Bull

Kernel Extensions and Device Support
Programming Concepts

AlIX

ORDER REFERENCE
86 A2 36JX 02

Bull

Kernel Extensions and Device Support
Programming Concepts

AlX

Software

November 1999

BULL ELECTRONICS ANGERS
CEDOC

34 Rue du Nid de Pie — BP 428
49004 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 36JX 02

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 1999

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIXis a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

Year 2000

The product documented in this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About ThisBook kv

Who Should Use This Bookxv
How to Use ThisBookxv
bverview ofContents.xv

i xvi

[SO 9000xvi

AIX 32-Bit Support for the X /Open UNIX9S
Fpemﬁcatmn

xvi
/AIX 32-Bit and 64-Bit Support for the UNIX98
Specification e e e . vii
Related Publicationsvii
\Chapter 1. Kernel Environment. .1
Understandlng Kernel Extension Binding . Ik
Base Kernel Services - the /unix Name Space Ik
Usmg System Calls with Kernel Extensions . .] E
Uﬂngﬁmaaiejimmnesnéé_g#_#
Using Libraries1k
Understandlng Execution EnVlronments . I
Process Environment B
t[nterrupt Environment . I8
Understandlng Kernel Threads)
Kernel Threads, Kernel Only Threads, and User
Threads ‘E
Kernel Data Structures. . .10
Thread Creation, Execution, and Termlnatlon . .10
Thread Scheduhng . . 10
10
U51ng Kernel Processes .11
Introduction to Kernel Processes 11
Accessing Data from a Kernel Process .12
Cross-Memory Services 13
[Kernel Process Creation, Execution, and
Termination .13
14
Kernel Process Signal and Exception Handling . 14
Kernel Process Use of System Calls 15
Accessing User-Mode Data While in Kernel Mode 15
Data Transfer Services.
U51ng Cross-Memory Kernel Services.16
Understandlng Locking16
Lockl Locks 16
Simple Locks 17
Complex Locks17
h"ypes of Critical Sections.17
Priority Promotion 17
locking Strategy in Kernel Mode17
Understanding Exception Handling18
Exception Processing S £)
- 18
t[mplementmg Kernel Exception Handlers .20

User-Mode Exception Handling23

© Copyright IBM Corp. 1997, 1999

8

64-bit Kernel Extension Development.

Chapter 2. System Calls
Differences Between a System Call and a Useﬂ
Function
Understanding System Call Execution
User Protection Domain .
Kernel Protection Domain
Actions of the System Call Hand]er
Accessing Kernel Data While in a System Call.
Preempting a System Call .
Handling Signals While in a System Call
Handling Exceptions While in a System Call
Understanding Nesting and Kernel-Mode Use of
System Calls . L.
Page Faulting within System Calls
Returning Error Information from System Ca]ls
System Calls Available to Kernel Extensions
System Calls Available to All Kernel Extensions

TEge RBRE SRS SR

(e
=

T8 8

loglcal File System Overview
Component Structure of the Loglcal Flle System
Virtual File System Overview .
Understanding Virtual Nodes (V- nodes\
Understanding Generic I-nodes (G-nodes) .
Understanding the Virtual File System Interface
Understanding Data Structures and Header Files for
Virtual File Systems
Configuring a Virtual File System .

[evn
o

3 g9

\Chapter 4. Kernel Services .
tategories of Kernel Services
[/Q Kernel Services
Block I/0 Kernel Services
Buffer Cache Kernel Services
Character 1/0 Kernel Services

(D
O

@E@E@E@Eﬁaag@@

i

Memory Buffer (mbuf) Kernel Services
DMA Management Kernel Services]
Block 1/ O Buffer Cache Kernel Services: Overv1ew

E

Using the Buffer Cache write Services
Understandlng Interrupts.
Interrupt Priorities
Understanding DMA Transfers .
Hiding DMA Data .
Accessing Data While the DMA Operatlon Is 1nJ
Progress
Kernel Extension and Device Driver Management
Kernel Services . . . |
Kernel Extension Loadlng and Blndlng Serv1ces 46

B

E

Device Driver Management Services | ld

\'%

IList of Kernel Extension and Device Driver

Management Kernel Services

ILock Allocation and Other Services
Simple Locks .

k‘omo]ex Locks

ILockl Locks

Atomic Lock Operatlons .
Atomic Operations .

Logical File System Kernel Services
ther Considerations .

List of Logical File System Kernel Serv1ces .

emory Kernel Services

Memory Management Kernel Services
Memory Pinning Kernel Services .

User Memory Access Kernel Services .

Wirtual Memory Management Kernel Services

tross-Memory Kernel Services .
fUnderstandlng Virtual Memory Manager Interfaces

Virtual Memory Obijects

IAddressmg Data.
Moving Data to or from a Vlrtual Memory Ob]ect
Data Flushmg L.

I[’rotecting Data .
Executable Data . .
Installing Pager Backends.

Services that Support 64-bit Processes
Message Queue Kernel Services
Network Kernel Services .
[Address Family Domain and Network Interface
Device Driver Kernel Services .
Routing and Interface Address Kernel Seerce§

[Protocol Kernel Services . .
Communications Device Handler Interface Kernel
ervices

treating Kernel Processes
treating Kernel Threads .
Kernel Structures Encapsulation

Signal Management.
Events Management .
List of Process, Thread, and Exceptlon

RAS Kernel Services .
List of RAS Kernel Serv1ces .

Security Kernel Services

Timer and Time-of- -Day Kernel Services .
Time-Of- Day Kernel Services .
Fine Granularity Timer Kernel Serv1ces .
Timer Kernel Services for C ompatibility
Watchdog Timer Kernel Services

IUSlng Fine Granularity Timer Services and

Btructures .

todmg the Timer Function . .
stmg Multiprocessor-Safe Timer Services

Vi Kernel Extensions and Device Support Programming Concepts

(&N

B BIBIBIE 222 SIS % &k

56

S B

I

gz sisisis i)

2 RRIR

SBIQAFRR RIG

B3|

9

Virtual File System (VFS) Kernel Services . . . 169

\Chapter 5. Asynchronous I/0

Subsystem . C . 71
LAsynchronous 1/0 Overv1ew e e e .
How do I know if I need touse AIO? . . . |72
How many AIO Servers am I currently using?. 172
How many AIO servers do I need? 1173
’Prereaumtes | @
ﬂ?unctlons of Asynchronous I/O . 173
Large File-Enabled Asynchronous 1/0 (AIX
Version 4.2.1 or later) 173
Nonblockmg 1/0 | 74
Notification of I/O Completion. 174
Cancellation of I/O Requests 175
LAsynchronous I/0O Subroutines. 175
[Order and Priority of Asynchronous I/O Calls | z6
Subroutines Affected by Asynchronous 1/0 176
bhanging Attributes for Asynchronous I/0. 176
64-bit Enhancements 177

I

Device Configuration Subsystem Overview .
General Structure of the Device Configuration

Subsystem |80
I—Iigh—Level Perspective 183
Device Method Level . B4
Low-Level Perspective. | %

DemﬁmﬂgurﬂmﬂaiabawﬁmdeL___f

Basic Device Configuration Procedures Overview. 185

Device Configuration Manager Overview } 85

Devices Graph 86
Invoking the Configuration Manager . . 1Bz
Device Classes, Subclasses, and Types Overview . 187
Mriting a Device Method . 188
Invokmg Methods . 188
Example Methods . . 188
fUnderstandlng Device Methods Interfaces |89

Run-Time Configuration Commands .
Understandlng Device States
%ddlng an Unsupported Device to the System
h\/[odlfvmg the Predefined Database
%dding Device Methods .
%dding a Device Driver .
Using installp Procedures.

Devices. .

LAccessmg DeV1ce Attrlbutes
h\/[odlfvmg an Attribute Value

Device Dependent Structure (DDS) Overview .
How the Change Method Updates the DDS
Guidelines for DDS Structure .
IExamDIe of DDS

List of Device Configuration Commands

List of Device Configuration Subroutines

2 glSIs SISIRIE S

Chapter 7. Communications /O
Subsystem.9

[User-Mode Interface to a Communications PDH . . 99
IKernel-Mode Interface to a Communications PDH 99

Communications Physical Device Handler Model
Overview.hoo
Use of mbuf Structures in the Commumcatlons
PDH
Common Communications Status and ExceptlonJ
Codes. ho
Status Blocks for Commumcatrons Device Handlers
Qverview

CIO_START_DONEh02
CIO HALT DONEf02
CIO_TX_DONE 103
CIONULLBLKho3
CIO_LOST STATUS103
bIO_ASYNC_STATUS . 103
o4

Blnary Synchronous Communication (BSC) with
the MPQP Adapter . . 104
bescrrptlon of the MPQP Cardhos
i 108
Bpecial Files.hos
Entry Points.hos
tonﬁgurmg the Serial Optrcal Llnk Dev1ce Driver 109
t[’hysmal and Logical Devices 109

Changeable Attributes of the Serial Optical Link
Bubsystern s e imo
Driver. .)
Adding ATM LANE Clients3

bonﬁguratlon Parameters for the ATM LANE
Device Driver

Device Driver Configuration and

Unconfiguration R i
Device Driver Open . . 118

Data Transmission.[18
Data Reception. 119
/Asynchronous Status
Device Control Operationsh2o
Tracing and Error Loggmg in the ATM LANE

evice Driver hoa

124

tonfiguration Parameters for ATM MPOA
Clienth2e
ﬁracrng and Error Loggmg in the ATM MPOA
Client

Fiber Distributed Data Interface (FDDI) Device

Driver. . . . P b4
bonﬁguratron Parameters for FDDI Devrcd
Driver 127
FDDI Device Driver Configuration and
Unconﬁguratlon s .. hos
128
Device Driver Close0128
Data Transmission.[28
Data Reception. 129

Reliability, Availability, and Serviceability for

FDDI Device Driver . . 129
THmh Performance (8fc8) Token- ng Dev1ce Drlver 131
Configuration Parameters for Token-Ring Device
Driver. e e 132
Unconfiguration . 132
Device Driver Open . . 132
Device Driver Close . 132

Data Transmission.
Data Reception .
Asynchronous Status .
Device Control Operations
Trace Points and Error Log Templates for 8fc8
Token-Ring Device Driver . .

ngh Performance (8fa2) Token-Ring DeVlce Drrver 140
Configuration Parameters for 8fa2 Token-Ring]
Device Driver
Device Driver Configuration and
Unconfiguration

ARy

B

—_
S
=

Device Driver Close . . 142
Data Transmission. . 142
Data Reception . 142

Asynchronous Status
Device Control Operations .
Trace Points and Error Log Ternplates for 8fa2

aa

Token-Ring Device Driver . . 147
IPCI Token- Ring High Performance (14]01 800\‘
Device Driver . 149
Configuration Pararneters 150

Device Driver Configuration and

U i ;

Device Driver Open . e

Device Driver Close . .

Data T A

Data Reception .

Asynchronous Status .

Device Control Operations .

Reliability, Availability, and c}ervweabllltv (RA'%)
Ethernet Device Drivers .

Configuration Parameters

Interface Entry Points

Asynchronous Status

Device Control Operations . .

Reliability, Availability, and Servrceabrhty (RAS) 171

5]

—_
Q1
=

3]

@a@@

Ju—y
a1
O

@@Q

\Chapter 8. Graphic Input Devices
Subsystem[179

bpen and close Subroutmes. e 17
read and write Subroutines.179
ioctl Subroutines179
Keyboard. 179
Mouse 180
Tablet180
GIO (Graphics I/ O) Adapter180
Dials180
LPFK 180
ﬁnput Ring . . . 181
Management of Multrple Keyboard Input ngd 181
Event Report Formats 181

Contents Vil

iKeyboard Service Vector.h8
Bpecial Keyboard Sequences83

ol o Low Function Terminal
Subsystem185
T e e e——

iDescription N T
bonﬁguration snms
TOCTLS Needed for AIXwindow Support . . . 186
Low Function Terminal to System Keyboard
Interface hse
[Low Function Termmal to Disolav Dev1ce
Driver Interface h86
Low Function Terminal DeVice Drlver Entry
iPomts L. .. %

tombonents Affected bv the Low Functlon

iTermmal Interface.hs
bonﬁguratlon User Commandsse
iDisplay Device Driver[187

h87
iDiagnostlcs . e e 188

\Accented Charactershss
[List of Diacritics Supported bv the HFT LET
Bubsystem e)

Chapter 10. Logical Volume

Subsystem19

Direct Access Storage DeVlces (DASDs)11

Physical Volumesha1
Physical Volume Tmolementatlon leltationd 192
i[’hysmal Volume Layout. 192
Reserved Sectors on a Physical Volume. . . . 192
Sectors Reserved for the Logical Volume
Manager (ILVM) 193

iUnderstandmg the Logical Volume Device Driver 195
Data Structures.ho
Top Half of LVDD.19
Bottom Half of the LVDD09
Interface to Physical Disk Device Drivers . . . 198

iUnderstandmg Logical Volumes and Bad Blocks 199

99

iDetecting and Correcting Bad Blocks 199
bhanging the mwcc_entries VariableDR00
Prerequisite Tasks or Conditions 200
Procedure 200

Chapter 11. Printer Addition
Management Subsystem 203

Printer Types Currently Supported 203
Printer Types Currently Unsupported 203
LAdding a New Printer Type to Your System . . . 203
Typebo3
Modifying Prmter Attributesbo4

bo4
Mddmg a Printer Formatter to the Printer Backend 205
Understanding Embedded References in Printer

Attribute Strings bos5

Chapter 12. Small Computer System\

Interface Subsystem 207
sCsI Subsystem Overview 207
Responsibilities of the SCSI Adapter Dev1cd -
Driver 207
ﬁ{esponsibilities of the SCSI Device Driver. . . 207
ommunication between SCSI Devices. . . . 208
Understanding SCSI Asynchronous Event o
Handling 209
Defined Events and Recovery Actions 210
Asynchronous Event-Handling Routine. . . . 210
SCSI Error Recovery 21

SCSI Initiator-Mode Recoverv When Not
Command Tag Queuing . . . 21
sCSI Imtiator—Mode Recovery Durlng Command L
212
L’Xnalyzmg Returned Status.213
il"arget Mode Error Recovery . . . 214
A Typical Initiator-Mode SCSI Driver Transaction L
equence 214

iUnderstanding SCSI Device Driver Internal
Commands 215
Understanding the Execution of Imtiator 1 / d -
iReauests 215
Bpanned (Consolidated) Commands. 216
Fragmented Commands.216
Gathered Write Commands.217
SCSI Command Tag Queuing 218
Understanding the sc_buf Structure 218
Fields in the sc_buf Structure e e e e ... 218
223
Responsibilities of the SCSI Device Driver. . . 223
SCsI Options to the openx Subroutine 223
bsing the SC_FORCED_OPEN Option 224
ion 224
iUsmg the SC DIAGNOSTIC Option.224
Using the SC_NO_RESERVE Option.225
bsmg the SC_SINGLE Option.225
227
SCSI Error Processing 227
Device Driver and Adapter DeVice Driveri o
Interfaces 227
Performing SCSI Dumps 228
sCsI Target-Mode Overview 229
bonfigurmg and Using SCSI Target Mode . . 229
- 230
iUnderstandmg Target-Mode Data Pacing . . 230
iUnderstandmg the SCSI Target Mode Dev1cd -
Driver Receive Buffer Routine.231
232

iUnderstandmg the Execution of SCSI

il"arget Mode Requests233
iRequired SCSI Adapter Device Dnver 1oct1 -
Commands 235
Initiator-Mode ioctl Commands 235
Target-Mode ioctl Commands237
. TS - 239

Chapter 13. Fibre Channel Protocol
for SCSI Subsystem 241

Vviii Kernel Extensions and Device Support Programming Concepts

FCP Subsystem Overview bat
Responsibilities of the FCP Adapter Dev1cd

Driver 41
Responsibilities of the FCP Device Driver . . . 241
ommunication between FCP Devices %
Understanding FCP Asynchronous Event Handlinﬁ 242
Defined Events and Recovery Actions 243
Asynchronous Event-Handling Routine. . . . 244
FCP Error Recovery 44
autosense data . . . N
NACA=1 error recovery.bas

FCP Initiator-Mode Recovery When Not Command
Ta o Queuing
FCP Initiator-Mode Recovery During Command

Ta Queuing . . L.pb4s
%Analyzmg Returned Status . eba7
A Typical Initiator-Mode FCP Driver Transaction
Bequence .oDb4s
Understandmg FCP DeV1ce Drlver Internal
Commands 49
Understanding the Execution of Initiator I/O
tRequests .)
Bpanned (Consohdated) CommandsDbs0
250
FCP Command Tag Queuing 251
tUnderstandm,C,r the scsi_buf StructureD51
Fields in the scsi_buf StructureD51
Responsibilities of the FCP Device Driver . . . 257
FCP Options to the openx Subroutine 257
Using the SC_FORCED_OPEN Option g
Using the SC_DIAGNOSTIC Option.[58
Using the SC_NO_RESERVE Option.D59
. . . ’E
tlosmg the FCP DeviceDbel
FCP Error Processing.be1
length of Data Transfer for FCP Commands .. kel
Interfaces. . . T
ﬁ’erformmg FCP Dumpsbe2
tRequlred FCP Adapter Device Drlver 1oct1
Commands 263
bescrlptlonbes
Initiator-Mode ioctl CommandsDbe3

Initiator-Mode ioctl Command used by FCP
Device Drivers

Chapter 14. FCP Device Drivers . 269
t[’rogramming FCP Device DriversDP69
FCP Device Driver Overview[_69
FCP Adapter/Device Interface. 270
scsi_buf Structure b
\Adapter/ DeV1ce Drlver Intercommunlcatlon . ,275
276

config. 276
bpen R
closeb7s
bpenx e bys

strategy . 277
ioctl . 277
start ﬂ
interrupt . . . 277
FCP Adapter ioctl Operatlons . . 277
IOCINFO 277
SCIOLSTART . 278
SCIOLSTOP . . 278
SCIOLEVENT . . 279
SCIOLINQU 279
SCIOLSTUNIT . . 280
SCIOLTUR . . 281l
SCIOLREAD . 281l
SCIOLRESET 282
SCIOLHALT. . 282
SCIOLCMD . . 283
Chapter 15. Integrated Device
Electronics (IDE) Subsystem. . 285
Pesponsibilities of the IDE Adapter Device Driver %
Communication Between IDE Device Drivers and
IDE Adapter Device Drivers . 286
[DE Error Recovery 284
Analyzing Returned Status . . 286
A Typical IDE Driver Transaction Sequence . 287
IDE Device Driver Internal Commands. . 288
Execution of 1/0 Requests 288
Spanned (Consolidated) Commands. . 289
Fragmented Commands . . 290
Gathered Write Commands. . 290
ide_ 291
Fields in the ataide_buf Structure. . 291
Other IDE Design Considerations . 293
IDE Device Driver Tasks.293
Closing the IDE Device 294
IDE Error Processing . .. 294
Device Driver and Adapter DeV1ce Drlven
Interfaces 294
Performing IDE Dumps . . 294
fRequlred IDE Adapter Device Drlver 1octl
Commands . . 295
ioctl Commands 295
Chapter 16. Serial Direct Access 553
DASD Device Block Level Description . . 299
Chapter 17. Debugglng Tools 301|
Bystem Dump . . 301
Initiating a QVstem Dumo 301
Including Device Driver Information in a
System Dump . . . 302
Formatting a System Dump . 304
305
Addresses in crash . 306
Command-line Editing . . 304
Output Redirection306
crash Subcommands . . . 307
Low Level Kernel Debugger (LLDB). . 332
Contents 11X

[ovn

LLDB Kernel Debug Program .

Loading and Starting the LLDB Kernel Debug

Program

Using a Terminal with the LLDB Kernel Debug
rogram .

32

B

RIS

h)ebugglng Multiprocessor Systems .
LLDB Kernel Debug Program Concepts
LLDB Kernel Debug Program Commands .

(e
[$5}
[0e}

‘grouped in Alphabetical Order
LLDB Kernel Debug Program Commands
‘grouped by Task Category .

ﬁ’rogram Commands . . .
alter Command for the LLDB Kernel Debug
ﬂ’rogram . e

Program . .

break Command for the LLDB Kernel Debuﬁ

Program

breaks Command for the LLDB Kernel Debu,d

Program . .

buckets Command for the LLDB Kernel Debug

Program

clear Command for the LLDB Kernel Debug
rogram . .

cpu Command for the LLDB Kernel Debug

Program

display Command for the LLDB Kernel Debug
rogram . . . 345

dmodsw Command for the LLDB Kernel Debuﬂ

Program

drivers Command for the LLDB Kernel Debug
‘rogram .

2 g g @ 2 2 g 8

[ovn

44

Bl

g |

(evn
~
N

Program . .
float Command for the LLDB Kernel Debug
rogram . e

ﬁ’rogram .o
fs Command for the LLDB Kernel Debug
rogram . e

t[’rogram . .
Thelp Command for the LLDB Kernel Debugt
rogram . P

t[’rogram .o .

tmap Command for the LLDB Kernel Debugt
rogram

mblk Command for the LLDB Kernel Debug

Program .

mst64 Command for the LLDB Kernel Debug
rogram

netdata Command for the LLDB Kernel Debug

Trogram .. . B54

next Command for the LLDB Kernel Debuﬁ
rogram

origin Command for the LLDB Kernel Debug

ﬁ’rogram..............B54

TEETREEEE

i

X Kernel Extensions and Device Support Programming Concepts

tppd Command for the LLDB Kernel Debug

rogram .

ﬁ’rogram .o
bueue Command for the LLDB Kernel Debug

rogram
&

buit Command for the LLDB Kernel Debugt

ﬁ’rogram .o
reason Command for the LLDB Kernel Debug

rogram
&

reboot Command for the LLDB Kernel Debug
Program . .
reset Command for the LLDB Kernel Debug

rogram
&

screen Command for the LLDB Kernel Debug
Program .

begst64 Command for the LLDB Kernel Debug

rogram
&

set Command for the LLDB Kernel Debug
Program .

Program . . .
sr64 Command for the LLDB Kernel Debug
Program . e e e e e

ﬁ’rogram .
stack Command for the LLDB Kernel Debug

ﬂ’rogram .

ﬁ’rogram .
btep Command for the LLDB Kernel Debugt

Program .

ﬁ’rogram .
stream Command for the LLDB Kernel Debug

h’rogram

bwap Command for the LLDB Kernel Debug

Program .

bysmfo Command for the LLDB Kernel Debug

h’rogram

thread Command for the LLDB Kernel Debug
Program .
trace Command for the LLDB Kernel Debug

h’rogram

trb Command for the LLDB Kernel Debug
Program . .
tty Command for the LLDB Kernel Debug

TProgram

un Command for the LLDB Kernel Debug
Program .

Program . .
user64 Command for the LLDB Kernel Debuﬂ

h’rogram .

ﬁ’rogram .o
vars Command for the LLDB Kernel Debugt

ﬁ’rogram .

Program .

. 355

. 355

. 361
. 362
. 362
. 363
. 364
. 364
. 365

. 365

. 372
. 372
. 373
. 373
. 375

. 375

watch Command for the LLDB Kernel Debug
rogram

ﬁ’rogram
Maps and Lrstmgs as Tools for the LLDB Kerneﬂ

tompﬂer Listing
ap File
Usrng the LLDB Kernel Debug Program

Z(é“
988 § 8

o
—_

(

28 2§

Nlewmg and Modifying Global Data
brsplayrng Reglsters on a Micro Channel
LAdapter . ..
Stack Trace
Error Messages for the LLDB Kernel Debug
rogram
KDB Kernel Debugger and Command

Q)
03]
0¢]

2B

The kdb Command
KDB Kernel Debugger

\O
—_

2 g

Using a Terminal with the KDB Kernel

Debugger . .

Entermg the KDB Kernel Debugger .

bebugglng Multiprocessor Systems

Kernel 1 Debug Program Concepts . .
Subcommands for the KDB Kernel Debugger andJ
kdb Command

[evn
Nej
N

22 g8
J@

IS
€3}
©

F

KDB Kernel Debug Program Subcommands
grouped in Alphabetical Order
KDB Kernel Debug Subcommands grouped by
Task Category

Basic Subcommands for the KDB Kernel Debugger

(v n
(o)

9

g

dd

and kdb Command k10
h Subcommand @
his Subcommand . i
e Subcommand . 12
set Subcommand . 12
f Subcommand h14
ktx Subcommand . .17
cdt Subcommand . .19

Trace Subcommands for the KDB Kernel Debugger

5l

bt Subcommand
ct and cat Subcommands
t script Subcommand

=
N
o

RIE]

(

Breakpoints/Steps Subcommands for the KDB
Kernel Debugger and kdb Command
Subcommand
Ib Subcommand
¢, 1c, and ca Subcommands
r and gt Subcommands

=
N
—

SIEEIEIE

Dumps/Display/Decode Subcommands for the
KDB Kernel Debugger and kdb Command
d, dw, dd, dp, dpw, dpd Subcommands

=~
N
[o)

5 g

33

dr Subcommand

ddvb, ddvh, ddvw, ddvd, ddpd ddph and
ddpw Subcommands

5]

ext and extp Subcommands
Modrfy Memory Subcommands for the KDB

g

m, mw, md, mp, mpw, and mpd Subcommands 432
mr Subcommand43
mdvb, mdvh, mdvw, mdvd mdpb mdph yer
mdpw, mdpd Subcommands |
Namelist/Symbol Subcommands for the KDB

Kernel Debugger and kdb Command 434
nm and ts Subcommands436
ns Subcommand 434

Watch Break Points Subcommands for the KDB

Kernel Debugger and kdb Command 437

wr, Www, wrw, cw, lwr, lww, lwrw, and ICM
Subcommands
Miscellaneous Subcommands for the KDB Kernel
bebugger and kdb Command

&

~
@
x©

Conditional Subcommands for the KDB Kernel
Debugger and kdb Command
test Subcommand439

s
€3}
O ©

g
€8]
\O

Kernel Debugger and kdb Command -
hcal and dcal Subcommands . . . 439
Machine Status Subcommands for the KDB Kerne]J

status Subcommand
switch Subcommand .
Kernel Extension Loader Subcommands for thd

S~
i~
=

lke, stbl, and rmst Subcommands.

export table Subcommand . 445
Kernel Debugger and kdb Command . 446

tr and tv Subcommands . . . 446
Process Subcommands for the KDB Kernel
Debugger_andjgdb_Command_##_.##ﬁ# 447

ppda Subcommand 447

'S
=~
ool

intr Subcommand
mst Subcommand

Glal

thread Subcommand
ttid and tpid Subcommands .
rung, lockq, and sleepq Subcommands .

o~
a1
N

B8

LVM Subcommands for the KDB Kernel Debugger
and kdb Command

~
€1
O

@@

volgrp Subcommand

pvol Subcommand . 461
Ivol Subcommand . . 461
and kdb Command . 462
ascsi Subcommand 462

vscsi Subcommand

Memory Allocator Subcommands for the KDB
Kernel Debugger and kdb Command

Contents X1

=
S
~

Theap Subcommand

xm Subcommand73
bucket Subcommand 475
kmstats Subcommands lye
File System Subcommands for the KDB Kernel o
DebuggeLand_kdb_CQmmandéééé####
buffer Subcommandy
hbuffer Subcommand. . 78
fbuffer Subcommand h7s

Lq;nndeﬁnhcommand____gé___# h7s
gfs Subcommand 479
file Subcommand u79

T. .
) . X
o

a

o

£

o

a

o

=

=t

QO

2 .o
Q.

% BlR[E
%o oo |Bo |G
» NIRIS

33

W

o
@
s}
=}
o
Q.
¢}
wn
c
lon
A
@]
=]
=]
1Y
o}
Q.
=
o
a1

devnode Subcommand 486
fifonode Subcommand Ty
hnode Subcommand . luss
Bystem Table Subcommands for the KDB Kernel
DebnggeLanngdb_CQmmandééééééé# 488
var Subcommandlss
devsw Subcommandl89
timer Subcommandlkoo
slk and clk Subcommands 491
iplcb Subcommand 491
trace Subcommand . .))

Net Subcommands for the KDB Kernel Debuggeﬂ

'@@

ifnet Subcommand

kcb Subcommandhos
udb Subcommand. los
kock Subcommand . 196
ttcpcb Subcommand . 196
mbuf Subcommand . o7
and kdb Command . o7

=
\O
AN

vmker Subcommand
map Subcommand

3

fmstat Subcommand

lmaddr Subcommandbo1
tpdt Subcommandbo1
scb Subcommand b2
ﬁft SubcommandbB03

te Subcommand 506

g
%
w
&
Q
=
2
2
SRI2RISIR]

5
3
®
(]
=
o
o
Q
3
3
o]
=}
Q.
ar
_
o

T

sl
0
wn
[«
[on
(@]
Q
=
=
job]
=]
Q.
ar
—_
N

(=2

xi

Kernel Extensions and Device Support Programming Concepts

lockanch Subcommand 513
lockhash Subcommand514
515
tvmdmap Subcommand518
vmlocks Subcommand 519
and kdb Command52
start and stop Subcommands52
kpu Subcommand 521
the KDB Kernel Debugger and kdb Command . . 522
dbat Subcommand 522
ibat Subcommand52
523
mibat Subcommand 524
btac/BRAT Subcommands for the KDB Kernel o
bebugger and kdb Command.524
524

machdep Subcommands for the KDB Kernel
bebugger and kdb Command.526
526
U51ng the KDB Kernel Debug Program. . . . 526
Example Filesb2
Ceneratmg Maps and L1st1ngs5727
527
Map File . . . o 4 <
Bettmg Breakpomts53
Viewing and Modifying Global Data534
Stack Trace 538
demo.c Example File.542
demokext.c Example File 544
demo.h Example File. 546
i 546
comp_link Example File.546
Error Logglng O - o}
i 547
todmg Steps548
ertmg to the /dev/error Spec1al Flle553
Debug and Performance Tracing 554
Introduction 554
U51ng the trace Facility556
Controlling trace 559
ﬂ’roducmg atrace Report561
564
Usage Hints. . . B 4
SMIT Trace Hook Groups . . . 579
Memory Overlay Detection System (MODS) . . 579
AIX Kernel Memory Overlay Detection System -
(MODS)59

/Appendix A. Alphabetical List of

Kernel Services 583

Kernel Services Available in Process and Interrupt -

Environments 583
Kernel Services Available in the Process
Environment Only.588

Index.593

Readers’ Comments — We’d Like to
HearfromYou.599

Contents xiii

Xiv Kernel Extensions and Device Support Programming Concepts

About This Book

This book provides information on the kernel programming environment, and
about writing system call, kernel service, and virtual file system kernel extensions.
Conceptual information on existing kernel subsystems is also provided.

More detailed information on existing kernel services and interface requirements
for kernel extensions can be found in AIX Version 4.3 Technical Reference: Kernel and
Subsystems Volume 1, Order Number SC23-4163, and AIX Version 4.3 Technical
Reference: Kernel and Subsystems Volume 2, Order Number SC23-4164.

Note: The information in this book can also be found on the AIX Version 4.3
Extended Documentation CD. This online documentation is designed for use
with an HTML version 3.2 compatible web browser.

Who Should Use This Book

This book is intended for system programmers who are knowledgeable in
operating system concepts and kernel programming and want to extend the kernel.

How to Use This Book

This book provides two types of information: (1) an overview of the kernel
programming environment and information a programmer needs to write kernel
extensions, and (2) information about existing kernel subsystems.

Overview of Contents
This book contains the following chapters and appendixes:

* Chapter 1, "Kernel Environment”, provides an overview of programming in the
kernel environment, including kernel extension binding, kernel processes, signal
handling, and exception handling.

* Chapter 2, "System Calls”, contrasts a user function and a system call, and
discusses aspects of system call execution.

* Chapter 3, "Virtual File Systems”, discusses the components of a virtual file
system, and the steps needed to configure it.

* Chapter 4, "Kernel Services”, discusses the various types of kernel services.

* Chapter 5, "Asynchronous I/O Subsystem”, describes asynchronous 1/0.

* Chapter 6, "Device Configuration Subsystem”, provides an overview of the

configuration process, the routines and databases involved, and the requirements
for configuring new devices.

* Chapter 7, "Communications 1/O Subsystem”, contains some information
common to all communications device drivers and some information about
specific communications device drivers.

* Chapter 8, "Graphic Input Devices Subsystem”, describes the programming
interface of the graphic input device driver.

* Chapter 9, "Low Function Terminal (LFT) Subsystem”, discusses the component
structure of the high function terminal and the concept of the virtual terminal
low function terminal.

* Chapter 10, "Logical Volume Subsystem”, includes information on physical
volumes, the logical volume device driver, and logical volumes and bad blocks.

© Copyright IBM Corp. 1997, 1999 XV

Chapter 11, "Printer Addition Management Subsystem”, describes the steps
involved in adding a printer to the system.

Chapter 12, "Small Computer System Interface (SCSI) Subsystem”, discusses
SCSI subsystem architecture and aspects of writing SCSI device drivers.
Chapter 13, "Fibre Channel Protocol for SCSI Subsystem”, describes the interface
between a Fibre Channel Protocol (FCP) for SCSI device driver and a FCP
adapter device driver.

Chapter 14, "FCP Device Drivers”, includes information on programming FCP
device drivers.

Chapter 15,"Integrated Device Electronics (IDE) Subsystem”, discusses IDE
subsystem architecture and aspects of writing IDE device drivers.

Chapter 16, "Serial Direct Access Storage Device Subsystem”, includes
information on using serial direct access storage devices.

Chapter 17, "Debugging Tools”, includes information on debugging device
drivers.

Appendix A, "Alphabetical List of Kernel Services”, lists and summarizes the

function of the kernel services. The list is divided based on the execution
environment from which each service can be called.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords,

files, structures, directories, and other items
whose names are predefined by the system.
Also identifies graphical objects such as
buttons, labels, and icons that the user
selects.

Italics Identifies parameters whose actual names or

values are to be supplied by the user.

Monospace Identifies examples of specific data values,

examples of text similar to what you might
see displayed, examples of portions of
program code similar to what you might
write as a programmer, messages from the
system, or information you should actually

type.

ISO 9000

ISO 9000 registered quality systems were used in the development and
manufacturing of this product.

AIX 32-Bit Support for the X/Open UNIX95 Specification

Beginning with AIX Version 4.2, the operating system is designed to support the
X/Open UNIX95 Specification for portability of UNIX-based operating systems.
Many new interfaces, and some current ones, have been added or enhanced to
meet this specification. Beginning with Version 4.2, AIX is even more open and
portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to
set the system environment on a per-system, per-user, or per-process basis.

XVi Kernel Extensions and Device Support Programming Concepts

To determine the proper way to develop a UNIX95-portable application, you may
need to refer to the X/Open UNIX95 Specification, which can be obtained on a
CD-ROM by ordering the printed copy of AIX Version 4.3 Commands Reference,
order number SBOF-1877, or by ordering Go Solo: How to Implement and Go Solo
with the Single Unix Specification, order number SR28-5705, a book which includes
the X/Open UNIX95 Specification on a CD-ROM.

AIX 32-Bit and 64-Bit Support for the UNIX98 Specification

Beginning with AIX Version 4.3, the operating system is designed to support the
X/Open UNIX98 Specification for portability of UNIX-based operating systems.
Many new interfaces, and some current ones, have been added or enhanced to
meet this specification. Making AIX Version 4.3 even more open and portable for
applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to
set the system environment on a per-system, per-user, or per-process basis.

To determine the proper way to develop a UNIX98-portable application, you may
need to refer to the X/Open UNIX98 Specification, which can be obtained on a
CD-ROM by ordering the printed copy of AIX Version 4.3 Commands Reference,
order number SBOF-1877, or by ordering Go Solo: How to Implement and Go Solo
with the Single Unix Specification, order number SR28-5705, a book which includes
the X/Open UNIX98 Specification on a CD-ROM.

Related Publications

The following books contain additional information on kernel extension
programming and the existing kernel subsystems:

e AIX Ethernet Local Broadcast/6000, Order Number GC23-2439

e Ethernet HUB Installation, Order Number GA27-4024

* Ethernet LAN Adapter Family, Order Number G221-3457

* AIX Version 4.3 Guide to Printers and Printing, Order Number SC23-4130.

* AIX Version 4 Keyboard Technical Reference, Order Number SC23-2631.

» AIX Version 4.3 Problem Solving Guide and Reference, Order Number SC23-4123.

* AIX Version 4.3 System Management Guide: Operating System and Devices, Order
Number SC23-4126.

* AIX Version 4.3 Technical Reference: Kernel and Subsystems Volume 1, Order
Number SC23-4163.

» AIX Version 4.3 Technical Reference: Kernel and Subsystems Volume 2, Order
Number SC23-4164

* Token-Ring Network Architecture Reference, Order Number SC30-3374

Ordering Publications

You can order publications from your sales representative or from your point of
sale.

To order additional copies of this book, use order number SC23-4125.

Use AIX and Related Products Documentation Overview for information on related
publications and how to obtain them.

About This Book XVil

XViil Kernel Extensions and Device Support Programming Concepts

Chapter 1. Kernel Environment

The kernel is dynamically extendable and can be expanded by adding routines that

belong to any of the following functional classes:
* System calls
* Virtual file systems

* Kernel Extension and Device Driver Management Kernel Services

* Device Drivers

These kernel extensions can be added at system boot or while the system is in

operation.

The Types of Kernel Extensions diagram illustrates the addition of extensions to

the kernel environment.

COMMANDS

EXTENDED KERNEL MODE EXPORTS

File System Interface System Calls
KERNEL INTERFACE
SYSTEM CALL INTERFACE
| |
v v
VIRTUAL DEVICE EXTENDED EXTENDED
FILE DRIVERS SYSTEM KERNEL
SYSTEM CALLS SERVICES
PRIVATE
ROUTINES

NUCLEUS SERVICES

Types of Kernel Extensions

The following kernel-environment programming information is provided to assist

you in programming kernel extensions:
* Understanding Kernel Extension Binding

* Understanding Execution Environments

© Copyright IBM Corp. 1997, 1999

* Understanding Kernel Threads

* Using Kernel Processes

* Accessing User-Mode Data While in Kernel Mode

* Understanding Locking

* Understanding Exception Handling

* 64-bit Kernel Extension Development

A process executing in user mode can customize the kernel by using the sysconfig
subroutine, if the process has appropriate privilege. In this way, a user-mode

process can load, unload, initialize, or terminate kernel routines. Kernel
configuration can also be altered by changing tuneable system parameters.

Kernel extensions can also customize the kernel by using kernel services to load,
unload, initialize, and terminate dynamically loaded kernel routines; to create and
initialize kernel processes; and to define interrupt handlers. Binding of kernel
extensions can be performed at link-edit, load, or run time.

Note: Private kernel routines (or kernel services) execute in a privileged
protection domain and can affect the operation and integrity of the whole

system. See I’Kernel Protection Domain” on page 26 for more information.

Understanding Kernel Extension Binding

The following information is provided to assist you in understanding kernel
extension binding.

4 . . 7)

Base Kernel Services - the /unix Name Space

The kernel provides a set of base kernel services to be used by kernel extensions.
(See I'Chapter 4 Kernel Services” on page 3d.) These services, which are described
in the services documentation, are made available to a kernel extension by
specifying the kernex.exp kernel export file as an import file during the link-edit of
the extension. The link-edit operation is performed by using the 1d command.

The kernel provides a set of base kernel services to be used by kernel extensions.
These services, which are described in the services documentation, are made
available to a kernel extension by specifying the kernex.exp kernel export file as an
import file during the link-edit of the extension. The link-edit operation is
performed by using the 1d command.

A kernel extension provides additional kernel services and system calls by
supplying an export file when it is link-edited. This export file specifies the
symbols to be added to the /unix name space, which is the global kernel name
space. Symbols that name system calls to be exported must specify one of the
SYSCALL, SYSCALL32, SYSCALL64, or SYSCALL3264 keywords next to the
symbol in the export file.

The kernel extension export file must also have #!/unix as its first entry. The export
file can then be used by other extensions as an import file. The #!/unix as the first

2 Kernel Extensions and Device Support Programming Concepts

entry in an import file specifies that the imported symbols are to come from the
/unix name space. This entry is ignored when used in an export file. The same file
can be used both as the export file for the kernel extension providing the symbols
and as the import file for another extension importing one or more of the symbols.

When a new kernel extension is loaded by the sysconfig subroutine, any symbols
defined in the extension export file at link-edit time are added to the /unix kernel
name space. The loader can also load additional object files into the kernel to
resolve symbols referenced by the new extension. Because these exported symbols
are only used to resolve references required during loading of the new extension,
these additional object files will not have their own exported symbols added to the
name space.

In other words, the kernel name space cannot be expanded without the explicit
loading of a kernel object file specifying one or more exported symbols. The
symbols added to the kernel name space are available to any subsequently loaded
kernel object file as an imported symbol.

An object file explicitly loaded into the kernel exporting symbols into the kernel
name space is shared by all kernel extensions. Normally, only one copy of the
object file exists in the kernel.

Using System Calls with Kernel Extensions

A restricted set of 32-bit system calls can be used by kernel extensions. A kernel
process can use a larger set of system calls than a user process in kernel mode.
I'System Calls Available to Kernel Extensions” on page 21l specifies which system
calls can be used by either type of process. User-mode processes in kernel mode
can only use system calls that have all parameters passed by value. Kernel routines
running under user-mode processes cannot directly use a system call having
parameters passed by reference.

The second restriction is imposed because, when they access a caller’s data, system
calls with parameters passed by reference access storage across a protection
domain. The cross-domain memory services performing these cross-memory
operations support kernel processes as if they, too, accessed storage across a
protection domain. However, these services have no way to determine the caller is
in the same protection domain when the caller is a user-mode process in kernel
mode.

Note: System calls must not be used by kernel extensions executing in the
interrupt handler environment.

Kernel extensions can bind to a restricted set of base system calls. Binding is done
by specifying the syscalls.exp system call export file as an import file when the
kernel extension is link-edited. When loading object files into the kernel, the loader
needs no protection domain switch to access system calls from the kernel. It binds
the system call imports to the function descriptor that provides direct access to the
system call. For user-mode programs, the loader binds system call references to a
set of function descriptors invoking the system call handler to switch protection
domains.

Loading System Calls and Kernel Services

Kernel extensions that provide new system calls or kernel services normally place
only a single copy of the routine and its static data in the kernel. When this is the

Chapter 1. Kernel Environment 3

case, use SYS_SINGLELOAD sysconfig operation to load the kernel extension.
Because it only loads a new copy if one does not already exist in the kernel, this
operation ensures that only a single copy is loaded. For this type of kernel
extension, an updated version of the object file is loaded into the kernel only when
the current copy has no users and has been unloaded.

If a kernel extension can support multiple versions of itself (particularly its data),
the SYS_KLOAD sysconfig operation can be used. This operation loads a new
copy of the object file even when one or more copies are already loaded. When
this operation is used, currently loaded routines bound to the old copy of the
object file continue to use the old copy. Any new routines (loaded after the new
copy was loaded) are bound to the most recently loaded copy of the kernel
extension.

Unloading System Calls and Kernel Services

Kernel extensions that provide new system calls or kernel services can also be
unloaded. For each object file loaded, the loader maintains a usage count and a
load count. The usage count indicates how many other object files have referenced
some exported symbol provided by the kernel extension. The load count indicates
how many explicit load requests have been made for each object file.

When an explicit unload of a kernel extension is requested, the load count is
decremented. If the load count and the usage count are both equal to 0, the object
file is unloaded. However if either the load count or usage count is not equal to 0,
the object file is not unloaded. When programs end, the usage counts for kernel
extensions that the programs referenced are adjusted. However, no unload of these
kernel extensions is performed when the program ends, even if the load and usage
counts become 0.

As a result, even though its load count has been decremented to 0 (due to unload
requests) and its usage count has reached 0 (because of program terminations), a
kernel extension can remain loaded. In this case, the kernel extension’s exported
symbols are still available for load-time binding unless another unload request for
any object file is received. If an explicit unload request (for any program, shared
library, or kernel extension) is received, the loader unloads all object files that have
both load and usage counts of 0.

The slibclean command, which unloads all object files with load and use counts of
0 (zero), can be used to remove object files that are no longer used from both the
shared library region and the kernel. Periodically invoking this command reduces
the effects of memory fragmentation in the shared library and kernel text regions
by removing object files that are no longer required.

Using Private Routines

The other discussions of kernel extension binding have been concerned with
importing and exporting symbols from and to the /unix global kernel name space.
These symbols are global in the kernel and can be referenced by any routine in the
kernel. See [‘Base Kernel Services - the /umix Name anr‘p” on page 1 for more

information.

Kernel extensions can also consist of several separately link-edited object files that
are bound at load time. This is particularly useful for device drivers, where one
object file contains the top (pageable) half of the driver and a second object file

4 Kernel Extensions and Device Support Programming Concepts

contains the bottom (pinned) half of the driver. Load-time binding is useful where
several kernel extensions use common routines provided in a separate object file.

In both cases, the symbols exported by the private object files should not be added
to the global kernel name space. If it is to have certain symbols exported to the
global kernel name space and use other symbols only to resolve references to other
private object files, the kernel extension should be divided into separately
link-edited object files. (One object file would contain the symbols to be exported
to the kernel name space, while the other would contain the exported symbols that
are considered private.)

For object files that reference each other’s symbols, each file should use the other’s
export file as its own import file during link-edit. The export file for the object file
providing the services should specify #! pathifile as the first entry in the export file,
where path specifies the directory path to the object file. This provides the exported
symbols at load time. This entry is ignored when used as an export file. When
used as an import file, however, the entry tells the loader where to find the object
file that resolves the imported symbols at load time.

The object file that exports symbols to the kernel name space must specify #!//unix
as the first entry in its export file. This allows the export file to be used as an
import file by other kernel extensions. The object file containing the symbols to be
exported to the kernel name space must be the one explicitly loaded into the
kernel with the sysconfig subroutine. The loader then loads other private object
files, as necessary, to resolve imported symbols required for the load.

When, during the same explicit load request, the loader encounters an imported
symbol that is resolved by an already loaded object file, the loader does not load a
new copy. Instead, it resolves the symbol to the copy of the already loaded object
file. This allows for cross-resolving symbols between two or more object files
loaded as a result of the same explicit load request.

Note: The loader hashes the path and file name of the object file to determine
whether the file has already been loaded during this explicit load request.
Another copy of the object file can be loaded if differing path names are used
for the same object file and the two names do not hash to the same value.

Object files loaded automatically due to symbol resolution do not have their own
exported symbols added to the kernel name space. These symbols remain private
to the two or more object files loaded with an explicit load request. In this way, the
kernel allows object files to have cross-dependent symbol references, and the
loader will correctly resolve them.

Note however that when two separate explicit load requests have private symbols
resolved by the same object file, two copies of that object file are loaded into the
kernel. Each explicit load resolves its symbols to its own private copy of the object
file. The private object files can also be combined into libraries with the ar
(archive) command.

Using Libraries

A library is a collection of previously link-edited object files or import files and is
created by using the ar (archive) command. Each object file or import file within
the archive (library) is referred to as a member. Program management allows a
member (or object file) to be designated as shared when it is link-edited. Libraries
with or without shared objects can be created and used by kernel extensions.

Chapter 1. Kernel Environment 5

However, due to the different programming requirements in the kernel, library
services provided for user-mode applications generally should not be used by
kernel extensions.

When it resolves a symbol to a library member (or object file) not designated as
shared, the linkage editor (1d command) binds the required object file into the
output object file so that the references will resolve. However, when symbols are
resolved to a library member (or object file) designated as shared, the shared object
file is not included in the output object file. Instead, the linkage editor adds
information to the loader section of the output object file. The loader uses this
information at load time to find the location of the shared object file that resolves
the symbol.

When these shared object files (normally in libraries) are referenced by user-mode
programs, the loader checks the shared library region to determine if the object file
is in the shared library region. If it is, the references are resolved to the object file
in the shared library region. If the object file has not already been loaded, the will
loads it into the shared library region if the file permissions allow it. In this way,
common or shared object files used by user-mode applications can be shared by all
user-mode programs in the system.

Unlike user mode, the kernel does not provide a shared library region. Therefore,
when a kernel extension that refers to a shared object file is loaded, the loader
loads a new copy of the shared object file into the kernel to be used to resolve all
references to the object file during the explicit kernel extension load request.
However, within the same explicit load request, all references to the same object file
are resolved to the single copy of the object loaded for the current load request.

The operating system provides the following two libraries that can be used by
kernel extensions:

e lihcsys 1 ihrm‘) "1

. 4 7

libcsys Library

The libcsys library is a subset of subroutines found in the user-mode libc library
that can be used by kernel extensions and consists of the following subroutines:

* atoi

* bcmp

* bcopy

* bzero

* memccpy
* memchr
* memcmp
* memcpy
* memmove
* memset
* ovbcopy
¢ strcat

* strchr

¢ strcmp

¢ strcpy

6 Kernel Extensions and Device Support Programming Concepts

¢ strcspn
* strlen
* strncat
¢ strncmp
* strncpy
* strpbrk
* strrchr
e strspn
e strstr

* strtok

Note: In addition to these explicit subroutines, some 64-bit math operators
are implemented in libc and libcsys.a. Consequently, a kernel extension
which manipulates 64-bit objects might need to bind with libesys.a. In
particular, struct uio contains a 64-bit offset.

The memccpy, memcmp, memcpy, and memmove memory subroutines are
low-level subroutines that the bcmp, bcopy and ovbcopy subroutines use and can
be called directly when path length is critical. These subroutines are defined in the
libc library. The subroutines can be bound to the kernel export by specifying
libcsys.a as a library when link-editing the kernel extension.

libsys Library

The libsys library provides the following set of kernel services:
* d_align

* d_roundup

* timeout

* timeoutcf

¢ untimeout

These kernel services, used by the extension, must be bound fo the kernel
extension. The kernel services are described as libsys services in their respective
descriptions.

These services can be bound to the kernel extension by specifying libsys.a as an
import library when link-editing kernel extension.

Note: The string routines implemented in libcsys.a contain processor specific
code to enhance performance. These routines access the
"_system_configuration” structure to determine the processor type. If a kernel
extension uses the string routines in libcsys.a, then a definition for the
"_system_configuration” structure must be provided. One way to accomplish
this is by specifying -bI:/1ib/syscalls.exp on the link-edit command line.

Understanding Execution Environments

There are two major environments under which a kernel extension can run:

. G ”

° G . 7

Chapter 1. Kernel Environment 7

A kernel extension runs in the process environment when invoked either by a user
process in kernel mode or by a kernel process. A kernel extension is executing in
the interrupt environment when invoked as part of an interrupt handler (see

{1Inderstanding Interrupts” on page 44).

A kernel extension can determine in which environment it is called to run by
calling the getpid or thread_self kernel service. These services respectively return
the process or thread identifier of the current process or thread , or a value of -1 if
called in the interrupt environment. Some kernel services can be called in both
environments, while others can only be called in the process environment.

Note: No floating-point functions can be used in the kernel.

Process Environment

A routine runs in the process environment when it is called by a user-mode
process or by a kernel process (see [‘Llsing Kernel Pracesses” an page 11). Routines
running in the process environment are executed at an interrupt priority of
INTBASE (the least favored priority). A kernel extension running in this
environment can cause page faults by accessing pageable code or data. It can also
be replaced by another process of equal or higher process priority.

A routine running in the process environment can sleep or be interrupted by
routines executing in the interrupt environment. A kernel routine that runs on
behalf of a user-mode process can only invoke system calls that have no
parameters passed by reference. A kernel process, however, can use all system calls
listed in the I‘System Calls Available to Kernel Extensions” on page 31 if necessary.

Interrupt Environment

A routine runs in the interrupt environment when called on behalf of an interrupt
handler. A kernel routine executing in this environment cannot request data that
has been paged out of memory and therefore cannot cause page faults by accessing
pageable code or data. In addition, the kernel routine has a stack of limited size, is
not subject to replacement by another process, and cannot perform any function
that would cause it to sleep.

A routine in this environment is only interruptible either by interrupts that have
priority more favored than the current priority or by exceptions. These routines
cannot use system calls and can use only kernel services available in both the
process and interrupt environments.

A process in kernel mode can also put itself into an environment similar to the
interrupt environment. This action, occurring when the interrupt priority is
changed to a priority more favored than INTBASE, can be accomplished by calling
the i_disabledisable_lock kernel service. A kernel-mode process is sometimes
required to do this to serialize access to a resource shared by a routine executing in
the interrupt environment. When this is the case, the process operates under most
of the same restrictions as a routine executing in the interrupt environment.
However, the e_sleep, e_wait, e_sleepl, et_wait, lockl, and unlockl process can
sleep, wait, and use locking kernel services if the event word or lock word is
pinned.

8 Kernel Extensions and Device Support Programming Concepts

Note: Locks should only be used when serializing access with respect to other
processes. They are not adequate when attempting to serialize access to a
resource accessed by a routine executing in the interrupt environment.

Routines executed in this environment can adversely affect system real-time
performance and are therefore limited to a specific maximum path length.
Guidelines for the maximum path length are determined by the interrupt priority

at which the routines are executed. 'linderstanding Interrupts” on page 44

provides more information.

Understanding Kernel Threads

A thread is an independent flow of control that operates within the same address
space as other independent flows of control within a process.

Up to version 3 of AIX, there was no difference between a process and a thread;
each process contained a single thread. In AIX Version 4, one process can have
multiple threads, with each thread executing different code concurrently, while
sharing data and synchronizing much more easily than cooperating processes.
Threads require fewer system resources than processes, and can start more quickly.

Although threads are the schedulable entity, they exist in the context of their
process. The following list indicates what is managed at process level and shared
among all threads within a process:

* Address space
* System resources, like files or terminals

* Signal list of actions.

The process remains the swappable entity. Only a few resources are managed at
thread level, as indicated in the following list:

 State
* Stack
* Signal masks.

Kernel Threads, Kernel Only Threads, and User Threads
In AIX there are three kinds of threads:
* Kernel threads
* Kernel-only threads
* User threads.

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the
entity handled by the system scheduler. A kernel thread runs in user mode
environment when executing user functions or library calls; it switches to kernel
mode environment when executing system calls.

A kernel-only thread is a kernel thread that executes only in kernel mode
environment. Kernel-only threads are controlled by the kernel mode environment
programmer through kernel services.

User mode programs can access so called user threads through a library (such as the
libpthreads.a threads library). User threads are part of a portable programming
model. User threads are mapped to kernel threads by the threads library, in an
implementation dependent manner. The threads library uses a proprietary interface

Chapter 1. Kernel Environment 9

to handle kernel threads. See "Understanding Threads” in AIX Version 4.3 General
Programming Concepts: Writing and Debugging Programs to get detailed information
about the user threads library and their implementation.

All threads discussed in this article are kernel threads; and the information applies
only to the kernel mode environment. Kernel threads cannot be accessed from the
user mode environment, except through the threads library.

Kernel Data Structures

The kernel maintains thread- and process-related information in two types of
structures:

* The user structure contains process-related information
* The uthread structure contains thread-related information.

These structures cannot be accessed directly by kernel extensions and device
drivers. They are encapsulated for portability reasons. Many fields that were
previously in the user structure are now in the uthread structure.

Thread Creation, Execution, and Termination

A process is always created with one thread, called the initial thread. The initial
thread provides compatibility with previous single-threaded processes. The initial
thread’s stack is the process stack. See I'Kernel Process Creation Execution _and

[Cermination” an page 13 to get more information about kernel process creation.

Other threads can be created, using a two-step procedure. The thread_create kernel
service allocates and initializes a new thread, and sets its state to idle. The
kthread_start kernel service then starts the thread, using the specified entry point
routine.

A thread is terminated when it executes a return from its entry point, or when it
calls the thread_terminate kernel service. Its resources are automatically freed. If it
is the last thread in the process, the process ends.

Thread Scheduling

Threads are scheduled using one of the following scheduling policies:

* First-in first-out (FIFO) scheduling policy, with fixed priority. Using the FIFO
policy with high favored priorities may lead to bad system performance.

* Round-robin (RR) scheduling policy, quantum based and with fixed priority.

* Default AIX scheduling policy, a non-quantum based round-robin scheduling
with fluctuating priority. Priority is modified according to the CPU usage of the
thread.

Scheduling parameters can be changed using the thread_setsched kernel service.
The process-oriented setpri system call sets the priority of all the threads within a
process. The process-oriented getpri system call gets the priority of a thread in the
process. The scheduling policy and priority of an individual thread can be
retrieved from the ti_policy and ti_pri fields of the thrdsinfo structure returned
by the getthrds system call.

Thread Signal Handling
The signal handling concepts are the following:
* A signal mask is associated with each thread.

10 Kernel Extensions and Device Support Programming Concepts

* The list of actions associated with each signal number is shared among all
threads in the process.

* If the signal action specifies termination, stop, or continue, the entire process,
thus including all its threads, is respectively terminated, stopped, or continued.

* Synchronous signals attributable to a particular thread (such as a hardware fault)
are delivered to the thread that caused the signal to be generated.

* Signals can be directed to a particular thread. If the target thread has blocked the
signal from delivery, the signal remains pending on the thread until the thread
unblocks the signal from delivery, or the action associated with the signal is set
to ignore by any thread within the process.

The signal mask of a thread is handled by the limit_sigs and sigsetmask kernel
services. The kthread_kill kernel service can be used to direct a signal to a
particular thread.

In the kernel environment, when a signal is received, no action is taken (no
termination or handler invocation), even for the SIGKILL signal. In the kernel
environment, a thread is not replaced by signals, even the SIGKILL signal. A
thread in kernel environment, especially kernel-only threads, must poll for signals
so that signals can be delivered. Polling ensures the proper kernel-mode
serialization.

Signals whose actions are applied at generation time (rather than delivery time)
have the same effect regardless of whether the target is in kernel or user mode. A
kernel-only thread can poll for unmasked signals that are waiting to be delivered
by calling the sig_chk kernel service. This service returns the signal number of a
pending signal that was not blocked or ignored. The thread then uses the signal
number to determine which action should be taken. The kernel does not
automatically call signal handlers for a thread in kernel mode as it does for user
mode.

See I’Kernel Pracess Signal and Exception Handling” on page 14 to get more

information about signal handling at process level.

Using Kernel Processes

A kernel process is a process that is created in the kernel protection domain and
always executes in the kernel protection domain. Kernel processes can be used in
subsystems, by complex device drivers, and by system calls. They can also be used
by interrupt handlers to perform asynchronous processing not available in the
interrupt environment. Kernel processes can also be used as device managers
where asynchronous I/O and device management is required.

Introduction to Kernel Processes

A kernel process (kproc) exists only in the kernel protection domain and differs
from a user process in the following ways:

* It is created using the creatp and initp kernel services.

* It executes only within the kernel protection domain and has all security
privileges.

* It can call a restricted set of system calls and all applicable kernel services (see
I'Svstem Calls Available to Kernel Extensions” on page '%1'),

Chapter 1. Kernel Environment 11

* It has access to the global kernel address space (including the kernel pinned and
pageable heaps), kernel code, and static data areas.

¢ It must poll for signals and can choose to ignore any signal delivered, including
a kill signal.

* It is not subject to replacement by signals.
* Its text and data areas come from the global kernel heap.
* It cannot use shared libraries as such and has no shared library region (see

tIII . I] : ” H)
* It has a process-private region containing only the u-block (user block) structure
and possibly the kernel stack.

* Its parent process is the process that issued the creatp kernel service to create the
process.

* It can change its parent process to the init process and can use interrupt disable
functions for serialization.

* It can use locking to serialize process-time access to critical data structures.

* It can only be a 32-bit process.

A kernel process controls directly the kernel threads (see U_Ln.d.m‘s.tandm.g_Kem.d

[Threads” on page 9). Since kernel processes are always in the kernel protection

domain, threads within a kernel process are kernel-only threads.

A kernel process inherits the environment of its parent process (the one calling the
creatp kernel service to create it), but with some exceptions. The kernel process
will not have a root directory or a current directory when initialized. All uses of
the file system functions must specify absolute path names.

Kernel processes created during phase 1 of system boot must not keep any
long-term opens on files until phase 2 of system boot or run time has been
reached. This is because Base Operating System changes root file systems between
phase 1 and phase 2 of system boot. As a result, the system crashes if any files are
open at root file system transition time.

Accessing Data from a Kernel Process

Because kernel processes execute in the more privileged kernel protection domain,
a kernel process can access data that user processes cannot. This applies to all
kernel data, of which there are three general categories:

¢ The user block data structure

The u-block (or u-area) structure exists for kernel processes and contains
roughly the same information for kernel processes as for user-mode processes. A
kernel process must use kernel services to query or manipulate data from the
u-area to maintain modularity and increase portability of code to other
platforms.

