s expansions on a
word or words obtained from a user. For example, if the application prompts for a file name
(or a list of file names) and then uses the wordexp subroutine to process the input, the user
could respond with anything that would be valid as input to the shell.

The wordexp subroutine stores the number of generated words and a pointer to a list of
pointers to words in the Pwordexp parameter. Each individual field created during the field
splitting or path name expansion is a separate word in the list specified by the Pwordexp
parameter. The first pointer after the last last token in the list is a null pointer. The expansion
of special parameters * (asterisk), @ (at sign), # (number sign), ? (question mark), – (minus
sign), $ (dollar sign), ! (exclamation point), and 0 is unspecified.

The words are expanded in the order shown below:

1. Tilde expansion is performed first.

2. Parameter expansion, command substitution, and arithmetic expansion are performed
next, from beginning to end.

3. Field splitting is then performed on fields generated by step 2, unless the IFS (input field
separators) is full.

4. Path–name expansion is performed, unless the set –f command is in effect.

5. Quote removal is always performed last.

wordexp

1-1385Base Operating System Runtime Services (Q-Z)

Parameters

Flags Contains a bit flag specifying the configurable aspects of the wordexp
subroutine.

Pwordexp Contains a pointer to a wordexp_t structure.

Words Specifies the string containing the tokens to be expanded.

The value of the Flags parameter is the bitwise, inclusive OR of the constants below, which
are defined in the wordexp.h file.

WRDE_APPEND Appends words generated to those generated by a previous call to
the wordexp subroutine.

WRDE_DOOFFS Makes use of the we_offs structure. If the WRDE_DOOFFS flag is
set, the we_offs structure is used to specify the number of null
pointers to add to the beginning of the we_words structure. If the
WRDE_DOOFFS flag is not set in the first call to the wordexp
subroutine with the Pwordexp parameter, it should not be set in
subsequent calls to the wordexp subroutine with the Pwordexp
parameter.

WRDE_NOCMD Fails if command substitution is requested.

WRDE_REUSE The Pwordexp parameter was passed to a previous successful call
to the wordexp subroutine. Therefore, the memory previously
allocated may be reused.

WRDE_SHOWERR Does not redirect standard error to /dev/null.

WRDE_UNDEF Reports error on an attempt to expand an undefined shell variable.

The WRDE_ APPEND flag can be used to append a new set of words to those generated
by a previous call to the wordexp subroutine. The following rules apply when two or more
calls to the wordexp subroutine are made with the same value of the Pwordexp parameter
and without intervening calls to the wordfree subroutine:

1. The first such call does not set the WRDE_ APPEND flag. All subsequent calls set it.

2. For a single invocation of the wordexp subroutine, all calls either set the
WRDE_DOOFFS flag, or do not set it.

3. After the second and each subsequent call, the Pwordexp parameter points to a list
containing the following:

a. Zero or more null characters, as specified by the WRDE_DOOFFS flag and the
we_offs structure.

b. Pointers to the words that were in the Pwordexp parameter before the call, in the
same order as before.

c. Pointers to the new words generated by the latest call, in the specified order.

4. The count returned in the Pwordexp parameter is the total number of words from all of
the calls.

5. The application should not modify the Pwordexp parameter between the calls.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons,
want to prevent a user from executing shell commands. Disallowing unquoted shell special
characters also prevents unwanted side effects such as executing a command or writing to
a file.

Unless the WRDE_SHOWERR flag is set in the Flags parameter, the wordexp subroutine
redirects standard error to the /dev/null file for any utilities executed as a result of command
substitution while expanding the Words parameter. If the WRDE_SHOWERR flag is set, the
wordexp subroutine may write messages to standard error if syntax errors are detected
while expanding the Words parameter.

wordexp

1-1386 Technical Reference: Base Operating System

The Pwordexp structure is allocated by the caller, but memory to contain the expanded
tokens is allocated by the wordexp subroutine and added to the structure as needed.

The Words parameter cannot contain any <newline> characters, or any of the unquoted
shell special characters |, &, ;, (), {}, <, or >, except in the context of command
substitution.

Return Values
If no errors are encountered while expanding the Words parameter, the wordexp subroutine
returns a value of 0. If an error occurs, it returns a nonzero value indicating the error.

Errors
If the wordexp subroutine terminates due to an error, it returns one of the nonzero
constants below, which are defined in the wordexp.h file.

WRDE_BADCHAR One of the unquoted characters |, &, ;, <, >, parenthesis, or braces
appears in the Words parameter in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when the WRDE_UNDEF flag
is set in the Flags parameter.

WRDE_CMDSUB Command substitution requested when the WRDE_NOCMD flag is
set in the Flags parameter.

WRDE_NOSPACE Attempt to allocate memory was unsuccessful.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or
unterminated string.

If the wordexp subroutine returns the error value WRDE_SPACE, then the expression in
the Pwordexp parameter is updated to reflect any words that were successfully expanded.
In other cases, the Pwordexp parameter is not modified.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The glob subroutine, wordfree subroutine.

wordfree

1-1387Base Operating System Runtime Services (Q-Z)

wordfree Subroutine

Purpose
Frees all memory associated with the Pwordexp parameter.

Library
Standard C Library (libc.a)

Syntax
#include <wordexp.h>

void wordfree (Pwordexp)
wordexp_t *Pwordexp;

Description
The wordfree subroutine frees any memory associated with the Pwordexp parameter from
a previous call to the wordexp subroutine.

Parameters

Pwordexp Structure containing a list of expanded words.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wordexp subroutine.

write

1-1388 Technical Reference: Base Operating System

write, writex, writev, writevx or pwrite Subroutines

Purpose
Writes to a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

ssize_t write (FileDescriptor, Buffer, NBytes)
int FileDescriptor;
const void *Buffer;
size_t NBytes;

int writex (FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor;
char *Buffer;
unsigned int NBytes;
int Extension;

#include <sys/uio.h>

ssize_t writev (FileDescriptor, iov, iovCount)
int FileDescriptor;
const struct iovec * iov;
int iovCount;

int writevx (FileDescriptor, iov, iovCount, Extension)
int FileDescriptor;
struct iovec *iov;
int iovCount;
int Extension;

ssize_t pwrite (FileDescriptor, Buffer, NBytes, Offset)
int FileDescriptor;
const void *Buffer;
size_t NBytes;
off_t Offset;

Description
The write subroutine attempts to write the number of bytes of data specified by the NBytes
parameter to the file associated with the FileDescriptor parameter from the buffer pointed to
by the Buffer parameter.

The writev subroutine performs the same action but gathers the output data from the
iovCount buffers specified by the array of iovec structures pointed to by the iov parameter.
Each iovec entry specifies the base address and length of an area in memory from which
data should be written. The writev subroutine always writes a complete area before
proceeding to the next.

The writex and writevx subroutines are the same as the write and writev subroutines,
respectively, with the addition of an Extension parameter, which is used when writing to
some device drivers.

With regular files and devices capable of seeking, the actual writing of data proceeds from
the position in the file indicated by the file pointer. Upon return from the write subroutine,
the file pointer increments by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

write

1-1389Base Operating System Runtime Services (Q-Z)

 If a write requests that more bytes be written than there is room for (for example, the ulimit
or the physical end of a medium), only as many bytes as there is room for will be written.
For example, suppose there is space for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a non–zero number of bytes will give a
failure return (except as noted below) and the implementation will generate a SIGXFSZ
signal for the thread.

Fewer bytes can be written than requested if there is not enough room to satisfy the
request. In this case the number of bytes written is returned. The next attempt to write a
nonzero number of bytes is unsuccessful (except as noted in the following text). The limit
reached can be either that set by the ulimit subroutine or the end of the physical medium.

Successful completion of a write subroutine clears the SetUserID bit (S_ISUID) of a file if all
of the following are true:

• The calling process does not have root user authority.

• The effective user ID of the calling process does not match the user ID of the file.

• The file is executable by the group (S_IXGRP) or other (S_IXOTH).

The write subroutine clears the SetGroupID bit (S_ISGID) if all of the following are true:

• The calling process does not have root user authority.

• The group ID of the file does not match the effective group ID or one of the
supplementary group IDs of the process.

• The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the write
subroutine is unsuccessful, if file data was modified before the error was detected.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file prior
to each write.

If the FileDescriptor parameter refers to a regular file whose file status flags specify
O_SYNC, this is a synchronous update (as described in the open subroutine).

If the FileDescriptor parameter refers to a regular file that a process has opened with the
O_DEFER file status flag set, the data and file size are not updated on permanent storage
until a process issues an fsync subroutine or performs a synchronous update. If all
processes that have the file open with the O_DEFER file status flag set close the file before
a process issues an fsync subroutine or performs a synchronous update, the data and file
size are not updated on permanent storage.

Write requests to a pipe (or first–in–first–out (FIFO)) are handled the same as a regular file
with the following exceptions:

• There is no file offset associated with a pipe; hence, each write request appends to the
end of the pipe.

• If the size of the write request is less than or equal to the value of the PIPE_BUF system
variable (described in the pathconf routine), the write subroutine is guaranteed to be
atomic. The data is not interleaved with data from other write processes on the same
pipe. Writes of greater than PIPE_BUF bytes can have data interleaved, on arbitrary
boundaries, with writes by other processes, whether or not the O_NDELAY or
O_NONBLOCK file status flags are set.

• If the O_NDELAY and O_NONBLOCK file status flags are clear (the default), a write
request to a full pipe causes the process to block until enough space becomes available
to handle the entire request.

• If the O_NDELAY file status flag is set, a write to a full pipe returns a 0.

• If the O_NONBLOCK file status flag is set, a write to a full pipe returns a value of –1 and
sets the errno global variable to EAGAIN.

write

1-1390 Technical Reference: Base Operating System

When attempting to write to a character special file that supports nonblocking writes, such
as a terminal, and no data can currently be written:

• If the O_NDELAY and O_NONBLOCK flags are clear (the default), the write subroutine
blocks until data can be written.

• If the O_NDELAY flag is set, the write subroutine returns 0.

• If the O_NONBLOCK flag is set, the write subroutine returns –1 and sets the errno
global variable to EAGAIN if no data can be written.

When attempting to write to a regular file that supports enforcement–mode record locks,
and all or part of the region to be written is currently locked by another process, the
following can occur:

• If the O_NDELAY and O_NONBLOCK file status flags are clear (the default), the calling
process blocks until the lock is released.

• If the O_NDELAY or O_NONBLOCK file status flag is set, then the write subroutine
returns a value of –1 and sets the errno global variable to EAGAIN.

Note: The fcntl subroutine provides more information about record locks.

 If fildes refers to a STREAM, the operation of write is determined by the values of the
minimum and maximum nbyte range (”packet size”) accepted by the STREAM. These
values are determined by the topmost STREAM module. If nbyte falls within the packet size
range, nbyte bytes will be written. If nbyte does not fall within the range and the minimum
packet size value is 0, write will break the buffer into maximum packet size segments prior
to sending the data downstream (the last segment may contain less than the maximum
packet size). If nbyte does not fall within the range and the minimum value is non–zero,
write will fail with errno set to ERANGE. Writing a zero–length buffer (nbyte is 0) to a
STREAMS device sends 0 bytes with 0 returned. However, writing a zero–length buffer to a
STREAMS–based pipe or FIFO sends no message and 0 is returned. The process may
issue I_SWROPT ioctl to enable zero–length messages to be sent across the pipe or FIFO.

 When writing to a STREAM, data messages are created with a priority band of 0. When
writing to a STREAM that is not a pipe or FIFO:

• If O_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write
queue is full due to internal flow control conditions), write will block until data can be
accepted.

• If O_NONBLOCK is set and the STREAM cannot accept data, write will return –1 and set
errno to EAGAIN.

• If O_NONBLOCK is set and part of the buffer has been written while a condition in which
the STREAM cannot accept additional data occurs, write will terminate and return the
number of bytes written.

 In addition, write and writev will fail if the STREAM head had processed an asynchronous
error before the call. In this case, the value of errno does not reflect the result of write or
writev but reflects the prior error.

 The writev function is equivalent to write, but gathers the output data from the iovcnt
buffers specified by the members of the iov array: iov[0], iov[1], ..., iov[iovcnt – 1]. iovcnt is
valid if greater than 0 and less than or equal to {IOV_MAX}, defined in limits.h.

 Each iovec entry specifies the base address and length of an area in memory from which
data should be written. The writev function will always write a complete area before
proceeding to the next.

 If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov
are 0, writev will return 0 and have no other effect. For other file types, the behaviour is
unspecified.

write

1-1391Base Operating System Runtime Services (Q-Z)

 If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and no
data is transferred.

The behavior of an interrupted write subroutine depends on how the handler for the arriving
signal was installed. The handler can be installed in one of two ways, with the following
results:

• If the handler was installed with an indication that subroutines should not be restarted,
the write subroutine returns a value of –1 and sets the errno global variable to EINTR
(even if some data was already written).

• If the handler was installed with an indication that subroutines should be restarted, and:

– If no data had been written when the interrupt was handled, the write subroutine will
not return a value (it is restarted).

– If data had been written when the interrupt was handled, this write subroutine returns
the amount of data already written.

Note: A write to a regular file is not interruptible. Only writes to objects that may block
indefinitely, such as FIFOs, sockets, and some devices, are generally interruptible.

 The pwrite function performs the same action as write, except that it writes into a given
position without changing the file pointer. The first three arguments to pwrite are the same
as write with the addition of a fourth argument offset for the desired position inside the file.

Parameters

Buffer Identifies the buffer containing the data to be written.

Extension Provides communication with character device drivers that require
additional information or return additional status. Each driver interprets
the Extension parameter in a device–dependent way, either as a value
or as a pointer to a communication area. Drivers must apply reasonable
defaults when the Extension parameter value is 0.

FileDescriptor Identifies the object to which the data is to be written.

iov Points to an array of iovec structures, which identifies the buffers
containing the data to be written. The iovec structure is defined in the
sys/uio.h file and contains the following members:

caddr_t iov_base;

size_t iov_len;

iovCount Specifies the number of iovec structures pointed to by the iov
parameter.

NBytes Specifies the number of bytes to write.

Return Values
Upon successful completion, the write, writex, writev, and writevx subroutines return the
number of bytes that were actually written. The number of bytes written is never greater
than the value specified by the NBytes parameter. Otherwise, a value of –1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The write, writex, writev, and writevx subroutines are unsuccessful when one of the
following is true:

write

1-1392 Technical Reference: Base Operating System

EAGAIN The O_NONBLOCK flag is set on this file and the process would be
delayed in the write operation; or an enforcement–mode record lock
is outstanding in the portion of the file that is to be written.

EBADF The FileDescriptor parameter does not specify a valid file descriptor
open for writing.

EDQUOT New disk blocks cannot be allocated for the file because the user or
group quota of disk blocks has been exhausted on the file system.

EFAULT The Buffer parameter or part of the iov parameter points to a
location outside of the allocated address space of the process.

EFBIG (AIX versions 4.2 and later) An attempt was made to write a file that
exceeds the process’ file size limit or the maximum file size. If the
user has set the environment variable XPG_SUS_ENV=ON prior to
execution of the process, then the SIGXFSZ signal is posted to the
process when exceeding the process’ file size limit.

EINVAL The file position pointer associated with the FileDescriptor parameter
was negative; the iovCount parameter value was not between 1 and
16, inclusive; or one of the iov_len values in the iov array was
negative or the sum overflowed a 32–bit integer.

EINVAL The STREAM or multiplexer referenced by FileDescriptor is linked
(directly or indirectly) downstream from a multiplexer.

EINTR A signal was caught during the write operation, and the signal
handler was installed with an indication that subroutines are not to be
restarted.

EIO An I/O error occurred while writing to the file system; or the process
is a member of a background process group attempting to write to its
controlling terminal, TOSTOP is set, the process is neither ignoring
nor blocking SIGTTOU, and the process group has no parent
process.

ENOSPC No free space is left on the file system containing the file.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt was made to write to a file that is not opened for reading
by any process, or to a socket of type SOCK_STREAM that is not
connected to a peer socket; or an attempt was made to write to a
pipe or FIFO that is not open for reading by any process. If this
occurs, a SIGPIPE signal will also be sent to the process.

ERANGE The transfer request size was outside the range supported by the
STREAMS file associated with FileDescriptor.

The write, writex, writev, and writevx subroutines may be unsuccessful if the following is
true:

ENXIO A request was made of a nonexistent device, or the request was
outside the capabilities of the device.

EFBIG An attempt was made to write to a regular file where NBytes greater
than zero and the starting offset is greater than or equal to the offset
maximum established in the open file description associated with
FileDescriptor.

EINVAL The offset argument is invalid. The value is negative.

ESPIPE fildes is associated with a pipe or FIFO.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

write

1-1393Base Operating System Runtime Services (Q-Z)

Related Information
The fcntl, dup, or dup2 subroutine, fsync subroutine, ioctl subroutine, lockfx subroutine,
lseek subroutine, open, openx, or creat subroutine, pathconf subroutine, pipe subroutine,
poll subroutine, select subroutine, ulimit subroutine.

 The limits.h, stropts.h, sys/uio.h, unistd.h files.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

wstring

1-1394 Technical Reference: Base Operating System

wstring Subroutine

Purpose
Perform operations on wide character strings.

Library
Standard C Library (libc.a)

Syntax
#include <wstring.h>

wchar_t *wstrcat (XString1, XString2)
wchar_t *XString1, *XString2;

wchar_t *wstrncat (XString, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

int wstrcmp (XString1, XString2)
wchar_t *XString1, *XString2;

int wstrncmp (XString1, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

wchar_t *wstrcpy (XString1, XString2)
wchar_t *XString1, *XString2;

wchar_t *wstrncpy (XString1, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

int wstrlen (XString)
wchar_t *XString;

wchar_t *wstrchr (XString, Number)
wchar_t *XString;
int Number;

wchar_t *wstrrchr (XString, Number)
wchar_t *XString;
int Number;

wchar_t *wstrpbrk (XString1, XString2)
wchar_t *XString1, XString2;

int wstrspn (XString1, XString2)
wchar_t *XString1, XString2;

int wstrcspn (XString1, XString2)
wchar_t *XString1, XString2;

wchar_t *wstrtok (XString1, XString2)
wchar_t *XString1, XString2;

wchar_t *wstrdup (XString1)
wchar_t *XString1;

wstring

1-1395Base Operating System Runtime Services (Q-Z)

Description
The wstring subroutines copy, compare, and append strings in memory, and determine
location, size, and existence of strings in memory. For these subroutines, a string is an array
of wchar_t characters, terminated by a null character. The wstring subroutines parallel the
string subroutines, but operate on strings of type wchar_t rather than on type char, except
as specifically noted below.

The parameters XString1, XString2, and XString point to strings of type wchar_t (arrays of
wchar characters terminated by a wchar_t null character).

The subroutines wstrcat, wstrncat, wstrcpy, and wstrncpy all alter the XString1
parameter. They do not check for overflow of the array pointed to by XString1. All string
movement is performed wide character by wide character. Overlapping moves toward the
left work as expected, but overlapping moves to the right may give unexpected results. All of
these subroutines are declared in the wstring.h file.

The wstrcat subroutine appends a copy of the wchar_t string pointed to by the XString2
parameter to the end of the wchar_t string pointed to by the XString1 parameter. The
wstrcat subroutine returns a pointer to the null–terminated result.

The wstrncat subroutine copies, at most, the value of the Number parameter of wchar_ t
characters in the XString2 parameter to the end of the wchar_t string pointed to by the
XString1 parameter. Copying stops before Number wchar_t character if a null character is
encountered in the string pointed to by the XString2 parameter. The wstrncat subroutine
returns a pointer to the null–terminated result.

The wstrcmp subroutine lexicographically compares the wchar_t string pointed to by the
XString1 parameter to the wchar_t string pointed to by the XString2 parameter. The
wstrcmp subroutine returns a value that is:

• Less than 0 if XString1 is less than XString2

• Equal to 0 if XString1 is equal to XString2

• Greater than 0 if XString1 is greater than XString2

The wstrncmp subroutine makes the same comparison as wstrcmp, but it compares, at
most, the value of the Number parameter of pairs of wchar characters. The comparisons
are based on collation values as determined by the locale category LC_COLLATE and the
LANG variable.

The wstrcpy subroutine copies the string pointed to by the XString2 parameter to the array
pointed to by the XString1 parameter. Copying stops when the wchar_t null is copied. The
wstrcpy subroutine returns the value of the XString1 parameter.

The wstrncpy subroutine copies the value of the Number parameter of wchar_t characters
from the string pointed to by the XString2 parameter to the wchar_t array pointed to by the
XString1 parameter. If XString2 is less than Number wchar_t characters long, then
wstrncpy pads XString1 with trailing null characters to fill Number wchar_t characters. If
XString2 is Number or more wchar_t characters long, only the first Number wchar_t
characters are copied; the result is not terminated with a null character. The wstrncpy
subroutine returns the value of the XString1 parameter.

The wstrlen subroutine returns the number of wchar_t characters in the string pointed to by
the XString parameter, not including the terminating wchar_t null.

The wstrchr subroutine returns a pointer to the first occurrence of the wchar_t specified by
the Number parameter in the wchar_t string pointed to by the XString parameter. A null
pointer is returned if the wchar_t does not occur in the wchar_t string. The wchar_t null
that terminates a string is considered to be part of the wchar_t string.

The wstrrchr subroutine returns a pointer to the last occurrence of the character specified
by the Number parameter in the wchar_t string pointed to by the XString parameter. A null
pointer is returned if the wchar_t does not occur in the wchar_t string. The wchar_t null
that terminates a string is considered to be part of the wchar_t string.

wstring

1-1396 Technical Reference: Base Operating System

The wstrpbrk subroutine returns a pointer to the first occurrence in the wchar_t string
pointed to by the XString1 parameter of any code point from the string pointed to by the
XString2 parameter. A null pointer is returned if no character matches.

The wstrspn subroutine returns the length of the initial segment of the string pointed to by
the XString1 parameter that consists entirely of code points from the wchar_t string pointed
to by the XString2 parameter.

The wstrcspn subroutine returns the length of the initial segment of the wchar_t string
pointed to by the XString1 parameter that consists entirely of code points not from the
wchar_t string pointed to by the XString2 parameter.

The wstrtok subroutine returns a pointer to an occurrence of a text token in the string
pointed to by the XString1 parameter. The XString2 parameter specifies a set of code points
as token delimiters. If the XString1 parameter is anything other than null, then the wstrtok
subroutine reads the string pointed to by the XString1 parameter until it finds one of the
delimiter code points specified by the XString2 parameter. It then stores a wchar_t null into
the wchar_t string, replacing the delimiter code point, and returns a pointer to the first
wchar_t of the text token. The wstrtok subroutine keeps track of its position in the wchar_t
string so that subsequent calls with a null XString1 parameter step through the wchar_t
string. The delimiters specified by the XString2 parameter can be changed for subsequent
calls to wstrtok. When no tokens remain in the wchar_t string pointed to by the XString1
parameter, the wstrtok subroutine returns a null pointer.

The wstrdup subroutine returns a pointer to a wchar_t string that is a duplicate of the
wchar_t string to which the XString1 parameter points. Space for the new string is allocated
using the malloc subroutine. When a new string cannot be created, a null pointer is
returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The malloc subroutine, strcat, strncat, strxfrm, strcpy, strncpy, or strdup subroutine,
strcmp, strncmp, strcasecmp, strncasecmp, or strcoll subroutine, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strstr, or strtok subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

wstrtod

1-1397Base Operating System Runtime Services (Q-Z)

wstrtod or watof Subroutine

Purpose
Converts a string to a double–precision floating–point.

Library
Standard C Library

Syntax
#include <wstring.h>

double wstrtod (String, Pointer)
wchar_t *String, **Pointer;

double watof (String)
wchar_t *String;

Description
The wstrtod subroutine returns a double–precision floating–point number that is converted
from an wchar_t string pointed to by the String parameter. The system searches the String
until it finds the first unrecognized character.

The wstrtod subroutine recognizes a string that starts with any number of white–space
characters (defined by the iswspace subroutine), followed by an optional sign, a string of
decimal digits that may include a decimal point, e or E, an optional sign or space, and an
integer.

When the value of Pointer is not (wchar_t **) null, a pointer to the search terminating
character is returned to the address indicated by Pointer. When the resulting number cannot
be created, *Pointer is set to String and 0 (zero) is returned.

The watof (String) subroutine functions like the wstrtod (String (wchar_t **) null).

Parameters

String Specifies the address of the string to scan.

Pointer Specifies the address at which the pointer to the terminating character
is stored.

Error Codes
When the value causes overflow, HUGE_VAL (defined in the math.h file) is returned with
the appropriate sign, and the errno global variable is set to ERANGE. When the value
causes underflow, 0 is returned and the errno global variable is set to ERANGE.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The atof, atoff, strtod, strtof subroutine, scanf, fscanf, sscanf subroutine, strtol, strtoul,
atol, atoi subroutine, wstrtol, watol, watoi subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

wstrtol

1-1398 Technical Reference: Base Operating System

wstrtol, watol, or watoi Subroutine

Purpose
Converts a string to an integer.

Library
Standard C Library (libc.a)

Syntax
#include <wstring.h>

long wstrtol (String, Pointer, Base)
wchar_t *String, **Pointer;
int Base;

long watol (String)
wchar_t *String;

int watoi (String)
wchar_t *String;

Description
The wstrtol subroutine returns a long integer that is converted from the string pointed to by
the String parameter. The string is searched until a character is found that is inconsistent
with Base. Leading white–space characters defined by the ctype subroutine iswspace are
ignored.

When the value of Pointer is not (wchar_t **) null, a pointer to the terminating character is
returned to the address indicated by Pointer. When an integer cannot be created, the
address indicated by Pointer is set to String, and 0 is returned.

When the value of Base is positive and not greater than 36, that value is used as the base
during conversion. Leading zeros that follow an optional leading sign are ignored. When the
value of Base is 16, 0x and 0X are ignored.

When the value of Base is 0, the system chooses an appropriate base after examining the
actual string. An optional sign followed by a leading zero signifies octal, and a leading 0x or
0X signifies hexadecimal. In all other cases, the subroutines assume a decimal base.

Truncation from long data type to int data type occurs by assignment, and also by explicit
casting.

The watol (String) subroutine functions like wstrtol (String, (wchar_t **) null, 10).

The watoi (String) subroutine functions like (int) wstrtol (String, (wchar_t **) null, 10).

Note: Even if overflow occurs, it is ignored.

Parameters

String Specifies the address of the string to scan.

Pointer Specifies the address at which the pointer to the terminating character
is stored.

Base Specifies an integer value used as the base during conversion.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

wstrtol

1-1399Base Operating System Runtime Services (Q-Z)

Related Information
The atof, atoff, strtod, strtof subroutine, scanf, fscanf, sscanf subroutine, strtol, strtoul,
atol, atoi subroutine, wstrtod, watof subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

yield

1-1400 Technical Reference: Base Operating System

yield Subroutine

Purpose
Yields the processor to processes with higher priorities.

Library
Standard C library (libc.a)

Syntax
void yield (void);

Description
The yield subroutine forces the current running process or thread to relinquish use of the
processor. If the run queue is empty when the yield subroutine is called, the calling process
or kernel thread is immediately rescheduled. If the calling process has multiple threads, only
the calling thread is affected. The process or thread resumes execution after all threads of
equal or greater priority are scheduled to run.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getpriority, setpriority, or nice subroutine, setpri subroutine.

Curses

2-1curses

Curses Subroutines

Curses

2-2 Technical Reference: Base Operating System

addch

2-3curses

addch, mvaddch, mvwaddch, or waddch Subroutine

Purpose
Adds a single–byte character and rendition to a window and advances the cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int addch(const chtype ch);

int mvaddch(int y,
int x,
const chtype ch);

int mvwaddch(WINDOW *in,
const chtype ch);

int waddch(WINDOW *win,
const chtype ch);

Description
The addch, waddch, mvaddch, and mvwaddch subroutines add a character to a window
at the logical cursor location. After adding the character, curses advances the position of the
cursor one character. At the right margin, an automatic new line is performed.

The addch subroutine adds the character to the stdscr at the current logical cursor location.
To add a character to a user–defined window, use the waddch and mvwaddch
subroutines. The mvaddch and mvwaddch subroutines move the logical cursor before
adding a character.

If you add a character to the bottom of a scrolling region, curses automatically scrolls the
region up one line from the bottom of the scrolling region if scrollok is enabled. If the
character to add is a tab, new–line, or backspace character, curses moves the cursor
appropriately in the window to reflect the addition. Tabs are set at every eighth column. If
the character is a new–line, curses first uses the wclrtoeol subroutine to erase the current
line from the logical cursor position to the end of the line before moving the cursor.

You can also use the addch subroutines to add control characters to a window. Control
characters are drawn in the ^X notation.

Adding Video Attributes and Text
Because the Char parameter is an integer, not a character, you can combine video
attributes with a character by ORing them into the parameter. The video attributes are also
set. With this capability you can copy text and video attributes from one location to another
using the inch and addch subroutines.

Parameters

ch

y

addch

2-4 Technical Reference: Base Operating System

x

*win

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To add the character H represented by variable x to stdscr at the current cursor location,

enter:

chtype x;

x=’H’;

addch(x);

2. To add the x character to stdscr at the coordinates y = 10 , x = 5 , enter:

mvaddch(10, 5, ’x’);

3. To add the x character to the user–defined window my_window at the coordinates y =
10 , x = 5 , enter:

WINDOW *my_window;

mvwaddch(my_window, 10, 5, ’x’);

4. To add the x character to the user–defined window my_window at the current cursor
location, enter:

WINDOW *my_window;

waddch(my_window, ’x’);

5. To add the character x in standout mode, enter:

waddch(my_window, ’x’ | A_STANDOUT);

 This allows ’x’ to be highlighted, but leaves the rest of the window alone.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The inch, winch, mvinch, or mvwinch subroutines, wclrtoeol subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

addnstr

2-5curses

addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr,
mvwaddstr, waddnstr, or waddstr Subroutine

Purpose
Adds a string of multi–byte characters without rendition to a window and advances the
cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int addnstr(const char *str,
int n);

int addstr(const char *str);

int mvaddnstr(int y,
int x,
const char *str,
int n);

int mvaddstr(int y,
int x,
const char *str);

int mvwaddnstr(WINDOW *win,
int y,
int x,
const char *str,
int n);

int mvwaddstr(WINDOW *win,
int y,
int x,
const char *str);

int waddnstr(WINDOW *win,
const char *str,
int n);

int waddstr(WINDOW *win,
const char *str);

Description
These subroutines write the characters of the string str on the current or specified window
starting at the current or specified position using the background rendition.

These subroutines advance the cursor position, perform special character processing, and
perform wrapping.

addnstr

2-6 Technical Reference: Base Operating System

The addstr, mvaddstr, mvwaddstr and waddstr subroutines are similar to calling
mbstowcs on str, and then calling addwstr, mvaddwstr, mvwaddwstr, and waddwstr,
respectively.

The addnstr, mvaddnstr, mvwaddnstr and waddnstr subroutines use at most, n bytes
from str. These subroutines add the entire string when n is –1.

Parameters

Column Specifies the horizontal position to move the cursor to before adding the
string.

Line Specifies the vertical position to move the cursor to before adding the
string.

String Specifies the string to add.

Window Specifies the window to add the string to.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To add the string represented by xyz to the stdscr at the current cursor location, enter:

char *xyz;

xyz=”Hello!”;

addstr(xyz);

2. To add the ”Hit a Key” string to the stdscr at the coordinates y= 10 , x= 5 , enter:

mvaddstr(10, 5, ”Hit a Key”);

3. To add the xyz string to the user–defined window my_window at the coordinates y=
10 , x= 5 , enter:

mvwaddstr(my_window, 10, 5, ”xyz”);

4. To add the xyz string to the user–defined string at the current cursor location, enter:

waddstr(my_window, ”xyz”);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The addch subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

attroff

2-7curses

attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine

Purpose
Restricted window attribute control functions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>int attroff (int *attrs);
int attron (int *attrs);
int attrset (int *attrs);
int wattroff (WINDOW *win, int *attsr);
int wattron (WINDOW *win, int *attrs);
int wattrset (WINDOW *win, int *attsr);

Description
These subroutines manipulate the window attributes of the current or specified window.

The attroff and wattroff subroutines turn off attrs in the current or specified specified
window without affecting any others.

The attron and wattron subroutines turn on attrs in the current or specified specified
window without affecting any others.

The attrset and wattrset subroutines set the background attributes of the current or
specified specified window to attrs.

It unspecified whether these subroutines can be used to manipulate attributes than
A_BLINK, A_BOLD, A_DIM, A_REVERSE, A_STANDOUT and A_UNDERLINE.

Parameters

*attrs Specifies which attributes to turn off.

*win Specifies the window in which to turn off the specified attributes.

Return Values
These subroutines always return either OK or 1.

Examples
For the attroff or wattroff subroutines:

1. To turn the off underlining attribute in stdscr, enter:

attroff(A_UNDERLINE);

2. To turn off the underlining attribute in the user–defined window my_window , enter:

wattroff(my_window, A_UNDERLINE);

For the attron or wattron subroutines:

1. To turn on the underlining attribute in stdscr, enter:

attron(A_UNDERLINE);

attroff

2-8 Technical Reference: Base Operating System

2. To turn on the underlining attribute in the user–defined window my_window , enter:

wattron(my_window, A_UNDERLINE);

For the attrset or wattrset subroutines:

1. To set the current attribute in the stdscr global variable to blink, enter:

attrset(A_BLINK);

2. To set the current attribute in the user–defined window my_window to blinking, enter:

wattrset(my_window, A_BLINK);

3. To turn off all attributes in the stdscr global variable, enter:

attrset(0);

4. To turn off all attributes in the user–defined window my_window , enter:

wattrset(my_window, 0);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The standend subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

attron

2-9curses

attron or wattron Subroutine

Purpose
Turns on specified attributes.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

attron(Attributes)
char *Attributes;

wattron(Window, Attributes)
WINDOW *Window;
char *Attributes;

Description
The attron and wattron subroutines turn on specified attributes without affecting any
others. The attron subroutine turns the specified attributes on in stdscr. The wattron
subroutine turns the specified attributes on in the specified window.

Parameters

Attributes Specifies which attributes to turn on.

Window Specifies the window in which to turn on the specified attributes.

Examples
1. To turn on the underlining attribute in stdscr, enter:

attron(A_UNDERLINE);

2. To turn on the underlining attribute in the user–defined window my_window, enter:

wattron(my_window, A_UNDERLINE);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

attrset

2-10 Technical Reference: Base Operating System

attrset or wattrset Subroutine

Purpose
Sets the current attributes of a window to the specified attributes.

Libraries
Curses Library (libcurses.a)

Syntax
#include <curses.h>

attrset(Attributes)
char *Attributes;
wattrset(Window, Attributes)
WINDOW *Window;
char *Attributes;

Description
The attrset and wattrset subroutines set the current attributes of a window to the specified
attributes. The attrset subroutine sets the current attribute of stdscr. The wattrset
subroutine sets the current attribute of the specified window.

Parameters

Attributes Specifies which attributes to set.

Window Specifies the window in which to set the attributes.

Examples
1. To set the current attribute in the stdscr global variable to blink, enter:

attrset(A_BLINK);

2. To set the current attribute in the user–defined window my_window to blinking, enter:

wattrset(my_window, A_BLINK);

3. To turn off all attributes in the stdscr global variable, enter:

attrset(0);

4. To turn off all attributes in the user–defined window my_window , enter:

wattrset(my_window, 0);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

attrset

2-11curses

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

baudrate

2-12 Technical Reference: Base Operating System

baudrate Subroutine

Purpose
Gets the terminal baud rate.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int baudrate(void)

Description
The baudrate subroutine extracts the output speed of the terminal in bits per second.

Return Values
The baudrate subroutine returns the output speed of the terminal.

Examples
To query the baud rate and place the value in the user–defined integer variable BaudRate
, enter:

BaudRate = baudrate();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcgetattr subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Obsolete Curses Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

beep

2-13curses

beep Subroutine

Purpose
Sounds the audible alarm on the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int beep(void);

Description
The beep subroutine alerts the user. It sounds the audible alarm on the terminal, or if that is
not possible, it flashes the screen (visible bell). If neither signal is possible, nothing
happens.

Return Values
The beep subroutine always returns OK.

Examples
To sound an audible alarm, enter:

beep();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The flash subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

box

2-14 Technical Reference: Base Operating System

box Subroutine

Purpose
Draws borders from single–byte characters and renditions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int box(WINDOW *win,
chtype verch,
chtype horch);

Description
The box subroutine draws a border around the edges of the specified window. This
subroutine does not advance the cursor position. This subroutine does not perform special
character processing or perform wrapping.

The box subroutine (*win, verch, horch) has an effect equivalent to:

wborder(win, verch, verch, horch, horch, 0, 0, 0, 0);

Parameters

horch Specifies the character to draw the horizontal lines of the box. The
character must be a 1–column character.

verch Specifies the character to draw the vertical lines of the box. The
character must be a 1–column character.

*win Specifies the window to draw the box in or around.

Return Values
Upon successful completion, the box function returns OK. Otherwise, it returns ERR.

Examples
1. To draw a box around the user–defined window, my_window, using | (pipe) as the

vertical character and – (minus sign) as the horizontal character, enter:

WINDOW *my_window;

box(my_window, ’|’, ’–’);

2. To draw a box around my_window using the default characters ACS_VLINE and
ACS_HLINE, enter:

WINDOW *my_window;

box(my_window, 0, 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The border, box_set, and hline subroutines.

Curses Overview for Programming, List of Curses Subroutines, and Windows in the Curses
Environment in AIX General Programming Concepts : Writing and Debugging Programs.

can_change_color

2-15curses

can_change_color, color_content, has_colors,init_color,
init_pair, start_color or pair_content Subroutine

Purpose
Color manipulation functions and external variables for color support.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

bool can_change_color(void);

int color_content(short color,
short *red,
short *green,
short *blue);

int COLOR_PAIR(int n);

bool has_colors(void);

int init_color
(short color,
short red,
short green,
short blue);

int init_pair
(short pair,
short f,
short b);

int pair_content
(short pair,
short *f,
short *b);

int PAIR_NUMBER
(int value);
int start_color
(void);

extern int COLOR_PAIRS;
extern int COLORS;

Description
These functions manipulate color on terminals that support color.

Querying Capabilities
The has_colors subroutine indicates whether the terminal is a color terminal. The
can_change_color subroutine indicates whether the terminal is a color terminal on which
colors can be redefined.

can_change_color

2-16 Technical Reference: Base Operating System

Initialisation
The start_color subroutine must be called in order to enable use of colors and before any
color manipulation function is called. This subroutine initializes eight basic colors (black,
blue, green, cyan, red, magenta, yellow, and white) that can be specified by the color
macros (such as COLOR_BLACK) defined in <curses.h>. The initial appearance of these
eight colors is not specified.

The function also initialises two global external variables:

• COLORS defines the number of colors that the terminal supports. If COLORS is 0, the
terminal does not support redefinition of colors (and can_change_color subroutine will
return FALSE).

• COLOR_PAIRS defines the maximum number of color–pairs that the terminal supports.

Color Identification
The init_color subroutine redefines color number color, on terminals that support the
redefinition of colors, to have the red, green, and blue intensity components specified by
red, green, and blue, respectively. Calling init_color subroutine also changes all
occurrences of the specified color on the screen to the new definition.

The color_content subroutine identifies the intensity components of color number color. It
stores the red, green, and blue intensity components of this color in the addresses pointed
to by red, green, and blue, respectively.

For both functions, the color argument must be in the range from 0 to and including
COLORS –1. Valid intensity values range from 0 (no intensity component) up to and
including 1000 (maximum intensity in that component).

User–Defined Color Pairs
Calling init_pair defines or redefines color–pair number pair to have foreground color f and
background color b. Calling init_pair changes any characters that were displayed in the
color pair’s old definition to the new definition and refreshes the screen.

After defining the color pair, the macro COLOR_PAIR(n) returns the value of color pair n.
This value is the color attribute as it would be extracted from a chtype. Conversely, the
macro PAIR_NUMBER(value) returns the color pair number associated with the color
attribute value.

The pair_content subroutine retrieves the component colors of a color–pair number pair. It
stores the foreground and background color numbers in the variables pointed to by f and b,
respectively.

With init_pair and pair_content subroutines, the value of pair must be in a range from 0 to
and including COLOR_PAIRS –1. (There may be an implementation–specific upper limit on
the valid value of pair, but any such limit is at least 63.) Valid values for f and b are the range
from 0 to and including COLORS –1.

The can_change_color subroutine returns TRUE if the terminal supports colors and can
change their definitions; otherwise, it returns FALSE.

Parameters

color

*red

*green

*blue

pair

f

can_change_color

2-17curses

b

value

Return Values
The has_colors subroutine returns TRUE if the terminal can manipulate colors; otherwise,
it returns FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

Examples
For the can_change_color subroutine:

To test whether or not a terminal can change its colors, enter the following and check the
return for TRUE or FALSE:

can_change_color();

For the color_content subroutine:

To obtain the RGB component information for color 10 (assuming the terminal supports at
least 11 colors), use:

short *r, *g, *b;

color_content(10,r,g,b);

For the has_color subroutine:

To determine whether or not a terminal supports color, use:

has_colors();

For the pair_content subroutine:

To obtain the foreground and background colors for color–pair 5 , use:

short *f, *b;

pair_content(5,f,b);

For this subroutine to succeed, you must have already initialized the color pair. The
foreground and background colors will be stored at the locations pointed to by f and b.

For the start_color subroutine:

To enable the color support for a terminal that supports color, use:

start_color();

For the init_pair subroutine:

To initialize the color definition for color–pair 2 to a black foreground (color 0) with a cyan
background (color 3), use:

init_pair(2,COLOR_BLACK, COLOR_CYAN);

For the init_color subroutine:

To initialize the color definition for color 11 to violet on a terminal that supports at least 12
colors, use:

init_color(11,500,0,500);

can_change_color

2-18 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The attroff and delscreen subroutines.

Curses Overview for Programming and Manipulating Video Attributes in AIX General
Programming Concepts : Writing and Debugging Programs.

cbreak

2-19curses

cbreak, nocbreak, noraw, or raw Subroutine

Purpose
Puts the terminal into or out of CBREAK mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int cbreak(void);

int nocbreak(void);

int noraw(void);

int raw(void);

Description
The cbreak subroutine sets the input mode for the current terminal to cbreak mode and
overrides a call to the raw subroutine.

The nocbreak subroutine sets the input mode for the current terminal to Cooked Mode
without changing the state of the ISIG and IXON flags.

The noraw subroutine sets the input mode for the current terminal to Cooked Mode and
sets the ISIG and IXON flags.

The raw subroutine sets the input mode for the current terminal to Raw Mode.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the cbreak and nocbreak subroutines:

1. To put the terminal into CBREAK mode, enter:

cbreak();

2. To take the terminal out of CBREAK mode, enter:

nocbreak();

3. To place the terminal into raw mode, use:

raw();

4. To place the terminal out of raw mode, use:

noraw();

For the noraw and raw subroutines:

cbreak

2-20 Technical Reference: Base Operating System

1. To place the terminal into raw mode, use:

raw();

2. To place the terminal out of raw mode, use:

noraw();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getch subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

clear

2-21curses

clear, erase, wclear or werase Subroutine

Purpose
Clears a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int clear(void);

int erase(void);

int wclear(WINDOW *win);

int werase(WINDOW *win);

Description
The clear, erase, wclear, and werase subroutines clear every position in the current or
specified window.

The clear and wclear subroutines also achieve the same effect as calling the clearok
subroutine, so that the window is cleared completely on the next call to the wrefresh
subroutine for the window and is redrawn in its entirety.

Parameters

*win Specifies the window to clear.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the clear and wclear subroutines:

1. To clear stdscr and set a clear flag for the next call to the refresh subroutine, enter:

clear();

2. To clear the user–defined window my_window and set a clear flag for the next call to
the wrefresh subroutine, enter:

WINDOW *my_window;

wclear(my_window);

waddstr (my_window, ”This will be cleared.”);

wrefresh (my_window);

3. To erase the standard screen structure, enter:

erase();

4. To erase the user–defined window my_window , enter:

clear

2-22 Technical Reference: Base Operating System

WINDOW *my_window;

werase (my_window);

Note: After the wrefresh, the window will be cleared completely. You will not see the
string ”This will be cleared.”

For the erase and werase subroutines:

1. To erase the standard screen structure, enter:

erase();

2. To erase the user–defined window my_window , enter:

WINDOW *my_window;

werase(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine, erase and werase subroutines, clearok subroutine, refresh
subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

clearok

2-23curses

clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg
Subroutine

Purpose
Terminal output control subroutines.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int clearok(WINDOW *win,
bool bf);

int idlok(WINDOW *win,
bool bf);

int leaveok(WINDOW *win,
bool bf);

int scrollok(WINDOW *win,
bool bf);

int setscrreg(int top,
int bot);

int wsetscrreg(WINDOW *win,
int top,
int bot);

Description
These subroutines set options that deal with output within Curses.

The clearok subroutine assigns the value of bf to an internal flag in the specified window
that governs clearing of the screen during a refresh. If, during a refresh operation on the
specified window, the flag in curscr is TRUE or the flag in the specified window is TRUE,
then the implementation clears the screen, redraws it in its entirety, and sets the flag to
FALSE in curscr and in the specified window. The initial state is unspecified.

The idlok subroutine specifies whether the implementation may use the hardware
insert–line, delete–line, and scroll features of terminals so equIpped. If bf is TRUE, use of
these features is enabled. If bf is FALSE, use of these features is disabled and lines are
instead redrawn as required. The initial state is FALSE.

The leaveok subroutine controls the cursor position after a refresh operation. If bf is TRUE,
refresh operations on the specified window may leave the terminal’s cursor at an arbitrary
position. If bf is FALSE, then at the end of any refresh operation, the terminal’s cursor is
positioned at the cursor position contained in the specified window. The initial state is
FALSE.

The scrollok subroutine controls the use of scrolling. If bf is TRUE, then scrolling is enabled
for the specified window, with the consequences discussed in Truncation, Wrapping and
Scrolling on page 28. If bf is FALSE, scrolling is disabled for the specified window. The initial
state is FALSE.

clearok

2-24 Technical Reference: Base Operating System

The setscrreg and wsetscrreg subroutines define a software scrolling region in the current
or specified window. The top and bot arguments are the line numbers of the first and last
line defining the scrolling region. (Line 0 is the top line of the window.) If this option and the
scrollok subroutine are enabled, an attempt to move off the last line of the margin causes
all lines in the scrolling region to scroll one line in the direction of the first line. Only
characters in the window are scrolled. If a software scrolling region is set and the scrollok
subroutine is not enabled, an attempt to move off the last line of the margin does not
reposition any lines in the scrolling region.

Parameters
The parameters for the clearok subroutine are:

Flag Sets the window clear flag. If TRUE, curses clears the
window on the next call to the wrefresh or refresh
subroutines. If FALSE, curses does not clear the window.

Window Specifies the window to clear.

The parameters for the idlok subroutine are:

Flag Specifies whether to enable curses to use the hardware
insert/delete line feature (TRUE) or not (FALSE).

Window Specifies the window it will affect.

The parameters for the leaveok subroutine are:

Flag Specifies whether to leave the physical cursor alone after a
refresh (TRUE) or to move the physical cursor to the logical
cursor after a refresh (FALSE).

Window Specifies the window for which to set the Flag parameter.

The parameters for the scrollok subroutine are:

Flag Enables scrolling when set to TRUE. Otherwise, set the
Flag parameter to FALSE to disable scrolling.

Window Identifies the window in which to enable or disable
scrolling.

The parameters for the setscrreg and wsetscrreg subroutines are:

Bmargin Specifies the last line number in the scrolling region.

Tmargin Specifies the first line number in the scrolling region (0 is
the top line of the window.).

Window Specifies the window in which to place the scrolling region.
You specify this parameter only with the wsetscrreg
subroutine.

Return Values
Upon successful completion, the setscrreg and wsetscrreg subroutines return OK.
Otherwise, they return ERR.

The other subroutines always return OK.

Examples
Examples for the clearok subroutine are:

1. To set the user–defined screen my_screen to clear on the next call to the wrefresh
subroutine, enter:

clearok

2-25curses

WINDOW *my_screen;

clearok(my_screen, TRUE);

2. To set the standard screen structure to clear on the next call to the refresh subroutine,
enter:

clearok(stdscr, TRUE);

Examples for the idlok subroutine are:

1. To enable curses to use the hardware insert/delete line feature in stdscr, enter:

idlok(stdscr, TRUE);

2. To force curses not to use the hardware insert/delete line feature in the user–defined
window my_window , enter:

idlok(my_window, FALSE);

Examples for the leaveok subroutine are:

1. To move the physical cursor to the same location as the logical cursor after refreshing
the user–defined window my_window , enter:

WINDOW *my_window;

leaveok(my_window, FALSE);

2. To leave the physical cursor alone after refreshing the user–defined window my_window
, enter:

WINDOW *my_window;

leaveok(my_window, TRUE);

Examples for the scrollok subroutine are:

1. To turn scrolling on in the user–defined window my_window , enter:

WINDOW *my_window;

scrollok(my_window, TRUE);

2. To turn scrolling off in the user–defined window my_window , enter:

WINDOW *my_window;

scrollok(my_window, FALSE);

Examples for the setscrreg or wsetscrreg subroutine are:

1. To set a scrolling region starting at the 10th line and ending at the 30th line in the stdscr,
enter:

setscrreg(9, 29);

Note: Zero is always the first line.

2. To set a scrolling region starting at the 10th line and ending at the 30th line in the
user–defined window my_window , enter:

WINDOW *my_window;

wsetscrreg(my_window, 9, 29);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The delscreen, doupdate, and scrl subroutines.

clearok

2-26 Technical Reference: Base Operating System

The clear subroutine, refresh or wrefresh subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines and Manipulating Characters with Curses in AIX General
Programming Concepts : Writing and Debugging Programs.

clrtobot

2-27curses

clrtobot or wclrtobot Subroutine

Purpose
Erases the current line from the logical cursor position to the end of the window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int clrtobot(void);

int wclrtobot(WINDOW *win);

Description
The clrtobot and wclrtobot subroutines erase all lines following the cursor in the current or
specified window, and erase the current line from the cursor to the end of the line, inclusive.
These subroutines do not update the cursor.

Parameters

*win Specifies the window in which to erase lines.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To erase the lines below and to the right of the logical cursor in the stdscr, enter:

clrtobot();

2. To erase the lines below and to the right of the logical cursor in the user–defined window
my_window , enter:

WINDOW *my_window;

wclrtobot(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

clrtoeol

2-28 Technical Reference: Base Operating System

clrtoeol or wclrtoeol Subroutine

Purpose
Erases the current line from the logical cursor position to the end of the line.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int clrtoeol(void);

int wclrtoeol(WINDOW *win);

Description
The clrtoeol and wclrtoeol subroutines erase the current line from the cursor to the end of
the line, inclusive, in the current or specified window. These subroutines do not update the
cursor.

Parameters

*win Specifies the window in which to clear the line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To clear the line to the right of the logical cursor in the stdscr, enter:

clrtoeol();

2. To clear the line to the right of the logical cursor in the user–defined window my_window
, enter:

WINDOW *my_window;

wclrtoeol(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

color_content

2-29curses

color_content Subroutine

Purpose
Returns the current intensity of the red, green, and blue (RGB) components of a color.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>
color_content(Color, R, G,
B)
short Color;
short *R, *G, *B;

Description
The color_content subroutine, given a color number, returns the current intensity of its red,
green, and blue (RGB) components. This subroutine stores the information in the address
specified by the R, G, and B arguments. If successful, this returns OK. Otherwise, this
subroutine returns ERR if the color does not exist, is outside the valid range, or the terminal
cannot change its color definitions.

To determine if you can change the color definitions for a terminal, use the
can_change_color subroutine. You must call the start_color subroutine before you can
call the color_content subroutine.

Note: The values stored at the addresses pointed to by R, G, and B are between 0 (no
component) and 1000 (maximum amount of component) inclusive.

Return Values

OK Indicates the subroutine was successful.

ERR Indicates the color does not exist, is outside the valid range, or the
terminal cannot change its color definitions.

Parameters

B Points to the address that stores the intensity value of the blue
component.

Color Specifies the color number. The color parameter must be a value between
0 and COLORS–1 inclusive.

R Points to the address that stores the intensity value of the red component.

G Points to the address that stores the intensity value of the green
component.

Example
To obtain the RGB component information for color 10 (assuming the terminal supports at
least 11 colors), use:

 short *r, *g, *b; color_content(10,r,g,b);

color_content

2-30 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The start_color subroutine.

Curses Overview for Programming, Manipulating Video Attributes,

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

copywin

2-31curses

copywin Subroutine

Purpose
Copies a region of a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int copywin(const WINDOW *scrwin,
WINDOW *dstwin,
int sminrow,
int smincol,
int dminrow,
int dmincol,
int dmaxrow,
int dmaxcol,
int overlay);

Description
The copywin subroutine provides a finer granularity of control over the overlay and
overwrite subroutines. As in the prefresh subroutine, a rectangle is specified in the
destination window, (dimrow, dimincol) and (dmaxrow, dmaxcol), and the upper–left–corner
coordinates of the source window, (sminrow, smincol). If the overlay subroutine is TRUE,
then copying is non–destructive, as in the overlay subroutine. If the overlay subroutine is
FALSE, then copying is destructive, as in the overwrite subroutine.

Parameters

*srcwin Points to the source window containing the region to copy.

*dstwin Points to the destination window to copy into.

sminrow Specifies the upper left row coordinate of the source region.

smincol Specifies the upper left column coordinate of the source region.

dminrow Specifies the upper left row coordinate of the destination region.

dmincol Specifies the upper left column coordinate for the destination region.

dmaxrow Specifies the lower right row coordinate for the destination region.

dmaxcol Specifies the lower right column coordinate for the destination region.

overlay Sets the type of copy. If set to TRUE the copy is nondestructive.
Otherwise, if set to FALSE, the copy is destructive.

Return Values
Upon successful completion, the copywin subroutine returns OK. Otherwise, it returns
ERR.

Examples
To copy to an area in the destination window defined by coordinates (30 , 40), (30 , 49
), (39 , 40), and (39 , 49) beginning with coordinates (0,0) in the source window, enter
the following:

copywin

2-32 Technical Reference: Base Operating System

WINDOW *srcwin, *dstwin;

copywin(srcwin, dstwin,

0, 0, 30,40, 39, 49,

 TRUE);

 The example copies ten rows and ten columns from the source window beginning with
coordinates (0,0) to the region in the destination window defined by the upper left
coordinates (30, 40) and lower right coordinates (39, 49). Because the Overlay parameter is
set to TRUE, the copy is nondestructive and blanks from the source window are not copied.

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The newpad and overlay or overwrite subroutines.

Curses Overview for Programming, Manipulating Window Data with Curses Manipulating
Characters with Curses, List of Curses Subroutines in AIX General Programming Concepts :
Writing and Debugging Programs

curs_set

2-33curses

curs_set Subroutine

Purpose
Sets the cursor visibility.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int curs_set(int visibility);

Description
The curs_set subroutine sets the appearance of the cursor based on the value of visibility:

Value of visibility Appearance of Cursor

0 invisible

1 terminal–specific normal mode

2 terminal–specific high visibility mode

The terminal does not necessarily support all the above values.

Parameters

Visibility

 Sets the cursor state. You can set the cursor state to one of the following:

0 Invisible

1 Visible

2 Very visible

Return Values
If the terminal supports the cursor mode specified by visibility, then the cur_set subroutine
returns the previous cursor state. Otherwise, the subroutine returns ERR.

Examples
To set the cursor state to invisible, use:

curs_set(0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts: Writing and
Debugging Programs

List of Curses Subroutines in AIX General Programming Concepts: Writing and Debugging
Programs

Setting Video Attributes in AIX General Programming Concepts: Writing and Debugging
Programs

def_prog_mode

2-34 Technical Reference: Base Operating System

def_prog_mode, def_shell_mode, reset_prog_mode or
reset_shell_mode Subroutine

Purpose
Saves/restores the program or shell terminal modes.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int def_prog_mode
(void);

int def_shell_mode
(void);

int reset_prog_mode
(void);

int reset_shell_mode
(void);

Description
The def_prog_mode subroutine saves the current terminal modes as the ”program” (in
Curses) state for use by the reset_prog_mode subroutine.

The def_shell_mode subroutine saves the current terminal modes as the ”shell” (not in
Curses) state for use by the reset_shell_mode subroutine.

The reset_prog_mode subroutine restores the terminal to the ”program” (in Curses) state.

The reset_shell_mode subroutine restores the terminal to the ”shell” (not in Curses) state.

These subroutines affect the mode of the terminal associated with the current screen.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the def_prog_mode subroutine:

To save the ”in curses” state, enter:

def_prog_mode();

For the def_shell_mode subroutine:

To save the ”out of curses” state, enter:

def_shell_mode();

This routine saves the ”out of curses” state.

def_prog_mode

2-35curses

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate, endwin, initscr, and the setupterm subroutines.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

def_shell_mode

2-36 Technical Reference: Base Operating System

def_shell_mode Subroutine

Purpose
Saves the current terminal modes as shell mode (”out of curses”).

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

def_shell_mode()

Description
The def_shell_mode subroutine saves the current terminal driver line discipline modes in
the current terminal structure for later use by reset_shell_mode(). The def_shell_mode
subroutine is called automatically by the setupterm subroutine.

This routine would normally not be called except by a library routine.

Example
To save the ”out of curses” state, enter:

def_shell_mode();

This routine saves the ”out of curses” state.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setupterm subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

del_curterm

2-37curses

del_curterm, restartterm, set_curterm, or setupterm
Subroutine

Purpose
Interfaces to the terminfo database.

Library
Curses Library (libcurses.a)

Syntax

#include <term.h>

int del_curterm(TERMINAL *oterm);

int restartterm(char *term,
int fildes,
int *erret);

TERMINAL *set_curterm(TERMINAL *nterm);

int setupterm(char *term,
int fildes,
int *erret);

Description
The del_curterm, restartterm, set_curterm, setupterm subroutines retrieve information
from the terminfo database.

To gain access to the terminfo database, the setupterm subroutine must be called first. It
is automatically called by the initscr and newterm subroutines. The setupterm subroutine
initialises the other subroutines to use the terminfo record for a specified terminal (which
depends on whether the use_env subroutine was called). It sets the dur_term external
variable to a TERMINAL structure that contains the record from the terminfo database for
the specified terminal.

The terminal type is the character string term; if term is a null pointer, the environment
variable TERM is used. If TERM is not set or if its value is an empty string, the ”unknown” is
used as the terminal type. The application must set the fildes parameter to a file descriptor,
open for output, to the terminal device, before calling the setupterm subroutine. If the erret
parameter is not null, the integer it points to is set to one of the following values to report the
function outcome:

–1 The terminfo database was not found (function fails).

 0 The entry for the terminal was not found in terminfo (function fails).

 1 Success.

A simple call to the setupterm subroutine that uses all the defaults and sends the output to
stdout is:

setupterm(char *)0, fileno(stdout), (int *)0);

The set_curterm subroutine sets the variable cur_term to nterm, and makes all of the
terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm subroutine frees the space pointed to by oterm and makes it available for
further use. If oterm is the same as cur_term, references to any of the terminfo boolean,

del_curterm

2-38 Technical Reference: Base Operating System

numeric, and string variables thereafter may refer to invalid memory locations until the
setupterm subroutine is called again.

The restartterm subroutine assumes a previous call to the setupterm subroutine (perhaps
from the initscr or newterm subroutine). It lets the application specify a different terminal
type in term and updates the information returned by the baudrate subroutine based on the
fildes parameter, but does not destroy other information created by the initscr, newterm, or
setupterm subroutines.

Parameters

*oterm

*term

fildes

*erret

*nterm

Return Values
Upon successful completion, the set_curterm subroutine returns the previous value of
cur_term. Otherwise, it returns a null pointer.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR.

Examples
To free the space occupied by a TERMINAL structure called my_term , use: TERMINAL
*my_term; del_curterm(my_term);

For the restartterm subroutine:

To restart an aixterm after a previous memory save and exit on error with a message, enter:

restartterm(”aixterm”, 1, (int*)0);

For the set_curterm subroutine:

To set the cur_term variable to point to the my_term terminal, use: TERMINAL
*newterm; set_curterm(newterm);

For the setupterm subroutine:

To determine the current terminal’s capabilities using $TERM as the terminal name,
standard output as output, and returning no error codes, enter:

setupterm((char*) 0, 1, (int*) 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The baudrate, longname, putc, termattrs, termnamed, tgetent, tigetflag, and use_env
subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

delay_output

2-39curses

delay_output Subroutine

Purpose
Sets the delay output.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int delay_output(int ms);

Description
On terminals that support pad characters, the delay_output subroutine pauses the output
for at least ms milliseconds. Otherwise, the length of the delay is unspecified.

Parameters

ms Specifies the number of milliseconds to delay output.

Return Values
Upon successful completion, the delay_output subroutine returns OK. Otherwise, it returns
ERR.

Examples
To set the output to delay 250 milliseconds, enter:

delay_output(250);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The napms subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

delch

2-40 Technical Reference: Base Operating System

delch, mvdelch, mvwdelch or wdelch Subroutine

Purpose
Deletes the character from a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int delch(void);

int mvdelch
(int y
int x);

mvwdelch
(WINDOW *win;
int y
int x);

wdelch
(WINDOW *win);

Description
The delch, mvdelch, mvwdelch, and wdelch subroutines delete the character at the
current or specified position in the current or specified window. This subroutine does not
change the cursor position.

Parameters

x

y

*win Identifies the window from which to delete the character.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To delete the character at the current cursor location in the standard screen structure,

enter:

mvdelch();

2. To delete the character at cursor position y=20 and x=30 in the standard screen
structure, enter:

mvwdelch(20, 30);

3. To delete the character at cursor position y=20 and x=30 in the user–defined window
my_window, enter:

wdelch(my_window, 20, 30);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

deleteln

2-41curses

deleteln or wdeleteln Subroutine

Purpose
Deletes lines in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW *win);

Description
The deleteln and wdeleteln subroutines delete the line containing the cursor in the current
or specified window and move all lines following the current line one line toward the cursor.
The last line of the window is cleared. The cursor position does not change.

Parameters

*win Specifies the window in which to delete the line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To delete the current line in stdscr, enter:

deleteln();

2. To delete the current line in the user–defined window my_window, enter:

WINDOW *my_window;

wdeleteln(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The insdelln subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

delwin

2-42 Technical Reference: Base Operating System

delwin Subroutine

Purpose
Deletes a window.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int delwin(WINDOW *win);

Description
The delwin subroutine deletes win, freeing all memory associated with it. The application
must delete subwindows before deleting the main window.

Parameters

*win Specifies the window to delete.

Return Values
Upon successful completion, the delwin subroutine returns OK. Otherwise, it returns ERR.

Examples
To delete the user–defined window my_window and its subwindow my_sub_window ,
enter:

WINDOW *my_sub_window, *my_window;

delwin(my_sub_window);

delwin(my_window);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The derwin and dupwin subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX General Programming Concepts : Writing
and Debugging Programs.

derwin

2-43curses

derwin, newwin, or subwin Subroutine

Purpose
Window creation subroutines.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *derwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

WINDOW *newwin(int nlines,
int ncols,
int begin_y,
 int begin_x);

WINDOW *subwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
 int begin_x);

Description
The derwin subroutine is the same as the subwin subroutine except that begin_y and
begin_x are relative to the origin of the window orig rather than absolute screen positions.

The newwin subroutine creates a new window with nlines lines and ncols columns,
positioned so that the origin is at (begin_y, begin_x). If nlines is zero, it defaults to LINES –
begin_y; if ncols is zero, it defaults to COLS – begin_x.

The subwin subroutine creates a new window with nlines lines and ncols columns,
positioned so that the origin is at (begin_y, begin_x). (This position is an absolute screen
position, not a position relative to the window orig.) If any part of the new window is outside
orig, the subroutine fails and the window is not created.

Parameters

ncols

nlines

begin_y

begin_x

Return Values
Upon successful completion, these subroutines return a pointer to the new window.
Otherwise, they return a null pointer.

Examples
For the derwin and newwin subroutines:

1. To create a new window, enter:

derwin

2-44 Technical Reference: Base Operating System

WINDOW *my_window;

my_window = newwin(5, 10, 20, 30);my_window is now a window 5

lines deep, 10 columns wide, starting at the coordinates y = 20,

x = 30. That is, the upper left corner is at coordinates y = 20,

x = 30, and the lower right corner is at coordinates y = 24,

x = 39.

2. To create a window that is flush with the right side of the terminal, enter:

WINDOW *my_window;

my_window = newwin(5, 0, 20, 30);my_window is now a window 5

lines deep, extending all the way to the right side of the

terminal, starting at the coordinates y = 20, x = 30. The upper

left corner is at coordinates y = 20, x = 30, and the lower right

corner is at coordinates y = 24, x = lastcolumn.

3. To create a window that fills the entire terminal, enter:

WINDOW *my_window;

my_window = newwin(0, 0, 0, 0);my_window is now a screen that is

a window that fills the entire terminal’s display.

For the subwin subroutine:

1. To create a subwindow, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin(5, 10, 20, 30);my_sub_window is now a

subwindow 2 lines deep, 5 columns wide, starting at the same

coordinates of its parent window my_window. That is, the

subwindow’s upper–left corner is at coordinates y = 20, x = 30

and lower–right corner is at coordinates y = 21, x = 34.

2. To create a subwindow that is flush with the right side of its parent, use

WINDOW *my_window, *my_sub_window;

my_window =

newwin(5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 0, 20, 30);

my_sub_window is now a subwindow 2 lines deep, extending all the

way to the right side of its parent window my_window, and

starting at the same coordinates. That is, the subwindow’s

upper–left corner is at coordinates y = 20, x = 30 and

lower–right corner is at coordinates y = 21, x = 39.

3. To create a subwindow in the lower–right corner of its parent, use:

WINDOW *my_window, *my_sub_window

my_window = newwwin(5, 10, 20, 30);

my_sub_window = subwin(my_window, 0, 0, 22, 35);my_sub_window is

now a subwindow that fills the bottom right corner of its parent

window, my_window, starting at the coordinates y = 22, x = 35.

That is, the subwindow’s upper–left corner is at coordinates

y = 22, x = 35 and lower–right corner is at coordinates y = 24,

x = 39.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The endwin, initscr subroutines.

Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses
Enviroment in AIX General Programming Concepts : Writing and Debugging Programs.

echo

2-45curses

echo or noecho Subroutine

Purpose
Enables/disables terminal echo.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int echo(void);

int noecho(void);

Description
The echo subroutine enables Echo mode for the current screen. The noecho subroutine
disables Echo mode for the current screen. Initially, curses software echo mode is enabled
and hardware echo mode of the tty driver is disabled. The echo and noecho subroutines
control software echo only. Hardware echo must remain disabled for the duration of the
application, else the behaviour is undefined.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To turn echoing on, use:

echo();

2. To turn echoing off, use:

noecho();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The wgetch subroutine

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines and Understanding Terminals with Curses in AIX General
Programming Concepts : Writing and Debugging Programs.

echochar

2-46 Technical Reference: Base Operating System

echochar or wechochar Subroutines

Purpose
Echos single–byte character and rendition to a window and refreshes the window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int echochar(const chtype ch);

int wechochar(WINDOW *win,
const chtype ch);

Description
The echochar subroutine is equivalent to a call to the addch soubroutine followed by a call
to the refresh subroutine.

The wechochar subroutine is equivalent to a call to the waddch subroutine followed by a
call to the wrefresh subroutine.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Example
To output the character I to the stdscr at the present cursor location and to update the
physical screen, do the following:

echochar(’I’);

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The addch, doupdate, echo_wchar, waddch, wmvaddch, and mvaddch subroutines.

Curses Overview for Programming and List of Curses Subroutines in AIX General
Programming Concepts : Writing and Debugging Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

endwin

2-47curses

endwin Subroutine

Purpose
Suspends curses session.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int endwin(void)

Description
The endwin subroutine restores the terminal after Curses activity by at least restoring the
saved shell terminal mode, flushing any output to the terminal and moving the cursor to the
first column of the last line of the screen. Refreshing a window resumes program mode. The
application must call the endwin subroutine for each terminal being used before exiting. If
the newterm subroutine is called more than once for the same terminal, the first screen
created must be the last one for which the endwin subroutine is called.

Return Values
Upon successful completion, the endwin subroutine returns OK. Otherwise, it returns ERR.

Examples
To terminate curses permanently or temporarily, enter:

endwin();

Implementation Specifics
The endwin subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The delscreen, doupdate, initscr, and isendwin subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Starting and Stopping Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

erase

2-48 Technical Reference: Base Operating System

erase or werase Subroutine

Purpose
Copies blank spaces to every position in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

erase()

werase(Window)
WINDOW *Window;

Description
The erase and werase subroutines copy blank spaces to every position in the specified
window. Use the erase subroutine with the stdscr and the werase subroutine with
user–defined windows.

Parameters

Window Specifies the window to erase.

Examples
1. To erase the standard screen structure, enter:

erase();

2. To erase the user–defined window my_window, enter:

WINDOW *my_window;

werase(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

erasechar

2-49curses

erasechar, erasewchar, killchar, and killwchar Subroutine

Purpose
Terminal environment query functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char erasechar(void);

int erasewchar(wchar_t *ch);

char killchar(void);

int killwchar(wchar_t
*ch);

Description
The erasechar subroutine returns the current character. chosen by the user. The erasechar
subroutine stores the current erase character in the object pointed to by the ch parameter. If
no erase character has been defined, the subroutine will fail and the object pointed to by ch
will not be changed.

The killchar subroutine returns the current line.

The killchar subroutine stores the current line kill character in the object pointed to by ch. If
no line kill character has been defined, the subroutine will fail and the object pointed to by
ch will not be changed.

Return Values
The erasechar subroutine returns the erase character and the killchar subroutine returns
the line kill character. The return value is unspecified when these characters are multi–byte
characters.

Upon successful completion, the erasechar subroutine and the killchar subroutine return
OK. Otherwise, they return ERR.

Examples
To retrieve a user’s erase character and return it to the user–defined variable myerase ,
enter:

myerase = erasechar();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The clearok, delscreen, and tcgetattr subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

erasechar

2-50 Technical Reference: Base Operating System

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Portability with Curses in AIX General Programming Concepts : Writing and Debugging
Programs describes how to query baud rate, set user–defined characters, and flush
type–ahead characters.

filter

2-51curses

filter Subroutine

Purpose
Disables use of certain terminal capabilities.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

void filter(void);

Description
The filter subroutine changes the algorithm for initialising terminal capabilities that assume
that the terminal has more than one line. A subsequent call to the initscr or newterm
subroutine performs the following actions:

• Disables use of clear, cud, cud1, cup, cuu1, and vpa.

• Sets the value of the home string to the value of the cr. string.

• Sets lines equal to 1.

Any call to the filter subroutine must precede the call to the initscr or newterm subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr subroutine, newterm subroutine.

Curses Overview for Programming and List of Curses Subroutines in AIX General
Programming Concepts : Writing and Debugging Programs.

flash

2-52 Technical Reference: Base Operating System

flash Subroutine

Purpose
Flashes the screen.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int flash(void);

Description
The flash subroutine alerts the user. It flashes the screen, or if that is not possible, it sounds
the audible alarm on the terminal. If neither signal is possible, nothing happens.

Return Values
The flash subroutine always returns OK.

Examples
To cause the terminal to flash, enter:

flash();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The beep subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

flushinp

2-53curses

flushinp Subroutine

Purpose
Discards input.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int flushinp(void);

Description
The flushinp subroutine discards (flushes) any characters in the input buffers associated
with the current screen.

Return Values
The flushinp subroutine always returns OK.

Examples
To flush all type–ahead characters typed by the user but not yet read by the program, enter:

flushinp();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Obsolete Curses Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

garbagedlines

2-54 Technical Reference: Base Operating System

garbagedlines Subroutine

Purpose
Discards and replaces a number of lines in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

garbagedlines(Window, BegLine, NumLines)
WINDOW *Window;
int BegLine, NumLines;

Description
The garbagedlines subroutine discards and replaces lines in a window. The Begline
parameter specifies the beginning line number and the Numlines parameter specifies the
number of lines to discard. Curses discards and replaces the specified lines before adding
more data.

Uses this subroutine for applications that need to redraw a line that is garbled. Lines may
become garbled as the result of noisy communication lines. Instead of refreshing the entire
display, use the garbagedlines subroutine to refresh a portion of the display and to avoid
even more communication noise.

Parameters

Window Points to a window.

BegLine Identifies the beginning line in a range of lines to discard.

NumLines Specifies the total number of lines in a range of lines to discard and
replace.

Examples
To discard and replace 5 lines in the mywin window starting with line 10, use: WINDOW
*mywin; garbagedlines(mywin, 10, 5);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX General Programming Concepts : Writing
and Debugging Programs.

getbegyx

2-55curses

getbegyx, getmaxyx, getparyx, or getyx Subroutine

Purpose
Gets the cursor and window coordinates.

Library
Curses Library (libcurses.a)

Syntax
include <curses.h>

void getbegyx(WINDOW *win,
int y,
int x);

void getmaxyx(WINDOW *win,
int y,
int x);

void getparyx(WINDOW *win,
int y,
int x);

void getyx(WINDOW *win,
int y,
int x);

Description
The getbegyx macro stores the absolute screen coordinates of the specified window’s
origin in y and x.

The getmaxyx macro stores the number of rows of the specified window in y and x and
stores the window’s number of columns in x.

The getparyx macro, if the specified window is a subwindow, stores in y and x the
coordinates of the window’s origin relative to its parent window. Otherwise, –1 is stored in y
and x.

The getyx macro stores the cursor position of the specified window in y and x.

Parameters

*win Identifies the window to get the coordinates from.

Y Returns the row coordinate.

X Returns the column coordinate.

Examples
For the getbegyx subroutine:

To obtain the beginning coordinates for the my_win window and store in integers y and x,
use:

WINDOW *my_win;

int y, x;

getbegyx(my_win, y, x);

For the getmaxyx subroutine:

To obtain the size of the my_win window, use:

getbegyx

2-56 Technical Reference: Base Operating System

WINDOW *my_win;

int y,x;

getmaxyx(my_win, y, x);

Integers y and x will contain the size of the window.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Controlling the Cursor with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

getch

2-57curses

getch, mvgetch, mvwgetch, or wgetch Subroutine

Purpose
Gets a single–byte character from the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int getch(void)

int mvgetch(int y,
int x);

int mvwgetch(WINDOW *win,
int y,
int x);

int wgetch(WINDOW *win);

Description
The getch, wgetch, mvgetch, and mvwgetch subroutines read a single–byte character
from the terminal associated with the current or specified window. The results are
unspecified if the input is not a single–byte character. If the keypad subroutine is enabled,
these subroutines respond to the corresponding KEY_ value defined in <curses.h>.

Processing of terminal input is subject to the general rules described in Section 3.5 on page
34.

If echoing is enabled, then the character is echoed as though it were provided as an input
argument to the addch subroutine, except for the following characters:

<backspace>,

<left–arrow> and

the current erase character:

The input is interpreted as specified in Section 3.4.3 on page 31 and then the character at
the resulting cursor position is deleted as though the delch subroutine was called, except
that if the cursor was originally in the first column of the line, then the user is alerted as
though the beep subroutine was called.

The user is alerted as though the beep subroutine was called. Information concerning the
function keys is not returned to the caller.

Function Keys
If the current or specified window is not a pad, and it has been moved or modified since the
last refresh operation, then it will be refreshed before another character is read.

getch

2-58 Technical Reference: Base Operating System

The Importance of Terminal Modes
The output of the getch subroutines is, in part, determined by the mode of the terminal. The
following describes the action of the getch subroutines in each type of terminal mode:

Mode Action of getch Subroutines

NODELAY Returns a value of ERR if there is no input waiting.

DELAY Halts execution until the system passes text through the program. If
CBREAK mode is also set, the program stops after receiving one
character. If NOCBREAK mode is set, the getch subroutine stops
reading after the first new line character.

HALF–DELAY Halts execution until a character is typed or a specified time out is
reached. If echo is set, the character is also echoed to the window.

Note: When using the getch subroutines do not set both the NOCBREAK mode and the
ECHO mode at the same time. This can cause undesirable results depending on the
state of the tty driver when each character is typed.

Getting Function Keys
If your program enables the keyboard with the keypad subroutine, and the user presses a
function key, the token for that function key is returned instead of raw characters. The
possible function keys are defined in the /usr/include/curses.h file. Each #define macro
begins with a KEY_ prefix.

If a character is received that could be the beginning of a function key (such as an Escape
character) curses sets a timer. If the remainder of the sequence is not received before the
timer expires, the character is passed through. Otherwise, the function key’s value is
returned. For this reason, after a user presses the Esc key there is a delay before the
escape is returned to the program. Programmers should not use the Esc key for a single
character routine.

Within the getch subroutine, a structure of type timeval, defined in the
/usr/include/sys/time.h file, indicates the maximum number of microseconds to wait for the
key response to complete.

The ESCDELAY environment variable sets the length of time to wait before timing out and
treating the ESC keystroke as the ESC character rather than combining it with other
characters in the buffer to create a key sequence. The ESCDELAY environment variable is
measured in fifths of a millisecond. If ESCDELAY is 0, the system immediately composes
the ESCAPE response without waiting for more information from the buffer. The user may
choose any value between 0 and 99,999, inclusive. The default setting for the ESCDELAY
environment variable is 500 (one tenth of a second).

Programs that do not want the getch subroutines to set a timer can call the notimeout
subroutine. If notimeout is set to TRUE, curses does not distinguish between function keys
and characters when retrieving data.

The getch subroutines might not be able to return all function keys because they are not
defined in the terminfo database or because the terminal does not transmit a unique code
when the key is pressed. The following function keys may be returned by the getch
subroutines:

KEY_MIN Minimum curses key.

KEY_BREAK Break key (unreliable).

KEY_DOWN Down Arrow key.

KEY_UP Up Arrow key.

KEY_LEFT Left Arrow key.

KEY_RIGHT Right Arrow key.

getch

2-59curses

KEY_HOME Home key.

KEY_BACKSPACE Backspace.

KEY_F(n) Function key Fn, where n is an integer from 0 to 64.

KEY_DL Delete line.

KEY_IL Insert line.

KEY_DC Delete character.

KEY_IC Insert character or enter insert mode.

KEY_EIC Exit insert character mode.

KEY_CLEAR Clear screen.

KEY_EOS Clear to end of screen.

KEY_EOL Clear to end of line.

KEY_SF Scroll 1 line forward.

KEY_SR Scroll 1 line backwards (reverse).

KEY_NPAGE Next page.

KEY_PPAGE Previous page.

KEY_STAB Set tab.

KEY_CTAB Clear tab.

KEY_CATAB Clear all tabs.

KEY_ENTER Enter or send (unreliable).

KEY_SRESET Soft (partial) reset (unreliable).

KEY_RESET Reset or hard reset (unreliable).

KEY_PRINT Print or copy.

KEY_LL Home down or bottom (lower left).

KEY_A1 Upper–left key of keypad.

KEY_A3 Upper–right key of keypad.

KEY_B2 Center–key of keypad.

KEY_C1 Lower–left key of keypad.

KEY_C3 Lower–right key of keypad.

KEY_BTAB Back tab key.

KEY_BEG beg(inning) key

KEY_CANCEL cancel key

KEY_CLOSE close key

KEY_COMMAND cmd (command) key

KEY_COPY copy key

KEY_CREATE create key

KEY_END end key

KEY_EXIT exit key

KEY_FIND find key

KEY_HELP help key

KEY_MARK mark key

KEY_MESSAGE message key

KEY_MOVE move key

KEY_NEXT next object key

getch

2-60 Technical Reference: Base Operating System

KEY_OPEN open key

KEY_OPTIONS options key

KEY_PREVIOUS previous object key

KEY_REDO redo key

KEY_REFERENCE ref(erence) key

KEY_REFRESH refresh key

KEY_REPLACE replace key

KEY_RESTART restart key

KEY_RESUME resume key

KEY_SAVE save key

KEY_SBEG shifted beginning key

KEY_SCANCEL shifted cancel key

KEY_SCOMMAND shifted command key

KEY_SCOPY shifted copy key

KEY_SCREATE shifted create key

KEY_SDC shifted delete char key

KEY_SDL shifted delete line key

KEY_SELECT select key

KEY_SEND shifted end key

KEY_SEOL shifted clear line key

KEY_SEXIT shifted exit key

KEY_SFIND shifted find key

KEY_SHELP shifted help key

KEY_SHOME shifted home key

KEY_SIC shifted input key

KEY_SLEFT shifted left arrow key

KEY_SMESSAGE shifted message key

KEY_SMOVE shifted move key

KEY_SNEXT shifted next key

KEY_SOPTIONS shifted options key

KEY_SPREVIOUS shifted prev key

KEY_SPRINT shifted print key

KEY_SREDO shifted redo key

KEY_SREPLACE shifted replace key

KEY_SRIGHT shifted right arrow

KEY_SRSUME shifted resume key

KEY_SSAVE shifted save key

KEY_SSUSPEND shifted suspend key

KEY_SUNDO shifted undo key

KEY_SUSPEND suspend key

KEY_UNDO undo key

getch

2-61curses

Parameters

Column Specifies the horizontal position to move the logical cursor to before
getting the character.

Line Specifies the vertical position to move the logical cursor to before
getting the character.

Window Identifies the window to get the character from and echo it into.

Return Values
Upon successful completion, the getch, mvwgetch, and wgetch subroutines, CURSES,
and Curses Interface return the single–byte character, KEY_ value, or ERR. When in the
nodelay mode and no data is available, ERR is returned.

Examples
1. To get a character and echo it to the stdscr, use:

mvgetch();

2. To get a character and echo it into stdscr at the coordinates y= 20 , x= 30 , use:

mvgetch(20, 30);

3. To get a character and echo it into the user–defined window my_window at coordinates
y= 20 , x= 30 , use:

WINDOW *my_window;

mvwgetch(my_window, 20, 30);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The cbreak, doupdate, and insch subroutines, keypad subroutine, meta subroutine,
nodelay subroutine, echo or noecho subroutine, notimeout subroutine, ebreak or
nocbreak subroutine.

Curses Overview for Programming in AIX General Programming Concepts: Writing and
Debugging Programs.

Manipulating Characters with Curses in AIX General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts: Writing and Debugging
Programs.

getmaxyx

2-62 Technical Reference: Base Operating System

getmaxyx Subroutine

Purpose
Returns the size of a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

getmaxyx(Window, Y, X);
WINDOW *Window;
int Y, X;

Description
The getmaxyx subroutine returns the size of a window. The size is returned as the number
of rows and columns in the window. The values are stored in integers Y and X.

Parameters

Window Identifies the window whose size to get.

Y Contains the number of rows in the window.

X Contains the number of columns in the window.