* The stack for a kernel process

To ensure binary compatibility with older applications, each kernel process has a
stack called the process stack. This stack is used by the process initial thread.

The location of the stack for a kernel process is implementation-dependent. This
stack can be located in global memory or in the process-private segment of the
kernel process. A kernel process must not assume automatically that its stack is
located in global memory.

* Global kernel memory

12 Kernel Extensions and Device Support Programming Concepts

A kernel process can also access global kernel memory as well as allocate and
de-allocate memory from the kernel heaps. Because it runs in the kernel
protection domain, a kernel process can access any valid memory location
within the global kernel address space. Memory dynamically allocated from the
kernel heaps by the kernel process must be freed by the kernel process before
exiting. Unlike user-mode processes, memory that is dynamically allocated by a
kernel process is not freed automatically upon process exit.

Cross-Memory Services

Kernel processes must be provided with a valid cross-memory descriptor to access
address regions outside the kernel global address space or kernel process address
space. For example, if a kernel process is to access data from a user-mode process,
the system call using the process must obtain a cross-memory descriptor for the
user-mode region to be accessed. Calling the xmattach or xmattach64 kernel service
provides a descriptor that can then be made available to the kernel process.

The kernel process should then call the xmemin and xmemout kernel services to
access the targeted cross-memory data area. When the kernel process has
completed its operation on the memory area, the cross-memory descriptor must be
detached by using the xmdetach kernel service.

Kernel Process Creation, Execution, and Termination

A kernel process is created by a kernel-mode routine by calling the creatp kernel
service. This service allocates and initializes a process block for the process and
sets the new process state to idle. This new kernel process does not run until it is
initialized by the initp kernel service, which must be called in the same process
that created the new kernel process (with the creatp service). The creatp kernel
service returns the process identifier for the new kernel process.

The process is created with one kernel-only thread, called the initial thread. See
. i “ to get more information about threads.

After the initp kernel service has completed the process initialization, it the initial
thread is placed on the run queue. On the first dispatch of the newly initialized
kernel process, it begins execution at the entry point previously supplied to the
initp kernel service. The initialization parameters were previously specified in the
call to the initp kernel service.

A kernel process terminates when it executes a return from its main entry routine.
A process should never exit without both freeing all dynamically allocated storage
and releasing all locks owned by the kernel process.

When kernel processes exit, the parent process (the one calling the creatp and initp
kernel services to create the kernel process) receives the SIGCHLD signal, which
indicates the end of a child process. However, it is sometimes undesirable for the
parent process to receive the SIGCHLD signal due to ending a process. In this
case, the kproc can call the setpinit kernel service to designate again the init
process as its parent. The init process cleans up the state of all its child processes
that have become zombie processes. A kernel process can also issue the setsid
subroutine call to change its session. Signals and job control affecting the parent
process session do not affect the kernel process.

Chapter 1. Kernel Environment 13

Kernel Process Preemption

A kernel process is initially created with the same process priority as its parent. It
can therefore be replaced by a more favored kernel or user process. It does not
have higher priority just because it is a kernel process. Kernel processes can use
the setpri or nice subroutines to modify their execution priority.

The kernel process can use the locking kernel services to serialize access to critical
data structures. This use of locks does not guarantee that the process will not be
replaced, but it does ensure that another process trying to acquire the lock waits
until the kernel process owning the lock has released it.

Using locks, however, does not provide serialization if a kernel routine can access
the critical data while executing in the interrupt environment. Serialization with
interrupt handlers must be handled by using locking together with interrupt
control. The disable_lock and unlock_enable kernel services should be used to
serialize with interrupt handlers.

Kernel processes must ensure that their maximum path lengths adhere to the
specifications for interrupt handlers when executing at an interrupt priority more
favored than INTBASE. This ensures that system real-time performance is not
degraded.

Kernel Process Signal and Exception Handling

Signals are delivered to exactly one thread within the process which has not
blocked the signal from delivery. If all threads within the target process have
blocked the signal from delivery, the signal remains pending on the process until a
thread unblocks the signal from delivery, or the action associated with the signal is
set to ignore by any thread within the process. See [i ing”
ﬁto get more information about signal handling by threads.

Signals whose action is applied at generation time (rather than delivery time) have
the same effect regardless of whether the target is a kernel or user process. A
kernel process can poll for unmasked signals that are waiting to be delivered by
calling the sig_chk kernel service. This service returns the signal number of a
pending signal that was not blocked or ignored. The kernel process then uses the
signal number to determine which action should be taken. The kernel does not
automatically call signal handlers for a kernel process as it does for user processes.

A kernel process should also use the exception-catching facilities (setjmpx, and
clrjmpx) available in kernel mode to handle exceptions that can be caused during
run time of the kernel process. Exceptions received during the execution of a
kernel process are handled the same as exceptions that occur in any kernel-mode
routine.

Unhandled exceptions that occur in kernel mode (in any user process while in
kernel mode, in an interrupt handler, or in a kernel process) result in a system
crash. To avoid crashing the system due to unhandled exceptions, kernel routines
should use the setjmpx, clrjmpx, and longjmpx kernel services to handle
exceptions that may possibly occur during run time. Refer to tLh:n.d.erstandm.é

i ing” for more details on handling exceptions.

14 Kernel Extensions and Device Support Programming Concepts

Kernel Process Use of System Calls

System calls made by kernel processes do not result in a change of protection
domain since the kernel process is already within the kernel protection domain.
Routines in the kernel (including routines executing in a kernel process) are bound
by the loader to the system call and not to the system call handler. When system
calls use kernel services to access user-mode data, these kernel services recognize
that the system call is running within a kernel process instead of a user process
and correctly handle the data accesses.

However, the error information returned from a kernel process system call must be
accessed differently than for a user process. A kernel process must use the
getuerror kernel service to retrieve the system call error information normally
provided in the errno global variable for user-mode processes. In addition, the
kernel process can use the setuerror kernel service to set the error information to 0
before calling the system call. The return code from the system call is handled the
same for all processes.

Kernel processes can use only a restricted set of the base system calls found in the

syscalls.exp export file. 'System Calls Available to Kernel Fxtensions” on page 31

shows system calls available to kernel processes.

Accessing User-Mode Data While in Kernel Mode

Kernel extensions use a set of kernel services to access data that is in the
user-mode protection domain (see ‘User Protection Domain” on page 26). These
services ensure that the caller has the authority to perform the desired operation at
the time of data access. These services also prevent system crashes in a system call
when accessing user-mode data. These services can only be called when running in
the process environment of the process that contains the user-mode data. See

LEmc&s_E.mumnm.en.’r_nn_pa.g&S for more information.
Data Transfer Services

The following list shows user-mode data access kernel services (primitives):

Kernel Service Purpose

suword, suword64 Stores a word of data in user memory.

fubyte, fubyte64 Fetches, or retrieves, a byte of data from user memory.
fuword, fuword64 Fetches, or retrieves, a word of data from user memory.
copyin, copyin64 Copies data between user and kernel memory.

copyout, copyout64 Copies data between user and kernel memory.
copyinstr, copyinstr64 Copies a character string (including the terminating null

character) from user to kernel space.

Additional kernel services allow data transfer between user mode and kernel mode
when a uio structure is used, describes the user-mode data area to be accessed.
(Note that this only works for 32-bit processes or with remapped addresses for
64-bit processes.) Following is a list of services that typically are used between the
file system and device drivers to perform device I/O:

Kernel Service Purpose

uiomove Moves a block of data between kernel space and a space defined by
a uio structure.

ureadc Writes a character to a buffer described by a uio structure.

Chapter 1. Kernel Environment 15

Kernel Service Purpose
uwritec Retrieves a character from a buffer described by a uio structure.

Using Cross-Memory Kernel Services

Occasionally, access to user-mode data is required when not in the environment of
the user-mode process that has addressability to the data. Such cases occur when
the data is to be accessed asynchronously. Examples of asynchronous accessing
include:

* Direct memory access to the user data by I/O devices
 Data access by interrupt handlers
* Data access by a kernel process

In these circumstances, the kernel cross-memory services are required to provide
the necessary access. The xmattach or xmattach64 kernel services allow a
cross-memory descriptor to be obtained for the data area to be accessed. This
service must be called in the process environment of the process containing the
data area.

After a cross-memory descriptor has been obtained, the xmemin and xmemout
kernel services can be used to access the data area outside the process environment
containing the data. When access to the data area is no longer required, the access
must be removed by calling the xmdetach kernel service. Kernel extensions should
use these services only when absolutely necessary. Because of the machine
dependencies of cross-memory operations, using them increases the difficulty of
porting the kernel extension to other machine platforms.

Understanding Locking

The following information is provided to assist you in understanding locking.

Lockl Locks

The lockl locks (previously called conventional locks) are provided for compatibility
only and should not be used in new code: simple or complex locks should be used
instead. These locks are used to protect a critical section of code which accesses a
resource such as a data structure or device, serializing access to the resource. Every
thread which accesses the resource must acquire the lock first, and release the lock
when finished.

A conventional lock has two states: locked or unlocked. In the locked state, a thread
is currently executing code in the critical section, and accessing the resource
associated with the conventional lock. The thread is considered to be the owner of
the conventional lock. No other thread can lock the conventional lock (and
therefore enter the critical section) until the owner unlocks it; any thread
attempting to do so must wait until the lock is free. In the unlocked state, there are
no theads accessing the resource or owning the conventional lock.

Lockl locks are recursive and, unlike simple and complex locks, can be awakened by
a signal.

16 Kernel Extensions and Device Support Programming Concepts

Simple Locks

A simple lock provides exclusive-write access to a resource such as a data structure
or device. Simple locks are not recursive and have only two states: locked or
unlocked.

Complex Locks

A complex lock can provide either shared or exclusive access to a resource such as a
data structure or device. Complex locks are not recursive by default (but can be
made recursive) and have three states: exclusive-write, shared-read, or unlocked.

If several threads perform read operations on the resource, they must first acquire
the corresponding lock in shared-read mode. Since no threads are updating the
resource, it is safe for all to read it. Any thread which writes to the resource must
first acquire the lock in exclusive-write mode. This guarantees that no other thread
will read or write the resource while it is being updated.

Types of Critical Sections

There are two types of critical sections which must be protected from concurrent
execution in order to serialize access to a resource:

thread-thread These critical sections must be protected (by using the locking
kernel services) from concurrent execution by multiple processes
or threads. See ['Lacking Kernel Services” on page 48 for more
information.

thread-interrupt These critical sections must be protected (by using the
disable_lock and unlock_enable kernel services) from concurrent
execution by an interrupt handler and a thread or process.

Priority Promotion

When a lower priority thread owns a lock which a higher-priority thread is
attempting to acquire, the owner has its priority promoted to that of the most
favored thread waiting for the lock. When the owner releases the lock, its priority
is restored to its normal value. Priority promotion ensures that the lock owner can
run and release its lock, so that higher priority processes or threads do not remain
blocked on the lock.

Locking Strategy in Kernel Mode

Attention: A kernel extension should not attempt to acquire the kernel lock if
it owns any other lock. Doing so can cause unpredictable results or system
failure.

A linear hierarchy of locks exists. This hierarchy is imposed by software
convention, but is not enforced by the system. The lockl kernel_lock variable,
which is the global kernel lock, has the the coarsest granularity. Other types of
locks have finer granularity. The following list shows the ordering of locks based
on granularity:

* The kernel_lock global kernel lock

Note: Avoid using the kernel_lock global kernel lock variable in new code
since it is only included for compatibility purposes and may be removed
from future versions.

* File system locks (private to file systems)

Chapter 1. Kernel Environment 17

* Device driver locks (private to device drivers)
* DPrivate fine-granularity locks

Locks should generally be released in the reverse order from which they were
acquired; all locks must be released before a kernel process exits or leaves kernel
mode. Kernel mode processes do not receive any signals while they hold any lock.

Understanding Exception Handling

Exception handling involves a basic distinction between interrupts and exceptions:

* An interrupt is an asynchronous event and is not associated with the instruction
that is executing when the interrupt occurs.

* An exception is a synchronous event and is directly caused by the instruction
that is executing when the exception occurs.

The computer hardware generally uses the same mechanism to report both
interrupts and exceptions. The machine saves and modifies some of its state and
forces a branch to a particular location. When decoding the reason for the machine
interrupt, the interrupt handler determines whether the event is an interrupt or an
exception, then processes the event accordingly.

Note: Ordinary page faults are treated more like interrupts than exceptions.
The only difference between a page-fault interrupt and other interrupts is that
the interrupted program is not dispatchable until the page fault is resolved.

Exception Processing

When an exception occurs, the current instruction stream cannot continue. If you
ignore the exception, the results of executing the instruction may become
undefined. Further execution of the program may cause unpredictable results. The
kernel provides a default exception-handling mechanism by which an instruction
stream (a process- or interrupt-level program) can specify what action is to be
taken when an exception occurs. Exceptions are handled differently depending on
whether they occurred while executing in kernel mode (see m

%ﬂn&nﬂhﬂgﬂ) or user mode (see fﬂlser;Mode_Ex.cephnn_HandbngLoﬂ
).

Default Exception-Handling Mechanism

If no exception handler is currently defined when an exception occurs, typically
one of two things happens:

* If the exception occurs while a process is executing in user mode, the process is
sent a signal relevant to the type of exception.

* If the exception occurs while in kernel mode, the system halts.
Kernel-Mode Exception Handling

Exception handling in kernel mode extends the setjump and longjump
subroutines context-save-and-restore mechanism by providing setjmpx and
longjmpx kernel services to handle exceptions. The traditional system mechanism
is extended by allowing these exception handlers (or context-save checkpoints) to
be stacked on a per-process or per-interrupt handler basis.

18 Kernel Extensions and Device Support Programming Concepts

This stacking mechanism allows the execution point and context of a process or
interrupt handler to be restored to a point in the process or interrupt handler, at the
point of return from the setjmpx kernel service. When execution returns to this point,
the return code from setjmpx kernel service indicates the type of exception that
occurred so that the process or interrupt handler state can be fully restored.
Appropriate retry or recovery operations are then invoked by the software
performing the operation.

When an exception occurs, the kernel first-level exception handler gets control. The
first-level exception determines what type of exception has occurred and saves
information necessary for handling the specific type of exception. For an I/O
exception, the first-level handler also enables again the programmed I/0O
operations.

The first-level exception handler then modifies the saved context of the interrupted
process or interrupt handler. It does so to execute the longjmpx kernel service
when the first-level exception handler returns to the interrupted process or
interrupt handler.

The longjmpx kernel service executes in the environment of the code that caused
the exception and restores the current context from the topmost jump buffer on the
stack of saved contexts. As a result, the state of the process or interrupt handler
that caused the exception is restored to the point of the return from the setjmpx
kernel service. (The return code, nevertheless, indicates that an exception has
occurred.)

The process or interrupt handler software should then check the return code and
invoke exception handling code to restore fully the state of the process or interrupt
handler. Additional information about the exception can be obtained by using the
getexcept kernel service.

User-Defined Exception Handling

A typical exception handler should do the following;:

* Perform any necessary clean-up such as freeing storage or segment registers and
releasing other resources.

* If the exception is recognized by the current handler and can be handled entirely
within the routine, the handler should establish itself again by calling the
setjmpx kernel service. This allows normal processing to continue.

* If the exception is not recognized by the current handler, it must be passed to
the previously stacked exception handler. The exception is passed by calling the
longjmpx kernel service, which either calls the previous handler (if any) or takes
the system’s default exception-handling mechanism.

* If the exception is recognized by the current handler but cannot be handled, it is
treated as though it is unrecognized. The longjmpx kernel service is called,
which either passes the exception along to the previous handler (if any) or takes
the system default exception-handling mechanism.

When a kernel routine that has established an exception handler completes
normally, it must remove its exception handler from the stack (by using the

clrjmpx kernel service) before returning to its caller.

Note: When the longjmpx kernel service invokes an exception handler, that
handler’s entry is automatically removed from the stack.

Chapter 1. Kernel Environment 19

Implementing Kernel Exception Handlers

The following information is provided to assist you in implementing kernel
exception handlers.

setjmpx, longjmpx, and clrjmpx Kernel Services
The setjmpx kernel service provides a way to save the following portions of the
program state at the point of a call:

* Nonvolatile general registers
 Stack pointer

* TOC pointer

* Interrupt priority number (intpri)
* Ownership of kernel-mode lock

This state can be restored later by calling the longjmpx kernel service, which
accomplishes the following tasks:

* Reloads the registers (including TOC and stack pointers).
* Enables or disables to the correct interrupt level.
* Conditionally acquires or releases the kernel-mode lock.

* Forces a branch back to the point of original return from the setjmpx kernel
service.

The setjmpx kernel service takes the address of a jump buffer (a label_t structure)
as an explicit parameter. This structure can be defined anywhere including on the
stack (as an automatic variable). After noting the state data in the jump buffer, the
setjmpx kernel service pushes the buffer onto the top of a stack that is maintained
in the machine-state save structure.

The longjmpx kernel service is used to return to the point in the code at which the
setjmpx kernel service was called. Specifically, the longjmpx kernel service returns
to the most recently created jump buffer, as indicated by the top of the stack
anchored in the machine-state save structure.

The parameter to the longjmpx kernel service is an exception code that is passed
to the resumed program as the return code from the setjmp kernel service. The
resumed program tests this code to determine the conditions under which the
setjmpx kernel service is returning. If the setjmpx kernel service has just saved its
jump buffer, the return code is 0. If an exception has occurred, the program is
entered by a call to the longjmpx kernel service, which passes along a return code
that is not equal to 0.

Note: Only the resources listed here are saved by the setjmpx kernel service
and restored by the longjmpx kernel service. Other resources, in particular
segment registers, are not restored. A call to the longjmpx kernel service, by
definition, returns to an earlier point in the program. The program code must
free any resources that are allocated between the call to the setjmpx kernel
service and the call to the longjmpx kernel service.

If the exception handler stack is empty when the longjmpx kernel service is
issued, there is no place to jump to and the system default exception-handling
mechanism is used. If the stack is not empty, the context that is defined by the
topmost jump buffer is reloaded and resumed. The topmost buffer is then removed
from the stack.

20 Kernel Extensions and Device Support Programming Concepts

The clrjmpx kernel service removes the top element from the stack as placed there
by the setjmpx kernel service. The caller to the clrjmpx kernel service is expected
to know exactly which jump buffer is being removed. This should have been
established earlier in the code by a call to the setjmpx kernel service. Accordingly,
the address of the buffer is required as a parameter to the clrjmpx kernel service. It
can then perform consistency checking by asserting that the address passed is
indeed the address of the top stack element.

Exception Handler Environment

The stacked exception handlers run in the environment in which the exception
occurs. That is, an exception occurring in a process environment causes the next
dispatch of the process to run the exception handler on the top of the stack of
exception handlers for that process. An exception occurring in an interrupt handler
causes the interrupt handler to return to the context saved by the last call to the
setjmpx kernel service made by the interrupt handler.

Note: An interrupt handler context is newly created each time the interrupt
handler is invoked. As a result, exception handlers for interrupt handlers
must be registered (by calling the setjmpx kernel service) each time the
interrupt handler is invoked. Otherwise, an exception detected during
execution of the interrupt handler will be handled by the default handler.

Restrictions on Using the setjmpx Kernel Service

Process and interrupt handler routines registering exception handlers with the
setjmpx kernel service must not return to their caller before removing the saved
jump buffer or buffers from the list of jump buffers. A saved jump buffer can be
removed by invoking the clrjmpx kernel service in the reverse order of the
setjmpx calls. The saved jump buffer must be removed before return because the
routine’s context no longer exists once the routine has returned to its caller.

If, on the other hand, an exception does occur (that is, the return code from
setjmpx kernel service is nonzero), the jump buffer is automatically removed from
the list of jump buffers. In this case, a call to the clrjmpx kernel service for the
jump buffer must not be performed.

Care must also be taken in defining variables that are used after the context save
(the call to the setjmpx service), and then again by the exception handler. Sensitive
variables of this nature must be restored to their correct value by the exception
handler when an exception occurs.

Note: If the last value of the variable is desired at exception time, the variable
data type must be declared as "volatile.”

Exception handling is concluded in one of two ways. Either a registered exception
handler handles the exception and continues from the saved context, or the default
exception handler is reached by exhausting the stack of jump buffers.

Exception Codes

The /usr/include/sys/except.h file contains a list of code numbers corresponding to
the various types of hardware exceptions. When an exception handler is invoked
(the return from the setjmpx kernel service is not equal to 0), it is the responsibility
of the handler to test the code to ensure that the exception is one the routine can
handle. If it is not an expected code, the exception handler must:

Chapter 1. Kernel Environment 21

* Release any resources that would not otherwise be freed (buffers, segment
registers, storage acquired using the xmalloc routines).

* Call the longjmpx kernel service, passing it the exception code as a parameter.

Thus, when an exception handler does not recognize the exception for which it has
been invoked, it passes the exception on to the next most recent exception handler.
This continues until an exception handler is reached that recognizes the code and
can handle it. Eventually, if no exception handler can handle the exception, the
stack is exhausted and the system default action is taken.

In this manner, a component can allocate resources (after calling the setjmpx kernel
service to establish an exception handler) and be assured that the resources will
later be released. This ensures the exception handler gets a chance to release those
resources regardless of what events occur before the instruction stream (a process-
or interrupt-level code) is terminated.

By coding the exception handler to recognize what exception codes it can process,
(rather than encoding this knowledge in the stack entries), a powerful and
simple-to-use mechanism is created. Each handler need only investigate the
exception code that it receives rather than just assuming that it was invoked
because a particular exception has occurred to implement this scheme, the set of
exception codes used cannot have duplicates.

Exceptions generated by hardware use one of the codes in the
lusr/include/sys/except.h file. However, the longjmpx kernel service can be
invoked by any kernel component, and any integer can serve as the exception
code. A mechanism similar to the old-style setjmp and longjmp kernel services can
be implemented on top of the setjmpx/longjmpx stack by using exception codes
outside the range of those used for hardware exceptions.

To implement this old-style mechanism, a unique set of exception codes is needed.
These codes must not conflict with either the pre-assigned hardware codes or
codes used by any other component. A simple way to get such codes is to use the
addresses of unique objects as code values.

For example, a program that establishes an exception handler might compare the
exception code to the address of its own entry point (that is, by using its function
descriptor). Later on in the calling sequence, after any number of intervening calls
to the setjmpx kernel service by other programs, a program can issue a call to the
longjmpx kernel service and pass the address of the agreed-on function descriptor
as the code. This code is only recognized by a single exception handler. All the
intervening ones just clean up their resources and pass the code to the longjmpx
kernel service again.

Addresses of function descriptors are not the only possibilities for unique code
numbers. For example, addresses of external variables can also be used. By using
addresses that are resolved to unique values by the binder and loader, the problem
of code-space collision is transformed into a problem of external-name collision.
This problem is easier to solve, and is routinely solved whenever the system is
built. By comparison, pre-assigning exception numbers by using #define
statements in a header file is a much more cumbersome and error-prone method.

Hardware Detection of Exceptions

Each of the exception types results in a hardware interrupt. For each such
interrupt, a first-level interrupt handler (FLIH) saves the state of the executing

22 Kernel Extensions and Device Support Programming Concepts

program and calls a second-level handler (SLIH). The SLIH is passed a pointer to
the machine-state save structure and a code indicating the cause of the interrupt.

When a SLIH determines that a hardware interrupt should actually be considered

a synchronous exception, it sets up the machine-state save to invoke the longjmpx
kernel service, and then returns. The FLIH then resumes the instruction stream at

the entry to the longjmpx service.

The longjmpx service then invokes the top exception handler on the stack or takes
the system default action as previously described.

User-Mode Exception Handling

Exceptions that occur in a user-mode process and are not automatically handled by
the kernel cause the user-mode process to be signaled. If the process is in a state in
which it cannot take the signal, it is terminated and the information logged. Kernel
routines can install user-mode exception handlers that catch exceptions before they
are signaled to the user-mode process.

The uexadd and uexdel kernel services allow system-wide user-mode exception
handlers to be added and removed.

The most recently registered exception handler is the first called. If it cannot
handle the exception, the next most recent handler on the list is called, and this
second handler attempts to handle the exception. If this attempt fails, successive
handlers are tried, until the default handler is called, which generates the signal.

Additional information about the exception can be obtained by using the getexcept
kernel service.

64-bit Kernel Extension Development

AIX kernel extensions run in 32-bit mode, even when processing requests made by
64-bit applications. This allows kernel extensions which were built for AIX releases
which only supported 32-bit systems to run on AIX releases which support both
32-bit and 64-bit systems. For these old kernel extensions and all kernel extensions
which have not been designed to work with 64-bit applications, only 32-bit
applications can be supported. A 64-bit application will fail to link if it attempts to
make use of a system call from a kernel extension that has not been modified to
support 64-bit applications.

A kernel extension can indicate that it supports 64-bit applications by setting the
SYS_64BIT flag when it is loaded using the sysconfig routine.

Kernel extension support for 64-bit applications has two aspects.

The first aspect is the use of new kernel services for working with the 64-bit user
address space. The new 64-bit services for examining and manipulating the 64-bit
address space are as_att64, as_det64, as_geth64, as_puth64, as_seth64, and
as_getsrval64. The new services for copying data to or from 64-bit address spaces
are copyiné4, copyout64, copyinstr64, fubyte64, fuword64, subyte64, and
suword64. The new service for doing cross-memory attaches to memory in a 64-bit
address space is xmattach64. The new services for creating real memory mappings

Chapter 1. Kernel Environment 23

are rmmap_create64 and rmmap_remove64. The major difference between all these
services and their 32-bit counterparts is that they use 64 bit user addresses rather
than 32 bit user addresses.

The new service for determining whether a process (and its address space) is 32-bit
or 64-bit is 1S64U.

The second aspect of supporting 64-bit applications is taking 64 bit user data
passed to system calls and transforming that data to 32 bit data which can be
passed through the system call handler to the kernel extension. If the types of the
parameters passed to a system call are all 32 bit sized or smaller (in 64-bit
compilation mode), then no extra work is required. However, if 64-bit data (long or
long long C types) or addresses are passed to the system call, then the data must
be split and passed in two parameters or transformed into a 32-bit value.

To assist in using 64-bit user addresses in kernel mode, a set of "remapping”
services are provided which transform the 64 bit user addresses into 32 bit
addresses which can be used by most of the old 32-bit user address manipulation
services in the kernel. In this way, kernel code which has not been modified to
work with 64-bit user addresses can always use the 32 bit address (either from a
32-bit application or as a transformed 64-bit address from a 64-bit application).
Services such as copyin, copyout, xmattach, fuword, fubyte, suword, and subyte
will correctly work with the 32-bit address by transforming it back to a 64-bit
address.

The remapping services consist of a set of routines which can be called (in 64-bit
execution mode) from a library and a matching set of routines which can be called
(in 32-bit mode) from a kernel extension. The library routines determine which
32-bit addresses should be matched to each 64-bit address and package this
information in a data structure to be passed to the kernel. The library then passes
all the parameters (including the 32-bit addresses which were associated with the
64-bit addresses) through the 64-bit system call to the kernel extension.

The kernel extension passes the remapping information (created by the library
remapping routine) to the remapping kernel service, which saves it for use by
address space services for the duration of that system call.

A limited number of addresses can be remapped because remapping must be done
on a segment (256K bytes) basis. One address remapping can use multiple of these
segments, depending on the location of the address relative to a segment boundary
and depending on the length of the address range being remapped. Multiple
address remappings can utilize a single segment of remapping if they all happen
to fall in the range of a single segment.

To simplify the use of these remapping services, a set of macros have been
declared (in sys/remap.h) which hide many of the underlying details. These
macros should be used to avoid mistakes in the use of the underlying services.
REMAP_DCL is used to declared the data structures used by the other services.
REMAP_SETUP and REMAP_SETUP_WITH_LEN are used to fill in the data
structures with the 64-bit addresses and lengths. REMAP, REMAP_VOID,
REMAP_IDENTITY, and REMAP_IDENTITY_VOID are called by the library to
determine the remappings. REMAP_64 and REMAP_64_VOID are called by the
kernel extension to register the remapping information with the kernel.

24 Kernel Extensions and Device Support Programming Concepts

Chapter 2. System Calls

In the operating system, a system call is a routine that crosses a protection domain.
Adding system calls is one of several ways to extend the functions provided by the
kernel. System calls provide user-mode access to special kernel functions.

The distinction between a system call and an ordinary function call is only
important in the kernel programming environment. User-mode application
programs are not usually aware of this distinction between system calls and
ordinary function calls in the operating system.

Operating system functions are made available to the application program in the
form of programming libraries (see 'llsing Libraries” on page 5). A set of library
functions found in a library such as libc can have functions that perform some
user-mode processing and then internally start a system call. In other cases, the
system call can be directly exported by the library without a user-mode layer.

In this way, operating system functions available to application programs can be
split or moved between user-mode functions and kernel-mode functions as
required for different releases or machine platforms. Such movement does not
affect the application program.

Differences Between a System Call and a User Function

A system call differs from a user function in several key ways:

* A system call has more privilege than a normal subroutine. A system call runs
with kernel-mode privilege in the kernel protection domain.

* System call code and data are located in global kernel memory.

* System call routines can create and use kernel processes to perform
asynchronous processing.

* System calls cannot use shared libraries or any symbols not found in the kernel
protection domain.

Understanding System Call Execution

The system call handler gains control when a user program starts a system call.
The system call handler changes the protection domain from the caller protection
domain, user, to the system call protection domain, kernel, and switches to a
protected stack.

The system call handler then calls the function supporting the system call. The
loader maintains a table of the currently defined system calls for this purpose.

The system call runs within the calling process, but with more privilege than the
calling process. This is because the protection domain has changed from user to
kernel.

The system call function returns to the system call handler when it has performed

its operation. The system call handler then restores the state of the process and
returns to the user program.

© Copyright IBM Corp. 1997, 1999 25

There are two major protection domains in the operating system: the user mode
protection domain and the kernel mode protection domain.

User Protection Domain

Programs that run in the user protection domain include those running within user
processes and those within real-time processes. This protection domain implies that
code runs in user execution mode and has:

* Read/write access to user data in the process private region

* Read access to the user text and shared text regions

* Access to shared data regions using the shared memory functions.

Programs running in the user protection domain do not have access to the kernel
or kernel data segments except indirectly through the use of system calls. A
program in this protection domain can only affect its own execution environment
and runs in the processor unprivileged state.

Kernel Protection Domain

Programs that run in the kernel protection domain include interrupt handlers, kernel
processes, the base kernel, and kernel extensions (device drivers, system calls, and
file systems). This protection domain implies that code runs in kernel execution
mode and has the following access:

* Read/write access to the global kernel address space

* Read/write access to the kernel data in the process private region when running
within a process.

User data within the process address space must be accessed using kernel services.
Programs running in this protection domain can affect the execution environments
of all programs because they:

* Can access global system data.

* Can use kernel services.

* Are exempt from all security restraints.

* Run in the processor privileged state.

All kernel extensions run in the kernel protection domain as described above. The
use of a system call by a user-mode process allows a kernel function to be called
from user mode. Access to functions that directly or indirectly invoke system calls
is typically provided by programming libraries providing access to operating
system functions (see I'Using Libraries” on page H).

Actions of the System Call Handler

When a call is made in user mode that starts a system call, the system call handler
is invoked. This system call handler switches the protection domain from user to
kernel and performs the following steps:

1. Sets privileged access to the process private address region.
Sets privileged access to the kernel address regions.

Sets the u t _error field in the uthread structure to 0.
Switches to the kernel stack.

AN A

Starts the specified kernel function (the target of the system call).

26 Kernel Extensions and Device Support Programming Concepts

On return from the specified kernel function, the system call handler performs the
following steps before returning to the caller:

1. Switches back to the user stack.

2. Updates the thread-specific errno variable if the u t _error field is not equal to
0.

3. Clears the privileged access to the kernel address regions.
4. Clears the privileged access to the process private region.
5. Performs signal processing if a signal is pending.

The system call (and associated kernel function) runs within the context of the
calling process, but with more privilege than the user-mode caller. This is because
the system call handler has changed the protection domain from user state to
kernel state. When the kernel function that was the target of the system call has
performed the requested operation (or encountered an error), it returns to the
system call handler. When this happens, the system call handler restores the state
and protection domain back to user mode and returns control to the user program.

Accessing Kernel Data While in a System Call
Kinds of Kernel Data

Attention: Incorrectly modifying fields in kernel or user block structures can
cause unpredictable results or system crashes while running in the kernel
protection domain.

A system call can access data that the caller cannot because the system call is
running in a more privileged protection domain. This applies to all kernel data, of
which there are three general categories:

¢ The user block data structure:

System calls should use the available kernel services and system calls to access
or modify data traditionally found in the u area (user structure) and in the
thread-specific uthread structures . For example, the system call handler uses the
thread’s ut_error system call error field to set the thread-specific errno variable
before returning to user mode. This field can be read or set by using the
getuerror and setuerror kernel services. The current process ID can be obtained
by using the getpid kernel service, and the current thread ID can be obtained by
using the thread_self kernel service.

* Global memory

System calls can also access global memory such as the kernel and kernel data
regions. These regions contain the code and static data for the system call as
well as the rest of the kernel.

* The stack for a system call:

A system call routine runs on a protected stack that depends on the thread. This
stack allows the system call handler to safely start a system call even when the
caller does not have a valid stack pointer initialized. It also allows system calls
to access privileged information with automatic variables without exposing the
information to the caller.

Passing Parameters to System Calls

The fact that a system call does not run on the same stack as the caller imposes
one limitation. System calls are limited in the number of parameters they can use.

Chapter 2. System Calls 27

The operating system linkage convention passes some parameters in registers and
the rest on the stack. The system call handler ensures that the first 8 words of the
parameter list are accessible to the system call. All other parameters are not
accessible.

For some languages, various types of parameters can take more than one word in
the parameter list. The writer of a system call should be familiar with the way
parameters are passed by the compiler and conform to this 8-word limit.

Preempting a System Call

The kernel allows a thread to be preempted by a more favored thread even when
starting a system call. This is not typical of most operating systems. The kernel
makes this change to enhance support for real-time processes and large multiuser
systems.

System calls should use the lockl and unlockl kernel services ‘Lacking Kernel

" to serialize access to any global data that they access.
Remember that all of the system call static data is located in global memory and
therefore must be accessed serially.

The lockl kernel service ensures locking kernel services ensure that the owner of a
lock runs with the most favored priority of any of the waiters of that lock. It does
this by assigning to the lock owner the thread priority of the most favored waiter
for the lock. This mechanism is similar to the standard operating system sleep
priority. However, the thread priority must be assigned when the resource is
allocated since the system call can be inactivated by preemption, as well as by
calling sleep. Unlocking the lock restores the thread priority.

Note that a thread can be preempted even when it owns a lock. The lock only

ensures that anothe thread that tries to lock the resource waits until the owner of

the resource unlocks it. A system call must never return with a lock locked. By

conventlon a locking hierarchy is followed to prevent deadlocks. 'lInderstanding
“ provides more information on locking.

Handling Signals While in a System Call

Signals can be generated asynchronously or synchronously with respect to the
process that receives the signal. An asynchronously generated signal is one that
results from some action external to a process. It is not directly related to the
current instruction stream of that process. Generally these are generated by other
processes for interprocess communication or by device drivers.

A synchronously generated signal is one that results from the current instruction
stream of the process. These signals cause interrupts. Examples of such cases are
the calling of an illegal instruction, or an attempted data access to nonexistent
address space. These are often referred to as exceptions.

Delivery of Signals to a System Call

The kernel delays the delivery of all signals, including SIGKILL, when starting a
system call, device driver, or other kernel extension. The signal takes effect upon
leaving the kernel and returning from the system call. This happens when the
process returns to the user protection domain, just before running the first
instruction at the caller return address. Signal delivery for kernel processes is

described in I'lising Kernel Pracesses” an page 11l

28 Kernel Extensions and Device Support Programming Concepts

Asynchronous Signals and Wait Termination

An asynchronous signal can alter the operation of a system call or kernel extension
by terminating a long wait. Kernel services such as e_block_thread,
e_sleep_thread, and et_wait all support terminating a wait by a signal. These
services provide three options:

* The short-wait option of not terminating the wait due to a signal

* Terminating the wait by return from the kernel service with a return code of
interrupted-by-signal

* Calling the longjmpx kernel service to resume at a previously saved context in
the event of a signal

The sleep kernel service, provided for compatibility, also supports the PCATCH
and SWAKEONSIG options to control the response to a signal during the sleep
function.

Previously, the kernel automatically saved context on entry to the system call
handler. As a result, any long (interruptible) sleep not specifying the PCATCH
option returned control to the saved context when a signal interrupted the wait.
The system call handler then set the errno global variable to EINTR and returned
a return code of -1 from the system call.

The kernel, however, requires each system call that can directly or indirectly issue
a sleep call without the PCATCH option to set up a saved context using the
setjmpx kernel service. This is done to avoid overhead for system calls that handle
waits terminated by signals. Using the setjmpx service, the system can set up a
saved context sets the system call return code to a -1 and the ut_error field to
EINTR, if a signal interrupts a long wait not specifying return-from-signal.

It is probably faster and more robust to specify return-from-signal on all long
waits and use the return code to control the system call return.

Stacking Saved Contexts for Nested setjmpx Calls

The kernel supports nested calls to the setjmpx kernel service. It implements the
stack of saved contexts by maintaining a linked list of context information
anchored in the machine state save area. This area is in the user block structure for
a process. Interrupt handlers have special machine state save areas.

An initial context is set up for each process by the initp kernel service for kernel
processes and by the fork subroutine for user processes. The process terminates if
that context is resumed.

Handling Exceptions While in a System Call

Exceptions are interrupts detected by the processor as a result of the current
instruction stream. They therefore take effect synchronously with respect to the
current process.

The default exception handling normally generates a signal if the process is in a

state where signals are delivered without delay. If delivery of a signal can be
delayed, however, default exception handling causes a dump.

Chapter 2. System Calls 29

Alternative Exception Handling Using the setjmpx Kernel Service

For certain types of exceptions, a system call can specify unique exception-handler
routines through calls to the setjmpx service. The exception handler routine is
saved as part of the stacked saved context. Each exception handler is passed the
exception type as a parameter.

The exception handler returns a value that can specify any of the following;:
* The process should resume with the instruction that caused the exception.

* The process should return to the saved context that is on the top of the stack of
contexts.

* The exception handler did not handle the exception.

In that case, the next exception handler in the stack of contexts is called. If none of
the stacked exception handlers handle the exception, the kernel performs default
exception handling. The setjmpx and longjmpx kernel services help implement
exception handlers.

Understanding Nesting and Kernel-Mode Use of System Calls

The operating system supports nested system calls with some restrictions. System
calls (and any other kernel-mode routines running under the process environment
of a user-mode process) can use system calls that pass all parameters by value.
System calls and other kernel-mode routines must not start system calls that have
one or more parameters passed by reference. Doing so can result in a system crash.
This is because system calls with reference parameters assume that the referenced
data area is in the user protection domain. As a result, these system calls must use
special kernel services to access the data. However, these services are unsuccessful
if the data area they are trying to access is not in the user protection domain.

This restriction does not apply to kernel processes. User-mode data access services
can distinguish between kernel processes and user-mode processes in kernel mode.
As a result, these services can access the referenced data areas accessed correctly
when the caller is a kernel process.

Kernel processes cannot call the fork or exec system calls, among others. A list of
the base operating system calls available to system calls or other routines in kernel
mode is provided in t‘System Calls Available to Kernel Extensions” on page 31l

Page Faulting within System Calls

Attention: A page fault that occurs while external interrupts are disabled
results in a system crash. Therefore, a system call should be programmed to
ensure that its code, data, and stack are pinned before it disables external
interrupts.

Most data accessed by system calls is pageable by default. This includes the system
call code, static data, dynamically allocated data, and stack. As a result, a system
call can be preempted in two ways:

* By a more favored process, or by an equally favored process when a time slice
has been exhausted

* By losing control of the processor when it page faults

30 Kernel Extensions and Device Support Programming Concepts

In the latter case, even less-favored processes can run while the system call is
waiting for the paging I/O to complete.

Returning Error Information from System Calls

Error information returned by system calls differs from that returned by kernel
services that are not system calls. System calls typically provide a return code of 0
if no error has occurred, or -1 if an error has occurred. In the latter case, the error
value is placed in the ut_error field of the thread’s uthread structure. In some
cases, when data is returned by the return code, a data value of -1 indicates error.
Or alternatively, a value of NULL can indicate error, depending on the interface
and function definition of the system call.

In any case, when an error condition is to be returned, the ut_error field should
be updated by the system call prior to returning from the system call function. The
ut_error field is accessed by using the getuerror and setuerror kernel services.

Before actually calling the system call function, the system call handler sets the
ut_error field to 0. Upon return from the system call function, the system call
handler copies the value found in ut_error into the thread-specific errno variable
if ut_error was nonzero. After setting the errno variable, the system call handler
returns to user mode with the return code provided by the system call function.

Kernel-mode callers of system calls must be aware of this return code convention
and use the getuerror kernel service to obtain the error value when an error
indication is returned by the system call. When system calls are nested, the system
call function called by the system call handler can return the error value provided
by the nested system call function or can replace this value with a new one by
using the setuerror kernel service.

System Calls Available to Kernel Extensions

The following system calls are grouped according to which subroutines call them:

. e Colls Avaaie to Al Kernol Fxtonsion]

o l'System Calls Available to Kernel Processes Only” on page 379

Note: System calls are not available to interrupt handlers.

System Calls Available to All Kernel Extensions

gethostid Gets the unique identifier of the current host.

getpgrp Gets the process ID, process group 1D, and parent process ID.
getppid Gets the process ID, process group ID, and parent process ID.
getpri Returns the scheduling priority of a process.

getpriority Gets or sets the nice value.

semget Gets a set of semaphores.

seteuid Sets the process user IDs.

setgid Sets the process group IDs.

sethostid Sets the unique identifier of the current host.

setpgid Sets the process group IDs.

setpgrp Sets the process group IDs.

setpri Sets a process scheduling priority to a constant value.
setpriority Gets or sets the nice value.

setreuid Sets the process user IDs.

setsid Creates a session and sets the process group ID.

Chapter 2. System Calls 31

setuid Sets the process user IDs.
ulimit Sets and gets user limits.
umask Sets and gets the value of the file-creation mask.

System Calls Available to Kernel Processes Only

disclaim

getdomainname

getgroups
gethostname
getpeername
getrlimit
getrusage
getsockname
getsockopt
gettimer
resabs

resinc
restimer
semctl
semop

setdomainname

setgroups
sethostname
setrlimit
settimer
shmat

shmctl
shmdt
shmget
sigaction
sigprocmask
sigstack
sigsuspend
sysconfig
times
uname
unamex
usrinfo

utimes

Disclaims the content of a memory address range.

Gets the name of the current domain.

Gets the concurrent group set of the current process.

Gets the name of the local host.

Gets the name of the peer socket.

Controls maximum system resource consumption.

Displays information about resource use.

Gets the socket name.

Gets options on sockets.

Gets and sets the current value for the specified systemwide timer.
Manipulates the expiration time of interval timers.

Manipulates the expiration time of interval timers.

Gets and sets the current value for the specified systemwide timer.
Controls semaphore operations.

Performs semaphore operations.

Sets the name of the current domain.

Sets the concurrent group set of the current process.

Sets the name of the current host.

Controls maximum system resource consumption.

Gets and sets the current value for the specified systemwide timer.
Attaches a shared memory segment or a mapped file to the current
process.

Controls shared memory operations.

Detaches a shared memory segment.

Gets shared memory segments.

Specifies the action to take upon delivery of a signal.

Sets the current signal mask.

Sets and gets signal stack context.

Atomically changes the set of blocked signals and waits for a signal.
Provides a service for controlling system/kernel configuration.
Displays information about resource use.

Gets the name of the current system.

Gets the name of the current system.

Gets and sets user information about the owner of the current
process.

Sets file access and modification times.

32 Kernel Extensions and Device Support Programming Concepts

Chapter 3. Virtual File Systems

The virtual file system (VFS) interface, also known as the v-node interface,
provides a bridge between the physical and logical file systems. The information
that follows discusses the virtual file system interface, its data structures, and its
header files, and explains how to configure a virtual file system.

There are two essential components in the file system:

Logical file system Provides support for the system call interface.
Physical file system Manages permanent storage of data.

The interface between the physical and logical file systems is the virtual file system
interface (see IlInderstanding the Virtual File System Interface” on page 36). This
interface allows support for multiple concurrent instances of physical file systems,
each of which is called a file system implementation. The file system
implementation can support storing the file data in the local node or at a remote
node.

The virtual file system interface is usually referred to as the v-node interface (see
t'Virtual File System Qverview” on page ’-l':l) The v-node structure is the key
element in communication between the virtual file system and the layers that call

it (see LL[n.detstandngb;h;al_Nmies_QLnades)_mn_pa.ge_ﬂ)

Both the virtual and logical file systems exist across all of this operating system
family’s platforms.

Logical File System Overview

The logical file system is the level of the file system at which users can request file
operations by system call. This level of the file system provides the kernel with a
consistent view of what may be multiple physical file systems and multiple file
system implementations. As far as the logical file system is concerned, file system
types, whether local, remote, or strictly logical, and regardless of implementation,
are indistinguishable.

A consistent view of file system implementations is made possible by the virtual

file system abstraction (see [‘Virtual File System Qverview” an page 35). This

abstraction specifies the set of file system operations that an implementation must
mclude in order to carry out logical file system requests (see Requirements for 4

”). Physical file systems can differ in how
they implement these predefined operations, but they must present a uniform
interface to the logical file system.

Each set of predefined operations implemented constitutes a virtual file system. As
such, a single physical file system can appear to the logical file system as one or
more separate virtual file systems.

Virtual file system operations are available at the logical file system level through
the virtual file system switch. This array contains one entry for each virtual file
system, with each entry holding entry point addresses for separate operations.
Each file system type has a set of entries in the virtual file system switch.

© Copyright IBM Corp. 1997, 1999 33

The logical file system and the virtual file system switch support other operating
system file-system access semantics. This does not mean that only other operating
system file systems can be supported. It does mean, however, that a file system
implementation must be designed to fit into the logical file system model.
Operations or information requested from a file system implementation need be
performed only to the extent possible.

Logical file system can also refer to the tree of known path names in force while
the system is running. A virtual file system (such as shown in the following figure)
that is mounted onto the logical file system tree itself becomes part of that tree. In
fact, a single virtual file system can be mounted onto the logical file system tree at
multiple points, so that nodes in the virtual subtree have multiple names. Multiple
mount points allow maximum flexibility when constructing the logical file system

view.
Stub (mounted-over)
v-node

stub v-node mounted over
<
vis
vis root v-node
root v-node <

Virtual File System Mount Point

Component Structure of the Logical File System

The logical file system is divided into the following components:
* System calls

Implement services exported to users. System calls that carry out file system
requests do the following:

— Map the user’s parameters to a file system object. This requires that the
system call component use the v-node (virtual node) component to follow the
object’s path name (see {IInderstanding Virtual Nodes (V-nades)” on page 35).
In addition, the system call must resolve a file descriptor or establish implicit
(mapped) references using the open file component.

— Verify that a requested operation is applicable to the type of the specified
object.

— Dispatch a request to the file system implementation to perform operations.
* Logical file system file routines

Manage open file table entries and per-process file descriptors. An open file table
entry records the authorization of a process’s access to a file system object. A
user can refer to an open file table entry through a file descriptor or by accessing
the virtual memory to which the file was mapped. The logical file system
routines are those kernel services, such as fp_ioctl and fp_select, that begin with
the prefix fp_.

34 Kernel Extensions and Device Support Programming Concepts

e v-nodes

Provide system calls with a mechanism for local name resolution. Local name
resolution allows the logical file system to access multiple file system
implementations through a uniform name space.

Virtual File System Overview

The virtual file system is an abstraction of a physical file system implementation. It
provides a consistent interface to multiple file systems, both local and remote. This
consistent interface allows the user to view the directory tree on the running
system as a single entity even when the tree is made up of a number of diverse file
system types. The interface also allows the logical file system code in the kernel to
operate without regard to the type of file system being accessed.

A virtual file system can also be viewed as a subset of the logical file system tree,
that part belonging to a single file system implementation. A virtual file system can
be physical (the instantiation of a physical file system), remote, or strictly logical.
In the latter case, for example, a virtual file system need not actually be a true file
system or entail any underlying physical storage device.

A virtual file system mount point (see figure on page Bd) grafts a virtual file
system subtree onto the logical file system tree. This mount point ties together a
mounted-over v-node (virtual node) and the root of the virtual file system subtree.
A mounted-over, or stub, v-node points to a virtual file system, and the mounted
VES points to the v-node it is mounted over.

Understanding Virtual Nodes (V-nodes)

A virtual node (v-node) represents access to an object within a virtual file system.
V-nodes are used only to translate a path name into a generic node (g-node) (see

{TInderstanding Generic I-nodes (G-nodes)').

A v-node is either created or used again for every reference made to a file by path
name. When a user attempts to open or create a file, if the VFS containing the file
already has a v-node representing that file, a use count in the v-node is
incremented and the existing v-node is used. Otherwise, a new v-node is created.

Every path name known to the logical file system can be associated with, at most,
one file system object. However, each file system object can have several names.
Multiple names appear in the following cases:

* The object can appear in multiple virtual file systems. This can happen if the
object (or an ancestor) is mounted in different virtual file systems using a local
file-over-file or directory-over-directory mount.

* The object does not have a unique name within the virtual file system. (The file
system implementation can provide synonyms. For example, the use of links
causes files to have more than one name. However, opens of synonymous paths
do not cause multiple v-nodes to be created.)

Understanding Generic I-nodes (G-nodes)

A generic i-node (g-node) is the representation of an object in a file system
implementation. There is a one-to-one correspondence between a g-node and an
object in a file system implementation. Each g-node represents an object owned by
the file system implementation.

Chapter 3. Virtual File Systems 35

Each file system implementation is responsible for allocating and destroying
g-nodes. The g-node then serves as the interface between the logical file system
and the file system implementation (see (‘Lagical File System Qverview” onl

). Calls to the file system implementation serve as requests to perform an
operation on a specific g-node.

A g-node is needed, in addition to the file system i-node, because some file system
implementations may not include the concept of an i-node. Thus the g-node
structure substitutes for whatever structure the file system implementation may
have used to uniquely identify a file system object.

The logical file system relies on the file system implementation to provide valid
data for the following fields in the g-node:

gn_type Identifies the type of object represented by the g-node.
gn_ops Identifies the set of operations that can be performed on the object.

Understanding the Virtual File System Interface

Operations that can be performed upon a virtual file system and its underlying
objects are divided into two categories. Operations upon a file system
implementation as a whole (not requiring the existence of an underlying file
system object) are called vfs operations (see L i i

). Operations upon the underlying file system objects are called v-node
virtual node) operations (see L i i = ”

). Before writing specific virtual file system operations, it is important to
note the requirements for a file system implementation.

”

Requirements for a File System Implementation
File system implementations differ in how they implement the predefined
operations. However, the logical file system expects that a file system
implementation meets the following criteria:
* All vfs and v-node operations must supply a return value:
— A return value of 0 indicates the operation was successful.
— A nonzero return value is interpreted as a valid error number (taken from the
lusr/include/sys/errno.h file) and returned through the system call interface to
the application program.

» All vfs operations must exist for each file system type, but can return an error
upon startup. The following are the necessary vfs operations:

vfs_cntl

— vfs_mount
— vfs_root

— vfs_statfs

— vfs_sync

— vfs_unmount

— vfs_vget
Important Data Structures for a File System Implementation

There are two important data structures used to represent information about a
virtual file system, the vfs structure and the v-node. Each virtual file system has a

36 Kernel Extensions and Device Support Programming Concepts

vfs structure in memory that describes its type, attributes, and position in the file
tree hierarchy. Each file object within that virtual file system can be represented by
a v-node.

The vfs structure contains the following fields:

vfs_flag Contains the state flags:

VFS_DEVMOUNT
Indicates whether the virtual file system has a physical mount
structure underlying it.

VFS_READONLY
Indicates whether the virtual file system is mounted read-only.

vfs_type Identifies the type of file system implementation. Possible values for this
field are described in the /usr/include/sys/vmount.h file.

vfs_ops Points to the set of operations for the specified file system type.

vfs_mntdover Points to the mounted-over v-node.

vfs_data Points to the file system implementation data. The interpretation of this

field is left to the discretion of the file system implementation. For
example, the field could be used to point to data in the kernel extension
segment or as an offset to another segment.

vfs_mdata Records the user arguments to the mount call that created this virtual

file system. This field has a time stamp. The user arguments are retained
to implement the mntctl call, which replaces the /etc/mnttab table.

Understanding Data Structures and Header Files for Virtual File

Systems

These are the data structures used in implementing virtual file systems:

The st structure contains information about a virtual file system as a s1ngle

).

The vnode structure contains information about a file system object in a virtual

file system (see I'Linderstanding Virtual Nodes (V-nades)” on page 35). There can

be multiple v-nodes for a single file system object.

The gnode structure contains information about a file system object in a physical

file system (see I'Linderstanding Generic I-nodes (G=nades)” an page 35). There is

only a single g-node for a given file system object.

The gfs structure contains information about a file system implementation. This
is distinct from the vfs structure, which contains information about an instance
of a virtual file system.

The header files contain the structure definitions for the key components of the
virtual file system abstraction. Understanding the contents of these files and the
relationships between them is essential to an understanding of virtual file systems.
The following are the necessary header files:

sys/vfs.h
sys/gfs.h
sys/vnode.h
sys/vmount.h

Chapter 3. Virtual File Systems 37

Configuring a Virtual File System

The kernel maintains a table of active file system types (see ‘Chapter 3 Virtual Fild
Bystems” on page 33). A file system implementation must be registered with the
kernel before a request to mount a virtual file system (VFS) of that type can be
honored (see IVirtual File System Qverview” on page ’%EI) Two kernel services,
gfsadd and gfsdel, are supplied for adding a file system type to the gfs file system
table.

These are the steps that must be followed to get a file system configured.

1. A user-level routine must call the sysconfig subroutine requesting that the code
for the virtual file system be loaded.

2. The user-level routine must then request, again by calling the sysconfig
subroutine, that the virtual file system be configured. The name of a
VES-specific configuration routine must be specified.

3. The virtual file system-specific configuration routine calls the gfsadd kernel
service to have the new file system added to the gfs table. The gfs table that
the configuration routine passes to the gfsadd kernel service contains a pointer
to an initialization routine. This routine is then called to do any further virtual
file system-specific initialization.

4. The file system is then operational.

38 Kernel Extensions and Device Support Programming Concepts

Chapter 4. Kernel Services

Kernel services are routines that provide the runtime kernel environment to
programs executing in kernel mode. Kernel extensions call kernel services, which
resemble library routines. In contrast, application programs call library routines.

Callers of kernel services execute in kernel mode. They therefore share with the
kernel the responsibility for ensuring that system integrity is not compromised.

{'System Calls Available ta Kernel Extensions” on page 31 lists the system calls that

kernel extensions are allowed to use.

Categories of Kernel Services

Following are the categories of kernel services:
° tll :(l I; f . /1

” . . . 17

G : 1

G . ”

G : : ”

G : ”

4 : . ”

e I'Timer and Time-of-Dav Kernel Services” aon page 67

I T . . 7

/0 Kernel Services

The I/0 kernel services fall into the following categories:

. G . ”

e F'Character 1/Q Kernel Services” an page 44

. G : ”

. G ”

. G : ”

Block I/0 Kernel Services

The Block I/0O kernel services are:

iodone Performs block I/O completion processing.
iowait Waits for block I/O completion.
uphysio Performs character I/O for a block device using a uio structure.

© Copyright IBM Corp. 1997, 1999 39

Buffer Cache Kernel Services

The EBlack 1/0Q Buffer Cache Kernel Services: Qverview” on page 42 describes how
to manage the buffer cache with the Buffer Cache kernel services. The Buffer Cache
kernel services are:

bawrite Writes the specified buffer’s data without waiting for I/O to complete.
bdwrite Releases the specified buffer after marking it for delayed write.

bflush Flushes all write-behind blocks on the specified device from the buffer cache.
binval Invalidates all of the specified device’s blocks in the buffer cache.
blkflush Flushes the specified block if it is in the buffer cache.

bread Reads the specified block’s data into a buffer.

breada Reads in the specified block and then starts I/O on the read-ahead block.
brelse Frees the specified buffer.

bwrite Writes the specified buffer’s data.

clrbuf Sets the memory for the specified buffer structure’s buffer to all zeros.
getblk Assigns a buffer to the specified block.

geteblk Allocates a free buffer.

geterror Determines the completion status of the buffer.

purblk Purges the specified block from the buffer cache.

Character 1/0 Kernel Services

The Character I/0O kernel services are:

getc Retrieves a character from a character list.

getcb Removes the first buffer from a character list and returns the address of the
removed bulffer.

getcbp Retrieves multiple characters from a character buffer and places them at a
designated address.

getcf Retrieves a free character buffer.

getex Returns the character at the end of a designated list.

pincf Manages the list of free character buffers.

putc Places a character at the end of a character list.

putcb Places a character buffer at the end of a character list.

putcbp Places several characters at the end of a character list.

putcf Frees a specified buffer.

putcfl Frees the specified list of buffers.

putcx Places a character on a character list.

waitcfree Checks the availability of a free character buffer.

Interrupt Management Services

The operating system provides the following set of kernel services for managing
interrupts. See L i “ for a description of these

services:

i_clear Removes an interrupt handler from the system.

i_reset Resets the system’s hardware interrupt latches.

i_sched Schedules off-level processing.

i_mask Disables an interrupt level.

i_unmask Enables an interrupt level.

i_disable Disables all of the interrupt levels at a particular interrupt priority and all

interrupt levels at a less-favored interrupt priority.

40 Kernel Extensions and Device Support Programming Concepts

i_enable Enables all of the interrupt levels at a particular interrupt priority and all
interrupt levels at a more-favored interrupt priority.

Memory Buffer (mbuf) Kernel Services

The Memory Buffer (mbuf) kernel services provide functions to obtain, release, and
manipulate memory buffers, or mbufs. These mbuf services provide the means to
easily work with the mbuf data structure, which is defined in the
{usr/include/sys/mbuf.h file. Data can be stored directly in an mbuf’s data portion
or in an attached external cluster. Mbufs can also be chained together by using the
m_next field in the mbuf structure. This is particularly useful for communications
protocols that need to add and remove protocol headers.

The Memory Buffer (mbuf) kernel services are:

m_adj Adjusts the size of an mbuf chain.

m_clattach Allocates an mbuf structure and attaches an external cluster.

m_cat Appends one mbuf chain to the end of another.

m_clgetm Allocates and attaches an external buffer.

m_collapse Guarantees that an mbuf chain contains no more than a given number of
mbuf structures.

m_copydata Copies data from an mbuf chain to a specified buffer.

m_copym Creates a copy of all or part of a list of mbuf structures.

m_dereg Deregisters expected mbuf structure usage.

m_free Frees an mbuf structure and any associated external storage area.

m_freem Frees an entire mbuf chain.

m_get Allocates a memory buffer from the mbuf pool.

m_getclr Allocates and zeros a memory buffer from the mbuf pool.

m_getclustm Allocates an mbuf structure from the mbuf buffer pool and attaches a
cluster of the specified size.

m_gethdr Allocates a header memory buffer from the mbuf pool.

m_pullup Adjusts an mbuf chain so that a given number of bytes is in contiguous

memory in the data area of the head mbuf structure.
m_reg Registers expected mbuf usage.

In addition to the mbuf kernel services, the following macros are available for use
with mbufs:

m_clget Allocates a page-sized mbuf structure cluster.

m_copy Creates a copy of all or part of a list of mbuf structures.

m_getclust Allocates an mbuf structure from the mbuf buffer pool and attaches a
page-sized cluster.

M_HASCL Determines if an mbuf structure has an attached cluster.

DTOM Converts an address anywhere within an mbuf structure to the head of that
mbuf structure.

MTOCL Converts a pointer to an mbuf structure to a pointer to the head of an

attached cluster.

MTOD Converts a pointer to an mbuf structure to a pointer to the data stored in
that mbuf structure.
M_XMEMD Returns the address of an mbuf cross-memory descriptor.

Chapter 4. Kernel Services 41

DMA Management Kernel Services

The operating system kernel provides several services for managing direct memory

access DMA channels and performing DMA operations. I'linderstanding DMA|
[Cransfers” on page 44 provides additional kernel services information.