Example
To obtain the size of the my_win window, use:

WINDOW *my_win;

int y,x;

getmaxyx(my_win, y, x);

Integers y and x will contain the size of the window.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Controlling the Cursor with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

getnstr

2-63curses

getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr,
wgetnstr, or wgetstr Subroutine

Purpose
Gets a multi–byte character string from the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int getnstr(char *str,
int n);

int getstr(char *str);

int mvgetnstr(int y,
int x,
char *st,
int n);

int mvgetstr(int y,
int x,
char *str);

int mvwgetnstr(WINDOW *win,
int y,
int x,
char *str,
int n);

int mvwgetstr(WINDOW *win,
int y,
int x,
char *str);

int wgetnstr(WINDOW *win,
char *str,
int n);

int wgetstr(WINDOW *win,
char *str);

Description
The effect of the getstr subroutine is as though a series of calls to the getch subroutine was
made, until a newline subroutine, carriage return, or end–of–file is received. The resulting
value is placed in the area pointed to by str. The string is then terminated with a null byte.
The getnstr, mvgetnstr, mvwgetnstr, and wgetnsrt subroutines read at most n bytes, thus
preventing a possible overflow of the input buffer. The user’s erase and kill characters are
interpreted, as well as any special keys (such as function keys, home key, clear key, and so
on).

The mvgetstr subroutines is identical to the getstr subroutine except that it is as though it
is a call to the move subroutine and then a series of calls to the getch subroutine. The

getnstr

2-64 Technical Reference: Base Operating System

mvwgetstr subroutine is identical to the getstr subroutine except that it is as though it is a
call to the wmove subroutine and then a series of calls to the wgetch subroutine.

The mvgetnstr subroutines is identical to the getstr subroutine except that it is as though it
is a call to the move subroutine and then a series of calls to the getch subroutine. The
mvwgetnstr subroutine is identical to the getstr subroutine except that it is as though it is a
call to the wmove subroutine and then a series of calls to the wgetch subroutine.

The getstr, wgetstr, mvgetstr, and mvwgetstr subroutines will only return the entire
multi–byte sequence associated with a character. If the array is large enough to contain at
least one character, the subroutines fill the array with complete characters. If the array is not
large enough to contain any complete characters, the function fails.

Parameters

n

x

y

*str Identifies where to store the string.

*win Identifies the window to get the string from and echo it into.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To get a string, store it in the user–defined variable my_string , and echo it into the

stdscr, enter:

char *my_string;

getstr(my_string);

2. To get a string, echo it into the user–defined window my_window , and store it in the
user–defined variable my_string , enter:

WINDOW *my_window;

char *my_string;

wgetstr(my_window, my_string);

3. To get a string in the stdscr at coordinates y= 20 , x= 30 , and store it in the
user–defined variable my_string , enter:

char *string;

mvgetstr(20, 30, string);

4. To get a string in the user–defined window my_window at coordinates y= 20 , x= 30 ,
and store it in the user–defined variable my_string , enter:

WINDOW *my_window;

char *my_string;

mvwgetstr(my_window, 20, 30, my_string);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

getnstr

2-65curses

Related Information
The beep subroutine, getch subroutine, keypad subroutine, nodelay subroutine, wgetch
subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

getsyx

2-66 Technical Reference: Base Operating System

getsyx Subroutine

Purpose
Retrieves the current coordinates of the virtual screen cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

getsyx(Y, X)
int *Y, *X;

Description
The getsyx subroutine retrieves the current coordinates of the virtual screen cursor and
stores them in the location specified by Y and X. The current coordinates are those where
the cursor was placed after the last call to the wnoutrefresh, pnoutrefresh, or wrefresh,
subroutine. If the leaveok subroutine was TRUE for the last window refreshed, then the
getsyx subroutine returns –1 for both X and Y.

If lines have been removed from the top of the screen using the ripoffline subroutine, Y and
X include these lines. Y and X should only be used as arguments for the setsyx subroutine.

The getsyx subroutine, along with the setsyx subroutine, is meant to be used by a
user–defined function that manipulates curses windows but wants the position of the cursor
to remain the same. Such a function would do the following:

• Call the getsyx subroutine to obtain the current virtual cursor coordinates.

• Continue manipulating the windows.

• Call the wnoutrefresh subroutine on each window manipulated.

• Reset the current virtual cursor coordinates to the original values with the setsyx
subroutine.

• Refresh the display with a call to the doupdate subroutine.

Parameters

X Points to the current row position of the virtual screen cursor. A value of –1
indicates the leaveok subroutine was TRUE for the last window refreshed.

Y Points to the current column position of the virtual screen cursor. A value of –1
indicates the leaveok subroutine was TRUE for the last window refreshed.

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

Controlling the Cursor with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

getyx

2-67curses

getyx Macro

Purpose
Returns the coordinates of the logical cursor in the specified window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

getyx(Window, Line, Column)
WINDOW *Window;
int Line, Column;

Description
The getyx macro returns the coordinates of the logical cursor in the specified window.

Parameters

Window Identifies the window to get the cursor location from.

Column Holds the column coordinate of the logical cursor.

Line Holds the line or row coordinate of the logical cursor.

Example
To get the location of the logical cursor in the user–defined window my_window and then
put these coordinates in the user–defined integer variables Line and Column, enter:

WINDOW *my_window;

int line, column;

getyx(my_window, line, column);

Implementation Specifics
This macro is part of Base Operating System (BOS) Runtime.

Related Information
Controlling the Cursor with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

halfdelay

2-68 Technical Reference: Base Operating System

halfdelay Subroutine

Purpose
Controls input character delay mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int halfdelay(int tenths);

Description
The halfdelay subroutine sets the input mode for the current window to Half–Delay Mode
and specifies tenths of seconds as the half–delay interval. The tenths argument must be in
a range from 1 up to and including 255.

Flag

x Instructs wgetch to wait x tenths of a second for input before timing out.

Parameters

tenths

Return Values
Upon successful completion, the halfdelay subroutine returns OK. Otherwise, it returns
ERR.

Related Information
The cbreak subroutine.

has_colors

2-69curses

has_colors Subroutine

Purpose
Determines whether a terminal supports color.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

has_colors()

Description
The has_colors subroutine determines whether a terminal supports color. If the terminal
supports color, the has_colors subroutine returns TRUE. Otherwise, it returns FALSE.
Because this subroutine tests for color, you can call it before the start_color subroutine.

The has_colors routine makes writing terminal–independent programs easier because you
can use the subroutine to determine whether to use color or another video attribute.

Use the can_change_colors subroutine to determine whether a terminal that supports
colors also supports changing its color definitions.

Examples
To determine whether or not a terminal supports color, use:

has_colors();

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Video Attributes in AIX General Programming Concepts : Writing and
Debugging Programs.

has_ic

2-70 Technical Reference: Base Operating System

has_ic and has_il Subroutine

Purpose
Query functions for terminal insert and delete capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

bool has_ic(void);

bool has_il(void);

Description
The has_ic subroutine indicates whether the terminal has insert– and delete–character
capabilities.

The has_il subroutine indicates whether the terminal has insert– and delete–line
capabilities, or can simulate them using scrolling regions.

Return Values
The has_ic subroutine returns a value of TRUE if the terminal has insert– and
delete–character capabilities. Otherwise, it returns FALSE.

The has_il subroutine returns a value of TRUE if the terminal has insert– and delete–line
capabilities. Otherwise, it returns FALSE.

Examples
For the has_ic subroutine:

To determine the insert capability of a terminal by returning TRUE or FALSE into the
user–defined variable insert_cap, enter:

int insert_cap;

insert_cap = has_ic();

For the has_il subroutine:

To determine the insert capability of a terminal by returning TRUE or FALSE into the
user–defined variable insert_line, enter:

int insert_line;

insert_line = has_il();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

has_il

2-71curses

has_il Subroutine

Purpose
Determines whether the terminal has insert–line capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

has_il()

Description
The has_il subroutine determines whether a terminal has insert–line capability.

Return Values
The has_il subroutine returns TRUE if terminal has insert–line capability and FALSE, if not.

Examples
To determine the insert capability of a terminal by returning TRUE or FALSE into the
user–defined variable insert_line, enter:

int insert_line;

insert_line = has_il();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

idlok

2-72 Technical Reference: Base Operating System

idlok Subroutine

Purpose
Allows curses to use the hardware insert/delete line feature.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

idlok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The idlok subroutine enables curses to use the hardware insert/delete line feature for
terminals so equipped. If this feature is disabled, curses cannot use it. The insert/delete line
feature is always considered. Enable this option only if your application needs the
insert/delete line feature; for example, for a screen editor. If the insert/delete line feature
cannot be used, curses will redraw the changed portions of all lines that do not match the
desired line.

Parameters

Flag Specifies whether to enable curses to use the hardware insert/delete
line feature (True) or not (False).

Window Specifies the window it will affect.

Examples
1. To enable curses to use the hardware insert/delete line feature in stdscr, enter:

idlok(stdscr, TRUE);

2. To force curses not to use the hardware insert/delete line feature in the user–defined
window my_window , enter:

idlok(my_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

inch

2-73curses

inch, mvinch, mvwinch, or winch Subroutine

Purpose
Inputs a single–byte character and rendition from a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

chtype inch(void);

chtype mvinch(int y,
int x);

chtype mvwinch(WINDOW *win,
int y,
int x);

chtype winch(WINDOW *win);

Description
The inch, winch, mvinch, and mvwinch subroutines return the character and rendition, of
type chtype, at the current or specified position in the current or specified window.

Parameters

*win Specifies the window from which to get the character.

x

y

Return Values
Upon successful completion, these subroutines return the specified character and rendition.
Otherwise, they return (chtype) ERR.

Examples
1. To get the character at the current cursor location in the stdscr, enter:

chtype character;

character = inch();

2. To get the character at the current cursor location in the user–defined window
my_window, enter:

WINDOW *my_window;

chtype character;

character = winch(my_window);

3. To move the cursor to the coordinates y = 0, x = 5 and then get that character, enter:

inch

2-74 Technical Reference: Base Operating System

chtype character;

character = mvinch(0, 5);

4. To move the cursor to the coordinates y = 0, x = 5 in the user–defined window
my_window and then get that character, enter:

WINDOW *my_window;

chtype character;

character = mvwinch(my_window, 0, 5);

Implementation Specifics
These subroutines are part of Base Operating System (BOS).

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

init_color

2-75curses

init_color Subroutine

Purpose
Changes a color definition.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

init_color(Color, R,
G, B)
register short Color, R, G, B;

Description
The init_color subroutine changes a color definition. A single color is defined by the
combination of its red, green, and blue components. The init_color subroutine changes all
the occurrences of the color on the screen immediately. If the color is changed successfully,
this subroutines returns OK. Otherwise, it returns ERR.

Note: The values for the red, green, and blue components must be between 0 (no
component) and 1000 (maximum amount of component). The init_color subroutine sets
values less than 0 to 0 and values greater than 1000 to 1000.

To determine if you can change a terminal’s color definitions, see the can_change_color
subroutine.

Return Values

OK Indicates the color was changed successfully.

ERR Indicates the color was not changed.

Parameters

Color Identifies the color to change. The value of the parameter must be
between 0 and COLORS–1.

R Specifies the desired intensity of the red component.

G Specifies the desired intensity of the green component.

B Specifies the desired intensity of the blue component.

Examples
To initialize the color definition for color 11 to violet on a terminal that supports at least 12
colors, use:

init_color(11,500,0,500);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The start_color subroutine.

init_color

2-76 Technical Reference: Base Operating System

Curses Overview for Programming and Manipulating Video Attributes in AIX General
Programming Concepts : Writing and Debugging Programs.

init_pair

2-77curses

init_pair Subroutine

Purpose
Changes a color–pair definition.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

init_pair(Pair, F, B)
register short Pair, F, B;

Description
The init_pair subroutine changes a color–pair definition. A color pair is a combination of a
foreground and a background color. If you specify a color pair that was previously initialized,
curses refreshes the screen and changes all occurrences of that color pair to the new
definition. You must call the start_color subroutine before you call this subroutine.

Return Values

OK Indicates successful completion.

ERR Indicates the subroutine failed.

Parameters

Pair Identifies the color–pair number. The value of the Pair parameter must
be between 1 and COLORS_PAIRS–1.

F Specifies the foreground color number. This number must be between
0 and COLORS–1.

B Specifies the background color number. This number must be between
0 and COLORS–1.

Examples
To initialize the color definition for color–pair 2 to a black foreground (color 0) with a cyan
background (color 3), use:

init_pair(2,COLOR_BLACK, COLOR_CYAN);

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The init_color subroutine, start_color subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

initscr

2-78 Technical Reference: Base Operating System

initscr and newterm Subroutine

Purpose
Initializes curses and its data structures.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *initscr(void);

SCREEN *newterm(char *type,
FILE *outfile,
FILE *infile);

Description
The initscr subroutine determines the terminal type and initializes all implementation data
structures. The TERM environment variable specifies the terminal type. The initscr
subroutine also causes the first refresh operation to clear the screen. If errors occur, initscr
writes an appropriate error message to standard error and exits. The only subroutines that
can be called before initscr or newterm are the filter, ripoffline, slk_init, use_env, and
the subroutines whose prototypes are defined in <term.h>. Portable applications must not
call initscr twice.

The newterm subroutine can be called as many times as desired to attach a terminal
device. The type argument points to a string specifying the terminal type, except that, if type
is a null pointer, the TERM environment variable is used. The outfile and infile arguments
are file pointers for output to the terminal and input from the terminal, respectively. It is
unspecified whether Curses modifies the buffering mode of these file pointers. The
newterm subroutine should be called once for each terminal.

The initscr subroutine is equivalent to:

newterm(gentenv(”TERM”), stdout, stdin); return stdscr;

If the current disposition for the signals SIGINT, SIGQUIT or SIGTSTP is SIGDFL, then the
initscr subroutine may also install a handler for the signal, which may remain in effect for
the life of the process or until the process changes the disposition of the signal.

The initscr and newterm subroutines initialise the cur_term external variable.

initscr CURSES Curses Interfaces

Return Values
Upon successful completion, the initscr subroutine returns a pointer to stdscr. Otherwise, it
does not return.

Upon successful completion, the newterm subroutine returns a pointer to the specified
terminal. Otherwise, it returns a null pointer.

Example
To initialize curses so that other curses subroutines can be called, use:

initscr();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

initscr

2-79curses

Related Information
The delscreen, doupdate, del_curterm, filter, slk_attroff, use_env subroutine,
setupterm subroutine.

Curses Overview for Programming, Initializing Curses, List of Curses Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

insch

2-80 Technical Reference: Base Operating System

insch, mvinsch, mvwinsch, or winsch Subroutine

Purpose
Inserts a single–byte character and rendition in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int insch(chtype ch);

int mvinsch(int y,
chtype h);

int mvwinsch(WINDOW *win,
int x,
int y,
chtype h);

int winsch(WINDOW *win,
chtype h);

Description
These subroutines insert the character and rendition into the current or specified window at
the current or specified position.

These subroutines do not perform wrapping or advance the cursor position. These functions
perform special–character processing, with the exception that if a newline is inserted into
the last line of a window and scrolling is not enabled, the behavior is unspecified.

Parameters

ch

y

x

*win Specifies the window in which to insert the character.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To insert the character x in the stdscr, enter:

chtype x;

insch(x);

2. To insert the character x into the user–defined window my_window, enter:

WINDOW *my_window

chtype x;

winsch(my_window, x);

3. To move the logical cursor to the coordinates Y=10, X=5 prior to inserting the character x
in the stdscr, enter:

insch

2-81curses

chtype x;

mvinsch(10, 5, x);

4. To move the logical cursor to the coordinates y=10, X=5 prior to inserting the character x
in the user–defined window my_window, enter:

WINDOW *my_window;

chtype x;

mvwinsch(my_window, 10, 5, x);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ins_wch subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

 List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

 Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

insertln

2-82 Technical Reference: Base Operating System

insertln or winsertln Subroutine

Purpose
Inserts a blank line above the current line in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int insertln(void)

int winsertln(WINDOW *win);

Description
The insertln and winsertln subroutines insert a blank line before the current line in the
current or specified window. The bottom line is no longer displayed. The cursor position
does not change.

Parameters

*win Specifies the window in which to insert the blank line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To insert a blank line above the current line in the stdscr, enter:

insertln();

2. To insert a blank line above the current line in the user–defined window my_window ,
enter:

WINDOW *mywindow;

winsertln(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The insdelln subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

intrflush

2-83curses

intrflush Subroutine

Purpose
Enables or disables flush on interrupt.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int intrflush(WINDOW *win,
bool bf);

Description
The intrflush subroutine specifies whether pressing an interrupt key (interrupt, suspend, or
quit) will flush the input buffer associated with the current screen. If the value of bf is TRUE,
then flushing of the output buffer associated with the current screen will occur when an
interrupt key (interrupt, suspend, or quit) is pressed. If the value of bf is FALSE then no
flushing of the buffer will occur when an interrupt key is pressed. The default for the option is
inherited from the display driver settings. The win argument is ignored.

Parameters

bf

*win Specifies the window for which to enable or disable queue flushing.

Return Values
Upon successful completion, the intrflush subroutine returns OK. Otherwise, it returns
ERR.

Examples
1. To enable queue flushing in the user–defined window my_window, enter:

intrflush(my_window, TRUE);

2. To disable queue flushing in the user–defined window my_window, enter:

intrflush(my_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

keyname

2-84 Technical Reference: Base Operating System

keyname, key_name Subroutine

Purpose
Gets the name of keys.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char *keyname(int c);

char *key_name(wchar_t c);

Description
The keyname and key_name subroutines generate a character string whose value
describes the key c. The c argument of keyname can be an 8–bit character or a key code.
The c argument of key_name must be a wide character.

The string has a format according to the first applicable row in the following table:

Input Format of Returned String

Visible character The same character

Control character ^X

Meta–character (keyname only) M–X

Key value defined in <curses.h> (keyname
only)

KEY_name

None of the above UNKNOWN KEY

The meta–character notation shown above is used only, if meta–characters are enabled.

Parameter
c

Return Values
Upon successful completion, the keyname subroutine returns a pointer to a string as
described above, Otherwise, it returns a null pointer.

Examples
int key;

char *name;

keypad(stdscr, TRUE);

addstr(”Hit a key”);

key=getch();

name=keyname(key);

Note: If the Page Up key is pressed, keyname will return KEY_PPAGE.

keyname

2-85curses

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The meta and wgetch subroutines.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

keypad

2-86 Technical Reference: Base Operating System

keypad Subroutine

Purpose
Enables or disables abbreviation of function keys.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int keypad(WINDOW *win,
bool bf);

Description
The keypad subroutine controls keypad translation. If bf is TRUE, keypad translation is
turned on. If bf is FALSE, keypad translation is turned off. The initial state is FALSE.

This subroutine affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes when a
function key is pressed, then after keypad translation is first enabled, the implemenation
transmits this command to the terminal before an affected input function tries to read any
characters from that terminal.

Parameters

bf

*win Specifies the window in which to enable or disable the keypad.

Return Values
Upon successful completion, the keypad subroutine returns OK. Otherwise, it returns ERR.

Examples
To turn on the keypad in the user–defined window my_window , use:

WINDOW *my_window;

keypad(my_window, TRUE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getch subroutine.

The terminfo file format.

Curses Overview for Programming, List of Curses Subroutines, Setting Video Attributes and
Curses Options in AIX General Programming Concepts : Writing and Debugging Programs.

killchar

2-87curses

killchar or killwchar Subroutine

Purpose
Terminal environment query functions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char killchar(void);

int killwchar(wchar_t *ch);

Description
The killchar subroutine returns the current line.

The killchar subroutine stores the current line kill character in the object pointed to by ch. If
no line kill character has been defined, the subroutine will fail and the object pointed to by
ch will not be changed.

Parameters
*ch

Return Values
The killchar subroutine returns the line kill character. The return value is unspecified when
this character is a multi–byte character.

Upon successful completion, the killchar subroutine returns OK. Otherwise, it returns ERR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Portability with Curses in AIX General Programming Concepts : Writing and Debugging
Programs describes how to query baud rate, set user–defined characters, and flush
type–ahead characters.

_lazySetErrorHandler

2-88 Technical Reference: Base Operating System

_lazySetErrorHandler Subroutine

Purpose
Installs an error handler into the lazy loading runtime system for the current process.

Library
Curses Library (libcurses.a)

Syntax
#include <sys/ldr.h>

#include <sys/errno.h>

typedef void *handler_t
char *module;
char *symbol;
unsigned int errval;

handler_t *_lazySetErrorHandler
handler_t *err_handler;

Description
This function allows a process to install a custom error handler to be called when a lazy
loading reference fails to find the required module or function. This function should only be
used when the main program or one of its dependent modules was linked with the –blazy
option. To call _lazySetErrorHandler from a module that is not linked with the –blazy
option, you must use the –lrtl option. If you use –blazy, you do not need to specify –lrtl.

This function is not thread safe. The calling program should ensure that
_lazySetErrorHandler is not called by multiple threads at the same time.

The user–supplied error handler may print its own error message, provide a substitute
function to be used in place of the called function, or call longjmp subroutine. To provide a
substitute function that will be called instead of the orginally referenced function, the error
handler should return a pointer

Parameters

Column Specifies the horizontal position to move the logical cursor to before
getting the character.

Line Specifies the vertical position to move the logical cursor to before
getting the character.

Window Identifies the window to get the character from and echo it into.

Return Values
Upon completion, the character code for the data key or one of the following values is
returned:

KEY_xxxx The keypad subroutine is set to TRUE and a control key was
recognized. See the curses. h file for a complete list of the key codes
that can be returned.

Examples
1. To get a character and echo it to the stdscr, use:

mvgetch();

_lazySetErrorHandler

2-89curses

2. To get a character and echo it into stdscr at the coordinates y=20, x=30, use:

mvgetch(20, 30);

3. To get a character and echo it into the user–defined window my_window at coordinates
y=20, x=30, use:

WINDOW *my_window;

mvwgetch(my_window, 20, 30);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The keypad subroutine, meta subroutine, nodelay subroutine, echo or noecho
subroutine,notimeout subroutine, ebreak or nocbreak subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

leaveok

2-90 Technical Reference: Base Operating System

leaveok Subroutine

Purpose
Controls physical cursor placement after a call to the refresh subroutine.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

leaveok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The leaveok subroutine controls cursor placement after a call to the refresh subroutine. If
the Flag parameter is set to FALSE, curses leaves the physical cursor in the same location
as logical cursor when the window is refreshed.

If the Flag parameter is set to TRUE, curses leaves the cursor as is and does not move the
physical cursor when the window is refreshed. This option is useful for applications that do
not use the cursor, because it reduces physical cursor motions.

By default leaveok is FALSE, and the physical cursor is moved to the same position as the
logical cursor after a refresh.

Parameters

Flag Specifies whether to leave the physical cursor alone after a refresh
(TRUE) or to move the physical cursor to the logical cursor after a
refresh (FALSE).

Window Identifies the window to set the Flag parameter for.

Return Values

OK Indicates the subroutine completed. The leaveok subroutine always
returns this value.

Examples
1. To move the physical cursor to the same location as the logical cursor after refreshing

the user–defined window my_window, enter:

WINDOW *my_window;

leaveok(my_window, FALSE);

2. To leave the physical cursor alone after refreshing the user–defined window my_window,
enter:

WINDOW *my_window;

leaveok(my_window, TRUE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The refresh subroutine.

Controlling the Cursor with Curses, Curses Overview for Programming, List of Curses
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

longname

2-91curses

longname Subroutine

Purpose
Returns the verbose name of a terminal.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *longname(void);

Description
The longname subroutine generates a verbose description for the current terminal. The
maximum length of a verbose description is 128 bytes. It is defined only after the call to the
initscr or newterm subroutines.

The area is overwritten by each call to the newterm subroutine, so the value should be
saved if you plan on using the longname subroutine with multiple terminals.

Return Values
Upon successful completion, the longname subroutine returns a pointer to the description
specified above. Otherwise, it returns a null pointer on error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr subroutine, newterm subroutine, setupterm subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

makenew

2-92 Technical Reference: Base Operating System

makenew Subroutine

Purpose
Creates a new window buffer and returns a pointer.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *makenew()

Description
The makenew subroutine creates a new window buffer and returns a pointer to it. The
makenew subroutine is called by the newwin subroutine to create the window structure.
The makenew subroutine should not be called directly by a program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Windows with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

meta

2-93curses

meta Subroutine

Purpose
Enables/disables meta–keys.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int meta(WINDOW *win,
bool bf);

Description
Initially, whether the terminal returns 7 or 8 significant bits on input depends on the control
mode of the display driver. To force 8 bits to be returned, invoke the meta subroutine (win,
TRUE). To force 7 bits to be returned, invoke the meta subroutine (win, FALSE). The win
argument is always ignored.

If the terminfo capabilities smm (meta_on) and rmm (meta_off) are defined for the terminal,
smm is sent to the terminal when meta (win, TRUE) is called and rmm is sent when meta
(win, FALSE) is called.

Parameters

bf

*win

Return Values
Upon successful completion, the meta subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To request an 8–bit character return when using a getch routine, enter:

WINDOW *some_window;

meta(some_window, TRUE);

2. To strip the highest bit off the character returns in the user–defined window my_window
, enter:

WINDOW *some_window;

meta(some_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getch subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

meta

2-94 Technical Reference: Base Operating System

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

move

2-95curses

move or wmove Subroutine

Purpose
Window location cursor functions.

Library
Curses Library (libcurses.a)

Syntax

Description
The move and wmove subroutines move the logical cursor associated with the current or
specified window to (y, x) relative to the window’s origin. This subroutine does not move the
cursor of the terminal until the next refresh operation.

Parameters

y

x

*win

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To move the logical cursor in the stdscr to the coordinates y = 5 , x = 10 , use:

move(5, 10);

2. To move the logical cursor in the user–defined window my_window to the coordinates y
= 5 , x = 10 , use:

WINDOW *my_window;

wmove(my_window, 5, 10);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getch and refresh subroutines.

Controlling the Cursor with Curses, Curses Overview for Programming, List of Curses
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

mvcur

2-96 Technical Reference: Base Operating System

mvcur Subroutine

Purpose
Output cursor movement commands to the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int mvcur(int oldrow,
int oldcol,
int newrow,
int newcol);

Description
The mvcur subroutine outputs one or more commands to the terminal that move the
terminal’s cursor to (newrow, newcol), an absolute position on the terminal screen. The
(oldrow, oldcol) arguments specify the former cursor position. Specifying the former position
is necessary on terminals that do not provide coordinate–based movement commands. On
terminals that provide these commands, Curses may select a more efficient way to move
the cursor based on the former position. If (newrow, newcol) is not a valid address for the
terminal in use, the mvcur subroutine fails. If (oldrow, oldcol) is the same as (newrow,
newcol), mvcur succeeds without taking any action. If mvcur outputs a cursor movement
command, it updates its information concerning the location of the cursor on the terminal.

Parameters

newcol

newrow

oldcol

oldrow

Return Values
Upon successful completion, the mvcur subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To move the physical cursor from the coordinates y = 5 , x = 15 to y = 25 , x = 30 ,

use:

mvcur(5, 15, 25, 30);

2. To move the physical cursor from unknown coordinates to y = 5 , x = 0 , use:

mvcur(50, 50, 5, 0);

 In this example, the physical cursor’s current coordinates are unknown. Therefore,
arbitrary values are assigned to the OldLine and OldColumn parameters and the desired
coordinates are assigned to the NewLine and NewColumn parameters. This is called an
absolute move.

mvcur

2-97curses

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine, is_linetouched subroutine, move subroutine, refresh
subroutine.

Controlling the Cursor with Curses, Curses Overview for Programming, List of Curses
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

mvwin

2-98 Technical Reference: Base Operating System

mvwin Subroutine

Purpose
Moves a window or subwindow to the specified coordinates.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int mvwin
(WINDOW *win,
int y,
int x);

Description
The mvwin subroutine moves the specified window so that its origin is at position (y, x). If
the move causes any portion of the window to extend past any edge of the screen, the
function fails and the window is not moved.

Parameters

*win

x

y

Return Values
Upon successful completion, the mvwin subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To move the user–defined window my_window from its present location to the upper

left corner of the terminal, enter:

WINDOW *my_window;

mvwin(my_window, 0, 0);

2. To move the user–defined window my_window from its present location to the
coordinates y = 20 , x = 10 , enter:

WINDOW *my_window;

mvwin(my_window, 20, 10);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The derwin subroutine, doupdate subroutine, is_linetouched subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

mvwin

2-99curses

Manipulating Window Data with Curses in AIX General Programming Concepts : Writing
and Debugging Programs.

newpad

2-100 Technical Reference: Base Operating System

newpad, pnoutrefresh, prefresh, or subpad Subroutine

Purpose
Pad management functions

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

WINDOW *newpad
(int nlines,
int ncols);

int
pnoutrefresh
(WINDOW *pad,
int pminrow,
int pmincol,
int sminrow,
int smincol,
int smaxrorw,
int smaxcol);

int
prefresh
(WINDOW *pad,
int pminrow,
int pmincol,
int sminrow,
int smincol,
int smaxrorw,
int smaxcol);

WINDOW
*subpad
(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

Description
The newpad subroutine creates a specialised WINDOW data structure with nlines lines and
ncols columns. A pad is similar to a window, except that it is not associated with a viewable
part of the screen. Automatic refreshes of pads do not occur.

The subpad subroutine creates a subwindow within a pad with nlines lines and ncols
columns. Unlike the subwin subroutine, which uses screen coordinates, the window is at a
position (begin_y, begin_x) on the pad. The window is made in the middle of the window
orig, so that changes made to one window affects both windows.

The prefresh or pnoutrefresh subroutines are analogous to the wrefresh and
wnoutrefresh subroutines except that they relate to pads instead of windows. The
additional arguments indicate what part of the pad and screen are involved. The pminrow
and pmincol arguments specify the origin of the rectangle to be displayed in the screen. The

newpad

2-101curses

lower right–hand corner of the rectangle to be displayed in the pad is calculated from the
screen coordinates, since the rectangles must be the same size. Both rectangles must be
entirely contained within their respective structures. Negative values of pminrow, pmincol,
sminrow or smincol are treated as if they were zero.

Parameters

ncols

nlines

begin_x

begin_y

*orig

*pad

pminrow

pmincol

sminrow

smincol

smaxrorw

smaxcol

Return Values
Upon successful completion, the newpad and subpad subroutines return a pointer to the
pad structure. Otherwise, they return a null pointer.

Upon successful completion, the pnoutrefresh and prefresh subroutines return OK.
Otherwise, they return ERR.

Examples
For the newpad subroutine:

1. To create a new pad and save the pointer to it in my_pad , enter:

WINDOW *my_pad;

my_pad = newpad(5, 10);

my_pad is now a pad 5 lines deep, 10 columns wide.

2. To create a pad and save the pointer to it in my_pad , which is flush with the right side of
the terminal, enter:

WINDOW *my_pad;

my_pad = newpad(5, 0);

my_pad is now a pad 5 lines deep, extending to the far right side of the terminal.

3. To create a pad and save the pointer to it in my_pad , which fills the entire terminal,
enter:

WINDOW *my_pad;

my_pad = newpad(0, 0);

my_pad is now a pad that fills the entire terminal.

4. To create a very large pad and display part of it on the screen, enter;

newpad

2-102 Technical Reference: Base Operating System

WINDOW *my_pad;

my_pal = newpad(120,120);

prefresh (my_pal, 0,0,0,0,20,30);

This causes the first 21 rows and first 31 columns of the pad to be displayed on the
screen. The upper left coordinates of the resulting rectangle are (0,0) and the bottom
right coordinates are (20,30).

For the prefresh or pnoutrefresh subroutines:

1. To update the user–defined my_pad pad from the upper–left corner of the pad on the
terminal with the upper–left corner at the coordinates Y= 20, X= 10 and the
lower–right corner at the coordinates Y= 30 , X= 25 enter

WINDOW *my_pad;

prefresh(my_pad, 0, 0, 20, 10, 30, 25);

2. To update the user–defined my_pad1 and my_pad2 pads and output them both to the
terminal in one burst of output, enter:

WINDOW *my_pad1; *my_pad2;

pnoutrefresh(my_pad1, 0, 0, 20, 10, 30, 25);

pnoutrefresh(my_pad2, 0, 0, 0, 0, 10, 5);

doupdate();

For the subpad subroutine:

To create a subpad, use:

WINDOW *orig, *mypad;

orig = newpad(100, 200);

mypad = subpad(orig, 30, 5, 25, 180);

The parent pad is 100 lines by 200 columns. The subpad is 30 lines by 5 columns
and starts in line 25 , column 180 of the parent pad.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The derwin subroutine, doupdate subroutine, is_linetouched subroutine, prefresh,
pnoutrefresh and subpad subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Windows in the Curses Environment in AIX General Programming Concepts : Writing and
Debugging Programs.

derwin

2-103curses

derwin, newwin, or subwin Subroutine

Purpose
Window creation subroutines.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *derwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

WINDOW *newwin(int nlines,
int ncols,
int begin_y,
 int begin_x);

WINDOW *subwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x)

Description
The derwin subroutine is the same as the subwin subroutine except that begin_y and
begin_x are relative to the origin of the window orig rather than absolute screen positions.

The newwin subroutine creates a new window with nlines lines and ncols columns,
positioned so that the origin is at (begin_y, begin_x). If nlines is zero, it defaults to LINES –
begin_y; if ncols is zero, it defaults to COLS – begin_x.

The subwin subroutine creates a new window with nlines lines and ncols columns,
positioned so that the origin is at (begin_y, begin_x). (This position is an absolute screen
position, not a position relative to the window orig.) If any part of the new window is outside
orig, the subroutine fails and the window is not created.

Parameters

ncols

nlines

begin_y

begin_x

Return Values
Upon successful completion, these subroutines return a pointer to the new window.
Otherwise, they return a null pointer.

Examples
For the derwin and newwin subroutines:

1. To create a new window, enter:

derwin

2-104 Technical Reference: Base Operating System

WINDOW *my_window;

 my_window = newwin(5, 10, 20, 30);

my_window is now a window 5 lines deep, 10 columns wide, starting at the
coordinates y = 20 , x = 30 . That is, the upper left corner is at coordinates y = 20 , x =
30 , and the lower right corner is at coordinates y = 24 , x = 39 .

2. To create a window that is flush with the right side of the terminal, enter:

WINDOW *my_window;

 my_window = newwin(5, 0, 20, 30);

my_window is now a window 5 lines deep, extending all the way to the right side of
the terminal, starting at the coordinates y = 20 , x = 30 . The upper left corner is at
coordinates y = 20 , x = 30 , and the lower right corner is at coordinates y = 24 , x =
lastcolumn .

3. To create a window that fills the entire terminal, enter:

WINDOW *my_window;

 my_window = newwin(0, 0, 0, 0);

my_window is now a screen that is a window that fills the entire terminal’s display.

For the subwin subroutine:

1. To create a subwindow, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin(5, 10, 20, 30);

my_sub_window is now a subwindow 2 lines deep, 5 columns wide, starting at the
same coordinates of its parent window my_window . That is, the subwindow’s
upper–left corner is at coordinates y = 20 , x = 30 and lower–right corner is at
coordinates y = 21 , x = 34 .

2. To create a subwindow that is flush with the right side of its parent, use

WINDOW *my_window, *my_sub_window;

my_window =

newwin(5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 0, 20, 30);

my_sub_window is now a subwindow 2 lines deep, extending all the way to the right
side of its parent window my_window , and starting at the same coordinates. That is,
the subwindow’s upper–left corner is at coordinates y = 20 , x = 30 and lower–right
corner is at coordinates y = 21 , x = 39 .

3. To create a subwindow in the lower–right corner of its parent, use:

WINDOW *my_window, *my_sub_window

my_window = newwwin(5, 10, 20, 30);

my_sub_window = subwin(my_window, 0, 0, 22, 35);

my_sub_window is now a subwindow that fills the bottom right corner of its parent
window, my_window , starting at the coordinates y = 22 , x = 35 . That is, the
subwindow’s upper–left corner is at coordinates y = 22 , x = 35 and lower–right corner
is at coordinates y = 24 , x = 39 .

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

derwin

2-105curses

Related Information
The endwin, initscr subroutines.

Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses
Enviroment in AIX General Programming Concepts : Writing and Debugging Programs.

newterm

2-106 Technical Reference: Base Operating System

newterm Subroutine

Purpose
Initializes curses and its data structures for a specified terminal.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

SCREEN *newterm(
Type,
OutFile,
InFile)
char *Type;
FILE *OutFile, *InFile;

Description
The newterm subroutine initializes curses and its data structures for a specified terminal.
Use this subroutine instead of the initscr subroutine if you are writing a program that sends
output to more than one terminal. You should also use this subroutine if your program
requires indication of error conditions so that it can run in a line–oriented mode on terminals
that do not support a screen–oriented program.

If you are directing your program’s output to more than one terminal, you must call the
newterm subroutine once for each terminal. You must also call the endwin subroutine for
each terminal to stop curses and restore the terminal to its previous state.

Parameters

InFile Identifies the input device file.

OutFile Identifies the output device file.

Type Specifies the type of output terminal. This parameter is the same as the
$TERM environment variable for that terminal.

Return Values
The newterm subroutine returns a variable of type SCREEN *. You should save this
reference to the terminal within your program.

Examples
1. To initialize curses on a terminal represented by the lft device file as both the input and

output terminal, open the device file with the following:

fdfile = fopen(”/dev/lft0”, ”r+”);

 Then, use the newterm subroutine to initialize curses on the terminal and save the new
terminal in the my_terminal variable as follows:

char termname [] = ”terminaltype”;

SCREEN *my_terminal;

my_terminal = newterm(termname,fdfile, fdfile);

2. To open the device file /dev/lft0 as the input terminal and the /dev/tty0 (an
ibm3151) as the output terminal, do the following:

newterm

2-107curses

fdifile = fopen(”/dev/lft0”, ”r”);

fdofile = fopen(”/dev/tty0”, ”w”);

SCREEN *my_terminal2;

my_terminal2 = newterm(”ibm3151”,fdofile, fdifile);

3. To use stdin for input and stdout for output, do the following:

char termname [] = ”terminaltype”;

SCREEN *my_terminal;

my_terminal = newterm(termname,stdout,stdin);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The endwin subroutine, initscr subroutine.

Curses Overview for Programming, List of Curses Subroutines, Initializing Curses in AIX
General Programming Concepts : Writing and Debugging Programs.

nl

2-108 Technical Reference: Base Operating System

nl or nonl Subroutine

Purpose
Enables/disables newline translation.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int nl(void);

int nonl(void);

Description
The nl subroutine enables a mode in which carriage return is translated to newline on input.
The nonnl subroutine disables the above translation. Initially, the above translation is
enabled.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To instruct wgetch to translate the carriage return into a newline, enter:

nl();

2. To instruct wgetch not to translate the carriage return, enter:

nonl();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The refresh subroutine, waddch subroutine.

Curses Overview for Programming, Understanding Terminals with Curses, List of Curses
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

nodelay

2-109curses

nodelay Subroutine

Purpose
Enables or disables block during read.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int nodelay(WINDOW *win,
bool bf);

Description
The nodelay subroutine specifies whether Delay Mode or No Delay Mode is in effect for the
screen associated with the specified window. If bf is TRUE, this screen is set to No Delay
Mode. If bf is FALSE, this screen is set to Delay Mode. The initial state is FALSE.

Parameters

bf

*win

Return Values
Upon successful completion, the nodelay subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To cause the wgetch subroutine to return an error message, if no input is ready in the

user–defined window my_window , use:

nodelay(my_window, TRUE);

2. To allow for a delay when retrieving a character in the user–defined window my_window
, use:

WINDOW *my_window;

nodelay(my_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The halfdelay subroutine, wgetch subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs

notimeout

2-110 Technical Reference: Base Operating System

notimeout, timeout, wtimeout Subroutine

Purpose
Controls blocking on input.

Library
Curses Library (libcurses.a)

Curses Syntax

#include <curses.h>

int notimeout
(WINDOW *win,
bool bf);

void timeout
(int delay);

void wtimeout
(WINDOW *win,
int delay);

Description
The notimeout subroutine specifies whether Timeout Mode or No Timeout Mode is in effect
for the screen associated with the specified window. If bf is TRUE, this screen is set to No
Timeout Mode. If bf is FALSE, this screen is set to Timeout Mode. The initial state is FALSE.

The timeout and wtimeout subroutines set blocking or non–blocking read for the current or
specified window based on the value of delay:

delay < 0 One or more blocking reads (indefinite waits for input) are used.

delay = 0 One or more non–blocking reads are used. Any Curses input
subroutine will fail if every character of the requested string is not
immediately available.

delay > 0 Any Curses input subroutine blocks for delay milliseconds and fails if
there is still no input.

Parameters

*win

bf

Return Values
Upon successful completion, the notimeout subroutine returns OK. Otherwise, it returns
ERR.

The timeout and wtimeout subroutines do not return a value.

Examples
To set the flag so that the wgetch subroutine does not set the timer when getting characters
from the my_win window, use:

notimeout

2-111curses

WINDOW *my_win;

notimeout(my_win, TRUE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getch, halfdelay, nodelay, and notimeout subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

Getting Characters in AIX General Programming Concepts : Writing and Debugging
Programs.

overlay

2-112 Technical Reference: Base Operating System

overlay or overwrite Subroutine

Purpose
Copies one window on top of another.

Library
Curses Library (libcurses.a)

Syntax
int overwrite(const WINDOW *srcwin,
WINDOW *dstwin);

Description
The overlay and overwrite subroutines overlay srcwin on top of dstwin. The scrwin and
dstwin arguments need not be the same size; only text where the two windows overlap is
copied.

The overwrite subroutine copies characters as though a sequence of win_wch and
wadd_wch subroutines were performed with the destination window’s attributes and
background attributes cleared.

The overlay subroutine does the same thing, except that, whenever a character to be
copied is the background character of the source window. the overlay subroutine does not
copy the character but merely moves the destination cursor the width of the source
background character.