The services provided are:

d_align Assists in the allocation of DMA buffers.

d_cflush Flushes the processor and I/O controller IOCC) data caches when using
the long term DMA_WRITE_ONLY mapping of direct memory access
(DMA) buffers approach to the bus device DMA.

d_clear Frees a DMA channel.

d_complete Cleans up after a DMA transfer.

d_init Initializes a DMA channel.

d_map_init Allocates and initializes resources for performing DMA with PCI and ISA
devices.

d_mask Disables a DMA channel.

d_master Initializes a block-mode DMA transfer for a DMA master.

d_move Provides consistent access to system memory accessed asynchronously by a

device and the processor on the system.
d_roundup Assists in allocation of DMA bulffers.
d_slave Initializes a block-mode DMA transfer for a DMA slave.
d_unmask Enables a DMA channel.

Block I/0 Buffer Cache Kernel Services: Overview

The Block I/O Buffer Cache services are provided to support user access to device
drivers through block I/O special files. This access is required by the operating
system file system for mounts and other limited activity, as well as for
compatibility services required when other file systems are installed on these kinds
of systems. These services are not used by the operating system’s JFS (journal file
system), NFS (Network File System), or CDRFS (CD-ROM file system) when
processing standard file I/O data. Instead they use the virtual memory manager
and pager to manage the system’s memory pages as a buffer cache.

For compatibility support of other file systems and block special file support, the
buffer cache services serve two important purposes:

* They ensure that multiple processes accessing the same block of the same device
in multiprogrammed fashion maintain a consistent view of the data in the block.

* They increase the efficiency of the system by keeping in-memory copies of
blocks that are frequently accessed.

The Buffer Cache services use the buf structure or buffer header as their main
data-tracking mechanism. Each buffer header contains a pair of pointers that
maintains a doubly-linked list of buffers associated with a particular block device.
An additional pair of pointers maintain a doubly-linked list of blocks available for
use again on another operation. Buffers that have I/O in progress or that are busy
for other purposes do not appear in this available list.

Kernel buffers are discussed in more detail in "Introduction to Kernel Buffers” in
AIX Version 4.3 Technical Reference: Kernel and Subsystems Volume 1.

See I‘Black 1/0 Kernel Services” on page 39 for a list of these services.

42 Kernel Extensions and Device Support Programming Concepts

Managing the Buffer Cache

Fourteen kernel services provide management of this block 1/0 buffer cache
mechanism. The getblk kernel service allocates a buffer header and a free buffer
from the buffer pool. Given a device and block number, the getblk and bread
kernel services both return a pointer to a buffer header for the block. But the bread
service is guaranteed to return a buffer actually containing a current data for the
block. In contrast, the getblk service returns a buffer that contains the data in the
block only if it is already in memory.

In either case, the buffer and the corresponding device block are made busy. Other
processes attempting to access the buffer must wait until it becomes free. The
getblk service is used when:

* Ablock is about to be rewritten totally.
* Its previous contents are not useful.

* No other processes should be allowed to access it until the new data has been
placed into it.

The breada kernel service is used to perform read-ahead I/O and is similar to the
bread service except that an additional parameter specifies the number of the block
on the same device to be read asynchronously after the requested block is
available. The brelse kernel service makes the specified buffer available again to
other processes.

Using the Buffer Cache write Services

There are three slightly different write routines. All of them take a buffer pointer as
a parameter and all logically release the buffer by placing it on the free list. The
bwrite service puts the buffer on the appropriate device queue by calling the
device’s strategy routine. The bwrite service then waits for I/O completion and
sets the caller’s error flag, if required. This service is used when the caller wants to
be sure that I/O takes place synchronously, so that any errors can be handled
immediately.

The bawrite service is an asynchronous version of the bwrite service and does not
wait for I/O completion. This service is normally used when the overlap of
processing and device 1/0O activity is desired.

The bdwrite service does not start any I/O operations, but marks the buffer as a
delayed write and releases it to the free list. Later, when the buffer is obtained
from the free list and found to contain data from some other block, the data is
written out to the correct device before the buffer is used. The bdwrite service is
used when it is undetermined if the write is needed immediately.

For example, the bdwrite service is called when the last byte of the write operation
associated with a block special file falls short of the end of a block. The bdwrite
service is called on the assumption that another write will soon occur that will use
the same block again. On the other hand, as the end of a block is passed, the
bawrite service is called, because it is assumed the block will not be accessed again
soon. Therefore, the I/O processing can be started as soon as possible.

Note that the getblk and bread services dedicated the specified block to the caller

while making other processes wait, while the brelse, bwrite, bawrite, or bdwrite
services must eventually be called to free the block for use by other processes.

Chapter 4. Kernel Services 43

Understanding Interrupts

Each hardware interrupt has an interrupt level and an interrupt priority. The
interrupt level defines the source of the interrupt. There are basically two types of
interrupt levels: system and bus. The system bus interrupts are generated from the
Micro Channel bus and system I/O. Examples of system interrupts are the timer
and serial link interrupts.

The interrupt level of a system interrupt is defined in the sys/intr.h file. The
interrupt level of a bus interrupt is one of the resources managed by the bus
configuration methods.

Interrupt Priorities

The interrupt priority defines which of a set of pending interrupts is serviced first.
INTMAX is the most favored interrupt priority and INTBASE is the least favored
interrupt priority. The interrupt priorities for bus interrupts range from
INTCLASSO to INTCLASS3. The rest of the interrupt priorities are reserved for the
base kernel. Interrupts that cannot be serviced within the time limits specified for
bus interrupts qualify as off-level interrupts.

A device’s interrupt priority is selected based on two criteria: its maximum
interrupt latency requirements and the device driver’s interrupt execution time. The
interrupt latency requirement is the maximum time within which an interrupt
must be serviced. (If it is not serviced in this time, some event is lost or
performance is degraded seriously.) The interrupt execution time is the number of
machine cycles required by the device driver to service the interrupt. Interrupts
with a short interrupt latency time must have a short interrupt service time.

The general rule for interrupt service times is based on the following interrupt
priority table:

Interrupt Priority Versus Interrupt Service Times

Priority Service Time (machine cycles)
INTCLASSO0 200 cycles
INTCLASS1 400 cycles
INTCLASS2 600 cycles
INTCLASS3 800 cycles

The valid interrupt priorities are defined in the /usr/include/sys/intr.h file.

See IInterrupt Management Services” an page 40 for a list of these services.
Understanding DMA Transfers

A device driver must call the d_slave service to set up a DMA slave transfer or call
the d_master service to set up a DMA master transfer. The device driver then sets
up the device to perform the DMA transfer. The device transfers data when it is
available and interrupts the processor upon completion of the DMA transfer. The
device driver then calls the d_complete service to clean up after the DMA transfer.
This process is typically repeated each time a DMA transfer is to occur.

44 Kernel Extensions and Device Support Programming Concepts

Hiding DMA Data

In this system, data can be located in the processor cache, system memory, or
DMA buffer. The DMA services have been carefully written to ensure that data is
moved between these three locations correctly. The d_master and d_slave services
flush the data from the processor cache to system memory. They then hide the
page, preventing data from being placed back into the processor cache. The
hardware moves the data between system memory, the DMA buffers, and the
device. The d_complete service flushes data from the DMA buffers to system
memory and unhides the buffer.

A count is maintained of the number of times a page is hidden for DMA. A page is
not actually hidden except when the count goes from 0 to 1 and is not unhidden
except when the count goes from 1 to 0. Therefore, the users of the services must
make sure to have the same number of calls to both the d_master and d_complete
services. Otherwise, the page can be incorrectly unhidden and data lost. This count
is intended to support operations such as logical volume mirrored writes.

All pages containing user data must be hidden while DMA operations are being
performed on them. This is required to ensure that data is not lost by being put in
more than one of these locations.

DMA operations can be carefully performed on kernel data without hiding the
pages containing the data. The DMA_WRITE_ONLY flag, when specified to the
d_master service, causes it not to flush the processor cache or hide the pages. The
same flag when specified to the d_complete service causes it not to unhide the
pages. This flag requires that the caller has carefully flushed the processor cache
using the vm_cflush service. Additionally, the caller must carefully allocate
complete pages for the data buffer and carefully split them up into transfers.
Transferred pages must each be aligned at the start of a DMA buffer boundary, and
no other data can be in the same DMA buffers as the data to be transferred. The
d_align and d_roundup services help ensure that the buffer allocation is correct.

The d_align service (provided in libsys.a) returns the alignment value required for
starting a buffer on a processor cache line boundary. The d_roundup service (also
provided in libsys.a) can be used to round the desired DMA buffer length up to a
value that is an integer number of cache lines. These two services allow buffers to
be used for DMA to be aligned on a cache line boundary and allocated in whole
multiples of the cache line size so that the buffer is not split across processor cache
lines. This reduces the possibility of consistency problems because of DMA and
also minimizes the number of cache lines that must be flushed or invalidated when
used for DMA. For example, these services can be used to provide alignment as
follows:

align = d_align();

buffer_length = d_roundup(required_length);

buf_ptr = xmalloc(buffer_length, align, kernel_heap);

Note: If the kernel heap is used for DMA bulffers, the buffer must be pinned

using the pin kernel service before being utilized for DMA. Alternately, the
memory could be requested from the pinned heap.

Accessing Data While the DMA Operation Is in Progress

Data must be carefully accessed when a DMA operation is in progress. The
d_move service provides a means of accessing the data while a DMA transfer is

Chapter 4. Kernel Services 45

being performed on it. This service accesses the data through the same system
hardware as that used to perform the DMA transfer. The d_move service,
therefore, cannot cause the data to become inconsistent. This service can also access
data hidden from normal processor accesses.

See 'DMA Management Kernel Services” on page 49 for a list of these services.

Kernel Extension and Device Driver Management Kernel Services

The kernel provides a relatively complete set of program and device driver
management services. These services include general kernel extension loading and
binding services and device driver binding services. Also provided are services
that allow kernel extensions to be notified of base kernel configuration changes,
user-mode exceptions, and system-wide process state changes.

Kernel Extension Loading and Binding Services

The kmod_load, kmod_entrypt, and kmod_unload services provide kernel
extension loading and binding services. The sysconfig subroutine makes these
services available to user-mode programs. However, kernel-mode callers executing
in a kernel process environment can also use them. These services provide the
same kernel object-file load, unload, and query functions provided by the
sysconfig subroutine as well as the capability to obtain a module’s entry point
with the kernel module ID assigned to the module.

The kmod_load, kmod_entrypt, and kmod_unload services can be used to
dynamically alter the set of routines loaded into the kernel based on system
configuration and application demand. Subsystems and device drivers can use
these services to load large, seldom-used routines on demand. Device driver
binding services include the devswadd, devswdel, devswqry services, which are
used to add or remove a device driver entry from the dynamically managed device
switch table. They also query for information concerning a specific entry in the
device switch table.

Other Functions for the Kernel Extension and Device Driver
Management Services

Some kernel extensions may be sensitive to the settings of base kernel runtime
configurable parameters that are found in the var structure defined in the
fusr/include/sys/var.h file. These parameters can be set during system boot or
runtime by a privileged user performing system configuration commands that use
the sysconfig subroutine to alter values in the var structure. Kernel extensions may
register or remove a configuration notification routine with the cfgnadd and
cfgndel kernel services. This routine is called each time the sysconfig subroutine is
used to change base kernel tunable parameters found in the var structure.

In addition, the prochadd and prochdel kernel services allow kernel extensions to
be notified when any process in the system has a state transition, such as being
created, exiting, being swapped in or swapped out. The uexadd and uexdel kernel
services give kernel extensions the capability to intercept user-mode exceptions.
These user-mode exception handlers may use this capability to dynamically
reassign access to single-use resources or to clean up after some particular
user-mode error. The associated uexblock and uexclear services can be used by
these handlers to block and resume process execution when handling these
exceptions.

46 Kernel Extensions and Device Support Programming Concepts

The pio_assist and getexcept kernel services are typically used by device drivers to
obtain detailed information about exceptions that occur during I/O bus access. The
getexcept service can also be used by any exception handler requiring more
information about an exception that has occurred. The selreg kernel service is used
by file select operations to register unsatisfied asynchronous poll or select event
requests with the kernel. The selnotify kernel service replaces the traditional
operating system’s selwakeup kernel function and is used by device drivers
supporting the poll or select subroutines when asynchronous event notification is
requested. The iostadd and iostdel services are used by tty and disk device drivers
to register device activity reporting structures to be used by the iostat and vmstat
commands.

Finally, the getuerror and setuerror services can be used by kernel extensions that
provide or use system calls to access the u t _error field for the current process
thread’s uthread structure . This is typically used by kernel extensions providing
system calls to return error codes, and is used by other kernel extensions to check
error codes upon return from a system call (since there is no errno global variable
in the kernel).

List of Kernel Extension and Device Driver Management
Kernel Services

The Kernel Program/Device Driver Management kernel services are:

cfgnadd Registers a notification routine to be called when system-configurable
variables are changed.

cfgndel Removes a notification routine for receiving broadcasts of changes to
system configurable variables.

devdump Calls a device driver dump-to-device routine.

devstrat Calls a block device driver’s strategy routine.

devswadd Adds a device entry to the device switch table.

devswchg Alters a device switch entry point in the device switch table.

devswdel Deletes a device driver entry from the device switch table.

devswqry Checks the status of a device switch entry in the device switch table.

getexcept Allows kernel exception handlers to retrieve additional exception
information.

getuerror Allows kernel extensions to retrieve the current value of the u_error
field.

iostadd Registers an I/O statistics structure used for updating I/O statistics
reported by the iostat subroutine.

iostdel Removes the registration of an I/O statistics structure used for
maintaining I/O statistics on a particular device.

kmod_entrypt Returns a function pointer to a kernel module’s entry point.

kmod_load Loads an object file into the kernel or queries for an object file already
loaded.

kmod_unload Unloads a kernel object file.

pio_assist Provides a standardized programmed 1/0O exception handling
mechanism for all routines performing programmed I/0O.

prochadd Adds a systemwide process state-change notification routine.

prochdel Deletes a process state change notification routine.

selreg Registers an asynchronous poll or select request with the kernel.

selnotify Wakes up processes waiting in a poll or select subroutine or the fp_poll
kernel service.

setuerror Allows kernel extensions to set the u_error field in the u area.

uexadd Adds a systemwide exception handler for catching user-mode process
exceptions.

Chapter 4. Kernel Services 47

uexblock Makes a process nonrunnable when called from a user-mode exception

handler.
uexclear Makes a process blocked by the uexblock service runnable again.
uexdel Deletes a previously added system-wide user-mode exception handler.

Locking Kernel Services

The following information is provided to assist you in understanding the locking
kernel services:

Lock Allocation and Other Services

The following lock allocation services allocate and free internal operating system
memory for simple and complex locks, or check if the caller owns a lock:

lock_alloc Allocates system memory for a simple or complex lock.
lock_free Frees the system memory of a simple or complex lock.
lock_mine Checks whether a simple or complex lock is owned by the caller.

Simple Locks

Simple locks are exclusive-write, non-recursive locks which protect thread-thread
or thread-interrupt critical sections. Simple locks are preemptable, meaning that a
kernel thread can be preempted by another, higher priority kernel thread while it
holds a simple lock. The simple lock kernel services are:

simple_lock_init Initializes a simple lock.
simple_lock, simple_lock_try Locks a simple lock.
simple_unlock Unlocks a simple lock.

On a multiprocessor system, simple locks which protect thread-interrupt critical
sections must be used in conjunction with interrupt control in order to serialize
execution both within the executing processor and between different processors.
On a uniprocessor system interrupt control is sufficient; there is no need to use
locks. The following kernel services provide appropriate locking calls for the
system on which they are executed:

disable_lock Raises the interrupt priority, and locks a simple lock if necessary.
unlock_enable Unlocks a simple lock if necessary, and restores the interrupt priority.

Using the disable_lock and unlock_enable kernel services to protect
thread-interrupt critical sections (instead of calling the underlying interrupt control
and locking kernel services directly) ensures that multiprocessor-safe code does not
make unnecessary locking calls on uniprocessor systems.

48 Kernel Extensions and Device Support Programming Concepts

Simple locks are spin locks; a kernel thread which attempts to acquire a simple
lock may spin (busy-wait: repeatedly execute instructions which do nothing) if the
lock is not free. The table shows the behavior of kernel threads and interrupt
handlers which attempt to acquire a busy simple lock.

Result of Attempting to Acquire a Busy Simple Lock

Caller Owner is Running Owner is Sleeping
Thread (with interrupts Caller spins initially; it sleeps | Caller sleeps immediately.
enabled) if the maximum spin

threshold is crossed.
Interrupt handler or thread | Caller spins until lock is Caller spins until lock is
(with interrupts disabled) freed. freed (must not happen).

Note: On uniprocessor systems, the maximum spin threshold is set to one,
meaning that a kernel thread will never spin waiting for a lock.

A simple lock that protects a thread-interrupt critical section must never be held
across a sleep, otherwise the interrupt could spin for the duration of the sleep, as
shown in the table. This means that such a routine must not call any external
services which may result in a sleep. In general, using any kernel service which is
callable from process level may result in a sleep, as can accessing unpinned data.
These restrictions do not apply to simple locks that protect thread-thread critical
sections.

The lock word of a simple lock must be located in pinned memory if simple
locking services are called with interrupts disabled.

Complex Locks

Complex locks are read-write locks which protect thread-thread critical sections.
Complex locks are preemptable, meaning that a kernel thread can be preempted by
another, higher priority kernel thread while it holds a complex lock. The complex
lock kernel services are:

lock_init Initializes a complex lock.

lock_islocked Tests whether a complex lock is locked.
lock_done Unlocks a complex lock.

lock_read, lock_try_read Locks a complex lock in shared-read mode.

lock_read_to_write, lock_try_read_to_write = Upgrades a complex lock from shared-read
mode to exclusive-write mode.

lock_write, lock_try_write Locks a complex lock in exclusive-write
mode.

lock_write_to_read Downgrades a complex lock from
exclusive-write mode to shared-read mode.

lock_set_recursive Prepares a complex lock for recursive use.

lock_clear_recursive Prevents a complex lock from being acquired
recursively.

By default, complex locks are not recursive (they cannot be nested). A complex
lock can become recursive through the lock_set_recursive kernel service. A
recursive complex lock is not freed until lock_done is called once for each time
that the lock was locked.

Chapter 4. Kernel Services 49

Complex locks are spin locks; a kernel thread which attempts to acquire a complex
lock may spin (busy-wait: repeatedly execute instructions which do nothing) if the
lock is not free. The table shows the behavior of kernel threads which attempt to
acquire a busy complex lock:

Result of Attempting to Acquire a Busy Complex Lock

Current Lock Mode Owner is Running Owner is Sleeping

Exclusive-write Caller spins initially, but Caller sleeps immediately.
sleeps if the maximum spin
threshold is crossed, or if the
owner later sleeps.

Shared-read being acquired | Caller spins initially; it sleeps if the maximum spin
for exclusive-write threshold is crossed.

Shared-read being acquired |Lock granted immediately
for shared-read

Notes:

1. On uniprocessor systems, the maximum spin threshold is set to one,
meaning that a kernel thread will never spin waiting for a lock.

2. The concept of a single owner does not apply to a lock held in
shared-read mode.

Lockl Locks

Note: Lockl locks (previously called conventional locks) are only provided to
ensure compatibility with existing code. New code should use simple or
complex locks.

Lockl locks are exclusive-access and recursive locks. The lockl lock kernel services
are:

lockl Locks a conventional lock.
unlockl Unlocks a conventional lock.

A thread which tries to acquire a busy lockl lock sleeps immediately.

The lock word of a lockl lock must be located in pinned memory if the lockl
service is called with interrupts disabled.

Atomic Lock Operations

Atomic lock operations are services that read or write single word variables; on
multiprocessor systems, they also protect against concurrent access using import
and export fences (or synchronization instructions). They can be used to implement
higher level locking services and are mainly intended to support the building of
user mode lock services when POSIX 1003.1c mutexes are not appropriate. Thus,
the following atomic lock operations are provided as user subroutines:

_check_lock Conditionally updates a single word variable atomically, issuing an import
fence for multiprocessor systems. The kernel service compare_and_swap is
similar, but does not issue an import fence, and therefore is inappropriate
for updates of lock words on multiprocessor systems.

50 Kernel Extensions and Device Support Programming Concepts

_clear_lock Atomically writes a single word variable, issuing an export fence for
multiprocessor systems.

_safe_fetch Atomically reads and returns a single word variable protected by an
export fence. The read is safe for multiprocessor systems.

Single word variables accessed by atomic lock operations must be aligned on a full

word boundary, and must be located in pinned memory if called with interrupts
disabled.

Atomic Operations

Atomic operations are sequences of instructions which guarantee atomic accesses
and updates of shared single word variables. This means that atomic operations

cannot protect accesses to complex data structures in the way that locks can, but
they provide a very efficient way of serializing access to a single word.

The atomic operation kernel services are:

fetch_and_add Increments a single word variable atomically.

fetch_and_and, fetch_and_or Manipulates bits in a single word variable
atomically.

compare_and_swap Conditionally updates or returns a single word

variable atomically.

Single word variables accessed by atomic operations must be aligned on a full
word boundary, and must be located in pinned memory if atomic operation kernel
services are called with interrupts disabled.

File Descriptor Management Services

The File Descriptor Management services are supplied by the logical file system for
creating, using, and maintaining file descriptors. These services allow for the
implementation of system calls that use a file descriptor as a parameter, create a
file descriptor, or return file descriptors to calling applications. The following are
the File Descriptor Management services:

ufdcreate Allocates and initializes a file descriptor.

ufdhold Increments the reference count on a file descriptor.
ufdrele Decrements the reference count on a file descriptor.
ufdgetf Gets a file structure pointer from a held file descriptor.
getufdflags Gets the flags from a file descriptor.

setufdflags Sets flags in a file descriptor.

Logical File System Kernel Services

The Logical File System services (also known as the fp_services) allow processes
running in kernel mode to open and manipulate files in the same way that
user-mode processes do. Data access limitations make it unreasonable to
accomplish these tasks with system calls, so a subset of the file system calls has
been provided with an alternate kernel-only interface.

Chapter 4. Kernel Services 51

The Logical File System services are one component of the logical file system,
which provides the functions required to map system call requests to virtual file
system requests. The logical file system is responsible for resolution of file names
and file descriptors. It tracks all open files in the system using the file table. The
Logical File System services are lower level entry points into the system call
support within the logical file system.

Routines in the kernel that must access data stored in files or that must set up
paths to devices are the primary users of these services. This occurs most
commonly in device drivers, where a lower level device driver must be accessed or
where the device requires microcode to be downloaded. Use of the Logical File
System services is not, however, restricted to these cases.

A process can use the Logical File System services to establish access to a file or
device by calling:

* The fp_open service with a path name to the file or device it must access.
* The fp_opendev service with the device number of a device it must access.

* The fp_getf service with a file descriptor for the file or device. If the process
wants to retain access past the duration of the system call, it must then call the
fp_hold service to acquire a private file pointer.

These three services return a file pointer that is needed to call the other Logical
File System services. The other services provide the functions that are provided by
the corresponding system calls.

Other Considerations

The Logical File System services are available only in the process environment (see

Process Environment” on page 8).

In addition, calling the fp_open service at certain times can cause a deadlock. The
lookup on the file name must acquire file system locks. If the process is already
holding any lock on a component of the path, the process will be deadlocked.
Therefore, do not use the fp_open service when the process is already executing an
operation that holds file system locks on the requested path. The operations most
likely to cause this condition are those that create files.

List of Logical File System Kernel Services

These are the Logical File System kernel services:

fp_access Checks for access permission to an open file.

fp_close Closes a file.

fp_fstat Gets the attributes of an open file.

fp_getdevno Gets the device number or channel number for a device.

fp_getf Retrieves a pointer to a file structure.

fp_hold Increments the open count for a specified file pointer.

fp_ioctl Issues a control command to an open device or file.

fp_lseek Changes the current offset in an open file.

fp_llseek Changes the current offset in an open file. Used to access offsets beyond
2GB.

fp_open Opens a regular file or directory.

fp_opendev Opens a device special file.

fp_poll Checks the I/0O status of multiple file pointers/descriptors and message
queues.

fp_read Performs a read on an open file with arguments passed.

52 Kernel Extensions and Device Support Programming Concepts

fp_readv
fp_rwuio
fp_select

fp_write
fp_writev

Performs a read operation on an open file with arguments passed in iovec
elements.

Performs read or write on an open file with arguments passed in a uio
structure.

Provides for cascaded, or redirected, support of the select or poll request.
Performs a write operation on an open file with arguments passed.
Performs a write operation on an open file with arguments passed in
iovec elements.

Memory Kernel Services

The Memory kernel services provide kernel extensions with the ability to:

* Dynamically allocate and free memory

* Pin and unpin code and data

* Access user memory and transfer data between user and kernel memory

* Create, reference, and change virtual memory objects

The following information is provided to assist you in learning more about
memory kernel services:

o 'lser Memaory Access Kernel Services” an page 54

IN T

”

4

Memory Management Kernel Services

The Memory Management services are:

init_heap

xmalloc
xmfree

Initializes a new heap to be used with kernel memory management
services.

Allocates memory:.

Frees allocated memory.

Memory Pinning Kernel Services

The Memory Pinning services are:

pin
pincode
pinu
unpin
unpincode
unpinu
xmempin

Xmemunpin

Pins the address range in the system (kernel) space.

Pins the code and data associated with an object file.

Pins the specified address range in user or system memory.

Unpins the address range in system (kernel) address space.

Unpins the code and data associated with an object file.

Unpins the specified address range in user or system memory.

Pins the specified address range in user or system memory, given a
valid cross-memory descriptor.

Unpins the specified address range in user or system memory, given a
valid cross-memory descriptor.

Chapter 4. Kernel Services 53

User Memory Access Kernel Services

In a system call or kernel extension running under a user process, data in the user
process can be moved in or out of the kernel using the copyin and copyout
services. The uiomove service is used for scatter and gather operations. If user
data is to be referenced asynchronously, such as from an interrupt handler or a
kernel process, the cross memory services must be used.

The User Memory Access kernel services are:

copyin, copyiné64 Copies data between user and kernel memory.

copyinstr, copyinstr64 Copies a character string (including the terminating null
character) from user to kernel space.

copyout, copyout64 Copies data between user and kernel memory.

fubyte, fubyte64 Fetches, or retrieves, a byte of data from user memory.

fuword, fuworde4 Fetches, or retrieves, a word of data from user memory.

subyte, subyte64 Stores a byte of data in user memory:.

suword, suword64 Stores a word of data in user memory.

uiomove Moves a block of data between kernel space and a space
defined by a uio structure.

ureadc Writes a character to a buffer described by a uio
structure.

uwritec Retrieves a character from a buffer described by a uio
structure.

Virtual Memory Management Kernel Services

These services are described in more detail in 'IInderstanding Virtual Memaryl
Manager Interfaces” an page 58. The Virtual Memory Management services are:

as_att, as_att64 Allocates and Maps a specified region in the current user
address space.

as_det, as_det64 Unmaps and deallocates a region in the specified address space
that was mapped with the as_att or as_att64 kernel service.

as_geth, as_geth64 Obtains a handle to the virtual memory object for the specified

address given in the specified address space. The virtual
memory object is protected.

as_getsrval, as_getsrval64 Obtains a handle to the virtual memory object for the specified
address given in the specified address space.

as_puth as_puth64 Indicates that no more references will be made to a virtual
memory object that was obtained using the as_geth or
as_geth64 kernel service.

as_seth, as_seth64 Maps a specified region in the specified address space for the
specified virtual memory object.

getadsp Obtains a pointer to the current process’s address space
structure for use with the as_att and as_det kernel services.

io_att Selects, allocates, and maps a region in the current address
space for I/O access.

io_det Unmaps and deallocates the region in the current address space
at the given address.

vm_att Maps a specified virtual memory object to a region in the
current address space.

vm_cflush Flushes the processor’s cache for a specified address range.

vm_det Unmaps and deallocates the region in the current address space

that contains a given address.

54 Kernel Extensions and Device Support Programming Concepts

vm_handle Constructs a virtual memory handle for mapping a virtual
memory object with specified access level.

vm_makep Makes a page in client storage.

vm_mount Adds a file system to the paging device table.

vm_move Moves data between a virtual memory object and a buffer
specified in the uio structure.

vm_protectp Sets the page protection key for a page range.

vim_qmodify Determines whether a mapped file has been changed.

vm_release Releases virtual memory resources for the specified address
range.

vm_releasep Releases virtual memory resources for the specified page range.

vm_uiomove Moves data between a virtual memory object and a buffer
specified in the uio structure.

vm_umount Removes a file system from the paging device table.

vm_write Initiates page-out for a page range in the address space.

vm_writep Initiates page-out for a page range in a virtual memory object.

vms_create Creates a virtual memory object of the type and size and limits
specified.

vms_delete Deletes a virtual memory object.

vms_iowait Waits for the completion of all page-out operations for pages in

the virtual memory object.

Cross-Memory Kernel Services

The cross-memory services allow data to be moved between the kernel and an
address space other than the current process address space. A data area within one
region of an address space is attached by calling the xmattach or xmattach64
service. As a result, the virtual memory object cannot be deleted while data is
being moved in or out of pages belonging to it. A cross-memory descriptor is filled
out by the xmattach or xmattach64 service. The attach operation must be done
while under a process. When the data movement is completed, the xmdetach
service can be called. The detach operation can be done from an interrupt handler.

The xmemin service can be used to transfer data from an address space to kernel
space. The xmemout service can be used to transfer data from kernel space to an
address space. These routines may be called from interrupt handler level routines
if the referenced buffers are in memory.

Cross-memory services provide the xmemdma or xmemdmaé4 service to prepare a
page for DMA processing. The xmemdma and xmemdmaé4 services flush any data
from cache into memory and hides the page. They do this by making processor
access to the page not valid. Any processor references to the page result in page
faults with the referencing process waiting on the page to be unhidden. The
xmemdma or xmemdma64 service returns the real address of the page for use in
preparing DMA address lists. When the DMA transfer is completed, the xmemdma
or xmemdma64 service must be called again to unhide the page.

The xmemdma64 service is identical to the cache-consistent version of xmemdma,
except that it returns a 64-bit real address. The xmemdmaé4 service can be called
from the process or interrupt environments. It is also present on 32-bit PowerPC
platforms to allow a single device driver or kernel extension binary to work on
32-bit or 64-bit platforms with no change and no run-time checks.

Chapter 4. Kernel Services 55

Data movement by DMA or an interrupt handler requires that the pages remain in
memory. This is ensured by pinning the data areas using the pinu service. This can
only be done under a process, since the memory pinning services page-fault on
pages not present in memory.

The unpinu service unpins pinned pages. This can be done by an interrupt
handler if the data area is the global kernel address space. It must be done under

the process if the data area is in user process space.

The Cross-Memory services are:

xmattach Attaches to a user buffer for cross-memory operations.

xmdetach Detaches from a user buffer used for cross-memory operations.

xmemin Performs a cross-memory move by copying data from the specified address
space to kernel global memory.

xmemout Performs a cross-memory move by copying data from kernel global memory

to a specified address space.

xmemdma Prepares a page for DMA I/0O or processes a page after DMA I/0O is
complete.

xmemdma64 Prepares a page for DMA I/O or processes a page after DMA I/0O is
complete. Returns 64-bit real address.

Understanding Virtual Memory Manager Interfaces

The virtual memory manager supports functions that allow a wide range of kernel
extension data operations.

Virtual Memory Objects

A virtual memory object is an abstraction for the contiguous data that can be
mapped into a region of an address space. As a data object, it is independent of
any address space. The data it represents can be in memory or on an external
storage device. The data represented by the virtual memory object can be shared
by mapping the virtual memory object into each address space sharing the access,
with the access capability of each mapping represented in that address space map.

File systems use virtual memory objects so that the files can be referenced using a
mapped file access method. The map file access method represents the data
through a virtual memory object, and allows the virtual memory manager to
handle page faults on the mapped file. When a page fault occurs, the virtual
memory manager calls the services supplied by the service provider (such as a
virtual file system) to get and put pages. A data provider (such as a file system)
maintains any data structures necessary to map between the virtual memory object
offset and external storage addressing.

The data provider creates a virtual memory object when it has a request for access
to the data. It deletes the virtual memory object when it has no more clients

referencing the data in the virtual memory object.

The vms_create service is called to create virtual memory objects. The vims_delete
service is called to delete virtual memory objects.

56 Kernel Extensions and Device Support Programming Concepts

Addressing Data

Data in a virtual memory object is made addressable in user or kernel processes
through the shmat subroutine. A kernel extension uses the vin_att kernel service to
select and allocate a region in the current (per-process kernel) address space.

The per-process kernel address space initially sees only global kernel memory and
the per-process kernel data. The vmn_att service allows kernel extensions to allocate
additional regions. However, this augmented per-process kernel address space does
not persist across system calls. The additional regions must be re-allocated with
each entry into the kernel protection domain.

The vm_att service takes as an argument a virtual memory handle representing the
virtual memory object and the access capability to be used. The vm_handle service
constructs the virtual memory handles.

When the kernel extension has finished processing the data mapped into the
current address space, it should call the vin_det service to deallocate the region
and remove access.

Moving Data to or from a Virtual Memory Object

A data provider (such as a file system) can call the vin_makep service to cause a
memory page to be instantiated. This permits a page of data to be moved into a
virtual memory object page without causing the virtual memory manager to page
in the previous data contents from an external source. This is an operation on the
virtual memory object, not an address space range.

The vim_move and vimm_uiomove kernel services move data between a virtual
memory object and a buffer specified in a uio structure. This allows data providers
(such as a file system) to move data to or from a specified buffer to a designated
offset in a virtual memory object. This service is similar to uiomove service, but
the trusted buffer is replaced by the virtual memory object, which need not be
currently addressable.

Data Flushing

A kernel extension can initiate the writing of a data area to external storage with
the vin_write kernel service, if it has addressability to the data area. The
vm_writep kernel service can be used if the virtual memory object is not currently
addressable.

If the kernel extension needs to ensure that the data is moved successfully, it can
wait on the I/O completion by calling the vms_iowait service, giving the virtual
memory object as an argument.

Discarding Data

The pages specified by a data range can be released from the underlying virtual
memory object by calling the vin_release service. The virtual memory manager
deallocates any associated paging space slots. A subsequent reference to data in the
range results in a page fault.

Chapter 4. Kernel Services 57

A virtual memory data provider can release a specified range of pages in a virtual
memory object by calling the vin_releasep service. The virtual memory object need
not be addressable for this call.

Protecting Data

The vm_protectp service can change the storage protect keys in a page range in
one client storage virtual memory object. This only acts on the resident pages. The
pages are referred to through the virtual memory object. They do not need to be
addressable in the current address space. A client file system data provider uses
this protection to detect stores to in-memory data, so that mapped files can be
extended by storing into them beyond their current end of file.

Executable Data

If the data moved is to become executable, any data remaining in processor cache
must be guaranteed to be moved from cache to memory. This is because the
retrieval of the instruction does not need to use the data cache. The vm_cflush
service performs this operation.

Installing Pager Backends

The kernel extension data providers must provide appropriate routines to be called
by the virtual memory manager. These routines move a page-sized block of data
into or out of a specified page. These services are also referred to as pager backends.

For a local device, the device strategy routine is required. A call to the vm_mount
service is used to identify the device (through a dev_t value) to the virtual
memory manager.

For a remote data provider, the routine required is a strategy routine, which is
specified in the vm_mount service. These strategy routines must run as
interrupt-level routines. They must not page fault, and they cannot sleep waiting
for locks.

When access to a remote data provider or a local device is removed, the
vm_umount service must be called to remove the device entry from the virtual
memory manager’s paging device table.

Referenced Routines

The virtual memory manager exports these routines exported to kernel extensions:

Services That Manipulate Virtual Memory Objects

vm_att Selects and allocates a region in the current address space for the
specified virtual memory object.

vms_create Creates virtual memory object of the specified type and size limits.

vms_delete Deletes a virtual memory object.

vm_det Unmaps and deallocates the region at a specified address in the
current address space.

vm_handle Constructs a virtual memory handle for mapping a virtual memory
object with a specified access level.

vms_iowait Waits for the completion of all page-out operations in the virtual

memory object.
vm_makep Makes a page in client storage.

58 Kernel Extensions and Device Support Programming Concepts

Services That Manipulate Virtual Memory Objects

vm_move Moves data between the virtual memory object and buffer specified
in the uio structure.

vm_protectp Sets the page protection key for a page range.

vm_releasep Releases page frames and paging space slots for pages in the
specified range.

vm_uiomove Moves data between the virtual memory object and buffer specified
in the uio structure.

vm_writep Initiates page-out for a page range in a virtual memory object.

Services That Support Address Space Operations

as_att Selects, allocates, and maps a region in the specified address space
for the specified virtual memory object.

as_det Unmaps and deallocates a region in the specified address space that
was mapped with the as_att kernel service.

as_geth Obtains a handle to the virtual memory object for the specified

address given in the specified address space. The virtual memory
object is protected.

as_getsrval Obtains a handle to the virtual memory object for the specified
address given in the specified address space.

as_puth Indicates that no more references will be made to a virtual memory
object that was obtained using the as_geth kernel service.

as_seth Maps a specified region in the specified address space for the
specified virtual memory object.

getadsp Obtains a pointer to the current process’s address space structure
for use with the as_att and as_det kernel services.

vm_cflush Flushes cache lines for a specified address range.

vm_release Releases page frames and paging space slots for the specified
address range.

vm_write Initiates page-out for an address range.

The following Memory-Pinning kernel services also support address space
operations. They are the pin, pinu, unpin, and unpinu services.

Services That Support Cross-Memory Operations

Cross Memory Services are listed in Memorv Kernel Services” an page 53

Services that Support the Installation of Pager Backends
vm_mount Allocates an entry in the paging device table.
vm_umount Removes a file system from the paging device table.

Services that Support 64-bit Processes

as_att64 Allocates and maps a specified region in the current user address
space.

as_det64 Unmaps and deallocates a region in the current user address space
that was mapped with the as_att64 kernel service.

as_geth64 Obtains a handle to the virtual memory object for the specified
address.

as_puth64 Indicates that no more references will be made to a virtual memory
object using the as_geth64 kernel service.

as_seth64 Maps a specified region for the specified virtual memory object.

as_getsrval64 Obtains a handle to the virtual memory object for the specified
address.

Chapter 4. Kernel Services 59

1S64U
remap_64

as_remap64
as_unremap64
rnmap_create64

rnmap_removet4
xmattach64
copyin64
copyout64
copyinstr64
fubyte64
fuword64
subyte64
suword64

Determines if the current user address space is 64-bit or not.
Register the input remapping of one or more addresses for the
duration of a system call for 64-bit process.

Remaps an additional 64-bit address to a 32-bit address that can be
used by the kernel.

Returns the 64-bit original or unremapped address associated with a
32-bit remapped address.

Defines an effective address to real address translation region for
either 64-bit or 32-bit effective addresses.

Destroys an effective address to real address translation region.
Attaches to a user buffer for cross-memory operations.

Copies data between user and kernel memory.

Copies data between user and kernel memory.

Copies data between user and kernel memory.

Retrieves a byte of data from user memory.

Retrieves a word of data from user memory.

Stores a byte of data in user memory.

Stores a word of data in user memory.

Message Queue Kernel Services

The Message Queue kernel services provide the same message queue functions to
a kernel extension as the msgctl, msgget, msgsnd, and msgxrcv subroutines make
available to a program executing in user mode. Parameters have been added for
moving returned information to an explicit parameter to free the return codes for
error code usage. Instead of the error information available in the errno global
variable (as in user mode), the Message Queue services use the service’s return
code. The error values are the same, except that a memory fault error (EFAULT)
cannot occur because message buffer pointers in the kernel address space are
assumed to be valid.

The Message Queue serv1ces can be called only from the process environment (see
“) because they prevent the

caller from specifying kernel buffers. These services can be used as an Interprocess

Communication mechanism to other kernel processes or user-mode processes. See

’Kernel Extension and Device Driver Management Kernel Services” an page 46 for

more information on the functions that these services provide.

There are four Message Queue services available from the kernel:

kmsgctl ~ Provides message-queue control operations.
kmsgget Obtains a message-queue identifier.
kmsgrcv Reads a message from a message queue.

kmsgsnd Sends a message using a previously defined message queue.

60 Kernel Extensions and Device Support Programming Concepts

Network Kernel Services

The Network kernel services are divided into:

Address Family Domain and Network Interface Device Driver
Kernel Services

The Address Family Domain and Network Interface Device Driver services enable

address family domains (Protocols) and network interface drivers to add and
remove themselves from network switch tables.

The if_attach service and if_detach services add and remove network interfaces
from the Network Interface List. Protocols search this list to determine an
appropriate interface on which to transmit a packet.

Protocols use the add_input_type and del_input_type services to notify network
interface drivers that the protocol is available to handle packets of a certain type.
The Network Interface Driver uses the find_input_type service to distribute

packets to a protocol.

The add_netisr and del_netisr services add and delete network software interrupt
handlers. Address families add and delete themselves from the Address Family
Domain switch table by using the add_domain_af and del_domain_af services.
The Address Family Domain switch table is a list of all available protocols that can
be used in the socket subroutine.

The Address Family Domain and Network Interface Device Driver services are:

add_domain_af

add_input_type
add_netisr

del_domain_af

del_input_type
del_netisr

find_input_type

if_attach
if_detach
ifunit
schednetisr

Adds an address family to the Address Family domain switch
table.

Adds a new input type to the Network Input table.

Adds a network software interrupt service to the Network
Interrupt table.

Deletes an address family from the Address Family domain switch
table.

Deletes an input type from the Network Input table.

Deletes a network software interrupt service routine from the
Network Interrupt table.

Finds the given packet type in the Network Input Interface switch
table and distributes the input packet according to the table entry
for that type.

Adds a network interface to the network interface list.

Deletes a network interface from the network interface list.
Returns a pointer to the ifnet structure of the requested interface.
Schedules or invokes a network software interrupt service routine.

Chapter 4. Kernel Services 61

Routing and Interface Address Kernel Services

The Routing and Interface Address services provide protocols with a means of
establishing, accessing, and removing routes to remote hosts or gateways. Routes
bind destinations to a particular network interface.

The interface address services accept a destination address or network and return
an associated interface address. Protocols use these services to determine if an

address is on a directly connected network.

The Routing and Interface Address services are:

ifa_ifwithaddr Locates an interface based on a complete address.

ifa_ifwithdstaddr Locates the point-to-point interface with a given destination
address.

ifa_ifwithnet Locates an interface on a specific network.

if_down Marks an interface as down.

if_nostat Zeroes statistical elements of the interface array in preparation
for an attach operation.

rtalloc Allocates a route.

rtfree Frees the routing table entry

rtinit Sets up a routing table entry, typically for a network interface.

rtredirect Forces a routing table entry with the specified destination to go
through the given gateway:.

rtrequest Carries out a request to change the routing table.

Loopback Kernel Services

The Loopback services enable networking code to be exercised without actually
transmitting packets on a network. This is a useful tool for developing new
protocols without introducing network variables. Loopback services can also be
used to send packets to local addresses without using hardware loopback.

The Loopback services are:

loifp Returns the address of the software loopback interface structure.
looutput Sends data through a software loopback interface.

Protocol Kernel Services

Protocol kernel services provide a means of finding a particular address family as
well as a raw protocol handler. The raw protocol handler basically passes raw
packets up through sockets so that a protocol can be implemented in user space.

The Protocol kernel services are:

pfctlinput Starts the ctlinput function for each configured protocol.

pffindproto Returns the address of a protocol switch table entry.

raw_input Builds a raw_header structure for a packet and sends both to the raw
protocol handler.

raw_usrreq Implements user requests for raw protocols.

62 Kernel Extensions and Device Support Programming Concepts

Communications Device Handler Interface Kernel Services

The Communications Device Handler Interface services provide a standard
interface between network interface drivers and communications device handlers

(see 'Communications Physical Device Handler Model Querview” on page 100).

The net_attach and net_detach services open and close the device handler. Once
the device handler has been opened, the net_xmit service can be used to transmit
packets. Asynchronous start done notifications are recorded by the net_start_done
service. The net_error service handles error conditions.

The Communications Device Handler Interface services are:

add_netopt
del_netopt

net_attach
net_detach
net_error
net_sleep
net_start
net_start_done

net_wakeup
net_xmit
net_xmit_trace

This macro adds a network option structure to the list of network
options.

This macro deletes a network option structure from the list of
network options.

Opens a communications I/O device handler.

Closes a communications I/O device handler.

Handles errors for communication network interface drivers.
Sleeps on the specified wait channel.

Starts network IDs on a communications I/O device handler.
Starts the done notification handler for communications I/O device
handlers.

Wakes up all sleepers waiting on the specified wait channel.
Transmits data using a communications I/O device handler.
Traces transmit packets. This kernel service was added for those
network interfaces that do not use the net_xmit kernel service to
trace transmit packets.

Process and Exception Management Kernel Services

The process and exception management kernel services provided by the base

kernel provide the capability to:

. G

° G

* Provide process serialization

* Generate and handle signals

* Support event waiting and notification

Creating Kernel Processes

Kernel extensions use the creatp and initp kernel services to create and intialize a
kernel process (see I'Intraduction to Kernel Pracesses” on page 11). The setpinit
kernel service allow a kernel process to change its parent process from the one that
created it to the init process, so that the creating process does not receive the
death-of-child process signal upon kernel process termination.

Pracesses” on page 11 supplies additional information concerning use of these

services.

Creating Kernel Threads

Kernel extensions use the thread_create and kthread_start services to create and

initialize kernel-only threads. 'lInderstanding Kernel Threads” on page d provides

more information about threads.

Chapter 4. Kernel Services 63

The thread_setsched service is used to control the scheduling parameters, priority
and scheduling policy, of a thread.

Kernel Structures Encapsulation

The getpid kernel service is used by a kernel extension in either the process or
interrupt environment to determine the current execution environment (see
{Tnderstanding Execution Environments” on page 7) and obtain the process ID of
the current process if in the process environment. The rusage_incr service provides
an access to the rusage structure.

The thread-specific uthread structure is also encapsulated. The getuerror and
setuerror kernel services should be used to access the ut_error field. The
thread_self kernel service should be used to get the current thread’s ID.

Registering Exception Handlers

The setjmpx, clrjmpx, and longjmpx kernel services allow a kernel extension to
register an exception handler by:

* Saving the exception handler’s context with the setjmpx kernel service

* Removing its saved context with the clrjmpx kernel service if no exception
occurred

* Starting the next registered exception handler with the longjmpx kernel service
if it was unable to handle the exception

Refer to ‘Handling Exceptions While in a System Call” on page 29 for additional

information concerning use of these services.

Signal Management

Signals can be posted either to a kernel process or to a kernel thread. The pidsig
service posts a signal to a specified kernel process; the kthread_kill service posts a
signal to a specified kernel thread. A thread uses the sig_chk service to poll for
signals delivered to the kernel process or thread in the kernel mode.

’Kernel Pracess Signal and Fxception Handling” an page 14 provides more

information about signal management.

Events Management

The event notification services provide support for two types of interprocess

communications:
Primitive Allows only one process thread waiting on the event.
Shared Allows multiple processes threads waiting on the event.

The et_wait and et_post kernel services support single waiter event notification by
using mutually agreed upon event control bits for the kernel thread being posted.
There are a limited number of control bits available for use by kernel extensions. If
the kernel_lock is owned by the caller of the et_wait service, it is released and
acquired again upon wakeup.

The following kernel services support a shared event notification mechanism that
allows for multiple threads to be waiting on the shared event.

e_assert_wait e_wakeup
e_block_thread e_wakeup_one

64 Kernel Extensions and Device Support Programming Concepts

e_clear_wait e_wakeup_w_result
e_sleep_thread e_wakeup_w_sig

These services support an unlimited number of shared events (by using
caller-supplied event words). The following list indicates methods to wait for an
event to occur:

* Calling e_assert_wait and e_block_thread successively; the first call puts the
thread on the event queue, the second blocks the thread. Between the two calls,
the thread can do any job, like releasing several locks. If only one lock, or no
lock at all, needs to be released, one of the two other methods should be
prefered.

* Calling e_sleep_thread; this service releases a simple or a complex lock, and
blocks the thread. The lock can be automatically reacquired at wakeup.

The e_clear_wait service can be used by a thread or an interrupt handler to wake
up a specified thread, or by a thread that called e_assert_wait to remove itself
from the event queue without blocking when calling e_block_thread. The other
wakeup services are event-based. The e_wakeup and e_wakeup_w_result services
wake up every thread sleeping on an event queue; while the e_wakeup_one
service wakes up only the most favored thread. The e_wakeup_w_sig service posts
a signal to every thread sleeping on an event queue, waking up all the threads
whose sleep is interruptible.

The e_sleep and e_sleepl kernel services are provided for code that was written
for previous releases of the operating system. Threads which have called one of
these services are woken up by the e_wakeup, e_wakeup_one,
e_wakeup_w_result, e_wakeup_w_sig, or e_clear_wait kernel services. If the caller
of the e_sleep service owns the kernel lock, it is released before waiting and is
acquired again upon wakeup. The e_sleepl service provides the same function as
the e_sleep service except that a caller-specified lock is released and acquired again
instead of the kernel_lock.

List of Process, Thread, and Exception Management Kernel
Services

The Process, Thread, and Exception Management kernel services are listed below.

clrjmpx Removes a saved context by popping the most recently saved
jump buffer from the list of saved contexts.

creatp Creates a new kernel process.

e_assert_wait Asserts that the calling kernel thread is going to sleep.

e_block_thread Blocks the calling kernel thread.

e_clear_wait Clears the wait condition for a kernel thread.

e_sleep, e_sleep_thread, Forces the calling kernel thread to wait for the occurrence of a

or e_sleepl shared event.

e_sleep_thread Forces the calling kernel thread to wait the occurrence of a
shared event.

e_wakeup, Notifies kernel threads waiting on a shared event of the event’s

e_wakeup_one, or occurrence.

e_wakeup_w_result

e_wakeup_w_sig Posts a signal to sleeping kernel threads.

et_post Notifies a kernel thread of the occurrence of one or more events.

et_wait Forces the calling kernel thread to wait for the occurrence of an
event.

getpid Gets the process ID of the current process.

Chapter 4. Kernel Services 65

getppidx
initp
kthread_kill
kthread_start
limit_sigs
longjmpx

NLuprintf

pgsignal
pidsig
rusage_incr
setjmpx
setpinit
sig_chk

sigsetmask
sleep
thread_create
thread_self

thread_setsched
thread_terminate

uprintf

Gets the parent process ID of the specified process.

Changes the state of a kernel process from idle to ready.

Posts a signal to a specified kernel-only thread.

Starts a previously created kernel-only thread.

Changes the signal mask for the calling kernel thread.

Allows exception handling by causing execution to resume at
the most recently saved context.

Submits a request to print an internationalized message to the
controlling terminal of a process.

Sends a signal to a process group.

Sends a signal to a process.

Increments a field of the rusage structure.

Allows saving the current execution state or context.

Sets the parent of the current kernel process to the init process.
Provides the calling kernel thread with the ability to poll for
receipt of signals.

Changes the signal mask for the calling kernel thread.

Forces the calling kernel thread to wait on a specified channel.
Creates a new kernel-only thread in the calling process.
Returns the caller’s kernel thread ID.

Sets kernel thread scheduling parameters.

Terminates the calling kernel thread.

Submits a request to print a message to the controlling terminal
of a process.

RAS Kernel Services

The Reliability, Availability, and Serviceability (RAS) kernel services are used to
record the occurrence of hardware or software failures and to capture data about
these failures. The recorded information can be examined using the errpt, trcrpt, or

crash commands.

The panic kernel service is called when a catastrophic failure occurs and the
system can no longer operate. The panic service performs a system dump. The
system dump captures data areas that are registered in the Master Dump Table.
The kernel and kernel extensions use the dmp_add kernel service to add an entry
to the Master Dump Table and the dmp_del kernel service to remove an entry.

The errsave and errlast kernel service is called to record an entry in the system
error log when a hardware or software failure is detected.

The trcgenk and trcgenkt kernel services are used along with the trchook
subroutine to record selected system events in the event-tracing facility.

List of RAS Kernel Services

The RAS kernel services are:

dmp_add

dmp_del
dmp_prinit

errsave and errlast

panic

Specifies data to be included in a system dump by adding an
entry to the master dump table.

Deletes an entry from the master dump table.

Initializes the remote dump protocol.

Allows the kernel and kernel extensions to write to the error
log.

Crashes the system.

66 Kernel Extensions and Device Support Programming Concepts

trcgenk Records a trace event for a generic trace channel.
trcgenkt Records a trace event, including a time stamp, for a generic
trace channel.

Security Kernel Services

The Security kernel services provide methods for controlling the auditing system
and for determining the access rights to objects for the invoking process.

The following services are Security kernel services:

suser Determines the privilege state of a process.

audit_svcstart Initiates an audit record for a kernel service.

audit_svcbcopy Appends event information to the current audit event buffer.
audit_svcfinis Writes an audit record for a kernel service.

Timer and Time-of-Day Kernel Services

The Timer and Time-of-Day kernel services provide kernel extensions with the
ability to be notified when a period of time has passed. The tstart service supports
a very fine granularity of time. The timeout service is built on the tstart service
and is provided for compatibility with earlier versions of the operating system. The
w_start service provides a timer with less granularity, but much cheaper
path-length overhead when starting a timer.

Time-Of-Day Kernel Services

The Time-Of-Day kernel services are:

curtime Reads the current time into a time structure.

kgettickd Retrieves the current status of the systemwide time-of-day timer-adjustment
values.

ksettimer Sets the systemwide time-of-day timer.

ksettickd Sets the current status of the systemwide timer-adjustment values.

Fine Granularity Timer Kernel Services

The Fine Granularity Timer kernel services are:

delay Suspends the calling process for the specified number of timer ticks.
talloc Allocates a timer request block before starting a timer request.

tfree Deallocates a timer request block.

tstart Submits a timer request.

tstop Cancels a pending timer request.

You can find additional information about using the Fine Granularity Timer
services in 1 TQing Fine Crm‘nﬂm‘if} Timer Services and Structures” on page 64

Chapter 4. Kernel Services 67

Timer Kernel Services for Compatibility

The following Timer kernel services are provided for compatibility:

timeout Schedules a function to be called after a specified interval.

timeoutcf Allocates or deallocates callout table entries for use with the timeout kernel
service.

untimeout Cancels a pending timer request.

Watchdog Timer Kernel Services

The Watchdog timer kernel services are:

w_clear Removes a watchdog timer from the list of watchdog timers known to the

kernel.
w_init Registers a watchdog timer with the kernel.
w_start Starts a watchdog timer.
w_stop Stops a watchdog timer.

Using Fine Granularity Timer Services and Structures

The tstart, tfree, talloc, and tstop services provide fine-resolution timing functions.
These timer services should be used when the following conditions are required:

* Timing requests for less than one second
* Critical timing

* Absolute timing

The Watchdog timer services can be used for noncritical times having a one-second
resolution. The timeout service can be used for noncritical times having a
clock-tick resolution.

Timer Services Data Structures

The trb (timer request) structure is found in the /sys/timer.h file. The itimerstruc_t
structure contains the second/nanosecond structure for time operations and is
found in the sys/time.h file.

The itimerstruc_t t.it value substructure should be used to store time information
for both absolute and incremental timers. The T_ABSOLUTE absolute request flag
is defined in the sys/timer.h file. It should be ORed into the t->flag field if an
absolute timer request is desired.

The T_LOWRES flag causes the system to round the t->timeout value to the next
timer timeout. It should be ORed into the t->flags field. The timeout is always
rounded to a larger value. Since the system maintains 10ms interval timer,
T_LOWRES will never cause more than 10ms to be added to a timeout. The
advantage of using T_LOWRES is that it prevents an extra interrupt from being
generated.

The t->timeout and t->flags fields must be set or reset before each call to the
tstart kernel service.

68 Kernel Extensions and Device Support Programming Concepts

Coding the Timer Function

The t->func timer function should be declared as follows:

void func (t)
struct trb *t;

The argument to the func completion handler routine is the address of the trb
structure, not the contents of the t_union field.

The t->func timer function is called on an interrupt level. Therefore, code for this
routine must follow conventions for interrupt handlers.

Using Multiprocessor-Safe Timer Services

On a multiprocessor system, timer request blocks and watchdog timer structures
could be accessed simultaneously by several processors. The kernel services shown
below potentially alter critical information in these blocks and structures, and
therefore check whether it is safe to perform the requested service before

proceeding:

tstop Cancels a pending timer request.

w_clear Removes a watchdog timer from the list of watchdog timers known to the
kernel.

w_init Registers a watchdog timer with the kernel.

If the requested service cannot be performed, the kernel service returns an error
value.

In order to be multiprocessor safe, the caller must check the value returned by
these kernel services. If the service was not successful, the caller must take an
appropriate action, for example, retrying in a loop. If the caller holds a device
driver lock, it should release and then reacquire the lock within this loop in order
to avoid deadlock.

Drivers which were written for uniprocessor systems do not check the return
values of these kernel services and are not multiprocessor-safe. Such drivers can
still run as funnelled device drivers.

Virtual File System (VFS) Kernel Services

The Virtual File System (VES) kernel services are provided as fundamental building
blocks for use when writing a virtual file system. These services present a standard
interface for such functions as configuring file systems, creating and freeing
v-nodes, and looking up path names.

Most functions involved in the writing of a file system are specific to that file
system type. But a limited number of functions must be performed in a consistent
manner across the various file system types to enable the logical file system to
operate independently of the file system type.

The VFS kernel services are:

common_relock Implements a generic interface to the byte range locking functions.
fidtovp Maps a file system structure to a file ID.

Chapter 4. Kernel Services 69

gfsadd
gfsdel
vfs_hold
vfs_unhold
visrele
vfs_search
vn_free
vn_get

lookupvp

Adds a file system type to the gfs table.

Removes a file system type from the gfs table.

Holds a vfs structure and increments the structure’s use count.
Releases a vfs structure and decrements the structure’s use count.
Releases all resources associated with a virtual file system.

Searches the vfs list.

Frees a v-node previously allocated by the vn_get kernel service.
Allocates a virtual node and associates it with the designated virtual
file system.

Retrieves the v-node that corresponds to the named path.

70 Kernel Extensions and Device Support Programming Concepts

Chapter 5. Asynchronous I/O Subsystem

The following topics pertain to Asynchronous I/0:

e I"Asynchronous 1/Q Qverview’]

. G ”

. G : ”

Asynchronous I/0 Overview

Synchronous 1/0 occurs while you wait. Applications processing cannot continue
until the I/O operation is complete.

In contrast, asynchronous 1/O operations run in the background and do not block
user applications. This improves performance, because I/O operations and
applications processing can run simultaneously.

Using asynchronous 1/0 will usually improve your 1/O throughput, especially
when you are storing data in raw logical volumes (as opposed to Journaled fil
systems). The actual performance, however, depends on how many server
processes are running that will handle the I/O requests.

Many applications, such as databases and file servers, take advantage of the ability
to overlap processing and I/O. These asynchronous I/O operations use various
kinds of devices and files. Additionally, multiple asynchronous I/O operations may
run at the same time on one or more devices or files.

Each asynchronous I/O request has a corresponding control block in the
application’s address space. When an asynchronous I/O request is made, a handle
is established in the control block. This handle is used to retrieve the status and the
return values of the request.

Applications use the aio_read and aio_write subroutines to perform the I/0O.
Control returns to the application from the subroutine, as soon as the request has
been queued. The application can then continue processing while the disk
operation is being performed.

A kernel process (KPROC), called a server, is in charge of each request from the
time it is taken off the queue until it completes. The number of servers limits the
number of disk I/O operations that can be in progress in the system
simultaneously.

The default values are minservers=1 and maxservers=10. In systems that seldom
run applications that use asynchronous 1/0, this is usually adequate. For
environments with many disk drives and key applications that use asynchronous
I/0, the default is far too low. The result of a deficiency of servers is that disk I/O
seems much slower than it should be. Not only do requests spend inordinate

© Copyright IBM Corp. 1997, 1999 71

lengths of time in the queue, but the low ratio of servers to disk drives means that
the seek-optimization algorithms have too few requests to work with for each
drive.

How do | know if | need to use AIO?

Using the vmstat command with an interval and count value, you can determine if
the CPU is idle waiting for disk I/O. The wa column details the percentage of time
the CPU was idle with pending local disk I/0O.

If there is at least one outstanding I/O to a local disk when the wait process is
running, the time is classified as waiting for I/O. Unless asynchronous 1/0 is
being used by the process, an I/O request to disk causes the calling process to
block (or sleep) until the request has been completed. Once a process’s I/O request
completes, it is placed on the run queue.

A wa value consistently over 25 percent may indicate that the disk subsystem is not
balanced properly, or it may be the result of a disk-intensive workload.

Note: AIO will not relieve an overly busy disk drive. Using the iostat
command with an interval and count value, you can determine if any disks
are overly busy. Monitor the %tm_act column for each disk drive on the
system. On some systems, a %tm_act of 35.0 or higher for one disk can cause
noticeably slower performance. The relief for this case could be to move data
from more busy to less busy disks, but simply having AIO will not relieve an
overly busy disk problem.

Important for SMP

For SMP systems, the us, sy, id and wa columns are only averages over all
processors. But keep in mind that the I/O wait statistic per processor is not really
a processor-specific statistic; it is a global statistic. An I/O wait is distinguished
from idle time only by the state of a pending I/O. If there is any pending disk
I/0, and the processor is not busy, then it is an I/O wait time. Disk I/O is not
tracked by processors, so when there is any I/O wait, all processors get charged
(assuming they are all equally idle).

How many AIO Servers am | currently using?

The following command will tell you how many AIO Servers are currently running
(you must run this command as the "root” user):

pstat -a | grep aios | wc -1

If the disk drives that are being accessed asynchronously are using the AIX
Journaled File System (JES), all I/O will be routed through the aios KPROCs.

If the disk drives that are being accessed asynchronously are using a form of RAW
logical volume management, then the disk I/O is not routed through the aios
KPROC:s. In that case the number of servers running is not relevant.

However, if you want to confirm that an application that uses RAW logic volumes
is taking advantage of AIO, and you are at AIX 4.3.2 or AIX 4.3.x with APAR
IX79690 installed, you can disable the "Fastpath” option via SMIT. When this
option has been disabled, even RAW I/0O will be forced through the aios KPROCs.
At that point, the pstat command listed in preceding discussion will work. You
would not want to run the system with this option disabled for any length of time.
This is simply a suggestion to confirm that the application is working with AIO
and RAW logical volumes.

72 Kernel Extensions and Device Support Programming Concepts

At AIX levels before AIX 4.3, the "Fastpath” is enabled by default and cannot be
disabled.

How many AIO servers do | need?

Here are some suggested rules of thumb for determining what value to set
MAXIMUM number of servers to:

1.

The first rule of thumb suggests that you limit the MAXIMUM number of
servers to a number equal to ten times the number of disks that are to be used
concurrently, but not more than 80. The MINIMUM number of servers should
be set to half of this maximum number.

Another rule of thumb is to set the MAXIMUM number of servers to 80 and
leave the MINIMUM number of servers set to the default of 1 and reboot.
Monitor the number of additional servers started throughout the course of
normal workload. After a 24-hour period of normal activity, set the MAXIMUM
number of servers to:

(The number of currently running aios + 10),

and set the MINIMUM number of servers to:

(The number of currently running aios - 10).

In some environments you may see more than 80 aios KPROCs running. If so,
consider this rule of thumb:

A third suggestion is to take statistics using vmstat -s before any high I/O
activity begins, and again at the end. Check the field iodone. From this you can
determine how many physical I/Os are being handled in a given wall clock
period. Then increase the MAXIMUM number of servers and see if you can get
more iodones in the same time period.

Prerequisites

To make use of asynchronous I/O the following fileset must be installed:

bos.rte.aio

To determine if this fileset is installed, use:

1sTpp -1 bos.rte.aio

You must also make the aio0 device "Available” via SMIT.

smit chgaio
STATE to be configured at system restart available

Functions of Asynchronous 1/O

Functions provided by the asynchronous I/O facilities are:
o I arge File-Enabled Asynchronous I/0 (ATX Version 42 1 or later)”]

17

Large File-Enabled Asynchronous I/O (AIX Version 4.2.1 or

later)

The fundamental data structure associated with all asynchronous 1/O operations is
struct aiocb. Within this structure is the aio_offset field which is used to specify
the offset for an I/O operation.

Chapter 5. Asynchronous I/O Subsystem 73

The default asynchronous I/O interfaces are limited to an offset of 2G minus 1 due
to the signed 32-bit definition of aio_offset. To overcome this limitation, a new
aio control block with a signed 64-bit offset field and a new set of asynchronous
I/0 interfaces have been defined beginning with AIX Version 4.2.1.

The large offset-enabled asynchronous I/O interfaces are available under the
_LARGE_FILES compilation environment and under the _LARGE_FILE_API
programming environment. For further information, see Writing Programs That
Access Large Files in AIX Version 4.3 General Programming Concepts: Writing and
Debugging Programs.

Under the _LARGE_FILES compilation environment in AIX Version 4.2.1 or later,
asynchronous 1/0 applications written to the default interfaces see the following

redefinitions:
Item Redefined To Be Header File
struct aiocb struct aiocb64 sys/aio.h
aio_read() aio_read64() sys/aio.h
aio_write() aio_write64() sys/aio.h
aio_cancel() aio_cancel64() sys/aio.h
aio_suspend() aio_suspend64() sys/aio.h
aio_listio() aio_listio() sys/aio.h
aio_return() aio_return64() sys/aio.h
aio_error() aio_error64() sys/aio.h

For information on using the _LARGE_FILES environment, see Porting
Applications to the Large File Environment in AIX Version 4.3 General Programming
Concepts: Writing and Debugging Programs

In the _LARGE_FILE_API environment, the 64-bit API interfaces are visible. This
environment requires recoding of applications to the new 64-bit API name. For
further information on using the _LARGE_FILE_API environment, see Using the
64-Bit File System Subroutines in AIX Version 4.3 General Programming Concepts:
Writing and Debugging Programs

Nonblocking 1/0

After issuing an I/O request, the user application can proceed without being
blocked while the I/O operation is in progress. The I/O operation occurs while the
application is running. Specifically, when the application issues an 1/O request, the
request is queued. The application can then resume running before the I/0
operation is initiated.

To manage asynchronous 1/0, each asynchronous I/O request has a corresponding
control block in the application’s address space. This control block contains the
control and status information for the request. It can be used again when the I/O
operation is completed.

Notification of I/O Completion

After issuing an asynchronous I/O request, the user application can determine
when and how the I/O operation is completed. This information is provided in
three ways:

74 Kernel Extensions and Device Support Programming Concepts

* The application can poll the status of the I/O operation (see EBQ].Lm.g_tb.e_Stai:lﬂ
bf the 1/0 ﬂppraﬁnn”l),

* The system can asynchronously notify the application when the I/O operation is

done (see [
m).

* The application can block until the I/O operation is complete (see W
= - -).

Polling the Status of the 1/0O Operation

The application can periodically poll the status of the I/O operation. The status of
each I/O operation is provided in the application’s address space in the control
block associated with each request. Portable applications can retrieve the status by
using the aio_error subroutine.

Asynchronously Notifying the Application When the 1/O
Operation Completes

Asynchronously notifying the I/O completion is done by signals. Specifically, an
application may request that a SIGIO signal be delivered when the I/O operation
is complete. To do this, the application sets a flag in the control block at the time it
issues the I/O request. If several requests have been issued, the application can
poll the status of the requests to determine which have actually completed.

Blocking the Application until the /0 Operation Is Complete

The third way to determine whether an I/O operation is complete is to let the
calling process become blocked and wait until at least one of the I/O requests it is
waiting for is complete. This is similar to synchronous style I/O. It is useful for
applications that, after performing some processing, need to wait for 1/O
completion before proceeding.

Cancellation of /0 Requests

I/0 requests can be canceled if they are cancelable. Cancellation is not guaranteed
and may succeed or not depending upon the state of the individual request. If a
request is in the queue and the I/O operations have not yet started, the request is
cancellable. Typically, a request is no longer cancelable when the actual I/O
operation has begun.

Asynchronous I/0 Subroutines

Note: The 64-bit APIs are available beginning with AIX Version 4.2.1.

The following subroutines are provided for performing asynchronous 1/0:

Subroutine Purpose

aio_cancel or aio_cancel64 Cancels one or more asynchronous I/0
requests.

aio_error or aio_error64 Retrieves the error status of an I/O request.

lio_listio or lio_listio64 Initiates multiple asynchronous read and write
operations.

aio_read or aio_read64 Reads asynchronously from a file.

aio_return or aio_return64 Retrieves the return value of an I/O request.

aio_suspend or aio_suspend64 Blocks until an asynchronous I/0 is completed.

aio_write or aio_write64 Writes asynchronously to a file.

Note: These subroutines may change to conform with the IEEE POSIX 1003.4
interface specification.

Chapter 5. Asynchronous 1/0 Subsystem 75

Order and Priority of Asynchronous /O Calls

An application may issue several asynchronous I/O requests on the same file or
device. However, since the I/O operations are performed asynchronously, the order
in which they are handled may not be the order in which the I/O calls were made.
The application must enforce ordering of its own I/O requests if ordering is
required.

Priority among the I/O requests is not currently implemented. The aio_reqprio
field in the control block is currently ignored.

For files that support seek operations, seeking is allowed as part of the
asynchronous read or write operations. The whence and offset fields are provided
in the control block of the request to set the seek parameters. The seek pointer is
updated when the asynchronous read or write call returns.

Subroutines Affected by Asynchronous I/O

The following existing subroutines are affected by asynchronous 1/0:
* The close subroutine

* The exit subroutine

* The exec subroutine

¢ The fork subroutine

If the application closes a file, or calls the _exit or exec subroutines while it has
some outstanding I/O requests, the requests are canceled. If they cannot be
canceled, the application is blocked until the requests have completed. When a
process calls the fork subroutine, its asynchronous I/0O is not inherited by the child
process.

One fundamental limitation in asynchronous I/O is page hiding. When an
unbuffered (raw) asynchronous 1/0O is issued, the page that contains the user
buffer is hidden during the actual I/O operation. This ensures cache consistency.
However, the application may access the memory locations that fall within the
same page as the user buffer. This may cause the application to block as a result of
a page fault. To alleviate this, allocate page aligned buffers and do not touch the
buffers until the I/O request using it has completed.

Changing Attributes for Asynchronous I/0

You can change attributes relating to asynchronous I/O using the chdev command
or SMIT. Likewise, you can use SMIT to configure and remove (unconfigure)
asynchronous 1/0O. (Alternatively, you can use the mkdev and rmdev commands
to configure and remove asynchronous I/0O). To start SMIT at the main menu for
asynchronous 1/0, enter smit aio.

MINIMUM number of servers
indicates the minimum number of kernel processes dedicated to
asynchronous I/0 processing. Since each kernel process uses memory, this
number should not be large when the amount of asynchronous I/0
expected is small.

MAXIMUM number of servers
indicates the maximum number of kernel processes dedicated to

76 Kernel Extensions and Device Support Programming Concepts

asynchronous I/O processing. There can never be more than this many
asynchronous I/O requests in progress at one time, so this number limits
the possible I/O concurrency.

Maximum number of REQUESTS
indicates the maximum number of asynchronous I/O requests that can be
outstanding at one time. This includes requests that are in progress as well
as those that are waiting to be started. The maximum number of
asynchronous I/O requests cannot be less than the value of AIO_MAX, as
defined in the /usr/include/sys/limits.h file, but it can be greater. It would
be appropriate for a system with a high volume of asynchronous I/0 to
have a maximum number of asynchronous I/O requests larger than
AIO_MAX.

Server PRIORITY
indicates the priority level of kernel processes dedicated to asynchronous
I/0O. The lower the priority number is, the more favored the process is in
scheduling. Concurrency is enhanced by making this number slightly less
than the value of PUSER, the priority of a normal user process. It cannot
be made lower than the values of PRI_SCHED.

Since the default priority is (40+nice), these daemons will be slightly
favored with this value of (39+nice). If you want to favor them more, m
changes slowly. A very low priority can interfere with the system process
that require low priority.

Attention: Raising the server PRIORITY (decreasing this numeric
value) is not recommended. The system can hang or crash.

PUSER and PRI_SCHED are defined in the /usr/include/sys/pri.h file.

STATE to be configured at system restart
indicates the state to which asynchronous 1/0O is to be configured during
system initialization. The possible values are 1.) defined, which indicates
that the asynchronous 1/O will be left in the defined state and not
available for use, and 2.) available, indicating that asynchronous 1/0 will
be configured and available for use.

STATE of FastPath
You will only see this option if you are at AIX 4.3.2 or any level of AIX
4.3.x with APAR IX79690 installed. Disabling this option forces ALL I/O
activity through the aios KPROCs, even I/0O activity involving RAW logical
volumes. At AIX levels before AIX 4.3 the "Fastpath” is enabled by default
and cannot disabled.

64-bit Enhancements

Asynchronous I/0O (AIO) has been enhanced to support 64-bit enabled
applications. On 64-bit platforms, both 32-bit and 64-bit AIO can occur
simultaneously.

The struct aiocb, the fundamental data structure associated with all asynchronous
I/0O operation, has changed. The element of this struct, aio_return, is now defined
as ssize_t. Previously, it was defined as an int. AIO supports large files by
default. An application compiled in 64-bit mode can do AIO to a large file without
any additional #defines or special opening of those files.

Chapter 5. Asynchronous 1/0 Subsystem 77

78 Kernel Extensions and Device Support Programming Concepts

Chapter 6. Device Configuration Subsystem

Devices are usually pieces of equipment that attach to a computer. Devices include
printers, adapters, and disk drives. Additionally, devices are special files that can
handle device-related tasks.

System users cannot operate devices until device configuration occurs. To configure
devices, the Device Configuration Subsystem is available.

Scope of Device Configuration Support

The term device has a wider range of meaning in this operating system than in
traditional operating systems. Traditionally, devices refers to hardware components
such as disk drives, tape drives, printers, and keyboards. Pseudo-devices, such as
the console, error special file, and null special file, are also included in this
category. However, in this operating system, all of these devices are referred to as
kernel devices, which have device drivers and are known to the system by major
and minor numbers.

Also, in this operating system, hardware components such as buses, adapters, and
enclosures (including racks, drawers, and expansion boxes) are considered devices.

Device Configuration Subsystem Overview

Devices are organized hierarchically within the system. This organization requires
lower-level device dependence on upper-level devices in child-parent relationships.
The system device (sys0) is the highest-level device in the system node, which
consists of all physical devices in the system.

Each device is classified into functional classes, functional subclasses and device
types (for example, printer class, parallel subclass, 4201 Proprinter type). These
classifications are maintained in the device configuration databases with all other
device information.

A DDS (device dependent structure) is a structure provided to communicate a

device’s characteristics from a Configure method to a device driver. The device’s
DDS is built each time the device is configured (Configure method).

© Copyright IBM Corp. 1997, 1999 79

The Device Configuration Subsystem consists of:

High-level Commands Maintain (add, delete, view, change) configured devices
within the system. These commands manage all of the
configuration functions and are performed by invoking the
appropriate device methods for the device being configured.
These commands call device methods and low-level
commands.

The system uses the high-level Configuration Manager
(cfgmgr) command used to invoke automatic device
configurations through system boot phases and the user can
invoke the command during system run time. Configuration
rules govern the cfgmgr command.

Device Methods Define and configure, start and stop devices. The device
methods are used to identify or change the device states
(operational modes). Device methods can call low-level

commands.

Low-level Commands Perform routines and functions common to all devices (e.g., to
update device attribute information).

Database Maintains data through the ODM (Object Data Manager) by

object classes. Predefined Device Objects contain configuration
data for all devices that can possibly be used by the system.
Customized Device Objects contain data for device instances
that are actually in use by the system.

General Structure of the Device Configuration Subsystem

The Device Configuration Subsystem can be viewed from three different levels:
* High-level perspective

* Device method level

* Low-level perspective

Data that is used by the three levels is maintained in the configuration database (see
4 i i i iew”). The database is managed
as object classes by the Object Data Manager (ODM). All information relevant to
support the device configuration process is stored in the configuration database.

The system cannot use any device unless it is configured.

The database has two components: the Predefined database and the Customized
database. The Predefined database contains configuration data for all devices that
could possibly be supported by the system. The Customized database contains
configuration data for the devices actually defined and configured in that
particular system.

The configuration manager (cfgmgr command) performs the confi%uration of a
system’s devices automatically when the system is booted (see

”

). This high-level program can also
be invoked through the system keyboard to perform automatic device
configuration. The configuration manager command configures devices as specified
by Configuration rules.

These components are illustrated in the Components Involved in Device
Configuration Support diagram on Bl

80 Kernel Extensions and Device Support Programming Concepts

‘ LIBCFG
é_?F Configuration Device
res Manager Methods
Adapter
Methods
Bus /_
adfutil Methods .
sysconfig()
System y g
Methods —
installp Define -
updatep Configure
scripts Change
| /dev/nvram
T /dev/bus0
LIBODM I
ODM DATABASE Machine
Device
Predefined Customized Device Objects Driver
Device (instance defined by the
Objects Define method)
Bus bus0 ’ bus1 H ‘ Kernel
Object \\J
\
scs| scsio | | sesit || .. |
Adapter \tJ
Disk \;'J] hdisk1| | .. |
\EJ

hdisk0
|

Components Involved in Device Configuration Support
The Devices Graph: Examples of Connectivity and Dependence diagram on kd

provides more information about the connections and dependencies between these
components.

Chapter 6. Device Configuration Subsystem 81

System System Node
\
System
Planar
l
1/0 Planar
I
Bus
\
l l l l l
SCSI Token-Ring RS-232 Display SIo
adapter adapter adapter adapter (Standard 1/0)
Tape tty Keyboard Mouse
adapter adapter
l \
Disk Printer Display Keyboard Mouse
I |
TR-IF LFT
I
TCP/IP

|:| Device

Connectivity

Dependence

Devices Graph: Examples of Connectivity and Dependence

The Overview of System Management of Devices diagram on B3 illustrates the
general structure of the Device Configuration Subsystem.

82 Kernel Extensions and Device Support Programming Concepts

Boot SMIT/Shell Run Time

Examples

/ cfgmgr
4 v mkdev

cfgmgr — High-level Commands ::Tg:\‘,’

Isdev

v Define
Configure
Device Methods Undefine
Unconfigure
Change
Start

Stop

Examples

l Y Y mknod

Low-level Commands genminor

and Routines genmajor
restbase

loadext

Examples

v v /

Predefine
Configuration Customize
Database Config Rules
(ODM)

Overview of System Management of Devices
High-Level Perspective

From a high-level, user-oriented perspective, device configuration comprises the
following basic tasks:

* Adding a device to the system

* Deleting a device from the system

* Changing the attributes of a device
* Showing information about a device

From a high-level, system-oriented perspective, device configuration provides the
basic task of automatic device configuration: running the configuration manager
program.

A set of high-level commands accomplish all of these tasks during run time: chdev,
mkdev, Isattr, Isconn, Isdev, Isparent, rmdev, and cfgmgr. High-level commands
can invoke device methods and low-level commands.

Chapter 6. Device Configuration Subsystem 83

Device Method Level

Beneath the high-level commands (including the cfgmgr Configuration Manager
program) is a set of functions called device methods. These methods perform
well-defined configuration steps, including these five functions:

* Defining a device in the configuration database

* Configuring a device to make it available

* Changing a device to make a change in its characteristics
* Unconfiguring a device to make it unavailable

* Undefining a device from the configuration database

Device methods also provide two optional functions for devices that need them:
+ Starting a device to take it from the Stopped state to the Available state
* Stopping a device to take it to the Stopped state

The Device States diagram (see ‘LInd erstanding Device States” od)
illustrates all possible device states and how the various methods affect device
state changes.

The high-level device commands (including cfgmgr) can use the device methods.
These methods insulate high-level configuration programs from kernel-specific,
hardware-specific, and device-specific configuration steps. Device methods can
invoke low-level commands.

Low-Level Perspective

Beneath the device methods is a set of low-level device configuration commands
and library routines that can be directly called by device methods as well as by
high-level configuration programs.

Device Configuration Database Overview

The Configuration database is an object-oriented database. The Object Data
Manager (ODM) provides facilities for accessing and manipulating it through
object classes.

There are actually two databases used in the configuration process:

Predefined database Contains information about all possible types of devices that
can be defined for the system.
Customized database Describes all devices currently defined for use in the system.

Items are referred to as device instances.

"ODM Device Configuration Object Classes” in AIX Technical Reference: Kernel and
Subsystems Volume 1 provides access to the object classes that make up the
Predefined and Customized databases.

Devices must be defined in the database for the system to make use of them. For a
device to be in the Defined state, the Configuration database must contain a
complete description of it. This information includes items such as the device
driver name, the device major and minor numbers, the device method names, the
device attributes, connection information, and location information.

84 Kernel Extensions and Device Support Programming Concepts

Basic Device Configuration Procedures Overview

At system boot time, the Configuration Manager (cfgmgr high-level command) is
automatically invoked to configure all devices detected as well as any device
whose device information is stored in the Configuration database. At run time, you
can configure a specific device by directly invoking (or indirectly invoking through
a usability interface layer) high-level device commands. The” Overview of System
Management of Devices” diagram on Bd illustrates this interface.

High-level device commands invoke methods and allow the user to add, delete,
show, and change devices and their associated attributes.

When a specific device is defined through its Define method, the information from
the Predefined database for that type of device is used to create the information
describing the specific device instance. This specific device instance information is
then stored in the Customized database.

The process of configuring a device is often highly device-specific. The Configure
method for a kernel device must:

¢ Load the device’s driver into the kernel.

* Pass the device dependent structure (DDS) describing the device instance to the
driver (see I‘Device Dependent Structure (DDS) Overview” on page Q‘:l)

* Create a special file for the device in the /dev directory.

Of course, many devices do not have device drivers. For this type of device the
configured state is not as meaningful. However, it still has a Configure method
that simply marks the device as configured or performs more complex operations
to determine if there are any devices attached to it.

The configuration process requires that a device be defined or configured before a
device attached to it can be defined or configured. At system boot time, the
Configuration Manager first configures the system device as shown in the "Devices
Graph: Examples of Connectivity and Dependence” diagram on B, The remaining
devices are configured by traversing down the parent-child connections layer by
layer. The Configuration Manager then configures any pseudo-devices that need to
be configured.

Device Configuration Manager Overview

The Configuration Manager is a rule-driven program that automatically configures
devices in the system during system boot and run time. When the Configuration
Manager is invoked, it reads rules from the Configuration Rules object class and
performs the indicated actions.

Devices in the system are organized in clusters of tree structures known as nodes.
Each tree is a logical subsystem by itself. For example, the system node consists of
all the physical devices in the system. The top of the node is the system device.
Below the bus and connected to it are the adapters. The bottom of the hierarchy
contains devices to which no other devices are connected. Most pseudo-devices,
including low -function terminal (HFT LFT) and pseudo-terminal (pty) devices,
are organized as separate tree structures or nodes.

Chapter 6. Device Configuration Subsystem 85

Devices Graph

The Devices Graph: Examples of Connectivity and Dependence diagram on BJ
provides an example of the connections and dependencies of devices in the system.
7 : : i i ices” provides

more information.

Configuration Rules

Each rule in the Configuration Rules (Config_Rules) object class specifies a
program name that the Configuration Manager must execute. These programs are
typically the configuration programs for the devices at the top of the nodes. When
these programs are invoked, the names of the next lower-level devices that need to
be configured are returned.

If the -m (mask) flag is not used, the cfgmgr command executes all of the rules for
the specified phase. When a mask is specified, the cfgmgr command applies the
mask to each rule for the phase. If the mask specified with the -m flag matches the
boot_mask field from the configuration rules, the rule is executed. Otherwise, the
cfgmgr command does not execute the rule. In this way, phase 1 of the boot
process can be tailored for a particular type of boot (for example, DISK_BOOT).

The Configuration Manager configures the next lower-level devices by invoking
the configuration methods for those devices. In turn, those configuration methods
return a list of to-be-configured device names. The process is repeated until no
more device names are returned. As a result, all devices in the same node are
configured in transverse order. There are three different types of rules:

e Phase 1
¢ Phase 2

e Service

The system boot process is divided into two phases. In each phase, the
Configuration Manager is invoked. During phase 1, the Configuration Manager is
called with a -f flag, which specifies that phase = 1 rules are to be executed. This
results in the configuration of base devices into the system, so that the root file
system can be used. During phase 2, the Configuration Manager is called with a -s
flag, which specifies that phase = 2 rules are to be executed. This results in the
configuration of the rest of the devices into the system.

"Understanding System Boot Processing” in AIX Version 4.3 System Management
Guide: Operating System and Devices contains diagrams that illustrate the separate
step of system boot processing.

The Configuration Manager invokes the programs in the order specified by the
sequence value in the rule. In general, the lower the sequence number within a
given phase, the higher the priority. Thus, a rule with a 2 sequence number is
executed before a rule with a sequence number of 5. An exception is made for 0
sequence numbers, which indicate a don’t-care condition. Any rule with a sequence
number of 0 is executed last. The Configuration Rules (Config_Rules) object class
provides an example of this process.

If device names are returned from the program invoked, the Configuration
Manager finishes traversing the node tree before it invokes the next program. Note
that some program names may not be associated with any devices, but they must
be included to configure the system.

86 Kernel Extensions and Device Support Programming Concepts

Invoking the Configuration Manager

During system boot time, the Configuration Manager is run in two phases. In
phase 1, it configures the base devices needed to successfully start the system.
These devices include the root volume group, which permits the configuration
database to be read in from the root file system.

In phase 2, the Configuration Manager configures the remaining devices using the
configuration database from the root file system. During this phase, different rules
are used, depending on the key switch position on the front panel. If the key is in
service position, the rules for service mode are used. Otherwise, the phase 2 rules
are used.

The Configuration Manager can also be invoked during run time to configure all
the detectable devices that may have been turned off at system boot or added after
the system boot. In this case, the Configuration Manager uses the phase 2 rules.

Device Classes, Subclasses, and Types Overview

To manage the wide variety of devices it supports more easily, the operating
system classifies them hierarchically. One advantage of this arrangement is that
device methods and high-level commands can operate against a whole set of
similar devices.

Devices are categorized into three main groups:
* Functional classes

* Functional subclasses

* Device types

Devices are organized into a set of functional classes at the highest level. From a
user’s point of view, all devices belonging to the same class perform the same
functions. For example, all printer devices basically perform the same function of
generating printed output.

However, devices within a class can have different interfaces. A class can therefore
be partitioned into a set of functional subclasses in which devices belonging to the
same subclass have similar interfaces. For example, serial printers and parallel
printers form two subclasses of printer devices.

Finally, a device subclass is a collection of device types. All devices belonging to the
same device type share the same manufacturer’s model name and number. For
example, 3812-2 (model 2 Pageprinter) and 4201 (Proprinter II) printers represent
two types of printers.

Devices of the same device type can be managed by different drivers if the type
belongs to more than one subclass. For example, the 4201 printer belongs to both
the serial interface and parallel interface subclasses of the printer class, although
there are different drivers for the two interfaces. However, a device of a particular
class, subclass, and type can be managed by only one device driver.

Devices in the system are organized in clusters of tree structures known as nodes.

For example, the system node consists of all the physical devices in the system. At
the top of the node is the system device. Below the bus and connected to it are the

Chapter 6. Device Configuration Subsystem 87

adapters. The bottom of the hierarchy contains the devices to which no other
devices are connected. Most pseudo-devices, including LFT and PTY, are organized
as separate nodes.

The Devices Graph: Examples of Connectivity and Dependence diagram on &J
illustrates this structure.

Writing a Device Method

Device methods are programs associated with a device that perform basic device
configuration operations. These operations consist of defining, undefining,
configuring, unconfiguring, and reconfiguring a device. Some devices also use
optional start and stop operations.

There are five basic device methods:

Define Creates a device instance in the Customized database.

Configure Configures a device instance already represented in the Customized
database. This method is responsible for making a device available for use
in the system.

Change Reconfigures a device by allowing device characteristics or attributes to be
changed.
Unconfigure Makes a configured device unavailable for use in the system. The device

instance remains in the Customized database but must be reconfigured
before it can be used.
Undefine Deletes a device instance from the Customized database.

Some devices also require these two optional methods:

Stop Provides the ability to stop a device without actually unconfiguring it. For
example, a command can be issued to the device driver telling it to stop
accepting normal I/O requests.

Start Starts a device that has been stopped with the Stop method. For example, a
command can be issued to the device driver informing it that it can now accept
normal I/O requests.

Invoking Methods

One device method can invoke another device method. For instance, a Configure
method for a device may need to invoke the Define method for child devices. The
Change method can invoke the Unconfigure and Configure methods. To ensure
proper operation, a method that invokes another method must always use the
odm_run_method subroutine.

Example Methods

See the /usr/samples directory for example device method source code. These
source code excerpts are provided for example purposes only. The examples do not
function as written.

88 Kernel Extensions and Device Support Programming Concepts

Understanding Device Methods Interfaces

Device methods are not executed directly from the command line. They are only
invoked by the Configuration Manager at boot time or by the cfgmgr, mkdev,
chdev, and rmdev configuration commands at run time. As a result, any device
method you write should meet well-defined interfaces.

The parameters that are passed into the methods as well as the exit codes returned
must both satisfy the requirements for each type of method. Additionally, some
methods must write information to the stdout and stderr files.

These interfaces are defined for each of the device methods in the individual
articles on writing each method.

To better understand how these interfaces work, one needs to understand, at least
superficially, the flow of operations through the Configuration Manager and the
run-time configuration commands.

Configuration Manager

The Configuration Manager begins by invoking a Node Configuration program
listed in one of the rules in the Configuration Rules (Config_Rules) object class. A
node is a group of devices organized into a tree structure representing the various
interconnections of the devices. The Node Configuration program is responsible for
starting the configuration process for a node. It does this by querying the
Customized database to see if the device at the top of the node is represented in
the database. If so, the program writes the logical name of the device to the stdout
file and then returns to the Configuration Manager.

The Configuration Manager intercepts the Node Configuration program’s stdout
file to obtain the name of the device that was written. It then invokes the
Configure method for that device. The device’s Configure method performs the
steps necessary to make the device available. If the device is not an intermediate
one, the Configure method simply returns to the Configuration Manager. However,
if the device is an intermediate device that has child devices (see [lInderstanding
Device Dependencies and Child Devices” on page 93), the Configure method must
determine whether any of the child devices need to be configured. If so, the
Configure method writes the names of all the child devices to be configured to the
stdout file and then returns to the Configuration Manager.

The Configuration Manager intercepts the Configure method’s stdout file to
retrieve the names of the children. It then invokes, one at a time, the Configure
methods for each child device. Each of these Configure methods operates as
described for the parent device. For example, it might simply exit when complete,
or write to its stdout file a list of additional device names to be configured and
then exit. The Configuration Manager will continue to intercept the device names
written to the stdout file and to invoke the Configure methods for those devices
until the Configure methods for all the devices have been run and no more names
are written to the stdout file.

Chapter 6. Device Configuration Subsystem 89

Run-Time Configuration Commands

User configuration commands invoke device methods during run time.

mkdev The mkdev command is invoked to define or configure, or define and
configure, devices at run time. If just defining a device, the mkdev command
invokes the Define method for the device. The Define method creates the
customized device instance in the Customized Devices (CuDv) object class and
writes the name assigned to the device to the stdout file. The mkdev command
intercepts the device name written to the stdout file by the Define method to
learn the name of the device. If user-specified attributes are supplied with the -a
flag, the mkdev command then invokes the Change method for the device.

If defining and configuring a device, the mkdev command invokes the Define
method, gets the name written to the stdout file with the Define method,
invokes the Change method for the device if user-specified attributes were
supplied, and finally invokes the device’s Configure method.

If only configuring a device, the device must already exist in the CuDv object
class and its name must be specified to the mkdev command. In this case, the
mkdev command simply invokes the Configure method for the device.

chdev The chdev command is used to change the characteristics, or attributes, of a
device. The device must already exist in the CuDv object class, and the name of
the device must be supplied to the chdev command. The chdev command
simply invokes the Change method for the device.

rmdev The rmdev command can be used to undefine or unconfigure, or unconfigure
and undefine, a device. In all cases, the device must already exist in the CuDv
object class and the name of the device must be supplied to the rmdev
command. The rmdev command then invokes the Undefine method, the
Unconfigure method, or the Unconfigure method followed by the Undefine
method, depending on the function requested by the user.

cfgmgr The cfgmgr command can be used to configure all detectable devices that did
not get configured at boot time. This might occur if the devices had been
powered off at boot time. The cfgmgr command is the Configuration Manager
and operates in the same way at run time as it does at boot time. The boot time

operation is described in ['Device Configuration Manager Qverview” on page 85.

Understanding Device States

Device methods are responsible for changing the state of a device in the system. A
device can be in one of four states as represented by the Device Status Flag
descriptor in the device’s object in the Customized Devices (CuDv) object class.

The Device States diagram on b1l illustrates both the possible states and the device
methods that affect them.

90 Kernel Extensions and Device Support Programming Concepts

Undefined

Undefine Define
Method Method
Defined
A
Unconfigure Configure
Method Method
Unconfigure Configure
Method Stopped Method
Stop Start
Method Method
A 4
Available
Device States
Defined Represented in the Customized database, but neither configured nor
available for use in the system.
Available Configured and available for use.
Undefined Not represented in the Customized database.
Stopped Configured, but not available for use by applications. (Optional state)

The Define method is responsible for creating a device instance in the Customized
database and setting the state to Defined. The Configure method performs all
operations necessary to make the device usable and then sets the state to Available.

The Change method usually does not change the state of the device. If the device
is in the Defined state, the Change method applies all changes to the database and
leaves the device defined. If the device is in the Available state, the Change
method attempts to apply the changes to both the database and the actual device,
while leaving the device available. However, if an error occurs when applying the
changes to the actual device, the Change method may need to unconfigure the
device, thus changing the state to Defined.

Any Unconfigure method you write must perform the operations necessary to
make a device unusable. Basically, this method undoes the operations performed
by the Configure method and sets the device state to Defined. Finally, the Undefine
method actually deletes all information for a device instance from the Customized
database, thus reverting the instance to the Undefined state.

The Stopped state is an optional state that some devices require. A device that
supports this state needs Start and Stop methods. The Stop method changes the
state from Available to Stopped. The Start method changes it from Stopped back to
Available.

Chapter 6. Device Configuration Subsystem 91

Adding an Unsupported Device to the System

The operating system provides support for a wide variety of devices. However,
some devices are not currently supported. You can add a currently unsupported
device only if you also add the necessary software to support it.

To add a currently unsupported device to your system, you may need to:

* Modify the Predefined database (see ‘Madifying the Predefined Datahase’))
+ Add appropriate device methods (see /Adding Device Methads))

e Add a device driver (see r’Adrhng a Device Driver” on page Qq)

+ Use procedures (see ['llsing installp Pracedures” on page 93)
Modifying the Predefined Database

To add a currently unsupported device to your system, you must modify the
Predefined database. To do this, you must add information about your device to
three predefined object classes:

* Predefined Devices (PdDv) object class
* Predefined Attribute (PdAt) object class

* Predefined Connection (PdCn) object class

To describe the device, you must add one object to the PdDv object class to
indicate the class, subclass, and device type (see 'Device Classes, Suhclasses, and

"). You must also add one object to the PdAt object
class for each device attribute, such as interrupt level or block size. Finally, you
must add objects to the PdCn object class if the device is an intermediate device. If
the device is an intermediate device, you must add an object for each different
connection location on the intermediate device.

You can use the odmadd Object Data Manager (ODM) command from the
command line or in a shell script to populate the necessary Predefined object
classes from stanza files.

The Predefined database is shipped populated with supported devices. For some
supported devices, such as serial and parallel printers and SCSI disks, the database
also contains generic device objects. These generic device objects can be used to
configure other similar devices that are not explicitly supported in the Predefined
database.

For example, if you have a serial printer that closely resembles a printer supported
by the system, and the system’s device driver for serial printers works on your
printer, you can add the device driver as a printer of type osp (other serial
printer). If these generic devices successfully add your device, you do not need to
provide additional system software.

Adding Device Methods

You must add device methods when adding system support for a new device.
Primary methods needed to support a device are:

* Define
* Configure

92 Kernel Extensions and Device Support Programming Concepts

* Change
* Undefine
* Unconfigure

When adding a device that closely resembles devices already supported, you might
be able to use one of the methods of the already supported device. For example, if
you are adding a new type of SCSI disk whose interfaces are identical to
supported SCSI disks, the existing methods for SCSI disks may work. If so, all you
need to do is populate the Predefined database with information describing the

new SCSI disk, which will be similar to information describing a supported SCSI
disk.

If you need instructions on how to write a device method, see 'Writing_a Devicd

Mﬂtbﬂd_an_pa.gdg" .
Adding a Device Driver

If you add a new device, you will probably need to add a device driver. However,
if you are adding a new device that closely resembles an already supported device,
you might be able to use the existing device driver. For example, when you are
adding a new type of SCSI disk whose interfaces are identical to supported SCSI
disks, the existing SCSI disk device driver may work.

Using installp Procedures

The installp procedures provide a method for adding the software and Predefined
information needed to support your new device. You may need to write shell
scripts to perform tasks such as populating the Predefined database.

Understanding Device Dependencies and Child Devices

The dependencies that one device has on another can be represented in the
configuration database in two ways. One way usually represents physical
connections such as a keyboard device connected to a particular keyboard adapter.
The keyboard device has a dependency on the keyboard adapter in that it cannot
be configured until after the adapter is configured. This relationship is usually
referred to as a parent-child relationship, with the adapter as parent and the
keyboard device as child. These relationships are represented with the Parent
Device Logical Name and Location Where Device Is Connected descriptors in the
Customized Devices (CuDv) object class.

The second method represents a logical connection. A device method can add an
object identifying both a dependent device and the device upon which it depends
to the Customized Dependency (CuDep) object class (see Writing a Devicd

"). The dependent device is considered to have a dependency,
and the depended-upon device is considered to be a dependency. CuDep objects
are usually added to the database to represent a situation in which one device
requires access to another device. For example, the hft0 1ft0 device depends upon a
particular keyboard or display device.

These two types of dependencies differ significantly. The configuration process
uses parent-child dependencies at boot time to configure all devices that make up
a node. The CuDep dependency is usually only used by a device’s Configure
method to retrieve the names of the devices on which it depends. The Configure
method can then check to see if those devices exist.

Chapter 6. Device Configuration Subsystem 93

For device methods, the parent-child relationship is the more important.
Parent-child relationships affect device-method activities in these ways:

* A parent device cannot be unconfigured if it has a configured child.
* A parent device cannot be undefined if it has a defined or configured child.
* A child device cannot be defined if the parent is not defined or configured.
* A child device cannot be configured if the parent is not configured.

* A parent device’s configuration cannot be changed if it has a configured child.
This guarantees that the information about the parent that the child’s device
driver may be using remains valid.

However, when a device is listed as a dependency of another device in the CuDep
object class, the only effect is to prevent the depended-upon device from being
undefined. The name of the dependency is important to the dependent device. If
the depended-upon device were allowed to be undefined, a third device could be
defined and assigned the same name.

Writers of Unconfigure and Change methods for a depended-upon device should
not worry about whether the device is listed as a dependency. If the
depended-upon device is actually open by the other device, the Unconfigure and
Change operations will fail because their device is busy. But if the depended-upon
device is not currently open, the Unconfigure or Change operations can be
performed without affecting the dependent device.

The possible parent-child connections are defined in the Predefined Connection
(PdCn) object class. Each predefined device type that can be a parent device is
represented in this object class. There is an object for each connection location
(such as slots or ports) describing the subclass of devices that can be connected at
that location. The subclass is used to identify each device since it indicates the
devices’ connection type (for example, SCSI or rs232).

There is no corresponding predefined object class describing the possible CuDep
dependencies. A device method can be written so that it already knows what the
dependencies are. If predefined data is required, it can be added as predefined
attributes for the dependent device in the Predefined Attribute (PdAt) object class.

The "Devices Graph” diagram on kJ provides an example of device dependencies
and connections in the system.

Accessing Device Attributes

The predefined device attributes for each type of predefined device are stored in
the Predefined Attribute (PdAt) object class. The objects in the PdAt object class
identify the default values as well as other possible values for each attribute. The
Customized Attribute (CuAt) object class contains only attributes for customized
device instances that have been changed from their default values.

When a customized device instance is created by a Define method, its attributes
assume the default values. As a result, no objects are added to the CuAt object
class for the device. If an attribute for the device is changed from the default value
by the Change method, an object to describe the attribute’s current value is added
to the CuAt object class for the attribute. If the attribute is subsequently changed
back to the default value, the Change method deletes the CuAt object for the
attribute.

94 Kernel Extensions and Device Support Programming Concepts

Any device methods that need the current attribute values for a device must access
both the PdAt and CuAt object classes. If an attribute appears in the CuAt object
class, then the associated object identifies the current value. Otherwise, the default
value from the PdAt attribute object identifies the current value.

Modifying an Attribute Value

When modifying an attribute value, methods you write must obtain the objects for
that attribute from both the PdAt and CuAt object classes.

Any method you write must be able to handle the following four scenarios:

* If the new value differs from the default value and no object currently exists in
the CuAt object class, any method you write must add an object into the CuAt
object class to identify the new value.

* If the new value differs from the default value and an object already exists in
the CuAt object class, any method you write must update the CuAt object with
the new value.

¢ If the new value is the same as the default value and an object exists in the
CuAt object class, any method you write must delete the CuAt object for the
attribute.

* If the new value is the same as the default value and no object exists in the
CuAt object class, any method you write does not need to do anything.

Your methods can use the getattr and putattr subroutines to get and modify
attributes. The getattr subroutine checks both the PdAt and CuAt object classes
before returning an attribute to you. It always returns the information in the form
of a CuAt object even if returning the default value from the PdAt object class.

Use the putattr subroutine to modify these attributes.

Device Dependent Structure (DDS) Overview

A device dependent structure (DDS) contains information that describes a device
instance to the device driver. It typically contains information about
device-dependent attributes as well as other information the driver needs to
communicate with the device. In many cases, information about a device’s parent
is included. (For instance, a driver needs information about the adapter and the
bus the adapter is plugged into to communicate with a device connected to an
adapter.)

A device’s DDS is built each time the device is configured. The Configure method
can fill in the DDS with fixed values, computed values, and information from the
Configuration database. Most of the information from the Configuration database
usually comes from the attributes for the device in the Customized Attribute
(CuAt) object class, but can come from any of the object classes. Information from
the database for the device’s parent device or parent’s parent device can also be
included. The DDS is passed to the device driver with the SYS_CFGDD flag of the
sysconfig subroutine, which calls the device driver’s ddconfig subroutine with the
CFG_INIT command.

Chapter 6. Device Configuration Subsystem 95

How the Change Method Updates the DDS

The Change method is invoked when changing the configuration of a device. The
Change method must ensure consistency between the Configuration database and
the view that any device driver may have of the device. This is accomplished by:

1. Not allowing the configuration to be changed if the device has configured
children; that is, children in either the Available or Stopped states. This ensures
that a DDS built using information in the database about a parent device
remains valid because the parent cannot be changed.

2. If a device has a device driver and the device is in either the Available or
Stopped state, the Change method must communicate to the device driver any
changes that would affect the DDS. This may be accomplished with ioctl
operations, if the device driver provides the support to do so. It can also be
accomplished by taking the following steps:

a. Terminating the device instance by calling the sysconfig subroutine with the
SYS_CFGDD operation. This operation calls the device driver’s ddconfig
subroutine with the CFG_TERM command.

Rebuilding the DDS using the changed information.

Passing the new DDS to the device driver by calling the sysconfig
subroutine SYS_CFGDD operation. This operation then calls the ddconfig
subroutine with the CFG_INIT command.

Many Change methods simply invoke the device’s Unconfigure method, apply
changes to the database, and then invoke the device’s Configure method. This
process ensures the two stipulated conditions since the Unconfigure method, and
thus the change, will fail, if the device has Available or Stopped children. Also, if
the device has a device driver, its Unconfigure method terminates the device
instance. Its Configure method also rebuilds the DDS and passes it to the driver.

Guidelines for DDS Structure

There is no single defined DDS format. Writers of device drivers and device
methods must agree upon a particular device’s DDS format. When obtaining
information about a parent device, you may want to group that information
together in the DDS.

When building a DDS for a device connected to an adapter card, you will typically
need the following adapter information:

slot number Obtained from the connwhere descriptor of the adapter’s Customized
Device (CuDv) object.
bus resources Obtained from attributes for the adapter in the Customized Attribute

(CuAt) or Predefined Attribute (PdAt) object classes. These include
attributes for bus interrupt levels, interrupt priorities, bus memory
addresses, bus I/0 addresses, and DMA arbitration levels.

These two attributes must be obtained for the adapter’s parent bus device:

bus_id Identifies the I/O bus. This field is needed by the device driver to access the
I/0 bus.
bus_type Identifies the type of bus such as a Micro Channel bus or a PC AT bus.

96 Kernel Extensions and Device Support Programming Concepts

Note: The getattr device configuration subroutine should be used whenever
attributes are obtained from the Configuration database. This subroutine
returns the Customized attribute value if the attribute is represented in the
Customized Attribute object class. Otherwise, it returns the default value
from the Predefined Attribute object class.

Finally, a DDS generally includes the device’s logical name. This is used by the
device driver to identify the device when logging an error for the device.

Example of DDS

The following example provides a guide for using DDS format.

/* Device DDS */
struct device_dds {
/* Bus information */

ulong bus_id; /* 1/0 bus id */
ushort us_type; /* Bus type, i.e. BUS_MICRO_CHANNEL=*/
/* Adapter information */

int slot_num; /* Slot number */
ulong io_addr base; /* Base bus i/o address */
int bus_intr_1vl; /* bus interrupt level */
int intr_priority; /* System interrupt priority */
int dma_lvl; /* DMA arbitration Tevel */
/* Device specific information */

int block size; /* Size of block in bytes */
int abc_attr; /* The abc attribute */
int xyz_attr; /* The xyz attribute */
char resource_name[16]; /* Device logical name */

s

List of Device Configuration Commands

The high-level device configuration commands are:

chdev
Isdev
mkdev
rmdev
Isattr

Isconn
Isparent

cfgmgr

Changes a device’s characteristics.

Displays devices in the system and their characteristics.

Adds a device to the system.

Removes a device from the system.

Displays attribute characteristics and possible values of attributes for devices
in the system.

Displays the connections a given device, or kind of device, can accept.
Displays the possible parent devices that accept a specified connection type or
device.

Configures devices by running the programs specified in the Configuration
Rules (Config_Rules) object class.

The low-level device configuration commands are:

bootlist
restbase

savebase

Alters the list of boot devices seen by ROS when the machine boots.

Reads the base customized information from the boot image and restores it
into the Device Configuration database used during system boot phase 1.
Saves information about base customized devices in the Device Configuration
Database onto the boot device.

Associated commands are:

devnm Names a device.

Chapter 6. Device Configuration Subsystem 97

mknod Creates a special file (directory entry and i-node).
Iscfg Displays diagnostic information about a device.

List of Device Configuration Subroutines

Following are the preexisting conditions for using the device configuration library
subroutines:

* The caller has initialized the Object Data Manager (ODM) before invoking any of
these library subroutines. This is done using the initialize_odm subroutine.
Similarly, the caller must terminate the ODM (using the terminate_odm
subroutine) after these library subroutines have completed. Only the attrval
subroutine does not require initialization and termination.

* Since all of these library subroutines (except the attrval, getattr, and putattr
subroutines) access the Customized Device Driver (CuDvDr) object class, this
class must be exclusively locked and unlocked at the proper times. The
application does this by using the odm_lock and odm_unlock subroutines. In
addition, those library subroutines that access the CuDvDr object class
exclusively lock this class with their own internal locks.

Following are the device configuration library subroutines:

attrval Verifies that attributes are within range.

busresolve Allocates bus resources for Micro channel adapters.

genmajor Generates the next available major number for a device.

genminor Generates the smallest unused minor number or a requested minor number
for a device.

genseq Generates a sequence number.

getattr Returns attribute objects from either the Predefined Attribute (PdAt) or
Customized Attribute (CuAt) object class, or both.

getminor Gets from the CuDvDr object class the minor numbers for a given major
number.

loadext Loads or unloads and binds or unbinds device drivers to or from the
kernel.

putattr Updates attribute information in the CuAt object class or creates a new
object for the attribute information.

reldevno Releases the minor number or major number, or both, for a device instance.

relmajor Releases the major number associated with a specific device driver instance.

98 Kernel Extensions and Device Support Programming Concepts

Chapter 7. Communications 1/0 Subsystem

The Communication I/O Subsystem design introduces a more efficient, streamlined
approach to attaching data link control (DLC) processes to communication and
LAN adapters.

The Communication I/O Subsystem consists of one or more physical device
handlers (PDHs) that control various communication adapters. The interface to the
physical device handlers can support any number of processes, the limit being
device-dependent.

Note: A PDH, as used for the Communications I/O, provides both the device
head role for interfacing to users, and the device handler role for performing
I/0 to the device.

A communications PDH is a special type of multiplexed character device driver
(see 'Communications Physical Device Handler Model Querview” on page 100).
Information common to all communications device handlers is discussed here.
Additionally, individual communications PDHs have their own adapter-specific
sets of information. Refer to the following to learn more about the adapter types:

o I'MPQP Device Handler Interface Qverview” on page 104

. ” 17

Each adapter type requires a device driver. Each PDH can support one or more
adapters of the same type.

There are two interfaces a user can use to access a PDH. One is from a user-mode

process (application space), and the other is from a kernel-mode process (within
the kernel).

User-Mode Interface to a Communications PDH

The user-mode process uses system calls (open, close, select, poll, ioctl, read,
write) to interface to the PDH to send or receive data. The poll or select
subroutine notifies a user-mode process of available receive data, available
transmit, and status and exception conditions.

Kernel-Mode Interface to a Communications PDH

The kernel-mode interface to a communications PDH differs from the interface
supported for a user-mode process in the following ways:

* Kernel services are used instead of system calls. This means that, for example,
the fp_open kernel service is used instead of the open subroutine. The same
holds true for the fp_close, fp_ioctl, and fp_write kernel services.

* The ddread entry point, ddselect entry point, and CIO_GET_STAT (Get Status)
ddioctl operation are not supported in kernel mode. Instead, kernel-mode
processes specify at open time the addresses of their own procedures for
handling receive data available, transmit available and status or exception
conditions. The PDH directly calls the appropriate procedure, whenever that

© Copyright IBM Corp. 1997, 1999 99

condition arises. These kernel procedures must execute and return quickly since
they are executing within the priority of the PDH.

* The ddwrite operation for a kernel-mode process differs from a user-mode
process in that there are two ways to issue a ddwrite operation to transmit data:

— Transmit each buffer of data with the fp_write kernel service.

— Use the fast write operation, which allows the user to directly call the
ddwrite operation (no context switching) for each buffer of data to be
transmitted. This operation helps increase the performance of transmitted
data. A fp_ioctl (CIO_GET_FASTWRT) kernel service call obtains the
functional address of the write function. This address is used on all
subsequent write function calls. Support of the fast write operation is optional
for each device.

CDLI Device Drivers

Some device drivers have a different design and use the services known as
Common Data Link Interface (CDLI). The following are device drivers that use

CDLI:

* Forum-Compliant ATM LAN Emulation Device Driver
* Fiber Distributed Data Interface (FDDI) Device Driver
* High-Performance (8fc8) Token-Ring Device Driver

» High-Performance (8fa2) Token-Ring Device Driver

¢ Ethernet Device Drivers

Communications Physical Device Handler Model Overview

A physical device handler (PDH) must provide eight common entry points. An
individual PDH names its entry points by placing a unique identifier in front of
the supported command type.The following are the required eight communications
PDH entry points:

ddconfig
ddmpx

ddopen

ddclose

ddwrite

ddread

Performs configuration functions for a device handler. Supported the same
way that the common ddconfig entry point is.

Allocates or deallocates a channel for a multiplexed device handler. Supported
the same way as the common ddmpx device handler entry point.

Performs data structure allocation and initialization for a communications
PDH. Supported the same way as the common ddopen entry point.
Time-consuming tasks, such as port initialization and connection
establishment, are deferred until the (CIO_START) ddioctl call is issued. A
PDH can support multiple users of a single port.

Frees up system resources used by the specified communications device until
they are needed again. Supported the same way as the common ddclose entry
point.

Queues a message for transmission or blocks until the message can be queued.
The ddwrite entry point can attempt to queue a transmit request
(nonblocking) or wait for it to be queued (blocking), depending on the setting
of the DNDELAY flag. The caller has the additional option of requesting an
asynchronous acknowledgment when the transmission actually completes.
Returns a message of data to a user-mode process. Supports blocking or
nonblocking reads depending on the setting of the DNDELAY flag. A blocking
read request does not return to the caller until data is available. A nonblocking
read returns with a message of data if it is immediately available. Otherwise, it
returns a length of 0 (zero).

100 Kernel Extensions and Device Support Programming Concepts

ddselect Checks to see if a specified event or events has occurred on the device for a
user-mode process. Supported the same way as the common ddselect entry
point.

ddioctl Performs the special I/O operations requested in an ioctl subroutine.
Supported the same way as the common ddioctl entry point. In addition, a
communications PDH must support the following four options:

* CIO_START
e CIO_HALT
¢ CIO_QUERY

* CIO_GET_STAT

Individual PDHs can add additional commands. Hardware initialization and other
time-consuming activities, such as call establishment, are performed during the
CIO_START operation.

Use of mbuf Structures in the Communications PDH

PDHs use mbuf structures to buffer send and receive data. These structures allow
the PDH to gather data when transmitting frames and scatter for receive
operations. The mbuf structures are internal to the kernel and are used only by
kernel-mode processes and PDHs.

PDHs and kernel-mode processes require a set of utilities for obtaining and
returning mbuf structures from a buffer pool.

Kernel-mode processes use the Berkeley mbuf scheme for transmit and receive
buffers. The structure for an mbuf is defined in the /usr/include/sys/mbuf.h file.

Common Communications Status and Exception Codes

In general, communication device handlers return codes from a group of common

exception codes. However, device handlers for specific communication devices can
return device-specific exception codes. Common exception codes are defined in the
{usr/include/sys/comio.h file and include the following:

CIO_OK Indicates that the operation was successful.

CIO_BUF_OVFLW Indicates that the data was lost due to buffer overflow.

CIO_HARD_FAIL Indicates that a hardware failure was detected.

CIO_NOMBUF Indicates that the operation was unable to allocate mbuf
structures.

CIO_TIMEOUT Indicates that a time-out error occurred.

CIO_TX_FULL Indicates that the transmit queue is full.

CIO_NET_RCVRY_ENTER Enters network recovery.

CIO_NET_RCVRY_EXIT Indicates the device handler is exiting network recovery.

CIO_NET_RCVRY_MODE Indicates the device handler is in Recovery mode.

CIO_INV_CMD Indicates that an invalid command was issued.

CIO_BAD_MICROCODE Indicates that the microcode download failed.

CIO_NOT_DIAG_MODE Indicates that the command could not be accepted because
the adapter is not open in Diagnostic mode.

CIO_BAD_RANGE Indicates that the parameter values have failed a range check.

CIO_NOT_STARTED Indicates that the command could not be accepted because
the device has not yet been started by the first call to
CIO_START operation.

CIO_LOST_DATA Indicates that the receive packet was lost.

Chapter 7. Communications I/0 Subsystem 101

CIO_LOST_STATUS Indicates that a status block was lost.

CIO_NETID_INV Indicates that the network ID was not valid.

CIO_NETID_DUP Indicates that the network ID was a duplicate of an existing
ID already in use on the network.

CIO_NETID_FULL Indicates that the network ID table is full.

Status Blocks for Communications Device Handlers Overview

Status blocks are used to communicate status and exception information.

User-mode processes receive a status block whenever they request a
CIO_GET_STAT operation. A user-mode process can wait for the next available
status block by issuing a ddselect entry point with the specified POLLPRI event.

A kernel-mode process receives a status block through the stat_fn procedure. This
procedure is specified when the device is opened with the ddopen entry point.

Status blocks contain a code field and possible options. The code field indicates the
type of status block code (for example, CIO_START_DONE). A status block’s
options depend on the block code. The C structure of a status block is defined in
the /usr/include/sys/comio.h file.

The following are the six common status codes:

+ CIO_START_DONE (see £CIQ_START_DQNEX)

+ CIO_HALT_DONE (see CIQ_HAIT DQNEY)

+ CIO_TX_DONE (see 'CIQ_TX_DONE” an page 103)

+ CIO_NULL_BLK (see 'CIO_NIII._BILK” on page 103)

+ CIO_LOST_STATUS (see [/CIQ T QST STATIIS” on page 103)

+ CIO_ASYNC_STATUS (see 'CIQ_ASYNC_STATIIS” on page 103)

Additional device-dependent status block codes may be defined.

CIO_START DONE

This block is provided by the device handler when the CIO_START operation
completes:

option[0] The CIO_OK or CIO_HARD_FAIL status/exception code from the common
or device-dependent list. See 01 or ol

option[1] The low-order two bytes are filled in with the netid field. This field is
passed when the CIO_START operation is invoked.

option[2] Device-dependent.

option[3] Device-dependent.

CIO_HALT_DONE

This block is provided by the device handler when the CIO_HALT operation
completes:

option[0] The CIO_OK status/exception code from the common or device-dependent
list (see M).

102 Kernel Extensions and Device Support Programming Concepts

option[1] The low-order two bytes are filled in with the netid field. This field is
passed when the CIO_START operation is invoked.

option[2] Device-dependent.

option[3] Device-dependent.

CIO_TX_DONE

The following block is provided when the physical device handler (PDH) is
finished with a transmit request for which acknowledgment was requested:

option[0] The CIO_OK or CIO_TIMEOUT status/exception code from the common or
device-dependent list. See 01 or o1,

option[1] The write_id field specified in the write_extension structure passed in the
ext parameter to the ddwrite entry point.

option[2] For a kernel-mode process, indicates the mbuf pointer for the transmitted
frame.

option[3] Device-dependent.

CIO_NULL_BLK

This block is returned whenever a status block is requested but there are none
available:

option[0] Not used
option[1] Not used
option[2] Not used
option[3] Not used

CIO_LOST_STATUS

This block is returned once after one or more status blocks is lost due to status
queue overflow. The CIO_LOST_STATUS block provides the following:

option[0] Not used
option[1] Not used
option[2] Not used
option[3] Not used

CIO_ASYNC_STATUS

This status block is used to return status and exception codes that occur
unexpectedly:

option[0] The CIO_HARD_FAIL or CIO_LOST_DATA status/exception code from the
common or device-dependent list. See o1 or ol

option[1] Device-dependent
option[2] Device-dependent
option[3] Device-dependent

Chapter 7. Communications I/0 Subsystem 103

MPQP Device Handler Interface Overview

The Multiprotocol Quad Port (MPQP) device handler is a component of the
communication I/0 subsystem (see P’Fhaphﬂr 7 Communications /0 Subsvstem’]

). The MPQP device handler interface is made up of the following eight
entry points:

mpclose Resets the MPQP device to a known state and returns system resources back
to the system on the last close for that adapter. The port no longer transmits or
receives data.

mpconfig Provides functions for initializing and terminating the MPQP device handler
and adapter.

mpioctl Provides the following functions for controlling the MPQP device:

CIO_ST ART
Initiates a session with the MPQP device handler.

CIO_HALT
Ends a session with the MPQP device handler.

CIO_QU ERY
Reads the counter values accumulated by the MPQP device handler.

CIO_GET_STATUS
Gets the status of the current MPQP adapter and device handler.

MP_START_AR
Puts the MPQP port into Autoresponse mode.

MP_STOP_AR
Permits the MPQP port to exit Autoresponse mode.

MP_CHG_PARMS
Permits the data link control (DLC) to change certain profile
parameters after the MPQP device has been started.

mpopen Opens a channel on the MPQP device for transmitting and receiving data.

mpmpx Provides allocation and deallocation of a channel.

mpread Provides the means for receiving data to the MPQP device.

mpselect Provides the means for determining which specified events have occurred on
the MPQP device.

mpwrite Provides the means for transmitting data to the MPQP device.

Binary Synchronous Communication (BSC) with the MPQP
Adapter

The MPQP adapter software performs low-level BSC frame-type determination to
facilitate character parsing at the kernel-mode process level. Frames received
without errors are parsed. A message type is returned in the status field of the
extension block along with a pointer to the receive buffer. The message type
indicates the type of frame that was received.

For control frames that only contain control characters, the message type is
returned and no data is transferred from the board. For example, if an ACKO was
received, the message type MP_ACKO is returned in the status field of the extension
block. In addition, a NULL pointer for the receive buffer is returned. If an error
occurs, the error status is logged by the device driver. Unlogged buffer overrun
errors are an exception.

104 Kernel Extensions and Device Support Programming Concepts

Note: In BSC communications, the caller receives either a message type or an

error status.

Read operations must be performed using the readx subroutine since the
read_extension structure is needed to return BSC function results.