If any portion of the overlaying window border is not the first column of a multi–column
character then all the column positions will be replaced with the background character and
rendition before the overlay is done. If the default background character is a multi–column
character when this occurs, then these subroutines fail.

Parameters

srcwin

deswin

Return Values
Upon successful completion. these subroutines return OK. Otherwise, they return ERR.

Examples
1. To copy my_window on top of other_window, excluding spaces, use:

WINDOW *my_window, *other_window;

overlay(my_window, other_window);

2. To copy my_window on top of other_window, including spaces, use:

WINDOW *my_window, *other_window;

overwrite(my_window, other_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The copywin subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Window Data
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

pair_content

2-113curses

pair_content Subroutine

Purpose
Returns the colors in a color pair.

Library
Curses Library (libcurses.a)

Curses Syntax
#include <curses.h>

pair_content (Pair, F, B)
short Pair;
short *F, *B;

Description
The pair_content subroutine returns the colors in a color pair. A color pair is made up of a
foreground and background color. You must call the start_color subroutine before calling
the pair_content subroutine.

Note: The color pair must already be initialized before calling the pair_content
subroutine.

Return Values

OK Indicates the subroutine completed successfully.

ERR Indicates the pair has not been initialized.

Parameters

Pair Identifies the color–pair number. The Pair parameter must be between
1 and COLORS_PAIRS–1.

F Points to the address where the foreground color will be stored. The F
parameter will be between 0 and COLORS–1.

B Points to the address where the background color will be stored. The B
parameter will be between 0 and COLORS–1.

Example
To obtain the foreground and background colors for color–pair 5, use:

short *f, *b;

pair_content(5,f,b);

For this subroutine to succeed, you must have already initialized the color pair. The
foreground and background colors will be stored at the locations pointed to by f and b.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The start_color subroutine, init_pair subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes, Working with Color in AIX General Programming Concepts : Writing and
Debugging Programs.

prefresh

2-114 Technical Reference: Base Operating System

prefresh or pnoutrefresh Subroutine

Purpose
Updates the terminal and curscr (current screen) to reflect changes made to a pad.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

prefresh(Pad, PY, PX, TTY, TTX, TBY, TBX)
WINDOW *Pad;
int PY, PX, TTY;
int TTX, TBY, TBX;

pnoutrefresh(Pad, PY, PX, TTY, TTX, TBY, TBX)
WINDOW *Pad;
int PY, PX, TTY;
int TTX, TBY, TBX;

Description
The prefresh and pnoutrefresh subroutines are similar to the wrefresh and wnoutrefresh
subroutines. They are different in that pads, instead of windows, are involved, and additional
parameters are necessary to indicate what part of the pad and screen are involved.

The PX and PY parameters specify the upper left corner, in the pad, of the rectangle to be
displayed. The TTX, TTY, TBX, and TBY parameters specify the edges, on the screen, for
the rectangle to be displayed in. The lower right corner of the rectangle to be displayed is
calculated from the screen coordinates, since both rectangle and pad must be the same
size. Both rectangles must be entirely contained within their respective structures.

The prefresh subroutine copies the specified portion of the pad to the physical screen. if
you wish to output several pads at once, call pnoutrefresh for each pad and then issue one
call to doupdate. This updates the physical screen once.

Parameters

Pad Specifies the pad to be refreshed.

PX (Pad’s x–coordinate) Specifies the upper–left column coordinate, in the
pad, of the rectangle to be displayed.

PY (Pad’s y–coordinate) Specifies the upper–left row coordinate, in the
pad, of the rectangle to be displayed.

TBX (Terminal’s Bottom x–coordinate) Specifies the lower–right column
coordinate, on the terminal, for the pad to be displayed in.

TBY (Terminal’s Bottom y–coordinate) Specifies the lower–right row
coordinate, on the terminal, for the pad to be displayed in.

TTX (Terminal’s Top x–coordinate) Specifies the upper–left column
coordinate, on the terminal, for the pad to be displayed in.

TTY (Terminal’s Top Y coordinate) Specifies the upper–left row coordinate,
on the terminal, for the pad to be displayed in.

prefresh

2-115curses

Examples
1. To update the user–defined my_pad pad from the upper–left corner of the pad on the

terminal with the upper–left corner at the coordinates Y=20, X=10 and the lower–right
corner at the coordinates Y=30, X=25 enter

WINDOW *my_pad;

prefresh(my_pad, 0, 0, 20, 10, 30, 25);

2. To update the user–defined my_pad1 and my_pad2 pads and output them both to the
terminal in one burst of output, enter:

WINDOW *my_pad1; *my_pad2;

pnoutrefresh(my_pad1, 0, 0, 20, 10, 30, 25);

pnoutrefresh(my_pad2, 0, 0, 0, 0, 10, 5);

doupdate();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX General Programming Concepts : Writing
and Debugging Programs.

printw

2-116 Technical Reference: Base Operating System

printw, wprintw, mvprintw, or mvwprintw Subroutine

Purpose
Performs a printf command on a window using the specified format control string.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

printw(Format, [Argument ...])
char *Format, *Argument;

wprintw(Window, Format, [Argument ...])
WINDOW *Window;
char *Format, *Argument;

mvprintw(Line, Column, Format, [Argument ...])
int Line, Column;
char *Format, *Argument;

mvwprintw(Window, Line, Column, Format, [Argument ...])

WINDOW *Window;
int Line, Column;
char *Format, *Argument;

Description
The printw, wprintw, mvprintw, and mvwprintw subroutines perform output on a window
by using the specified format control string. However, the waddch subroutine is used to
output characters in a given window instead of invoking the printf subroutine. The
mvprintw and mvwprintw subroutines move the logical cursor before performing the
output.

Use the printw and mvprintw subroutines on the stdscr and the wprintw and mvwprintw
subroutines on user–defined windows.

Note: The maximum length of the format control string after expansion is 512 bytes.

Parameters

Argument Specifies the item to print. See the printf subroutine for more details.

Column Specifies the horizontal position to move the cursor to before printing.

Format Specifies the format for printing the Argument parameter. See the
printf subroutine.

Line Specifies the vertical position to move the cursor to before printing.

Window Specifies the window to print into.

Examples
1. To print the user–defined integer variables x and y as decimal integers in the stdscr,

enter:

int x, y;

printw(”%d%d”, x, y);

2. To print the user–defined integer variables x and y as decimal integers in the
user–defined window my_window, enter:

printw

2-117curses

int x, y;

WINDOW *my_window;

wprintw(my_window, ”%d%d”, x, y);

3. To move the logical cursor to the coordinates y = 5, x = 10 before printing the
user–defined integer variables x and y as decimal integers in the stdscr, enter:

int x, y;

mvprintw(5, 10, ”%d%d”, x, y);

4. To move the logical cursor to the coordinates y = 5, x = 10 before printing the
user–defined integer variables x and y as decimal integers in the user–defined window
my_window, enter:

int x, y;

WINDOW *my_window;

mvwprintw(my_window, 5, 10, ”%d%d”, x, y);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The waddch subroutine, printf subroutine.

The printf command.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with CursesAIX General Programming Concepts : Writing and Debugging Programs.

putp

2-118 Technical Reference: Base Operating System

putp, tputs Subroutine

Purpose
Outputs commands to the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int putp(const char *str);

int tputs(const char *str,
int affcnt,
int (*putfunc)(int));

Description
These subroutines output commands contained in the terminfo database to the terminal.

The putp subroutine is equivalent to tputs(str, 1, putchar). The output of the putp
subroutine always goes to stdout, not to the fildes specified in the setupterm subroutine.

The tputs subroutine outputs str to the terminal. The str argument must be a terminfo string
variable or the return value from the tgetstr, tgoto, tigestr, or tparm subroutines. The affcnt
argument is the number of lines affected, or 1 if not applicable. If the terminfo database
indicates that the terminal in use requires padding after any command in the generated
string, the tputs subroutine inserts pad characters into the string that is sent to the terminal,
at positions indicated by the terminfo database. The tputs subroutine outputs each
character of the generated string by calling the user–supplied putfunc subroutine (see
below).

The user–supplied putfunc subroutine (specified as an argument to the tputs subroutine is
either putchar or some other subroutine with the same prototype. The tputs subroutine
ignores the return value of the putfunc subroutine.

Parameters

*str

affcnt

*putfunc

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the putp subroutine:

To call the tputs(my_string , 1, putchar) subroutine, enter:

char *my_string;

putp(my_string);

For the tputs subroutine:

putp

2-119curses

1. To output the clear screen sequence using the user–defined putchar–like subroutine
my_putchar, enter:

int_my_putchar();

tputs(clear_screen, 1 ,my_putchar);

2. To output the escape sequence used to move the cursor to the coordinates x= 40 , y=
18 through the user–defined putchar–like subroutine my_putchar , enter:

int_my_putchar();

tputs(tparm(cursor_address, 18, 40), 1, my_putchar);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate, is_linetouched, putchar, tgetent, tigetflag, tputs subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

raw

2-120 Technical Reference: Base Operating System

raw or noraw Subroutine

Purpose
Places the terminal into or out of raw mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
raw()
noraw()

Description
The raw or noraw subroutine places the terminal into or out of raw mode, respectively.
RAW mode is similar to CBREAK mode (cbreak or nocbreak subroutine). In RAW mode,
the system immediately passes typed characters to the user program. The interrupt, quit,
and suspend characters are passed uninterrupted, instead of generating a signal. RAW
mode also causes 8–bit input and output.

To get character–at–a–time input without echoing, call the cbreak and noecho subroutines.
Most interactive screen–oriented programs require this sort of input.

Return Values

OK Indicates the subroutine completed. The raw and noraw routines
always return this value.

Examples
1. To place the terminal into raw mode, use:

raw();

2. To place the terminal out of raw mode, use:

noraw();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getch subroutine, cbreak or nocbreak subroutine

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with CursesAIX General Programming Concepts : Writing and Debugging Programs.

refresh

2-121curses

refresh or wrefresh Subroutine

Purpose
Updates the terminal’s display and the curscr to reflect changes made to a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

refresh()

wrefresh(Window)
WINDOW *Window;

Description
The refresh or wrefresh subroutines update the terminal and the curscr to reflect changes
made to a window. The refresh subroutine updates the stdscr. The wrefresh subroutine
refreshes a user–defined window.

Other subroutines manipulate windows but do not update the terminal’s physical display to
reflect their changes. Use the refresh or wrefresh subroutines to update a terminal’s
display after internal window representations change. Both subroutines check for possible
scroll errors at display time.

Note: The physical terminal cursor remains at the location of the window’s cursor during
a refresh, unless the leaveok subroutine is enabled.

The refresh and wrefresh subroutines call two other subroutines to perform the refresh
operation. First, the wnoutrefresh subroutine copies the designated window structure to the
terminal. Then, the doupdate subroutine updates the terminal’s display and the cursor.

Parameters

Window Specifies the window to refresh.

Examples
1. To update the terminal’s display and the current screen structure to reflect changes

made to the standard screen structure, use:

refresh();

2. To update the terminal and the current screen structure to reflect changes made to a
user–defined window called my_window, use:

WINDOW *my_window;

wrefresh(my_window);

3. To restore the terminal to its state at the last refresh, use:

wrefresh(curscr); This subroutine is useful if the terminal

becomes garbled for any reason.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine, leaveok subroutine, wnoutrefresh subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with CursesAIX General Programming Concepts : Writing and Debugging Programs.

reset_prog_mode

2-122 Technical Reference: Base Operating System

reset_prog_mode Subroutine

Purpose
Restores the terminal to program mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

reset_prog_mode()

Description
The reset_prog_mode subroutine restores the terminal to program or in curses mode.

The reset_prog_mode subroutine is a low–level routine and normally would not be called
directly by a program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

reset_shell_mode

2-123curses

reset_shell_mode Subroutine

Purpose
Restores the terminal to shell mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

reset_shell_mode()

Description
The reset_shell_mode subroutine restores the terminal into shell , or ”out of curses,” mode.
This happens automatically when the endwin subroutine is called.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The endwin subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

resetterm

2-124 Technical Reference: Base Operating System

resetterm Subroutine

Purpose
Resets terminal modes to what they were when the saveterm subroutine was last called.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

resetterm()

Description
The resetterm subroutine resets terminal modes to what they were when the saveterm
subroutine was last called.

The resetterm subroutine is called by the endwin subroutine, and should normally not be
called directly by a program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

resetty

2-125curses

resetty, savetty Subroutine

Purpose
Saves/restores the terminal mode.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int resetty(void);

int savetty(void):

Description
The resetty subroutine restores the program mode as of the most recent call to the savetty
subroutine.

The savetty subroutine saves the state that would be put in place by a call to the
reset_prog_mode subroutine.

Return Values
Upon successful completion, these subroutines return OK. Otherwise. they return ERR.

Examples
To restore the terminal to the state it was in at the last call to savetty, enter:

resetty();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The def_prog_mode subroutine, endwin subroutine, savetty subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

restartterm

2-126 Technical Reference: Base Operating System

restartterm Subroutine

Purpose
Re–initializes the terminal structures after a restore.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
#include <term.h>

restartterm (Term, FileNumber, ErrorCode)
char *Term;
int FileNumber;
int *ErrorCode;

Description
The restartterm subroutine is similar to the setupterm subroutine except that it is called
after restoring memory to a previous state. For example, you would call the restartterm
subroutine after a call to scr_restore if the terminal type has changed. The restartterm
subroutine assumes that the windows and the input and output options are the same as
when memory was saved, but the terminal type and baud rate may be different.

Parameters

Term Specifies the terminal name to obtain the terminal for. If 0 is passed for
the parameter, the value of the $TERM environment variable is used.

FileNumber Specifies the output file’s file descriptor (1 equals standard out).

ErrorCode Specifies a pointer to an integer to return the error code to. If 0, then
the restartterm subroutine exits with an error message instead of
returning.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Example
To restart an aixterm after a previous memory save and exit on error with a message, enter:

restartterm(”aixterm”, 1, (int*)0);

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime

Prerequisite Information
Curses Overview for Programming and Understanding Terminals with Curses in AIX
General Programming Concepts : Writing and Debugging Programs .

Related Information
The setupterm subroutine.

ripoffline

2-127curses

ripoffline Subroutine

Purpose
Reserves a line for a dedicated purpose.

Library
Curses Library (libcurses.a)

Syntax

#include
<curses.h>

int
ripoffline(int line,
int (*init)(WINDOW *win,
int columns));

Description
The ripoffline subroutine reserves a screen line for use by the application.

Any call to the ripoffline subroutine must precede the call to the initscr or newterm
subroutine. If line is positive, one line is removed from the beginning of stdstr; if line is
negative, one line is removed from the end. Removal occurs during the subsequent call to
the initscr or newterm subroutine. When the subsequent call is made, the subroutine
pointed to by init is called with two arguments: a WINDOW pointer to the one–line window
that has been allocated and an integer with the number of columns in the window. The
initialisation subroutine cannot use the LINES and COLS external variables and cannot call
the wrefresh or doupdate subroutine, but may call the wnoutrefresh subroutine.

Up to five lines can be ripped off. Calls to the ripoffline subroutine above this limit have no
effect, but report success.

Parameters

line

*init

columns

*win

Return Values
The ripoffline subroutine returns OK.

Example
To remove three lines from the top of the screen, enter:

#include <curses.h>

ripoffline(1,initfunc);

ripoffline(1,initfunc);

ripoffline(1,initfunc);

ripoffline

2-128 Technical Reference: Base Operating System

initscr();

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine, slk_attroff, slk_init subroutine, initscr subroutine, newterm
subroutine.

Curses Overview for Programming and List of Curses Subroutines in AIX General
Programming Concepts : Writing and Debugging Programs.

savetty

2-129curses

savetty Subroutine

Purpose
Saves the state of the tty modes.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
savetty()

Description
The savetty subroutine saves the current state of the tty modes in a buffer. It saves the
current state in a buffer that the resetty subroutine then reads to reset the tty state.

The savetty subroutine is called by the initscr subroutine and normally should not be called
directly by the program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr subroutine, resetty subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

scanw

2-130 Technical Reference: Base Operating System

scanw, wscanw, mvscanw, or mvwscanw Subroutine

Purpose
Calls the wgetstr subroutine on a window and uses the resulting line as input for a scan.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

scanw(Format, Argument1, Argument2, ...)
char *Format, *Argument1, ...;

wscanw(Window, Format, Argument1, Argument2, ...)
WINDOW *Window;
char *Format, *Argument1, ...;

mvscanw(Line, Column, Format, Argument1, Argument2, ...)
int Line, Column;
char *Format, *Argument1, ...;

mvwscanw(Window, Line, Column, Format, Argument1, Argument2, ...)
WINDOW *Window;
int Line, Column;
char *Format, *Argument1, ...;

Description
The scanw, wscanw, mvscanw, and mvwscanw subroutines call the wgetstr subroutine
on a window and use the resulting line as input for a scan. The mvscanw and mvwscanw
subroutines move the cursor before performing the scan function. Use the scanw and
mvscanw subroutines on the stdscr and the wscanw and mvwscanw subroutines on the
user–defined window.

Parameters

Argument Specifies the input to read.

Column Specifies the vertical coordinate to move the logical cursor to before
performing the scan.

Format Specifies the conversion specifications to use to interpret the input. For
more information about this parameter, see the discussion of the
Format parameter in the scanf subroutine.

Line Specifies the horizontal coordinate to move the logical cursor to before
performing the scan.

Window Specifies the window to perform the scan in. You only need to specify
this parameter with the wscanw and mvwscanw subroutines.

Example
The following shows how to read input from the keyboard using the scanw subroutine.

scanw

2-131curses

int id;

char deptname[25];

mvprintw(5,0,”Enter your i.d. followed by the department

name:\n”);

refresh();

scanw(”%d %s”, &id, deptname);

mvprintw(7,0,”i.d.: %d, Name: %s\n”, id, deptname);

refresh();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The wgetstr subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

scr_dump

2-132 Technical Reference: Base Operating System

scr_dump, scr_init, scr_restore, scr_set Subroutine

Purpose
File input/output functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int scr_dump
(const char *filename);

int scr_init
(const char *filename);

int scr_restore
(const char *filename);

int scr_set
(const char *filename);

Description
The scr_dump subroutine writes the current contents of the virtual screen to the file named
by filename in an unspecified format.

The scr_restore subroutine sets the virtual screen to the contents of the file named by
filename, which must have been written using the scr_dump subroutine. The next refresh
operation restores the screen to the way it looked in the dump file.

The scr_init subroutine reads the contents of the file named by filename and uses them to
initialize the Curses data structures to what the terminal currently has on its screen. The
next refresh operation bases any updates of this information, unless either of the following
conditions is true:

• The terminal has been written to since the virtual screen was dumped to filename.

• The terminfo capabilities rmcup and nrrmc are defined for the current terminal.

The scr_set subroutine is a combination of scr_restore and scr_init subroutines. It tells
the program that the information i the file named by filename is what is currently on the
screen, and also what the program wants on the screen. This can be thought of as a screen
inheritance function.

Parameters

filename

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the scr_dump subroutine:

To write the contents of the virtual screen to /tmp/virtual.dump file, use:

scr_dump

2-133curses

scr_dump(”/tmp/virtual.dump”);

For the scr_restrore subroutine:

To restore the contents of the virtual screen from the /tmp/virtual.dump file and
update the terminal screen, use:

scr_restore(”/tmp/virtual.dump”);

doupdate();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The delscreen, doupdate, endwin, getwin, open, read, and write subroutines, scr_init
subroutine, scr_restore subroutine.

Curses Overview for Programming, Manipulating Window Data with Curses, Understanding
Terminals with Curses and List of Curses Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

scr_init

2-134 Technical Reference: Base Operating System

scr_init Subroutine

Purpose
Initializes the curses data structures from a dump file.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

scr_init(Filename)
char *Filename;

Description
The scr_init subroutine initializes the curses data structures from a dump file. You create
dump files with the scr_dump subroutine. If the file’s data is valid, the next screen update is
based on the contents of the file rather than clearing the screen and starting from scratch.
The data is invalid if the terminfo database boolean capability nrrmc is TRUE or the
contents of the terminal differ from the contents of the dump file.

Note: If nrrmc is TRUE, avoid calling the putp subroutine with the exit_ca_mode value
before calling scr_init subroutine in your application.

You can call the scr_init subroutine after the initscr subroutine to update the screen with
the dump file contents. Using the keypad, meta, slk_clear, curs_set, flash, and beep
subroutines do not affect the contents of the screen, but cause the terminal’s modification
time to change.

You can allow more than one process to share screen dumps. Both processes must be run
from the same terminal. The scr_init subroutine first ensures that the process that created
the dump is in sync with the current terminal data. If the modification time of the terminal is
not the same as that specified in the dump file, the scr_init subroutine assumes that the
screen image on the terminal has changed from that in the file, and the file’s data is invalid.

If you are allowing two processes to share a screen dump, it is important to understand that
one process starts up another process. The following activities happen:

• The second process creates the dump file with the scr_init subroutine.

• The second process exits without causing the terminal’s time stamp to change by calling
the endwin subroutine followed by the scr_dump subroutine, and then the exit
subroutine.

• Control is passed back to the first process.

• The first process calls the scr_init subroutine to update the screen contents with the
dump file data.

Return Values

ERR Indicates the dump file’s time stamp is old or the boolean capability
nrrmc is TRUE.

OK Indicates that the curses data structures were successfully initialized
using the contents of the dump file.

Parameters

Filename Points to a dump file.

scr_init

2-135curses

Related Information
The scr_dump subroutine, scr_restore subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Window Data
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

scr_restore

2-136 Technical Reference: Base Operating System

scr_restore Subroutine

Purpose
Restores the virtual screen from a dump file.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

scr_restore(FileName)
char *FileName;

Description
The scr_restore subroutine restores the virtual screen from the contents of a dump file. You
create a dump file with the scr_dump subroutine. To update the terminal’s display with the
restored virtual screen, call the wrefresh or doupdate subroutine after restoring from a
dump file.

To communicate the screen image across processes, use the scr_restore subroutine along
with the scr_dump subroutine.

Return Values

ERR Indicates the content of the dump file is incompatible with the current
release of curses.

OK Indicates that the virtual screen was successfully restored from a dump
file.

Parameters

FileName Identifies the name of the dump file.

Example
To restore the contents of the virtual screen from the /tmp/virtual.dump file and update
the terminal screen, use:

scr_restore(”/tmp/virtual.dump”);

doupdate();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The scr_dump subroutine, scr_init subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses, Manipulating Video Attributes in AIX General Programming Concepts : Writing
and Debugging Programs.

scrl

2-137curses

scrl, scroll, wscrl Subroutine

Purpose
Scrolls a Curses window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int scrl
(int n);

int scroll
(WINDOW *win);

int wscrl
(WINDOW *win,
int n);

Description
The scroll subroutine scrolls win one line in the direction of the first line

The scrl and wscrl subroutines scroll the current or specified window. If n is positive, the
window scrolls n lines toward the first line. Otherwise, the window scrolls –n lines toward the
last line.

Theses subroutines do not change the cursor position. If scrolling is disabled for the current
or specified window, these subroutines have no effect. The interaction of these subroutines
with the setsccreg subroutine is currently unspecified.

Parameters

*win Specifies the window to scroll.

n

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
To scroll the user–defined window my_window up one line, enter:

WINDOW *my_window;

scroll(my_window);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The scrollok subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

scrollok

2-138 Technical Reference: Base Operating System

scrollok Subroutine

Purpose
Enables or disables scrolling.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

scrollok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The scrollok subroutine enables or disables scrolling. Scrolling occurs when a program or
user:

• Moves the cursor off the window’s bottom edge.

• Enters a new–line character on the last line.

• Types the last character of the last line.

If enabled, curses calls a refresh as part of the scrolling action on both the window and the
physical display. To get the physical scrolling effect on the terminal, it is also necessary to
call the idlok subroutine.

If scrolling is disabled, the cursor is left on the bottom line at the location where the
character was entered.

Parameters

Flag Enables scrolling when set to TRUE. Otherwise, set the Flag parameter
to FALSE to disable scrolling.

Window Identifies the window to enable or disable scrolling in.

Examples
1. To turn scrolling on in the user–defined window my_window, enter:

WINDOW *my_window;

scrollok(my_window, TRUE);

2. To turn scrolling off in the user–defined window my_window, enter:

WINDOW *my_window;

scrollok(my_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The idlok subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

set_curterm

2-139curses

set_curterm Subroutine

Purpose
Sets the current terminal variable to the specified terminal.

Library
Curses Library (libcurses.a)

Curses Syntax
#include <curses.h>
#include <term.h>

set_curterm(Newterm)
TERMINAL *Newterm;

Description
The cur_term subroutine sets the cur_term variable to the terminal specified by the
Newterm parameter. The cur_term subroutine is useful when the setupterm subroutine is
called more than once. The set_curterm subroutine allows the programmer to toggle back
and forth between terminals.

When information for a particular terminal is no longer required, remove it using the
del_curterm subroutine.

Note: The cur_term subroutine is a low–level subroutine. You should use this
subroutine only if your application must deal directly with the terminfo database to
handle certain terminal capabilities. For example, use this subroutine if your application
programs function keys.

Parameters

Newterm Points to a TERMINAL structure. This structure contains information
about a specific terminal.

Examples
To set the cur_term variable to point to the my_term terminal, use:

TERMINAL *newterm;

set_curterm(newterm);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setupterm subroutine.

Curses Overview for Programming and List of Curses Subroutines in AIX General
Programming Concepts : Writing and Debugging Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

setscrreg

2-140 Technical Reference: Base Operating System

setscrreg or wsetscrreg Subroutine

Purpose
Creates a software scrolling region within a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

setscrreg(Tmargin, Bmargin)
int Tmargin, Bmargin;

wsetscrreg(Window, Tmargin, Bmargin)
WINDOW *Window;
int Tmargin, Bmargin;

Description
The setscrreg and wsetscrreg subroutines create a software scrolling region within a
window. Use the setscrreg subroutine with the stdscr and the the wsetscrreg subroutine
with user–defined windows.

You pass the setscrreg subroutines values for the top line and bottom line of the region. If
the setscrreg subroutine and scrollok subroutine are enabled for the region, any attempt to
move off the line specified by the Bmargin parameter causes all the lines in the region to
scroll up one line.

Note: Unlike the idlok subroutine, the setscrreg subroutines have nothing to do with the
use of a physical scrolling region capability that the terminal may or may not have.

Parameters

Bmargin Specifies the last line number in the scrolling region.

Tmargin Specifies the first line number in the scrolling region (0 is the top line of
the window.)

Window Specifies the window to place the scrolling region in. You specify this
parameter only with the wsetscrreg subroutine.

Examples
1. To set a scrolling region starting at the 10th line and ending at the 30th line in the stdscr,

enter:

setscrreg(9, 29);

Note: Zero is always the first line.

2. To set a scrolling region starting at the 10th line and ending at the 30th line in the
user–defined window my_window, enter:

WINDOW *my_window;

wsetscrreg(my_window, 9, 29);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The idlok subroutine, scrollok subroutine, wrefresh subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

setsyx

2-141curses

setsyx Subroutine

Purpose
Sets the coordinates of the virtual screen cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

setsyx(Y, X)
int Y, X;

Description
The setsyx subroutine sets the coordinates of the virtual screen cursor to the specified row
and column coordinates. If Y and X are both –1, then the leaveok flag is set. (leaveok may
be set by applications that do not use the cursor.)

The setsyx subroutine is intended for use in combination with the getsyx subroutine. These
subroutines should be used by a user–defined function that manipulates curses windows
but wants the position of the cursor to remain the same. Such a function would do the
following:

• Call the getsyx subroutine to obtain the current virtual cursor coordinates.

• Continue processing the windows.

• Call the wnoutrefresh subroutine on each window manipulated.

• Call the setsyx subroutine to reset the current virtual cursor coordinates to the original
values.

• Refresh the display by calling the doupdate subroutine.

Parameters

X Specifies the column to set the virtual screen cursor to.

Y Specifies the row to set the virtual screen cursor to.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine, getsyx subroutine, leaveok subroutine, wnoutrefresh
subroutine.

Controlling the Cursor with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

set_term

2-142 Technical Reference: Base Operating System

set_term Subroutine

Purpose
Switches between screens.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

SCREEN *set_term
(SCREEN *new);

Description
The set_term subroutine switches between different screens. The new argument specifies
the current screen.

Parameters

*new

Return Values
Upon successful completion, the set_term subroutine returns a pointer to the previous
screen. Otherwise, it returns a null pointer.

Examples
To make the terminal stored in the user–defined SCREEN variable my_terminal the
current terminal and then store a pointer to the old terminal in the user–defined variable
old_terminal , enter:

SCREEN *old_terminal, *my_terminal;

old_terminal = set_term(my_terminal);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr subroutine, newterm subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

setupterm

2-143curses

setupterm Subroutine

Purpose
Initializes the terminal structure with the values in the terminfo database.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

#include <term.h>

setupterm(Term, FileNumber, ErrorCode)
char *Term;
int FileNumber;
int *ErrorCode;

Description
The setupterm subroutine determines the number of lines and columns available on the
output terminal. The setupterm subroutine calls the termdef subroutine to define the
number of lines and columns on the display. If the termdef subroutine cannot supply this
information, the setupterm subroutine uses the values in the terminfo database.

The setupterm subroutine initializes the terminal structure with the terminal–dependent
capabilities from terminfo. This routine is automatically called by the initscr and newterm
subroutines. The setupterm subroutine deals directly with the terminfo database.

Two of the terminal–dependent capabilities are the lines and columns. The setupterm
subroutine populates the lines and column fields in the terminal structure in the following
manner:

1. If the environment variables LINES and COLUMNS are set, the setupterm subroutine
uses these values.

2. If the environment variables are not set, the setupterm subroutine obtains the lines and
columns information from the tty subsystem.

3. As a last resort, the setupterm subroutine uses the values defined in the terminfo
database.

Note: These may or may not be the same as the values in the terminfo database.

The simplest call is setupterm((char*) 0, 1, (int*) 0), which uses all defaults.

After the call to the setupterm subroutine, the cur_term global variable is set to point to the
current structure of terminal capabilities. A program can use more than one terminal at a
time by calling the setupterm subroutine for each terminal and then saving and restoring
the cur_term variable.

Parameters

ErrorCode Specifies a pointer to an integer to return the error code to. If a null
pointer (0) is passed for this parameter, no status is returned. An error
causes the setupterm subroutine to print an error message and exit
instead of returning.

FileNumber Specifies the output files file descriptor (1 equals standard output).

Term Specifies the terminal name. If 0 is passed for this parameter, the value
of the $TERM environment variable is used.

setupterm

2-144 Technical Reference: Base Operating System

Return Values
One of the following status values is stored into the integer pointed to by the ErrorCode
parameter:

1 Successful completion.

0 No such terminal.

–1 An error occurred while locating the terminfo database.

Example
To determine the current terminal’s capabilities using $TERM as the terminal name,
standard output as output, and returning no error codes, enter:

setupterm((char*) 0, 1, (int*) 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The termdef subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

_showstring

2-145curses

_showstring Subroutine

Purpose
Dumps the string in the specified string address to the terminal at the specified location.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

_showstring(Line, Column, First, Last, String)
int Line, Column, First, Last;
char *String;

Description
The _showstring subroutine dumps the string in the specified string address to the terminal
at the specified location. This is an internal extended curses subroutine and should not
normally be called directly by the program.

Parameters

Column Specifies the horizontal coordinate of the terminal at which to dump the
string.

First Specifies the beginning string address of the string to dump to the
terminal.

Last Specifies the end string address of the string to dump to the terminal.

Line Specifies the vertical coordinate of the terminal at which to dump the
string.

String Specifies the string to dump to the terminal.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming , List of Curses Subroutines , Manipulating Characters
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

slk_attroff

2-146 Technical Reference: Base Operating System

slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set,
slk_clear, slk_color, slk_init, slk_label, slk_noutrefresh,
slk_refresh, slk_restore, slk_set, slk_touch, slk_wset,
Subroutine

Purpose
Soft label subroutines.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int slk_attroff
(const chtype attrs);

int slk_attr_off
(const attr_t attrs,
void *opts);

int slk_attron
(const chtype attrs);

int slk_attr_on
(const attr_t attrs,
void *opts);

int slk_attrset
(const chtype attrs);

int slk_attr_set
(const attr_t attrs,
short color_pair_number,
void *opts);

int slk_clear
(void);

int slk_color
(short color_pair_number);

int slk_init
(int fmt);

char *slk_label
(int labnum);

int slk_noutrefresh
(void);

int slk_refresh
(void);

int slk_restore
(void);

slk_attroff

2-147curses

int slk_set
(int labnum,
const char *label,
int justify);

int slk_touch
(void);

int slk_wset
(int labnum,
const wchar_t *label,
int justify);

Description
The Curses interface manipulates the set of soft function–key labels that exist on many
terminals. For those terminals that do not have sort labels, Curses takes over the bottom
line of stdscr, reducing the size of stdscr and the value of the LINES external variable. There
can be up to eight labels of up to eight display columns each.

To use soft labels, the slk_init subroutine must be called before initscr, newterm, or
ripoffline is called. If initscr eventually uses a line from stdscr to emulate the soft labels,
then fmt determines how the labels are arranged on the screen. Setting fmt to 0 indicates a
3–2–3 arrangement of the labels; 1 indicates a 4–4 arrangement. Other values for fmt are
unspecified.

The slk_init subroutine has the effect of calling the ripoffline subroutine to reserve one
screen line to accommodate the requested format.

The slk_set and slk_wset subroutines specify the text of soft label number labnum, within
the range from 1 to and including 8. The label argument is the string to be put on the label.
With slk_set and slk_wset, the width of the label is limited to eight column positions. A null
string or a null pointer specifies a blank label. The justify argument can have the following
values to indicate how to justify label within the space reserved for it:

0 Align the start of label with the start of the space.

1 Center label within the space.

2 Align the end of label with the end of the space.

The slk_refresh and slk_noutrefresh subroutines correspond to the wrefresh and
wnoutrefresh subroutines.

The slk_label subroutine obtains soft label number labnum.

The slk_clear subroutine immediately clears the soft labels from the screen.

The slk_touch subroutine forces all the soft labels to be output the next time
slk_noutrefresh or slk_refresh subroutines is called.

The slk_attron, slk_attrset and slk_attroff subroutines correspond to the attron, attrset,
and attroff subroutines. They have an effect only if soft labels are simulated on the bottom
line of the screen.

The slk_attr_off, slk_attr_on, slk_sttr_set, and slk_attroff subroutines correspond to the
slk_attroff, slk_attron, slk_attrset, and color_set and thus support the attribute constants
with the WA_prefix and color.

The opts argument is reserved for definition in a future edition of this document. Currently,
the application must provide a null pointer as opts.

slk_attroff

2-148 Technical Reference: Base Operating System

Parameters

attrs

*opts

color_pair_number

fmt

labnum

justify

*label

Examples
For the slk_init subroutine:

To initialize soft labels on a terminal that does not support soft labels internally, do the
following:

slk_init(1);

This example arranges the labels so that four labels appear on the right of the screen and
four appear on the left.

For the slk_label subroutine:

To obtain the label name for soft label 3 , use:

char *label_name;

label_name = slk_label(3);

For the slk_noutrefresh subroutine:

To refresh soft label 8 on the virtual screen but not on the physical screen, use:

slk_set(8, ”Insert”, 1);

slk_noutrefresh();

For the slk_refresh subroutine:

To set and left–justify the soft labels and then refresh the physical screen, use:

slk_init(0);

initscr();

slk_set(1, ”Insert”, 0);

slk_set(2, ”Quit”, 0);

slk_set(3, ”Add”, 0);

slk_set(4, ”Delete”, 0);

slk_set(5, ”Undo”, 0);

slk_set(6, ”Search”, 0);

slk_set(7, ”Replace”, 0);

slk_set(8, ”Save”, 0);

slk_refresh();

For the slk_set subroutine:

slk_set(2, ”Quit”, 1);

Return Values
Upon successful completion, the slk_label subroutine returns the requested label with
leading and trailing blanks stripped. Otherwise, it returns a null pointer.

slk_attroff

2-149curses

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The attr_get, attroff, delscreen, mbstowc, ripoffline, and wcswidth subroutines, slk_init
subroutine, slk_set subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

slk_init

2-150 Technical Reference: Base Operating System

slk_init Subroutine

Purpose
Initializes soft function–key labels.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_init(Labfmt)
int Labfmt;

Description
The slk_init subroutine initializes soft function–key labels. This is one of several
subroutines curses provides for manipulating soft function–key labels. These labels appear
at the bottom of the screen and give applications, such as editors, a more user–friendly
look. To use soft labels, you must call the slk_init subroutine before calling the initscr or
newterm subroutine.

Some terminals support soft labels, others do not. For terminals that do not support soft
labels. Curses emulates soft labels by using the bottom line of the stdscr. To accommodate
soft labels, curses reduces the size of the stdscr and the LINES environment variable as
required.

Parameter

Labfmt Simulates soft labels. To arrange three labels on the right, two in the
center, and three on the right of the screen, specify a 0 for this
parameter. To arrange four labels on the left and four on the right of the
screen, specify a 1 for this parameter.

Example
To initialize soft labels on a terminal that does not support soft labels internally, do the
following:

slk_init(1);

This example arranges the labels so that four labels appear on the right of the screen and
four appear on the left.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr subroutine, newterm subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Soft Labels in
AIX General Programming Concepts : Writing and Debugging Programs.

slk_label

2-151curses

slk_label Subroutine

Purpose
Returns the label name for a specified soft label.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *slk_label(LabNum)
int LabNum;

Description
The slk_label subroutine returns the label name for a specified soft function–key label.
These labels appear at the bottom of the screen and give applications, such as editors, a
more user–friendly look. The slk_label subroutine returns the name in the format it was in
when passed to the slk_set subroutine. If the name was justified by the slk_set subroutine,
the justification is removed.

Parameters

LabNum Specifies the label number. This parameter must be in the range 1 to 8.

Example
To obtain the label name for soft label 3, use:

char *label_name;

label_name = slk_label(3);

Return Values

NULL Indicates a label number that is not valid or a label number not set with
the slk_set subroutine.

OK Indicates that the label name was successfully retrieved.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init subroutine and slk_set subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

slk_noutrefresh

2-152 Technical Reference: Base Operating System

slk_noutrefresh Subroutine

Purpose
Updates the soft labels on the virtual screen.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_noutrefresh()

Description
The slk_noutrefresh subroutine updates the soft function–key labels on the virtual screen.
These labels appear at the bottom of the screen and give applications, such as editors, a
more user–friendly look. This subroutine is useful for updating multiple labels. You can use
the slk_noutrefresh subroutine to update all soft labels on the virtual screen with no
updates to the physic al screen. To update the physical screen, use the slk_refresh or
refresh subroutine.

Example
To refresh soft label 8 on the virtual screen but not on the physical screen, use:

slk_set(8, ”Insert”, 1);

slk_noutrefresh();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init subroutine, slk_refresh subroutine, wrefresh subroutine.

Curses Overview for Programming, Manipulating Video Attributes, List of Curses
Subroutines in AIX General Programming Concepts : Writing and Debugging Programs.

slk_refresh

2-153curses

slk_refresh Subroutine

Purpose
Updates soft labels on the virtual and physical screens.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_refresh()

Description
The slk_refresh subroutine refreshes the virtual and physical screens after an update to
soft function–key labels. These labels appear at the bottom of the screen and give
applications, such as editors, a more user–friendly look.

Example
To set and left–justify the soft labels and then refresh the physical screen, use:

slk_init(0);

initscr();

slk_set(1, ”Insert”, 0);

slk_set(2, ”Quit”, 0);

slk_set(3, ”Add”, 0);

slk_set(4, ”Delete”, 0);

slk_set(5, ”Undo”, 0);

slk_set(6, ”Search”, 0);

slk_set(7, ”Replace”, 0);

slk_set(8, ”Save”, 0);

slk_refresh();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init routine subroutine, slk_set routine subroutine, slk_noutrefresh subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

slk_restore

2-154 Technical Reference: Base Operating System

slk_restore Subroutine

Purpose
Restores soft function–key labels to the screen.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

slk_restore()

Description
The slk_restore subroutine restores the soft function–key labels to the screen after a call to
the slk_clear subroutine. The label names are not restored. These labels appear at the
bottom of the screen and give applications, such as editors, a more user–friendly look. You
must call the slk_init subroutine before you can use soft labels.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init subroutine, slk_clear subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Soft Labels in
AIX General Programming Concepts : Writing and Debugging Programs.

slk_set

2-155curses

slk_set Subroutine

Purpose
Sets up soft function–key labels.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

slk_set(LabNum, LabStr, LabFmt)
int LabNum;
char *LabStr;
int LabFmt;

Description
The slk_set subroutine sets up each soft function–key label with the appropriate name.
These labels appear at the bottom of the screen and give applications, such as editors, a
more user–friendly look. Label names are restricted to 8 characters each.

Parameters

LabNum Specifies the label number. The value can range from 1 to 8.

LabStr Specifies the string (name) to put on the label. If the string is NULL, the
label is blank.

LabFmt

 Specifies the label alignment. The following values are valid:

0 Left–justified

1 Centered

2 Right–justified

Example
slk_set(2, ”Quit”, 1);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init routine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

slk_touch

2-156 Technical Reference: Base Operating System

slk_touch Subroutine

Purpose
Forces an update of the soft function–key labels.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

slk_touch()

Description
The slk_touch subroutine forces an update of the soft function–key labels on the physical
screen the next time the slk_noutrefresh subroutine is called. These labels appear at the
bottom of the screen and give applications, such as editors, a more user–friendly look. You
must call the slk_init subroutine before using soft labels.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

standend

2-157curses

standend, standout, wstandend, or wstandout Subroutine

Purpose
Sets and clears window attributes.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int standend
(void);

int standout
(void);

int wstandend
(WINDOW *win);

int wstandout
(WINDOW *win);

Description
The standend and standout subroutines turn off all attributes of the current or specified
window.