BSC Message Types Detected by the MPQP Adapter
BSC message types are defined in the /usr/include/sys/mpqp.h file. The MPQP

adapter can detect the following message types:

MP_ACKO MP_DISC MP_STX_ETX
MP_ACK1 MP_SOH_ITB MP_STX_ENQ
MP_WACK MP_SOH_ETB MP_DATA_ACKO
MP_NAK MP_SOH_ETX MP_DATA_ACK1
MP_ENQ MP_SOH_ENQ MP_DATA_NAK
MP_EOT MP_STX_ITB MP_DATA_ENQ
MP_RVI MP_STX_ETB

BSC Receive Errors Logged by the MPQP Adapter

The MPQP adapter detects many types of receive errors. As errors occur they are
logged and the appropriate statistical counter is incremented. The kernel-mode
process is not notified of the error. The following are the possible BSC receive
errors logged by the MPQP adapter:

Receive overrun because the card did not keep up with line data.
Driver did not supply buffer in time for data.

A cyclical redundancy check (CRC) or longitudinal redundancy check (LRC)
framing error.

Parity error.

Clear to Send (CTS) timeout while the adapter is in Autoresponse mode.
Data synchronization lost.

ID field greater than 15 bytes (BSC).

Invalid pad at end of frame (BSC).

Unexpected or invalid data (BSC).

If status and data information are available, but no extension block is provided, the
read operation returns the data, but not the status information.

Note: Errors, such as buffer overflow errors, can occur during the read data
operation. In these cases, the return value is the byte count. Therefore, status
should be checked even if no errno global value is returned.

Description of the MPQP Card

The MPQP card is a 4-port multiprotocol adapter that supports BSC and SDLC on
the EIA232-D, EIA422-A, X.21, and V.35 physical interfaces. When using the X.21
physical interface, X.21 centralized multipoint operation on a leased-circuit public
data network is not supported. The MPQP card uses the microchannel bus to
communicate with the adapter programmed 1/0 (PIO) and first party DMA (bus
master).

Chapter 7. Communications I/0 Subsystem 105

The adapter has 512K bytes of RAM and an Intel 80C186 processor. There are 16
dedicated DMA channels between the RAM and the physical ports. The drivers
and receivers for each of the electrical interfaces reside on a daughter board that is
joined to the base card with two 60-pin connectors.

A shielded cable attaches to the 78-pin D-shell connector on the daughter board
and routes all signals to a fan-out box (FOB). The FOB has nine standard
connectors that support each possible configuration on each port. Standard 15-pin
or 25-pin cables are used between the FOB and the modem for each electrical

interface.

The following are the interfaces available on each port:

Port Configurations
Number Port-0 Port-1 Port-2 Port-3
1 EIA-232D EIA-232D EIA-232D EIA-232D
2 EIA-422A EIA-232D EIA-232D EIA-232D
3 V.35 EIA-232D | EIA-232D V.35 | EIA-232D EIA-232D
EIA-232D EIA-232D
4 X.21 EIA-232D EIA-232D EIA-232D
5 EIA-422A V.35 EIA-232D EIA-232D
6 V.35 V.35 EIA-232D EIA-232D
7 X.21 V.35 EIA-232D EIA-232D
8 EIA-232D EIA-232D EIA-422A EIA-232D
9 EIA-422A EIA-232D EIA-422A EIA-232D
10 V.35 EIA-232D | EIA-232D V.35 | EIA-422A EIA-232D
EIA-422A EIA-232D
11 X.21 EIA-232D EIA-422A EIA-232D
12 EIA-422A V.35 EIA-422A EIA-232D
13 V.35 V.35 EIA-422A EIA-232D
14 X.21 V.35 EIA-422A EIA-232D

Port 0 EIA232-D, EIA422-A, X.21, and V.35. This port has the highest DMA priority. The
EIA-422A interface on this port has data and clock signals.

Port 1 EIA232-D and V.35.

Port 2 EIA232-D and EIA422-A (data only). The EIA-422A interface on Port 2 only has
data signals.

Port 3 EIA232-D. This port has the lowest priority.

106 Kernel Extensions and Device Support Programming Concepts

The modem interfaces are supported by each physical interface shown in the
following diagram.

N Fan-out >
¢ 4-port EIB + box/cable

Connection 0

¢ p Port0: V.35 ¢ p 15-pin
E:rsde Drivers/receivers/buffers D-shell
connection
Connection 1
» Port 0: EIA-232D P p 25-pin
Drivers/receivers/buffers D-shell
Connection 2
L)) . ——»| 15-pin
Port 0: EIA-422A/X21 D-shell
Drivers/receivers
X.21 bit pattern .
recognition logic Connection 3
3 PALS .
Surge protection —»| 25pin
D-shell
Connection 4
P » Port 1: EIA-232D P » 25-pin
Drivers/receivers/buffers D-shell
Connection 5
p Port1:V.35 P » 15-pin
Drivers/receivers/buffers D-shell
Connection 6
—» Port 3: EIA-232D —> 25-pin
Drivers/receivers D-shell
Connection 7
P p| Port2: EIA-232D P » 25-pin
Drivers/receivers/buffers D-shell
Connection 8
Port 2: EIA-422A ¢ » 25-pin
> Drivers/receivers (data only) D-shell
Surge protection

Block Diagram

Chapter 7. Communications 1/O Subsystem 107

Call Establishment Protocol

Physical Interface Leased Manual Switched Autodial
EIA232-D X X X
EIA422-A X

V.35 X

X.21 X X*

* Adheres to CCITT X.21 dial specifications.

The following diagram depicts the mapping of physical interfaces to the FOB
connectors.

Serial Optical Link Device Handler Overview

The serial optical link (SOL) device handler is a component of the communication
I/0 subsystem. The device handler can support one to four serial optical ports. An
optical port consists of two separate pieces. The serial link adapter is on the system
planar and is packaged with two to four adapters in a single chip. The serial
optical channel converter plugs into a slot on the system planar and provides two
separate optical ports.

Special Files

There are two separate interfaces to the serial optical link device handler. The
special file /dev/ops0 provides access to the optical port subsystem. An application
that opens this special file has access to all the ports, but it does not need to be
aware of the number of ports available. Each write operation includes a destination
processor ID. The device handler sends the data out the correct port to reach that
processor. In case of a link failure, the device handler uses any link that is
available.

The /dev/op0, /dev/opl, ..., /dev/iopn special files provide a diagnostic interface to
the serial link adapters and the serial optical channel converters. Each special file
corresponds to a single optical port that can only be opened in Diagnostic mode. A
diagnostic open allows the diagnostic ioctls to be used, but normal reads and
writes are not allowed. A port that is open in this manner cannot be opened with
the /dev/ops0 special file. In addition, if the port has already been opened with the
/dev/ops0 special file, attempting to open a /dev/opx special file will fail unless a
forced diagnostic open is used.

Entry Points

The SOL device handler interface consists of the following entry points:

sol_close Resets the device to a known state and frees system resources.

sol_config Provides functions to initialize and terminate the device handler, and
query the vital product data (VPD).

sol_fastwrt Provides the means for kernel-mode users to transmit data to the SOL

device driver.

108 Kernel Extensions and Device Support Programming Concepts

sol_ioctl Provides various functions for controlling the device. The valid sol_ioctl
operations are:

CIO_GET_FASTWRT
Gets attributes needed for the sol_fastwrt entry point.

CIO_GET_STAT
Gets the device status.

CIO_HALT
Halts the device.

CIO_QUERY
Queries device statistics.

CIO_START
Starts the device.

IOCINFO
Provides 1/0 character information.

SOL_CHECK_PRID
Checks whether a processor ID is connected.

SOL_GET_PRIDS
Gets connected processor IDs.

sol_mpx Provides allocation and deallocation of a channel.

sol_open Initializes the device handler and allocates the required system resources.
sol_read Provides the means for receiving data.

sol_select Determines if a specified event has occurred on the device.

sol_write Provides the means for transmitting data.

Configuring the Serial Optical Link Device Driver

When configuring the serial optical link (SOL) device driver, consider the physical
and logical devices, and changeable attributes of the SOL subsystem (see

LChangeakﬂLALmeﬁe&QLth&SenahlphcaLLmLSubsystem_on_pa.geJld)

Physical and Logical Devices

The SOL subsystem consists of several physical and logical devices in the ODM
configuration database:

Device Description

slc (serial link chip) There are two serial link adapters in each COMBO
chip. The slc device is automatically detected and
configured by the system.

otp (optic two-port card) Also known as the serial optical channel converter.
There is one SOCC possible for each slc. The otp
device is automatically detected and configured by
the system.

op (optic port) There are two optic ports per otp. The op device is
automatically detected and configured by the
system.

Chapter 7. Communications 1/0 Subsystem 109

Device Description

ops (optic port subsystem) This is a logical device. There is only one created at
any time. The ops device requires some additional
configuration initially, and is then automatically
configured from that point on. The /dev/ops0
special file is created when the ops device is
configured. The ops device cannot be configured
when the processor ID is set to -1.

Changeable Attributes of the Serial Optical Link Subsystem

The system administrator can change the following attributes of the serial optical
link subsystem:

Note: If your system uses serial optical link to make a direct, point-to-point
connection to another system or systems, special conditions apply. You must
start interfaces on two systems at approximately the same time, or a method
error occurs. If you wish to connect to at least one machine on which the
interface has already been started, this is not necessary.

Processor ID This is the address by which other machines connected by
means of the optical link address this machine. The processor
ID can be any value in the range of 1 to 254. To avoid a conflict
on the network, this value is initially set to -1, which is not
valid, and the ops device cannot be configured.
Note: If you are using TCP/IP over the serial optical link,
the processor ID must be the same as the low-order octet
of the IP address. It is not possible to successfully
configure TCP/IP if the processor ID does not match.
Receive Queue Size This is the maximum number of packets that is queued for a
user-mode caller. The default value is 30 packets. Any integer
in the range from 30 to 150 is valid.
Status Queue Size This is the maximum number of status blocks that will be
queued for a user-mode caller. The default value is 10. Any
integer in the range from 3 to 20 is valid.

The standard SMIT interface is available for setting these attributes, listing the
serial optical channel converters, handling the initial configuration of the ops
device, generating a trace report, generating an error report, and configuring
TCP/1P.

Forum-Compliant ATM LAN Emulation Device Driver

Note: The ATM LAN Emulation device driver is available for systems
running AIX Version 4.1.5 (or later).

The Forum-Compliant ATM LAN Emulation (LANE) device driver allows
communications applications and access methods that would normally operate
over local area network (LAN) attachments to operate over high-speed ATM
networks. This ATM LANE function supports LAN Emulation Client (LEC) as
specified in The ATM Forum Technical Committee LAN Emulation Over ATM Version
1.0, as well as MPOA Client (MPC) via a subset of ATM Forum LAN Emulation Over
ATM Version 2 - LUNI Specification, and ATM Forum Multi-Protocol Over ATM
Version 1.0.

110 Kernel Extensions and Device Support Programming Concepts

The Forum-Compliant ATM LAN Emulation (LANE) device driver allows
communications applications and access methods that would normally operate
over local area network (LAN) attachments to operate over high-speed ATM
networks. This ATM LANE function supports LAN Emulation Client (LEC) as
specified in The ATM Forum Technical Committee LAN Emulation Over ATM Version
1.0.

The ATM LANE device driver emulates the operation of Standard Ethernet, IEEE
802.3 Ethernet, and IEEE 802.5 Token Ring LANSs. It encapsulates each LAN packet
and transfers its LAN data over an ATM network at up to 155 megabits per
second. This data can also be bridged transparently to a traditional LAN with
ATM/LAN bridges such as the IBM 2216. (See the " System Environment”
illustration on E%')

Ethernet Application Token-Ring Application

! !

Protocol Stack (TCP/IP, SNA, IPX, Netbios, etc.)
y

v
ATM LANE/MPOA

ATM Device Driver

I

ATM Network

System Environment

The ATM LANE device driver emulates the operation of Standard Ethernet, IEEE
802.3 Ethernet, and IEEE 802.5 Token Ring LANSs. It encapsulates each LAN packet
and transfers its LAN data over an ATM network at up to 155 megabits per
second. This data can also be bridged transparently to a traditional LAN with
ATM/LAN bridges such as the IBM 8281. (See the System Environment
illustration.)

Each LEC participates in an emulated LAN containing additional functions such
as:

* A LAN Emulation Configuration Server (LECS) that provides automated
configuration of the LEC’s operational attributes.

* A LAN Emulation Server (LES) that provides address resolution

* A Broadcast and Unknown Server (BUS) that distributes packets sent to a
broadcast address or packets sent without knowing the ATM address of the
remote station (for example, whenever an ARP response has not been received
yet).

There is always at least one ATM switch and a possibility of additional switches,
bridges, or concentrators. An example of a typical network topology is shown in
the following illustration.

Chapter 7. Communications 1/O Subsystem 111

RS/6000 RS/6000

ATM ATM
LANE (LEC) LANE (LEC)
MPOA (MPC) MPOA (MPC)
Concentrator
ATM Switch (IBM 8285)

LECS

(IBM 8265) LES

BUS

ATM LANE (LEC)

MSS .
(IBM 8210) Bridge/Router
MPOA (MPS) (IBM 2216)

Token Ring Network

Ethernet Network

Typical Network Topology

The ATM LANE device driver is a dynamically loadable AIX device driver. Each
LE Client or MPOA Client is configurable by the operator, and the LANE driver is
loaded into the system as part of that configuration process. If an LE Client or
MPOA Client has already been configured, the LANE driver is automatically
reloaded at reboot time as part of the system configuration process.

The ATM LANE device driver is a dynamically loadable device driver that
operates on a system running AIX Version 4.1.5 (or later). Each LE Client is
configurable by the operator, and the LANE driver is loaded into the system as
part of that configuration process. If an LE Client has already been configured, the
LANE driver is automatically reloaded at reboot time as part of the system
configuration process.

112 Kernel Extensions and Device Support Programming Concepts

The interface to the ATM LANE device driver is through kernel services known as
Network Services.

Interfacing to the ATM LANE device driver is achieved by calling the device
driver’s entry points for opening the device, closing the device, transmitting data,
and issuing device control commands, just as you would interface to any of the
AIX Common Data Link Interface (CDLI) LAN device drivers.

The ATM LANE device driver interfaces with all hardware-level ATM device
drivers that support AIX CDLI, AIX ATM Call Management, and AIX ATM
Signaling.

Adding ATM LANE Clients

At least one ATM LAN Emulation client must be added to the system to
communicate over an ATM network using the ATM Forum LANE protocol. A user
with root authority can add Ethernet or Token-Ring clients using the smit
atmle_panel fast path.

Entries are required for the Local LE Client’'s LAN MAC Address field and
possibly the LES ATM Address or LECS ATM Address fields, depending on the
support provided at the server. If the server accepts the "well-known ATM
address” for LECS, the value of the Automatic Configuration via LECS field can be
set to Yes, and the LES and LECS ATM Address fields can be left blank. If the
server does not support the "well-known ATM address” for LECS, an ATM address
must be entered for either LES (manual configuration) or LECS (automatic
configuration). All other configuration attribute values are optional. If used, you
can accept the defaults for ease-of-use.

Configuration help text is also available within the SMIT LE Client add and change
menus.

Configuration Parameters for the ATM LANE Device Driver

The ATM LANE device driver supports the following configuration parameters for
each LE Client:

addl_drvr Specifies the CDLI demuxer being used by the LE Client. The
value set by the ATM LANE device driver is
fusr/lib/methods/cfgdmxtok for Token Ring emulation and
lusr/lib/methods/cfgdmxeth for Ethernet. This is not an
operator-configurable attribute.

addl_stat Specifies the routine being used by the LE client to generate
device-specific statistics for the entstat and tokstat
commands. The values set by the ATM LANE device driver
are:

* [usr/sbin/atmle_ent_stat
* [usr/sbin/atmle_tok_stat

The addl_stat attribute is not operator-configurable.

arp_aging_time Specifies the maximum timeout period (in seconds) that the
LE Client will maintain an LE_ARP cache entry without
verification (ATM Forum LE Client parameter C17). The
default value is 300 seconds.

Chapter 7. Communications 1/0 Subsystem 113

arp_cache_size

arp_response_timeout

atm_device

auto_cfg

control_timeout

Specifies the maximum number of LE_ARP cache entries that
will be held by the LE Client before removing the least
recently used entry. The default value is 32 entries.

Specifies the maximum timeout period (in seconds) for
LE_ARP request/response exchanges (ATM Forum LE Client
parameter C20). The default value is 1 second.

Specifies the logical name of the physical ATM device driver
that this LE Client is to operate with, as specified in the
CuDv database (for example, atm0, atm1, atm2, ...). The
default is atm0.

Specifies whether the LE Client is to be automatically
configured. Select Yes if the LAN Emulation Configuration
Server (LECS) will be used by the LE Client to obtain the
ATM address of the LE ARP Server, as well as any additional
configuration parameters provided by the LECS. The default
value is No (manual configuration). The attribute values are:

Yes auto configuration

No manual configuration
Note: Configuration parameters provided by LECS
override configuration values provided by the operator.
Specifies the maximum timeout period (in seconds) for most
request/response control frame interactions (ATM Forum LE
Client parameter C7). The default value is 120 seconds (2
minutes).

114 Kernel Extensions and Device Support Programming Concepts

elan_name

failsafe_time

flush_timeout

force_elan_name

Specifies the name of the Emulated LAN this LE Client
wishes to join (ATM Forum LE Client parameter C5). This is
an SNMPv2 DisplayString of 1-32 characters, or may be left
blank (unused). See RFC1213 for a definition of an SNMPv2
DisplayString.

NOTES:

1. Any operator configured elan_name should match
exactly what is expected at the LECS/LES server
when attempting to join an ELAN. Some servers can
alias the ELAN name and allow the operator to
specify a logical name that correlates to the actual
name. Other servers may require the exact name to
be specified.

Previous versions of AIX LANE would accept any
elan_name from the server, even when configured
differently by the operator. However, with multiple
LECS/LES now possible, it is desirable that only the
ELAN identified by the network administrator is
joined. Use the force_elan_name attribute below to
insure that the name you have specified will by the
only ELAN joined.

If no elan_name attribute is configured at the AIX
LEC, or the force_elan_name attribute is disabled,
the server can stipulate whatever elan_name is
available.

Failure to use an ELAN name that is identical to the
server’s when specifying the elan_name and
force_elan_name attributes will cause the LEC to
fail the join process, with entstat/tokstat status
indicating Driver Flag Limbo.

2. Blanks may be inserted within an elan_name by
typing a tilde (*) character whenever a blank
character is desired. This allows a network
administrator to specify an ELAN name with
imbedded blanks as in the default of some servers.

Any tilde character that occupies the first character
position of the elan_name is left as is (i.e., the
resulting name may start with a tilde but all
remaining tilde characters are converted to blanks).

Specifies the maximum timeout period (in seconds) that the
LE Client will attempt to recover from a network outage. A
value of zero indicates that attempts to recover should not
stop unless a nonrecoverable error is encountered. The
default value is 0 (unlimited).

Specifies the maximum timeout period (in seconds) for
FLUSH request/response exchanges (ATM Forum LE Client
parameter C21). The default value is 4 seconds.

Specifies that the Emulated LAN Name returned from the
LECS or LES servers must exactly match the name entered in
the elan_name attribute above. Select Yes if the elan_name
field must match the server configuration and join
parameters. This allows a specific ELAN to be joined when
multiple LECS and LES servers are available on the network.
The default value is No, which allows the server to specify the
ELAN Name.

Chapter 7. Communications 1/O Subsystem 115

fwd_delay_time

lan_type

lecs_atm_addr

les_atm_addr

local_lan_addrs

max_arp_retries

max_config_retries

max_frame_size

Specifies the maximum timeout period (in seconds) that the
LE Client will maintain an entry for a non-local MAC address
in its LE_ARP cache without verification, when the Topology
Change flag is true (ATM Forum LE Client parameter C18).
The default value is 15 seconds.

Identifies the type of local area network being emulated
(ATM Forum LE Client parameter C2). Both Ethernet/IEEE
802.3 and Token Ring LANSs can be emulated using ATM
Forum LANE. The attribute values are:

* Ethernet/IEEE802.3

* TokenRing

If you are doing auto configuration using the LE
Configuration Server (LECS), this field specifies the ATM
address of LECS. It can remain blank if the address of LECS
is not known and the LECS is connected via PVC (VPI=0,
VCI=17) or the well-known address, or is registered vai ILMI.
If the 20-byte address of the LECS is known, it must be
entered as hexadecimal numbers using a . (period) as the
delimiter between bytes. Leading zeros of each byte may be
omitted, for example:
47.0.79.0.0.0.0.0.0.0.0.0.0.0.0.a0.3.0.0.1

(the LECS well-known address)

If you are doing manual configuration (without the aid of an
LECS), this field specifies the ATM address of the LE ARP
Server (LES) (ATM Forum LE Client parameter C9). This
20-byte address must be entered as hexadecimal numbers
using a . (period) as the delimiter between bytes. Leading
zeros of each byte may be omitted, for example:

39.11.1f.22.99.99.99.0.0.0.0.1.49.10.0.5a.68.0.a.1
Specifies the local unicast LAN MAC address that will be
represented by this LE Client and registered with the LE
Server (ATM Forum LE Client parameter C6). This 6-byte
address must be entered as hexadecimal numbers using a .
(period) as the delimiter between bytes. Leading zeros of each
byte may be omitted.

Ethernet Example: 2.60.8C.2C.D2.DC

Token Ring Example: 10.0.5A.4F.4B.C4

Specifies the maximum number of times an LE_ARP request
can be retried (ATM Forum LE Client parameter C13). The
default value is 1.

Specifies the number of times a configuration control frame
such as LE_JOIN_REQUEST should be retried, using a
duration of control_timeout seconds between retries. The
default is 1.

Specifies the maximum AAL-5 send data-unit size of data
frames for this LE Client. In general, this value should
coincide with the LAN type and speed as follows:

Unspecified
for auto LECS configuration

1516 bytes
for Ethernet and IEEE 802.3 networks

4544 bytes
for 4 Mbps Token Rings

18190 bytes
for 16 Mbps Token Rings

116 Kernel Extensions and Device Support Programming Concepts

max_queued_frames

max_rdy_retries

max_unknown_fct

max_unknown_ftm

mpoa_enabled

mpoa_primary

path_sw_delay

peak_rate

ready_timeout

ring_speed

Specifies the maximum number of outbound packets that will
be held for transmission per LE_ARP cache entry. This
queueing occurs when the Maximum Unknown Frame Count
(max_unknown_fct) has been reached, or when flushing
previously transmitted packets while switching to a new
virtual channel. The default value is 60 packets.

Specifies the maximum number of READY_QUERY packets
sent in response to an incoming call that has not yet received
data or a READY_IND packet. The default value is 2 retries.
Specifies the maximum number of frames for a given unicast
LAN MAC address that may be sent to the Broadcast and
Unknown Server (BUS) within time period Maximum
Unknown Frame Time (max_unknown_ftm) (ATM Forum LE
Client parameter C10). The default value is 1.

Specifies the maximum timeout period (in seconds) that a
given unicast LAN address may be sent to the Broadcast and
Unknown Server (BUS). The LE Client will send no more
than Maximum Unknown Frame Count (max_unknown_fct)
packets to a given unicast LAN destination within this
timeout period (ATM Forum LE Client parameter C11). The
default value is 1 second.

Specifies whether Forum MPOA and LANE-2 functions
should be enables for this LE Client. Select Yes if MPOA will
be operational on the LE Client. Select No when traditional
LANE-1 functionality is required. The default is No (LANE-1).
Specifies whether this LE Client is to be the primary
configurator for MPOA via LAN Emulation Configuration
Server (LECS). Select Yes if this LE Client will be obtaining
configuration information from the LECS for the MPOA
Client. This attribute is only meaningful if running auto
config with an LECS, and indicates that the MPOA
configuration TLVs from this LEC will be made available to
the MPC. Only one LE Client can be active as the MPOA
primary configurator. The default is No.

Specifies the maximum timeout period (in seconds) that
frames sent on any path in the network will take to be
delivered (ATM Forum LE Client parameter C22). The default
value is 6 seconds.

Specifies the forward and backward peak bit rate in K-bits
per second that will be used by this LE Client to set up
virtual channels. It is generally best to specify a value that is
compatible with the lowest speed remote device that you
expect this LE Client to be communicating with. Higher
values may cause congestion in the network. The default
value is 155000 K-bits per second, and is adjusted to the
actual speed of the adapter for known adapters.

Specifies the maximum timeout period (in seconds) in which
data or a READY_IND message is expected from a calling
party (ATM Forum LE Client parameter C28). The default
value is 4 seconds.

Specifies the Token Ring speed as viewed by the ifnet layer.
The value set by the ATM LANE device driver is 16 Mbps for
Token Ring emulation and ignored for Ethernet. This is not
an operator-configurable attribute.

Chapter 7. Communications 1/O Subsystem 117

soft_restart Specifies whether active data VC’s are to be maintained
during connection loss of ELAN services such as the LE ARP
Server (LES) or Broadcast and Unknown Server (BUS).
Normal ATM Forum operation forces a disconnect of data
VC’s when LES/BUS connections are lost. This option to
maintain active data VC’s may be advantageous when server
backup capabilities are available. The default value is No.

vec_activity_timeout Specifies the maximum timeout period (in seconds) for
inactive Data Direct VCCs. Any switched Data Direct VCC
that does not transmit or receive data frames in this timeout
period is terminated (ATM Forum LE Client parameter C12).
The default value is 1200 seconds (20 minutes).

Device Driver Configuration and Unconfiguration

The atmle_config entry point performs configuration functions for the ATM LANE
device driver.

Device Driver Open

The atmle_open function is called to open the specified network device.

The LANE device driver does an asynchronous open. It starts the process of
attaching the device to the network, sets the NDD_UP flag in the ndd_flags field,
and returns 0. The network attachment will continue in the background where it is
driven by network activity and system timers.

Note: The Network Services ns_alloc routine which calls this open routine
causes the open to be synchronous. It waits until the NDD_RUNNING or the
NDD_LIMBO flag is set in the ndd_flags field or 15 seconds have passed.

If the connection is successful, the NDD_RUNNING flag will be set in the
ndd_fTags field, and an NDD_CONNECTED status block will be sent. The ns_alloc
routine will return at this time.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags
field, and an NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be turned off,
and the NDD_RUNNING flag will be set in the ndd_fTlags field. Both
NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be sent.

Device Driver Close

The atmle_close function is called by the Network Services ns_free routine to close
the specified network device. This function resets the device to a known state and
frees system resources associated with the device.

The device will not be detached from the network until the device’s transmit
queue is allowed to drain.

Data Transmission

The atmle_output function transmits data using the network device.

If the destination address in the packet is a broadcast address, the M_BCAST flag
in the p_mbuf->m_fTlags field should be set prior to entering this routine. A

118 Kernel Extensions and Device Support Programming Concepts

broadcast address is defined as FEFEFEFEFEFF (hex) for both Ethernet and Token
Ring and C0.00.FEFEFEFF (hex) for Token Ring.

If the destination address in the packet is a multicast or group address, the
M_MCAST flag in the p_mbuf->m_flags field should be set prior to entering this
routine. A multicast or group address is defined as any nonindividual address
other than a broadcast address.

The device driver will keep statistics based on the M_BCAST and M_MCAST
flags.

AIX Token Ring LANE emulates a duplex device. If a Token Ring packet is
transmitted with a destination address that matches the LAN MAC address of the
local LE Client, the packet is received. This is also true for Token Ring packets
transmitted to a broadcast address, enabled functional address, or an enabled
group address. AIX Ethernet LANE, on the other hand, emulates a simplex device
and does not receive its own broadcast or multicast transmit packets.

Data Reception

When the LANE device driver receives a valid packet from a network ATM device
driver, the LANE device driver calls the nd_receive function that is specified in the
ndd_t structure of the network device. The nd_receive function is part of a CDLI
network demuxer. The packet is passed to the nd_receive function in mbulfs.

The LANE device driver passes one packet to the nd_receive function at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a
packet is received which has an all-stations broadcast destination address. This
address value is defined as FEFEFEFEFEFF (hex) for both Token Ring and
Ethernet and is defined as C0.00.FEFEFEFF (hex) for Token Ring.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a
packet is received which has a nonindividual address that is different than an
all-stations broadcast address.

Any packets received from the network are discarded if they do not fit the
currently emulated LAN protocol and frame format are discarded.

Asynchronous Status

When a status event occurs on the device, the LANE device driver builds the
appropriate status block and calls the nd_status function that is specified in the
ndd_t structure of the network device. The nd_status function is part of a CDLI
network demuxer.

The following Status Blocks are defined for the LANE device driver:

Hard Failure

When an error occurs within the internal operation of the ATM LANE device
driver, it is considered unrecoverable. If the device was operational at the time of
the error, the NDD_LIMBO and NDD_RUNNING flags are turned off, and the
NDD_DEAD flag is set in the ndd_flags field, and a hard failure status block is

generated.
code Set to NDD_HARD_FAIL
option[0] Set to NDD_UCODE_FAIL

Chapter 7. Communications 1/0 Subsystem 119

Enter Network Recovery Mode

When the device driver detects an error which requires initiating recovery logic to
make the device temporarily unavailable, the following status block is returned by
the device driver:

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_UCODE_FAIL

Note: While the device driver is in this recovery logic, the network
connections may not be fully functional. The device driver will notify users
when the device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block.

When a general error occurs during operation of the device, this status block is
generated.

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error

that made the device temporarily unavailable, the following status block is
returned by the device driver. This status block means the device is now fully

functional.
code Set to NDD_LIMBO_EXIT
option[0] The option field is not used.

Device Control Operations

The atmle_ctl function is used to provide device control functions.

ATMLE_MIB_GET
This control requests the LANE device driver’s current ATM LAN Emulation MIB
statistics.

The user should pass in the address of an atmle_mibs_t structure as defined in
usr/include/sys/atmle_mibs.h. The driver will return EINVAL if the buffer area is
smaller than the required structure.

The ndd_flags field can be checked to determine the current state of the LANE
device.

ATMLE_MIB_QUERY
This control requests the LANE device driver’'s ATM LAN Emulation MIB support
structure.

The user should pass in the address of an atmle_mibs_t structure as defined in
usr/include/sys/atmle_mibs.h. The driver will return EINVAL if the buffer area is
smaller than the required structure.

The device driver does not support any variables for read_write or write only. If
the syntax of a member of the structure is some integer type, the level of support
flag will be stored in the whole field, regardless of the size of the field. For those
fields which are defined as character arrays, the value will be returned only in the
first byte in the field.

120 Kernel Extensions and Device Support Programming Concepts

NDD_CLEAR_STATS
This control requests all the statistics counters kept by the LANE device driver to
be zeroed.

NDD_DISABLE_ADDRESS

This command disables the receipt of packets destined for a multicast/group
address; and for Token Ring, it disables the receipt of packets destined for a
functional address. For Token Ring, the functional address indicator (bit 0 "the
MSB" of byte 2) indicates whether the address is a functional address (the bit is a
0) or a group address (the bit is a 1).

In all cases, the Tength field value is required to be 6. Any other value will cause
the LANE device driver to return EINVAL.

Functional Address: The reference counts are decremented for those bits in the
functional address that are enabled (set to 1). If the reference count for a bit goes to
zero, the bit will be "turned off” in the functional address mask for this LE Client.

If no functional addresses are active after receipt of this command, the
TOK_RECEIVE_FUNC flag in the ndd_flags field is reset. If no functional or
multicast/group addresses are active after receipt of this command, the
NDD_ALTADDRS flag in the ndd_flags field is reset.

Multicast/Group Address: If a multicast/group address which is currently
enabled is specified, receipt of packets destined for that group address is disabled.
If an address is specified that is not currently enabled, EINVAL is returned.

If no functional or multicast/group addresses are active after receipt of this
command, the NDD_ALTADDRS flag in the ndd_flags field is reset. Additionally
for Token Ring, if no multicast/group address is active after receipt of this
command, the TOK_RECEIVE_GROUP flag in the ndd_flags field is reset.

NDD_DISABLE_MULTICAST

The NDD_DISABLE_MULTICAST command disables the receipt of all packets
with unregistered multicast addresses, and only receives those packets whose
multicast addresses were registered using the NDD_ENABLE_ADDRESS
command. The arg and length parameters are not used. The NDD_MULTICAST
flag in the ndd_flags field is reset only after the reference count for multicast
addresses has reached zero.

NDD_ENABLE_ADDRESS

This command enables the receipt of packets destined for a multicast/group
address; and additionally for Token Ring, it enables the receipt of packets destined
for a functional address. For Ethernet, the address is entered in canonical format
which is left-to-right byte order with the I/G (Individual/Group) indicator as the
least significant bit of the first byte. For Token Ring, the address format is entered
in noncanonical format which is left-to-right bit and byte order and has a
functional address indicator. The functional address indicator (the most significant
bit of byte 2) indicates whether the address is a functional address (the bit value is
0) or a group address (the bit value is 1).

In all cases, the Tength field value is required to be 6. Any other length value will
cause the LANE device driver to return EINVAL.

Functional Address: The Token-Ring network architecture provides bit-specific

functional addresses for widely used functions, such as Ring Parameter Server or
Configuration Report Server. Ring stations use functional address "masks” to

Chapter 7. Communications I/O Subsystem 121

identify these functions. The specified address is "or'ed” with the currently
specified functional addresses, and the resultant address is set as the functional
address for the device. Functional addresses are encoded in a bit-significant format,
thereby allowing multiple individual groups to be designated by a single address.

For example, if function G is assigned a functional address of C0.00.00.08.00.00
(hex), and function M is assigned a functional address of C0.00.00.00.00.40 (hex),
then ring station Y, whose node contains function G and M, would have a mask of
C0.00.00.08.00.40 (hex). Ring station Y would receive packets addressed to either
function G or M or to an address like C0.00.00.08.00.48 (hex) since that address
contains bits specified in the "mask.”

Note: The LANE device driver forces the first 2 bytes of the functional
address to be C0.00 (hex). In addition, bits 6 and 7 of byte 5 of the functional
address are forced to 0.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC ﬂags in the ndd_flags field
are set.

Since functional addresses are encoded in a bit-significant format, reference counts
are kept on each of the 31 least significant bits of the address. Reference counts are
not kept on the 17 most significant bits (the C0.00 (hex) of the functional address
and the functional address indicator bit).

Multicast/Group Address: A multicast/group address table is used by the LANE
device driver to store address filters for incoming multicast/group packets. If the
LANE device driver is unable to allocate kernel memory when attempting to add a
multicast/group address to the table, the address is not added and ENOMEM is
returned.

If the LANE device driver is successful in adding a multicast/group address, the
NDD_ALTADDRS flag in the ndd_f1lags field is set. Additionally for Token Ring,
the TOK_RECEIVE_GROUP flag is set, and the first 2 bytes of the group address
are forced to be C0.00 (hex).

NDD_ENABLE_MULTICAST

The NDD_ENABLE_MULTICAST command enables the receipt of packets with
any multicast (or group) address. The arg and length parameters are not used. The
NDD_MULTICAST flag in the ndd_flags field is set.

NDD_GET_ALL_STATS
This control requests all current LANE statistics, based on both the generic LAN
statistics and the ATM LANE protocol in progress.

For Ethernet, you should pass in the address of an ent_ndd_stats_t structure as
defined in file /usr/include/sys/cdli_entuser.h.

For Token Ring, you should pass in the address of a tok_ndd_stats_t structure as
defined in file /usr/include/sys/cdli_tokuser.h.

The driver will return EINVAL if the buffer area is smaller than the required
structure.

The ndd_flags field can be checked to determine the current state of the LANE
device.

122 Kernel Extensions and Device Support Programming Concepts

NDD_GET_STATS

This control requests the current generic LAN statistics based on the LAN protocol
being emulated.

For Ethernet, you should pass in the address of an ent_ndd_stats_t structure as
defined in file /usr/include/sys/cdli_entuser.h.

For Token Ring, you should pass in the address of a tok_ndd_stats_t structure as
defined in file /usr/include/sys/cdli_tokuser.h.

The ndd_fTags field can be checked to determine the current state of the LANE
device.

NDD_MIB_ADDR

This control requests the current receive addresses that are enabled on the LANE
device driver. The following address types are returned, up to the amount of
memory specified to accept the address list:

* Local LAN MAC Address

* Broadcast Address FEFEFEFEFEFF (hex)
* Broadcast Address C0.00.FE.FEFEFF (hex)
* (returned for Token Ring only)

* Functional Address Mask

* (returned for Token Ring only, and only if at least one functional address has
been enabled)

* Multicast/Group Address 1 through n
* (returned only if at least one multicast/group address has been enabled)

Each address is 6-bytes in length.

NDD_MIB_GET
This control requests the current MIB statistics based on whether the LAN being
emulated is Ethernet or Token Ring.

If Ethernet, you should pass in the address of an ethernet_all_mib_t structure as
defined in file /usr/include/sys/ethernet_mibs.h.

If Token Ring, you should pass in the address of a token_ring_all_mib_t structure
as defined in file /ust/include/sys/tokenring_mibs.h.

The driver will return EINVAL if the buffer area is smaller than the required
structure.

The ndd_flags field can be checked to determine the current state of the LANE
device.

NDD_MIB_QUERY

This control requests LANE device driver’s MIB support structure based on
whether the LAN being emulated is Ethernet or Token Ring.

If Ethernet, you should pass in the address of an ethernet_all_mib_t structure as
defined in file /ust/include/sys/ethernet_mibs.h.

If Token Ring, you should pass in the address of a token_ring_all_mib_t structure
as defined in file /ust/include/sys/tokenring mibs.h.

Chapter 7. Communications I/O Subsystem 123

The driver will return EINVAL if the buffer area is smaller than the required
structure.

The device driver does not support any variables for read_write or write only. If
the syntax of a member of the structure is some integer type, the level of support
flag will be stored in the whole field, regardless of the size of the field. For those
fields which are defined as character arrays, the value will be returned only in the
first byte in the field.

Tracing and Error Logging in the ATM LANE Device Driver

The LANE device driver has two trace points:
* 3A1 - Normal Code Paths
* 3A2 - Error Conditions

Tracing can be enabled through SMIT or with the trace command.
trace -a -j 3al,3a2

Tracing can be disabled through SMIT or with the trestop command. Once trace is
stopped, the results can be formatted into readable text with the trcrpt command.

trcrpt > /tmp/trc.out

LANE error log templates:

ERRID_ATMLE_MEM_ERR An error occurred while attempting to
allocate memory or pin the code. This error
log entry accompanies return code ENOMEM
on an open or control operation.

ERRID_ATMLE_LOST_SW The LANE device driver lost contact with the
ATM switch. The device driver will enter
Network Recovery Mode in an attempt to
recover from the error and will be
temporarily unavailable during the recovery
procedure. This generally occurs when the
cable is unplugged from the switch or ATM
adapter.

ERRID_ATMLE_REGAIN_SW Contact with the ATM switch has been
re-established (for example, the cable has
been plugged back in).

ERRID_ATMLE_NET_FAIL The device driver has gone into Network
Recovery Mode in an attempt to recover
from a network error and is temporarily
unavailable during the recovery procedure.
User intervention is not required for this
error unless the problem persists.

ERRID_ATMLE_RCVRY_CMPLETE The network error which caused the LANE
device driver to go into error recovery mode
has been corrected.

Adding an ATM MPOA Client

An MPOA (Multi-Protocol Over ATM) Client (MPC) can be added to the system to
allow ATM LANE packets that would normally be routed through various LANE
IP Subnets or Logical IP Subnets (LIS’s) within an ATM network, to be sent and
received over shortcut paths that do not contain routers. MPOA can provide
significant savings on end-to-end throughput performance for large data transfers,
and can free up resources in routers that might otherwise be used up handling

124 Kernel Extensions and Device Support Programming Concepts

packets that could have bypassed routers altogether. See the following mpoa
environment figure.

Default Path

«< >

MPS MPS 2

ELAN

IP Subnet
411

ELAN
IP Subnet
41.3

MPC 1 <> MPC 2

Shortcut Path

LAN

IP Subnet
4.1.3

LAN
IP Subnet
411

v

IP HostA 1P HostB
4111 4.1.3.1

Only one MPOA Client is established per node. This MPC can support multiple
ATM ports, containing LE Clients/Servers and MPOA Servers. The key
requirement being, that for this MPC to create shortcut paths, each remote target
node must also support MPOA Client, and must be directly accessible via the
matrix of switches representing the ATM network.

A user with root authority can add this MPOA Client using the smit mpoa_panel
fast path, or by navigating through Devices - Communication - ATM Adapter -
Services - Multi-Protocol Over ATM (MPOA).

No configuration entries are required for the MPOA Client. Ease-of-use default
values are provided for each of the attributes which are derived from ATM Forum

recommendations.

Configuration help text is also available within MPOA Client SMIT to aid in
making any modifications to attribute default values.

Chapter 7. Communications I/O Subsystem 125

Configuration Parameters for ATM MPOA Client

The ATM LANE device driver supports the following configuration parameters for

the MPOA Client:

auto_cfg

sc_setup_count

sc_setup_time

init_retry_time

retry_time_max

hold_down_time

vee_inact_time

Auto Configuration with LEC/LECS. Specifies whether the MPOA
Client is to be automatically configured via LANE Configuration
Server (LECS). Select Yes if a primary LE Client will be used to
obtain the MPOA configuration attributes, which will override
any manual or default values.

The default value is No (manual configuration). The attribute
values are:

Yes - auto configuration

No - manual configuration

Shortcut Setup Frame Count. This attribute is used in conjunction
with sc_setup_time to determine when to establish a shortcut path.
Once the MPC has forwarded at least sc_setup_count packets to the
same target within a period of sc_setup_time, the MPC attempts to
create a shortcut VCC. This attribute correlates to ATM Forum
MPC Configuration parameter MPC-p1.

The default value is 10 packets.

Shortcut Setup Frame Time (in seconds). This attribute is used in
conjunction with sc_setup_count above to determine when to
establish a shortcut path. Once the MPC has forwarded at least
sc_setup_count packets to the same target within a period of
sc_setup_time, the MPC attempts to create a shortcut VCC. This
attribute correlates to ATM Forum MPC Configuration parameter
MPC-p2.

The default value is 1 second.

Initial Request Retry Time (in seconds). Specifies the length of
time to wait before sending the first retry of a request that does
not receive a response. This attribute correlates to ATM Forum
MPC Configuration parameter MPC-p4.

The default value is 5 seconds.

Maximum Request Retry Time (in seconds). Specifies the
maximum length of time to wait when retrying requests that have
not received a response. Each retry duration after the initial retry
are doubled (2x) until the retry duration reaches this Maximum
Request Retry Time. All subsequent retries will wait this
maximum value. This attribute correlates to ATM Forum MPC
Configuration parameter MPC-p5.

The default value is 40 seconds.

Failed resolution request retry Hold Down Time (in seconds).
Specifies the length of time to wait before reinitiating a failed
address resolution attempt. This value is normally set to a value
greater than retry_time_max. This attribute correlates to ATM
Forum MPC Configuration parameter MPC-p6.

The default value is 160 seconds.

VCC Inactivity Timeout value (in minutes). Specifies the
maximum length of time to keep a shortcut VCC enabled when
there is no send or receive activity on that VCC.

The default value is 20 minutes.

Tracing and Error Logging in the ATM MPOA Client
The ATM MPOA Client has two trace points:
* 3A3 - Normal Code Paths
* 3A4 - Error Conditions

Tracing can be enabled through SMIT or with the "trace” command.

126 Kernel Extensions and Device Support Programming Concepts

trace -a -j 3a3,3a4

racing can be disabled through SMIT or with the trcstop command. Once trace is
stopped, the results can be formatted into readable text with the trcrpt command.

trcrpt > /tmp/trc.out

MPOA Client error log templates:
Each of the MPOA Client error log templates are prefixed with ERRID_MPOA. An
example of an MPOA error entry is as follows:

ERRID_MPOA_MEM_ERR

An error occurred while attempting to allocate kernel memory.

Fiber Distributed Data Interface (FDDI) Device Driver

The FDDI device driver is a dynamically loadable device driver that runs on
systems using AIX Version 4.1 (or later). The device driver is automatically loaded
into the system at device configuration time as part of the configuration process.

The interface to the device is through the kernel services known as Network

Services.

Interfacing to the device driver is achieved by calling the device driver’s entry
points for opening the device, closing the device, transmitting data, doing a remote
dump, and issuing device control commands.

The FDDI device driver supports the SMT 7.2 standard.

Configuration Parameters for FDDI Device Driver

Software Transmit Queue

Alternate Address

Enable Alternate Address

PMF Password

Max T-Req
TVX Lower Bound

User Data

The driver provides a software transmit queue to
supplement the hardware queue. The queue is
configurable and contains between 3 and 250 mbulfs.
The default is 30 mbufs.

The driver supports specifying a configurable
alternate address to be used instead of the address
burned in on the card. This address must have the
local bit set. Addresses between 0x400000000000 and
0x7FFFFFFFFFFF are supported. The default is
0x400000000000.

The driver supports enabling the alternate address set
with the Alternate Address parameter. Values are YES
and NO, with NO as the default.

The driver provides the ability to configure a PMF
password. The password default is 0, meaning no
password.

The driver enables the user to configure the card’s
maximum T-Req.

The driver enables the user to configure the card’s
TVX Lower Bound.

The driver enables the user to set the user data field
on the adapter. This data can be any string up to 32
bytes of data. The default is a zero length string.

Chapter 7. Communications 1/O Subsystem 127

FDDI Device Driver Configuration and Unconfiguration

The fddi_config entry point performs configuration functions for the FDDI device
driver.

Device Driver Open

The fddi_open function is called to open the specified network device.

The device is initialized. When the resources have been successfully allocated, the
device is attached to the network.

If the station is not connected to another running station, the device driver opens,
but is unable to transmit Logical Link Control (LLC) packets. When in this mode,
the device driver sets the CFDDI_NDD_LLC_DOWN flag (defined in
lusr/include/sys/cdli_fddiuser.h). When the adapter is able to make a connection
with at least one other station this flag is cleared and LLC packets can be
transmitted.

Device Driver Close

The fddi_close function is called to close the specified network device. This
function resets the device to a known state and frees system resources used by the
device.

The device is not detached from the network until the device’s transmit queue is
allowed to drain.

Data Transmission

The fddi_output function transmits data using the network device.

The FDDI device driver supports up to three mbuf’s for each packet. It cannot
gather from more than three locations to a packet.

The FDDI device driver does not accept user-memory mbufs. It uses bcopy on
small frames which does not work on user memory.

The driver supports up to the entire mtu in a single mbuf.
The driver requires that the entire mac header be in a single mbulf.

The driver will not accept chained frames of different types. The user should not
send Logical Link Control (LLC) and station management (SMT) frames in the
same call to output.

The user needs to fill the frame out completely before calling the output routine.
The mac header for a FDDI packet is defined by the cfddi_hdr_t structure defined
in /usr/include/sys/cdli_fddiuser.h. The first byte of a packet is used as a flag for
routing the packet on the adapter. For most driver users the value of the packet
should be set to FDDI_TX_NORM. The possible flags are:

CFDDI_TX_NORM Transmits the frame onto the ring. This is the normal flag
value.

CFDDI_TX_LOOPBACK Moves the frame from the adapter’s transmit queue to its
receive queue as if it were received from the media. The frame
is not transmitted onto the media.

128 Kernel Extensions and Device Support Programming Concepts

CFDDI_TX_PROC_ONLY

CFDDI_TX_PROC_XMIT

Data Reception

Processes the status information frame (SIF) or parameter
management frame (PMF) request frame and sends a SIF or
PMF response to the host. The frame is not transmitted onto
the media. This flag is not valid for LLC packets.

Processes the SIF or PMF request frames and sends a SIF or
PMF response to the host. The frame is also transmitted onto
the media. This flag is not valid for LLC packets.

When the FDDI device driver receives a valid packet from the network device, the
FDDI device driver calls the nd_receive function that is specified in the ndd_t
structure of the network device. The nd_receive function is part of a CDLI network
demuxer. The packet is passed to the nd_receive function in mbufs.

Reliability, Availability, and Serviceability for FDDI Device

Driver

The FDDI device driver has three trace points. The IDs are defined in the

/usr/include/sys/cdli_fddiuser.h file.

For FDDI the type of data in an error log is the same for every error log. Only the
specifics and the title of the error log change. Information that follows includes an
example of an error log and a list of error log entries.

Example FDDI Error Log

Detail Data
FILE NAME

Tine: 332 file: fddiintr_b.c

POS REGISTERS

F48E D317 3CC7 0008
SOURCE ADDRESS

4000 0000 0000
ATTACHMENT CLASS
0000 0001

MICRO CHANNEL AND PIO EXCEPTION CODES

0000 0000 0000 0000 0000 0000

FDDI LINK STATISTICS

0080 0000 O4A0 0000 0000 0000 0001 0000 0000 00O
0001 0008 0008 0005 0005 0012 0003 0002 0000 OO0
0000 0000 0000 0000 0000 0000 0000 0000

SELF TESTS

0000 0000 0000 0000 0000 0000 0000 O0OOO 0000 0000
0000 0000 0000

DEVICE DRIVER INTERNAL STATE

0fdd 0fdd 0000 0000 0000 0000 0000 0000

Chapter 7. Communications I/0 Subsystem 129

Error Log Entries

The FDDI device driver returns the following are the error log entries:

ERRID_CFDDI_RMV_ADAP

ERRID_CFDDI_ADAP_CHECK

ERRID_CFDDI_DWNLD

ERRID_CFDDI_RCVRY_ENTER

ERRID_CFDDI_RCVRY_EXIT

ERRID_CFDDI_RCVRY_TERM

ERRID_CFDDI_MC_ERR

ERRID_CFDDI_TX_ERR

This error indicates that the adapter has received a
disconnect command from a remote station. The FDDI
device driver will initiate shutdown of the device. The
device is no longer functional due to this error. User
intervention is require to bring the device back online.

If there is no local LAN administrator, user action is
required to make the device available.

For the device to be brought back online, the device
needs to be reset. This can be accomplished by having
all users of the FDDI device driver close the device.

When all users have closed the device and the device is
reset, the device can be brought back online.

This error indicates that an FDDI adapter check has
occurred. If the device was connected to the network
when this error occurred, the FDDI device goes into
Network Recovery Mode in an attempt to recover from
the error. The device is temporarily unavailable during
the recovery procedure. User intervention is not
required to bring the device back online.

Indicates that the microcode download to the FDDI
adapter has failed. If this error occurs during the
configuration of the device, the configuration of the
device fails. User intervention is required to make the
device available.

Indicates that the FDDI device driver has entered
Network Recovery Mode in an attempt to recover from
an error. The error which caused the device to enter this
mode, is error logged before this error log entry. The
device is not fully functional until the device has left
this mode. User intervention is not required to bring the
device back online.

Indicates that the FDDI device driver has successfully
recovered from the error which caused the device to go
into Network Recovery Mode.The device in now fully
functional.

Indicates that the FDDI device driver was unable to
recover from the error which caused the device to go
into Network Recovery Mode and has terminated
recovery logic. The termination of recovery logic may
be due to an irrecoverable error being detected or the
device being closed. If termination is due to an
irrecoverable error, that error will be error logged before
this error log entry. User intervention is required to
bring the device back online.

Indicates that the FDDI device driver has detected a
Micro Channel error. The device driver initiates
recovery logic in an attempt to recover from the error.
User intervention is not required for this error unless
the problem persists.

Indicates that the FDDI device driver has detected a
transmission error. User intervention is not required
unless the problem persists.

130 Kernel Extensions and Device Support Programming Concepts

ERRID_CFDDI_PIO

ERRID_CFDDI_DOWN

ERRID_CFDDI_SELF_TEST

ERRID_CFDDI_SELFT_ERR

ERRID_CFDDI_PATH_ERR

ERRID_CFDDI_PORT

ERRID_CFDDI_BYPASS

ERRID_CFDDI_CMD_FAIL

Indicates the FDDI device driver has detected a
program IO error. The device driver initiates recovery
logic in an attempt to recover from the error. User
intervention is not required for this error unless the
problem persists.

Indicates that the FDDI device has been shutdown due
to an irrecoverable error. The FDDI device is no longer
functional due to the error. The irrecoverable error
which caused the device to be shutdown is error logged
before this error log entry. User intervention is required
to bring the device back online.

Indicates that the FDDI adapter has received a run
self-test command from a remote station. The device is
unavailable while the adapter’s self-tests are being run.
If the tests are successful, the FDDI device driver
initiates logic to reconnect the device to the network.
Otherwise, the device will be shutdown.

Indicates that an error occurred during the FDDI
self-tests. User intervention is required to bring the
device back online.

Indicates that an error occurred during the FDDI
adapter’s path tests. The FDDI device driver will
initiate recovery logic in an attempt to recover from the
error. The FDDI device will temporarily be unavailable
during the recovery procedure. User intervention is not
required to bring the device back online.

Indicates that a port on the FDDI device is in a stuck
condition. User intervention is not required for this
error. This error typically occurs when a cable is not
correctly connected.

Indicates that the optical bypass switch is in a stuck
condition. User intervention is not required for this
error.

Indicates that a command to the adapter has failed.

High-Performance (8fc8) Token-Ring Device Driver

The 8fc8 Token-Ring device driver is a dynamically loadable device driver that will
run on a system running AIX Version 4.1 (or later). The device driver will be
automatically loaded into the system at device configuration time as part of the

configuration process.

The interface to the device is through the kernel services known as Network

Services.

Interfacing to the device driver is achieved by calling the device driver’s entry
points for opening the device, closing the device, transmitting data, doing a remote
dump, and issuing device control commands.

The Token-Ring device driver interfaces with the Token-Ring High-Performance
Network Adapter (8fc8). It provides a Micro Channel-based connection to a
Token-Ring network. The adapter is IEEE 802.5 compatible and supports both 4
and 16 megabit per second networks. The adapter supports only a Shielded
Twisted-Pair (STP) Token-Ring connection.

Chapter 7. Communications I/O Subsystem 131

Configuration Parameters for Token-Ring Device Driver

Ring Speed The device driver will support a user configurable
parameter which indicates if the Token-Ring is to be
run at 4 or 16 megabits per second.

Software Transmit Queue The device driver will support a user configurable
transmit queue, that can be set to store between 32 and
160 transmit request pointers. Each transmit request
pointer corresponds to a transmit request which may be
for several buffers of data.

Attention MAC frames The device driver will support a user configurable
parameter that indicates if attention MAC frames
should be received.

Beacon MAC frames The device driver will support a user configurable
parameter that indicates if beacon MAC frames should
be received.

Network Address The driver supports the use of the device’s hardware
address as the network address or an alternate network
address configured through software. When an alternate
address is used, any valid individual address can be
used. The most significant bit of the address must be
set to zero (definition of an individual address).

Device Driver Configuration and Unconfiguration

The tok_config entry point performs configuration functions Token-Ring device
driver.

Device Driver Open

The tok_open function is called to open the specified network device.

The Token Ring device driver does an asynchronous open. It starts the process of
attaching the device to the network, sets the NDD_UP flag in the ndd_flags field,
and returns 0. The network attachment will continue in the background where it is
driven by device activity and system timers.

Note: The Network Services ns_alloc routine which calls this open routine
causes the open to be synchronous. It waits until the NDD_RUNNING flag is
set in the ndd_flags field or 60 seconds have passed.

If the connection is successful, the NDD_RUNNING flag will be set in the
ndd_flags field and a NDD_CONNECTED status block will be sent. The ns_alloc
routine will return at this time.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags
field and a NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be turned off and
the NDD_RUNNING flag will be set in the ndd_flags field. Both
NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be set.

Device Driver Close

The tok_close function is called to close the specified network device. This
function resets the device to a known state and frees system resources associated
with the device.

132 Kernel Extensions and Device Support Programming Concepts

The device will not be detached from the network until the device’s transmit
queue is allowed to drain.

Data Transmission
The tok_output function transmits data using the network device.

The device driver does not support mbufs from user memory (which have the
M_EXT flag set).

If the destination address in the packet is a broadcast address, the M_BCAST flag
in the p_mbuf->m_flags field should be set prior to entering this routine. A
broadcast address is defined as OxFFFF FFFF FFFF or 0xC000 FFFF FFFF. If the
destination address in the packet is a multicast address the M_MCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A multicast
address is defined as a non-individual address other than a broadcast address. The
device driver will keep statistics based upon the M_BCAST and M_MCAST flags.

If a packet is transmitted with a destination address which matches the adapter’s
address, the packet will be received. This is true for the adapter’s physical address,
broadcast addresses (0xC000 FFFF FFFF or OxFFFF FFFF FFFF), enabled functional
addresses, or an enabled group address.

Data Reception

When the Token-Ring device driver receives a valid packet from the network
device, the Token-Ring device driver calls the nd_receive function that is specified
in the ndd_t structure of the network device. The nd_receive function is part of a
CDLI network demuxer. The packet is passed to the nd_receive function in mbufs.

The Token-Ring device driver passes one packet to the nd_receive function at a
time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a
packet is received which has an all-stations broadcast address. This address is
defined as OxFFFF FFFF FFFF or 0xC000 FFFF FFFF.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a
packet is received which has a non-individual address that is different than the
all-stations broadcast address.

The adapter does not pass invalid packets to the device driver.

Asynchronous Status

When a status event occurs on the device, the Token-Ring device driver builds the
appropriate status block and calls the nd_status function that is specified in the
ndd_t structure of the network device. The nd_status function is part of a CDLI
network demuxer.

The following Status Blocks are defined for the Token-Ring device driver.

Hard Failure

When a hard failure has occurred on the Token-Ring device, the following status
blocks can be returned by the Token-Ring device driver. One of these status blocks
indicates that a fatal error occurred.

Chapter 7. Communications I/O Subsystem 133

NDD_PIO_FAIL: When a PIO error occurs, it is retried 3 times. If the error still
occurs, it is considered unrecoverable and this status block is generated.

code Set to NDD_HARD_FAIL

option[0] Set to NDD_PIO_FAIL

option(] The remainder of the status block may be used to return additional status
information.

TOK_RECOVERY_THRESH: When most network errors occur, they are retried.
Some errors are retried with no limit and others have a recovery threshold. Errors
that have a recovery threshold and fail all the retries specified by the recovery
threshold are considered unrecoverable and generate the following status block:

code Set to NDD_HARD_FAIL
option[0] Set to TOK_RECOVERY_THRESH
option[1] The specific error which occurred. Possible values are:

¢ TOK_DUP_ADDR - duplicate node address

*+ TOK_PERM_HW_ERR - the device has an unrecoverable hardware error
* TOK_RING_SPEED - ring beaconing on physical insertion to the ring

* TOK_RMV_ADAP - remove ring station MAC frame received

Enter Network Recovery Mode

When the device driver has detected an error which requires initiating recovery
logic that will make the device temporarily unavailable, the following status block
is returned by the device driver:

Note: While the device driver is in this recovery logic, the device may not be
fully functional. The device driver will notify users when the device is fully
functional by way of an NDD_LIMBO_EXIT asynchronous status block.

NDD_ADAP_CHECK: When an adapter check has occurred, this status block is

generated.

code Set to NDD_LIMBO_ENTER

option[0] Set to NDD_ADAP_CHECK

option[1] The adapter check interrupt information is stored in the 2 high-order bytes.

The adapter also returns three two-byte parameters. Parameter 0 is stored
in the 2 low-order bytes.

option[2] Parameter 1 is stored in the 2 high-order bytes. Parameter 2 is stored in the
2 low-order bytes.

NDD_AUTO_RMYV: When an internal hardware error following the beacon
automatic removal process has been detected, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_AUTO_RMV

NDD_BUS_ERR: The device has detected a I/O channel error.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_BUS_ERR
option[1] Set to error information from the device.

134 Kernel Extensions and Device Support Programming Concepts

NDD_CMD_FAIL: The device has detected an error in a command the device
driver issued to it.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_CMD_FAIL
option[1] Set to error information from the device.

NDD_TX_ERROR: The device has detected an error in a packet given to the
device.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_TX_ERROR
option[1] Set to error information from the device.

NDD_TX_TIMEOUT: The device has detected an error in a packet given to the
device.

code Set to NDD_LIMBO_ENTER
option[0] Set to NDD_TX_TIMEOUT

TOK_ADAP_INIT: When the initialization of the device fails, this status block is
generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_ADAP_INIT
option[1] Set to error information from the device.

TOK_ADAP_OPEN: When a general error occurs during open of the device, this
status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_ADAP_OPEN
option[1] Set to the device open error code from the device.