The wstandout and wstandend subroutines turn on the standout attribute of the current or
specified window.

Parameters

*win Specifies the window in which to set the attributes.

Return Values
These subroutines always return 1.

Examples
1. To turn on the standout attribute in the stdscr, enter:

standout();

 This example is functionally equivalent to:

attron(A_STANDOUT);

2. To turn on the standout attribute in the user–defined window my_window , enter:

WINDOW *my_window;

wstandout(my_window);

 This example is functionally equivalent to:

wattron(my_window, A_STANDOUT);

standend

2-158 Technical Reference: Base Operating System

3. To turn off the standout attribute in the default window, enter:

standend();

 This example is functionally equivalent to:

attroff(A_STANDOUT);

4. To turn off the standout attribute in the user–defined window my_window , enter:

WINDOW *my_window;

wstandend(my_window);

 This example is functionally equivalent to:

wattroff(my_window, A_STANDOUT);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The attroff and attr_get subroutines, attron and wattroff subroutines.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

start_color

2-159curses

start_color Subroutine

Purpose
Initializes color.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

start_color()

Description
The start_color subroutine initializes color. This subroutine requires no arguments. You
must call the start_color subroutine if you intend to use color in your application. Except for
the has_colors and can_change_color subroutines, you must call the start_color
subroutine before any other color manipulation subroutine. A good time to call start_color
is right after calling the initscr routine and after establishing whether the terminal supports
color.

The start_color routine initializes the following basic colors:

COLOR_BLACK 0

COLOR_BLUE 1

COLOR_GREEN 2

COLOR_CYAN 3

COLOR_RED 4

COLOR_MAGENTA 5

COLOR_YELLOW 6

COLOR_WHITE 7

The subroutine also initializes two global variables: COLORS and COLOR_PAIRS. The
COLORS variable is the maximum number of colors supported by the terminal. The
COLOR_PAIRS variable is the maximum number of color–pairs supported by the terminal.

The start_color subroutine also restores the terminal’s colors to the original values right
after the terminal was turned on.

Return Values

ERR Indicates the terminal does not support colors.

OK Indicates the terminal does support colors.

Example
To enable the color support for a terminal that supports color, use:

start_color();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The has_colors subroutine, can_change_color subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video
Attributes in AIX General Programming Concepts : Writing and Debugging Programs.

subpad

2-160 Technical Reference: Base Operating System

subpad Subroutine

Purpose
Creates a subwindow within a pad.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *subpad(Orig, NLines, NCols, Begin_Y, Begin_X)
WINDOW *Orig;
int NCols, NLines, Begin_Y, Begin_X;

Description
The subpad subroutine creates and returns a pointer to a subpad. A subpad is a window
within a pad. You specify the size of the subpad by supplying a starting coordinate and the
number of rows and columns within the subpad. Unlike the subwin subroutine, the starting
coordinates are relative to the pad and not the terminal’s display.

Changes to the subpad affect the character image of the parent pad, as well. If you change
a subpad, use the touchwin or touchline subroutine on the parent pad before refreshing
the parent pad. Use the prefresh subroutine to refresh a pad.

Parameters

Orig Points to the parent pad.

NLines Specifies the number of lines (rows) in the subpad.

NCols Specifies the number of columns in the subpad.

Begin_Y Identifies the upper left–hand row coordinate of the subpad relative to
the parent pad.

Begin_X Identifies the upper left–hand column coordinate of the subpad relative
to the parent pad.

Examples
To create a subpad, use:

WINDOW *orig, *mypad;

orig = newpad(100, 200);

mypad = subpad(orig, 30, 5, 25, 180);

The parent pad is 100 lines by 200 columns. The subpad is 30 lines by 5 columns and
starts in line 25, column 180 of the parent pad.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses
Environment in AIX General Programming Concepts : Writing and Debugging Programs.

subwin

2-161curses

subwin Subroutine

Purpose
Creates a subwindow within an existing window.

Library
Curses Library (libcurses.a)

Syntax #include <curses.h>
WINDOW *subwin (ParentWindow, NumLines, NumCols,Line,Column)
WINDOW *ParentWindow;
int NumLines,NumCols, Line, Column;

Description
The subwin subroutine creates a subwindow within an existing window. You must supply
coordinates for the subwindow relative to the terminal’s display. Recall that the subwindow
shares its parent’s window buffer. Changes made to the shared window buffer in the area
covered by a subwindow, through either the parent window or any of its subwindows, affects
all windows sharing the window buffer.

When changing the image of a subwindow, it is necessary to call the touchwin or touchline
subroutine on the parent window before calling the wrefresh subroutine on the parent
window.

Changes to one window will affect the character image of both windows.

Parameters

NumCols Indicates the number of vertical columns in the subwindow’s width. If 0
is passed as the NumCols value, the subwindow runs from the Column
to the right edge of its parent window.

NumLines Indicates the number of horizontal lines in the subwindow’s height. If 0
is passed as the NumLines parameter, then the subwindow runs from
the Line to the bottom of its parent window.

ParentWindow Specifies the subwindow’s parent.

Column Specifies the horizontal coordinate for the upper–left corner of the
subwindow. This coordinate is relative to the (0, 0) coordinates of the
terminal, not the (0, 0) coordinates of the parent window.

Note: The upper–left corner of the terminal is
referenced by the coordinates (0, 0).

Line Specifies the vertical coordinate for the upper–left corner of the
subwindow. This coordinate is relative to the (0, 0) coordinates of the
terminal, not the (0, 0) coordinates of the parent window.

Note: The upper–left corner of the terminal is
referenced by the coordinates (0, 0).

Return Values
When the subwin subroutine is successful, it returns a pointer to the subwindow structure.
Otherwise, it returns the following:

ERR Indicates one or more of the parameters is invalid or there is
insufficient storage available for the new structure.

subwin

2-162 Technical Reference: Base Operating System

Examples
1. To create a subwindow, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin(5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 5, 20, 30);my_sub_window is

now a subwindow 2 lines deep, 5 columns wide, starting at the

same coordinates of its parent window my_window. That is, the

subwindow’s upper–left corner is at coordinates y = 20, x = 30

and lower–right corner is at coordinates y = 21, x = 34.

2. To create a subwindow that is flush with the right side of its parent, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin(5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 0, 20, 30);

my_sub_window is now a subwindow 2 lines deep, extending all the way to the right
side of its parent window my_window, and starting at the same coordinates. That is, the
subwindow’s upper–left corner is at coordinates y = 20, x = 30 and lower–right corner is
at coordinates y = 21, x = 39.

3. To create a subwindow in the lower–right corner of its parent, use:

WINDOW *my_window, *my_sub_window

my_window = newwwin(5, 10, 20, 30);

my_sub_window = subwin(my_window, 0, 0, 22, 35);

my_sub_window is now a subwindow that fills the bottom right corner of its parent
window, my_window, starting at the coordinates y = 22, x = 35. That is, the subwindow’s
upper–left corner is at coordinates y = 22, x = 35 and lower–right corner is at
coordinates y = 24, x = 39.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The touchwin, newwin, and wrefresh subroutines.

Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses
Environment in AIX General Programming Concepts : Writing and Debugging Programs.

tgetent

2-163curses

tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine

Purpose
Termcap database emulation

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int tgetent
(char *bp,
const char *name);

int tgetflag
(char id[2]);

int tgetnum
(char id[2]);

char *tgetstr
(char id[2],
char **area);

char *tgoto
(char *cap,
int col,
int row);

Description
The tgetent subroutine looks up the termcap entry for name, The emulation ignores the
buffer pointer bp.

The tgetflag subroutine gets the boolean entry for id.

The tgetnum subroutine gets the numeric entry for id.

The tgetstr subroutine gets the string entry for id. If area is not a null pointer and does not
point to a null pointer, the tgetstr subroutine copies the string entry into the buffer pointed to
by *area and advances the variable pointed to by area to the first byte after the copy of the
string entry.

The tgoto subroutine instantiates the parameters col and row into the capability cap and
returns a pointer to the resulting string.

All of the information available in the terminfo database need not be available through these
subroutines.

Parameters

bp

name

col

row

tgetent

2-164 Technical Reference: Base Operating System

**area

cap

id[2]

Return Values
Upon successful completion, subroutines that return an integer return OK. Otherwise, they
return ERR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The putc, setupterm, tigetflg subroutines.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

tgetflag

2-165curses

tgetflag Subroutine

Purpose

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

bool tgetflag(ID)
char *ID;

Description
The tgetflag subroutine returns the boolean entry for the specified termcap identifier. This
subroutine is provided for binary compatibility with applications that use the termcap file.

Parameters

ID Specifies the 2–character string that contains a termcap identifier.

Return Values
The tgetflag subroutine returns the boolean entry for the specified termcap identifier. If ID
is not found, on not a boolean, 0 is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

tgetnum

2-166 Technical Reference: Base Operating System

tgetnum Subroutine

Purpose
Returns the numeric entry for the specified termcap identifier.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int tgetnum(ID)
char *ID;

Description
The tgetnum subroutine returns the numeric entry for the specified termcap identifier. This
subroutine is provided for binary compatibility with applications that use the termcap file.

Parameters

ID Specifies the 2–character string that contains a termcap identifier.

Return Values
The tgetnum subroutine returns the numeric entry for the specified termcap identifier.

–1 Returned if the ID is not found or not numeric.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

tgetstr

2-167curses

tgetstr Subroutine

Purpose
Returns the string entry for the specified termcap identifier.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *tgetstr(ID, Area)
char *ID, **Area;

Description
The tgetstr subroutine returns the string entry for the specified termcap identifier. This
subroutine is provided for binary compatibility with applications that use the termcap file.

Parameters

Area Contains the string entry for the specified termcap identifier. This also
is returned to the calling program.

ID Specifies the 2–character string that contains the termcap identifier.

Return Values
The tgetstr subroutine returns the string entry for the ID parameter, which is a 2–character
string that contains a termcap identifier.

0 Returned if ID is not found or not a string capability.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

tgoto

2-168 Technical Reference: Base Operating System

tgoto Subroutine

Purpose
Duplicates the tparm subroutine.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

#include <term.h>

char *tgoto(Capability, Column, Row)
char *Capability;
int Column, Row;

Description
The tgoto subroutine calls the tparm subroutine. This subroutine is provided for binary
compatibility with applications that use the termcap file.

Parameters

Capability Specifies the termcap capability to apply the parameters to.

Column Specifies which column to apply to the capability.

Row Specifies which row to apply to the capability.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tparm subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

tigetflag

2-169curses

tigetflag, tigetnum, tigetstr, or tparm Subroutine

Purpose
Retrieves capabilities from the terminfo database.

Library
Curses Library (libcurses.a)

Syntax

#include <term.h>

int tigetflag(char *capname,);

int tigetnum(char *capname);

char *tigetstr(char *capname);

char *tparm(char *cap,
long p1, long p2, long p3,

long p4, long p5, long p6

long p7, long p8, long p9);

Description
The tigetflag, tigetnum, and tigetstr subroutines obtain boolean, numeric, and string
capabilities, respectively, from the selected record of the terminfo database. For each
capability, the value to use as capname appears in the Capname column in the table in
Section 6.1.3 on page 296.

The tparm subroutine takes as cap a string capability. If cap is parameterised (as described
in Section A.1.2 on page 313), the tparm subroutine resolves the parameterisation. If the
parameterised string refers to parameters %p1 through %p9, then the tparm subroutine
substitutes the values of p1 through p9, respectively.

Return Values
Upon successful completion, the tigetflag, tigetnum, and tigetstr subroutines return the
specified capability. The tigetflag subroutine returns –1 if capname is not a boolean
capability. The tigetnum subroutine returns –2 if capname is not a numeric capability. The
tigetstr subroutine returns (char*)–1 if capname is not a string capability.

Upon successful completion, the tparm subroutine returns str with parameterisation
resolved. Otherwise, it returns a null pointer.

Parameters

*capname

*tparm

long p1

long p2

long p3

long p4

long p5

long p6

tigetflag

2-170 Technical Reference: Base Operating System

long p7

long p8

long p9

Examples
For the tigetflag subroutine:

To determine if erase overstrike is a defined boolean capability for the current terminal, use:

rc = tigetflag(”eo”);

For the tigetnum subroutine:

To determine if number of labels is a defined numeric capability for the current terminal, use:

rc = tigetnum(”nlab”);

For the tigetstr subroutine:

To determine if ” turn on soft labels ” is a defined string capability for the current
terminal, do the following:

char *rc;

rc = tigetstr(”smln”);

For the tparm subroutine:

1. To save the escape sequence used to home the cursor in the user–defined variable
home_sequence , enter:

home_sequence = tparm(cursor_home);

2. To save the escape sequence used to move the cursor to the coordinates X= 40 , Y=
18 in the user–defined variable move_sequence , enter:

move_sequence = tparm(cursor_address, 18, 40);

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The def_prog_mode, tgetent, and putp subroutines.

Curses Overview for Programming, List of Curses Subroutines

Understanding Terminals with Curses in AIX General Programming Concepts: Writing and
Debugging Programs.

tigetnum

2-171curses

tigetnum Subroutine

Purpose
Gets the value of terminal’s numeric capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
#include <term.h>

tigetnum(CapName)
register char *CapName;

Description
The tigetnum subroutine returns the value of terminal’s numeric capability. Use this
subroutine to get a capability for the current terminal. When successful, this subroutine
returns the current value of the capability specified by the CapName parameter. Otherwise,
if it is not a numeric value, this subroutine returns –2.

Note: The tigetnum subroutine is a low–level routine. Use this subroutine only if your
application must deal directly with the terminfo database to handle certain terminal
capabilities (for example, programming function keys).

Return Values
Upon successful completion, the tigetnum subroutine returns the value of terminal’s
numeric capability.

–2 Indicates the value specified by the CapName parameter is not
numeric.

Parameters

CapName Identifies the terminal capability to check for.

Example
To determine if number of labels is a defined numeric capability for the current terminal, use:

rc = tigetnum(”nlab”);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

tigetstr

2-172 Technical Reference: Base Operating System

tigetstr Routine

Purpose
Returns the value of a terminal’s string capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
#include <term.h>

tigetstr(Capname)
register char *Capname;

Description
The tigetstr subroutine returns the value of terminal’s string capability. Use this subroutine
to get a capability for the current terminal pointed to by cur_term. When successful, this
subroutine returns the current value of the capability specified by the Capname parameter.
Otherwise, if it is not a string value, this subroutine returns (char*) –1.

Note: The tigetstr subroutine is a low–level routine. Use this subroutine only if your
application must deal directly with the terminfo database to handle certain terminal
capabilities (for example, programming function keys).

Parameters

Capname Identifies the terminal capability to check.

Example
To determine if ”turn on soft labels” is a defined string capability for the current
terminal, do the following:

char *rc;

rc = tigetstr(”smln”);

Return Values
Upon successful completion, the tigetstr subroutine returns the value of terminal’s string
capability.

(char *)–1 Indicates the value specified by the Capname parameter is not a
string.

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Files

/usr/include/curses.h Contains C language subroutines and define statements for
curses.

Related Information
List of Curses Subroutines, Curses Overview for Programming, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

is_linetouched

2-173curses

is_linetouched, is_wintouched, touchline, touchwin,
untouchwin, or wtouchin Subroutine

Purpose
Window refresh control functions.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

bool is_linetouched(WINDOW *win,
int line);

bool is_wintouched(WINDOW *win);
int touchline(WINDOW *win,
int start,
int count);
int touchwin(WINDOW *win);
int untouchwin(WINDOW *win);
int wtouchln(WINDOW *win,
int y,
int n,
int changed);

Description
The touchline subroutine touches the specified window (that is, marks it as having changed
more recently than the last refresh operation). The touchline subroutine only touches count
lines, beginning with line start.

The untouchwin subroutine marks all lines in the window as unchanged since the last
refresh operation.

Calling the wtouchln subroutine, if changed is 1, touches n lines in the specified window,
starting at line y. If changed is 0, wtouchln marks such lines as unchanged since the last
refresh operation.

The is_wintouchwin subroutine determines whether the specified window is touched. The
is_linetouched subroutine determines whether line line of the specified window is touched.

Parameters

line

start

count

changed

y

n

*win

is_linetouched

2-174 Technical Reference: Base Operating System

Return Values
The is_linetouched and is_wintouched subroutines return TRUE if any of the specified
lines, or the specified window, respectively, has been touched since the last refresh
operation. Otherwise, they return FALSE.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR.
Exceptions to this are noted in the preceding subroutine.

Examples
For the touchline subroutine:

To set 10 lines for refresh starting from line 5 of the user–defined window my_window ,
use:

WINDOW *my_window;

touchline(my_window, 5, 10);

wrefresh(my_window);

This forces curses to disregard any optimization information it may have for lines 0–4 in
my_window . curses assumes all characters in lines 0–4 have changed.

For the touchwin subroutine:

To refresh a user–defined parent window, parent_window , that has been edited through
its subwindows, use:

WINDOW *parent_window;

touchwin(parent_window);

wrefresh(parent_window);

This forces curses to disregard any optimization information it may have for my_window .
curses assumes all lines and columns have changed for my_window .

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Windows with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

touchoverlap

2-175curses

touchoverlap Subroutine

Purpose
Marks the overlap of two windows as changed and makes arrangements for their refresh.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

touchoverlap(Window1, Window2)
WINDOW *Window1, Window2;

Description
The touchoverlap subroutine marks the overlap of two windows as changed and makes
arrangements for their refresh.

Parameters

Window1 Specifies the first window as changed.

Window2 Specifies the second window as changed.

Examples
To mark the overlap of the two user–defined windows my_window and my_new_window as
changed, enter:

touchoverlap(my_window, my_new_window);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Windows with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

touchwin

2-176 Technical Reference: Base Operating System

touchwin Subroutine

Purpose
Forces every character in a window’s buffer to be refreshed at the next call to the wrefresh
subroutine.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

touchwin(Window)
WINDOW *Window;

Description
The touchwin subroutine forces every character in the specified window to be refreshed
during the next call to the refresh or wrefresh subroutine. To force a specific range of lines
to be refreshed, use the touchline subroutine.

The combined usage of the touchwin and wrefresh subroutines is helpful when dealing
with subwindows or overlapping windows. When dealing with overlapping windows, it may
become necessary to bring the back window to the front. A call to the wrefresh subroutine
does not change the terminal because none of the characters in the window were changed.
Calling the touchwin subroutine on the back window before the wrefresh subroutine
redisplays the window on the terminal and, effectively, brings it to the front.

Parameters

Window Specifies the window to be touched.

Example
To refresh a user–defined parent window, parent_window , that has been edited through
its subwindows, use:

WINDOW *parent_window;

touchwin(parent_window);

wrefresh(parent_window);

This forces curses to disregard any optimization information it may have for my_window .
curses assumes all lines and columns have changed for my_window .

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The touchline subroutine, wrefresh subroutine.

Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses
Environment in AIX General Programming Concepts : Writing and Debugging Programs.

tparm

2-177curses

tparm Subroutine

Purpose
Applies parameters (padding) to a terminal capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *tparm(TermCap, Parm1, Parm2, . . . Parm9)
char *TermCap;
int Parm1, Parm2, . . . Parm9;

Description
The tparm subroutine applies parameters (padding) to a terminal capability.

Parameters

Parm# Specifies the parameters (up to nine) to instantiate.

TermCap Specifies the terminal capability to apply the parameters to. These
terminal capabilities are defined in the term.h file.

Return Values
The tparm subroutine returns the escape sequence specified by the TermCap parameter
with the specified parameters applied. After the escape sequence is received, it can be
output by a subroutine like the tputs subroutine.

Examples
1. To save the escape sequence used to home the cursor in the user–defined variable

home_sequence, enter:

home_sequence = tparm(cursor_home);

2. To save the escape sequence used to move the cursor to the coordinates X=40, Y=18 in
the user–defined variable move_sequence, enter:

move_sequence = tparm(cursor_address, 18, 40);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

tputs

2-178 Technical Reference: Base Operating System

tputs Subroutine

Purpose
Outputs a string with padding information.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

#include <term.h>

tputs(String, LinesAffected, PutcLikeSub)
char *String;
int LinesAffected;
int (*PutcLikeSub) ();

Description
The tputs subroutine outputs a string with padding information applied. String must be a
terminfo string variable or the return value from tparm, tgetstr, tigetstr, or tgoto
subroutines.

Parameters

LinesAffected Specifies the number of lines affected, or specifies 1 if not applicable.

PutcLikeSub Specifies a putchar–like subroutine through which the characters are
passed one at a time.

String Specifies the string to which to add padding information.

Examples
1. To output the clear screen sequence using the user–defined putchar–like subroutine

my_putchar, enter:

int_my_putchar();

tputs(clear_screen, 1 ,my_putchar);

2. To output the escape sequence used to move the cursor to the coordinates x=40, y=18
through the user–defined putchar–like subroutine my_putchar, enter:

int_my_putchar();

tputs(tparm(cursor_address, 18, 40), 1, my_putchar);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tparm subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals
with Curses in AIX General Programming Concepts : Writing and Debugging Programs.

typeahead

2-179curses

typeahead Subroutine

Purpose
Controls checking for typeahead.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int typeahead
(int fildes);

Description
The typeahead subroutine controls the detection of typeahead during a refresh, based on
the value of fildes:

• If fildes is a valid file descriptor, the typeahead subroutine is enabled during refresh;
Curses periodically checks fildes for input and aborts refresh if any character is available.
(This is the initial setting, and the typeahead file descriptor corresponds to the input file
associated with the screen created by the initscr or newterm subroutine.) The value of
fildes need not be the file descriptor on which the refresh is occurring.

• If fildes is –1, Curses does not check for typeahead during refresh.

Parameters

fildes

Return Value
Upon successful completion, the typeahead subroutine returns OK. Otherwise, it returns
ERR.

Example
To turn typeahead checking on, enter:

typeahead(1);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate, getch, and initscr subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

unctrl

2-180 Technical Reference: Base Operating System

unctrl Subroutine

Purpose
Generates a printable representation of a character.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

char *unctrl
(chtype c);

Description
The unctrl subroutine generates a character string that is a printable representation of c. If
c is a control character, it is converted to the ^X notation. If c contains rendition information,
the effect is undefined.

Parameters

c

Return Values
Upon successful completion, the unctrl subroutine returns the generated string. Otherwise,
it returns a null pointer.

Examples
To display a printable representation of the newline character, enter:

char *new_line;

int my_character;

addstr (”Hit the enter key.”);

my_character=getch();

new_line=unctrl (my_character);

printw (Newline=%s”, new_line);

refresh();

This prints, ”newline=^J”.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The keyname and wunctrl subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

ungetch

2-181curses

ungetch, unget_wch Subroutine

Purpose
Pushes a character onto the input queue.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int ungetch
(int ch);

int unget_wch
(const wchar_t wch);

Description
The ungetch subroutine pushes the single–byte character ch onto the head of the input
queue.

The unget_wch subroutine pushes the wide character wch onto the head of the input
queue.

One character of push–back is guaranteed. The result of successive calls without an
intervening call to the getch or get_wch subroutine are unspecified.

Parameters

ch

wch

Examples
To force the key KEY_ENTER back into the queue, use:

ungetch(KEY_ENTER);

Implementation Specifics
This subroutine is part of Base Operation System (BOS) Runtime.

Related Information
The getch and get_wch subroutines, wgetch subroutine.

Curses Overview for Programming and List of Curses Subroutines in AIX General
Programming Concepts : Writing and Debugging Programs.

Manipulating Characters with Curses in AIX General Programming Concepts : Writing and
Debugging Programs.

vidattr

2-182 Technical Reference: Base Operating System

vidattr, vid_attr, vidputs, or vid_puts Subroutine

Purpose
Outputs attributes to the terminal.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int vidattr
(chtype attr);

int vid_attr
(attr_t attr,
short color_pair_number,
void *opt);

int vidputs
(chtype attr,
int (*putfunc)(int));

int vid_puts
(attr_t attr,
short color_pair_number,
void *opt,
int (*putfunc)(int));

Description
These subroutines output commands to a terminal that changes the terminal’s attributes.

If the terminfo database indicates that the terminal in use can display characters in the
rendition specified by attr, then the vadattr subroutine outputs one or more commands to
request that the terminal display subsequent characters in that rendition. The subroutine
outputs by calling the putchar subroutine. The vidattr subroutine neither relies on nor
updates the model that Curses maintains of the prior rendition mode.

The vidputs subroutine computes the same terminal output string that vidattr does, based
on attr, but the vidputs subroutine outputs by calling the user–supplied subroutine putfunc.
The vid_attr and vid_puts subroutines correspond to vidattr and vidputs respectively, but
take a set of arguments, one of type attr_t for the attributes, short for the color pair number
and a void *, and thus support the attribute constants with the WA_prefix.

The opts argument is reserved for definition in a future edition of this document. Currently,
the application must provide a null pointer as opts.

The user–supplied putfunc subroutine (which can be specified as an argument to either
vidputs or vid_puts is either putchar or some other subroutine with the same prototype.
Both the vidputs and the vid_puts subroutines ignore the return value of putfunc.

Parameters

att

color_pair_number

vidattr

2-183curses

*opt

*putfunc

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To output the string that puts the terminal in its best standout mode through the putchar

subroutine, enter

vidattr(A_STANDOUT);

2. To output the string that puts the terminal in its best standout mode through the
putchar–like subroutine my_putc , enter

int (*my_putc) ();

vidputs(A_STANDOUT, my_putc);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate, is_linetouched, putchar, putwchar and tigetflag subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX General Programming Concepts :
Writing and Debugging Programs.

doupdate

2-184 Technical Reference: Base Operating System

doupdate, refresh, wnoutrefresh, or wrefresh Subroutines

Purpose
Refreshes windows and lines.

Library
Curses Library (libcurses.a)

Syntax

#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW *win);

int wrefresh(WINDOW *win);

Description
The refresh and wrefresh subroutines refresh the current or specified window. The
subroutines position the terminal’s cursor at the cursor position of the window, except that, if
the leaveok mode has been enabled, they may leave the cursor at an arbitrary position.

The wnoutrefresh subroutine determines which parts of the terminal may need updating.

The doupdate subroutine sends to the terminal the commands to perform any required
changes.

Parameters

*win Specifies the window to be refreshed.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the doupdate or wnoutrefresh subroutine:

To update the user–defined windows my_window1 and my_window2 , enter:

WINDOW *my_window1, my_window2;

wnoutrefresh(my_window1);

wnoutrefresh(my_window2);

doupdate();

For the refresh or wrefresh subroutine:

1. To update the terminal’s display and the current screen structure to reflect changes
made to the standard screen structure, use:

refresh();

2. To update the terminal and the current screen structure to reflect changes made to a
user–defined window called my_window , use:

doupdate

2-185curses

WINDOW *my_window;

wrefresh(my_window);

3. To restore the terminal to its state at the last refresh, use:

wrefresh(curscr);

This subroutine is useful if the terminal becomes garbled for any reason.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The clearok and redrawwin subroutines.

Curses Overview for Programming in AIX General Programming Concepts : Writing and
Debugging Programs.

List of Curses Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX General Programming Concepts : Writing
and Debugging Programs.

doupdate

2-186 Technical Reference: Base Operating System

3-1FORTRAN Basic Linear Algebra Subroutines

FORTRAN Basic Linear Algebra Subroutines (BLAS)

3-2 Technical Reference: Base Operating System

Level 1: vector-vector operations

3-3FORTRAN Basic Linear Algebra Subroutines

SDOT or DDOT Function

Purpose
Returns the dot product of two vectors.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION SDOT(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
REAL X(*), Y(*)

DOUBLE PRECISION FUNCTION DDOT(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
DOUBLE PRECISION X(*), Y(*)

Description
The SDOT or DDOT function returns the dot product of vectors X and Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X;
unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); unchanged on
exit.

INCY On entry, INCY specifies the increment for the elements of Y;
unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Level 1: vector-vector operations

3-4 Technical Reference: Base Operating System

CDOTC or ZDOTC Function

Purpose
Returns the complex dot product of two vectors, conjugating the first.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
COMPLEX FUNCTION CDOTC(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX X(*), Y(*)

DOUBLE COMPLEX FUNCTION ZDOTC(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX*16 X(*), Y(*)

Description
The CDOTC or ZDOTC function returns the complex dot product of two vectors, conjugating
the first.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X;
unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); unchanged on
exit.

INCY On entry, INCY specifies the increment for the elements of Y;
unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Level 1: vector-vector operations

3-5FORTRAN Basic Linear Algebra Subroutines

CDOTU or ZDOTU Function

Purpose
Returns the complex dot product of two vectors.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
COMPLEX FUNCTION CDOTU(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX X(*), Y(*)

DOUBLE COMPLEX FUNCTION ZDOTU(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX*16 X(*), Y(*)

Description
The CDOTU or ZDOTU function returns the complex dot product of two vectors.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X;
unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); unchanged on
exit.

INCY On entry, INCY specifies the increment for the elements of Y;
unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Level 1: vector-vector operations

3-6 Technical Reference: Base Operating System

SAXPY, DAXPY, CAXPY, or ZAXPY Subroutine

Purpose
Computes a constant times a vector plus a vector.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
REAL A
REAL X(*),Y(*)

SUBROUTINE DAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION A
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX A
COMPLEX X(*),Y(*)

SUBROUTINE ZAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX*16 A
COMPLEX*16 X(*),Y(*)

Description
The SAXPY, DAXPY, CAXPY, or ZAXPY subroutine computes a constant times a vector
plus a vector:

Y = A * X + Y

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

A On entry, A contains a constant to be multiplied by the X vector;
unchanged on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X;
unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); the result is
returned in vector Y.

INCY On entry, INCY specifies the increment for the elements of Y;
unchanged on exit.

Error Codes
If SA = 0 or N <= 0, the subroutine returns immediately.

Level 1: vector-vector operations

3-7FORTRAN Basic Linear Algebra Subroutines

SROTG, DROTG, CROTG, or ZROTG Subroutine

Purpose
Constructs Givens plane rotation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SROTG(A,B,C,S)
REAL A,B,C,S

SUBROUTINE DROTG(A,B,C,S)
DOUBLE PRECISION A,B,C,S

SUBROUTINE CROTG(A,B,C,S)
REAL C
COMPLEX A,B,S

SUBROUTINE ZROTG(A,B,C,S)
DOUBLE PRECISION C
COMPLEX*16 A,B,S

Description
Given vectors A and B, the SROTG, DROTG, CROTG, or ZROTG subroutine computes:

 A B

a = –––––––––, b = –––––––––

 |A| + |B| |A| + |B|

 2 2 1/2

roe = { a if |A| > |B| } r = roe (a + b),

 { b if |B| >= |A| }

C = { A/r if r not = 0} S = { B/r if r not = 0 }

 { 1 if r = 0 } { 0 if r = 0 }

The numbers C, S, and r then satisfy the matrix equation:

––– ––– ––– ––– ––– –––

| C S | | A | | r |

| | . | | = | |

| –S C | | B | | 0 |

––– ––– ––– ––– ––– –––

The subroutines also compute:

 { S if |A| > |B|,

z = { 1/C if |B| >= |A| and C not = 0,

 { 1 if C = 0.

The subroutines return r overwriting A and z overwriting B, as well as returning C and S.

Parameters

A On entry, contains a scalar constant; on exit, contains the value r.

B On entry, contains a scalar constant; on exit, contains the value z.

C Can contain any value on entry; the value C returned on exit.

S Can contain any value on entry; the value S returned on exit.

Level 1: vector-vector operations

3-8 Technical Reference: Base Operating System

SROT, DROT, CSROT, or ZDROT Subroutine

Purpose
Applies a plane rotation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX,INCY,N
REAL C,S
REAL X(*),Y(*)

SUBROUTINE DROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX,INCY,N
DOUBLE PRECISION C,S
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CSROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX,INCY,N
REAL C,S
COMPLEX X(*),Y(*)

SUBROUTINE ZDROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX,INCY,N
DOUBLE PRECISION C,S
COMPLEX*16 X(*),Y(*)

Description
The SROT, DROT, CSROT, or ZDROT subroutine computes:

––– ––– ––– ––– ––– –––

| X | | C S | | X |

| i | | | | i |

| | := | | . | | for i = 1, ..., N.

| Y | | | | Y |

| i | | –S C | | i |

––– ––– ––– ––– ––– –––

The subroutines return the modified X and Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.

X Vector of dimension at least (1 + (N–1) * abs (INCX)); unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); modified on exit.

INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.

C Scalar constant; unchanged on exit.

S Scalar constant; unchanged on exit.

Error Codes
If N <= 0, or if C = 1 and S = 0, the subroutines return immediately.

Level 1: vector-vector operations

3-9FORTRAN Basic Linear Algebra Subroutines

SCOPY, DCOPY, CCOPY, or ZCOPY Subroutine

Purpose
Copies vector X to Y.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SCOPY(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
REAL X(*),Y(*)

SUBROUTINE DCOPY(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CCOPY(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX X(*),Y(*)

SUBROUTINE ZCOPY(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX*16 X(*),Y(*)

Description
The SCOPY, DCOPY, CCOPY, or ZCOPY subroutine copies vector X to vector Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X;
unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)) or greater; can
contain any values on entry; on exit, contains the same values as X.

INCY On entry, INCY specifies the increment for the elements of Y;
unchanged on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

Level 1: vector-vector operations

3-10 Technical Reference: Base Operating System

SSWAP, DSWAP, CSWAP, or ZSWAP Subroutine

Purpose
Interchanges vectors X and Y.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSWAP(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
REAL X(*),Y(*)

SUBROUTINE DSWAP(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CSWAP(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX X(*),Y(*)

SUBROUTINE ZSWAP(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX*16 X(*),Y(*)

Description
The SSWAP, DSWAP, CSWAP, or ZSWAP subroutine interchanges vector X and vector Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); on exit, contains
the elements of vector Y.

INCX On entry, INCX specifies the increment for the elements of X;
unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); on exit, contains
the elements of vector X.

INCY On entry, INCY specifies the increment for the elements of Y;
unchanged on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

Level 1: vector-vector operations

3-11FORTRAN Basic Linear Algebra Subroutines

SNRM2, DNRM2, SCNRM2, or DZNRM2 Function

Purpose
Computes the Euclidean length of the N–vector stored in X() with storage increment INCX.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION SNRM2(N,X,INCX)
INTEGER INCX,N
REAL X(*)

DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION X(*)

REAL FUNCTION SCNRM2(N,X,INCX)
INTEGER INCX,N
COMPLEX X(*)

DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX)
INTEGER INCX,N
COMPLEX*16 X(*)

Description
The SNRM2, DNRM2, SCNRM2, or DZNRM2 function returns the Euclidean norm of the
N–vector stored in X() with storage increment INCX.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must be greater than 0; unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Level 1: vector-vector operations

3-12 Technical Reference: Base Operating System

SASUM, DASUM, SCASUM, or DZASUM Function

Purpose
Returns the sum of absolute values of vector components.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION SASUM(N,X,INCX)
INTEGER INCX,N
REAL X(*)

DOUBLE PRECISION FUNCTION DASUM(N,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION X(*)

REAL FUNCTION SCASUM(N,X,INCX)
INTEGER INCX,N
COMPLEX X(*)

DOUBLE PRECISION FUNCTION DZASUM(N,X,INCX)
INTEGER INCX,N
COMPLEX*16 X(*)

Description
The SASUM, DASUM, SCASUM, or DZASUM function returns the sum of absolute values
of vector components.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must be greater than 0; unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Level 1: vector-vector operations

3-13FORTRAN Basic Linear Algebra Subroutines

SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL
Subroutine

Purpose
Scales a vector by a constant.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSCAL(N,A,X,INCX)
INTEGER INCX,N
REAL A
REAL X(*)

SUBROUTINE DSCAL(N,A,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION A
DOUBLE PRECISION X(*)

SUBROUTINE CSSCAL(N,A,X,INCX)
INTEGER INCX,N
REAL A
COMPLEX X(*)

SUBROUTINE CSCAL
INTEGER INCX,N
COMPLEX A
COMPLEX X(*)

SUBROUTINE ZDSCAL
INTEGER INCX,N
DOUBLE PRECISION A
COMPLEX*16 X(*)

SUBROUTINE ZSCAL(
INTEGER INCX,N
COMPLEX*16 A
COMPLEX*16 X(*)

Description
The SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL subroutine scales a vector
by a constant:

X := X * A

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

A Scaling constant; unchanged on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); on exit, contains
the scaled vector.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must be greater than 0; unchanged on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

Level 1: vector-vector operations

3-14 Technical Reference: Base Operating System

ISAMAX, IDAMAX, ICAMAX, or IZAMAX Function

Purpose
Finds the index of element having maximum absolute value.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
INTEGER FUNCTION ISAMAX(N,X,INCX)
INTEGER INCX,N
REAL X(*)

INTEGER FUNCTION IDAMAX(N,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION X(*)

INTEGER FUNCTION ICAMAX(N,X,INCX)
INTEGER INCX,N
COMPLEX X(*)

INTEGER FUNCTION IZAMAX(N,X,INCX)
INTEGER INCX,N
COMPLEX*16 X(*)

Description
The ISAMAX, IDAMAX, ICAMAX, or IZAMAX function returns the index of element having
maximum absolute value.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X;
unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Level 1: vector-vector operations

3-15FORTRAN Basic Linear Algebra Subroutines

SDSDOT Function

Purpose
Returns the dot product of two vectors plus a constant.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION SDSDOT(N,B,X,INCX,Y,INCY)
INTEGER N,INCX,INCY
REAL B,X(*),Y(*)

Purpose
The SDSDOT function computes the sum of constant B and dot product of vectors X and Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

B Scalar; unchanged on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must be greater than zero; unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); unchanged on
exit.

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must be greater than 0; unchanged on exit.

Error Codes
For values of N <= 0, the subroutine returns immediately.

Implementation Specifics
Computation is performed in double precision.

Level 1: vector-vector operations

3-16 Technical Reference: Base Operating System

SROTM or DROTM Subroutine

Purpose
Applies the modified Givens transformation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SROTM(N,X,INCX,Y,INCY,PARAM)
INTEGER N,INCX,INCY
REAL X(*),Y(*),PARAM(5)

SUBROUTINE DROTM(N,X,INCX,Y,INCY,PARAM)
INTEGER N,INCX,INCY
DOUBLE PRECISION X(*),Y(*),PARAM(5)

Description
Let H denote the modified Givens transformation defined by the parameter array PARAM.
The SROTM or DROTM subroutine computes:

––– ––– ––– –––

| x | | x |

| | := H * | |

| y | | y |

––– ––– ––– –––

where H is a 2 x 2 matrix with the components defined by the elements of the array PARAM
as follows:

if PARAM(1) == 0.0

 H(1,1) = H(2,2) = 1.0

 H(2,1) = PARAM(3)

 H(1,2) = PARAM(4)

if PARAM(1) == 1.0

 H(1,2) = H(2,1) = –1.0

 H(1,1) = PARAM(2)

 H(2,2) = PARAM(5)

if PARAM(1) == –1.0

 H(1,1) = PARAM(2)

 H(2,1) = PARAM(3)

 H(1,2) = PARAM(4)

 H(2,2) = PARAM(5)

if PARAM(1) == –2.0

 H = I (Identity matrix)

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged
on exit.

X Vector of dimension at least (1 + (N–1) * abs(INCX)); on exit, modified
as described above.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must be greater than 0; unchanged on exit.

Y Vector of dimension at least (1 + (N–1) * abs(INCY)); on exit, modified
as described above.

Level 1: vector-vector operations

3-17FORTRAN Basic Linear Algebra Subroutines

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must be greater than 0; unchanged on exit.

PARAM Vector of dimension (5); on entry, must be set as described above.
Specifically, PARAM(1) is a flag and must have value of either 0.0, –1.0,
1.0, or 2.0; unchanged on exit.

Implementation Specifics
If N <= 0 or H is an identity matrix, the subroutines return immediately.

Related information
The SROTMG or DROTMG subroutine builds the PARAM array prior to use by the SROTM
or DROTM subroutine.

Level 1: vector-vector operations

3-18 Technical Reference: Base Operating System

SROTMG or DROTMG Subroutine

Purpose
Constructs a modified Givens transformation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SROTMG(D1,D2,X1,X2,PARAM)
REAL D1,D2,X1,X2,PARAM(5)

SUBROUTINE DROTMG(D1,D2,X1,X2,PARAM)
DOUBLE PRECISION D1,D2,X1,X2,PARAM(5)

Description
The SROTMG or DROTMG subroutine constructs a modified Givens transformation. The
input quantities D1, D2, X1, and X2 define a 2–vector in partitioned form:

––– ––– ––– ––– ––– –––

| a1 | | sqrt(D1) 0 | | X1 |

| | = | | | |

| a2 | | 0 sqrt(D2) | | X2 |

––– ––– ––– ––– ––– –––

The subroutines determine the modified Givens rotation matrix H that transforms X2 and,
thus, a2 to 0. A representation of this matrix is stored in the array PARAM as follows:

Case 1: PARAM(1) = 1.0

 PARAM(2) = H(1,1)

 PARAM(5) = H(2,2)

Case 2: PARAM(1) = 0.0

 PARAM(3) = H(2,1)

 PARAM(4) = H(1,2)

Case 3: PARAM(1) = –1.0

 H(1,1) = PARAM(2)

 H(2,1) = PARAM(3)

 H(1,2) = PARAM(4)

 H(2,2) = PARAM(5)

Case 4: PARAM(1) = –2.0

 H = I (Identity matrix)

Note: Locations in PARAM not listed are left unchanged.

Parameters

D1 Nonnegative scalar; modified on exit to reflect the results of the
transformation.

D2 Scalar; can be negative on entry; modified on exit to reflect the results of the
transformation.