TOK_DMA_FAIL: A d_complete has failed.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_DMA_FAIL

TOK_RING_SPEED: When an error code of 0x27 (physical insertion, ring
beaconing) occurs during open of the device, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_RING_SPEED

TOK_RMV_ADAP: The device has received a remove ring station MAC frame
indicating that a network management function had directed this device to get off
the ring.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_RMV_ADAP

Chapter 7. Communications I/O Subsystem 135

TOK_WIRE_FAULT: When an error code of 0x11 (lobe media test, function
failure) occurs during open of the device, this status block is generated.

code Set to NDD_LIMBO_ENTER
option[0] Set to TOK_WIRE_FAULT

Exit Network Recovery Mode

When the device driver has successfully completed recovery logic from the error
that made the device temporarily unavailable, the following status block is
returned by the device driver. This status block means the device is now fully

functional.
code Set to NDD_LIMBO_EXIT
option|] The option fields are not used.

Network Device Driver Status
When the device driver has status or event information to report, the following
status block is returned by the device driver:

Ring Beaconing: When the Token-Ring device has detected a beaconing condition
(or the ring has recovered from one), the following status block is generated by the
Token-Ring device driver:

code Set to NDD_STATUS
option[0] Set to TOK_BEACONING
option[1] Set to the ring status received from the device.

Device Connected
When the device is successfully connected to the network the following status
block is returned by the device driver:

code Set to NDD_CONNECTED
option(] The option fields are not used.

Device Control Operations

The tok_ctl function is used to provide device control functions.

NDD GET_STATS

The user should pass in the tok_ndd_stats_t structure as defined in
usr/include/sys/cdli_tokuser.h. The driver will fail a call with a buffer smaller than
the structure.

The statistics which are returned contain statistics obtained from the device. If the
device is inoperable, the statistics which are returned will not contain the current
device statistics. The copy of the ndd_flags field can be checked to determine the
state of the device.

NDD_MIB_QUERY
The arg parameter specifies the address of the token_ring_all_mib_t structure. This
structure is defined in the /usr/include/sys/tokenring mibs.h file.

The device driver does not support any variables for read_write or write only. If
the syntax of a member of the structure is some integer type, the level of support

136 Kernel Extensions and Device Support Programming Concepts

flag will be stored in the whole field, regardless of the size of the field. For those
fields which are defined as character arrays, the value will be returned only in the
first byte in the field.

NDD MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure. This
structure is defined in the /usr/include/sys/tokenring mibs.h file.

If the device is inoperable, the upstream field of the Dot5Entry_t structure will be
zero instead of containing the nearest active upstream neighbor (NAUN). Also the
statistics which are returned contain statistics obtained from the device. If the
device is inoperable, the statistics which are returned will not contain the current
device statistics. The copy of the ndd_flags field can be checked to determine the
state of the device.

NDD_ENABLE_ADDRESS

This command enables the receipt of packets with a functional or a group address.
The functional address indicator (bit 0 "the MSB" of byte 2) indicates whether the
address is a functional address (the bit is a 0) or a group address (the bit is a 1).
The length field is not used because the address must be 6 bytes in length.

Functional Address: The specified address is "or'ed” with the currently specified
functional addresses and the resultant address is set as the functional address for
the device. Functional addresses are encoded in a bit-significant format, thereby
allowing multiple individual groups to be designated by a single address.

The Token-Ring network architecture provides bit-specific functional addresses for
widely-used functions, such as configuration report server. Ring stations use
functional address "masks” to identify these functions. For example, if function G
is assigned a functional address of 0xC000 0008 0000, and function M is assigned a
function address of 0xC000 0000 0040, then ring station Y, whose node contains
function G and M, would have a mask of 0xC000 0008 0040. Ring station Y would
receive packets addressed to either function G or M or to an address like 0xC000
0008 0048 since that address contains bits specified in the "mask”.

Note: The device forces the first 2 bytes of the functional address to be
0xC000. In addition, bits 6 and 7 of byte 5 of the functional address are forced
to a 0 by the device.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are
set.

Since functional addresses are encoded in a bit-significant format, reference counts
are kept on each of the 31 least significant bits of the address. Reference counts are
not kept on the 17 most significant bits (the 0xC000 of the functional address and
the functional address indicator bit).

Group Address: If no group address is currently enabled, the specified address is
set as the group address for the device. The group address will not be set and
EINVAL will be returned if a group address is currently enabled.

The device forces the first 2 bytes of the group address to be 0xC000.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in the ndd_flags field are
set.

Chapter 7. Communications 1/O Subsystem 137

NDD_DISABLE_ADDRESS

This command disables the receipt of packets with a functional or a group address.
The functional address indicator (bit 0 "the MSB" of byte 2) indicates whether the
address is a functional address (the bit is a 0) or a group address (the bit is a 1).
The length field is not used because the address must be 6 bytes in length.

Functional Address: The reference counts are decremented for those bits in the
functional address that are a one (on). If the reference count for a bit goes to zero,
the bit will be "turned off” in the functional address for the device.

If no functional addresses are active after receipt of this command, the
TOK_RECEIVE_FUNC flag in the ndd_flags field is reset. If no functional or group
addresses are active after receipt of this command, the NDD_ALTADDRS flag in
the ndd_flags field is reset.

Group Address: If the group address which is currently enabled is specified,
receipt of packets with a group address is disabled. If a different address is
specified, EINVAL will be returned.

If no group address is active after receipt of this command, the
TOK_RECEIVE_GROUP flag in the ndd_flags field is reset. If no functional or
group addresses are active after receipt of this command, the NDD_ALTADDRS
flag in the ndd_flags field is reset.

NDD_MIB_ADDR

The following addresses are returned:

* Device Physical Address (or alternate address specified by user)
* Broadcast Address OxFFFF FFFF FFFF

* Broadcast Address 0xC000 FFFF FFFF

* Functional Address (only if a user specified a functional address)
* Group Address (only if a user specified a group address)

NDD_CLEAR_STATS

The counters kept by the device will be zeroed.

NDD_GET_ALL_STATS
The arg parameter specifies the address of the mon_all_stats_t structure. This
structure is defined in the /usr/include/sys/cdli_tokuser.h file.

The statistics which are returned contain statistics obtained from the device. If the
device is inoperable, the statistics which are returned will not contain the current
device statistics. The copy of the ndd_flags field can be checked to determine the
state of the device.

Trace Points and Error Log Templates for 8fc8 Token-Ring
Device Driver

The Token-Ring device driver has three trace points. The IDs are defined in the
usr/include/sys/cdli_tokuser.h file.

138 Kernel Extensions and Device Support Programming Concepts

The Token-Ring error log templates are:

ERRID_CTOK_ADAP_CHECK

ERRID_CTOK_ADAP_OPEN

ERRID_CTOK_AUTO_RMV

ERRID_CONFIG

ERRID_CTOK_DEVICE_ERR

ERRID_CTOK_DOWNLOAD

ERRID_CTOK_DUP_ADDR

ERRID_CTOK_MEM_ERR

ERRID_CTOK_PERM_HW

ERRID_CTOK_RCVRY_EXIT

ERRID_CTOK_RMV_ADAP

ERRID_CTOK_WIRE_FAULT

The microcode on the device performs a series of
diagnostic checks when the device is idle. These checks
can find errors and they are reported as adapter checks. If
the device was connected to the network when this error
occurred, the device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device
is temporarily unavailable during the recovery procedure.
User intervention is not required for this error unless the
problem persists.

The device driver was enable to open the device. The
device driver will go into Network Recovery Mode in an
attempt to recover from the error. The device is
temporarily unavailable during the recovery procedure.
User intervention is not required for this error unless the
problem persists.

An internal hardware error following the beacon automatic
removal process has been detected. The device driver will
go into Network Recovery Mode in an attempt to recover
from the error. The device is temporarily unavailable
during the recovery procedure. User intervention is not
required for this error unless the problem persists.

The ring speed (or ring data rate) is probably wrong.
Contact the network administrator to determine the speed
of the ring. The device driver will only retry twice at 2
minute intervals after this error log entry has been
generated.

The device detected an I/O channel error or an error in a
command the device driver issued, an error occurred
during a PIO operation, or the device has detected an error
in a packet given to the device. The device driver will go
into Network Recovery Mode in an attempt to recover
from the error. The device is temporarily unavailable
during the recovery procedure. User intervention is not
required for this error unless the problem persists.

The download of the microcode to the device failed. User
intervention is required to make the device available.

The device has detected that another station on the ring
has an device address which is the same as the device
address being tested. Contact network administrator to
determine why.

An error occurred while allocating memory or timer
control block structures.

The device driver could not reset the card. For example,
did not receive status from the adapter within the retry
period.

The error which caused the device driver to go into error
recovery mode has been corrected.

The device has received a remove ring station MAC frame
indicating that a network management function has
directed this device to get off the ring. Contact network
administrator to determine why.

There is probably a loose (or bad) cable between the device
and the MAU. There is some chance that it might be a bad
device. The device driver will go into Network Recovery
Mode in an attempt to recover from the error. The device
is temporarily unavailable during the recovery procedure.
User intervention is required for this error.

Chapter 7. Communications 1/O Subsystem 139

High-Performance (8fa2) Token-Ring Device Driver

The 8fa2 Token-Ring device driver is a dynamically loadable device driver that will
run on a system running AIX Version 4.1 (or later). The device driver is
automatically loaded into the system at device configuration time as part of the
configuration process.

The interface to the device is through the kernel services known as Network
Services.

Interfacing to the device driver is achieved by calling the device driver’s entry
points for opening the device, closing the device, transmitting data, doing a remote
dump, and issuing device control commands.

The Token-Ring device driver interfaces with the Token-Ring High-Performance
Network Adapter (8fa2). It provides a Micro Channel-based connection to a
Token-Ring network. The adapter is IEEE 802.5 compatible and supports both 4
and 16 megabit per second networks. The adapter supports only a RJ-45
connection.

140 Kernel Extensions and Device Support Programming Concepts

Configuration Parameters for 8fa2 Token-Ring Device Driver

The following lists the configuration parameters necessary to use the device driver.

Ring Speed

Indicates the Token-Ring speed. The speed is set at 4 orl6 megabits per
second or autosense.

4 Specifies that the device driver will open the adapter with 4 Mbits.
It will return an error if ring speed does not match the network
speed.

16 Specifies that the device driver will open the adapter with 16

Mbits. It will return an error if ring speed does not match the
network speed.

autosense
Specifies that the adapter will open with the speed used
determined as follows:

 If it is an open on an existing network, the speed will be the
ring speed of the network.

+ If it is an open on a new network:
— If the adapter is a new adapter, 16 Mbits is used.

— If the adapter had successfully opened, the ring speed will be
the ring speed of the last successful open.

Software Transmit Queue
Specifies a transmit request pointer that can be set to store
between 32 and 2048 transmit request pointers. Each transmit
request pointer corresponds to a transmit request which may be
for several buffers of data.

Attention MAC frames
Indicates if attention MAC frames should be received.

Beacon MAC frames
Indicates if beacon MAC frames should be received.

Priority Data Transmission
Specifies a request priority transmission of the data packets.

Network Address
Specifies the use of the device’s hardware address as the network
address or an alternate network address configured through
software. When an alternate address is used, any valid Individual
Address can be used. The most significant bit of the address must
be set to zero (definition of an Individual Address).

Device Driver Configuration and Unconfiguration

The tok_config entry point performs configuration functions Token-Ring device

driver.

Device Driver Open

The tok_open function is called to open the specified network device.

The Token Ring device driver does a synchronous open. The device will be
initialized at this time. When the resources have been successfully allocated, the
device will start the process of attaching the device to the network.

Chapter 7. Communications 1/0 Subsystem 141

If the connection is successful, the NDD_RUNNING flag will be set in the
ndd_flags field and a NDD_CONNECTED status block will be sent.

If the device connection fails, the NDD_LIMBO flag will be set in the ndd_flags
field and a NDD_LIMBO_ENTRY status block will be sent.

If the device is eventually connected, the NDD_LIMBO flag will be turned off and
the NDD_RUNNING flag will be set in the ndd_flags field. Both
NDD_CONNECTED and NDD_LIMBO_EXIT status blocks will be set.

Device Driver Close

The tok_close function is called to close the specified network device. This
function resets the device to a known state and frees system resources associated
with the device.

The device will not be detached from the network until the device’s transmit
queue is allowed to drain.

Data Transmission

The tok_output function transmits data using the network device.

The device driver does not support mbufs from user memory (which have the
M_EXT flag set).

If the destination address in the packet is a broadcast address the M_BCAST flag
in the p_mbuf->m_flags field should be set prior to entering this routine. A
broadcast address is defined as OxFFFF FFFF FFFF or 0xC000 FFFF FEFF. If the
destination address in the packet is a multicast address the M_MCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A multicast
address is defined as a non-individual address other than a broadcast address. The
device driver will keep statistics based upon the M_BCAST and M_MCAST flags.

If a packet is transmitted with a destination address which matches the adapter’s
address, the packet will be received. This is true for the adapter’s physical address,
broadcast addresses (0xC000 FFFF FFFF or OxFFFF FFFF FFFF), enabled functional
addresses, or an enabled group address.

Data Reception

When the Token-Ring device driver receives a valid packet from the network
device, the Token-Ring device driver calls the nd_receive function that is specified
in the ndd_t structure of the network device. The nd_receive function is part of a
CDLI network demuxer. The packet is passed to the nd_receive function in mbufs.

The Token-Ring device driver will only pass one packet to the nd_receive function
at a time.

The device driver will set the M_BCAST flag in the p_mbuf->m_flags field when a

packet is received which has an all stations broadcast address. This address is
defined as OXFFFF FFFF FFFF or 0xC000 FFFF FFFE.

142 Kernel Extensions and Device Support Programming Concepts

The device driver will set the M_MCAST flag in the p_mbuf->m_flags field when a
packet is received which has a non-individual address which is different than the
all-stations broadcast address.

The adapter will not pass invalid packets to the device driver.

Asynchronous Status

When a status event occurs on the device, the Token-Ring device driver builds the
appropriate status block and calls the nd_status function that is specified in the
ndd_t structure of the network device. The nd_status function is part of a CDLI
network demuxer.

The following Status Blocks are defined for the Token-Ring device driver.
Hard Failure

When a hard failure has occurred on the Token-Ring device, the following status
blocks can be returned by the Token-Ring device driver. One of these status blocks
indicates that a fatal error occured.

NDD_PIO_FAIL:

Indicates that when a PIO error occurs, it is retried 3 times. If the error persists, it
is considered unrecoverable and the following status block is generated:

code Set to NDD_HARD_FAIL

option[0]
Set to NDD_PIO_FAIL

option[]
The remainder of the status block is used to return additional status
information.

NDD_HARD_ FAIL:

Indicates that when a transmit error occurs it is retried. If the error is
unrecoverable, the following status block is generated:

code Set to NDD_HARD_FAIL

option[0]
Set to NDD_HARD_FAIL

option[]
The remainder of the status block is used to return additional status
information.

NDD_ADAP_CHECK:

Indicates that when an adapter check has occurred, the following status block is
generated:

code Set to NDD _ADAP_CHECK

option[]
The remainder of the status block is used to return additional status
information.

Chapter 7. Communications I/O Subsystem 143

NDD_DUP_ADDR:

Indicates that the device detected a duplicated address in the network and the
following status block is generated:

code Set to NDD_DUP_ADDR

option[]
The remainder of the status block is used to return additional status
information.

NDD_CMD_FAIL:

Indicates that the device detected an error in a command that the device driver
issued. The following status block is generated:

code Set to NDD_CMD_FAIL

option[0]
Set to the command code

option[]
Set to error information from the command.

TOK_RING_SPEED:

Indicates that when a ring speed error occurs while the device is being open, the
following status block is generated:

code Set to NDD_LIMBO_ENTER

option[]
Set to error information.

Enter Network Recovery Mode

Indicates that when the device driver has detected an error which requires
initiating recovery logic that will make the device temporarily unavailable, the
following status block is returned by the device driver.

Note: While the device driver is in this recovery logic, the device may not be
fully functional. The device driver will notify users when the device is fully
functional by way of an NDD_LIMBO_EXIT asynchronous status block.

code Set to NDD_LIMBO_ENTER
option[0]

Set to one of the following:

« NDD_CMD_FAIL

« TOK_WIRE_FAULT

*+ NDD_BUS_ERROR

* NDD_ADAP_CHECK

*+ NDD_TX_TIMEOUT

*+ TOK_BEACONING
option[]

The remainder of the status block is used to return additional status
information by the device driver.

144 Kernel Extensions and Device Support Programming Concepts

Exit Network Recovery Mode

Indicates that when the device driver has successfully completed recovery logic
from the error that made the device temporarily unavailable, the following status
block is returned by the device driver. This status block indicates the device is now
fully functional.

code Set to NDD_LIMBO_EXIT

option[]
N/A

Device Connected

Indicates that when the device is successfully connected to the network the
following status block is returned by the device driver:

code Set to NDD_CONNECTED
option[]
N/A
Device Control Operations

The tok_ctl function is used to provide device control functions.
NDD_GET_STATS

The user should pass in the tok_ndd_stats_t structure as defined in
<sys/cdli_tokuser.h>. The driver will fail a call with a buffer smaller than the
structure.

The structure must be in a kernel heap so that the device driver can copy the
statistics into it; and it must be pinned.

NDD_PROMISCUOUS_ON

Setting promiscuous mode will not cause non-LLC frames to be received by the
driver unless the user also enables those filters (Attention MAC frames, Beacon
MAC frames).

The driver will maintain a counter of requests.
NDD_PROMISCUOUS_OFF

This command will release a request from a user to PROMISCUOUS_ON; it will
not exit the mode on the adapter if more requests are outstanding.

NDD_MIB_QUERY

The arg parameter specifies the address of the token_ring_all_mib_t structure. This
structure is defined in the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If
the syntax of a member of the structure is some integer type, the level of support
flag will be stored in the whole field, regardless of the size of the field. For those
fields which are defined as character arrays, the value will be returned only in the
first byte in the field.

Chapter 7. Communications I/O Subsystem 145

NDD_MIB_GET

The arg parameter specifies the address of the token_ring_all_mib_t structure. This
structure is defined in the /usr/include/sys/tokenring_mibs.h file.

NDD_ENABLE_ADDRESS

This command enables the receipt of packets with a functional or a group address.
The functional address indicator (bit 0 "the MSB" of byte 2) indicates whether the
address is a functional address (the bit is a 0) or a group address (the bit is a 1).
The length field is not used because the address must be 6 bytes in length.

Functional Address:

The specified address is ORed with the currently specified functional addresses
and the resultant address is set as the functional address for the device. Functional
addresses are encoded in a bit-significant format, thereby allowing multiple
individual groups to be designated by a single address.

The Token-Ring network architecture provides bit-specific functional addresses for
widely used functions, such as configuration report server. Ring stations use
functional address "masks” to identify these functions. For example, if function G
is assigned a functional address of 0xC000 0008 0000, and function M is assigned a
function address of 0xC000 0000 0040, then ring station Y, whose node contains
function G and M, would have a mask of 0xC000 0008 0040. Ring station Y would
receive packets addressed to either function G or M or to an address like 0xC000
0008 0048 since that address contains bits specified in the "mask”.

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in the ndd_flags field are
set.

Since functional addresses are encoded in a bit-significant format, reference counts
are kept on each of the 31 least significant bits of the address.

Group Address:

The device support 256 general group addresses. The promiscuous mode will be
turned on when the group address needed to be set are more than 256. The device
driver will maintain a reference count on this operation.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP ﬂags in the ndd_flags field
are set.

NDD_DISABLE_ADDRESS

This command disables the receipt of packets with a functional or a group address.
The functional address indicator (bit 0 "the MSB" of byte 2) indicates whether the
address is a functional address (the bit is a 0) or a group address (the bit is a 1).
The length field is not used because the address must be 6 bytes in length.

Functional Address:
The reference counts are decremented for those bits in the functional address that

are one (meaning on). If the reference count for a bit goes to zero, the bit will be
"turned off” in the functional address for the device.

146 Kernel Extensions and Device Support Programming Concepts

If no functional addresses are active after receipt of this command, the
TOK_RECEIVE_FUNC flag in the ndd_flags field is reset. If no functional or group
addresses are active after receipt of this command, the NDD_ALTADDRS flag in
the ndd_flags field is reset.

Group Address:

If the number of group address enabled is less than 256, the driver sends a
command to the device to disable the receipt of the packets with the specified
group address. Otherwise, the driver just deletes the group address from the group
address table.

If there are less than 256 group addresses enabled after the receipt of this
command, the promiscuous mode is turned off.

If no group address is active after receipt of this command, the
TOK_RECEIVE_GROUP flag in the ndd_flags field is reset. If no functional or
group addresses are active after receipt of this command, the NDD_ALTADDRS
flag in the ndd_flags field is reset.

NDD_PRIORITY_ADDRESS
The driver returns the address of the device driver’s priority transmit routine.

NDD_MIB_ADDR

The driver will return at least three addresses: device physical address (or alternate
address specified by user) and two broadcast addresses (OXFFFF FFFF FFFF and
0xC000 FFFF FFFF). Additional addresses specified by the user, such as functional
address and group addresses, may also be returned.

NDD_CLEAR_STATS
The counters kept by the device are zeroed.

NDD_GET_ALL_STATS

The arg parameter specifies the address of the mon_all_stats_t structure. This
structure is defined in the /usr/include/sys/cdli_tokuser.h file.

The statistics returned include statistics obtained from the device. If the device is
inoperable, the statistics returned do not contain the current device statistics. The
copy of the ndd_flags field can be checked to determine the state of the device.

Trace Points and Error Log Templates for 8fa2 Token-Ring
Device Driver

The Token-Ring device driver has four trace points. The IDs are defined in the
lusr/include/sys/cdli_tokuser.h file.

The Token-Ring error log templates are :

ERRID_MPS_ADAP_CHECK
The microcode on the device performs a series of diagnostic checks when
the device is idle. These checks can find errors and they are reported as
adapter checks. If the device was connected to the network when this error
occurred, the device driver goes into Network Recovery Mode to try to

Chapter 7. Communications 1/O Subsystem 147

recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required unless the problem
persists.

ERRID_MPS_ADAP_OPEN
The device driver was enable to open the device. The device driver goes
into Network Recovery Mode to try to recover from the error. The device
is temporarily unavailable during the recovery procedure. User
intervention is not required unless the problem persists.

ERRID_MPS_AUTO_RMV
An internal hardware error following the beacon automatic removal
process has been detected. The device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily
unavailable during the recovery procedure. User intervention is not
required unless the problem persists.

ERRID_MPS_RING_SPEED
The ring speed (or ring data rate) is probably wrong. Contact the network
administrator to determine the speed of the ring. The device driver only
retries twice at 2 minute intervals when this error log entry is generated.

ERRID_MPS_DMAFAIL
The device detected an DMA error in a TX or RX operation. The device
driver goes into Network Recovery Mode to try to recover from the error.
The device is temporarily unavailable during the recovery procedure. User
intervention is not required unless the problem persists.

ERRID_MPS_BUS_ERR
The device detected a Micro Channel bus error. The device driver goes into
Network Recovery Mode to try to recover from the error. The device is
temporarily unavailable during the recovery procedure. User intervention
is not required unless the problem persists.

ERRID_MPS_DUP_ADDR
The device has detected that another station on the ring has an device
address which is the same as the device address being tested. Contact the
network administrator to determine why.

ERRID_MPS_MEM_ERR
An error occurred while allocating memory or timer control block
structures.

ERRID_MPS_PERM_HW
The device driver could not reset the card. For example, it did not receive
status from the adapter within the retry period.

ERRID_MPS_RCVRY_EXIT
The error which caused the device driver to go into error recovery mode
has been corrected.

ERRID_MPS_RMV_ADAP
The device has received a remove ring station MAC frame indicating that a
network management function has directed this device to get off the ring.
Contact the network administrator to determine why.

ERRID_MPS_WIRE_FAULT
There is probably a loose (or bad) cable between the device and the MAU.
There is some chance that it might be a bad device. The device driver goes

148 Kernel Extensions and Device Support Programming Concepts

into Network Recovery Mode to try to recover from the error. The device
is temporarily unavailable during the recovery procedure. User
intervention is required for this error.

ERRID_MPS_RX_ERR
The device detected a receive error. The device driver goes into Network
Recovery Mode to try to recover from the error. The device is temporarily
unavailable during the recovery procedure. User intervention is not
required unless the problem persists.

ERRID_MPS_TX_TIMEOUT
The transmit watchdog timer expired before transmitting a frame is
complete. The device driver goes into Network Recovery Mode to try to
recover from the error. The device is temporarily unavailable during the
recovery procedure. User intervention is not required unless the problem
persists.

ERRID_MPS_CTL_ERR
The IOCTL watchdog timer expired before the device driver received a
response from the device. The device driver goes into Network Recovery
Mode to try to recover from the error. The device is temporarily
unavailable during the recovery procedure. User intervention is not
required unless the problem persists.

PCI Token-Ring High Performance (14101800) Device Driver

The Token-Ring device driver is a dynamically loadable device driver that runs on
AIX Version 4.1 (or later). The device driver is automatically loaded into the
system at device configuration time as part of the configuration process. The
interface to the device is through the kernel services known as Network Services.

Interfacing to the device driver is achieved by calling the device driver’s entry
points for opening the device, closing the device, transmitting data, doing a remote
dump, and issuing device control commands.

The Token-Ring device driver interfaces with the PCI Token-Ring
High-Performance Network Adapter (14101800). The adapter is IEEE 802.5
compatible and supports both 4 and 16 megabit per second networks. The adapter
supports only an RJ-45 connection.

Chapter 7. Communications 1/0 Subsystem 149

Configuration Parameters

Ring Speed

Receive Queue

Software Transmit Queue

Software Priority Transmit
Queue

Full Duplex

Attention MAC Frames

Beacon MAC Frames
Priority Data Transmission

Network Address

The device driver supports a user-configurable parameter
that indicates if the token-ring is to run at 4 or 16
megabits per second.

The device driver supports a user-configurable parameter
that selects the ring speed of the adapter. There are three
options for the ring speed: 4, 16, or autosense.

1. If 4 is selected, the device driver opens the adapter
with 4 Mbits. It returns an error if the ring speed does
not match the network speed.

2. If 16 is selected, the device driver opens the adapter
with 16 Mbits. It returns an error if the ring speed
does not match the network speed.

3. If autosense is selected, the adapter guarantees a
successful open, and the speed used to open is
dependent on:

+ If it is opened on an existing network, in which
case the speed is the ring speed of the network.

+ If it is opened on a new network, in which case 16
Mbits is used if the adapter is new; or if the adapter
successfully opened, the ring speed is the speed of
the last successful open.

The device driver supports a user-configurable receive
queue that can be set to store between 32 and 160 receive
buffers. These buffers are mbuf clusters into which the
device writes the received data.

The device driver supports a user-configurable transmit
queue that can be set to store between 32 and 2048
transmit request pointers. Each transmit request pointer
corresponds to a transmit request that may be for several
buffers of data.

The device driver supports a user-configurable priority
transmit queue that can be set to store between 32 and
160 transmit request pointers. Each transmit request
pointer corresponds to a transmit request that may be for
several buffers of data.

Indicates whether the adapter is operating in full-duplex
or half-duplex mode. If this field is set yes, the device
driver programs the adapter to be in full-duplex mode.
The default value is half-duplex.

The device driver supports a user-configurable parameter
that indicates if attention MAC frames should be
received.

The device driver supports a user-configurable parameter
that indicates if beacon MAC frames should be received.
The device driver supports a user option to request
priority transmission of the data packets.

The driver supports the use of the device’s hardware
address as the network address or an alternate network
address configured through software. When an alternate
address is used, any valid Individual Address can be
used. The most significant bit of the address must be set
to zero.

150 Kernel Extensions and Device Support Programming Concepts

Device Driver Configuration and Unconfiguration

The tok_config() entry point conforms to the AIX Version 4.1 (or later) kernel
object file entry point.

Device Driver Open

The tok_open() function is called to open the specified network device.

The Token-Ring device driver does a synchronous open. The device is initialized at
this time. When the resources are successfully allocated, the device starts the
process of attaching the device to the network.

If the connection is successful, the NDD_RUNNING flag is set in the ndd_flags
field, and an NDD_CONNECTED status block is sent.

If the device connection fails, the NDD_LIMBO flag is set in the ndd_fTlags field,
and an NDD_LIMBO_ENTRY status block is sent.

If the device is eventually connected, the NDD_LIMBO flag is turned off, and the
NDD_RUNNING flag is set in the ndd_flags field. Both NDD_CONNECTED and
NDD_LIMBO_EXIT status blocks are set.

Device Driver Close

The tok_close() function is called to close the specified network device. This
function resets the device to a known state and frees system resources associated
with the device.

The device is not detached from the network until the device’s transmit queue is
allowed to drain.

Data Transmission

The tok_output() function transmits data using the network device.

The device driver does not support mbufs from user memory that have the M_EXT
flag set.

If the destination address in the packet is a broadcast address, the M_BCAST flag
in the p_mbuf->m_flags field should be set prior to entering this routine. A
broadcast address is defined as OxFFFF FFFF FFFF or 0xC000 FFFF FFFF. If the
destination address in the packet is a multicast address, the M_MCAST flag in the
p_mbuf->m_flags field should be set prior to entering this routine. A multicast
address is defined as a non-individual address other than a broadcast address. The
device driver keeps statistics based on the M_BCAST and M_MCAST flags.

If a packet is transmitted with a destination address that matches the adapter’s
address, the packet is received. This is true for the adapter’s physical address,
broadcast addresses (0xC000 FFFF FFFF or OxFFFF FFFF FFFF), enabled functional
addresses, or an enabled group address.

Data Reception

When the Token-Ring device driver receives a valid packet from the network
device, the Token-Ring device driver calls the nd_receive() function specified in the
ndd_t structure of the network device. The nd_receive() function is part of a CDLI
network demuxer. The packet is passed to the nd_receive() function in mbufs.

Chapter 7. Communications 1/0 Subsystem 151

The Token-Ring device driver passes only one packet to the nd_receive() function
at a time.

The device driver sets the M_BCAST flag in the p_mbuf->m_flags field when a
packet is received that has an all-stations broadcast address. This address is
defined as OxFFFF FFFF FFFF or 0xC000 FFFF FFFE.

The device driver sets the M_MCAST flag in the p_mbuf->m_flags field when a
packet is received that has a non-individual address that is different from the
all-stations broadcast address.

The adapter does not pass invalid packets to the device driver.

Asynchronous Status

When a status event occurs on the device, the Token-Ring device driver builds the
appropriate status block and calls the nd_status() function specified in the ndd_t
structure of the network device. The nd_status() function is part of a CDLI
network demuxer.

The following status blocks are defined for the Token-Ring device driver.

Hard Failure

When a hard failure occurs on the Token-Ring device, the following status blocks
are returned by the Token-Ring device driver. One of these status blocks indicates
that a fatal error occurred.

NDD_HARD_FAIL When a transmit error occurs, it tries to recover. If the error is
unrecoverable, this status block is generated.

code Set to NDD_HARD_FAIL.

option[0]
Set to NDD_HARD_FAIL.

option|]
The remainder of the status block can be used to return
additional status information.

Enter Network Recovery Mode

When the device driver detects an error that requires initiating recovery logic to
make the device temporarily unavailable, the following status block is returned by
the device driver.

Note: While the device driver is in this recovery logic, the device may not be
fully functional. The device driver notifies users when the device is fully
functional by way of an NDD_LIMBO_EXIT asynchronous status block:

code Set to NDD_LIMBO_ENTER.

152 Kernel Extensions and Device Support Programming Concepts

option[0] Set to one of the following;:
* NDD_CMD_FAIL
* NDD_ADAP_CHECK
¢ NDD_TX_ERR
¢ NDD_TX_TIMEOUT
* NDD_AUTO_RMV
* TOK_ADAP_OPEN
¢ TOK_ADAP_INIT
+ TOK_DMA_FAIL
¢ TOK_RING_SPEED
* TOK_RMV_ADAP

* TOK_WIRE_FAULT
option|] The remainder of the status block can be used to return additional status
information by the device driver.

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the error

that made the device temporarily unavailable, the following status block is
returned by the device driver:

Note: The device is now fully functional.

code Set to NDD_LIMBO_EXIT.
option|] The option fields are not used.

Device Control Operations

The tok_ctl() function is used to provide device control functions.

NDD_GET_STATS

The user should pass in the tok_ndd_stats_t structure as defined in
<sys/cdli_tokuser.h>. The driver fails a call with a buffer smaller than the
structure.

The structure must be in kernel heap so that the device driver can copy the
statistics into it. Also, it must be pinned.

NDD_PROMISCUOUS_ON

Setting promiscuous mode will not cause non-LLC frames to be received by the
driver unless the user also enables those filters (Attention MAC frames, Beacon
MAC frames).

The driver maintains a counter of requests.

NDD_PROMISCUOUS_OFF
This command releases a request from a user to PROMISCUOUS_ON;; it will not

exit the mode on the adapter if more requests are outstanding.

NDD_MIB_QUERY

The arg parameter specifies the address of the token_ring_all_mib_t structure.
This structure is defined in the /usr/include/sys/tokenring_mibs.h file.

The device driver does not support any variables for read_write or write only. If
the syntax of a member of the structure is some integer type, the level of support

Chapter 7. Communications I/O Subsystem 153

flag is stored in the whole field, regardless of the size of the field. For those fields
that are defined as character arrays, the value is returned only in the first byte in
the field.

NDD_MIB_GET
The arg parameter specifies the address of the token_ring_all_mib_t structure.
This structure is defined in the /usr/include/sys/tokenring_mibs.h file.

NDD_ENABLE_ADDRESS

This command enables the receipt of packets with a functional or a group address.
The functional address indicator (bit 0 "the MSB" of byte 2) indicates whether the
address is a functional address (bit 0) or a group address (bit 1). The Tength field is
not used because the address must be 6 bytes in length.

functional address The specified address is ORed with the currently specified
functional addresses, and the resultant address is set as the
functional address for the device. Functional addresses are
encoded in a bit-significant format, thereby allowing multiple
individual groups to be designated by a single address.

The Token-Ring network architecture provides bit-specific
functional addresses for widely used functions, such as
configuration report server. Ring stations use functional address
"masks” to identify these functions. For example, if function G
is assigned a functional address of 0xC000 0008 0000, and
function M is assigned a function address of 0xC000 0000 0040,
then ring station Y, whose node contains function G and M,
would have a mask of 0xC000 0008 0040. Ring station Y would
receive packets addressed to either function G or M or to an
address like 0xC000 0008 0048 since that address contains bits
specified in the "mask.”

The NDD_ALTADDRS and TOK_RECEIVE_FUNC flags in
the ndd_flags field are set.

Since functional addresses are encoded in a bit-significant
format, reference counts are kept on each of the 31 least
significant bits of the address.

group address The device supports 256 general group addresses. The
promiscuous mode is turned on when the group address to be
set is more than 256. The device driver maintains a reference
count on this operation.

The device supports 256 general group addresses. The
promiscuous mode is turned on when the group address
needed to be set are more than 256. The device driver will
maintain a reference count on this operation.

The NDD_ALTADDRS and TOK_RECEIVE_GROUP flags in
the ndd_fTags field are set.

NDD_DISABLE_ADDRESS

This command disables the receipt of packets with a functional or a group address.
The functional address indicator (bit 0 "the MSB" of byte 2) indicates whether the
address is a functional address (bit 0) or a group address (bit 1). The Tength field is
not used because the address must be 6 bytes in length.

154 Kernel Extensions and Device Support Programming Concepts

functional address The reference counts are decremented for those bits in the
functional address that are 1 (on). If the reference count for a
bit goes to 0, the bit is "turned off” in the functional address for
the device.

If no functional addresses are active after receipt of this
command, the TOK_RECEIVE_FUNC flag in the ndd_flags
field is reset. If no functional or group addresses are active
after receipt of this command, the NDD_ALTADDRS flag in
the ndd_fTags field is reset.

group address If group address enable is less than 256, the driver sends a
command to the device to disable the receipt of the packets
with the specified group address. Otherwise, the group address
is deleted from the group address table.

If there are less than 256 group addresses enabled after the
receipt of this command, the promiscuous mode is turned off.

If no group address is active after receipt of this command, the
TOK_RECEIVE_GROUP flag in the ndd_flags field is reset. If
no functional or group addresses are active after receipt of this
command, the NDD_ALTADDRS flag in the ndd_f1lags field is
reset.

NDD_PRIORITY_ADDRESS

The driver returns the address of the device driver’s priority transmit routine.

NDD_MIB_ADDR

The driver returns at least three addresses that are device physical addresses (or
alternate addresses specified by the user), two broadcast addresses
(OxFFFFFFFFFFFF and 0xC000 FFFF FFFF), and any additional addresses specified
by the user, such as functional addresses and group addresses.

NDD_CLEAR_STATS

The counters kept by the device are zeroed.

NDD_GET_ALL_STATS
The arg parameter specifies the address of the mon_all_stats_t structure. This
structure is defined in the /usr/include/sys/cdli_tokuser.h file.

The statistics that are returned contain information obtained from the device. If the

device is inoperable, the statistics returned are not the current device statistics. The
copy of the ndd_flags field can be checked to determine the state of the device.

Reliability, Availability, and Serviceability (RAS)
Trace

The Token-Ring device driver has four trace points. The IDs are defined in the
/sys/cdli_tokuser.h file.

Chapter 7. Communications I/0 Subsystem 155

Error Logging

The Token-Ring error log templates are:

ERRID_STOK_ADAP_CHECK

ERRID_STOK_ADAP_OPEN

ERRID_STOK_AUTO_RMV

ERRID_STOK_RING_SPEED

ERRID_STOK_DMAFAIL

ERRID_STOK_BUS_ERR

ERRID_STOK_DUP_ADDR

ERRID_STOK_MEM_ERR

ERRID_STOK_RCVRY_EXIT

156 Kernel Extensions and Device Support Programming Concepts

The microcode on the device performs a series
of diagnostic checks when the device is idle.
These checks can find errors, and they are
reported as adapter checks. If the device is
connected to the network when this error
occurs, the device driver goes into Network
Recovery Mode in an attempt to recover from
the error. The device is temporarily unavailable
during the recovery procedure. User
intervention is not required for this error unless
the problem persists.

Enables the device driver to open the device.
The device driver goes into Network Recovery
Mode in an attempt to recover from the error.
The device is temporarily unavailable during
the recovery procedure. User intervention is not
required for this error unless the problem
persists.

An internal hardware error following the beacon
automatic removal process was detected. The
device driver goes into Network Recovery Mode
in an attempt to recover from the error. The
device is temporarily unavailable during the
recovery procedure. User intervention is not
required for this error unless the problem
persists.

The ring speed (or ring data rate) is probably
wrong. Contact the network administrator to
determine the speed of the ring. The device
driver only retries twice at 2-minute intervals
after this error log entry is generated.

The device detected a DMA error in a TX or RX
operation. The device driver goes into Network
Recovery Mode in an attempt to recover from
the error. The device is temporarily unavailable
during the recovery procedure. User
intervention is not required unless the problem
persists.

The device detected a Micro Channel bus error.
The device driver goes into Network Recovery
Mode in an attempt to recover from the error.
The device is temporarily unavailable during
the recovery procedure. User intervention is not
required for this error unless the problem
persists.

The device detected that another station on the
ring has a device address that is the same as the
device address being tested. Contact the
network administrator to determine why:.

An error occurred while allocating memory or
timer control block structures.

The error that caused the device driver to go
into error recovery mode was corrected.

ERRID_STOK_RMV_ADAP The device received a remove ring station MAC
frame indicating that a network management
function directed this device to get off the ring.
Contact the network administrator to determine
why.

ERRID_STOK_WIRE_FAULT There is a loose (or bad) cable between the
device and the MAU. There is a chance that it
might be a bad device. The device driver goes
into Network Recover Mode in an attempt to
recover from the error. The device is temporarily
unavailable during the recovery procedure. User
intervention is not required for this error unless
the problem persists.

ERRID_STOK_TX_TIMEOUT The transmit watchdog timer expired before
transmitting a frame. The device driver goes
into Network Recovery Mode in an attempt to
recover from the error. The device is temporarily
unavailable during the recovery procedure. User
intervention is not required for this error unless
the problem persists.

ERRID_STOK_CTL_ERR The ioctl watchdog timer expired before the
device driver received a response from the
device. The device driver goes into Network
Recovery Mode in an attempt to recover from
the error. The device is temporarily unavailable
during the recovery procedure. User
intervention is not required for this error unless
the problem persists.

Ethernet Device Drivers

The following AIX Version 4 Ethernet device drivers are dynamically loadable
device drivers that run on systems running AIX Version 4. The device drivers are
automatically loaded into the system at device configuration time as part of the
configuration process.

* Ethernet High-Performance LAN Adapter Device Driver
* Integrated Ethernet Device Driver

* 10/100 Mbps Ethernet TX MCA Device Driver

* PCI Ethernet Device Driver

* Gigabit Ethernet-SX PCI Adapter Device Driver

Note: The 10/100 MBps Ethernet TX MCA device driver is available on AIX
Version 4.1.5 (and later) systems.

The following information is provided about each of the ethernet device drivers:

” . 1. . 1. . 1. 17

For each Ethernet device, the interface to the device driver is achieved by calling
the entry points for opening, closing, transmitting data, and issuing device control

Chapter 7. Communications 1/O Subsystem 157

commands. The Integrated Ethernet, 10/100 Mbps Ethernet TX MCA (AIX Version
4.1.5 and later), and PCI Ethernet Device Drivers also provide an interface for
doing remote system dumps.

There are a number of Ethernet device drivers in use. The IBM ISA 16-bit Ethernet
Adapter is the only existing ISA driver. The Ethernet High-Performance LAN
Adapters (8ef5 and 8f95) and the Integrated Ethernet Device Drivers (8ef2, 8ef3,
8f98) all provide microchannel-based connections to an Ethernet network. The
10/100 Mbps Ethernet TX MCA Device Driver (8f62) provides a
microchannel-based connection using a PCI adapter and bridge chip. The PCI
Ethernet Device Driver (22100020) and the PCI 10/100 Mbps Ethernet Device
Driver (23100020) provide PCI-based connections to an Ethernet network. All
drivers support both Standard and IEEE 802.3 Ethernet Protocols, with support for
a transmission rate of 10 megabits per second. The 10/100 Mbps Ethernet TX MCA
Device Driver and PCI 10/100 Mbps Ethernet device driver (23100020) also
support a transmission rate of 100 megabits per second. The Gigabit Ethernet-SX
PCI Adapter (14100401) will not support either the transmission rate of 10 or 100
megabits per second.

The Ethernet High-Performance LAN Adapter (8ef5) device driver interfaces with a
3COM microchannel adapter card installed in one of the microchannel slots located
on the system. This adapter supports thick (10BASE5 or DIX) and thin (10BASE2
or BNC) Ethernet connections.

The 10 Mbps Ethernet Low-Cost High-Performance Adapter (8f95) device driver
interfaces with a microchannel adapter installed in one of the microchannel slots
located on the system. This adapter supports AUI, 10BASE2 and 10BASE-T
Ethernet connections.

The Integrated Ethernet Device Drivers (8ef2, 8ef3, 8f98) interface with an Intel
82596 Ethernet coprocessor located on the CPU planar, and is hardwired to
microchannel slot 14 on the desktop systems. These devices support thick, thin, or
twisted-pair (10BASE-T) Ethernet connections.

The 10/100 Mbps Ethernet TX MCA Adapter (8f62) interfaces with an Am79C971
Ethernet chip through an Adaptec AIC960 bridge chip. This device supports MII
(Media Independent Interface).

The PCI Ethernet Device Driver (22100020) interfaces with an Am79C970 Ethernet
chip located either on the planar or in an adapter card installed in one of the PCI
slots on the system. This device supports twisted-pair (10BASE-T) and thin
Ethernet connections. On the planar, only the twisted-pair connection is available
for this PCI Ethernet device.

The PCI 10/100 Mbps Ethernet Device Driver (23100020) interfaces with an
Am?79C971 Ethernet chip located either on the planar or in an adapter card
installed in one of the PCI slots on the system. This driver supports MII (Media
Independent Interface).

The Gigabit Ethernet-SX PCI Adapter (14100401) device driver interfaces with a

custom Application Specific Integrated Circuit (ASIC) in an adapter card installed
in one of the PCI slots on the system. This device supports an SX fiber connection.

158 Kernel Extensions and Device Support Programming Concepts

Configuration Parameters

The following is the configuration parameter that is supported by all Ethernet
device drivers:

Alternate Ethernet Addresses
The device drivers support the device’s hardware address as the network
address or an alternate network address configured through software.
When an alternate address is used, any valid Individual Address can be
used. The least significant bit of an Individual Address must be set to zero.
A multicast address can not be defined as a network address. Two
configuration parameters are provided to provide the alternate Ethernet
address and enable the alternate address.

The following are configuration parameters that are supported by the Ethernet
High-Performance LAN Adapter (8ef5 and 8f95) and the Integrated Ethernet
Device Drivers (8ef2, 8ef3, 8f98):

Software Transmit Queue
The device drivers support a user-configurable transmit queue that can be
set to store between 20 to 150 transmit request pointers. Each transmit
request pointer corresponds to a transmit request which may be for several
buffers of data.

Adapter Connector Type
The device drivers support a user-configurable adapter connection for both
BNC and DIX (AUI for adapter (8f95)) physical connector types. The
Ethernet High-Performance LAN Adapter (895) device driver also
supports user-configurable adapter connections TP (twisted-pair) and
AUTO (auto sense).

Note: This option is not supported on some systems that implement
the Integrated Ethernet and have DIX as the default.

The Ethernet High-Performance LAN Adapter (8ef5) device driver supports the
following additional configuration parameter:

Receive Buffer Pool Size
The Ethernet High-Performance LAN Adapter (8ef5) device driver
supports a user-configurable receive buffer pool. With this attribute, the
user can configure between 16 to 64 receive buffers that will be used
during the reception of incoming packets from the network. Increasing
from a default value of 37 results in a smaller transmit buffer pool.
Decreasing from the default value increases the number of transmit buffers
in the pool.

The Ethernet High-Performance LAN Adapter (8f95) device driver supports the
following additional configuration parameters:

Transmit Interrupt Mode
The Ethernet High-Performance LAN Adapter (8f95) can be configured to
operate in one of three transmit modes.

Delay (0) Sends notification of transmit completion
based on the number of packets transmitted.
Immediate (1) Sends notification of transmit completion

immediately upon completion of transmit.

Chapter 7. Communications I/O Subsystem 159

Poll (2) Queries the adapter for transmit status based
on the number of packets transmitted. This
parameter is used for performance tuning
and should be set according to network
usage.

Note: Under Delay and Poll modes, a timer is used to ensure timely
process completion of transmit packets.

Receive Interrupt Mode
The Ethernet High-Performance LAN Adapter (8f95) can be configured to
operate in one of two receive modes.

Delay (0) Sends notification of an incoming packet
based on the number of packets currently in
the receive queue.

Note: Under Delay mode, a timer is
used to ensure that all received packets
are processed efficiently.

Immediate (1) Sends notification of an incoming packet
immediately upon receipt of the packet.

Transmit Interrupt Threshold
Under delayed transmit mode for the Ethernet High-Performance LAN
Adapter (8f95), the frequency of transmit complete interrupts can be
controlled based on the Transmit Interrupt Threshold parameter. The adapter
issues an interrupt when the number of transmitted packets exceeds this
threshold. For example, if the transmit interrupt threshold parameter is 0,
the adapter issues an interrupt when 1 transmit packet is complete. If the
transmit interrupt threshold parameter is 1, the adapter issues an interrupt
when 2 transmit packets are complete. This pattern continues until the
Transmit Interrupt Threshold parameter reaches its maximum value of 31.

Note: This parameter should be used for performance tuning only.

Receive Interrupt Threshold
Under delayed receive mode for the Ethernet High-Performance LAN
Adapter (8f95), the frequency of receive complete interrupts can be
controlled based on the Receive Interrupt Threshold parameter. The adapter
issues an interrupt when the number of received packets exceeds this
threshold. For example, if the Receive Interrupt Threshold parameter is 0, the
adapter issues an interrupt when 1 receive packet is complete. If the
Receive Interrupt Threshold parameter is 1, the adapter issues an interrupt
when 2 receive packets are complete. This pattern continues until the
Receive Interrupt Threshold parameter reaches its maximum value of 31.

Note: This parameter should be used for performance tuning only.

Transmit Poll Threshold
Under transmit poll mode for the Ethernet High-Performance LAN
Adapter (8f95), the frequency in which the device driver polls the adapter
for completed transmit packets can be controlled based on the Transmit Poll
Threshold parameter. The device driver polls for completed transmit status
when the number of outstanding transmitted packets exceeds this
threshold. If the Transmit Poll Threshold parameter is 0, the device driver
polls the adapter for status when 1 transmit packet status is pending. If the
Transmit Poll Threshold parameter is 1, the device driver polls the adapter

160 Kernel Extensions and Device Support Programming Concepts

for status when status for 2 transmit packets is pending. This pattern
continues until the Transmit Poll Threshold parameter reaches its maximum
of 31.

Note: This parameter should be used for performance tuning only.

Receive Interval

Under receive delayed mode for the Ethernet High-Performance LAN
Adapter (8f95), the maximum amount of time between receive interrupts
can be controlled based on the Receive Interval parameter. The adapter
guarantees that a receive interrupt is generated within 2** (receive Interval
+ 7)/10 microseconds after the last received packet, regardless of the value
of the Receive Interrupt Threshold parameter. This timer is reset to zero by
the adapter after each packet is received.

The Ethernet High-Performance LAN Adapter (8f95) can be configured to
operate in a full duplex 10BASET network. This mode of operation is only
valid using the adapter’s RJ-45 (10BASET) port. Duplex mode is not valid
when using the AUI port or the BNC (10BASE2) port.

Beginning with AIX Version 4.1.5, the 10/100 Mbps Ethernet TX MCA device
driver (8f62) supports the following additional configuration parameters:

Hardware Transmit Queue

The 10/100 Mbps Ethernet TX MCA device driver (8f62) supports a
user-configurable transmit queue for the adapter. This is the actual queue
the adapter uses to transmit packets. Each element corresponds to an
Ethernet packet. It is configurable at 16, 32, 64, 128, and 256 elements. The
default is 64.

Hardware Receive Queue

The 10/100 Mbps Ethernet TX MCA device driver (8f62) supports a
user-configurable receive queue for the adapter. This is the actual queue
the adapter uses to receive packets. Each element corresponds to an
Ethernet packet. It is configurable at 16, 32, 64, 128, and 256 elements. The
default is 64.

Media Speed

The 10/100 Mbps Ethernet TX MCA device driver (8f62) supports a
user-configurable media speed for the adapter. The media speed attribute
indicates the speed at which the adapter will attempt to operate. The
available speeds are: 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps
half-duplex, 100 Mbps full-duplex, and auto-negotiation. Select
auto-negotiate when the adapter should use auto-negotiation across the
network to determine the speed. When the network will not support
auto-negotiation, the specific speed should be selected. The default is
auto-negotiation.

Inter Packet Gap (IPG)

The 10/100 Mbps Ethernet TX MCA device driver (8f62) supports a
user-configurable inter packet gap for the adapter. The inter packet gap
attribute controls the aggressiveness of the adapter on the network. A small
number increases the aggressiveness of the adapter, while a large number
decreases the aggressiveness (and increases the fairness) of the adapter. A
small number (more aggressive) could cause the adapter to capture the
network by forcing other less aggressive nodes to defer. A larger number
(less aggressive) could cause the adapter to defer more often than normal.
If the statistics for other nodes on the network show a large number of

Chapter 7. Communications I/O Subsystem 161

collisions and deferrals, try increasing this number. The default is 96,
which results in an IPG of 9.6 microseconds for 10 Mbps and 0.96
microseconds for 100 Mbps media speed. Each unit of bit rate introduces
an IPG of 100 nsec at 10 Mbps and 10 nsec at 100 Mbps media speed.

The PCI Ethernet Device Driver (22100020) supports the following additional
configuration parameters:

Full Duplex
Indicates whether the adapter is operating in full-duplex or half-duplex
mode. If this field is set to yes, the device driver programs the adapter to
be in full-duplex mode. The default is half-duplex.

Note: Full duplex mode is valid for AIX Version 4.1.5 (and later).

Hardware Transmit Queue
Specifies the actual queue the adapter uses to transmit packets. Each
element corresponds to an Ethernet packet. It is configurable at 16, 32, 64, 1
28, and 256 elements. The default is 64.

Hardware Receive Queue
Specifies the actual queue the adapter uses to receive packets. Each
element corresponds to an Ethernet packet. It is configurable at 16, 32, 64,
128, and 256 elements. The default is 64.

The PCI 10/100 Mbps Ethernet Device Driver (23100020) supports the following
additional configuration parameters:

Hardware Transmit Queue
The PCI 10/100 Mbps Ethernet Device Driver (23100020) supports a
user-configurable transmit queue for the adapter. This is the actual queue
the adapter uses to transmit packets. Each element corresponds to an
Ethernet packet. It is configurable at 16, 32, 64, 128, and 256 elements, with
a default of 64.

Hardware Receive Queue
The PCI 10/100 Mbps Ethernet Device Driver (23100020) supports a
user-configurable receive queue for the adapter. This is the actual queue
the adapter uses to receive packets. Each element corresponds to an
Ethernet packet. It is configurable at 16, 32, 64, 128, and 256 elements, with
a default of 32.

Media Speed
The PCI 10/100 Mbps Ethernet Device Driver (23100020) supports a
user-configurable media speed for the adapter. The media speed attribute
indicates the speed at which the adapter will attempt to operate. The
available speeds are 10 Mbps half-duplex, 10 Mbps full-duplex, 100 Mbps
half-duplex, 100 Mbps full-duplex and auto-negotiation, with a default of
auto-negotiation. Select auto-negotiate when the adapter should use
auto-negotiation across the network to determine the speed. When the
network will not support auto-negotiation, the specific speed should be
selected

Inter Packet Gap
The PCI 10/100 Mbps Ethernet Device Driver (23100020) supports a
user-configurable inter packet gap for the adapter. The inter packet gap
attribute controls the aggressiveness of the adapter on the network. A small
number will increase the aggressiveness of the adapter, while a large
number will decrease the aggressiveness (and increase the fairness) of the

162 Kernel Extensions and Device Support Programming Concepts

adapter. A small number (more aggressive) could cause the adapter to
capture the network by forcing other less aggressive nodes to defer. A
larger number (less aggressive) may cause the adapter to defer more often
than normal. If the statistics for other nodes on the network show a large
number of collisions and deferrals, then try increasing this number. The
default is 96, which results in IPG of 9.6 micro seconds for 10 Mbps and
0.96 microseconds for 100 Mbps media speed. Each unit of bit rate
introduces an IPG of 100 nsec at 10 Mbps, and 10 nsec at 100 Mbps media
speed.

The Gigabit Ethernet-SX PCI Adapter (14100401) device driver supports the
additional configuration parameters:

Software Transmit Queue Size

Indicates the number of transmit requests that can be queued for
transmission by the device driver. Valid values range from 512 through
2048. The default value is 512.

Transmit Jumbo Frames

Setting this attribute to the yes value indicates that frames up to 9018 bytes
in length may be transmitted on this adapter. If you specify the no value,
the maximum size of frames transmitted is 1518 bytes. The default value is
no. Frames up to 9018 bytes in length may always be received on this
adapter.

Transmit and Receive Jumbo Frames

Setting this attribute to the yes value indicates that frames up to 9014 bytes
in length may be transmitted or received on this adapter. If you specify the
no value, the maximum size of frames transmitted or received is 1514
bytes. The default value is no.

Receive Buffer Pool Size

Indicates the number of mbufs to be used exclusively with this adapter.
These mbufs will be used for receiving frames. They will be 4096 bytes
long if yes is specified for the Transmit Jumbo Frames attribute (see E).
They will be 2048 bytes long otherwise. Valid values range from 256
through 2048. The default value is 768. The adapter has a receive queue of
512 entries. Each entry describes a mbuf where a frame (or part of a frame)
will be received. The device driver will attempt to obtain a mbuf for the
receive queue from this receive buffer pool. If the pool is empty the device
driver will attempt to obtain a mbuf from the system buffer pool. After a
frame is received the mbuf containing the frame will be passed to the user
of that frame. A replacement mbuf will be obtained for the adapter receive
queue. Thus more than 512 mbuf will be in use at any given time. The
output of the ntstat -d ent0 program contains statistics concerning use of
this buffer pool. Use of mbufs from this pool will improve the
performance of the adapter with a possible increase in system network
memory usage.

Enable Hardware Receive Checksum

Setting this attribute to the yes value indicates that the adapter should
calculate the checksum for received TCP frames. If you specify the no
value, the checksum will be calculated by the appropriate software. The
default value is yes.

Note: The mbuf describing a frame to be transmitted contains a flag

which says if the adapter should calculate the checksum for the
frame.

Chapter 7. Communications I/0 Subsystem 163

Interface Entry Points
Device Driver Configuration and Unconfiguration

The configuration entry points of the device drivers conform to the guidelines for
AIX Version 4 kernel object file entry points. The configuration entry points are
en3com_config for the Ethernet High-Performance LAN Adapter (8ef5),
ient_config for the Integrated Ethernet, kent_config for the PCI Ethernet Device
Driver (22100020), and lce_config for the Ethernet High-Performance LAN Adapter
(8f95). Beginning with AIX Version 4.1.5, the srent_config entry point is available
for the 10/100 Mbps Ethernet TX MCA (8f62) device driver. Beginning with AIX
Version 4.1.5, the phxent_config entry point is available for the PCI 10/100 Mbps
Ethernet (23100020) Device Driver. The Gigabit Ethernet-SX PCI Adapter (14100401)
entry point is gxent_config.

Device Driver Open
The open entry point for the device drivers perform a synchronous open of the
specified network device.

The device driver issues commands to start the initialization of the device. The
state of the device now is OPEN_PENDING. The device driver invokes the open
process for the device. The open process involves a sequence of events that are
necessary to initialize and configure the device. The device driver will do the
sequence of events in an orderly fashion to make sure that one step is finished
executing on the adapter before the next step is continued. Any error during these
sequence of events will make the open fail. The device driver requires about 2
seconds to open the device. When the whole sequence of events is done, the device
driver verifies the open status and then returns to the caller of the open with a
return code to indicate open success or open failure.

Once the device has been successfully configured and connected to the network,
the device driver will set the device state to OPENED, the NDD_RUNNING flag in
the NDD flags field will be turned on. In the case of unsuccessful open, both the
NDD_UP and NDD_RUNNING flags in the NDD flags field will be off and a
non-zero error code will be returned to the caller.

The open entry points are en3com_open for the Ethernet High-Performance LAN
Adapter (8ef5), ient_open for the Integrated Ethernet, kent_open for the PCI
Ethernet Device Driver (22100020), and lce_open for the Ethernet
High-Performance LAN Adapter (8f95). Beginning with AIX Version 4.1.5, the
srent_open entry point is available for the 10/100 Mbps Ethernet TX MCA (8{62)
device driver. Beginning with AIX Version 4.1.5, the phxent_open entry point is
available for the PCI 10/100 Mbps Ethernet (23100020) Device Driver. The Gigabit
Ethernet-SX PCI Adapter (14100401) entry point is gxent_open.

Device Driver Close

The close entry point for the device drivers is called to close the specified network
device. This function resets the device to a known state and frees system resources
associated with the device.

The device will not be detached from the network until the device’s transmit
queue is allowed to drain. That is, the close entry point will not return until all
packets have been transmitted or timed out. If the device is inoperable at the time
of the close, the device’s transmit queue does not have to be allowed to drain.

164 Kernel Extensions and Device Support Programming Concepts

At the beginning of the close entry point, the device state will be set to be
CLOSE_PENDING. The NDD_RUNNING flag in the ndd_flags will be turned off.
After the outstanding transmit queue is all done, the device driver will start a
sequence of operations to deactivate the adapter and to free up resources. Before
the close entry point returns to the caller, the device state is set to CLOSED.

The close entry points are en3com_close for the Ethernet High-Performance LAN
Adapter (8ef5), ient_close for the Integrated Ethernet, kent_close for the PCI
Ethernet Device Driver (22100020), and lce_close for the Ethernet
High-Performance LAN Adapter (8f95). Beginning with AIX Version 4.1.5, the
srent_close entry point is available for the 10/100 Mbps Ethernet TX MCA (8{62)
device driver. Beginning with AIX Version 4.1.5, the phxent_close entry point is
available for the PCI 10/100 Mbps Ethernet (23100020) Device Driver. The Gigabit
Ethernet-SX PCI Adapter (14100401) entry point is gxent_close.

Data Transmission
The output entry point transmits data using the specified network device.

The data to be transmitted is passed into the device driver by way of mbuf
structures. The first mbuf in the chain must be of M_PKTHDR format. Multiple
mbufs may be used to hold the frame. The mbufs should be linked using the
m_next field of the mbuf structure.

Multiple packet transmits are allowed with the mbufs being chained using the
m_nextpkt field of the mbuf structure. The m_pkthdr.len field must be set to the
total length of the packet. The device driver does not support mbufs from user
memory (which have the M_EXT flag set).