X1 Scalar; modified on exit to reflect the results of the transformation.

X2 Scalar; unchanged on exit.

PARAM Vector of dimension (5); values on entry are unused; modified on exit as
described above.

Related Information
The SROTM and DROTM subroutines apply the Modified Givens Transformation.

Level 2: matrix-vector operations

3-19FORTRAN Basic Linear Algebra Subroutines

SGEMV, DGEMV, CGEMV, or ZGEMV Subroutine

Purpose
Performs matrix–vector operation with general matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
REAL ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER*1 TRANS
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER*1 TRANS
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

SUBROUTINE CGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER*1 TRANS
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER*1 TRANS
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The SGEMV, DGEMV, CGEMV, or ZGEMV subroutine performs one of the following
matrix–vector operations:

y := alpha * A * x + beta * y

OR

y := alpha * A’ * x + beta * y

where alpha and beta are scalars, x and y are vectors, and A is an M by N matrix.

Level 2: matrix-vector operations

3-20 Technical Reference: Base Operating System

Parameters

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
y := alpha * A * x + beta * y

TRANS = ’T’ or ’t’
y := alpha * A’ * x + beta * y

TRANS = ’C’ or ’c’
y := alpha * A’ * x + beta * y

Unchanged on exit.

M On entry, M specifies the number of rows of the matrix A; M must be at
least 0; unchanged on exit.

N On entry, N specifies the number of columns of the matrix A; N must be
at least 0; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, N); on entry, the leading M by N part of
the array A must contain the matrix of coefficients; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, M); unchanged on
exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)) when TRANS
= ’N’ or ’n’, otherwise, at least (1 + (M–1) * abs(INCX)); on entry, the
incremented array X must contain the vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0,
Y need not be set on input; unchanged on exit.

Y A vector of dimension at least 1 + (M–1) * abs(INCY)) when TRANS
= ’N’ or ’n’, otherwise at least (1 + (N–1) * abs(INCY)); on entry, with
BETA nonzero, the incremented array Y must contain the vector y; on
exit, Y is overwritten by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

Level 2: matrix-vector operations

3-21FORTRAN Basic Linear Algebra Subroutines

SGBMV, DGBMV, CGBMV, or ZGBMV Subroutine

Purpose
Performs matrix–vector operations with general banded matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
REAL ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER*1 TRANS
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER*1 TRANS
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

SUBROUTINE CGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER*1 TRANS
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER*1 TRANS
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The SGBMV, DGBMV, CGBMV, or ZGBMV subroutine performs one of the following
matrix–vector operations:

y := alpha * A * x + beta * y

OR

y := alpha * A’ * x + beta * y

where alpha and beta are scalars, x and y are vectors and A is an M by N band matrix, with
KL subdiagonals and KU superdiagonals.

Level 2: matrix-vector operations

3-22 Technical Reference: Base Operating System

Parameters

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
y := alpha * A * x + beta * y

TRANS = ’T’ or ’t’
y := alpha * A’ * x + beta * y

TRANS = ’C’ or ’c’
y := alpha * A’ * x + beta * y

Unchanged on exit.

M On entry, M specifies the number of rows of the matrix A; M must be at least 0;
unchanged on exit.

N On entry, N specifies the number of columns of the matrix A; N must be at least 0;
unchanged on exit.

KL On entry, KL specifies the number of subdiagonals of the matrix A; KL must satisfy 0
.le. KL; unchanged on exit.

KU On entry, KU specifies the number of superdiagonals of the matrix A; KU must satisfy 0
.le. KU; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A A vector of dimension (LDA, N); on entry, the leading (KL + KU + 1) by N part of the
array A must contain the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row (KU + 1) of the array, the first superdiagonal
starting at position 2 in row KU, the first subdiagonal starting at position 1 in row (KU +
2), and so on. Elements in the array A that do not correspond to elements in the band
matrix (such as the top left KU by KU triangle) are not referenced. The following
program segment transfers a band matrix from conventional full matrix storage to band
storage:

DO 20, J = 1, N

 K = KU + 1 – J

 DO 10, I = MAX(1, J – KU), MIN(M, J + KL)

 A(K + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE

Unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
program. LDA must be at least (KL + KU + 1); unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)) when TRANS = ’N’ or ’n’,
otherwise, at least (1 + (M–1) * abs(INCX)); on entry, the incremented array X must
contain the vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not
be set on input; unchanged on exit.

Y A vector of dimension at least (1 + (M–1) * abs(INCY)) when TRANS = ’N’ or ’n’ ,
otherwise, at least (1 + (N–1) * abs(INCY)); on entry, the incremented array Y must
contain the vector y; on exit, Y is overwritten by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-23FORTRAN Basic Linear Algebra Subroutines

CHEMV or ZHEMV Subroutine

Purpose
Performs matrix–vector operations using Hermitian matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHEMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZHEMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CHEMV or ZHEMV subroutine performs the matrix–vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N
Hermitian matrix.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of the array A is to
be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced;
unchanged on exit.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced;
unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N
upper triangular part of the array A must contain the upper triangular part of the
Hermitian matrix and the strictly lower triangular part of A is not referenced; on entry
with UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the array A must
contain the lower triangular part of the Hermitian matrix and the strictly upper triangular
part of A is not referenced. The imaginary parts of the diagonal elements need not be
set and are assumed to be 0; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
program; LDA must be at least max(1, N); unchanged on exit.

Level 2: matrix-vector operations

3-24 Technical Reference: Base Operating System

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented
array X must contain the N element vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not
be set on input; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the incremented
array Y must contain the N element vector y; on exit, Y is overwritten by the updated
vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-25FORTRAN Basic Linear Algebra Subroutines

CHBMV or ZHBMV Subroutine

Purpose
Performs matrix–vector operations using a Hermitian band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZHBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CHBMV or ZHBMV subroutine performs the matrix–vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors, and A is an N by N
Hermitian band matrix with K superdiagonals.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the band matrix A is being supplied as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is being
supplied.

UPLO = ’L’ or ’l’
The lower triangular part of A is being
supplied.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

K On entry, K specifies the number of superdiagonals of the matrix A; K
must satisfy 0 .le. K; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

Level 2: matrix-vector operations

3-26 Technical Reference: Base Operating System

A An array of dimension (LDA, N). On entry with UPLO = ’U’ or ’u’, the
leading (K + 1) by N part of the array A must contain the upper
triangular band part of the Hermitian matrix, supplied column by
column, with the leading diagonal of the matrix in row (K + 1) of the
array, the first superdiagonal starting at position 2 in row K, and so on.
The top left K by K triangle of the array A is not referenced. The
following program segment transfers the upper triangular part of a
Hermitian band matrix from conventional full matrix storage to band
storage:

DO 20, J = 1, N

 M = K + 1 – J

 DO 10, I = MAX(1, J – K), J

 A(M + I, J) = matrix(I, J

)

10 CONTINUE

20 CONTINUE

Note: On entry with UPLO = ’L’ or ’l’, the leading (K
+ 1) by N part of the array A must contain the lower
triangular band part of the Hermitian matrix,
supplied column by column, with the leading
diagonal of the matrix in row 1 of the array, the first
subdiagonal starting at position 1 in row 2, and so
on. The bottom right K by K triangle of the array A is
not referenced. The following program segment
transfers the lower triangular part of a Hermitian
band matrix from conventional full matrix storage to
band storage:

DO 20, J = 1, N

 M = 1 – J

 DO 10, I = J, MIN(N, J + K)

 A(M + I, J) = matrix(I, J

)

10 CONTINUE

20 CONTINUE

The imaginary parts of the diagonal elements need not
be set and are assumed to be 0. Unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least (K + 1); unchanged on
exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0 unchanged on exit.

BETA On entry, BETA specifies the scalar beta unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented array Y must contain the vector y; on exit, Y is overwritten
by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

Level 2: matrix-vector operations

3-27FORTRAN Basic Linear Algebra Subroutines

CHPMV or ZHPMV Subroutine

Purpose
Performs matrix–vector operations using a packed Hermitian matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHPMV(UPLO, N, ALPHA, AP, X,
INCX, BETA, Y, INCY)
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
COMPLEX AP(*), X(*), Y(*)

SUBROUTINE ZHPMV
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
COMPLEX*16 AP(*), X(*), Y(*)

Description
The CHPMV or ZHPMV subroutine performs the matrix–vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N
Hermitian matrix, supplied in packed form.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is
supplied in the packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the
array AP must contain the upper triangular part of the Hermitian matrix packed
sequentially, column by column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain
A(1,2) and A(2,2) respectively, and so on; on entry with UPLO = ’L’ or ’l’, the array AP
must contain the lower triangular part of the Hermitian matrix packed sequentially,
column by column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and
A(3,1) respectively, and so on. The imaginary parts of the diagonal elements need not
be set and are assumed to be 0; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented
array X must contain the N element vector x; unchanged on exit.

Level 2: matrix-vector operations

3-28 Technical Reference: Base Operating System

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not
be set on input; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the incremented
array Y must contain the N element vector y; on exit, Y is overwritten by the updated
vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-29FORTRAN Basic Linear Algebra Subroutines

SSYMV or DSYMV Subroutine

Purpose
Performs matrix–vector operations using a symmetric matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
REAL ALPHA,BETA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DSYMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SSYMV or DSYMV subroutine performs the matrix–vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N
symmetric matrix.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of the array A is to
be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N
upper triangular part of the array A must contain the upper triangular part of the
symmetric matrix; the strictly lower triangular part of A is not referenced; on entry with
UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the array A must contain the
lower triangular part of the symmetric matrix; the strictly upper triangular part of A is not
referenced; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
program; LDA must be at least max(1, N); unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented
array X must contain the N element vector x; unchanged on exit.

Level 2: matrix-vector operations

3-30 Technical Reference: Base Operating System

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not
be set on input; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the incremented
array Y must contain the N element vector y; on exit, Y is overwritten by the updated
vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-31FORTRAN Basic Linear Algebra Subroutines

SSBMV or DSBMV Subroutine

Purpose
Performs matrix–vector operations using symmetric band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
REAL ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DSBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SSBMV or DSBMV subroutine performs the matrix–vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors, and A is an N by N
symmetric band matrix with K super–diagonals.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of the band matrix
A is being supplied as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is being supplied.

UPLO = ’L’ or ’l’
The lower triangular part of A is being supplied.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

K On entry, K specifies the number of superdiagonals of the matrix A; K must satisfy 0 .le.
K; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

Level 2: matrix-vector operations

3-32 Technical Reference: Base Operating System

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading (K + 1)
by N part of the array A must contain the upper triangular band part of the symmetric
matrix, supplied column by column, with the leading diagonal of the matrix in row (K + 1
) of the array, the first superdiagonal starting at position 2 in row K, and so on. The top
left K by K triangle of the array A is not referenced. The following program segment
transfers the upper triangular part of a symmetric band matrix from conventional full
matrix storage to band storage:

DO 20, J = 1, N

 M = K + 1 – J

 DO 10, I = MAX(1, J – K), J

 A(M + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE

On entry with UPLO = ’L’ or ’l’, the leading (K + 1) by N part of the
array A must contain the lower triangular band part of the symmetric
matrix, supplied column by column, with the leading diagonal of the
matrix in row 1 of the array, the first subdiagonal starting at position 1 in
row 2, and so on. The bottom right K by K triangle of the array A is not
referenced. The following program segment transfers the lower
triangular part of a symmetric band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N

 M = 1 – J

 DO 10, I = J, MIN(N, J + K)

 A(M + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE

Unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
program; LDA must be at least (K + 1); unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented
array X must contain the vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the incremented
array Y must contain the vector y; on exit, Y is overwritten by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-33FORTRAN Basic Linear Algebra Subroutines

SSPMV or DSPMV Subroutine

Purpose
Performs matrix–vector operations using a packed symmetric matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSPMV(UPLO, N, ALPHA, AP, X,
INCX, BETA, Y, INCY)
REAL ALPHA,BETA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
REAL AP(*), X(*), Y(*)

SUBROUTINE DSPMV(UPLO, N, ALPHA, AP, X,
INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
DOUBLE PRECISION AP(*), X(*), Y(*)

Description
The SSPMV or DSPMV subroutine performs the matrix–vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N
symmetric matrix, supplied in packed form.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is
supplied in the packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the
array AP must contain the upper triangular part of the symmetric matrix packed
sequentially, column by column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain
A(1,2) and A(2,2) respectively, and so on; on entry with UPLO = ’L’ or ’l’, the array AP
must contain the lower triangular part of the symmetric matrix packed sequentially,
column by column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and
A(3,1) respectively, and so on; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented
array X must contain the N element vector x; unchanged on exit.

Level 2: matrix-vector operations

3-34 Technical Reference: Base Operating System

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not
be set on input; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the incremented
array Y must contain the N element vector y; on exit, Y is overwritten by the updated
vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-35FORTRAN Basic Linear Algebra Subroutines

STRMV, DTRMV, CTRMV, or ZTRMV Subroutine

Purpose
Performs matrix–vector operations using a triangular matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DTRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*),X(*)

Description
The STRMV, DTRMV, CTRMV, or ZTRMV subroutine performs one of the matrix–vector
operations:

x := A * x

OR

x := A’ * x

where x is an N element vector and A is an N by N unit, or non–unit, upper or lower
triangular matrix.

Level 2: matrix-vector operations

3-36 Technical Reference: Base Operating System

Parameters

UPLO

 On entry, UPLO specifies whether the matrix is an upper or lower
triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
x := A * x

TRANS = ’T’ or ’t’
x := A’ * x

TRANS = ’C’ or ’c’
x := A’ * x

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of A is not
referenced; on entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array A must contain the lower triangular matrix and
the strictly upper triangular part of A is not referenced. When DIAG = ’U’
or ’u’, the diagonal elements of A are not referenced, but are assumed to
be unity; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling
(sub) program. LDA must be at least max(1, N); unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x; on exit, X is
overwritten with the transformed vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must
not be 0; unchanged on exit.

Level 2: matrix-vector operations

3-37FORTRAN Basic Linear Algebra Subroutines

STBMV, DTBMV, CTBMV, or ZTBMV Subroutine

Purpose
Performs matrix–vector operations using a triangular band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DTBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The STBMV, DTBMV, CTBMV, or ZTBMV subroutine performs one of the matrix–vector
operations:

x := A * x

OR

x := A’ * x

where x is an N element vector and A is an N by N unit, or non–unit, upper or lower
triangular band matrix, with (K + 1) diagonals.

Level 2: matrix-vector operations

3-38 Technical Reference: Base Operating System

Parameters

UPLO

 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as
follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
x := A * x

TRANS = ’T’ or ’t’
x := A’ * x

TRANS = ’C’ or ’c’
x := A’ * x

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

K On entry with UPLO = ’U’ or ’u’, K specifies the number of superdiagonals of the matrix
A; on entry with UPLO = ’L’ or ’l’, K specifies the number of subdiagonals of the matrix
A. K must satisfy 0 .le. K; unchanged on exit.

A An array of dimension (LDA, N). On entry with UPLO = ’U’ or ’u’, the leading (K + 1)
by N part of the array A must contain the upper triangular band part of the matrix of
coefficients, supplied column by column, with the leading diagonal of the matrix in row (
K + 1) of the array, the first superdiagonal starting at position 2 in row K, and so on.
The top left K by K triangle of the array A is not referenced. The following program
segment will transfer an upper triangular band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N

 M = K + 1 – J

 DO 10, I = MAX(1, J – K), J

 A(M + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE

Level 2: matrix-vector operations

3-39FORTRAN Basic Linear Algebra Subroutines

DO 20, J = 1, N

 M = 1 – J

 DO 10, I = J, MIN(N, J + K)

 A(M + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE

On entry with UPLO = ’L’ or ’l’, the leading (K + 1) by N part of the array A must contain the
lower triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position
1 in row 2, and so on. The bottom right K by K triangle of the array A is not referenced. The
following program segment will transfer a lower triangular band matrix from conventional full
matrix storage to band storage:

When DIAG = ’U’ or ’u’ the elements of the array A corresponding to the diagonal elements
of the matrix are not referenced, but are assumed to be unity; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
program; LDA must be at least (K + 1); unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented
array X must contain the N element vector x; on exit, X is overwritten with the
transformed vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-40 Technical Reference: Base Operating System

STPMV, DTPMV, CTPMV, or ZTPMV Subroutine

Purpose
Performs matrix–vector operations on a packed triangular matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
REAL AP(*), X(*)

SUBROUTINE DTPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION AP(*), X(*)

SUBROUTINE CTPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX AP(*), X(*)

SUBROUTINE ZTPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 AP(*), X(*)

Description
The STPMV, DTPMV, CTPMV, or ZTPMV subroutine performs one of the matrix–vector
operations:

x := A * x

OR

x := A’ * x

where x is an N element vector and A is an N by N unit, or non–unit, upper or lower
triangular matrix, supplied in packed form.

Level 2: matrix-vector operations

3-41FORTRAN Basic Linear Algebra Subroutines

Parameters

UPLO

 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as
follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
x := A * x

TRANS = ’T’ or ’t’
x := A’ * x

TRANS = ’C’ or ’c’
x := A’ * x

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

AP A vector of dimension at least ((N * (N+1))/2). On entry with UPLO = ’U’ or ’u’, the
array AP must contain the upper triangular matrix packed sequentially, column by
column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2)
respectively, and so on. On entry with UPLO = ’L’ or ’l’, the array AP must contain the
lower triangular matrix packed sequentially, column by column, so that AP(1) contains
A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. When DIAG
= ’U’ or ’u’, the diagonal elements of A are not referenced, but are assumed to be unity;
unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented
array X must contain the N element vector x; on exit, X is overwritten with the
transformed vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

Level 2: matrix-vector operations

3-42 Technical Reference: Base Operating System

STRSV, DTRSV, CTRSV, or ZTRSV Subroutine

Purpose
Solves system of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DTRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The STRSV, DTRSV, CTRSV, or ZTRSV subroutine solves one of the systems of equations:

A * x = b

OR

A’ * x = b

where b and x are N element vectors and A is an N by N unit, or non–unit, upper or lower
triangular matrix.

Level 2: matrix-vector operations

3-43FORTRAN Basic Linear Algebra Subroutines

Parameters

UPLO

 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as
follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the equations to be solved as follows:

TRANS = ’N’ or ’n’
A * x = b

TRANS = ’T’ or ’t’
A’ * x = b

TRANS = ’C’ or ’c’
A’ * x = b

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N
upper triangular part of the array A must contain the upper triangular matrix and the
strictly lower triangular part of A is not referenced. On entry with UPLO = ’L’ or ’l’, the
leading N by N lower triangular part of the array A must contain the lower triangular
matrix and the strictly upper triangular part of A is not referenced. When DIAG = ’U’ or
’u’, the diagonal elements of A are not referenced, but are assumed to be unity;
unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
program; LDA must be at least max(1, N); unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented array
X must contain the N element right–hand side vector b; on exit, X is overwritten with the
solution vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

Implementation Specifics
No test for singularity or near–singularity is included in this routine. Such tests must be
performed before calling this routine.

Level 2: matrix-vector operations

3-44 Technical Reference: Base Operating System

STBSV, DTBSV, CTBSV, or ZTBSV Subroutine

Purpose
Solves system of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DTBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The STBSV, DTBSV, CTBSV, or ZTBSV subroutine solves one of the systems of equations:

A * x = b

OR

A’ * x = b

where b and x are N element vectors and A is an N by N unit, or non–unit, upper or lower
triangular band matrix, with (K + 1) diagonals.

Level 2: matrix-vector operations

3-45FORTRAN Basic Linear Algebra Subroutines

Parameters

UPLO

 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as
follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the equations to be solved as follows:

TRANS = ’N’ or ’n’
A * x = b

TRANS = ’T’ or ’t’
A’ * x = b

TRANS = ’C’ or ’c’
A’ * x = b

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

K On entry with UPLO = ’U’ or ’u’, K specifies the number of superdiagonals of the matrix
A. On entry with UPLO = ’L’ or ’l’, K specifies the number of subdiagonals of the matrix
A; K must satisfy 0 .le. K; unchanged on exit.

Level 2: matrix-vector operations

3-46 Technical Reference: Base Operating System

A An array of dimension (LDA, N). On entry with UPLO = ’U’ or ’u’, the leading (K + 1)
by N part of the array A must contain the upper triangular band part of the matrix of
coefficients, supplied column by column, with the leading diagonal of the matrix in row (
K + 1) of the array, the first superdiagonal starting at position 2 in row K, and so on.
The top left K by K triangle of the array A is not referenced.

The following program segment will transfer an upper triangular band
matrix from conventional full matrix storage to band storage:

DO 20, J = 1, N

 M = K + 1 – J

 DO 10, I = MAX(1, J – K), J

 A(M + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE

On entry with UPLO = ’L’ or ’l’, the leading (K + 1) by N part of the
array A must contain the lower triangular band part of the matrix of
coefficients, supplied column by column, with the leading diagonal of
the matrix in row 1 of the array, the first subdiagonal starting at position
1 in row 2, and so on. The bottom right K by K triangle of the array A is
not referenced.

The following program segment will transfer a lower triangular band
matrix from conventional full matrix storage to band storage:

DO 20, J = 1, N

 M = 1 – J

 DO 10, I = J, MIN(N, J + K)

 A(M + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE

When DIAG = ’U’ or ’u’ the elements of the array A corresponding to
the diagonal elements of the matrix are not referenced, but are
assumed to be unity. Unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
program; LDA must be at least (K + 1); unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented array
X must contain the N element right–hand side vector b; on exit, X is overwritten with the
solution vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

Implementation Specifics
No test for singularity or near–singularity is included in this routine. Such tests must be
performed before calling this routine.

Level 2: matrix-vector operations

3-47FORTRAN Basic Linear Algebra Subroutines

STPSV, DTPSV, CTPSV, or ZTPSV Subroutine

Purpose
Solves systems of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
REAL AP(*), X(*)

SUBROUTINE DTPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION AP(*), X(*)

SUBROUTINE CTPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX AP(*), X(*)

SUBROUTINE ZTPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 AP(*), X(*)

Description
The STPSV, DTPSV, DTPSV, or ZTPSV subroutine solves one of the systems of equations:

A * x = b

OR

A’ * x = b

where b and x are N element vectors and A is an N by N unit, or non–unit, upper or lower
triangular matrix, supplied in packed form.

Level 2: matrix-vector operations

3-48 Technical Reference: Base Operating System

Parameters

UPLO

 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as
follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the equations to be solved as follows:

TRANS = ’N’ or ’n’
A * x = b

TRANS = ’T’ or ’t’
A’ * x = b

TRANS = ’C’ or ’c’
A’ * x = b

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on
exit.

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the
array AP must contain the upper triangular matrix packed sequentially, column by
column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2)
respectively, and so on. Before entry with UPLO = ’L’ or ’l’, the array AP must contain
the lower triangular matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on.
When DIAG = ’U’ or ’u’, the diagonal elements of A are not referenced, but are
assumed to be unity; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the incremented array
X must contain the N element right–hand side vector b; on exit, X is overwritten with the
solution vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0;
unchanged on exit.

Implementation Specifics
No test for singularity or near–singularity is included in this routine. Such tests must be
performed before calling this routine.

Level 2: matrix-vector operations

3-49FORTRAN Basic Linear Algebra Subroutines

SGER or DGER Subroutine

Purpose
Performs the rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGER(M, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
REAL ALPHA
INTEGER INCX,INCY,LDA,M,N
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DGER(M, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,LDA,M,N
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SGER or DGER subroutine performs the rank 1 operation:

A := alpha * x * y’ + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by
N matrix.

Parameters

M On entry, M specifies the number of rows of the matrix A; M must be at
least 0; unchanged on exit.

N On entry, N specifies the number of columns of the matrix A; N must be
at least 0; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (M–1) * abs(INCX)); on entry, the
incremented array X must contain the M element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented array Y must contain the N element vector y; unchanged
on exit.

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

A An array of dimension (LDA, N); on entry, the leading M by N part of
the array A must contain the matrix of coefficients; on exit, A is
overwritten by the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, M); unchanged on
exit.

Level 2: matrix-vector operations

3-50 Technical Reference: Base Operating System

CGERU or ZGERU Subroutine

Purpose
Performs the rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CGERU(M, N, ALPHA, X, INCX,
Y, INCY, A, LDA)
COMPLEX ALPHA
INTEGER INCX,INCY,LDA,M,N
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZGERU
COMPLEX*16 ALPHA
INTEGER INCX,INCY,LDA,M,N
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CGERU or ZGERU subroutine performs the rank 1 operation:

A := alpha * x * y’ + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by
N matrix.

Parameters

M On entry, M specifies the number of rows of the matrix A; M must be at
least 0; unchanged on exit.

N On entry, N specifies the number of columns of the matrix A; N must be
at least 0; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (M–1) * abs(INCX)); on entry, the
incremented array X must contain the M element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented array Y must contain the N element vector y; unchanged
on exit.

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

A An array of dimension (LDA, N); on entry, the leading M by N part of
the array A must contain the matrix of coefficients; on exit, A is
overwritten by the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, M); unchanged on
exit.

Level 2: matrix-vector operations

3-51FORTRAN Basic Linear Algebra Subroutines

CGERC or ZGERC Subroutine

Purpose
Performs the rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CGERC(M, N, ALPHA, X, INCX,
Y, INCY, A, LDA)
COMPLEX ALPHA
INTEGER INCX,INCY,LDA,M,N
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZGERC
COMPLEX*16 ALPHA
INTEGER INCX,INCY,LDA,M,N
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CGERC or ZGERC subroutine performs the rank 1 operation:

A := alpha * x * conjg(y’) + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by
N matrix.

Parameters

M On entry, M specifies the number of rows of the matrix A; M must be at
least 0; unchanged on exit.

N On entry, N specifies the number of columns of the matrix A; N must be
at least 0; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (M–1) * abs(INCX)); on entry, the
incremented array X must contain the M element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented array Y must contain the N element vector y; unchanged
on exit.

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

A An array of dimension (LDA, N); on entry, the leading M by N part of
the array A must contain the matrix of coefficients; on exit, A is
overwritten by the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, M); unchanged on
exit.

Level 2: matrix-vector operations

3-52 Technical Reference: Base Operating System

CHER or ZHER Subroutine

Purpose
Performs the Hermitian rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHER(UPLO, N, ALPHA,
X, INCX, A, LDA)
REAL ALPHA
INTEGER INCX,LDA,N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZHER(UPLO, N, ALPHA,
X, INCX, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The CHER or ZHER subroutine performs the Hermitian rank 1 operation:

A := alpha * x * conjg(x’) + A

where alpha is a real scalar, x is an N element vector and A is an N by N Hermitian matrix.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array A is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to
be referenced.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the N element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Level 2: matrix-vector operations

3-53FORTRAN Basic Linear Algebra Subroutines

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array A must contain the
upper triangular part of the Hermitian matrix and the strictly lower
triangular part of A is not referenced. On exit, the upper triangular part
of the array A is overwritten by the upper triangular part of the updated
matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array A must contain the lower triangular part of
the Hermitian matrix and the strictly upper triangular part of A is not
referenced. On exit, the lower triangular part of the array A is
overwritten by the lower triangular part of the updated matrix. The
imaginary parts of the diagonal elements need not be set, they are
assumed to be 0, and on exit they are set to 0.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, N); unchanged on
exit.

Level 2: matrix-vector operations

3-54 Technical Reference: Base Operating System

CHPR or ZHPR Subroutine

Purpose
Performs the Hermitian rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHPR(UPLO, N, ALPHA,
X, INCX, AP)
REAL ALPHA
INTEGER INCX,N
CHARACTER*1 UPLO
COMPLEX AP(*), X(*)

SUBROUTINE ZHPR(UPLO, N, ALPHA,
X, INCX, AP)
DOUBLE PRECISION ALPHA
INTEGER INCX,N
CHARACTER*1 UPLO
COMPLEX*16 AP(*), X(*)

Description
The CHPR or ZHPR subroutine performs the Hermitian rank 1 operation:

A := alpha * x * conjg(x’) + A

where alpha is a real scalar, x is an N element vector and A is an N by N Hermitian matrix,
supplied in packed form.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the matrix A is supplied in the packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is
supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is
supplied in AP.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the N element vector x; unchanged
on exit.

Level 2: matrix-vector operations

3-55FORTRAN Basic Linear Algebra Subroutines

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO =
’U’ or ’u’, the array AP must contain the upper triangular part of the
Hermitian matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively,
and so on. On exit, the array AP is overwritten by the upper triangular
part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array AP
must contain the lower triangular part of the Hermitian matrix packed
sequentially, column by column, so that AP(1) contains A(1,1), AP(2)
and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit,
the array AP is overwritten by the lower triangular part of the updated
matrix. The imaginary parts of the diagonal elements need not be set,
they are assumed to be 0, and on exit they are set to 0.

Level 2: matrix-vector operations

3-56 Technical Reference: Base Operating System

CHER2 or ZHER2 Subroutine

Purpose
Performs the Hermitian rank 2 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHER2(UPLO, N, ALPHA,
X, INCX, Y, INCY, A, LDA)
COMPLEX ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZHER2(UPLO, N, ALPHA,
X, INCX, Y, INCY, A, LDA)
COMPLEX*16 ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CHER2 or ZHER2 subroutine performs the Hermitian rank 2 operation:

A := alpha * x * conjg(y’) + conjg(alpha) * y * conjy(x’) + A

where alpha is a scalar, x and y are N element vectors and A is an N by N Hermitian matrix.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array A is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to
be referenced.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented vector X must contain the N element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented vector Y must contain the N element vector y; unchanged
on exit.

Level 2: matrix-vector operations

3-57FORTRAN Basic Linear Algebra Subroutines

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array A must contain the
upper triangular part of the Hermitian matrix and the strictly lower
triangular part of A is not referenced. On exit, the upper triangular part
of the array A is overwritten by the upper triangular part of the updated
matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array A must contain the lower triangular part of
the Hermitian matrix and the strictly upper triangular part of A is not
referenced. On exit, the lower triangular part of the array A is
overwritten by the lower triangular part of the updated matrix. The
imaginary parts of the diagonal elements need not be set; they are
assumed to be 0, and on exit they are set to 0.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, N); unchanged on
exit.

Level 2: matrix-vector operations

3-58 Technical Reference: Base Operating System

CHPR2 or ZHPR2 Subroutine

Purpose
Performs the Hermitian rank 2 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHPR2 (UPLO, N,
ALPHA,
X, INCX, Y, INCY, AP)
COMPLEX ALPHA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
COMPLEX AP(*), X(*), Y(*)

SUBROUTINE
ZHPR2
COMPLEX*16 ALPHA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
COMPLEX*16 AP(*), X(*), Y(*)

Description
The CHPR2 or ZHPR2 subroutine performs the Hermitian rank 2 operation:

A := alpha * x * conjg(y’) + conjg(alpha) * y * conjg(x’) + A

where alpha is a scalar, x and y are N element vectors and A is an N by N Hermitian matrix,
supplied in packed form.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the matrix A is supplied in the packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is
supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is
supplied in AP.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the N element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Level 2: matrix-vector operations

3-59FORTRAN Basic Linear Algebra Subroutines

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented array Y must contain the N element vector y; unchanged
on exit.

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO =
’U’ or ’u’, the array AP must contain the upper triangular part of the
Hermitian matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively,
and so on. On exit, the array AP is overwritten by the upper triangular
part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array AP
must contain the lower triangular part of the Hermitian matrix packed
sequentially, column by column, so that AP(1) contains A(1,1), AP(2)
and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit,
the array AP is overwritten by the lower triangular part of the updated
matrix. The imaginary parts of the diagonal elements need not be set,
they are assumed to be 0, and on exit they are set to 0.

Level 2: matrix-vector operations

3-60 Technical Reference: Base Operating System

SSYR or DSYR Subroutine

Purpose
Performs the symmetric rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYR(UPLO, N, ALPHA,
X, INCX, A, LDA)
REAL ALPHA
INTEGER INCX,LDA,N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DSYR(UPLO, N, ALPHA,
X, INCX, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*)

Description
The SSYR or DSYR subroutine performs the symmetric rank 1 operation:

A := alpha * x * x’ + A

where alpha is a real scalar, x is an N element vector and A is an N by N symmetric matrix.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array A is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to
be referenced.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the N element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Level 2: matrix-vector operations

3-61FORTRAN Basic Linear Algebra Subroutines

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array A must contain the
upper triangular part of the symmetric matrix and the strictly lower
triangular part of A is not referenced. On exit, the upper triangular part
of the array A is overwritten by the upper triangular part of the updated
matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array A must contain the lower triangular part of
the symmetric matrix and the strictly upper triangular part of A is not
referenced. On exit, the lower triangular part of the array A is
overwritten by the lower triangular part of the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, N); unchanged on
exit.

Level 2: matrix-vector operations

3-62 Technical Reference: Base Operating System

SSPR or DSPR Subroutine

Purpose
Performs the symmetric rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSPR(UPLO, N, ALPHA,
X, INCX, AP)
REAL ALPHA
INTEGER INCX,N
CHARACTER*1 UPLO
REAL AP(*), X(*)

SUBROUTINE DSPR(UPLO, N, ALPHA,
X, INCX, AP)
DOUBLE PRECISION ALPHA
INTEGER INCX,N
CHARACTER*1 UPLO
DOUBLE PRECISION AP(*), X(*)

Description
The SSPR or DSPR subroutine performs the symmetric rank 1 operation:

A := alpha * x * x’ + A

where alpha is a real scalar, x is an N element vector and A is an N by N symmetric matrix,
supplied in packed form.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the matrix A is supplied in the packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is
supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is
supplied in AP.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the N element vector x; unchanged
on exit.

Level 2: matrix-vector operations

3-63FORTRAN Basic Linear Algebra Subroutines

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO =
’U’ or ’u’, the array AP must contain the upper triangular part of the
symmetric matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively,
and so on. On exit, the array AP is overwritten by the upper triangular
part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array AP
must contain the lower triangular part of the symmetric matrix packed
sequentially, column by column, so that AP(1) contains A(1,1), AP(2)
and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit,
the array AP is overwritten by the lower triangular part of the updated
matrix.

Level 2: matrix-vector operations

3-64 Technical Reference: Base Operating System

SSYR2 or DSYR2 Subroutine

Purpose
Performs the symmetric rank 2 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
REAL ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DSYR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SSYR2 or DSYR2 subroutine performs the symmetric rank 2 operation:

A := alpha * x * y’ + alpha * y * x’ + A

where alpha is a scalar, x and y are N element vectors and A is an N by N symmetric matrix.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array A is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to
be referenced.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the N element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented array Y must contain the N element vector y; unchanged
on exit.

Level 2: matrix-vector operations

3-65FORTRAN Basic Linear Algebra Subroutines

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array A must contain the
upper triangular part of the symmetric matrix and the strictly lower
triangular part of A is not referenced. On exit, the upper triangular part
of the array A is overwritten by the upper triangular part of the updated
matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array A must contain the lower triangular part of
the symmetric matrix and the strictly upper triangular part of A is not
referenced. On exit, the lower triangular part of the array A is
overwritten by the lower triangular part of the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program; LDA must be at least max(1, N); unchanged on
exit.

Level 2: matrix-vector operations

3-66 Technical Reference: Base Operating System

SSPR2 or DSPR2 Subroutine

Purpose
Performs the symmetric rank 2 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSPR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, AP)
REAL ALPHA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
REAL AP(*), X(*), Y(*)

SUBROUTINE DSPR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, AP)
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
DOUBLE PRECISION AP(*), X(*), Y(*)

Description
The SSPR2 or DSPR2 subroutine performs the symmetric rank 2 operation:

A := alpha * x * y’ + alpha * y * x’ + A

where alpha is a scalar, x and y are N element vectors and A is an N by N symmetric matrix,
supplied in packed form.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the matrix A is supplied in the packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is
supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is
supplied in AP.

Unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

X A vector of dimension at least (1 + (N–1) * abs(INCX)); on entry, the
incremented array X must contain the N element vector x; unchanged
on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX
must not be 0; unchanged on exit.

Y A vector of dimension at least (1 + (N–1) * abs(INCY)); on entry, the
incremented array Y must contain the N element vector y; unchanged
on exit.

Level 2: matrix-vector operations

3-67FORTRAN Basic Linear Algebra Subroutines

INCY On entry, INCY specifies the increment for the elements of Y; INCY
must not be 0; unchanged on exit.

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO =
’U’ or ’u’, the array AP must contain the upper triangular part of the
symmetric matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively,
and so on. On exit, the array AP is overwritten by the upper triangular
part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array AP
must contain the lower triangular part of the symmetric matrix packed
sequentially, column by column, so that AP(1) contains A(1,1), AP(2)
and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit,
the array AP is overwritten by the lower triangular part of the updated
matrix.

Level 3: matrix-matrix operations

3-68 Technical Reference: Base Operating System

SGEMM, DGEMM, CGEMM, or ZGEMM Subroutine

Purpose
Performs matrix–matrix operations on general matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
REAL ALPHA,BETA
REAL A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE CGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The SGEMM, DGEMM, CGEMM, or ZGEMM subroutine performs one of the matrix–matrix
operations:

C := alpha * op(A) * op(B) + beta * C

where op(X) is one of op(X) = X or op(X) = X’,alpha and beta are scalars, and A, B and
C are matrices, with op(A) an M by K matrix, op(B) a K by N matrix and C an M by N
matrix.

Level 3: matrix-matrix operations

3-69FORTRAN Basic Linear Algebra Subroutines

Parameters

TRANSA

 On entry, TRANSA specifies the form of op(A) to be used in the matrix
multiplication as follows:

TRANSA = ’N’ or ’n’
op(A) = A

TRANSA = ’T’ or ’t’
op(A) = A’

TRANSA = ’C’ or ’c’
op(A) = A’

Unchanged on exit.

TRANSB

 On entry, TRANSB specifies the form of op(B) to be used in the matrix
multiplication as follows:

TRANSB = ’N’ or ’n’
op(B) = B

TRANSB = ’T’ or ’t’
op(B) = B’

TRANSB = ’C’ or ’c’
op(B) = B’

Unchanged on exit.

M On entry, M specifies the number of rows of the matrix op(A) and of
the matrix C; M must be at least 0; unchanged on exit.

N On entry, N specifies the number of columns of the matrix op(B) and
the number of columns of the matrix C; N must be at least 0;
unchanged on exit.

K On entry, K specifies the number of columns of the matrix op(A) and
the number of rows of the matrix op(B); K must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, KA), where KA is K when TRANSA = ’N’
or ’n’, and is M otherwise; on entry with TRANSA = ’N’ or ’n’, the leading
M by K part of the array A must contain the matrix A, otherwise the
leading K by M part of the array A must contain the matrix A;
unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When TRANSA = ’N’ or ’n’ then LDA must be at
least max(1, M), otherwise LDA must be at least max(1, K);
unchanged on exit.

B An array of dimension (LDB, KB) where KB is N when TRANSB = ’N’
or ’n’, and is K otherwise; on entry with TRANSB = ’N’ or ’n’, the leading
K by N part of the array B must contain the matrix B, otherwise the
leading N by K part of the array B must contain the matrix B; unchanged
on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the
calling (sub) program. When TRANSB = ’N’ or ’n’ then LDB must be at
least max(1, K), otherwise LDB must be at least max(1, N);
unchanged on exit.

Level 3: matrix-matrix operations

3-70 Technical Reference: Base Operating System

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as 0
then C need not be set on input; unchanged on exit.

C An array of dimension (LDC, N); on entry, the leading M by N part of
the array C must contain the matrix C, except when beta is 0, in which
case C need not be set on entry; on exit, the array C is overwritten by
the M by N matrix (alpha * op(A) * op(B) + beta * C).

LDC On entry, LDC specifies the first dimension of C as declared in the
calling (sub) program; LDC must be at least max(1, M); unchanged on
exit.

Level 3: matrix-matrix operations

3-71FORTRAN Basic Linear Algebra Subroutines

SSYMM, DSYMM, CSYMM, or ZSYMM Subroutine

Purpose
Performs matrix–matrix matrix operations on symmetric matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
REAL ALPHA,BETA
REAL A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE CSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The SSYMM, DSYMM, CSYMM, or ZSYMM subroutine performs one of the matrix–matrix
operations:

C := alpha * A * B + beta * C

OR

C := alpha * B * A + beta * C

where alpha and beta are scalars, A is a symmetric matrix and B and C are M by N
matrices.

Level 3: matrix-matrix operations

3-72 Technical Reference: Base Operating System

Parameters

SIDE

 On entry, SIDE specifies whether the symmetric matrix A appears on
the left or right in the operation as follows:

SIDE = ’L’ or ’l’ C := alpha * A * B + beta * C

SIDE = ’R’ or ’r’ C := alpha * B * A + beta * C

Unchanged on exit.

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the symmetric matrix A is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of the
symmetric matrix is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of the
symmetric matrix is to be referenced.

Unchanged on exit.

M On entry, M specifies the number of rows of the matrix C; M must be at
least 0; unchanged on exit.

N On entry, N specifies the number of columns of the matrix C; N must be
at least 0; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, KA), where KA is M when SIDE = ’L’ or ’l’
and is N otherwise; on entry with SIDE = ’L’ or ’l’, the M by M part of the
array A must contain the symmetric matrix, such that when UPLO = ’U’
or ’u’, the leading M by M upper triangular part of the array A must
contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of A is not referenced, and when UPLO = ’L’ or ’l’,
the leading M by M lower triangular part of the array A must contain the
lower triangular part of the symmetric matrix and the strictly upper
triangular part of A is not referenced. On entry with SIDE = ’R’ or ’r’, the
N by N part of the array A must contain the symmetric matrix, such that
when UPLO = ’U’ or ’u’, the leading N by N upper triangular part of the
array A must contain the upper triangular part of the symmetric matrix
and the strictly lower triangular part of A is not referenced, and when
UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the array A
must contain the lower triangular part of the symmetric matrix and the
strictly upper triangular part of A is not referenced; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When SIDE = ’L’ or ’l’ then LDA must be at least
max(1, M), otherwise LDA must be at least max(1, N); unchanged on
exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of
the array B must contain the matrix B; unchanged on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the
calling (sub) program; LDB must be at least max(1, M); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0
then C need not be set on input; unchanged on exit.