On successful transmit requests, the device driver is responsible for freeing all the
mbufs associated with the transmit request. If the device driver returns an error,
the caller is responsible for the mbufs. If any of the chained packets can be
transmitted, the transmit is considered successful and the device driver is
responsible for all of the mbufs in the chain.

If the destination address in the packet is a broadcast address the M_BCAST flag
in the m_flags field should be set prior to entering this routine. A broadcast
address is defined as OxFFFF FFFF FFFE. If the destination address in the packet is
a multicast address the M_MCAST flag in the m_flags field should be set prior to
entering this routine. A multicast address is defined as a non-individual address
other than a broadcast address. The device driver will keep statistics based upon
the M_BCAST and M_MCAST flags.

For packets that are shorter than the Ethernet minimum MTU size (60 bytes), the
device driver will pad them by adjusting the transmit length to the adapter so they
can be transmitted as valid Ethernet packets.

Users will not be notified by the device driver about the status of the transmission.
Various statistics about data transmission are kept by the driver in the ndd
structure. These statistics will be part of the data returned by the
NDD_GET_STATS control operation.

The output entry points are en3com_output for the Ethernet High-Performance
LAN Adapter (8ef5), ient_output for the Integrated Ethernet, kent_output for the
PCI Ethernet Device Driver (22100020), and lce_output for the Ethernet
High-Performance LAN Adapter (895). Beginning with AIX Version 4.1.5, the
srent_output entry point is available for the 10/100 Mbps Ethernet TX MCA (8£62)

Chapter 7. Communications I/O Subsystem 165

device driver. Beginning withAIX Version 4.1.5, the phxent_output entry point is
available for the PCI 10/100 Mbps Ethernet (23100020) Device Driver. The Gigabit
Ethernet-SX PCI Adapter (14100401) entry point is gxent_output.

Data Reception

When the Ethernet device drivers receive a valid packet from the network device,
the device drivers call the nd_receive function that is specified in the ndd_t
structure of the network device. The nd_receive function is part of a CDLI network
demuxer. The packet is passed to the nd_receive function in the form of a mbuf.

The Ethernet device drivers may pass multiple packets to the nd_receive function
by chaining the packets together using the m_nextpkt field of the mbuf structure.
The m_pkthdr.len field must be set to the total length of the packet. If the source
address in the packet is a broadcast address the M_BCAST flag in the m_flags field
should be set. If the source address in the packet is a multicast address the
M_MCAST flag in the m_flags field should be set.

When the device driver initially configures the device to discard all invalid frames.
A frame is considered to be invalid for the following reasons:

* The packet is too short
* The packet is too long
* The packet contains a CRC error

* The packet contains an alignment error.

If the asynchronous status for receiving invalid frames has been issued to the
device driver, the device driver will configure the device to receive bad packets as
well as good packets. Whenever a bad packet is received by the driver, an
asynchronous status block NDD_BAD_PKTS is created and delivered to the
appropriate user. The user must copy the contents of the mbuf to another memory
area. The user must not modify the contents of the mbuf or free the mbuf. The
device driver has the responsibility of releasing the mbuf upon returning from
nd_status.

Various statistics about data reception on the device will be kept by the driver in
the ndd structure. These statistics will be part of the data returned by the
NDD_GET_STATS and NDD_GET_ALL_STATS control operations.

There is no specified entry point for this function. The device informs the device
driver of a received packet via an interrupt. Upon determining that the interrupt
was the result of a packet reception, the device driver’s interrupt handler will
invoke a completion routine to perform the tasks mentioned above. This is
en3com_rv_intr for the Ethernet High-Performance LAN Adapter (8ef5),
ient_RU_complete for the Integrated Ethernet, rx_handler for the 10/100 Mbps
Ethernet TX MCA (8f62) device driver (AIX Version 4.1.5 and later) and the PCI
Ethernet device driver (22100020), and Ice_recv for the Ethernet High-Performance
LAN Adapter (8f95). Beginning withAIX Version 4.1.5, the rx_handler entry point
is available for the PCI 10/100 Mbps Ethernet (23100020) Device Driver. The
Gigabit Ethernet-SX PCI Adapter (14100401) entry point is rx_handler.

Asynchronous Status

When a status event occurs on the device, the Ethernet device drivers build the
appropriate status block and call the nd_status function that is specified in the
ndd_t structure of the network device. The nd_status function is part of a CDLI
network demuxer.

166 Kernel Extensions and Device Support Programming Concepts

The following Status Blocks are defined for the Ethernet device drivers.

Note: The PCI Ethernet Device Driver (22100020) and the Ethernet
High-Performance LAN Adapter (8f95) only support the Bad Packets status
block. The Gigabit Ethernet-SX PCI Adapter (14100401) does not support
asynchronous status.

Hard Failure
When a hard failure has occurred on the Ethernet device, the following
status blocks can be returned by the Ethernet device driver. These status
blocks indicates that a fatal error occurred.

code Set to NDD_HARD_FAIL.
option[0] Set to one of the reason codes defined in
<sys/ndd.h> and <sys/cdli_entuser.h>.

Enter Network Recovery Mode
When the device driver has detected an error which requires initiating
recovery logic that will make the device temporarily unavailable, the
following status block is returned by the device driver.

code Set to NDD_LIMBO_ENTER.
option[0] Set to one of the reason codes defined in
<sys/ndd.h> and <sys/cdli_entuser.h>.

Note: While the device driver is in this recovery logic, the device may
not be fully functional. The device driver will notify users when the
device is fully functional by way of an NDD_LIMBO_EXIT
asynchronous status block,

Exit Network Recovery Mode
When the device driver has successfully completed recovery logic from the
error that made the device temporarily unavailable, the following status
block is returned by the device driver.

code Set to NDD_LIMBO_EXIT.
option|] The option fields are not used.

Note: The device is now fully functional.

Network Device Driver Status
When the device driver has status or event information to report, the
following status block is returned by the device driver.

code Set to NDD_STATUS.

option[0] May be any of the common or interface type
specific reason codes.

option|[] The remainder of the status block may be

used to return additional status information
by the device driver.

Bad Packets
When the a bad packet has been received by a device driver (and a user
has requested bad packets), the following status block is returned by the
device driver.

Chapter 7. Communications 1/O Subsystem 167

code Set to NDD_BAD_PKTS.

option[0] Specifies the error status of the packet. These
error numbers are defined in
<sys/cdli_entuser.h>.

option[1] Pointer to the mbuf containing the bad
packet.
option|[] The remainder of the status block may be

used to return additional status information
by the device driver.

Note: The user will not own the mbuf containing the bad packet. The
user must copy the mbuf (and the status block information if
desired). The device driver will free the mbuf upon return from the
nd_status function.

Device Connected
When the device is successfully connected to the network the following
status block is returned by the device driver.

code Set to NDD_CONNECTED.
option|] The option fields are not used.

Note: Integrated Ethernet Only.
Device Control Operations

The ndd_ctl entry point is used to provide device control functions.

NDD_GET_STATS

The NDD_GET_STATS command returns statistics concerning the network device.
General statistics are maintained by the device driver in the ndd_genstats field in
the ndd_t structure. The ndd_specstats field in the ndd_t structure is a pointer to
media-specific and device-specific statistics maintained by the device driver. Both
sets of statistics are directly readable at any time by those users of the device that
can access them. This command provides a way for any of the users of the device
to access the general and media-specific statistics. The NDD_GET_ALL_STATS
command provides a way to get the device-specific statistics also. Beginning with
AIX Version 4.1, the phxent_all_stats_t structure is available for the PCI 10/100
Mbps Ethernet (23100020) Device Driver. This structure is defined in the
device-specific include file cdli_entuser.phxent.h.

The arg and length parameters specify the address and length in bytes of the area
where the statistics are to be written. The length specified must be the exact length
of the general and media-specific statistics.

Note: The ndd_speclen field in the ndd_t structure plus the length of the
ndd_genstats_t structure is the required length. The device-specific statistics
may change with each new release of AIX, but the general and media-specific
statistics are not expected to change.

The user should pass in the ent_ndd_stats_t structure as defined in

<sys/cdli_entuser.h>. The driver fails a call with a buffer smaller than the
structure.

168 Kernel Extensions and Device Support Programming Concepts

The statistics which are returned contain statistics obtained from the device. If the
device is inoperable, the statistics which are returned will not contain the current
device statistics. The copy of the ndd_flags field can be checked to determine the
state of the device.

NDD_MIB_QUERY

The NDD_MIB_QUERY operation is used to determine which device-specific MIBs
are supported on the network device. The arg and length parameters specify the
address and length in bytes of a device-specific MIB structure. The device driver
will fill every member of that structure with a flag indicating the level of support
for that member. The individual MIB variables that are not supported on the
network device will be set to MIB_NOT_SUPPORTED. The individual MIB
variables that may only be read on the network device will be set to
MIB_READ_ONLY. The individual MIB variables that may be read and set on the
network device will be set to MIB_READ_WRITE. The individual MIB variables
that may only be set (not read) on the network device will be set to
MIB_WRITE_ONLY. These flags are defined in the /usr/include/sys/ndd.h file.

The arg parameter specifies the address of the ethernet_all_mib structure. This
structure is defined in the /usr/include/sys/ethernet_mibs.h file.

NDD_MIB_GET

The NDD_MIB_GET operation is used to get all MIBs on the specified network
device. The arg and length parameters specify the address and length in bytes of
the device specific MIB structure. The device driver will set any unsupported
variables to zero (nulls for strings).

If the device supports the RFC 1229 receive address object, the corresponding
variable is set to the number of receive addresses currently active.

The arg parameter specifies the address of the ethernet_all_mib structure. This
structure is defined in the /usr/include/sys/ethernet_mibs.h file.

NDD_ENABLE_ADDRESS
The NDD_ENABLE_ADDRESS command enables the receipt of packets with an

alternate (for example, multicast) address. The arg and length parameters specify
the address and length in bytes of the alternate address to be enabled. The
NDD_ALTADDRS flag in the ndd_flags field is set.

The device driver verifies that if the address is a valid multicast address. If the
address is not a valid multicast address, the operation will fail with an EINVAL
error. If the address is valid, the driver will add it to its multicast table and enable
the multicast filter on the adapter. The driver will keep a reference count for each
individual address. Whenever a duplicate address is registered, the driver simply
increments the reference count of that address in its multicast table, no update of
the adapter’s filter is needed. There is a hardware limitation on the number of
multicast addresses in the filter.

NDD_DISABLE_ADDRESS
The NDD_DISABLE_ADDRESS command disables the receiving packets with a

specified alternate (for example, multicast) address. The arg and length parameters
specify the address and length in bytes of the alternate address to be disabled. The
NDD_ALTADDRS flag in the ndd_flags field is reset if this is the last alternate
address.

The device driver verifies that if the address is a valid multicast address. If the
address is not a valid multicast address, the operation will fail with an EINVAL

Chapter 7. Communications I/0 Subsystem 169

error. The device driver makes sure that the multicast address can be found in its
multicast table. Whenever a match is found, the driver will decrement the
reference count of that individual address in its multicast table. If the reference
count becomes 0, the driver will delete the address from the table and update the
multicast filter on the adapter.

NDD_MIB_ADDR
The NDD_MIB_ADDR operation is used to get all the addresses for which the

specified device will accept packets or frames. The arg parameter specifies the
address of the ndd_mib_addr_t structure. The length parameter specifies the
length of the structure with the appropriate number of ndd_mib_addr_t.mib_addr
elements. This structure is defined in the /usr/include/sys/ndd.h file. If the length
is less than the length of the ndd_mib_addr_t structure, the device driver returns
EINVAL. If the structure is not large enough to hold all the addresses, the
addresses which fit will still be placed in the structure. The ndd_mib_addr_t.count
field is set to the number of addresses returned and E2BIG is returned.

One of the following address types is returned:
* Device physical address (or alternate address specified by user)
* Broadcast addresses

¢ Multicast addresses

NDD_CLEAR_STATS
The counters kept by the device will be zeroed.

NDD_GET ALL_STATS

The NDD_GET_ALL_STATS operation is used to gather all the statistics for the
specified device. The arg parameter specifies the address of the statistics structure
for the particular device type. This structure is en3com_all_stats_t for the Ethernet
High-Performance LAN Adapter (8ef5), ient_all_stats_t for the Integrated Ethernet
Device, kent_all_stats_t for the PCI Ethernet Device Driver (22100020), and
enlce_all_stats_t for the Ethernet High-Performance LAN Adapter (8f95).
Beginning with AIX Version 4.1.5, the srent_all_stats_t structure is available for the
10/100 Mbps Ethernet TX MCA (8f62) device driver. These structures are defined
in the /usr/include/sys/cdli_entuser.h file.

The statistics which are returned contain statistics obtained from the device. If the
device is inoperable, the statistics which are returned will not contain the current
device statistics. The copy of the ndd_flags field can be checked to determine the
state of the device.

NDD_ENABLE_MULTICAST

The NDD_ENABLE_MULTICAST command enables the receipt of packets with
any multicast (or group) address. The arg and length parameters are not used. The
NDD_MULTICAST flag in the ndd_flags field is set.

Note: Unlike the Integrated Ethernet and PCI Ethernet (22100020) Device
Drivers, the Ethernet High-Performance LAN Adapter (8ef5) adapter does not
support the "receive all multicast” function; this driver will enable the
promiscuous mode on the adapter in order to bypass the multicast filtering
existing on the adapter. The device driver performs additional packet filtering
to discard packets which are not supposed to be received under this
circumstance.

170 Kernel Extensions and Device Support Programming Concepts

NDD_DISABLE_MULTICAST

The NDD_DISABLE_MULTICAST command disables the receipt of ALL packets
with multicast addresses and only receives those packets whose multicast
addresses were specified using the NDD_ENABLE_ADDRESS command. The arg
and length parameters are not used. The NDD_MULTICAST flag in the ndd_flags
field is reset only after the reference count for multicast addresses has reached
zero.

NDD_PROMISCUOUS_ON
The NDD_PROMISCUOUS_ON command turns on promiscuous mode. The arg
and length parameters are not used.

When the device driver is running in promiscuous mode, "all” network traffic is
passed to the network demuxer. When the Ethernet device driver receives a valid
packet from the network device, the Ethernet device driver calls the nd_receive
function that is specified in the ndd_t structure of the network device. The
NDD_PROMISC flag in the ndd_flags field is set. Promiscuous mode is considered
to be valid packets only. See the NDD_ADD_STATUS command for information
about how to request support for bad packets.

The device driver will maintain a reference count on this operation. The device
driver increments the reference count for each operation. When this reference count
is equal to one, the device driver issues commands to enable the promiscuous
mode. If the reference count is greater than one, the device driver does not issue
any commands to enable the promiscuous mode.

NDD PROMISCUOUS OFF

The NDD_PROMISCUOUS_OFF command terminates promiscuous mode. The arg
and length parameters are not used. The NDD_PROMISC flag in the ndd_flags
field is reset.

The device driver will maintain a reference count on this operation. The device
driver decrements the reference count for each operation. When the reference count
is not equal to zero, the device driver does not issue commands to disable the
promiscuous mode. Once the reference count for this operation is equal to zero, the
device driver issues commands to disable the promiscuous mode.

NDD_DUMP_ADDR

The NDD_DUMP_ADDR command returns the address of the device driver’s
remote dump routine. The arg parameter specifies the address where the dump
routine’s address is to be written. The length parameter is not used.

Note: The Ethernet High-Performance LAN Adapters (8ef5 and 8f95) Device
Drivers do not support this.

Reliability, Availability, and Serviceability (RAS)

Trace

For LAN device drivers, trace points enable error monitoring as well as tracking
packets as they move through the driver. The drivers issue trace points for some or
all of the following conditions:

* Beginning and ending of main functions in the main path.
e Error conditions.

* Beginning and ending of each function that is tracking buffers outside of the
main path.

Chapter 7. Communications 1/0 Subsystem 171

* Debugging purposes. (These trace points are only enabled when the driver is
compiled with -DDEBUG turned on, and therefore the driver can contain as
many of these trace points as desired.)

The existing Ethernet device drivers each have either three or four trace points.
The Trace Hook IDs for most of the device types are defined in the
sys/cdli_entuser.h file. Other drivers have defined local cdli_entuser.driver.h files
with the Trace Hook definitions.

Following is a list of trace hooks (and location of definition file) for the existing
Ethernet device drivers:

» IBM ISA 16-bit Ethernet Adapter
— Definition file: cdli_entuser.h
— Trace Hook IDs:

Transmit -330
Receive -331
Errors -332
Other -333

* Ethernet High-Performance Adapter (8ef5)
— Definition file: c¢dli_entuser.h
— Trace Hook IDs:

Transmit -351
Receive -352
Errors -353
Other -354

* 10Mb MCA Low Cost High Performance Ethernet Device Driver (8f95)
— Definition file: cdli_entuser.h
— Trace Hook IDs:

Transmit -327
Receive -328
Errors -37D
Other -37E

* Integrated Ethernet Device Drivers (898, 8ef2, 8ef3)
— Definition file: cdli_entuser.h
— Trace Hook IDs:

Transmit -320
Receive -321
Errors -322
Other -323

* 10/100 Mbps Ethernet TX MCA Device Driver (8{62)
— Definition file: cdli_entuser.srent.h
— Trace Hook IDs:

Transmit -2C3
Receive -2C4
Other -2C5

172 Kernel Extensions and Device Support Programming Concepts

» PCI Ethernet Device Driver (22100020)
— Definition file: cdli_entuser.h
— Trace Hook IDs:

Transmit> 2A4
Receive -2A5
Other -2A6

* PCI 10/100 Mbps Ethernet Device Driver (23100020)
— Definition file: cdli_entuser.phxent.h
— Trace Hook IDs:

Transmit -2E6
Receive -2E7
Other -2E8

* Gigabit Ethernet-SX PCI Adapter (14100401)
— Definition file: cdli_entuser.gxent.h
— Trace Hook IDs:

Transmit -2EA
Receive -2EB
Other -2EC

The device driver also has the following trace points to support the netpmon
program:

WQUE An output packet has been queued for transmission
WEND The output of a packet is complete

RDAT An input packet has been received by the device driver
RNOT An input packet has been given to the demuxer

REND The demuxer has returned

For more information, see 'Debug and Perfarmance Tracing” on page 554.

Error Logging
The Error IDs for the Ethernet High-Performance LAN Adapter (8ef5) are as
follows:

ERRID_EN3COM_TMOUT
The watchdog timer has expired while waiting on acknowledgement of
either a control command or transmit command. The device driver will go
into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User
intervention is not required for this error unless the problem persists.

ERRID_EN3COM_FAIL
The device driver has detected an error that prevents the device from
functioning. This message is normally preceded by another error log which
indicates the specific fatal error that has occurred. The device driver may
have gone through the Network Recovery Mode and failed to recover from
the error. This message indicates that the device will not be available due
to some hard failure and user intervention is required.

ERRID_EN3COM_UCODE
The device driver detected an error in the microcode on the adapter. The

Chapter 7. Communications I/O Subsystem 173

device driver will log this error and indicate hardware failure. The device
will not be available after this error is detected. User intervention is
required in order to recover from this error.

ERRID_EN3COM_PARITY
The device detected a parity error. The device driver will log this error and
go into Network Recovery Mode in an attempt to recover from the error.
The device is temporarily unavailable during the recovery procedure. User
intervention is not required for this error unless the problem persists.

ERRID_EN3COM_DMAFAIL
The device has detected a DMA channel error or a Micro Channel error has
occurred. Normally, this error will be accompanied by another error that
will indicate if this error is fatal or recoverable.

ERRID_EN3COM_NOBUFS
The device detected a memory shortage during the device initialization
phase when the device driver attempted to allocate transmit and receive
buffers from the host memory. The device driver will log this error and fail
the device initialization. The device will not be available after this error is
detected. User intervention is required in order to recover from this error.

ERRID_EN3COM_PIOFAIL
The device detected an I/O channel error or an error in a command the
device driver issued, an error occurred during a PIO operation, or the
device has detected an error in a packet given to the device. The device
driver will retry the operation for three times. If they all failed, the device
driver will log this error and indicate hardware failure. The device will not
be available after this error is detected. User intervention is required in
order to recover from this error.

The Error IDs for the Integrated Ethernet Device Driver are as follows:

ERRID_IENT_TMOUT
The watchdog timer has expired while waiting on acknowledgement of
either a control command or transmit command. The device driver will go
into Network Recovery Mode in an attempt to recover from the error. The
device is temporarily unavailable during the recovery procedure. User
intervention is not required for this error unless the problem persists.

ERRID_IENT_PIOFAIL
The device detected an I/O channel error or an error in a command the
device driver issued, an error occurred during a PIO operation, or the
device has detected an error in a packet given to the device. The device
driver will go into Network Recovery Mode in an attempt to recover from
the error. The device is temporarily unavailable during the recovery
procedure. User intervention is not required for this error unless the
problem persists.

ERRID_IENT_DMAFAIL
The device has detected an DMA channel error or a Micro Channel error
has occurred. The device driver will go into Network Recovery Mode in an
attempt to recover from the error. The device is temporarily unavailable
during the recovery procedure. User intervention is not required for this
error unless the problem persists.

ERRID_IENT_FAIL
The device has detected an error that prevents the device from starting or
restarting, such as pincode or i_init fails. If the device is restarting in
Network Recovery Mode in an attempt to recover from an error, the device

174 Kernel Extensions and Device Support Programming Concepts

will be temporarily unavailable during the recovery procedure. User
intervention is not required for this error unless the problem persists.

Beginning with AIX Version 4.1.5, the Error IDs for the 10/100 Mbps Ethernet TX
MCA (8f62) device driver are as follows:

ERRID_SRENT_ADAP_ERR
Indicates that the adapter is not responding to initialization commands.
User intervention is necessary to fix the problem.

ERRID_SRENT_RCVRY
Indicates that the adapter hit a temporary error requiring that it enter
network recovery mode. The adapter is reset in an attempt to fix the
problem.

ERRID_SRENT_TX_ERR
Indicates that the device driver has detected a transmission error. User
intervention is not required unless the problem persists.

ERRID_SRENT_PIO
Indicates that the device driver has detected a program IO error. User
intervention is necessary to fix the problem.

ERRID_SRENT_DOWN
Indicates that the device driver has shutdown the adapter due to an
unrecoverable error. The adapter is no longer functional. The error that
caused the device to shutdown is logged immediately before this error log
entry. User intervention is necessary to fix the problem.

ERRID_SRENT_EEPROM_ERR
Indicates that the device driver is in a defined state due to an invalid or
bad EEPROM. The device driver will not become available. Contact your
hardware support representative.

The Error IDs for the PCI Ethernet Device Driver (22100020) are as follows:

ERRID_KENT_ADAP_ERR
Indicates that the adapter is not responding to initialization commands.
User intervention is necessary to fix the problem.

ERRID_KENT_RCVRY
Indicates that the adapter hit a temporary error requiring that it enter
network recovery mode. It has reset the adapter in an attempt to fix the
problem.

ERRID_KENT_TX_ERR
Indicates the the device driver has detected a transmission error. User
intervention is not required unless the problem persists.

ERRID_KENT_PIO
Indicates that the device driver has detected a program IO error. The
device driver was unable to fix the problem. User intervention is necessary
to fix the problem.

ERRID_KENT_DOWN
Indicates that the device driver has shut down the adapter due to an
unrecoverable error. The adapter is no longer functional due to the error.
The error that caused the device to shut down is error logged immediately
before this error log entry. User intervention is necessary to fix the
problem.

Chapter 7. Communications I/O Subsystem 175

Beginning with AIX Version 4.1.5, the Error IDs for the PCI 10/100 Mbps Ethernet
Device Driver (23100020) are as follows:

ERRID_PHXENT_ADAP_ERR
Indicates that the adapter is not responding to initialization commands.
User-intervention is necessary to fix the problem.

ERRID_PHXENT_TX_RCVRY
Indicates that the adapter hit a temporary error requiring that it enter
network recovery mode. It has reset the adapter in an attempt to fix the
problem.

ERRID_PHXENT_TX_ERR
Indicates that the device driver has detected a transmission error.
User-intervention is not required unless the problem persists.

ERRID_PHXENT_PIO
Indicates that the device driver has detected a program IO error. The
device driver was unable to fix the problem. User-intervention is necessary
to fix the problem.

ERRID_PHXENT_DOWN
Indicates that the device driver has shutdown the adapter due to an
unrecoverable error. The adapter is no longer functional due to the error.
The error which caused the device shutdown is error logged immediately
before this error log entry. User-intervention is necessary to fix the
problem.

ERRID_PHXENT_EEPROM_ERR
Indicates that the device driver is in a defined state due to an invalid or
bad EEPROM. The device driver will not become available. Hardware
support should be contacted.

The Error IDs for the Ethernet High-Performance LAN Adapter (8f95) are as
follows:

ERRID_ENLCE_TMOUT
Indicates status for a transmit packet was not received. The device will not
be available during the error recovery process.

ERRID_ENLCE_FAIL
Indicates that the adapter has reported a hardware error. The device will
not be available during the error recovery process.

ERRID_ENLCE_SWFAIL
Indicates the device driver has detected a software error. The current
operation will not complete successfully.

ERRID_ENLCE_TXFAIL
Indicates a hardware/software transmit synchronization problem. The
device will not be available during the error recovery process.

ERRID_ENLCE_RXFAIL
Indicates a hardware/software receive synchronization problem. The
device will not be available during the error recovery process.

ERRID_ENLCE_MCFAIL
Indicates that the adapter has reported a Micro Channel error. The device
will not be available during the error recovery process.

176 Kernel Extensions and Device Support Programming Concepts

ERRID_ENLCE_VPDFAIL
Indicates that the device driver was unable to read the vital product data
(VPD) from the adapter. The device will not be available after this error is
detected.

ERRID_ENLCE_PARITY
Indicates that the adapter has reported a parity error.

ERRID_ENLCE_DMAFAIL
Indicates that the adapter has reported a DMA error.

ERRID_ENLCE_NOMEM
Indicates that not enough memory was available to complete the current
operation.

ERRID_ENLCE_NOMBUFS
Indicates that no mbufs were available for a receive packet. The packet will
be dropped.

ERRID_ENLCE_PIOFAIL
Indicates that the device driver has detected a PIO failure. The device will
not be available after this error is detected.

The Error IDs for the Gigabit Ethernet-SX PCI Adapter (14100401) are as follows:

ERRID_GXENT_ADAP_ERR
Indicates that the adapter failed initialization commands. User intervention
is necessary to fix the problem.

ERRID_GXENT_CMD_ERR
Indicates that the device driver has detected an error while issuing
commands to the adapter. The device driver will enter an adapter recovery
mode where it will attempt to recover from the error. If the device driver is
successful, it will log ERRID_GXENT_RCVRY_EXIT. User intervention is
not necessary for this error unless the problem persists.

ERRID_GXENT_DOWNLOAD_ERR
Indicates that an error occurred while downloading firmware to the
adapter. User intervention is necessary to fix the problem.

ERRID_GXENT_EEPROM_ERR
Indicates that an error occurred while reading the adapter EEPROM. User
intervention is necessary to fix the problem.

ERRID_GXENT_LINK_DOWN
Indicates that the link between the adapter and the network switch is
down. The device driver will attempt to reestablish the connection once the
physical link is reestablished. When the link is again established, the
device driver will log ERRID_GXENT_RCVRY_EXIT. User intervention is
necessary to fix the problem.

ERRID_GXENT_RCVRY_EXIT
Indicates that a temporary error (link down, command error, or
transmission error) has been corrected.

ERRID_GXENT_TX_ERR
Indicates that the device driver has detected a transmission error. The
device driver will enter an adapter recovery mode in an attempt to recover
from the error. If the device driver is successful, it will log
ERRID_GXENT_RCVRY_EXIT. User intervention is not necessary for this
error unless the problem persists.

Chapter 7. Communications 1/O Subsystem 177

For more information, see ['Error T ogging” on page 544.

178 Kernel Extensions and Device Support Programming Concepts

Chapter 8. Graphic Input Devices Subsystem

The graphic input devices subsystem includes the keyboard/sound, mouse, tablet,
dials, and lighted programmable-function keys (LPFK) devices. These devices
provide operator input primarily to graphic applications. However, the keyboard
can provide system input by means of the console.

open and close Subroutines

An open subroutine call is used to create a channel between the caller and a
graphic input device driver. The keyboard supports two such channels. The most
recently created channel is considered the active channel. All other graphic input
device drivers support only one channel. The open subroutine call is processed
normally, except that the OFLAG and MODE parameters are ignored. The
keyboard provides support for the fp_open subroutine call; however, only one
kernel mode channel may be open at any given time. The fp_open subroutine call
returns EACCES for all other graphic input devices.

The close subroutine is used to remove a channel created by the open subroutine
call.

read and write Subroutines

The graphic input device drivers do not support read or write operations. A read
or write to a graphic input device special file behaves as if a read or write was
made to /dev/null.

ioctl Subroutines

The ioctl operations provide run-time services. The special files support the
following ioctl operations:

Keyboard

IOCINFO Returns the devinfo structure.
KSQUERYID Queries the keyboard device identifier.
KSQUERYSV Queries the keyboard service vector.
KSREGRING Registers the input ring.

KSRFLUSH Flushes the input ring.

KSLED Sets and resets the keyboard LEDs.
KSCFGCLICK Configures the clicker.

KSVOLUME Sets the alarm volume.

KSALARM Sounds the alarm.

KSTRATE Sets the typematic rate.
KSTDELAY Sets the typematic delay.
KSKAP Enables and disables the keep-alive poll.

KSKAPACK Acknowledges the keep-alive poll.
KSDIAGMODEEnables and disables the diagnostics mode.

© Copyright IBM Corp. 1997, 1999 179

Mouse

Tablet

Notes:

1. A nonactive channel processes only IOCINFO, KSQUERYID,
KSQUERYSV, KSREGRING, KSRFLUSH, KSKAP, and KSKAPACK. All
other ioctl subroutine calls are ignored without error.

2. The KSLED, KSCFGCLICK, KSVOLUME, KSALARM, KSTRATE, and
KSTDELAY ioctl subroutine calls return an EBUSY error in the errno
global variable when the keyboard is in diagnostics mode.

3. The KSQUERYSYV ioctl subroutine call is only available when the channel
is open from kernel mode (with the fp_open kernel service).

4. The KSKAP, KSKAPACK, KSDIAGMODE ioctl subroutine calls are only
available when the channel is open from user mode.

IOCINFO Returns the devinfo structure.
MQUERYID Queries the mouse device identifier.
MREGRING Registers the input ring.
MRFLUSH Flushes the input ring.
MTHRESHOLD Sets the mouse reporting threshold.
MRESOLUTION Sets the mouse resolution.
MSCALE Sets the mouse scale.
MSAMPLERATE Sets the mouse sample rate.

IOCINFO Returns the devinfo structure.
TABQUERYID Queries the tablet device identifier.
TABREGRING Registers the input ring.
TABFLUSH Flushes the input ring.

TABCONVERSION Sets the tablet conversion mode.
TABRESOLUTION Sets the tablet resolution.
TABORIGIN Sets the tablet origin.
TABSAMPLERATE Sets the tablet sample rate.
TABDEADZONE Sets the tablet dead zones.

GIO (Graphics 1/0) Adapter

Dials

LPFK

IOCINFO Returns the devinfo structure.
GIOQUERYID Returns the ID of the attached devices.

IOCINFO Returns the devinfo structure.
DIALREGRING Registers the input ring.
DIALRFLUSH Flushes the input ring.
DIALSETGRAND Sets the dial granularity.

IOCINFO Returns the devinfo structure.
LPFKREGRING Registers the input ring.

180 Kernel Extensions and Device Support Programming Concepts

LPFKRFLUSH Flushes the input ring.
LPFKLIGHT Sets and resets the key lights.

Input Ring

Data is obtained from graphic input devices via a circular First-In First-Out (FIFO)
queue or input ring, rather than with a read subroutine call. The memory address
of the input ring is registered with an ioctl (or fp_ioctl) subroutine call. The
program that registers the input ring is the owner of the ring and is responsible for
allocating, initializing, and freeing the storage associated with the ring. The same
input ring can be shared by multiple devices.

The input ring consists of the input ring header followed by the reporting area.
The input ring header contains the reporting area size, the head pointer, the tail
pointer, the overflow flag, and the notification type flag. Before registering an input
ring, the ring owner must ensure that the head and tail pointers contain the
starting address of the reporting area. The overflow flag must also be cleared and
the size field set equal to the number of bytes in the reporting area. After the input
ring has been registered, the owner can modify only the head pointer and the
notification type flag.

Data stored on the input ring is structured as one or more event reports. Event
reports are placed at the tail of the ring by the graphic input device drivers.
Previously queued event reports are taken from the head of the input ring by the
owner of the ring. The input ring is empty when the head and tail locations are the
same. An overflow condition exists if placement of an event on the input ring
would overwrite data that has not been processed. Following an overflow, new
event reports are not placed on the input ring until the input ring is flushed via an
ioctl subroutine or service vector call.

The owner of the input ring is notified when an event is available for processing
via a SIGMSG signal or via callback if the channel was created by an fp_open
subroutine call. The notification type flag in the input ring header specifies
whether the owner should be notified each tine an event is placed on the ring or
only when an event is placed on an empty ring.

Management of Multiple Keyboard Input Rings

When multiple keyboard channels are opened, keyboard events are placed on the
input ring associated with the most recently opened channel. When this channel is
closed, the alternate channel is activated and keyboard events are placed on the
input ring associated with that channel.

Event Report Formats

Each event report consists of an identifier followed by the report size in bytes, a
time stamp (system time in milliseconds), and one or more bytes of
device-dependent data. The value of the identifier is specified when the input ring
is registered. The program requesting the input-ring registration is responsible for
identifier uniqueness within the input-ring scope.

Note: Event report structures are placed on the input-ring without spacing.
Data wraps from the end to the beginning of the reporting area. A report can
be split on any byte boundary into two non-contiguous sections.

The event reports are as follows:

Chapter 8. Graphic Input Devices Subsystem 181

Keyboard

ID

Length

Time stamp

Key position code
Key scan code
Status flags

Tablet

D

Length
Time stamp
Absolute X
Absolute Y

LPFK

1D

Length

TIme stamp

Number of key pressed

Dials

ID

Length

Time stamp

Number of dial changed
Delta change

Mouse

ID

Length

Time stamp
Delta X
Delta Y
Button status

Keyboard Service Vector

Specifies the report identifier.

Specifies the report length.

Specifies the system time (in milliseconds).
Specifies the key position code.

Specifies the key scan code.

Specifies the status flags.

Specifies the report identifier.

Specifies the report length.

Specifies the system time (in milliseconds).
Specifies the absolute X coordinate.
Specifies the absolute Y coordinate.

Specifies the report identifier.

Specifies the report length.

Specifies the system time (in milliseconds).
Specifies the number of the key pressed.

Specifies the report identifier.

Specifies the report length.

Specifies the system time (in milliseconds).
Specifies the number of the dial changed.
Specifies delta dial rotation.

Specifies the report identifier.

Specifies the report length.

Specifies the system time (in milliseconds).
Specifies the delta mouse motion along the X axis.
Specifies the delta mouse motion along the Y axis.
Specifies the button status.

The keyboard service vector provides a limited set of keyboard-related and
sound-related services for kernel extensions. The following services are available:

¢ Sound alarm

* Enable and disable secure attention key (SAK)

* Flush input queue

The address of the service vector is obtained with the fp_ioctl subroutine call
during a non-critical period. The kernel extension can later invoke the service
using an indirect call as follows:

(*ServiceVector[ServiceNumber]) (dev_t DeviceNumber, caddr_t Arg);

182 Kernel Extensions and Device Support Programming Concepts

where:

* The service vector is a pointer to the service vector obtained by the
KSQUERYSYV fp_loctl subroutine call.

* The ServiceNumber parameter is defined in the inputdd.h file.

* The DeviceNumber parameter specifies the major and minor numbers of the
keyboard.

* The Arg parameter points to a ksalarm structure for alarm requests and a uint
variable for SAK enable and disable requests. The Arg parameter is NULL for
flush queue requests.

If successful, the function returns a value of 0 is returned. Otherwise, the function
returns an error number defined in the errno.h file. Flush-queue and
enable/disable-SAK requests are always processed, but alarm requests are ignored
if the kernel extension’s channel is inactive.

The following example uses the service vector to sound the alarm:

/* pinned data structures */
/* This example assumes that pinning is done elsewhere. */
int (*xksvtbl) ();

struct ksalarm alarm;

dev_t devno;

/* get address of service vector */

/* This should be done in a noncritical section */

if (fp_ioct1(fp, KSQUERYSV, &ksvtbl, 0)) {

/* error recovery x/

}

/* critical section */
/* sound alarm for 1 second using service vector */
alarm.duration = 128;

alarm.frequency = 100;

if ((xksvtb1[KSVALARM]) (devno, &alarm)) {

/* error recovery x/

}

Special Keyboard Sequences

Special keyboard sequences are provided for the Secure Attention Key (SAK) and
the Keep Alive Poll (KAP).

Secure Attention Key

The user requests a secure shell by keying a secure attention. The keyboard driver
interprets the key sequence CTRL x r as the SAK. An indirect call using the
keyboard service vector enables and disables the detection of this key sequence. If
detection of the SAK is enabled, a SAK causes the SAK callback to be invoked. The
SAK callback is invoked even if the input ring is inactive due to a user process
issuing an open to the keyboard special file. The SAK callback runs within the
interrupt environment.

Keep Alive Poll

The keyboard device driver supports a special key sequence that kills the process
which owns the keyboard. This sequence must first be defined with a KSKAP ioctl
operation. After this sequence is defined, the keyboard device driver sends a
SIGKAP signal to the process which owns the keyboard when the special
sequence is entered on the keyboard. The process which owns the keyboard must
acknowledge the KSKAP signal with a KSKAPACK ioctl within 30 seconds or the

Chapter 8. Graphic Input Devices Subsystem 183

keyboard driver will terminate the process with a SIGKILL signal. The KAP is
enabled on a per-channel basis and is unavailable if the channel is owned by a
kernel extension.

184 Kernel Extensions and Device Support Programming Concepts

Chapter 9. Low Function Terminal Subsystem

This chapter discusses the following topics:

The low function terminal (Ift) interface is a pseudo device driver that interfaces
with device drivers for the system keyboard and display adapters. Beginning with
AIX Version 4.1, the Ift interface adheres to all standard requirements for pseudo
device drivers and has all the entry points and configuration code as required by
the AIX Version 4.1 (or later) device driver architecture. This section gives a
high-level description of the various configuration methods and entry points
provided by the 1ft interface.

All the device drivers controlled by the Ift interface are also used by AIXwindows.
Consequently, along with the functions required for the tty sybsystem interface, the
Ift interface provides the functions required by AIXwindows interfaces with
display device driver adapters.

Low Function Terminal Interface Functional Description

Configuration

The Ift interface uses the common define, undefine, and unconfig methods
standard for most devices.

Note: The Ift interface does not support any change method for dynamically
changing the Ift configuration. Instead, use the -P flag with the chdev
command. The changes become effective the next time the Ift interface is
configured.

The configuration process for the lft opens all display device drivers. To define the
default display and console, select the default display and console during the
console configuration process. If a graphics display is chosen as the system
console, it automatically becomes the default display. The Ift interface displays text
on the default display.

The configuration process for the 1ft interface queries the ODM database for the
available fonts and software keyboard map for the current session.

Terminal Emulation

The Ift interface is a stream-based tty subsystem. The Ift interface provides VT100
(or IBM 3151) terminal emulation for the standard part of the ANSI 3.64 data
stream. All line discipline handling is performed in the layers above the Ift
interface. The 1ft interface does not support virtual terminals.

The Ift interface supports multiple fonts to handle the different screen sizes and

resolutions necessary in providing a 25x80 character display on various display
adapters.

© Copyright IBM Corp. 1997, 1999 185

Note: Applications requiring hft extensions need to use aixterm.
IOCTLS Needed for AIXwindow Support

AIXwindows and the Ift interface share the system keyboard and display device
drivers. To prevent screen and keyboard inconsistencies, a set of ioctls coordinates
usage between AIXwindows and the Ift interface. On a system with multiple
displays, the 1ft interface can still use the default display as long as AIXwindows is
using another display.

Note: The Ift interface provides ioctl support to set and change the default
display.

Low Function Terminal to System Keyboard Interface

The 1ft interface with the system keyboard uses an input ring mechanism. The
details of the keyboard driver ioctls, as well as the format and description of this
input ring, are provided in the /Chapter 8 Graphic Input Devices Suhsystem” onl
Eﬁ. The keyboard device driver passes raw keystrokes to the 1ft interface.
These keystrokes are converted to the appropriate code point using keyboard
tables. The use of keyboard-language-dependent keyboard tables ensures that the
Ift interface provides National Language Support.

Note: The keystroke conversion and the keyboard tables are the same used by
the hft interface in AIX Version 3.

Low Function Terminal to Display Device Driver Interface

The 1ft uses a device independent interface known as the virtual display driver
(vdd) interface. Because the 1ft interface has no virtual terminal or monitor mode
support, some of the vdd entry points are not used by the Ift.

The display drivers might enqueue font request through the font process started

during Ift initialization. The font process pins and unpins the requested fonts for
DMA to the display adapter.

Low Function Terminal Device Driver Entry Points

The 1ft interface supports the open, close, read, write, ioctl, and configuration entry
points.

Components Affected by the Low Function Terminal Interface

Configuration User Commands

The 1ft interface is a pseudo device driver. Consequently, the system configuration
process does not detect the 1ft interface as it does an adapter. The system provides
for pseudo device drivers to be started through Config Rules. To start the 1ft
interface, use the startlft program.

Supported commands include:
* lsfont

¢ mkfont

186 Kernel Extensions and Device Support Programming Concepts

* chfont
* Iskbd
* chkbd
* Isdisp (see note)
* chdisp (see note)

Notes:
1. Isdisp outputs the logical device name instead of the instance number.
2. chdisp uses the ioctl interface to the Ift to set the requested display.

Display Device Driver

Beginning with AIX Version 4.1, a display device driver is required for each
supported display adapter.

The display device drivers provide all the standard interfaces (such as config,
initialize, terminate, and so forth) required in any AIX Version 4.1 (or later) device
drivers. The only device switch table entries supported are open, close, config, and
ioctl. All other device switch table entries are set to nodev. In addition, the display
device drivers provide a set of ioctls for use by AIXwindows and diagnostics to
perform device specific functions such as get bus access, bus memory address,
DMA operations, and so forth.

Rendering Context Manager

The Rendering Context Manager (RCM) is a loadable module.

Note: Previously, the hft interface provided AIXwindows with the
gsc_handle. This handle is used in all of the aixgsc system calls. The RCM
provides this service for the Ift interface.

To ensure that Ift can recover the display in case AIXwindows should terminate
abnormally, AIXwindows issues the ioctl to RCM after opening the pseudo device.
RCM passes on the ioctl to the 1ft. This way, the close function in RCM is invoked
(Because AIXwindows is the only application that has opened RCM), and RCM
notifies the Ift interface to start reusing the display. To support this communication,
the RCM provides the required ioctl support.

The RCM to Ift Interface Initialization:
1. RCM performs the open /dev/lft.

2. Upon receiving a list of displays from X, RCM passes the information to the 1ft
through an ioctl.

3. RCM resets the adapter.

If AIXwindows terminates abnormally:

1. RCM receives notification from X about the displays it was using.
2. RCM resets the adapter.

3. RCM passes the information to the Ift via an ioctl.

The AlXwindows to Ift Initialization includes:
1. AIXwindows opens /dev/rcm.
2. AIXwindows gets the gsc_handle from RCM via an ioctl.

Chapter 9. Low Function Terminal Subsystem 187

3. AIXwindows becomes a graphics process aixgsc (MAKE_GP, ...)

4. AIXwindows, through an ioctl, informs RCM about the displays it wishes to
use.

5. AIXwindows opens all of the input devices it needs and passes the same input
ring to each of them.

Upon normal termination:
1. Xissues a close to all of the input devices it opened.
2. Xinforms RCM, through an ioctl, about the displays it was using.

Diagnostics

Diagnostics and other applications that require access to the graphics adapter use
the AIXwindows to Ift interface.

Accented Characters

Here are the valid sets of characters for each of the diacritics that the Low Function
Terminal (LFT) subsystem uses to validate the two-key nonspacing character
sequence.

List of Diacritics Supported by the HFT LFT Subsystem

There are seven diacritic characters for which sets of characters are provided:
* Acute (@)

* Grave (@)

+ Circumflex (184)

e Umlaut (@)

« Tilde (189)

* Overcircle (@)

+ Cedilla (184)

Valid Sets of Characters (Categorized by Diacritics)

Acute Function Code Value
Acute accent Oxef
Apostrophe (acute) 0x27
e Acute small 0x82
e Acute capital 0x90
a Acute small 0xa0
i Acute small Oxal
o Acute small 0xa2
u Acute small Oxa3
a Acute capital 0xb5
i Acute capital Oxd6
y Acute small Oxec
y Acute capital Oxed
o Acute capital 0Oxe0
u Acute capital 0xe9
Grave Function Code Value
Grave accent 0x60

188 Kernel Extensions and Device Support Programming Concepts

Grave Function
a Grave small
e Grave small

i Grave small
o Grave small
u Grave small
a Grave capital
e Grave capital
i Grave capital
o Grave capital
u Grave capital

Circumflex Function
" Circumflex accent
a Circumflex small
e Circumflex small

i Circumflex small

o Circumflex small
u Circumflex small
a Circumflex capital
e Circumflex capital
i Circumflex capital
o Circumflex capital
u Circumflex capital

Umlaut Function
Umlaut accent

u Umlaut small
a Umlaut small

e Umlaut small

i Umlaut small

a Umlaut capital
O Umlaut capital
u Umlaut capital
e Umlaut capital
i Umlaut capital

Tilde Function
Tilde accent

n Tilde small

n Tilde capital

a Tilde small

a Tilde capital

o Tilde small

o Tilde capital
Overcircle Function
Overcircle accent

a Overcircle small
a Overcircle capital
Cedilla Function
Cedilla accent

¢ Cedilla capital

¢ Cedilla small

Code Value
0x85
0x8a
0x8d
0x95
0x97
0xb7
Oxd4
Oxde
Oxe3
Oxeb

Code Value
0x5e
0x83
0x88
0x8¢
0x93
0x96
0xb6
0xd2
0xd7
Oxe2
Oxea

Code Value
0xf9
0x81
0x84
0x89
0x8b
0x8e
0x99
0x9a
0xd3
0xd8

Code Value
0x7e
Oxa4
Oxab
0xc6
0xc7
Oxe4
0Oxe5
Code Value
0x7d
0x86
0x8f
Code Value
0xf7
0x80
0x87

Chapter 9. Low Function Terminal Subsystem

189

190 Kernel Extensions and Device Support Programming Concepts

Chapter 10. Logical Volume Subsystem

Logical volume subsystem provides flexible access and control for complex
physical storage systems.

The following topics describe how the logical volume device driver (LVDD)
interacts with physical volumes:

* Logical Volume Subsystem

Direct Access Storage Devices (DASDs)

Direct access storage devices (DASDs) are fixed or removable storage devices.
Typically, these devices are hard disks. A fixed storage device is any storage device
defined during system configuration to be an integral part of the system DASD.
The operating system detects an error if a fixed storage device is not available at
some time during normal operation.

A removable storage device is any storage device defined by the person who
administers your system during system configuration to be an optional part of the
system DASD. The removable storage device can be removed from the system at
any time during normal operation. As long as the device is logically unmounted
first, the operating system does not detect an error.

The following types of devices are not considered DASD and are not supported by
the logical volume manager (LVM):

* Diskettes
* CD-ROM (compact disk read-only memory)
* WORM (write-once read-many)

For a description of the DASD device block level, see “'DASD Device Black T evel

Description” an page 299

Physical Volumes

A logical volume is a portion of a physical volume viewed by the system as a
volume. Logical records are records defined in terms of the information they
contain rather than physical attributes.

A physical volume is a DASD structured for requests at the physical level, that is,
the level at which a processing unit can request device-independent operations on
a physical block address basis. A physical volume is composed of the following:

* A device-dependent reserved area
* A variable number of physical blocks that serve as DASD descriptors

© Copyright IBM Corp. 1997, 1999 191

* An integral number of partitions, each containing a fixed number of physical
blocks

When performing I/O at a physical level, no bad-block relocation is supported.
Bad blocks are not hidden at this level as they are at the logical level (see

4 i i Z). Typical operations
at the physical level are read-physical-block and write-physical-block.

The following are terms used when discussing DASD volumes:

block A contiguous, 512-byte region of a physical volume that corresponds in size
to a DASD sector
partition A set of blocks (with sequential cylinder, head, and sector numbers)

contained within a single physical volume

The number of blocks in a partition, as well as the number of partitions in a given
physical volume, are fixed when the physical volume is installed in a volume
group. Every physical volume in a volume group has exactly the same partition
size. There is no restriction on the types of DASDs (for example, Small Computer
Systems Interface (SCSI), Enhanced Small Device Interface (ESDI), or IPI) that can
be placed in a given volume group.

Note: A given physical volume must be assigned to a volume group before
that physical volume can be used by the LVM.

Physical Volume Implementation Limitations

When composing a physical volume from a DASD, the following implementation
restrictions apply to DASD characteristics:

* 1 to 32 physical volumes per volume group
* The partition size is restricted to 2**n bytes, for 20 <= n <= 30
* The physical block size is restricted to 512 bytes

Physical Volume Layout

A physical volume consists of a logically contiguous string of physical sectors.
Sectors are numbered 0 through the last physical sector number (LPSN) on the
physical volume. The total number of physical sectors on a physical volume is
LPSN + 1. The actual physical location and physical order of the sectors are
transparent to the sector numbering scheme.

Note: Sector numbering applies to user-accessible data sectors only. Spare
sectors and Customer-Engineer (CE) sectors are not included. CE sectors are
reserved for use by diagnostic test routines or microcode.

Reserved Sectors on a Physical Volume

A physical volume reserves the first 128 sectors to store various types of DASD
configuration and operation information. The /usr/include/sys/hd_psn.h file
describes the information stored on the reserved sectors. The locations of the items
in the reserved area are expressed as physical sector numbers in this file, and the
lengths of those items are in number of sectors.

192 Kernel Extensions and Device Support Programming Concepts

The 128-sector reserved area of a physical volume includes a boot record, the
bad-block directory, the LVM record, and the mirror write consistency (MWC)
record. The boot record consists of one sector containing information that allows
the read-only system (ROS) to boot the system. A description of the boot record
can be found in the /usr/include/sys/bootrecord.h file.

The boot record also contains the pv_id field. This field is a 64-bit number
uniquely identifying a physical volume. This identifier is assigned by the
manufacturer of the physical volume. However, if a physical volume is part of a
volume group, the pv_id field may be assigned by the LVM.

The bad-block directory records the blocks on the physical volume that have been

”

diagnosed as unusable (see L
@). The structure of the bad-block directory and its entries can be found in
the /ustr/include/sys/bbdir.h file.

The LVM record consists of one sector and contains information used by the LVM
when the physical volume is a member of the volume group. The LVM record is
described in the /usr/include/lvmrec.h file.

The MWC record consists of one sector. It identifies which logical partitions may
be inconsistent if the system is not shut down properly. When the volume group is
varied back online for use, this information is used to make logical partitions
consistent again.

Sectors Reserved for the Logical Volume Manager (LVM)

If a physical volume is part of a volume group, the physical volume is used by the
LVM and contains two additional reserved areas. One area contains the volume
group descriptor area/volume group status area and follows the first 128 reserved
sectors. The other area is at the end of the physical volume reserved as a relocation
pool for bad blocks that must be software-relocated. Both of these areas are
described by the LVM record. The space between these last two reserved areas is
divided into equal-sized partitions.

The volume group descriptor area (VGDA) is divided into the following:

* The volume group header. This header contains general information about the
volume group and a time stamp used to verify the consistency of the VGDA.

* A list of logical volume entries. The logical volume entries describe the states
and policies of logical volumes. This list defines the maximum number of logical
volumes allowed in the volume group. The maximum is specified when a
volume group is created.

* A list of physical volume entries. The size of the physical volume list is variable
because the number of entries in the partition map can vary for each physical
volume. For example, a 200 MB physical volume with a partition size of 1 MB
has 200 partition map entries.

* A name list. This list contains the special file names of each logical volume in
the volume group.

* A volume group trailer. This trailer contains an ending time stamp for the
volume group descriptor area.

When a volume group is varied online, a majority (also called a quorum) of
VGDAs must be present to perform recovery operations unless you have specified
the force flag. (The vary-on operation, performed by using the varyonvg
command, makes a volume group available to the system.) See "Logical Volume

Chapter 10. Logical Volume Subsystem 193

Storage Overview” in AIX Version 4.3 System Management Guide: Operating System
and Devices for introductory information about the vary-on process and quorums.

Note: Use of the force flag can result in data inconsistency.

A volume group with only one physical volume must contain two copies of the
physical volume group descriptor area. For any volume group containing more
than one physical volume, there are at least three on-disk copies of the volume
group descriptor area. The default placement of these areas on the physical volume
is as follows:

* For the first physical volume installed in a volume group, two copies of the
volume group descriptor area are placed on the physical volume.

* For the second physical volume installed in a volume group, one copy of the
volume group descriptor area is placed on the physical volume.

* For the third physical volume installed in a volume group, one copy of the
volume group descriptor area is placed on the physical volume. The second
copy is removed from the first volume.

* For additional physical volumes installed in a volume group, one copy of the
volume group descriptor area is placed on the physical volume.

When a vary-on operation is performed, a majority of copies of the volume group
descriptor area must be able to come online before the vary-on operation is
considered successful. A quorum ensures that at least one copy of the volume
group descriptor areas available to perform recovery was also one of the volume
group descriptor areas that were online during the previous vary-off operation. If
not, the consistency of the volume group descriptor area cannot be ensured.

The volume group status area (VGSA) contains the status of all physical volumes
in the volume group. This status is limited to active or missing. The VGSA also
contains the state of all allocated physical partitions (PP) on all physical volumes
in the volume group. This state is limited to active or stale. A PP with a stale state
is not used to satisfy a read request and is not updated on a write request.

A PP changes from active to stale after a successful resynchronization of the logical
partition (LP) that has multiple copies, or mirrors, and is no longer consistent with
its peers in the LP. This inconsistency can be caused by a write error or by not
having a physical volume available when the LP is written to or updated.

A PP changes from stale to active after a successful resynchronization of the LP. A
resynchronization operation issues resynchronization requests starting at the
beginning of the LP and proceeding sequentially through its end. The LVDD reads
from an active partition in the LP and then writes that data to any stale partition
in the LP. When the entire LP has been traversed, the partition state is changed
from stale to active.

Normal I/O can occur concurrently in an LP that is being resynchronized.

Note: If a write error occurs in a stale partition while a resynchronization is
in progress, that partition remains stale.

If all stale partitions in an LP encounter write errors, the resynchronization
operation is ended for this LP and must be restarted from the beginning.

The vary-on operation uses the information in the VGSA to initialize the LVDD
data structures when the volume group is brought online.

194 Kernel Extensions and Device Support Programming Concepts

Understanding the Logical Volume Device Driver

The Logical Volume Device Driver (LVDD) is a pseudo-device driver that operates
on logical volumes through the /dev/lvn special file. Like the physical disk device
driver, this pseudo-device driver provides character and block entry points with
compatible arguments. Each volume group has an entry in the kernel device
switch table. Each entry contains entry points for the device driver and a pointer to
the volume group data structure. The logical volumes of a volume group are
distinguished by their minor numbers.

Note: Each logical volume has a control block located in the first 512 bytes.
Data begins in the second 512-byte block. Care must be taken when reading
and writing directly to the logical volume, such as when using applications
that write to raw logical volumes, because the control block is not protected
from such writes. If the control block is overwritten, commands that use it
can no longer be used.

Character 1/0 requests are performed by issuing a read or write request on a
/dev/rlvn character special file for a logical volume. The read or write is processed
by the file system SVC handler, which calls the LVDD ddread or ddwrite entry
point. The ddread or ddwrite entry point transforms the character request into a
block request. This is done by building a buffer for the request and calling the
LVDD ddstrategy entry point.

Block I/0 requests are performed by issuing a read or write on a block special file
/dev/lvn for a logical volume. These requests go through the SVC handler to the
bread or bwrite block I/0 kernel services. These services build buffers for the
request and call the LVDD ddstrategy entry point. The LVDD ddstrategy entry
point then translates the logical address to a physical address (handling bad block
relocation and mirroring) and calls the appropriate physical disk device driver.

On completion of the I/0O, the physical disk device driver calls the iodone kernel
service on the device interrupt level. This service then calls the LVDD I/0
completion-handling routine. Once this is completed, the LVDD calls the iodone
service again to notify the requester that the I/O is completed.

The LVDD is logically split into top and bottom halves. The top half contains the
ddopen, ddclose, ddread, ddwrite, ddioctl, and ddconfig entry points. The bottom
half contains the ddstrategy entry point, which contains block read and write code.
This is done to isolate the code that must run fully pinned and has no access to
user process context. The bottom half of the device driver runs on interrupt levels
and is not permitted to page fault. The top half runs in the context of a process
address space and can page fault.

Data Structures

The interface to the ddstrategy entry point is one or more logical buf structures in
a list. The logical buf structure is defined in the /usr/include/sys/buf.h file and
contains all needed information about an 1/O request, including a pointer to the
data buffer. The ddstrategy entry point associates one or more (if mirrored)
physical buf structures (or pbufs) with each logical buf structure and passes them
to the appropriate physical device driver.

Chapter 10. Logical Volume Subsystem 195

The pbuf structure is a standard buf structure with some additional fields. The
LVDD uses these fields to track the status of the physical requests that correspond
to each logical 1/O request. A pool of pinned pbuf structures is allocated and
managed by the LVDD.

There is one device switch entry for each volume group defined on the system.

Each volume group entry contains a pointer to the volume group data structure
describing it.

Top Half of LVDD

The top half of the LVDD contains the code that runs in the context of a process
address space and can page fault. It contains the following entry points:

ddopen Called by the file system when a logical volume is mounted, to open the
logical volume specified.
ddclose Called by the file system when a logical volume is unmounted, to close the

logical volume specified.

ddconfig Initializes data structures for the LVDD.

ddread Called by the read subroutine to translate character I/O requests to block I/O
requests. This entry point verifies that the request is on a 512-byte boundary
and is a multiple of 512 bytes in length.

When a character request spans partitions or logical tracks (32 pages of 4K
bytes each), the LVDD ddread routine breaks it into multiple requests. The
routine then builds a buffer for each request and passes it to the LVDD
ddstrategy entry point, which handles logical block I/O requests.

If the ext parameter is set (called by the readx subroutine), the ddread entry
point passes this parameter to the LVDD ddstrategy routine in the b_options
field of the buffer header.

ddwrite Called by the write subroutine to translate character I/O requests to block I/O
requests. The LVDD ddwrite routine performs the same processing for a write
request as the LVDD ddread routine does for read requests.

ddioctl Supports the following operations:

CACLNUP
Causes the mirror write consistency (MWC) cache to be written to all
physical volumes (PVs) in a volume group.

IOCINFO, XLATE, GETVGSA
Return LVM configuration information and PP status information.

LV_INFO
Provides information about a logical volume. This ioctl operation is
available beginning with AIX Version 4.2.1.

PBUFCNT
Increases the number of physical buffer headers (pbufs) in the LVM
pbuf pool.

Bottom Half of the LVDD

The bottom half of the device driver supports the ddstrategy entry point. This
entry point processes all logical block requests and performs the following
functions:

* Validates I/O requests.

196 Kernel Extensions and Device Support Programming Concepts

* Checks requests for conflicts (such as overlapping block ranges) with requests
currently in progress.

* Translates logical addresses to physical addresses.
* Handles mirroring and bad-block relocation.

The bottom half of the LVDD runs on interrupt levels and, as a result, is not
permitted to page fault. The bottom half of the LVDD is divided into the following
three layers:

o t'Scheduler Laver

e I'Physical Laver

Each logical I/O request passes down through the bottom three layers before
reaching the physical disk device driver. Once the I/0O is complete, the request
returns back up through the layers to handle the I/O completion processing at
each layer. Finally, control returns to the original requestor.

Strategy Layer

The strategy layer deals only with logical requests. The ddstrategy entry point is
called with one or more logical buf structures. A list of buf structures for requests
that are not blocked are passed to the second layer, the scheduler.

Scheduler Layer
The scheduler layer schedules physical requests for logical operations and handles

mirroring and the MWC cache. For each logical request the scheduler layer
schedules one or more physical requests. These requests involve translating logical
addresses to physical addresses, handling mirroring, and calling the LVDD
physical layer with a list of physical requests.