Level 3: matrix-matrix operations

3-73FORTRAN Basic Linear Algebra Subroutines

C An array of dimension (LDC, N); on entry, the leading M by N part of
the array C must contain the matrix C, except when beta is 0, in which
case C need not be set on entry; on exit, the array C is overwritten by
the M by N updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the
calling (sub) program; LDC must be at least max(1, M); unchanged on
exit.

Level 3: matrix-matrix operations

3-74 Technical Reference: Base Operating System

CHEMM or ZHEMM Subroutine

Purpose
Performs matrix–matrix operations on Hermitian matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHEMM(SIDE, UPLO, M, N, ALPHA, A,
LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZHEMM(SIDE, UPLO, M, N, ALPHA, A,
LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Purpose
The CHEMM or ZHEMM subroutine performs one of the matrix–matrix operations:

C := alpha * A * B + beta * C

OR

C := alpha * B * A + beta * C

where alpha and beta are scalars, A is an Hermitian matrix, and B and C are M by N
matrices.

Parameters

SIDE

 On entry, SIDE specifies whether the Hermitian matrix A appears on
the left or right in the operation as follows:

SIDE = ’L’ or ’l’ C := alpha * A * B + beta * C

SIDE = ’R’ or ’r’ C := alpha * B * A + beta * C

Unchanged on exit.

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the Hermitian matrix A is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of the
Hermitian matrix is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of the
Hermitian matrix is to be referenced.

Unchanged on exit.

M On entry, M specifies the number of rows of the matrix C; M must be at
least 0; unchanged on exit.

Level 3: matrix-matrix operations

3-75FORTRAN Basic Linear Algebra Subroutines

N On entry, N specifies the number of columns of the matrix C; N must be
at least 0; unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, KA), where KA is M when SIDE = ’L’ or ’l’
and is N otherwise; on entry with SIDE = ’L’ or ’l’, the M by M part of the
array A must contain the Hermitian matrix, such that when UPLO = ’U’
or ’u’, the leading M by M upper triangular part of the array A must
contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of A is not referenced, and when UPLO = ’L’ or ’l’,
the leading M by M lower triangular part of the array A must contain the
lower triangular part of the Hermitian matrix and the strictly upper
triangular part of A is not referenced; on entry with SIDE = ’R’ or ’r’, the
N by N part of the array A must contain the Hermitian matrix, such that
when UPLO = ’U’ or ’u’, the leading N by N upper triangular part of the
array A must contain the upper triangular part of the Hermitian matrix
and the strictly lower triangular part of A is not referenced, and when
UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the array A
must contain the lower triangular part of the Hermitian matrix and the
strictly upper triangular part of A is not referenced. The imaginary parts
of the diagonal elements need not be set, they are assumed to be 0;
unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When SIDE = ’L’ or ’l’ then LDA must be at least
max(1, M), otherwise LDA must be at least max(1, N); unchanged on
exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of
the array B must contain the matrix B; unchanged on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the
calling (sub) program; LDB must be at least max(1, M); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as 0
then C need not be set on input; unchanged on exit.

C An array of dimension (LDC, N); on entry, the leading M by N part of
the array C must contain the matrix C, except when beta is 0, in which
case C need not be set on entry; on exit, the array C is overwritten by
the M by N updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the
calling (sub) program; LDC must be at least max(1, M); unchanged on
exit.

Level 3: matrix-matrix operations

3-76 Technical Reference: Base Operating System

SSYRK, DSYRK, CSYRK, or ZSYRK Subroutine

Purpose
Perform symmetric rank k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
REAL ALPHA,BETA
REAL A(LDA,*), C(LDC,*)

SUBROUTINE DSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), C(LDC,*)

SUBROUTINE CSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), C(LDC,*)

SUBROUTINE ZSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), C(LDC,*)

Description
The SSYRK, DSYRK, CSYRK or ZSYRK subroutine performs one of the symmetric rank k
operations:

C := alpha * A * A’ + beta * C

OR

C := alpha * A’ * A + beta * C

where alpha and beta are scalars, C is an N by N symmetric matrix, and A is an N by K
matrix in the first case and a K by N matrix in the second case.

Level 3: matrix-matrix operations

3-77FORTRAN Basic Linear Algebra Subroutines

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array C is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to
be referenced.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * A’ + beta * C

TRANS = ’T’ or ’t’
C := alpha * A’ * A + beta * C

TRANS = ’C’ or ’c’
C := alpha * A’ * A + beta * C

Unchanged on exit.

N On entry, N specifies the order of the matrix C; N must be at least 0;
unchanged on exit.

K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of
the matrix A, and on entry with TRANS = ’T’ or ’t’ or ’C’ or ’c’, K
specifies the number of rows of the matrix A; K must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’
or ’n’, and is N otherwise; on entry with TRANS = ’N’ or ’n’, the leading
N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged
on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When TRANS = ’N’ or ’n’, LDA must be at least
max(1, N); otherwise LDA must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.

C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array C must contain the
upper triangular part of the symmetric matrix and the strictly lower
triangular part of C is not referenced; on exit, the upper triangular part of
the array C is overwritten by the upper triangular part of the updated
matrix; on entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array C must contain the lower triangular part of
the symmetric matrix and the strictly upper triangular part of C is not
referenced; on exit, the lower triangular part of the array C is overwritten
by the lower triangular part of the updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the
calling (sub) program; LDC must be at least max(1, N); unchanged on
exit.

Level 3: matrix-matrix operations

3-78 Technical Reference: Base Operating System

CHERK or ZHERK Subroutine

Purpose
Performs Hermitian rank k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHERK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
REAL ALPHA,BETA
COMPLEX A(LDA,*), C(LDC,*)

SUBROUTINE ZHERK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
DOUBLE PRECISION ALPHA,BETA
COMPLEX*16 A(LDA,*), C(LDC,*)

Description
The CHERK or ZHERK subroutine performs one of the Hermitian rank k operations:

C := alpha * A * conjg(A’) + beta * C

OR

C := alpha * conjg(A’) * A + beta * C

where alpha and beta are real scalars, C is an N by N Hermitian matrix, and A is an N by K
matrix in the first case and a K by N matrix in the second case.

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array C is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to
be referenced.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * conjg(A’) + beta * C

TRANS = ’C’ or ’c’
C := alpha * conjg(A’) * A + beta * C

Unchanged on exit.

Level 3: matrix-matrix operations

3-79FORTRAN Basic Linear Algebra Subroutines

N On entry, N specifies the order of the matrix C; N must be at least 0;
unchanged on exit.

K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of
the matrix A, and on entry with TRANS = ’C’ or ’c’, K specifies the
number of rows of the matrix A; K must be at least 0; unchanged on
exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’
or ’n’, and is N otherwise; on entry with TRANS = ’N’ or ’n’, the leading
N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged
on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When TRANS = ’N’ or ’n’, LDA must be at least
max(1, N), otherwise LDA must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.

C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array C must contain the
upper triangular part of the Hermitian matrix and the strictly lower
triangular part of C is not referenced; on exit, the upper triangular part of
the array C is overwritten by the upper triangular part of the updated
matrix; on entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array C must contain the lower triangular part of
the Hermitian matrix and the strictly upper triangular part of C is not
referenced; on exit, the lower triangular part of the array C is overwritten
by the lower triangular part of the updated matrix. The imaginary parts
of the diagonal elements need not be set, they are assumed to be 0,
and on exit they are set to 0.

LDC On entry, LDC specifies the first dimension of C as declared in the
calling (sub) program; LDC must be at least max(1, N); unchanged on
exit.

Level 3: matrix-matrix operations

3-80 Technical Reference: Base Operating System

SSYR2K, DSYR2K, CSYR2K, or ZSYR2K Subroutine

Purpose
Performs symmetric rank 2k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
REAL ALPHA,BETA
REAL A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE DSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE CSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The SSYR2K, DSYR2K, CSYR2K, or ZSYR2K subroutine performs one of the symmetric
rank 2k operations:

C := alpha * A * B’ + alpha * B * A’ + beta * C

OR

C := alpha * A’ * B + alpha * B’ * A + beta * C

where alpha and beta are scalars, C is an N by N symmetric matrix, and A and B are N by K
matrices in the first case and K by N matrices in the second case.

Level 3: matrix-matrix operations

3-81FORTRAN Basic Linear Algebra Subroutines

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array C is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to
be referenced.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * B’ + alpha * B * A’ +
beta * C

TRANS = ’T’ or ’t’
C := alpha * A’ * B + alpha * B’ * A +
beta * C

Unchanged on exit.

N On entry, N specifies the order of the matrix C; N must be at least 0;
unchanged on exit.

K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of
the matrices A and B, and on entry with TRANS = ’T’ or ’t’, K specifies
the number of rows of the matrices A and B; K must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’
or ’n’, and is N otherwise; on entry with TRANS = ’N’ or ’n’, the leading
N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged
on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When TRANS = ’N’ or ’n’, LDA must be at least
max(1, N); otherwise LDA must be at least max(1, K); unchanged on
exit.

B An array of dimension (LDB, KB), where KB is K when TRANS = ’N’
or ’n’, and is N otherwise; on entry with TRANS = ’N’ or ’n’, the leading
N by K part of the array B must contain the matrix B, otherwise the
leading K by N part of the array B must contain the matrix B; unchanged
on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the
calling (sub) program. When TRANS = ’N’ or ’n’, LDB must be at least
max(1, N); otherwise LDB must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.

Level 3: matrix-matrix operations

3-82 Technical Reference: Base Operating System

C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array C must contain the
upper triangular part of the symmetric matrix and the strictly lower
triangular part of C is not referenced; on exit, the upper triangular part of
the array C is overwritten by the upper triangular part of the updated
matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array C must contain the lower triangular part of
the symmetric matrix and the strictly upper triangular part of C is not
referenced; on exit, the lower triangular part of the array C is overwritten
by the lower triangular part of the updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the
calling (sub) program; LDC must be at least max(1, N); unchanged on
exit.

Level 3: matrix-matrix operations

3-83FORTRAN Basic Linear Algebra Subroutines

CHER2K or ZHER2K Subroutine

Purpose
Performs Hermitian rank 2k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHER2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
REAL BETA
COMPLEX ALPHA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZHER2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
DOUBLE PRECISION BETA
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The CHER2K or ZHER2K subroutine performs one of the Hermitian rank 2k operations:

C := alpha * A * conjg(B’) + conjg(alpha) * B * conjg(A’) + beta *

C

OR

C := alpha * conjg(A’) * B + conjg(alpha) * conjg(B’) * A + beta *

C

where alpha and beta are scalars with beta real, C is an N by N Hermitian matrix, and A and
B are N by K matrices in the first case and K by N matrices in the second case.

Level 3: matrix-matrix operations

3-84 Technical Reference: Base Operating System

Parameters

UPLO

 On entry, UPLO specifies whether the upper or lower triangular part of
the array C is to be referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to
be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to
be referenced.

Unchanged on exit.

TRANS

 On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * conjg(B’) + conjg(
alpha) * B * conjg(A’) + beta * C

TRANS = ’C’ or ’c’
C := alpha * conjg(A’) * B + conjg(
alpha) * conjg(B’) * A + beta * C

Unchanged on exit.

N On entry, N specifies the order of the matrix C; N must be at least 0;
unchanged on exit.

K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of
the matrices A and B, and on entry with TRANS = ’C’ or ’c’, K specifies
the number of rows of the matrices A and B; K must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’
or ’n’, and is N otherwise; on entry with TRANS = ’N’ or ’n’, the leading
N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged
on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When TRANS = ’N’ or ’n’, LDA must be at least
max(1, N); otherwise LDA must be at least max(1, K); unchanged on
exit.

B An array of dimension (LDB, KB), where KB is K when TRANS = ’N’
or ’n’, and is N otherwise; on entry with TRANS = ’N’ or ’n’, the leading
N by K part of the array B must contain the matrix B, otherwise the
leading K by N part of the array B must contain the matrix B; unchanged
on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the
calling (sub) program. When TRANS = ’N’ or ’n’, LDB must be at least
max(1, N); otherwise LDB must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.

Level 3: matrix-matrix operations

3-85FORTRAN Basic Linear Algebra Subroutines

C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array C must contain the
upper triangular part of the Hermitian matrix and the strictly lower
triangular part of C is not reference; on exit, the upper triangular part of
the array C is overwritten by the upper triangular part of the updated
matrix; on entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array C must contain the lower triangular part of
the Hermitian matrix and the strictly upper triangular part of C is not
referenced; on exit, the lower triangular part of the array C is overwritten
by the lower triangular part of the updated matrix. The imaginary parts
of the diagonal elements need not be set, they are assumed to be 0,
and on exit they are set to 0.

LDC On entry, LDC specifies the first dimension of C as declared in the
calling (sub) program; LDC must be at least max(1, N); unchanged on
exit.

Level 3: matrix-matrix operations

3-86 Technical Reference: Base Operating System

STRMM, DTRMM, CTRMM, or ZTRMM Subroutine

Purpose
Performs matrix–matrix operations on triangular matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRMM(SIDE,
UPLO, TRANSA, DIAG,
M, N, ALPHA, A,
LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
REAL ALPHA
REAL A(LDA,*), B(LDB,*)

SUBROUTINE DTRMM(SIDE, UPLO,
TRANSA, DIAG,
M, N, ALPHA, A,
LDA, B, LDB)
CHARACTER*1
SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
DOUBLE PRECISION ALPHA
DOUBLE PRECISION A(LDA,*),
B(LDB,*)

SUBROUTINE CTRMM(SIDE, UPLO,
TRANSA, DIAG,
M, N, ALPHA, A,
LDA, B, LDB)
CHARACTER*1
SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX ALPHA
COMPLEX A(LDA,*),
B(LDB,*)

SUBROUTINE ZTRMM(SIDE, UPLO,
TRANSA, DIAG,
M, N, ALPHA, A,
LDA, B, LDB)
CHARACTER*1
SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA,*),
B(LDB,*)

Description
The STRMM, DTRMM, CTRMM, or ZTRMM subroutine performs one of the matrix–matrix
operations:

B := alpha * op(A) * B

OR

B := alpha * B * op(A)

Level 3: matrix-matrix operations

3-87FORTRAN Basic Linear Algebra Subroutines

where alpha is a scalar, B is an M by N matrix, A is a unit, or non–unit, upper or lower
triangular matrix, and op(A) is either op(A) = A or op(A) = A’.

Parameters

SIDE

 On entry, SIDE specifies whether op(A) multiplies B from the left or
right as follows:

SIDE = ’L’ or ’l’ B := alpha * op(A) * B

SIDE = ’R’ or ’r’ B := alpha * B * op(A)

Unchanged on exit.

UPLO

 On entry, UPLO specifies whether the matrix A is an upper or lower
triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANSA

 On entry, TRANSA specifies the form of op(A) to be used in the matrix
multiplication as follows:

TRANSA = ’N’ or ’n’
op(A) = A

TRANSA = ’T’ or ’t’
op(A) = A’

TRANSA = ’C’ or ’c’
op(A) = A’

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

M On entry, M specifies the number of rows of B; M must be at least 0;
unchanged on exit.

N On entry, N specifies the number of columns of B; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha. When alpha is 0 then A is
not referenced and B need not be set before entry; unchanged on exit.

Level 3: matrix-matrix operations

3-88 Technical Reference: Base Operating System

A An array of dimension (LDA, k), where k is M when SIDE = ’L’ or ’l’
and is N when SIDE = ’R’ or ’r’; on entry with UPLO = ’U’ or ’u’, the
leading k by k upper triangular part of the array A must contain the
upper triangular matrix and the strictly lower triangular part of A is not
referenced; on entry with UPLO = ’L’ or ’l’, the leading k by k lower
triangular part of the array A must contain the lower triangular matrix
and the strictly upper triangular part of A is not referenced. When DIAG
= ’U’ or ’u’, the diagonal elements of A are not referenced either, but are
assumed to be unity; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When SIDE = ’L’ or ’l’ then LDA must be at least
max(1, M), when SIDE = ’R’ or ’r’ then LDA must be at least max(1, N
); unchanged on exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of
the array B must contain the matrix B, and on exit is overwritten by the
transformed matrix.

LDB On entry, LDB specifies the first dimension of B as declared in the
calling (sub) program; LDB must be at least max(1, M); unchanged on
exit.

Level 3: matrix-matrix operations

3-89FORTRAN Basic Linear Algebra Subroutines

STRSM, DTRSM, CTRSM, or ZTRSM Subroutine

Purpose
Solves certain matrix equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
REAL ALPHA
REAL A(LDA,*), B(LDB,*)

SUBROUTINE DTRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
DOUBLE PRECISION ALPHA
DOUBLE PRECISION A(LDA,*), B(LDB,*)

SUBROUTINE CTRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX ALPHA
COMPLEX A(LDA,*), B(LDB,*)

SUBROUTINE ZTRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA,*), B(LDB,*)

Description
The STRSM, DTRSM, CTRSM, or ZTRSM subroutine solves one of the matrix equations:

• op(A) * X = alpha * B

• X * op(A) = alpha * B

where alpha is a scalar, X and B are M by N matrices, A is a unit, or non–unit, upper or
lower triangular matrix, and op(A) is either op(A) = A or op(A) = A’. The matrix X is
overwritten on B.

Level 3: matrix-matrix operations

3-90 Technical Reference: Base Operating System

Parameters

SIDE

 On entry, SIDE specifies whether op(A) appears on the left or right of
X as follows:

SIDE = ’L’ or ’l’ op(A) * X = alpha * B

SIDE = ’R’ or ’r’ X * op(A) = alpha * B

Unchanged on exit.

UPLO

 On entry, UPLO specifies whether the matrix A is an upper or lower
triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.

TRANSA

 On entry, TRANSA specifies the form of op(A) to be used in the matrix
multiplication as follows:

TRANSA = ’N’ or ’n’
op(A) = A

TRANSA = ’T’ or ’t’
op(A) = A’

TRANSA = ’C’ or ’c’
op(A) = A’

Unchanged on exit.

DIAG

 On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

M On entry, M specifies the number of rows of B; M must be at least 0;
unchanged on exit.

N On entry, N specifies the number of columns of B; N must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha. When alpha is 0 then A is
not referenced and B need not be set before entry; unchanged on exit.

A An array of dimension (LDA, k), where k is M when SIDE = ’L’ or ’l’
and is N when SIDE = ’R’ or ’r’. On entry with UPLO = ’U’ or ’u’, the
leading k by k upper triangular part of the array A must contain the
upper triangular matrix and the strictly lower triangular part of A is not
referenced; on entry with UPLO = ’L’ or ’l’, the leading k by k lower
triangular part of the array A must contain the lower triangular matrix
and the strictly upper triangular part of A is not referenced. When DIAG
= ’U’ or ’u’, the diagonal elements of A are not referenced, but are
assumed to be unity; unchanged on exit.

Level 3: matrix-matrix operations

3-91FORTRAN Basic Linear Algebra Subroutines

LDA On entry, LDA specifies the first dimension of A as declared in the
calling (sub) program. When SIDE = ’L’ or ’l’, LDA must be at least max(
1, M); when SIDE = ’R’ or ’r’, LDA must be at least max(1, N);
unchanged on exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of
the array B must contain the right–hand side matrix B, and on exit is
overwritten by the solution matrix X.

LDB On entry, LDB specifies the first dimension of B as declared in the
calling (sub) program. LDB must be at least max(1, M); unchanged on
exit.

Level 3: matrix-matrix operations

3-92 Technical Reference: Base Operating System

A-1Base Operating System Error Codes

Appendix A. Base Operating System Error Codes for
Services That Require Path–Name Resolution

The following errors apply to any service that requires path name resolution:

EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter points outside of the allocated address space
of the process.

EIO An I/O error occurred during the operation.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of a path name exceeded 255 characters and the
process has the DisallowTruncation attribute (see the ulimit
subroutine) or an entire path name exceeded 1023 characters.

ENOENT A component of the path prefix does not exist.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The root or current directory of the process is located in a virtual file
system that is unmounted.

Related Information
List of File and Directory Manipulation Services.

A-2 Technical Reference: Base Operating System

B-1ODM Error Codes

Appendix B. ODM Error Codes

When an ODM subroutine is unsuccessful, a value of –1 is returned and the odmerrno
variable is set to one of the following values:

ODMI_BAD_CLASSNAME The specified object class name does not match the
object class name in the file. Check path name and
permissions.

ODMI_BAD_CLXNNAME The specified collection name does not match the
collection name in the file.

ODMI_BAD_CRIT The specified search criteria is incorrectly formed. Make
sure the criteria contains only valid descriptor names and
the search values are correct. For information on
qualifying criteria, see ”Understanding ODM Object
Searches” in AIX General Programming Concepts :
Writing and Debugging Programs.

ODMI_BAD_LOCK Cannot set a lock on the file. Check path name and
permissions.

ODMI_BAD_TIMEOUT The time–out value was not valid. It must be a positive
integer.

ODMI_BAD_TOKEN Cannot create or open the lock file. Check path name
and permissions.

ODMI_CLASS_DNE The specified object class does not exist. Check path
name and permissions.

ODMI_CLASS_EXISTS The specified object class already exists. An object class
must not exist when it is created.

ODMI_CLASS_PERMS The object class cannot be opened because of the file
permissions.

ODMI_CLXNMAGICNO_ERR The specified collection is not a valid object class
collection.

ODMI_FORK Cannot fork the child process. Make sure the child
process is executable and try again.

ODMI_INTERNAL_ERR An internal consistency problem occurred. Make sure the
object class is valid or contact the person responsible for
the system.

ODMI_INVALID_CLASS The specified file is not an object class.

ODMI_INVALID_CLXN Either the specified collection is not a valid object class
collection or the collection does not contain consistent
data.

ODMI_INVALID_PATH The specified path does not exist on the file system.
Make sure the path is accessible.

ODMI_LINK_NOT_FOUND The object class that is accessed could not be opened.
Make sure the linked object class is accessible.

ODMI_LOCK_BLOCKED Cannot grant the lock. Another process already has the
lock.

ODMI_LOCK_ENV Cannot retrieve or set the lock environment variable.
Remove some environment variables and try again.

B-2 Technical Reference: Base Operating System

ODMI_LOCK_ID The lock identifier does not refer to a valid lock. The lock
identifier must be the same as what was returned from the
odm_lock subroutine.

ODMI_MAGICNO_ERR The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR Cannot allocate sufficient storage. Try again later or
contact the person responsible for the system.

ODMI_NO_OBJECT The specified object identifier did not refer to a valid
object.

ODMI_OPEN_ERR Cannot open the object class. Check path name and
permissions.

ODMI_OPEN_PIPE Cannot open a pipe to a child process. Make sure the
child process is executable and try again.

ODMI_PARAMS The parameters passed to the subroutine were not
correct. Make sure there are the correct number of
parameters and that they are valid.

ODMI_READ_ONLY The specified object class is opened as read–only and
cannot be modified.

ODMI_READ_PIPE Cannot read from the pipe of the child process. Make
sure the child process is executable and try again.

ODMI_TOOMANYCLASSES Too many object classes have been accessed. An
application can only access less than 1024 object
classes.

ODMI_UNLINKCLASS_ERR Cannot remove the object class from the file system.
Check path name and permissions.

ODMI_UNLINKCLXN_ERR Cannot remove the object class collection from the file
system. Check path name and permissions.

ODMI_UNLOCK Cannot unlock the lock file. Make sure the lock file exists.

Related Information
List of ODM Commands and Subroutines in AIX General Programming Concepts : Writing
and Debugging Programs.

X-1Index

Index

Symbols
_lazySetErrorHanhler subroutine, 2-88
_remap subroutine, 1-977
_remap_identity subroutine, 1-979
_safe_fetch subroutine, 1-1001
_showstring subroutine, 2-145
_sync_cache_range subroutine, 1-1206

Numbers
64–bit addresses, 1-985

remap to 32–bit, 1-977, 1-979
64–bit addresses, remap, 1-981
8–bit character capability, 2-93

A
absolute values, finding index of element with

maximum value, 3-14
access control information, retrieving, 1-1164
access control subroutines

fstatacl, 1-1164
revoke, 1-993
statacl, 1-1164

addch subroutine, 2-3
addstr subroutine, 2-5
alarm signals

beeping, 2-13
flashing, 2-52

alphasort subroutine, 1-1002
alternate stack, 1-1081
asynchronous serial data line, sending breaks on,

1-1253
atoi subroutine, 1-1197
atol subroutine, 1-1197
attroff subroutine, 2-7
attron subroutine, 2-9
attrset subroutine, 2-10
authentication database, opening and closing,

1-1049
authentication subroutines

endpwdb, 1-1049
enduserdb, 1-1055
setpwdb, 1-1049
setuserdb, 1-1055
tcb, 1-1244

B
backspace character, returning, 2-49
baudrate subroutine, 2-12
beep subroutine, 2-13
Berkeley Compatibility Library, subroutines, rand_r,

1-944
binary trees, manipulating, 1-1299
BLAS matrix–matrix operations, 3-78
BLAS matrix–matrix subroutines, 3-68, 3-71, 3-74,

3-76, 3-80, 3-83, 3-86, 3-89
BLAS matrix–vector subroutines, 3-19, 3-21, 3-23,

3-25, 3-27, 3-29, 3-31, 3-33, 3-35, 3-37, 3-40,

3-42, 3-44, 3-47, 3-49, 3-50, 3-51, 3-52, 3-54,
3-56, 3-58, 3-60, 3-62, 3-64, 3-66

BLAS vector–vector functions, 3-3, 3-4, 3-5, 3-11,
3-12, 3-14, 3-15

BLAS vector–vector subroutines, 3-6, 3-7, 3-8, 3-9,
3-10, 3-13, 3-16, 3-18

box subroutine, 2-14
buffers, assigning to streams, 1-1027
bytes, copying, 1-1200

C
carriage return, 2-108
CAXPY subroutine, 3-6
cbox subroutine, 2-14
cboxalt subroutine, 2-14
CBREAK mode, 2-19
cbreak subroutine, 2-19
cbrt subroutine, 1-1113
CCOPY subroutine, 3-9
CDOTC function, 3-4
CDOTU function, 3-5
CGBMV subroutine, 3-21
CGEMM subroutine, 3-68
CGEMV subroutine, 3-19
CGERC subroutine, 3-51
CGERU subroutine, 3-50
change color definition, 2-75
change color–pair definition, 2-77
change terminal capabilities, 2-51
character conversion, wide characters

lowercase to uppercase, 1-1270
to double–precision number, 1-1357
to long integer, 1-1361
to multibyte, 1-1364, 1-1373
to tokens, 1-1359
to unsigned long integer, 1-1365
uppercase to lowercase, 1-1269

character data
interpreting, 1-1004
reading, 1-1004

character manipulation subroutines, vwsprintf,
1-1334

character mapping, 1-1374
character transliteration, 1-1268
characters

adding
lines, 2-82
single characters, 2-3, 2-80
strings, 2-5

backspace, 2-49
clearing screen, 2-21, 2-23
controlling text scrolling, 2-137, 2-138, 2-140
deleting, 2-40
dumping strings, 2-145
echoing, 2-45
erasing lines, 2-27, 2-28, 2-41
erasing window, 2-48
getting single characters, 2-57

X-2 Technical Reference: Base Operating System

getting strings, 2-63
handling input, 2-93, 2-109
line–kill, 2-87
placing at cursor location, 2-73
reading formatted input, 2-130
refreshing, 2-173, 2-176
type ahead, 2-179
typeahead, 2-53
writing, 1-1334
writing formatted output, 2-116

charsetID, wide character, 1-1348
CHBMV subroutine, 3-25
CHEMM subroutine, 3-74
CHEMV subroutine, 3-23
CHER subroutine, 3-52
CHER2 subroutine, 3-56
CHER2K subroutine, 3-83
CHERK subroutine, 3-78
CHPMV subroutine, 3-27
CHPR subroutine, 3-54
CHPR2 subroutine, 3-58
clear subroutine, 2-21
clearok subroutine, 2-23
close role database, 1-1051
close SMIT ACL database, 1-1025
closelog subroutine, 1-1234
closelog_r subroutine, 1-1238
clrtobot subroutine, 2-27
clrtoeol subroutine, 2-28
code sets, reading map files, 1-1029
color definition, 2-75
color intensity, 2-29
color manipulation, 2-15
color pair, 2-113
color support, 2-69
color, initialize, 2-159
color–pair definition, 2-77
columns, determining number, 2-143, 2-163
compare wide character, 1-1380
complex dot products, determining, 3-4, 3-5
control characters, specifying, 2-180
control input characters, 2-68
convert wide character, 1-1372
converter subroutines, wcsrtombs, 1-1353
copy a window region, 2-31
copy wide character, 1-1381, 1-1382
cos subroutine, 1-1103
cosh subroutine, 1-1105
coshl subroutine, 1-1105
cosl subroutine, 1-1103
create subwindows, 2-160
cresetty subroutine, 2-125
CROTG subroutine, 3-7
CSCAL subroutine, 3-13
CSROT subroutine, 3-8
CSSCAL subroutine, 3-13
CSWAP subroutine, 3-10
CSYMM subroutine, 3-71
CSYR2K subroutine, 3-80
CSYRK subroutine, 3-76
CTBMV subroutine, 3-37
CTBSV subroutine, 3-44
CTPMV subroutine, 3-40
CTPSV subroutine, 3-47

CTRMM subroutine, 3-86
CTRMV subroutine, 3-35
CTRSM subroutine, 3-89
CTRSV subroutine, 3-42
cube roots, computing, 1-1113
current process credentials, setting, 1-1040
current process environment, setting, 1-1042
current processes

group ID, setting, 1-1032
suspending, 1-1106
user information, 1-1321

current screen, refreshing, 2-121, 2-184
current screens, refreshing, 2-114
curses

initializing, 2-78
terminating, 2-47

curses character control subroutines
_showstring, 2-145
addch, 2-3
addstr, 2-5
clear, 2-21
clearok, 2-23
clrtobot, 2-27
clrtoeol, 2-28
delch, 2-40
deleteln, 2-41
erase, 2-48
getch, 2-57
getstr, 2-63
inch, 2-73
insch, 2-80
insertln, 2-82
meta, 2-93
mvaddch, 2-3
mvaddstr, 2-5
mvdelch, 2-40
mvgetch, 2-57
mvgetstr, 2-63
mvinch, 2-73
mvinsch, 2-80
mvscanw, 2-130
mvwaddch, 2-3
mvwaddstr, 2-5
mvwdelch, 2-40
mvwgetch, 2-57
mvwgetstr, 2-63
mvwinch, 2-73
mvwinsch, 2-80
mvwscanw, 2-130
nodelay, 2-109
scanw, 2-130
scroll, 2-137
scrollok, 2-138
setscrreg, 2-140
unctrl, 2-180
waddch, 2-3
waddstr, 2-5
wclear, 2-21
wclrtobot, 2-27
wclrtoeol, 2-28
wdelch, 2-40
wdeleteln, 2-41
werase, 2-48
wgetch, 2-57

X-3Index

wgetstr, 2-63
winch, 2-73
winsch, 2-80
winsertln, 2-82
wscanw, 2-130
wsetscrreg, 2-140

curses cursor control subroutines
getyx, 2-67
leaveok, 2-90
move, 2-95
mvcur, 2-96
wmove, 2-95

curses data structure, 2-134
curses options setting subroutines

idlok, 2-72
intrflush, 2-83
keypad, 2-86
typeahead, 2-179

curses portability subroutines
baudrate, 2-12
erasechar, 2-49
flushinp, 2-53
killchar, 2-87

curses subroutine
getbegyx, 2-55
getmaxyx, 2-62

curses subroutines
character locations, echochar, wechochar,

pechochar, 2-46
endwin, 2-47
initscr, 2-78
switching input/output to different terminals,

2-142
curses terminal manipulation subroutines

cbreak, 2-19
cresetty, 2-125
def_prog_mode, 2-34
def_shell_mode, 2-36
delay_output, 2-39
echo, 2-45
has_ic, 2-70
has_il, 2-71
longname, 2-91
newterm, 2-106
nl, 2-108
nocbreak, 2-19
noecho, 2-45
nonl, 2-108
noraw, 2-120
putp, 2-118
raw, 2-120
reset_prog_mode, 2-122
reset_shell_mode, 2-123
resetterm, 2-124
resetty, 2-125
set_term, 2-142
setupterm, 2-143
tgetent, 2-163
tgetflag, 2-165
tgetnum, 2-166
tgetstr, 2-167
tgoto, 2-168
tparm, 2-177
tputs, 2-178

curses video attributes subroutines
attroff, 2-7
attron, 2-9
attrset, 2-10
beep, 2-13
flash, 2-52
standend, 2-157
standout, 2-157
vidattr, 2-182
vidputs, 2-182
wattroff, 2-7
wattron, 2-9
wattrset, 2-10
wstandend, 2-157
wstandout, 2-157

curses window manipulation subroutines
box, 2-14
delwin, 2-42
doupdate, 2-184
makenew, 2-92
mvwin, 2-98
newpad, 2-100
newwin, 2-43, 2-103
overlay, 2-112
overwrite, 2-112
pnoutrefresh, 2-114
prefresh, 2-114
refresh, 2-121
subwin, 2-161
touchline, 2-173
touchoverlap, 2-175
touchwin, 2-176
wnoutrefresh, 2-184
wrefresh, 2-121

cursor control
moving logical cursor, 2-95
moving physical cursor, 2-96
placing cursor, 2-90
returning logical cursor coordinates, 2-67

cursor coordinates, 2-55
cursor visibility, 2-33

D
D cache, 1-1206
DASUM subroutine, 3-12
data, sorting with quicker–sort algorithms, 1-937
data sorting subroutines

qsort, 1-937
tdelete, 1-1299
tfind, 1-1299
tsearch, 1-1299
twalk, 1-1299

data transmissions
suspending, 1-1247
waiting for completion, 1-1246

data words, trace, 1-1287
databases, authentication, opening and closing,

1-1049
date, format conversions, 1-1185
date format conversions, 1-1193, 1-1343
DAXPY subroutine, 3-6
DCOPY subroutine, 3-9
DDOT function, 3-3

X-4 Technical Reference: Base Operating System

def_prog_mode subroutine, 2-34
def_shell_mode subroutine, 2-36
defect 220643, 1-1266
define character mapping, 1-1374
delay mode, 2-68
delay_output subroutine, 2-39
delch subroutine, 2-40
deleteln subroutine, 2-41
delwin subroutine, 2-42
determine terminal color support, 2-69
device driver, calling, 1-1218
device switch tables, checking entry status, 1-1228
DGBMV subroutine, 3-21
DGEMM subroutine, 3-68
DGEMV subroutine, 3-19
DGER subroutine, 3-49
directories

reading, 1-953
removing, 1-995
removing entries, 1-1316
renaming, 1-990
scanning contents, 1-1002
sorting contents, 1-1002

directory subroutines
alphasort, 1-1002
readlink, 1-955
rmdir, 1-995
scandir, 1-1002
symlink, 1-1203
unlink, 1-1316

disable terminal capabilities, 2-51
discard lines in windows, 2-54
disk quotas, manipulating, 1-938
DNRM2 function, 3-11
dot products, determining, 3-3, 3-15
doupdate subroutine, 2-184
drawbox subroutine, 2-14
drawboxalt subroutine, 2-14
DROT subroutine, 3-8
DROTG subroutine, 3-7
DROTM subroutine, 3-16
DROTMG subroutine, 3-18
DSBMV subroutine, 3-31
DSCAL subroutine, 3-13
DSPMV subroutine, 3-33
DSPR subroutine, 3-62
DSPR2 subroutine, 3-66
DSWAP subroutine, 3-10
DSYMM subroutine, 3-71
DSYMV subroutine, 3-29
DSYR subroutine, 3-60
DSYR2 subroutine, 3-64
DSYR2K subroutine, 3-80
DSYRK subroutine, 3-76
DTBMV subroutine, 3-37
DTBSV subroutine, 3-44
DTPMV subroutine, 3-40
DTPSV subroutine, 3-47
DTRMM subroutine, 3-86
DTRMV subroutine, 3-35
DTRSM subroutine, 3-89
DTRSV subroutine, 3-42
dump file, data structure, 2-134
dump file, restore screen, 2-136

DZASUM subroutine, 3-12
DZNRM2 function, 3-11

E
echo subroutine, 2-45
echochar subroutine, 2-46
echoing characters, 2-45
endpwdb subroutine, 1-1049
endroledb subroutine, 1-1051
enduserdb subroutine, 1-1055
endwin subroutine, 2-47
equations, solving systems, 3-42, 3-44, 3-47
erase subroutine, 2-48
erasechar subroutine, 2-49
error codes, A-1
error codes, ODM, B-1
error handler, install, 2-88
error handling

controlling system logs, 1-1234
numbering error message string, 1-1181

errorlogging subroutines
closelog, 1-1234
openlog, 1-1234
setlogmask, 1-1234
syslog, 1-1234

errorlogging_r subroutines, 1-1238
Euclidean lengths, determining, 3-11
examine state of alternate stack, 1-1081
execution control, saving and restoring context,

1-1034
execution control subroutines

longjmp, 1-1034
setjmp, 1-1034

extended curses, initializing, 2-78
extended curses character control subroutines

_showstring, 2-145
getch, 2-57
inch, 2-73
insch, 2-80
meta, 2-93
mvgetch, 2-57
mvinch, 2-73
mvinsch, 2-80
mvscanw, 2-130
mvwgetch, 2-57
mvwinch, 2-73
mvwinsch, 2-80
mvwscanw, 2-130
printw, 2-116
scanw, 2-130
scroll, 2-137
scrollok, 2-138
wgetch, 2-57
winch, 2-73
winsch, 2-80
wscanw, 2-130

extended curses options setting subroutines
idlok, 2-72
intrflush, 2-83

extended curses portability subroutines
baudrate, 2-12
erasechar, 2-49
flushinp, 2-53

X-5Index

killchar, 2-87
extended curses subroutines, initscr, 2-78
extended curses terminal manipulation subroutines

delay_output, 2-39
has_ic, 2-70
has_il, 2-71
newterm, 2-106
putp, 2-118
resetterm, 2-124
set_term, 2-142
setupterm, 2-143
tgentent, 2-163
tgetflag, 2-165
tgetnum, 2-166
tparm, 2-177

extended curses video attributes subroutines
attroff, 2-7
attron, 2-9
attrset, 2-10
standend, 2-157
standout, 2-157
vidputs, 2-182
wattroff, 2-7
wattron, 2-9
wattrset, 2-10
wstandend, 2-157
wstandout, 2-157

extended curses window manipulation subroutines
box, 2-14
cbox, 2-14
cboxalt, 2-14
delwin, 2-42
doupdate, 2-184
drawbox, 2-14
drawboxalt, 2-14
fullbox, 2-14
makenew, 2-92
mvwin, 2-98
newwin, 2-43, 2-103
overlay, 2-112
overwrite, 2-112
superbox, 2-14
superbox1, 2-14
touchline, 2-173
touchoverlap, 2-175
wnoutrefresh, 2-184

F
ffullstat subroutine, 1-1171
file access times, setting, 1-1323
file creation masks, getting or setting values,

1-1309
file descriptors, checking I/O status, 1-1011
file modification times, setting, 1-1323
file subroutines

ffullstat, 1-1171
fstat, 1-1171
fstatx, 1-1171
ftruncate, 1-1295
fullstat, 1-1171
lstat, 1-1171
remove, 1-989
rename, 1-990

stat, 1-1171
statx, 1-1171
tempnam, 1-1265
tmpfile, 1-1264
tmpnam, 1-1265
truncate, 1-1295
umask, 1-1309
utime, 1-1323
utimes, 1-1323

file system information, 1-1169
file system subroutines

fstatfs, 1-1167
mount, 1-1329
quotactl, 1-938
statfs, 1-1167
sync, 1-1205
sysconf, 1-1207
umount, 1-1310
ustat, 1-1167
uvmount, 1-1310
vmount, 1-1329

file systems
manipulating disk quotas, 1-938
mounting, 1-1329
returning statistics, 1-1167
unmounting, 1-1310
updating, 1-1205

file, input/output, 2-132
files

changing length of regular, 1-1295
constructing names for temporary, 1-1265
creating symbolic links, 1-1203
creating temporary, 1-1264
deleting, 1-989
providing status information, 1-1171
reading, 1-947
removing, 1-989
renaming, 1-990
revoking access, 1-993
writing to, 1-1388

find wide character, 1-1379
find wide character substring, 1-1356
flash subroutine, 2-52
flow control, performing, 1-1247
flushing, typeahead characters, 2-53
flushinp subroutine, 2-53
foreground process group IDs

getting, 1-1252
setting, 1-1259

formatted input, converting, 1-1004
fscanf subroutine, 1-1004
fstat subroutine, 1-1171
fstatacl subroutine, 1-1164
fstatfs subroutine, 1-1167
fstatvfs subroutine, 1-1169
fstatx subroutine, described, 1-1171
ftruncate subroutine, 1-1295
fullbox subroutine, 2-14
fullstat subroutine, 1-1171

G
get capabilities, terminfo , 2-169
get key name, 2-84

X-6 Technical Reference: Base Operating System

get terminals numeric value, 2-171
get terminals string capabiltiy, 2-172
get XTI variables, 1-1286
get_wctype subroutine, 1-1375
getbegyx subroutine, 2-55
getch subroutine, 2-57, 2-93, 2-109
getmaxyx subroutine, 2-62
getstr subroutine, 2-63
getyx macro, 2-67
Givens plane rotations, constructing, 3-7
Givens transformations

applying, 3-16
constructing, 3-18

gsignal subroutine, 1-1162
gtty subroutine, 1-1199

H
half–delay mode, 2-68
has_ic subroutine, 2-70
has_il subroutine, 2-71
Hermitian operations

performing rank 1, 3-52, 3-54
performing rank 2, 3-56, 3-58
performing rank 2k, 3-83
performing rank k, 3-78

highlight mode, 2-157
hook words, trace, 1-1287
hyperbolic functions, computing, 1-1105

I
I cache, 1-1206
I/O asynchronous subroutines, select, 1-1011
I/O low–level subroutines, 1-947, 1-1388

readvx, 1-947
readx, 1-947
writevx, 1-1388
writex, 1-1388

I/O stream subroutines
fscanf, 1-1004
scanf, 1-1004
setbuf, 1-1027
setbuffer, 1-1027
setlinebuf, 1-1027
setvbuf, 1-1027
sscanf, 1-1004
ungetc, 1-1314
ungetwc, 1-1314
wsscanf, 1-1004

I/O terminal subroutines
gtty, 1-1199
isatty, 1-1303
stty, 1-1199
tcdrain, 1-1246
tcflow, 1-1247
tcflush, 1-1249
tcgetattr, 1-1251
tcgetpgrp, 1-1252
tcsendbreak, 1-1253
tcsetattr, 1-1257
tcsetpgrp, 1-1259
termdef, 1-1260
ttylock, 1-1301
ttylocked, 1-1301
ttyname, 1-1303

ttyslot, 1-1305
ttyunlock, 1-1301
ttywait, 1-1301

ICAMAX subroutine, 3-14
IDAMAX subroutine, 3-14
idlok subroutine, 2-72
idxpg4, 1-1176
inch subroutine, 2-73
index subroutine, 1-1189
initialize color, 2-159
initscr subroutine, 2-78
initstate subroutine, 1-945
input streams, pushing single character into,

1-1314
insch subroutine, 2-80
insert–character capability, 2-70
insert–line capability, 2-71
insert/delete line option, 2-72
insertln subroutine, 2-82
interval timers, releasing, 1-976
intrflush subroutine, 2-83
ISAMAX subroutine, 3-14
isatty subroutine, 1-1303
IZAMAX subroutine, 3-14

J
JFS, manipulating disk quotas, 1-938

K
kernel configurations, customizing, 1-1212
kernel extension modules, loading, 1-1233
kernel extensions, loading, 1-1223
kernel object files

determining status, 1-1230
invoking, 1-1220
unloading, 1-1226

kernel parameters, setting, 1-1231
key name, 2-84
keypad, enabling, 2-86
keypad subroutine, 2-86
killchar subroutine, 2-87

L
label name, return, 2-151
lazy loading runtime system, 2-88
LC_ALL environment variable, 1-1036
LC_COLLATE category, 1-1036
LC_CTYPE category, 1-1036
LC_MESSAGES category, 1-1036
LC_MONETARY category, 1-1036
LC_NUMERIC category, 1-1037
LC_TIME category, 1-1037
leaveok subroutine, 2-90
line–kill character, 2-87
lines

adding, 2-82
determining number, 2-143, 2-163
erasing, 2-27, 2-28, 2-41

links
creating symbolic, 1-1203
reading contents of symbolic, 1-955

locale subroutines
rpmatch, 1-997

X-7Index

setlocale, 1-1036
locales

changing or querying, 1-1036
response matching, 1-997

localization subroutines
strfmon, 1-1182
strftime, 1-1185
strptime, 1-1193

locking functions, controlling tty, 1-1301
logical cursor, 2-67, 2-95
long integers, converting

from character strings, 1-1197
from wide–character strings, 1-1361

long numeric data, 1-1057
longjmp subroutine, 1-1034
longname subroutine, 2-91
lowercase characters

converting from uppercase, 1-1269
converting to uppercase, 1-1270

lstat subroutine, 1-1171

M
m_initscr subroutine, 2-78
makenew subroutine, 2-92
mapped files, attaching to process, 1-1058
mapping, character, 1-1374
matrices

performing matrix–matrix operations with
general matrices, 3-68
Hermitian matrices, 3-74
symmetric matrices, 3-71
triangular matrices, 3-86

performing matrix–vector operations with
general banded matrices, 3-21
general matrices, 3-19
Hermitian band matrices, 3-25
Hermitian matrices, 3-23
packed Hermitian matrices, 3-27
packed symmetric matrices, 3-33
packed triangular matrices, 3-40
symmetric band matrices, 3-31
symmetric matrices, 3-29
triangular band matrices, 3-37
triangular matrices, 3-35

solving equations, 3-89
memory, freeing, 1-1387
memory management

activating paging or swapping, 1-1201
controlling shared memory operations, 1-1062
returning paging device status, 1-1202
returning shared memory segments, 1-1067

memory management subroutines
shmat, 1-1058
shmctl, 1-1062
shmdt, 1-1065
shmget, 1-1067
swapon, 1-1201
swapqry, 1-1202

memory mapping, attaching segment or file to
process, 1-1058

message queues, checking I/O status, 1-1011
meta subroutine, 2-93
minicurses, initializing, 2-78

minicurses subroutines
attrset, 2-10
baudrate, 2-12
erasechar, 2-49
flushinp, 2-53
getch, 2-57
m_initscr, 2-78

monetary strings, 1-1182
mount subroutine, 1-1329
mounted file systems, returning statistics, 1-1167
move subroutine, 2-95
multibyte characters, converting from wide, 1-1364,

1-1373
mvaddch subroutine, 2-3
mvaddstr subroutine, 2-5
mvcur subroutine, 2-96
mvdelch subroutine, 2-40
mvgetch subroutine, 2-57
mvgetstr subroutine, 2-63
mvinch subroutine, 2-73
mvinsch subroutine, 2-80
mvprintw subroutine, 2-116
mvscanw subroutine, 2-130
mvwaddch subroutine, 2-3
mvwaddstr subroutine, 2-5
mvwdelch subroutine, 2-40
mvwgetch subroutine, 2-57
mvwgetstr subroutine, 2-63
mvwin subroutine, 2-98
mvwinch subroutine, 2-73
mvwinsch subroutine, 2-80
mvwprintw subroutine, 2-116
mvwscanw subroutine, 2-130

N
new–line character, 2-108
newpad subroutine, 2-100
newterm subroutine, 2-106
newwin subroutine, 2-43, 2-103
nl subroutine, 2-108
no timeout mode, 2-110
nocbreak subroutine, 2-19
nodelay subroutine, 2-109
noecho subroutine, 2-45
nonl subroutine, 2-108
noraw subroutine, 2-120
nsleep subroutine, 1-1106
numbers, generating

pseudo–random, 1-942
random, 1-942, 1-945

numerical data, generating pseudo–random
numbers, 1-944

numerical manipulation subroutines
atoi, 1-1197
atol, 1-1197
cbrt, 1-1113
cos, 1-1103
cosh, 1-1105
coshl, 1-1105
cosl, 1-1103
initstate, 1-945
rand, 1-942
random, 1-945

X-8 Technical Reference: Base Operating System

rsqrt, 1-998
setstate, 1-945
sgetl, 1-1057
sin, 1-1103
sinh, 1-1105
sinhl, 1-1105
sinl, 1-1103
sputl, 1-1057
sqrt, 1-1113
sqrtl, 1-1113
srand, 1-942
srandom, 1-945
strtol, 1-1197
strtoul, 1-1197
tan, 1-1103
tanh, 1-1105
tanhl, 1-1105
tanl, 1-1103
watof, 1-1397
watoi, 1-1398
watol, 1-1398
wstrtod, 1-1397
wstrtol, 1-1398

O
object file access subroutines

sgetl, 1-1057
sputl, 1-1057

object file subroutines, unload, 1-1318
object files, unloading, 1-1318
Obtaining high–resolution elapsed time,

read_real_time or time_base_to_time, 1-957
ODM error codes, B-1
open role database, 1-1051
open SMIT ACL database, 1-1025
openlog subroutine, 1-1234
openlog_r subroutine, 1-1238
operating system

customizing configurations, 1-1212
identifying, 1-1312

output, waiting for completion, 1-1246
output, print, 1-1108
overlay subroutine, 2-112
overwrite subroutine, 2-112

P
paging memory

activating, 1-1201
returning information on devices, 1-1202

parameter lists, handling variable–length, 1-1325
parameter structures, copying into buffers, 1-1222
path name, resolve, 1-959
path–name resolution, A-1
pechochar subroutine, 2-46
performance data from remote kernels, 1-1000
physical cursor, 2-96
plane rotations, applying, 3-8
pnoutrefresh subroutine, 2-114
prefresh subroutine, 2-114
print formatted output, 1-1108, 1-1333
printf subroutine, 2-116
printw subroutine, 2-116
process credentials, setting, 1-1040

process environments, setting, 1-1042
process group IDs

returning, 1-1252
setting, 1-1030, 1-1046, 1-1052, 1-1259
supplementary IDs, setting, 1-1032

process identification, current operating system
name, 1-1312

process initiation, restarting system, 1-960
process priorities

setting scheduled priorities, 1-1048
yielding to higher priorities, 1-1400

process resource allocation, setting and getting
user limits, 1-1306

process signals
blocked signal sets

changing, 1-1097
returning, 1-1086

changing subroutine restart behavior, 1-1085
enhancement and management, 1-1090
handling system–defined exceptions, 1-1070
implementing software signal facility, 1-1162
manipulating signal sets, 1-1083
sending to executing program, 1-941
signal masks

replacing, 1-1097
saving or restoring, 1-1094
setting, 1-1087

specifying action upon delivery, 1-1070
stacks

defining alternate, 1-1095
saving or restoring context, 1-1094

process subroutines (security and auditing)
setegid, 1-1030
seteuid, 1-1053
setgid, 1-1030
setgroups, 1-1032
setpcred, 1-1040
setpenv, 1-1042
setregid, 1-1030
setreuid, 1-1053
setrgid, 1-1030
setruid, 1-1053
setuid, 1-1053
system, 1-1242
usrinfo, 1-1321

process user IDs, setting, 1-1053
processes

handling user information, 1-1321
suspending, 1-1106, 1-1335

processes subroutines
gsignal, 1-1162
raise, 1-941
reboot, 1-960
semctl, 1-1015
semget, 1-1019
semop, 1-1022
setpgid, 1-1046
setpgrp, 1-1046
setpri, 1-1048
setsid, 1-1052
sigaddset, 1-1083
sigblock, 1-1087
sigdelset, 1-1083

X-9Index

sigemptyset, 1-1083
sigfillset, 1-1083
sighold, 1-1090
sigignore, 1-1090
siginterrupt, 1-1085
sigismember, 1-1083
siglongjmp, 1-1094
sigpause, 1-1097
sigpending, 1-1086
sigprocmask, 1-1087
sigreise, 1-1090
sigset, 1-1090
sigsetjmp, 1-1094
sigsetmask, 1-1087
sigstack, 1-1095
sigsuspend, 1-1097
ssignal, 1-1162
ulimit, 1-1306
uname, 1-1312
unamex, 1-1312
wait, 1-1335
wait3, 1-1335
waitpid, 1-1335
yield, 1-1400

program mode, 2-122
pseudo–random numbers, generating, 1-942
pthread_kill subroutine, 1-941
push character to input queue, 2-181
putp subroutine, 2-118

Q
qsort subroutine, 1-937
queues, discarding data, 1-1249
quotactl subroutine, 1-938

R
raise subroutine, 1-941
rand subroutine, 1-942
rand_r subroutine, 1-944
random numbers, generating, 1-942, 1-945
random subroutine, 1-945
rank 1 operations, 3-49, 3-50, 3-51
raw mode, 2-120
raw subroutine, 2-120
re–initializest terminal structures, 2-126
re_comp subroutine, 1-962
re_exec subroutine, 1-962
read operations, from a file, 1-947
read protected data, 1-1001
read subroutine, 1-947
read_real_time Subroutine, 1-957
readdir_r subroutine, 1-953
readlink subroutine, 1-955
readv subroutine, described, 1-947
readvx subroutine, 1-947
readx subroutine, described, 1-947
realpath subroutine, 1-959
reboot subroutine, 1-960
receive data unit, 1-1275
reception of data, suspending, 1-1247
reciprocals of square roots, computing, 1-998
refresh subroutine, 2-121
refreshing

characters, 2-173, 2-176

current screen, 2-114, 2-121, 2-184
standard screen, 2-184
terminal, 2-114, 2-121
windows, 2-175, 2-184

regcmp subroutine, 1-964
regcomp subroutine, 1-967
regerror subroutine, 1-969
regex subroutine, 1-964
regexec subroutine, 1-971
regfree subroutine, 1-975
regular expression subroutines

regcmp, 1-964
regcomp, 1-967
regerror, 1-969
regex, 1-964
regexec, 1-971
regfree, 1-975

regular expressions
comparing, 1-971
compiling, 1-964, 1-967
error messages, 1-969
freeing memory, 1-975
matching, 1-964

regular files, changing length, 1-1295
release indication, user data, 1-1271
relinquish processor, 1-1010
reltimerid subroutine, 1-976
remap 64–bit addresses, 1-977, 1-979, 1-985
REMAP_DCL macro, 1-983
REMAP_SETUP, 1-987
remote hosts, rstat subroutine, 1-1000
remove subroutine, 1-989
rename subroutine, 1-990
replace lines in windows, 2-54
reserve a screen line, 2-127
reset_prog_mode subroutine, 2-122
reset_shell_mode subroutine, 2-123
resetterm subroutine, 2-124
resetty subroutine, 2-125
restore soft function key, 2-154
restore virtual screen, 2-136
retrieves information from terminfo, 2-37
return color intensity, 2-29
return file system information, 1-1169
return label, soft label, 2-151
return window size, 2-62
returns color to color pair, 2-113
revoke subroutine, 1-993
rindex subroutine, 1-1189
ripoffline subtoutine, 2-127
rmdir subroutine, 1-995
rpmatch subroutine, 1-997
rsqrt subroutine, 1-998
rstat subroutine, 1-1000
runtime tunable parameters, setting, 1-1231

S
SASUM subroutine, 3-12
savetty subroutine, 2-129
SAXPY subroutine, 3-6
scandir subroutine, 1-1002
scanf subroutine, 1-1004, 2-130
scanw subroutine, 2-130
SCASUM subroutine, 3-12

X-10 Technical Reference: Base Operating System

sched_yield subtoutine, 1-1010
scheduling policy and priority, kernel thread,

1-1255
SCNRM2 function, 3-11
SCOPY subroutine, 3-9
scr_dump subtoutine, 2-132
scr_init subtoutine, 2-134
scr_restore subtoutine, 2-136
screen line, 2-127
screens, refreshing, 2-114, 2-121, 2-184
scroll subroutine, 2-137
scrollok subroutine, 2-138
SDOT function, 3-3
SDSDOT function, 3-15
select subroutine, 1-1011
semaphore identifiers, 1-1019
semaphore operations, 1-1015, 1-1022
semctl subroutine, 1-1015
semget subroutine, 1-1019
semop subroutine, 1-1022
send data, 1-1280
serial data lines, sending breaks on, 1-1253
sessions, creating, 1-1052
set blocking or non–blocking read, 2-110
set cursor visibility, 2-33
set terminal variables, 2-139
set wide character, 1-1383
set_curterm subtoutine, 2-139
set_term subroutine, 2-142
setaudithostdb or endaudithostdb subroutine,

1-1026
setbuf subroutine, 1-1027
setbuffer subroutine, 1-1027
setcsmap subroutine, 1-1029
setegid subroutine, 1-1030
seteuid subroutine, 1-1053
setgid subroutine, 1-1030
setgroups subroutine, 1-1032
setjmp subroutine, 1-1034
setlinebuf subroutine, 1-1027
setlocale subroutine, 1-1036
setlogmask subroutine, 1-1234
setlogmask_r subroutine, 1-1238
setpcred subroutine, 1-1040
setpenv subroutine, 1-1042
setpgid subroutine, 1-1046
setpgrp subroutine, 1-1046
setpri subroutine, 1-1048
setpwdb subroutine, 1-1049
setregid subroutine, 1-1030
setreuid subroutine, 1-1053
setrgid subroutine, 1-1030
setroledb subtoutine, 1-1051
setruid subroutine, 1-1053
setscrreg subroutine, 2-140
setsid subroutine, 1-1052
setstate subroutine, 1-945
setsyx subroutine, 2-141
setuid subroutine, 1-1053
setup soft labels, 2-155
setupterm subroutine, 2-143
setuserdb subroutine, 1-1055
setvbuf subroutine, 1-1027
SGBMV subroutine, 3-21

SGEMM subroutine, 3-68
SGEMV subroutine, 3-19
SGER subroutine, 3-49
sgetl subroutine, 1-1057
shared memory segments

attaching to process, 1-1058
detaching, 1-1065
operations on, 1-1062
returning, 1-1067

shell commands, running, 1-1242
shell mode, 2-36, 2-123
shmat subroutine, 1-1058
shmctl subroutine, 1-1062
shmdt subroutine, 1-1065
shmget subroutine, 1-1067
short status requests, sending, 1-1146, 1-1149
sigaddset subroutine, 1-1083
sigaltstack subroutine, 1-1081
sigblock subroutine, 1-1087
sigdelset subroutine, 1-1083
sigemptyset subroutine, 1-1083
sigfillset subroutine, 1-1083
sighold subroutine, 1-1090
sigignore subroutine, 1-1090
siginterrupt subroutine, 1-1085
sigismember subroutine, 1-1083
siglongjmp subroutine, 1-1094
signal masks

replacing, 1-1097
saving or restoring, 1-1094
setting, 1-1087

signal stacks
defining alternate, 1-1095
saving or restoring context, 1-1094

sigpause subroutine, 1-1097
sigpending subroutine, 1-1086
sigprocmask subroutine, 1-1087
sigrelse subroutine, 1-1090
sigset subroutine, 1-1090
sigsetjmp subroutine, 1-1094
sigsetmask subroutine, 1-1087
sigstack subroutine, 1-1095
sigsuspend subroutine, 1-1097
sigwait subroutine, 1-1102
sin subroutine, 1-1103
single–byte conversion, 1-1372
sinh subroutine, 1-1105
sinhl subroutine, 1-1105
sinl subroutine, 1-1103
sleep subroutine, 1-1106
slk_attroff subroutine, 2-146
slk_init subroutine, 2-150
slk_label subroutine, 2-151
slk_noutrefresh subroutine, 2-152
slk_refresh subroutine, 2-153
slk_restore subroutine, 2-154
slk_set subroutine, 2-155
slk_touch subroutine, 2-156
SMIT ACL database, 1-1025
snprintf subroutine, 1-1108
SNRM2 function, 3-11
soft function key label, restore, 2-154
soft function key, setup, 2-155
soft function key, update, 2-156

X-11Index

soft function key–label, 2-150
soft label subroutines, 2-146
soft label, label name, 2-151
soft label, update, 2-152, 2-153
sputl subroutine, 1-1057
sqrt subroutine, 1-1113
sqrtl subroutine, 1-1113
square roots, computing, 1-1113
srand subroutine, 1-942
srandom subroutine, 1-945
src error message, src error code, 1-1116
SRC error messages, retrieving, 1-1115
src request headers, return address, 1-1118
SRC requests

getting subsystem reply information, 1-1121
sending replies, 1-1133

SRC status text, returning title line, 1-1153
SRC status text representations, getting, 1-1154,

1-1155
SRC subroutines

src_err_msg, 1-1115
srcrrqs, 1-1121
srcsbuf, 1-1123
srcsbuf_r, 1-1127
srcsrpy, 1-1133
srcsrqt, 1-1137, 1-1214
srcsrqt_r, 1-1141
srcstat, 1-1146
srcstat_r, 1-1149
srcstathdr, 1-1153
srcstattxt, 1-1154
srcstattxt_r, 1-1155
srcstop, 1-1156
srcstrt, 1-1159

src_err_msg subroutine, 1-1115
src_err_msg_r subroutine, 1-1116
srcrrqs subroutine, 1-1121
srcrrqs_r subroutine, 1-1118
srcsbuf subroutine, 1-1123
srcsbuf_r subroutine, 1-1127
srcsrpy subroutine, 1-1133
srcsrqt subroutine, 1-1137, 1-1214
srcsrqt_r subroutine, 1-1141
srcstat subroutine, 1-1146
srcstat_r subroutine, 1-1149
srcstathdr subroutine, 1-1153
srcstattxt subroutine, 1-1154
srcstattxt_r subroutine, 1-1155
srcstop subroutine, 1-1156
srcstrt subroutine, 1-1159
SROT subroutine, 3-8
SROTG subroutine, 3-7
SROTM subroutine, 3-16
SROTMG subroutine, 3-18
SSBMV subroutine, 3-31
SSCAL subroutine, 3-13
sscanf subroutine, 1-1004
ssignal subroutine, 1-1162
SSPMV subroutine, 3-33
SSPR subroutine, 3-62
SSPR2 subroutine, 3-66
SSWAP subroutine, 3-10
SSYMM subroutine, 3-71
SSYMV subroutine, 3-29

SSYR subroutine, 3-60
SSYR2 subroutine, 3-64
SSYR2K subroutine, 3-80
SSYRK subroutine, 3-76
stack, alternate, 1-1081
standard screen

clearing, 2-21
refreshing, 2-184

standend subroutine, 2-157
standout subroutine, 2-157
start_color subroutine, 2-159
stat subroutine, 1-1171
statacl subroutine, 1-1164
statfs subroutine, 1-1167
statvfs subroutine, 1-1169
statx subroutine, 1-1171
STBMV subroutine, 3-37
STBSV subroutine, 3-44
store screen coordinates, 2-55
STPMV subroutine, 3-40
STPSV subroutine, 3-47
strcasecmp subroutine, 1-1179
strcat subroutine, 1-1176
strchr subroutine, 1-1189
strcmp subroutine, 1-1179
strcoll subroutine, 1-1179
strcpy subroutine, 1-1176
strcspn subroutine, 1-1189
strdup subroutine, 1-1176
streams, assigning buffers, 1-1027
strerror subroutine, 1-1181
strfmon subroutine, 1-1182
strftime subroutine, 1-1185
string conversion

to double–precision floating points, 1-1397
to integers, 1-1197, 1-1398
to long integers, 1-1398

string manipulation macros, varargs, 1-1325
string manipulation subroutines

re_comp, 1-962
re_exec, 1-962
strncollen, 1-1192
wordexp, 1-1384
wordfree, 1-1387
wstring, 1-1394

string operations
appending strings, 1-1176
comparing strings, 1-1179
copying strings, 1-1176
determining existence of strings, 1-1189
determining string location, 1-1189
determining string size, 1-1189
splitting strings into tokens, 1-1189

string subroutines
index, 1-1189
rindex, 1-1189
strcasecmp, 1-1179
strcat, 1-1176
strchr, 1-1189
strcmp, 1-1179
strcoll, 1-1179
strcpy, 1-1176
strcspn, 1-1189
strdup, 1-1176

X-12 Technical Reference: Base Operating System

strerror, 1-1181
strlen, 1-1189
strncasecmp, 1-1179
strncat, 1-1176
strncmp, 1-1179
strncpy, 1-1176
strpbrk, 1-1189
strrchr, 1-1189
strspn, 1-1189
strstr, 1-1189
strtok, 1-1189
strxfrm, 1-1176

strings
compiling for pattern matching, 1-962
performing operations on type wchar, 1-1394
returning number of collation values, 1-1192

strlen subroutine, 1-1189
STRMM subroutine, 3-86
STRMV subroutine, 3-35
strncasecmp subroutine, 1-1179
strncat subroutine, 1-1176
strncmp subroutine, 1-1179
strncollen subroutine, 1-1192
strncpy subroutine, 1-1176
strpbrk subroutine, 1-1189
strptime subroutine, 1-1193
strrchr subroutine, 1-1189
STRSM subroutine, 3-89
strspn subroutine, 1-1189
strstr subroutine, 1-1189
STRSV subroutine, 3-42
strtok subroutine, 1-1189
strtol subroutine, 1-1197
strtoul subroutine, 1-1197
strxfrm subroutine, 1-1176
stty subroutine, 1-1199
subpad subroutine, 2-160
subroutines, restart behavior, 1-1085
subservers, 1-1123, 1-1127
substring, wide character, 1-1356
subsystems

getting status, 1-1123, 1-1127
returning status, 1-1146, 1-1149
sending requests, 1-1137, 1-1141, 1-1214
starting, 1-1159
stopping, 1-1156

subwin subroutine, 2-161
subwindows, 2-160
superbox subroutine, 2-14
superbox1 subroutine, 2-14
supplementary process group IDs, setting, 1-1032
swab subroutine, 1-1200
swapon subroutine, 1-1201
swapping memory

activating, 1-1201
returning information on devices, 1-1202

swapqpry subroutine, 1-1202
symbolic links

creating, 1-1203
reading contents, 1-955

symlink subroutine, 1-1203
symmetric operations

performing rank 1, 3-60, 3-62
performing rank 2, 3-64, 3-66

performing rank 2k, 3-80
performing rank k, 3-76

sync subroutine, 1-1205
synchronize I cache with D cache, 1-1206
SYS_CFGDD operation, 1-1218
SYS_CFGKMOD operation, 1-1220
SYS_GETPARMS operation, 1-1222
SYS_KLOAD operation, 1-1223
SYS_KULOAD operation, 1-1226
SYS_QDVSW operation, 1-1228
SYS_QUERYLOAD operation, 1-1230
SYS_SETPARMS operation, 1-1231
SYS_SINGLELOAD operation, 1-1233
sysconf subroutine, 1-1207
sysconfig operations

SYS_CFGDD, 1-1218
SYS_CFGKMOD, 1-1220
SYS_GETPARMS, 1-1222
SYS_KLOAD, 1-1223
SYS_KULOAD, 1-1226
SYS_QDVSW, 1-1228
SYS_QUERYLOAD, 1-1230
SYS_SETPARMS, 1-1231
SYS_SINGLELOAD, 1-1233

sysconfig subroutine, 1-1212
syslog subroutine, 1-1234
syslog_r subroutine, 1-1238
system limits, determining values, 1-1207
system subroutine, 1-1242

T
t_rcvreldata, subroutine, 1-1271
t_rcvv subroutine, 1-1273
t_rcvvudata subroutine, 1-1275
t_sndreldata, subroutine, 1-1278
t_sndv subroutine, 1-1280
t_sndvudata, subroutine, 1-1283
t_sysconf subroutine, 1-1286
tables, sorting data, 1-937
tahn subroutine, 1-1105
tan subroutine, 1-1103
tanhl subroutine, 1-1105
tanl subroutine, 1-1103
TCB attributes, querying or setting, 1-1244
tcb subroutine, 1-1244
tcdrain subroutine, 1-1246
tcflow subroutine, 1-1247
tcflush subroutine, 1-1249
tcgetattr subroutine, 1-1251
tcgetpgrp subroutine, 1-1252
tcsendbreak subroutine, 1-1253
tcsetattr subroutine, 1-1257
tcsetpgrp subroutine, 1-1259
tdelete subroutine, 1-1299
tempnam subroutine, 1-1265
temporary files

constructing names, 1-1265
creating, 1-1264

termcap identifiers
returning Boolean entry, 2-165
returning numeric entry, 2-166
returning string entry, 2-167

termdef subroutine, 1-1260

X-13Index

terminal attributes
getting, 1-1251
setting, 1-1257

terminal capabilities
applying parameters to, 2-168, 2-177
insert–character capability, 2-70
insert–line capability, 2-71

terminal capabilities, disable, 2-51
terminal color support, 2-69
terminal manipulation

determining number of lines and columns,
2-143, 2-163

echoing characters, 2-45
outputting string with padding information,

2-118, 2-178
switching input/output of curses subroutines,

2-142
toggling new–line and return translation, 2-108

terminal modes
CBREAK, 2-19
program, 2-122
raw, 2-120
resetting, 2-124
saving, 2-34
shell, 2-36, 2-123

terminal names, 1-1303
terminal numeric capability, 2-171
terminal speed, 2-12
terminal srting capability, 2-172
terminal states

getting, 1-1199, 1-1251
setting, 1-1199, 1-1257

terminal structures, 2-126
terminal variables, 2-139
terminals

beeping, 2-13
delaying output to, 2-39
determining type, 1-1303
flashing, 2-52
getting names, 1-1303
putting in video attribute mode, 2-182
querying characteristics, 1-1260
refreshing, 2-114, 2-121
setting up, 2-106
verbose name, 2-91

terminfo database, 2-169
tfind subroutine, 1-1299
tgetent subroutine, 2-163
tgetflag subroutine, 2-165
tgetnum subroutine, 2-166
tgetstr subroutine, 2-167
tgoto subroutine, 2-168
Thread–Safe C Library, subroutines

rand_r, 1-944
readdir_r, 1-953

thread_self subroutine, 1-1262
thread_setsched subroutine, 1-1255
Threads Library

signal, sleep, and timer handling
raise subroutine, 1-941
sithreadmask subroutine, 1-1099

sigwait subroutine, 1-1102
tigetflag subroutine, 2-169
tigetnum subroutine, 2-171

tigetstr subroutine, 2-172
time format conversions, 1-1185, 1-1193, 1-1343
time manipulation subroutines

nsleep, 1-1106
reltimerid, 1-976
sleep, 1-1106
usleep, 1-1106

time stamps, trace, 1-1287
time subroutines

read_real_time, 1-957
time_base_to_time, 1-957

time_base_to_time Subroutine, 1-957
timeout mode, 2-110
timezone subroutine, 1-1263
tmpfile subroutine, 1-1264
tmpnam subroutine, 1-1265
touchline subroutine, 2-173
touchoverlap subroutine, 2-175
touchwin subroutine, 2-176
towctrans subroutine, 1-1268
towlower subroutine, 1-1269
towupper subroutine, 1-1270
tparm subroutine, 2-177
tputs subroutine, 2-178
trace channels

halting data collection, 1-1291
recording trace event for, 1-1287
starting data collection, 1-1292

trace data
halting collection, 1-1291
recording, 1-1287
starting collection, 1-1292

trace events, recording, 1-1287, 1-1289
trace sessions

starting, 1-1293
stopping, 1-1294

trace subroutines
trcgen, 1-1287
trcgent, 1-1287
trchook, 1-1289
trcoff, 1-1291
trcon, 1-1292
trcstart, 1-1293
trcstop, 1-1294
utrchook, 1-1289

transmission of data
suspending, 1-1247
waiting for completion, 1-1246

trcgen subroutine, 1-1287
trcgent subroutine, 1-1287
trchook subroutine, 1-1289
trcoff subroutine, 1-1291
trcon subroutine, 1-1292
trcstart subroutine, 1-1293
trcstop subroutine, 1-1294
trigonometric functions

computing, 1-1103
computing hyperbolic, 1-1105

truncate subroutine, 1-1295
Trusted Computing Base attributes, querying or

setting, 1-1244
tsearch subroutine, 1-1299
tty (teletypewriter), flushing driver queue, 2-83
tty devices, determining, 1-1303

X-14 Technical Reference: Base Operating System

tty locking functions, controlling, 1-1301
tty modes

restoring state, 2-125
saving state, 2-129

tty subroutines, setcsmap, 1-1029
ttylock subroutine, 1-1301
ttylocked subroutine, 1-1301
ttyname subroutine, 1-1303
ttyslot subroutine, 1-1305
ttyunlock subroutine, 1-1301
ttywait subroutine, 1-1301
twalk subroutine, 1-1299
type ahead check, 2-179
type–ahead characters, flushing, 2-53
typeahead subroutine, 2-179

U
ulimit subroutine, 1-1306
umask subroutine, 1-1309
umount subroutine, 1-1310
uname subroutine, 1-1312
unamex subroutine, 1-1312
unctrl subroutine, 2-180
ungetc subroutine, 1-1314
ungetch subroutine, 2-181
ungetwc subroutine, 1-1314
unlink subroutine, 1-1316
unload subroutine, 1-1318
unlockpt subroutine, 1-1320
unsigned long integers, converting wide–character

strings to, 1-1365
update soft labels, 2-152, 2-153, 2-156
uppercase characters

converting from lowercase, 1-1270
converting to lowercase, 1-1269

user database, opening and closing, 1-1055
user information, getting and setting, 1-1321
usleep subroutine, 1-1106
usrinfo subroutine, 1-1321
ustat subroutine, 1-1167
utime subroutine, 1-1323
utimes subroutine, 1-1323
utmp file, finding current user slot in, 1-1305
utrchook subroutine, 1-1289
uvmount subroutine, 1-1310

V
varargs macros, 1-1325
vectors

computing constant times vector plus vector,
3-6

copying X to Y, 3-9
interchanging X and Y, 3-10
returning complex dot products, 3-4, 3-5
returning dot products, 3-3, 3-15
returning sum of absolute values, 3-12
scaling by constants, 3-13

VFS (Virtual File System)
mounting, 1-1329
unmounting, 1-1310

vfwprintf subroutine, 1-1328
vidattr subroutine, 2-182

video attributes
alarm signals

beeping, 2-13
flashing, 2-52

highlight mode, 2-157
putting terminal in specified mode, 2-182
setting, 2-10
turning off, 2-7
turning on, 2-9

vidputs subroutine, 2-182
Virtual File System, 1-1329
virtual screen cursor coordinates, 2-66
vmount subroutine, 1-1329
vsnprintf subroutine, 1-1333
vwsprintf subroutine, 1-1334

W
waddch subroutine, 2-3
waddstr subroutine, 2-5
wait subroutine, 1-1335
wait3 subroutine, 1-1335
waitpid subroutine, 1-1335
watof subroutine, 1-1397
watoi subroutine, 1-1398
watol subroutine, 1-1398
wattroff subroutine, 2-7
wattron subroutine, 2-9
wattrset subroutine, 2-10
wclear subroutine, 2-21
wclrtobot subroutine, 2-27
wclrtoeol subroutine, 2-28
wcscat subroutine, 1-1339
wcschr subroutine, 1-1339
wcscmp subroutine, 1-1339
wcscoll subroutine, 1-1341
wcscpy subroutine, 1-1339
wcscspn subroutine, 1-1339
wcsftime subroutine, 1-1343
wcsid subroutine, 1-1348
wcslen subroutine, 1-1349
wcsncat subroutine, 1-1350
wcsncmp subroutine, 1-1350
wcsncpy subroutine, 1-1350
wcspbrk subroutine, 1-1351
wcsrchr subroutine, 1-1352
wcsrtombs subroutine, 1-1353
wcsspn subroutine, 1-1355
wcsstr subroutine, 1-1356
wcstod subroutine, 1-1357
wcstok subroutine, 1-1359
wcstol subroutine, 1-1361
wcstoll subroutine, 1-1361
wcstombs subroutine, 1-1364
wcstoul subroutine, 1-1365
wcswcs subroutine, 1-1367
wcswidth subroutine, 1-1368
wcsxfrm subroutine, 1-1370
wctob subroutine, 1-1372
wctomb subroutine, 1-1373
wctrans subroutine, 1-1374
wctype subroutine, 1-1375
wcwidth subroutine, 1-1377

X-15Index

wdelch subroutine, 2-40
wdeleteln subroutine, 2-41
wechochar subroutine, 2-46
werase subroutine, 2-48
wgetch subroutine, 2-57
wgetstr subroutine, 2-63
wide character output, 1-1328
wide character subroutines

get_wctype, 1-1375
towlower, 1-1269
towupper, 1-1270
ungetc, 1-1314
ungetwc, 1-1314
wcscat, 1-1339
wcschr, 1-1339
wcscmp, 1-1339
wcscoll, 1-1341
wcscpy, 1-1339
wcscspn, 1-1339
wcsftime, 1-1343
wcsid, 1-1348
wcslen, 1-1349
wcsncat, 1-1350
wcsncmp, 1-1350
wcsncpy, 1-1350
wcspbrk, 1-1351
wcsrchr, 1-1352
wcsspn, 1-1355
wcstod, 1-1357
wcstok, 1-1359
wcstol, 1-1361
wcstoll, 1-1361
wcstombs, 1-1364
wcstoul, 1-1365
wcswcs, 1-1367
wcswidth, 1-1368
wcsxfrm, 1-1370
wctomb, 1-1373
wctype, 1-1375
wcwidth, 1-1377

wide character substring, 1-1356
wide character to single–byte, 1-1372
wide character, memory, 1-1379, 1-1380, 1-1381,

1-1382, 1-1383
wide characters

comparing strings, 1-1341
converting

from date and time, 1-1343
lowercase to uppercase, 1-1270
to double–precision number, 1-1357
to long integer, 1-1361
to multibyte, 1-1364, 1-1373
to tokens, 1-1359
to unsigned long integer, 1-1365
uppercase to lowercase, 1-1269

determining display width, 1-1368, 1-1377
determining number in string, 1-1349
locating character sequences, 1-1367
locating single characters, 1-1352
obtaining handle for valid property names,

1-1375
operations on null–terminated strings, 1-1339,

1-1350
pushing into input stream, 1-1314

returning charsetID, 1-1348
returning number in initial string segment,

1-1355
transforming strings to codes, 1-1370

winch subroutine, 2-73
window coordinates, 2-55
window manipulation

creating structures
pad, 2-100
subwindow, 2-161
window, 2-43, 2-103
window buffer, 2-92

drawing boxes, 2-14
marking changed overlap, 2-175
overwriting window, 2-112
refreshing

characters, 2-173, 2-176
current screen, 2-114, 2-121, 2-184
standard screen, 2-184
terminal, 2-114, 2-121, 2-184
window, 2-175, 2-184

window size, 2-62
window, copy, 2-31
windows, 2-54

clearing, 2-21, 2-23
creating, 2-43, 2-103, 2-161
deleting, 2-42
erasing, 2-48
moving, 2-98
refreshing, 2-175, 2-184
scrolling, 2-137, 2-138, 2-140
setting standout bit pattern, 2-41

winsch subroutine, 2-80
winsertln subroutine, 2-82
wmemchr subroutine, 1-1379
wmemcmp subroutine, 1-1380
wmemcpy subroutine, 1-1381
wmemmove subroutine, 1-1382
wmemmset subroutine, 1-1383
wmove subroutine, 2-95
wnoutrefresh subroutine, 2-184
word expansions, performing, 1-1384
wordexp subroutine, 1-1384, 1-1387
wordfree subroutine, 1-1387
wprintw subroutine, 2-116
wrefresh subroutine, 2-121
write contents of virtual screen, 2-132
write operations, writing to files, 1-1388
write subroutine, described, 1-1388
writev subroutine, described, 1-1388
writevx subroutine, 1-1388
writex subroutine, described, 1-1388
wscanw subroutine, 2-130
wsetscrreg subroutine, 2-140
wsscanf subroutine, 1-1004
wstandend subroutine, 2-157
wstandout subroutine, 2-157
wstring subroutines, 1-1394
wstrtod subroutine, 1-1397
wstrtol subroutine, 1-1398

X
XTI variables, 1-1286

X-16 Technical Reference: Base Operating System

Y
yield processor, 1-1010
yield subroutine, 1-1400

Z
ZAXPY subroutine, 3-6
ZCOPY subroutine, 3-9
ZDOTC function, 3-4
ZDOTU function, 3-5
ZDROT subroutine, 3-8
ZDSCAL subroutine, 3-13
ZGBMV subroutine, 3-21
ZGEMM subroutine, 3-68
ZGEMV subroutine, 3-19
ZGERC subroutine, 3-51
ZGERU subroutine, 3-50
ZHBMV subroutine, 3-25
ZHEMM subroutine, 3-74
ZHEMV subroutine, 3-23
ZHER subroutine, 3-52

ZHER2 subroutine, 3-56
ZHER2K subroutine, 3-83
ZHERK subroutine, 3-78
ZHPMV subroutine, 3-27
ZHPR subroutine, 3-54
ZHPR2 subroutine, 3-58
ZROTG subroutine, 3-7
ZSCAL subroutine, 3-13
ZSWAP subroutine, 3-10
ZSYMM subroutine, 3-71
ZSYR2K subroutine, 3-80
ZSYRK subroutine, 3-76
ZTBMV subroutine, 3-37
ZTBSV subroutine, 3-44
ZTPMV subroutine, 3-40
ZTPSV subroutine, 3-47
ZTRMM subroutine, 3-86
ZTRMV subroutine, 3-35
ZTRSM subroutine, 3-89
ZTRSV subroutine, 3-42

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull Technical Reference Base Operating System and Extensions Volume 2/2

Nº Reférence / Reference Nº : 86 A2 82AP 05 Daté / Dated : February 1999

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

Technical Publications Ordering Form

Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:

Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL ELECTRONICS ANGERS
CEDOC
ATTN / MME DUMOULIN
34 Rue du Nid de Pie – BP 428
49004 ANGERS CEDEX 01
FRANCE

Managers / Gestionnaires :
Mrs. / Mme : C. DUMOULIN +33 (0) 2 41 73 76 65
Mr. / M : L. CHERUBIN +33 (0) 2 41 73 63 96

FAX : +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web site at: / Ou visitez notre site web à:

http://www–frec.bull.com (PUBLICATIONS, Technical Literature, Ordering Form)

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

86 A2 82AP 05

ORDER REFERENCE

P
L
A

C
E

 B
A

R
 C

O
D

E
 I

N
 L

O
W

E
R

L
E

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.

AIX

86 A2 82AP 05

Technical
Reference

Base Operating
System &

Extensions
Volume 2/2

AIX

86 A2 82AP 05

Technical
Reference

Base Operating
System &

Extensions
Volume 2/2

AIX

86 A2 82AP 05

Technical
Reference

Base Operating
System &

Extensions
Volume 2/2