When a physical 1/O operation is complete for one phase or mirror of a logical
request, the scheduler initiates the next phase (if there is one). If no more I/O
operations are required for the request, the scheduler calls the strategy termination
routine. This routine notifies the originator that the request has been completed.

The scheduler also handles the MWC cache for the volume group. If a logical
volume is using mirror write consistency, then requests for this logical volume are
held within the scheduling layer until the MWC cache blocks can be updated on
the target physical volumes. When the MWC cache blocks have been updated, the
request proceeds with the physical data write operations.

When MWC is being used, system performance can be adversely affected. This is
caused by the overhead of logging or journalling that a write request is active in a
logical track group (LTG) (32 4K-byte pages or 128K bytes). This overhead is for
mirrored writes only. It is necessary to guarantee data consistency between mirrors
particularly if the system crashes before the write to all mirrors has been
completed.

Mirror write consistency can be turned off for an entire logical volume. It can also
be inhibited on a request basis by turning on the NO_MWC flag as defined in the
/usr/include/sys/lvdd.h file.

Physical Layer

The physical layer of the LVDD handles startup and termination of the physical
request. The physical layer calls a physical disk device driver’s ddstrategy entry

Chapter 10. Logical Volume Subsystem 197

point with a list of buf structures linked together. In turn, the physical layer is
called by the iodone kernel service when each physical request is completed.

This layer also performs bad-block relocation and detection/correction of bad
blocks, when necessary. These details are hidden from the other two layers.

Interface to Physical Disk Device Drivers

Physical disk device drivers adhere to the following criteria if they are to be
accessed by the LVDD:

* Disk block size must be 512 bytes.

* The physical disk device driver needs to accept a list of requests defined by buf
structures, which are linked together by the av_forw field in each buf structure.

* For unrecoverable media errors, physical disk device drivers need to set the
following:

— The B_ERROR flag must be set to on (defined in the /ust/include/sys/buf.h
file) in the b_fTlags field.

— The b_error field must be set to E_MEDIA (defined in the
/usr/include/sys/errno.h file).

— The b_resid field must be set to the number of bytes in the request that were
not read or written successfully. The b_resid field is used to determine the
block in error.

Note: For write requests, the LVDD attempts to hardware-relocate the
bad block. If this is unsuccessful, then the block is software-relocated.
For read requests, the information is recorded and the block is relocated
on the next write request to that block.

* For a successful request that generated an excessive number of retries, the device
driver can return good data. To indicate this situation it must set the following:

— The b_error field is set to ESOFT; this is defined in the
lusr/include/sys/errno.h file.

— The b_flags field has the B_ERROR flag set to on.

— The b_resid field is set to a count indicating the first block in the request that
had excessive retries. This block is then relocated.

* The physical disk device driver needs to accept a request of one block with
HWRELOC (defined in the /usr/include/sys/lvdd.h file) set to on in the
b_options field. This indicates that the device driver is to perform a hardware
relocation on this request. If the device driver does not support hardware
relocation the following should be set:

— The b_error field is set to EIO; this is defined in the /ust/include/sys/errno.h
file.

— The b_flags field has the B_ERROR flag set on.

— The b_resid field is set to a count indicating the first block in the request that
has excessive retries.

* The physical disk device driver should support the system dump interface as
defined.

* The physical disk device driver must support write verification on an I/O
request. Requests for write verification are made by setting the b_options field
to WRITEV. This value is defined in the /usr/include/sys/lvdd.h file.

198 Kernel Extensions and Device Support Programming Concepts

Understanding Logical Volumes and Bad Blocks

The physical layer of the LVDD initiates all bad-block processing and isolates all of
the decision making from the physical disk device driver. This happens so the
physical disk device driver does not need to handle mirroring, which is the
duplication of data transparent to the user. (See ['Physical Layer” an page 197.)

Relocating Bad Blocks

The physical layer of the logical volume device driver (LVDD) checks each
physical request to see if there are any known software-relocated bad blocks in the
request. The LVDD determines if a request contains known software-relocated bad
blocks by hashing the physical address. Then a hash chain of the LVDD defects
directory is searched to see if any bad-block entries are in the address range of the
request.

If bad blocks exist in a physical request, the request is split into pieces. The first
piece contains any blocks up to the relocated block. The second piece contains the
relocated block (the relocated address is specified in the bad-block entry) of the
defects directory. The third piece contains any blocks after the relocated block to
the end of the request or to the next relocated block. These separate pieces are
processed sequentially until the entire request has been satisfied.

Once the I/0O for the first of the separate pieces has completed, the iodone kernel
service calls the LVDD physical layer’s termination routine (specified in the b_done
field of the buf structure). The termination routine initiates I/O for the second
piece of the original request (containing the relocated block), and then for the third
piece. When the entire physical operation is completed, the appropriate scheduler’s
policy routine (in the second layer of the LVDD) is called to start the next phase of
the logical operation.

Detecting and Correcting Bad Blocks

If a logical volume is mirrored, a newly detected bad block is fixed by relocating
that block. A good mirror is read and then the block is relocated using data from
the good mirror. With mirroring, the user does not need to know when bad blocks
are found. However, the physical disk device driver does log permanent I/O errors
so the user can determine the rate of media surface errors.

When a bad block is detected during 1/0O, the physical disk device driver sets the
error fields in the buf structure to indicate that there was a media surface error.
The physical layer of the LVDD then initiates any bad-block processing that must
be done.

If the operation was a nonmirrored read, the block is not relocated because the
data in the relocated block is not initialized until a write is performed to the block.
To support this delayed relocation, an entry for the bad block is put into the LVDD
defects directory and into the bad-block directory on disk. These entries contain no
relocated block address and the status for the block is set to indicate that relocation
is desired.

On each I/0O request, the physical layer checks whether there are any bad blocks in
the request. If the request is a write and contains a block that is in a
relocation-desired state, the request is sent to the physical disk device driver
with safe hardware relocation requested. If the request is a read, a read of the
known defective block is attempted.

Chapter 10. Logical Volume Subsystem 199

If the operation was a read operation in a mirrored LP, a request to read one of the
other mirrors is initiated. If the second read is successful, then the read is turned
into a write request and the physical disk device driver is called with safe
hardware relocation specified to fix the bad mirror.

If the hardware relocation fails or the device does not support safe hardware
relocation, the physical layer of the LVDD attempts software relocation. At the end
of each volume is a reserved area used by the LVDD as a pool of relocation blocks.
When a bad block is detected and the disk device driver is unable to relocate the
block, the LVDD picks the next unused block in the relocation pool and writes to
this new location. A new entry is added to the LVDD defects directory in memory
(and to the bad-block directory on disk) that maps the bad-block address to the
new relocation block address. Any subsequent I/O requests to the bad-block
address are routed to the relocation address.

Attention: Formatting a fixed disk deletes any data that may be on the disk.
Format a fixed disk only when absolutely necessary and preferably after
backing up all data on the disk.

If you need to format a fixed disk completely (including reinitializing any bad
blocks), use the formatting function supplied by the diag command. (The diag
command typically, but not necessarily, writes over all data on a fixed disk. Refer
to the documentation that comes with the fixed disk to determine the effect of
formatting with the diag command.)

Changing the mwcc_entries Variable

200

The default for the number of the logical volume manager mirror write consistency
cache (MWCC) is 62, or 0x3e is the hexadecimal. This number is double the
original default and improves the user’s write performance, but it also increases
the time needed to make all mirrors consistent again at volume-group vary-on time
after a crash. These variables are all system load-dependent.

Note: This procedure modifies the LVM device driver binary code using the
adb command. Care should be taken when following this procedure.

Prerequisite Tasks or Conditions

* You must have root user authority.

Procedure

1. Change to the /usr/lib/drivers directory.
2. At the command line, type:
dump -h hd_pin

In the .data section header is the RAWptr file, which contains a hex address.
Record this address to be used later. An example hex address is 0x0000fc00.

3. At the command line, type:
dump -n hd_pin | grep mwcc_entries

The second field displayed is the offset for the variable. An example is
0x000003f8.

4. Add the hex address found in the RAWptr file to the offset for the variable to
get the address of the mwcc_entries variable. For example:

Kernel Extensions and Device Support Programming Concepts

11.

12.

0x0000fcO0 + 0x000003f8 = 0x0000fff8

Make a copy of the hd_pin file by typing the following at the command line:
cp hd_pin hd_pin.orig

Use the adb command to modify the hd_pin file binary by typing the
following at the command line:

abd -w hd_pin

Note: The adb command issues a warning that the string table is missing
or the object is being stripped.

Issue the following command in response to the adb command to verify you
have the correct address:

OxADDR/X
where ADDR is the address you generated in step 4.

If the hd_pin file has not been modified in this way, the adb command
responds with:

ADDR: 3e

If this procedure has been done, the adb command responds with:
ADDR: zz

where zz is the current value, from 0x1 to 0x3e, for the number of MWCC
entries. If the value is not between 0x1 and 0x3e, check that you are using the
correct address.

Modify the address to the value you want for the number of MWCC entries
by typing the following at the command line:

OXADDR/W zz

where ADDR is the address derived in step 4 and zz is a hex number between
0x1 and 0x3e.

Exit the adb command by using the Ctrl-D key sequence.

Rebuild the startup logical volume by typing the following at the command
line:

bosboot -a

Shut down the system by typing the following at the command line:
shutdown -F

Restart the system.

The system runs with the size of the mirror write consistency cache set to the
new value.

Note: The new mwecce_entries value must be from 0x1 to 0x3e, inclusive.
Unpredictable results occur if these bounds are violated.

Chapter 10. Logical Volume Subsystem 201

202 Kernel Extensions and Device Support Programming Concepts

Chapter 11. Printer Addition Management Subsystem

If you are configuring a printer for your system, there are basically two types of
printers: printers already supported by the operating system and new printer
types. "Printer Support” in AIX Version 4.3 Guide to Printers and Printing lists
printers that are already supported.

Printer Types Currently Supported

To configure a supported type of printer, you need only to run the mkvirprt
command to create a customized printer file for your printer. This customized
printer file, which is in the /var/spool/lpd/pio/@local/custom directory, describes
the specific parameters for your printer. For more information see "Configuring a
Printer without Adding a Queue” in AIX Version 4.3 Guide to Printers and Printing.

Printer Types Currently Unsupported

To configure a currently unsupported type of printer, you must develop and add a
Predefined printer definition for your printer. This new option is then entered in
the list of available choices when the user selects a printer to configure for the
system. The actual data used by the printer subsystem comes from the Customized
printer definition created by the mkvirprt command.

r'Adding a New Printer Type to Your System” 1 provides general instructions for
adding an undefined printer. To add an undefined printer, you modify an existing
printer definition. Undefined printers fall into two categories:

* Printers that closely emulate a supported printer. You can use SMIT or the
virtual printer commands to make the changes you need.

* Printers that do not emulate a supported printer or that emulate several data
streams. It is simpler to make the necessary changes for these printers by editing
the printer colon file. See "Adding a Printer Using the Printer Colon File” in AIX
Version 4.3 Guide to Printers and Printing.

s . . ”

offers an overview of
the major steps required to add an unsupported device of any type to your system.

Adding a New Printer Type to Your System

To add an unsupported printer to your system, you must add a new Printer
definition to the printer directories. For more complicated scenarios, you might
also need to add a new printer-specific formatter to the printer backend.

"Example of Print Formatter” in AIX Version 4.3 Guide to Printers and Printing
shows how the print formatter interacts with the printer formatter subroutines.

Additional Steps for Adding a New Printer Type

However, if you want the new Printer definition to carry the name of the new
printer, you must develop a new Predefined definition to carry the new printer
information besides adding a new Printer definition. Use the piopredef command
to do this.

© Copyright IBM Corp. 1997, 1999 203

Steps for adding a new printer-specific formatter to the printer backend are
discussed in L i i i ” .
"Example of Print Formatter” in AIX Version 4.3 Guide to Printers and Printing
shows how print formatters can interact with the printer formatter subroutines.

Note: These instructions apply to the addition of a new printer definition to
the system, not to the addition of a physical printer device itself. For
information on adding a new printer device, refer to device configuration and
management. If your new printer requires an interface other than the parallel
or serial interface provided by the operating system, you must also provide a
new device driver.

If the printer being added does not emulate a supported printer or if it emulates
several data streams, you need to make more changes to the Printer definition. It is
simpler to make the necessary changes for these printers by editing the printer
colon file. See "Adding a Printer Using the Printer Colon File” in AIX Version 4.3
Guide to Printers and Printing.

Modifying Printer Attributes

Edit the customized file (/var/spool/lpd/pio/custom
/var/spool/lpd/pio/@local/custom QueueName:QueueDeviceName), adding or changing
the printer attributes to match the new printer.

For example, assume that you created a new file based on the existing 4201-3
printer. The customized file for the 4201-3 printer contains the following template
that the printer formatter uses to initialize the printer:

%1[ez,em,eA,cv,eC,e0,cp,cC, . . .

The formatter fills in the string as directed by this template and sends the resulting
sequence of commands to the 4201-3 printer. Specifically, this generates a string of
escape sequences that initialize the printer and set such parameters as vertical and
horizontal spacing and page length. You would construct a similar command string
to properly initialize the new printer and put it into 4201-emulation mode. While
many of the escape sequences might be the same, at least one will be different: the
escape sequence that is the command to put the printer into the specific
printer-emulation mode. Assume that you added an ep attribute that specifies the
string to initialize the printer to 4201-3 emulation mode, as follows:

\033\012\013

The Printer Initialization field will then be:

%I[ep,ez,em,eA,cv,eC,e0,cp,cCc, . . .

You must create a virtual printer for each printer-emulation mode you want to use.
See "Real and Virtual Printers” in AIX Version 4.3 Guide to Printers and Printing.

Adding a Printer Definition

To add a new printer to the system, you must first create a description of the
printer by adding a new printer definition to the printer definition directories.

Typically, to add a new printer definition to the database, you first modify an

existing printer definition and then create a customized printer definition in the
Customized Printer Directory.

204 Kernel Extensions and Device Support Programming Concepts

Once you have added the new customized printer definition to the directory, the
mkvirprt command uses it to present the new printer as a choice for printer
addition and selection. Since the new printer definition is a customized printer
definition, it appears in the list of printers under the name of the original printer
from which it was customized.

A totally new printer must be added as a predefined printer definition in the
/usr/lib/lpd/pio/predef directory. If the user chooses to work with printers once
this new predefined printer definition is added to the Predefined Printer Directory,
the mkvirprt command can then list all the printers in that directory. The added
printer appears on the list of printers given to the user as if it had been supported
all along. Specific information about this printer can then be extended, added,
modified, or deleted, as necessary.

"Printer Support” in AIX Version 4.3 Guide to Printers and Printing lists the
supported printer types and names of representative printers.

Adding a Printer Formatter to the Printer Backend

If your new printer’s data stream differs significantly from one of the numerous
printer data streams currently handled by the operating system, you must define a
new backend formatter. Adding a new formatter does not require the addition of a
new backend. Instead, all you typically need are modifications to the formatter
commands associated with that printer under the supervision of the existing
printer backend. If a new backend is required, see "Printer Backend Overview for
Programming” in AIX Version 4.3 Guide to Printers and Printing.

Understanding Embedded References in Printer Attribute Strings

The attribute string retrieved by the piocmdout, piogetstr, and piogetvals
subroutines can contain embedded references to other attribute strings or integers.
The attribute string can also contain embedded logic that dynamically determines
the content of the constructed string. This allows the constructed string to reflect
the state of the formatter environment when one of these subroutines is called.

Embedded references and logic are defined with escape sequences that are placed
at appropriate locations in the attribute string. The first character of each escape
sequence is always the % character. This character indicates the beginning of an
escape sequence. The second character (and sometimes subsequent characters)
define the operation to be performed. The remainder of the characters (if any) in
the escape sequence are operands to be used in performing the specified operation.

The escape sequences that can be specified in an attribute string are based on the
terminfo parameterized string escape sequences for terminals. These escape
sequences have been modified and extended for printers.

The attribute names that can be referenced by attribute strings are:

* The names of all attribute variables (which can be integer or string variables)
defined to the piogetvals subroutine. When references are made to these
variables, the piogetvals-defined versions are the values used.

 All other attributes names in the database. These attributes are considered string
constants.

Chapter 11. Printer Addition Management Subsystem 205

Any attribute value (integer variable, string variable, or string constant) can be
referenced by any attribute string. Consequently, it is important that the formatter
ensures that the values for all the integer variables and string variables defined to
the piogetvals subroutine are kept current.

The formatter must not assume that the particular attribute string whose name it
specifies to the piogetstr or piocmdout subroutine does not reference certain
variables. The attribute string is retrieved from the database that is external to the
formatter. The values in the database represented by the string can be changed to
reference additional variables without the formatter’s knowledge.

206 Kernel Extensions and Device Support Programming Concepts

Chapter 12. Small Computer System Interface Subsystem

This overview describes the interface between a small computer system interface
(SCSI) device driver and a SCSI adapter device driver. It is directed toward those
wishing to design and write a SCSI device driver that interfaces with an existing
SCSI adapter device driver. It is also meant for those wishing to design and write a
SCSI adapter device driver that interfaces with existing SCSI device drivers.

SCSI Subsystem Overview

The main topics covered in this overview are:

D r'RpQPani’hi]inQ of the SCSI Device Driver’l

. G pl _ 77

4! ”

This section frequently refers to both a SCSI device driver and a SCSI adapter device
driver. These two distinct device drivers work together in a layered approach to
support attachment of a range of SCSI devices. The SCSI adapter device driver is
the lower device driver of the pair, and the SCSI device driver is the upper device
driver.

Responsibilities of the SCSI Adapter Device Driver

The SCSI adapter device driver (the lower layer) is the software interface to the
system hardware. This hardware includes the SCSI bus hardware plus any other
system I/O hardware required to run an I/O request. The SCSI adapter device
driver hides the details of the I/O hardware from the SCSI device driver. The
design of the software interface allows a user with limited knowledge of the
system hardware to write the upper device driver.

The SCSI adapter device driver manages the SCSI bus but not the SCSI devices. It
can send and receive SCSI commands, but it cannot interpret the contents of the
command. The lower driver also provides recovery and logging for errors related
to the SCSI bus and system I/O hardware. Management of the device specifics is
left to the SCSI device driver. The interface of the two drivers allows the upper
driver to communicate with different SCSI bus adapters without requiring special
code paths for each adapter.

Responsibilities of the SCSI Device Driver

The SCSI device driver (the upper layer) provides the rest of the operating system
with the software interface to a given SCSI device or device class. The upper layer
recognizes which SCSI commands are required to control a particular SCSI device
or device class. The SCSI device driver builds I/O requests containing device SCSI
commands and sends them to the SCSI adapter device driver in the sequence
needed to operate the device successfully. The SCSI device driver cannot manage
adapter resources or give the SCSI command to the adapter. Specifics about the
adapter and system hardware are left to the lower layer.

© Copyright IBM Corp. 1997, 1999 207

The SCSI device driver also provides recovery and logging for errors related to the
SCSI device it controls.

The operating system provides several kernel services allowing the SCSI device
driver to communicate with SCSI adapter device driver entry points without
having the actual name or address of those entry points. The description contained

in Logical File System Kernel Services” an page 51 can provide more information.
Communication between SCSI Devices

When two SCSI devices communicate, one assumes the initiator-mode role, and the
other assumes the target-mode role. The initiator-mode device generates the SCSI
command, which requests an operation, and the target-mode device receives the
SCSI command and acts. It is possible for a SCSI device to perform both roles
simultaneously.

When writing a new SCSI adapter device driver, the writer must know which
mode or modes must be supported to meet the requirements of the SCSI adapter
and any interfaced SCSI device drivers. When a SCSI adapter device driver is
added so that a new SCSI adapter works with all existing SCSI device drivers, both
initiator-mode and target-mode must be supported in the SCSI adapter device
driver.

Initiator-Mode Support

The interface between the SCSI device driver and the SCSI adapter device driver
for initiator-mode support (that is, the attached device acts as a target) is accessed
through calls to the SCSI adapter device driver open, close, ioctl, and strategy
routines. I/O requests are queued to the SCSI adapter device driver through calls
to its strategy entry point.

Communication between the SCSI device driver and the SCSI adapter device
driver for a particular initiator I/O request is made through the sc_buf structure
(see 1 Tndprqfanding the sc_buf Structure” on page 21 51), which is passed to and
from the strategy routine in the same way a standard driver uses a struct buf
structure.

Target-Mode Support

The interface between the SCSI device driver and the SCSI adapter device driver
for target-mode support (that is, the attached device acts as an initiator) is accessed
through calls to the SCSI adapter device driver open, close, and ioctl subroutines.
Buffers that contain data received from an attached initiator device are passed from
the SCSI adapter device driver to the SCSI device driver, and back again, in
tm_buf structures.

Communication between the SCSI adapter device driver and the SCSI device
driver for a particular data transfer is made by passing the tm_buf structures by
pointer directly to routines whose entry points have been previously registered.
This registration occurs as part of the sequence of commands the SCSI device
driver executes using calls to the SCSI adapter device driver when the device
driver opens a target-mode device instance.

208 Kernel Extensions and Device Support Programming Concepts

Understanding SCSI Asynchronous Event Handling

Note: This operation is not supported by all SCSI I/O controllers.

A SCSI device driver can register a particular device instance for receiving
asynchronous event status by calling the SCIOEVENT ioctl operation for the
SCSl-adapter device driver. When an event covered by the SCIOEVENT ioctl
operation is detected by the SCSI adapter device driver, it builds an sc_event_info
structure and passes a pointer to the structure and to the asynchronous
event-handler routine entry point, which was previously registered. The fields in
the structure are filled in by the SCSI adapter device driver as follows:

id

lun

mode

events

adap_devno

async_correlator

For initiator mode, this is set to the SCSI ID of the attached SCSI
target device. For target mode, this is set to the SCSI ID of the
attached SCSI initiator device.

For initiator mode, this is set to the SCSI LUN of the attached SCSI
target device. For target mode, this is set to 0).

Identifies whether the initiator or target mode device is being
reported. The following values are possible:

SC_IM_MODE
An initiator mode device is being reported.

SC_TM_MODE
A target mode device is being reported.

This field is set to indicate what event or events are being reported.
The following values are possible, as defined in the
lusr/include/sys/scsi.h file:

SC_FATAL_HDW_ERR
A fatal adapter hardware error occurred.

SC_ADAP_CMD_FAILED
An unrecoverable adapter command failure occurred.

SC_SCSI_RESET_EVENT
A SCSI bus reset was detected.

SC_BUFS_EXHAUSTED
In target-mode, a maximum buffer usage event has
occurred.

This field is set to indicate the device major and minor numbers of
the adapter on which the device is located.

This field is set to the value passed to the SCSI adapter device
driver in the sc_event_struct structure. The SCSI device driver may
optionally use this field to provide an efficient means of associating
event status with the device instance it goes with. Alternatively, the
SCSI device driver would use the combination of the id, Tun, mode,
and adap_devno fields to identify the device instance.

Note: Reserved fields should be set to 0 by the SCSI adapter device driver.

The information reported in the sc_event_info.events field does not queue to the
SCSI device driver, but is instead reported as one or more flags as they occur. Since
the data does not queue, the SCSI adapter device driver writer can use a single
sc_event_info structure and pass it one at a time, by pointer, to each asynchronous
event handler routine for the appropriate device instance. After determining for

Chapter 12. Small Computer System Interface Subsystem 209

which device the events are being reported, the SCSI device driver must copy the
sc_event_info.events field into local space and must not modify the contents of
the rest of the sc_event_info structure.

Since the event status is optional, the SCSI device driver writer determines what
action is necessary to take upon receiving event status. The writer may decide to
save the status and report it back to the calling application, or the SCSI device
driver or application level program can take error recovery actions.

Defined Events and Recovery Actions

The adapter fatal hardware failure event is intended to indicate that no further
commands to or from this SCSI device are likely to succeed, since the adapter it is
attached to has failed. It is recommended that the application end the session with
the device.

The unrecoverable adapter command failure event is not necessarily a fatal
condition, but it can indicate that the adapter is not functioning properly. Possible
actions by the application program include:

* Ending of the session with the device in the near future.
* Ending of the session after multiple (two or more) such events.

* Attempt to continue the session indefinitely.

The SCSI Bus Reset detection event is mainly intended as information only, but
may be used by the application to perform further actions, if necessary.

The maximum buffer usage detected event only applies to a given target-mode
device; it will not be reported for an initiator-mode device. This event indicates to
the application that this particular target-mode device instance has filled its
maximum allotted buffer space. The application should perform read system calls
fast enough to prevent this condition. If this event occurs, data is not lost, but it is
delayed to prevent further buffer usage. Data reception will be restored when the
application empties enough buffers to continue reasonable operations. The
num_bufs attribute may need to be increased to help minimize this problem. Also,
it is possible that regardless of the number of buffers, the application simply is not
processing received data fast enough. This may require some fine tuning of the
application’s data processing routines.

Asynchronous Event-Handling Routine

The SCSI-device driver asynchronous event-handling routine is typically called
directly from the hardware interrupt-handling routine for the SCSI adapter device
driver. The SCSI device driver writer must be aware of how this affects the design
of the SCSI device driver.

Since the event handling routine is running on the hardware interrupt level, the
SCSI device driver must be careful to limit operations in that routine. Processing
should be kept to a minimum. In particular, if any error recovery actions are
performed, it is recommended that the event-handling routine set state or status
flags only and allow a process level routine to perform the actual operations.

The SCSI device driver must be careful to disable interrupts at the correct level in
places where the SCSI device driver’s lower execution priority routines manipulate
variables that are also modified by the event-handling routine. To allow the SCSI
device driver to disable at the correct level, the SCSI adapter device driver writer

210 Kernel Extensions and Device Support Programming Concepts

must provide a configuration database attribute that defines the interrupt class, or
priority, it runs on. This attribute must be named intr_priority so that the SCSI
device driver configuration method knows which attribute of the parent adapter to
query. The SCSI device driver configuration method should then pass this interrupt
priority value to the SCSI device driver along with other configuration data for the
device instance.

The SCSI device driver writer must follow any other general system rules for
writing a routine which must execute in an interrupt environment. For example,
the routine must not attempt to sleep or wait on I/O operations. It can perform
wakeups to allow the process level to handle those operations.

Since the SCSI device driver copies the information from the sc_event_info.events
field on each call to its asynchronous event-handling routine, there is no resource
to free or any information which must be passed back later to the SCSI adapter
device driver.

SCSI Error Recovery

The SCSI error-recovery process handles different issues depending on whether the
SCSI device is in initiator mode or target mode. If the device is in initiator mode,
the error-recovery process varies depending on whether or not the device is
supporting command queuing.

SCSI Initiator-Mode Recovery When Not Command Tag
Queuing

If an error such as a check condition or hardware failure occurs, transactions
queued within the SCSI adapter device driver are terminated abnormally with
iodone calls. The transaction active during the error is returned with the
sc_buf.bufstruct.b_error field set to EIO. Other transactions in the queue are
returned with the sc_buf.bufstruct.b_error field set to ENXIO. The SCSI device
driver should process or recover the condition, rerunning any mode selects or
device reservations to recover from this condition properly. After this recovery, it
should reschedule the transaction that had the error. In many cases, the SCSI
device driver only needs to retry the unsuccessful operation.

The SCSI adapter device driver should never retry a SCSI command on error after
the command has successfully been given to the adapter. The consequences for
retrying a SCSI command at this point range from minimal to catastrophic,
depending upon the type of device. Commands for certain devices cannot be
retried immediately after a failure (for example, tapes and other sequential access
devices). If such an error occurs, the failed command returns an appropriate error
status with an iodone call to the SCSI device driver for error recovery. Only the
SCSI device driver that originally issued the command knows if the command can
be retried on the device. The SCSI adapter device driver must only retry
commands that were never successfully transferred to the adapter. In this case, if
retries are successful, the sc_buf status should not reflect an error. However, the
SCSI adapter device driver should perform error logging on the retried condition.

The first transaction passed to the SCSI adapter device driver during error
recovery must include a special flag. This SC_RESUME flag in the sc_buf.flags
field must be set to inform the SCSI adapter device driver that the SCSI device
driver has recognized the fatal error and is beginning recovery operations. Any
transactions passed to the SCSI adapter device driver, after the fatal error occurs

Chapter 12. Small Computer System Interface Subsystem 211

and before the SC_RESUME transaction is issued, should be flushed; that is,
returned with an error type of ENXIO through an iodone call.

Note: If a SCSI device driver continues to pass transactions to the SCSI
adapter device driver after the SCSI adapter device driver has flushed the
queue, these transactions are also flushed with an error return of ENXIO
through the iodone service. This gives the SCSI device driver a positive
indication of all transactions flushed.

If the SCSI device driver is executing a gathered write operation, the error-recovery
information mentioned previously is still valid, but the caller must restore the
contents of the sc_buf.resvdwl field and the uio struct that the field pointed to
before attempting the retry (see I‘Gathered Write Commands” on page 217). The
retry must occur from the SCSI device driver’s process level; it cannot be
performed from the caller’s iodone subroutine. Also, additional return codes of
EFAULT and ENOMEM are possible in the sc_buf.bufstruct.b_error field for a
gathered write operation.

SCSI Initiator-Mode Recovery During Command Tag Queuing

If the SCSI device driver is queuing multiple transactions to the device and either a
check condition error or a command terminated error occurs, the SCSI adapter
driver does not clear all transactions in its queues for the device. It returns the
failed transaction to the SCSI device driver with an indication that the queue for
this device is not cleared by setting the SC_DID_NOT_CLEAR_Q flag in the
sc_buf.adap_q_status field. The SCSI adapter driver halts the queue for this
device awaiting error recovery notification from the SCSI device driver. The SCSI
device driver then has three options to recover from this error:

* Send one error recovery command (request sense) to the device.
* Clear the SCSI adapter driver’s queue for this device.

* Resume the SCSI adapter driver’s queue for this device.

When the SCSI adapter driver’s queue is halted, the SCSI device drive can get
sense data from a device by setting the SC_RESUME flag in the sc_buf.flags field
and the SC_NO_Q flag in sc_buf.q_tag_msg field of the request-sense sc_buf. This
action notifies the SCSI adapter driver that this is an error-recovery transaction and
should be sent to the device while the remainder of the queue for the device
remains halted. When the request sense completes, the SCSI device driver needs to
either clear or resume the SCSI adapter driver’s queue for this device.

The SCSI device driver can notify the SCSI adapter driver to clear its halted queue
by sending a transaction with the SC_Q_CLR flag in the sc_buf.flags field. This
transaction must not contain a SCSI command because it is cleared from the SCSI
adapter driver’s queue without being sent to the adapter. However, this transaction
must have the SCSI ID field (sc_buf.scsi_command.scsi_id) and the LUN fields
(sc_buf.scsi_command.scsi_cmd.lun and sc_buf.1un) filled in with the device’s
SCSI ID and logical unit number (LUN). If addressing LUNs 8 - 31, the sc_buf.lun
field should be set to the logical unit number and the
sc_buf.scsi_command.scsi_cmd.Tun field should be zeroed out. See the descriptions
of these fields for further explanation. Upon receiving an SC_Q_CLR transaction,
the SCSI adapter driver flushes all transactions for this device and sets their
sc_buf.bufstruct.b_error fields to ENXIO. The SCSI device driver must wait
until the sc_buf with the SC_Q_CLR flag set is returned before it resumes issuing
transactions. The first transaction sent by the SCSI device driver after it receives
the returned SC_Q_CLR transaction must have the SC_RESUME flag set in the
sc_buf.flags fields.

212 Kernel Extensions and Device Support Programming Concepts

If the SCSI device driver wants the SCSI adapter driver to resume its halted queue,
it must send a transaction with the SC_Q_RESUME flag set in the sc_buf.flags
field. This transaction can contain an actual SCSI command, but it is not required.
However, this transaction must have the sc_buf.scsi_command.scsi_id,
sc_buf.scsi_command.scsi_cmd.Tun,and the sc_buf.lun fields filled in with the
device’s SCSI ID and logical unit number. See the description of these fields for
further details. If this is the first transaction issued by the SCSI device driver after
receiving the error (indicating that the adapter driver’s queue is halted), then the
SC_RESUME flag must be set as well as the SC_Q_RESUME flag.

Analyzing Returned Status

The following order of precedence should be followed by SCSI device drivers
when analyzing the returned status:

1.

If the sc_buf.bufstruct.b_flags field has the B_ERROR flag set, then an error
has occurred and the sc_buf.bufstruct.b_error field contains a valid errno
value.

If the b_error field contains the ENXIO value, either the command needs to be
restarted or it was canceled at the request of the SCSI device driver.

If the b_error field contains the EIO value, then either one or no flag is set in
the sc_buf.status_validity field. If a flag is set, an error in either the
scsi_status or general card status field is the cause.

If the status_validity field is 0, then the sc_buf.bufstruct.b_resid field
should be examined to see if the SCSI command issued was in error. The
b_resid field can have a value without an error having occurred. To decide
whether an error has occurred, the SCSI device driver must evaluate this field
with regard to the SCSI command being sent and the SCSI device being driven.

If the SCSI device driver is queuing multiple transactions to the device and if
either SC_CHECK_CONDITION or SC_COMMAND_TERMINATED is set in
scsi_status , then the value of sc_buf.adap_q_status must be analyzed to
determine if the adapter driver has cleared its queue for this device. If the SCSI
adapter driver has not cleared its queue after an error, then it holds that queue
in a halted state.

If sc_buf.adap_g_status is set to 0, the SCSI adapter driver has cleared its
queue for this device and any transactions outstanding are flushed back to the
SCSI device driver with an error of ENXIO.

If the SC_DID_NOT_CLEAR_Q flag is set in the sc_buf.adap_q_status field,
the adapter driver has not cleared its queue for this device. When this
condition occurs, the SCSI adapter driver allows the SCSI device driver to send
one error recovery transaction (request sense) that has the field
sc_buf.q_tag_msg set to SC_NO_Q and the field sc_buf.flags set to
SC_RESUME. The SCSI device driver can then notify the SCSI adapter driver
to clear or resume its queue for the device by sending a SC_Q CLR or
SC_Q_RESUME transaction.

If the SCSI device driver does not queue multiple transactions to the device
(that is, the SC_NO_Q is set in sc_buf.q_tag_msg), then the SCSI adapter
clears its queue on error and sets sc_buf.adap_g_status to 0.

If the sc_buf.bufstruct.b_flags field does not have the B_ERROR flag set,
then no error is being reported. However, the SCSI device driver should
examine the b_resid field to check for cases where less data was transferred
than expected. For some SCSI commands, this occurrence may not represent an
error. The SCSI device driver must determine if an error has occurred.

If a nonzero b_resid field does represent an error condition, then the device
queue is not halted by the SCSI adapter device driver. It is possible for one or

Chapter 12. Small Computer System Interface Subsystem 213

more succeeding queued commands to be sent to the adapter (and possibly the
device). Recovering from this situation is the responsibility of the SCSI device
driver.

3. In any of the above cases, if sc_buf.bufstruct.b_flags field has the B_ERROR
flag set, then the queue of the device in question has been halted. The first
sc_buf structure sent to recover the error (or continue operations) must have
the SC_RESUME bit set in the sc_buf.fTlags field.

Target-Mode Error Recovery

If an error occurs during the reception of send command data, the SCSI adapter
device driver sets the TM_ERROR flag in the tm_buf.user_flag field. The SCSI
adapter device driver also sets the SC_ADAPTER_ERROR bit in the
tm_buf.status_validity field and sets a single flag in the
tm_buf.general_card_status field to indicate the error that occurred.

In the SCSI subsystem, an error during a send command does not affect future
target-mode data reception. Future send commands continue to be processed by
the SCSI adapter device driver and queue up, as necessary, after the data with the
error. The SCSI device driver continues processing the send command data,
satisfying user read requests as usual except that the error status is returned for
the appropriate user request. Any error recovery or synchronization procedures the
user requires for a target-mode received-data error must be implemented in
user-supplied software.

A Typical Initiator-Mode SCSI Driver Transaction Sequence

A simplified sequence of events for a transaction between a SCSI device driver and
a SCSI adapter device driver follows. In this sequence, routine names preceded by

a dd_ are part of the SCSI device driver, while those preceded by a sc_ are part of

the SCSI adapter device driver.

1. The SCSI device driver receives a call to its dd_strategy routine; any required
internal queuing occurs in this routine. The dd_strategy entry point then
triggers the operation by calling the dd_start entry point. The dd_start routine
invokes the sc_strategy entry point by calling the devstrategy kernel service
with the relevant sc_buf structure as a parameter.

2. The sc_strategy entry point initially checks the sc_buf structure for validity.
These checks include validating the devno field, matching the SCSI ID/LUN to
internal tables for configuration purposes, and validating the request size.

3. Although the SCSI adapter device driver cannot reorder transactions, it does
perform queue chaining. If no other transactions are pending for the requested
device, the sc_strategy routine immediately calls the sc_start routine with the
new transaction. If there are other transactions pending, the new transaction is
added to the tail of the device chain.

4. At each interrupt, the sc_intr interrupt handler verifies the current status. The
SCSI adapter device driver fills in the sc_buf status_validity field, updating
the scsi_status and general_card_status fields as required. The SCSI adapter
device driver also fills in the bufstruct.b_resid field with the number of bytes
not transferred from the request. If all the data was transferred, the b_resid
field is set to a value of 0. When a transaction completes, the sc_intr routine
causes the sc_buf entry to be removed from the device queue and calls the
iodone kernel service, passing the just dequeued sc_buf structure for the device
as the parameter. The sc_start routine is then called again to process the next

214 Kernel Extensions and Device Support Programming Concepts

transaction on the device queue. The iodone kernel service calls the SCSI
device driver dd_iodone entry point, signaling the SCSI device driver that the
particular transaction has completed.

5. The SCSI device driver dd_iodone routine investigates the I/O completion
codes in the sc_buf status entries and performs error recovery, if required. If
the operation completed correctly, the SCSI device driver dequeues the original
buffer structures. It calls the iodone kernel service with the original buffer
pointers to notify the originator of the request.

Understanding SCSI Device Driver Internal Commands

During initialization, error recovery, and open or close operations, SCSI device
drivers initiate some transactions not directly related to an operating system
request. These transactions are called internal commands and are relatively simple to
handle.

Internal commands differ from operating system-initiated transactions in several
ways. The primary difference is that the SCSI device driver is required to generate
a struct buf that is not related to a specific request. Also, the actual SCSI
commands are typically more control-oriented than data transfer-related.

The only special requirement for commands with short data-phase transfers (less
than or equal to 256 bytes) is that the SCSI device driver must have pinned the
memory being transferred into or out of system memory pages. However, due to
system hardware considerations, additional precautions must be taken for data
transfers into system memory pages when the transfers are larger than 256 bytes.
The problem is that any system memory area with a DMA data operation in
progress causes the entire memory page that contains it to become inaccessible.

As a result, a SCSI device driver that initiates an internal command with more
than 256 bytes must have preallocated and pinned an area of some multiple whose
size is the system page size. The driver must not place in this area any other data
areas that it may need to access while I/O is being performed into or out of that
page. Memory pages so allocated must be avoided by the device driver from the
moment the transaction is passed to the adapter device driver until the device
driver iodone routine is called for the transaction (and for any other transactions
to those pages).

Understanding the Execution of Initiator I/O Requests

During normal processing, many transactions are queued in the SCSI device driver.
As the SCSI device driver processes these transactions and passes them to the SCSI
adapter device driver, the SCSI device driver moves them to the in-process queue.
When the SCSI adapter device driver returns through the iodone service with one
of these transactions, the SCSI device driver either recovers any errors on the
transaction or returns using the iodone kernel service to the calling level.

The SCSI device driver can send only one sc_buf structure per call to the SCSI
adapter device driver. Thus, the sc_buf.bufstruct.av_forw pointer should be null
when given to the SCSI adapter device driver, which indicates that this is the only
request. The SCSI device driver can queue multiple sc_buf requests by making
multiple calls to the SCSI adapter device driver strategy routine.

Chapter 12. Small Computer System Interface Subsystem 215

Spanned (Consolidated) Commands

Some kernel operations may be composed of sequential operations to a device. For
example, if consecutive blocks are written to disk, blocks may or may not be in
physically consecutive buffer pool blocks.

To enhance SCSI bus performance, the SCSI device driver should consolidate
multiple queued requests when possible into a single SCSI command. To allow the
SCSI adapter device driver the ability to handle the scatter and gather operations
required, the sc_buf.bp should always point to the first buf structure entry for the
spanned transaction. A null-terminated list of additional struct buf entries should
be chained from the first field through the buf.av_forw field to give the SCSI
adapter device driver enough information to perform the DMA scatter and gather
operations required. This information must include at least the buffer’s starting
address, length, and cross-memory descriptor.

The spanned requests should always be for requests in either the read or write
direction but not both, since the SCSI adapter device driver must be given a single
SCSI command to handle the requests. The spanned request should always consist
of complete I/O requests (including the additional struct buf entries). The SCSI
device driver should not attempt to use partial requests to reach the maximum
transfer size.

The maximum transfer size is actually adapter-dependent. The IOCINFO ioctl
operation can be used to discover the SCSI adapter device driver’s maximum
allowable transfer size. To ease the design, implementation, and testing of
components that may need to interact with multiple SCSI-adapter device drivers, a
required minimum size has been established that all SCSI adapter device drivers
must be capable of supporting. The value of this minimum/maximum transfer size
is defined as the following value in the /usr/include/sys/scsi.h file:

SC_MAXREQUEST /* maximum transfer request for a single */
/* SCSI command (in bytes) =/

If a transfer size larger than the supported maximum is attempted, the SCSI
adapter device driver returns a value of EINVAL in the sc_buf.bufstruct.b_error
field.

Due to system hardware requirements, the SCSI device driver must consolidate
only commands that are memory page-aligned at both their starting and ending
addresses. Specifically, this applies to the consolidation of inner memory buffers.
The ending address of the first buffer and the starting address of all subsequent
buffers should be memory page-aligned. However, the starting address of the first
memory buffer and the ending address of the last do not need to be aligned so.

The purpose of consolidating transactions is to decrease the number of SCSI
commands and bus phases required to perform the required operation. The time
required to maintain the simple chain of buf structure entries is significantly less
than the overhead of multiple (even two) SCSI bus transactions.

Fragmented Commands

Single I/O requests larger than the maximum transfer size must be divided into
smaller requests by the SCSI device driver. For calls to a SCSI device driver’s
character I/O (read/write) entry points, the uphysio kernel service can be used to
break up these requests. For a fragmented command such as this, the sc_buf.bp field

216 Kernel Extensions and Device Support Programming Concepts

should be null so that the SCSI adapter device driver uses only the information in
the sc_buf structure to prepare for the DMA operation.

Gathered Write Commands

The gathered write commands facilitate communications applications that are
required to send header and trailer messages with data buffers. These headers and
trailers are typically the same or similar for each transfer. Therefore, there may be a
single copy of these messages but multiple data buffers.

The gathered write commands, accessed through the sc_buf.resvdl field, differ

from the spanned commands, accessed through the sc_buf.bp field, in several

ways:

* Gathered write commands can transfer data regardless of address alignment,
while spanned commands must be memory page-aligned in address and length,
making small transfers difficult.

* Gathered write commands can be implemented either in software (which
requires the extra step of copying the data to temporary buffers) or hardware.
Spanned commands can be implemented in system hardware due to
address-alignment requirements. As a result, spanned commands are potentially
faster to run.

* Gathered write commands are not able to handle read requests. Spanned
commands can handle both read and write requests.

* Gathered write commands can be initiated only on the process level, but
spanned commands can be initiated on either the process or interrupt level.

To execute a gathered write command, the SCSI device driver must:
* Fill in the resvdl field with a pointer to the uio struct.

* Call the SCSI adapter device driver on the same process level with the sc_buf
structure in question.

* Be attempting a write.
* Not have put a non-null value in the sc_buf.bp field.

If any of these conditions are not met, the gather write commands do not succeed
and the sc_buf.bufstruct.b_error is set to EINVAL.

This interface allows the SCSI adapter device driver to perform the gathered write
commands in both software or hardware as long as the adapter supports this
capability. Because the gathered write commands can be performed in software (by
using such kernel services as uiomove), the contents of the resvdl field and the
uio struct can be altered. Therefore, the caller must restore the contents of both the
resvdl field and the uio struct before attempting a retry. Also, the retry must occur
from the process level; it must not be performed from the caller’s iodone
subroutine.

To support SCSI adapter device drivers that perform the gathered write commands
in software, additional return values in the sc_buf.bufstruct.b_error field are
possible when gathered write commands are unsuccessful.

ENOMEMETrror due to lack of system memory to perform copy.
EFAULT Error due to memory copy problem.

Chapter 12. Small Computer System Interface Subsystem 217

Note: The gathered write command facility is optional for both the SCSI
device driver and the SCSI adapter device driver. Attempting a gathered
write command to a SCSI adapter device driver that does not support
gathered write can cause a system crash. Therefore, any SCSI device driver
must issue a SCIOGTHW ioctl operation to the SCSI adapter device driver
before using gathered writes. A SCSI adapter device driver that supports
gathered writes must support the SCIOGTHW ioctl as well. The ioctl returns
a successful return code if gathered writes are supported. If the ioctl fails, the
SCSI device driver must not attempt a gathered write. Typically, a SCSI
device driver places the SCIOGTHW call in its open routine for device
instances that it will send gathered writes to.

SCSI Command Tag Queuing

Note: This operation is not supported by all SCSI I/O controllers.

SCSI command tag queuing refers to queuing multiple commands to a SCSI
device. Queuing to the SCSI device can improve performance because the device
itself determines the most efficient way to order and process commands. SCSI
devices that support command tag queuing can be divided into two classes: those
that clear their queues on error and those that do not. Devices that do not clear
their queues on error resume processing of queued commands when the error
condition is cleared (typically by receiving the next command). Devices that do
clear their queues flush all commands currently outstanding.

Command tag queueing requires the SCSI adapter, the SCSI device, the SCSI
device driver, and the SCSI adapter driver to support this capability. For a SCSI
device driver to queue multiple commands to a SCSI device (that supports
command tag queuing), it must be able to provide at least one of the following
values in the sc_buf.q _tag _msg: SC_SIMPLE_Q, SC_HEAD_OF_Q, or
SC_ORDERED_Q. The SCSI disk device driver and SCSI adapter driver do
support this capability. This implementation provides some queuing-specific
changeable attributes for disks that can queue commands. With this information,
the disk device driver attempts to queue to the disk, first by queuing commands to
the adapter driver. The SCSI adapter driver then queues these commands to the
adapter, providing that the adapter supports command tag queuing. If the SCSI
adapter does not support command tag queuing, then the SCSI adapter driver
sends only one command at a time to the SCSI adapter and so multiple commands
are not queued to the SCSI disk.

Understanding the sc_buf Structure

Fields

The sc_buf structure is used for communication between the SCSI device driver
and the SCSI adapter device driver during an initiator I/O request. This structure
is passed to and from the strategy routine in the same way a standard driver uses
a struct buf structure.

in the sc_buf Structure

The sc_buf structure contains certain fields used to pass a SCSI command and
associated parameters to the SCSI adapter device driver. Other fields within this
structure are used to pass returned status back to the SCSI device driver. The
sc_buf structure is defined in the /ust/include/sys/scsi.h file.

Fields in the sc_buf structure are used as follows:

218 Kernel Extensions and Device Support Programming Concepts

1. Reserved fields should be set to a value of 0, except where noted.

2. The bufstruct field contains a copy of the standard buf buffer structure that
documents the I/O request. Included in this structure, for example, are the
buffer address, byte count, and transfer direction. The b_work field in the buf
structure is reserved for use by the SCSI adapter device driver. The current
definition of the buf structure is in the /usr/include/sys/buf.h include file.

3. The bp field points to the original buffer structure received by the SCSI Device
Driver from the caller, if any. This can be a chain of entries in the case of
spanned transfers (SCSI commands that transfer data from or to more than
one system-memory buffer). A null pointer indicates a nonspanned transfer.
The null value specifically tells the SCSI adapter device driver that all the
information needed to perform the DMA data transfer is contained in the
bufstruct fields of the sc_buf structure. If the bp field is set to a non-null
value, the sc_buf.resvdl field must have a value of null, or else the operation
is not allowed.

4. The scsi_command field, defined as a scsi structure, contains, for example, the
SCSI ID, SCSI command length, SCSI command, and a flag variable:

a. The scsi_length field is the number of bytes in the actual SCSI command.
This is normally 6, 10, or 12 (decimal).

b. The scsi_id field is the SCSI physical unit ID.
c. The scsi_flags field contains the following bit flags:

SC_NODISC Do not allow the target to disconnect during this command.
SC_ASYNC Do not allow the adapter to negotiate for synchronous transfer to the SCSI
device.

During normal use, the SC_NODISC bit should not be set. Setting this bit
allows a device executing commands to monopolize the SCSI bus.
Sometimes it is desirable for a particular device to maintain control of the
bus once it has successfully arbitrated for it; for instance, when this is the
only device on the SCSI bus or the only device that will be in use. For
performance reasons, it may not be desirable to go through SCSI selections
again to save SCSI bus overhead on each command.

Also during normal use, the SC_ASYNC bit must not be set. It should be
set only in cases where a previous command to the device ended in an
unexpected SCSI bus free condition. This condition is noted as
SC_SCSI_BUS_FAULT in the general_card_status field of the sc_cmd
structure. Since other errors may also result in the SC_SCSI_BUS_FAULT
flag being set, the SC_ASYNC bit should only be set on the last retry of
the failed command.

d. The sc_cmd structure contains the physical SCSI command block. The 6 to
12 bytes of a single SCSI command are stored in consecutive bytes, with
the op code and logical unit identified individually. The sc_cmd structure
contains the following fields:

* The scsi_op_code field specifies the standard SCSI op code for this
command.

* The lun field specifies the standard SCSI logical unit for the physical
SCSI device controller. Typically, there will be one LUN per controller
(LUN=0, for example) for devices with imbedded controllers. Only the
upper 3 bits of this field contain the actual LUN ID. If addressing LUN’s
0 - 7, this lun field should always be filled in with the LUN value.
When addressing LUN’s 8 - 31, this lun field should be set to 0 and the
LUN value should be placed into the sc_buf.lun field described in this
section.

Chapter 12. Small Computer System Interface Subsystem 219

* The scsi_bytes field contains the remaining command-unique bytes of
the SCSI command block. The actual number of bytes depends on the
value in the scsi_op_code field.

* The resvdl field is set to a non-null value to indicate a request for a
gathered write. A gathered write means the SCSI command conducts a
system-to-device data transfer where multiple, noncontiguous system
buffers contain the write data. This data is transferred in order as a
single data transfer for the SCSI command in this sc_buf structure.

The contents of the resvdl field, if non-null, must be a pointer to the uio
structure that is passed to the SCSI device driver. The SCSI adapter
device driver treats the resvdl field as a pointer to a uio structure that
accesses the iovec structures containing pointers to the data. There are
no address-alignment restrictions on the data in the iovec structures.
The only restriction is that the total transfer length of all the data must
not exceed the maximum transfer length for the adapter device driver.

The sc_buf.bufstruct.b_un.b_addr field, which normally contains the
starting system-buffer address, is ignored and can be altered by the SCSI
adapter device driver when the sc_buf is returned. The
sc_buf.bufstruct.b_bcount field should be set by the caller to the total
transfer length for the data.

5. The timeout_value field specifies the time-out limit (in seconds) to be used for
completion of this command. A time-out value of 0 means no time-out is
applied to this I/O request.

6. The status_validity field contains an output parameter that can have one of
the following bit flags as a value:

SC_SCSI_ERROR The scsi_status field is valid.
SC_ADAPTER_ERROR The general_card_status field is valid.

7. The scsi_status field in the sc_buf structure is an output parameter that
provides valid SCSI command completion status when its status_validity bit is
nonzero. The sc_buf.bufstruct.b_error field should be set to EIO anytime the
scsi_status field is valid. Typical status values include:

SC_GOOD_STATUS The target successfully completed the command.

SC_CHECK_CONDITION The target is reporting an error, exception, or other
conditions.

SC_BUSY_STATUS The target is currently busy and cannot accept a

command now.

SC_RESERVATION_CONFLICT The target is reserved by another initiator and cannot
be accessed.

SC_COMMAND_TERMINATED The target terminated this command after receiving a
terminate I/O process message from the SCSI adapter.

SC_QUEUE_FULL The target’s command queue is full, so this command is
returned.

8. The general_card_status field is an output parameter that is valid when its
status_validity bit is nonzero. The sc_buf.bufstruct.b_error field should be
set to EIO anytime the general_card_status field is valid. This field contains
generic SCSI adapter card status. It is intentionally general in coverage so that
it can report error status from any typical SCSI adapter.

If an error is detected during execution of a SCSI command, and the error
prevented the SCSI command from actually being sent to the SCSI bus by the
adapter, then the error should be processed or recovered, or both, by the SCSI
adapter device driver.

220 Kernel Extensions and Device Support Programming Concepts

If it is recovered successfully by the SCSI adapter device driver, the error is
logged, as appropriate, but is not reflected in the general_card_status byte. If
the error cannot be recovered by the SCSI adapter device driver, the
appropriate general_card_status bit is set and the sc_buf structure is returned
to the SCSI device driver for further processing.

If an error is detected after the command was actually sent to the SCSI device,
then it should be processed or recovered, or both, by the SCSI device driver.

For error logging, the SCSI adapter device driver logs SCSI bus- and
adapter-related conditions, while the SCSI device driver logs SCSI
device-related errors. In the following description, a capital letter A" after the
error name indicates that the SCSI adapter device driver handles error logging.
A capital letter "H" indicates that the SCSI device driver handles error logging.

Some of the following error conditions indicate a SCSI device failure. Others
are SCSI bus- or adapter-related.

SC_HOST_IO_BUS_ERR (A) The system I/O bus generated or detected an
error during a DMA or Programmed I/0 (PIO)
transfer.

SC_SCSI_BUS_FAULT (H) The SCSI bus protocol or hardware was
unsuccessful.

SC_CMD_TIMEOUT (H) The command timed out before completion.

SC_NO_DEVICE_RESPONSE (H) The target device did not respond to selection
phase.

SC_ADAPTER_HDW_FAILURE (A) The adapter indicated an onboard hardware
failure.

SC_ADAPTER_SFW_FAILURE (A) The adapter indicated microcode failure.

SC_FUSE_OR_TERMINAL_PWR (A) The adapter indicated a blown terminator fuse or
bad termination.

SC_SCSI_BUS_RESET (A) The adapter indicated the SCSI bus has been
reset.

9. When the SCSI device driver queues multiple transactions to a device, the
adap_q_status field indicates whether or not the SCSI adapter driver has
cleared its queue for this device after an error has occurred (see

ing”). The flag of SC_DID_NOT CLEAR_Q
indicates that the SCSI adapter driver has not cleared its queue for this device
and that it is in a halted state (so none of the pending queued transactions are
sent to the device).

10. The lun field provides addressability of up to 32 logical units (LUNSs). This
field specifies the standard SCSI LUN for the physical SCSI device controller.
If addressing LUN’s 0 - 7, both this lun field (sc_buf.lun) and the lun field
located in the scsi_command structure (sc_buf.scsi_command.scsi_cmd.lun)
should be set to the LUN value. If addressing LUN’s 8 - 31, this lun field
(sc_buf.lun) should be set to the LUN value and the lun field located in the
scsi_command structure (sc_buf.scsi_command.scsi_cmd.lun) should be set to
0.

Logical Unit Numbers (LUNs)

lun Fields LUNO-7 LUN 8 - 31
sc_buf.Tun LUN Value LUN Value
sc_buf.scsi_command.scsi_cmd.lun LUN Value 0

Note: LUN wvalue is the current value of LUN.

Chapter 12. Small Computer System Interface Subsystem 221

11. The q_tag msg field indicates if the SCSI adapter can attempt to queue this
transaction to the device (see !SCSI Command Tag Quening” on page 214).
This information causes the SCSI adapter to fill in the Queue Tag Message
Code of the queue tag message for a SCSI command. The following values are
valid for this field:

SC_NO_Q Specifies that the SCSI adapter does not send a queue tag message for
this command, and so the device does not allow more than one SCSI
command on its command queue. This value must be used for all
commands sent to SCSI devices that do not support command tag
queuing.

SC_SIMPLE_Q Specifies placing this command in the device’s command queue. The
device determines the order that it executes commands in its queue. The
SCSI-2 specification calls this value the "Simple Queue Tag Message.”

SC_HEAD_OF_Q Specifies placing this command first in the device’s command queue.
This command does not preempt an active command at the device, but
it is executed before all other commands in the command queue. The
SCSI-2 specification calls this value the "Head of Queue Tag Message.”

SC_ORDERED_Q Specifies placing this command in the device’s command queue. The
device processes these commands in the order that they are received.
The SCSI-2 specification calls this value the "Ordered Queue Tag
Message.”

Note: Commands with the value of SC_NO_Q for the q_tag_msg field
(except for request sense commands) should not be queued to a device
whose queue contains a command with another value for q_tag_msg. If
commands with the SC_NO_Q value (except for request sense) are sent
to the device, then the SCSI device driver must make sure that no active
commands are using different values for q_tag_msg. Similarly, the SCSI
device driver must also make sure that a command with a q_tag_msg
value of SC_ORDERED_Q, SC_HEAD_Q, or SC_SIMPLE_Q is not sent
to a device that has a command with the q_tag_msg field of SC_NO_Q.

12. The flags field contains bit flags sent from the SCSI device driver to the SCSI
adapter device driver. The following flags are defined:

SC_RESUME When set, means the SCSI adapter device driver should resume
transaction queuing for this ID/LUN. Error recovery is complete after a
SCIOHALT operation, check condition, or severe SCSI bus error. This
flag is used to restart the SCSI adapter device driver following a
reported error.

SC_DELAY_CMD When set, means the SCSI adapter device driver should delay sending
this command (following a SCSI reset or BDR to this device) by at least
the number of seconds specified to the SCSI adapter device driver in its
configuration information. For SCSI devices that do not require this
function, this flag should not be set.

222 Kernel Extensions and Device Support Programming Concepts

SC_Q _CLR When set, means the SCSI adapter driver should clear its transaction
queue for this ID/LUN. The transaction containing this flag setting does
not require an actual SCSI command in the sc_buf because it is flushed
back to the SCSI device driver with the rest of the transactions for this
ID/LUN. However, this transaction must have the SCSI ID field
(sc_buf.scsi_command.scsi_id) and the LUN fields
(sc_buf.scsi_command.scsi_cmd.Tun and sc_buf.Tun) filled in with the
device’s SCSI ID and logical unit number (LUN). This flag is valid only
during error recovery of a check condition or command terminated at a
command tag queuing device when the SC_DID_NOT_CLR_Q flag is

set in the sc_buf.adap_q_status field (see ESCSI Command Tag
Queuing” on page 218).
Note: When addressing LUN’s 8 - 31, be sure to see the
description of the sc_buf.lun field within the sc_buf structure.
SC_Q_RESUME When set, means that the SCSI adapter driver should resume its halted
transaction queue for this ID/LUN. The transaction containing this flag
setting does not require an actual SCSI command to be sent to the SCSI
adapter driver. However, this transaction must have the
sc_buf.scsi_command.scsi_id and sc_buf.scsi_command.scsi_cmd.Tun
fields filled in with the device’s SCSI ID and logical unit number. If the
transaction containing this flag setting is the first issued by the SCSI
device driver after it receives an error (indicating that the adapter
driver’s queue is halted), then the SC_RESUME flag must be set also.
Note: When addressing LUN’s 8 - 31, be sure to see the
description of the sc_buf.lun field within the sc_buf structure.

Other SCSI Design Considerations

Responsibilities of the SCSI Device Driver
SCSI device drivers are responsible for the following actions:

* Interfacing with block I/O and logical-volume device-driver code in the
operating system.

* Translating I/O requests from the operating system into SCSI commands
suitable for the particular SCSI device. These commands are then given to the
SCSI adapter device driver for execution.

* Issuing any and all SCSI commands to the attached device. The SCSI adapter
device driver sends no SCSI commands except those it is directed to send by the
calling SCSI device driver.

* Managing SCSI device reservations and releases. In the operating system, it is
assumed that other SCSI initiators may be active on the SCSI bus. Usually, the
SCSI device driver reserves the SCSI device at open time and releases it at close
time (except when told to do otherwise through parameters in the SCSI device
driver interface). Once the device is reserved, the SCSI device driver must be
prepared to reserve the SCSI device again whenever a Unit Attention condition
is reported through the SCSI request-sense data.

SCSI Options to the openx Subroutine

SCSI device drivers in the operating system must support eight defined extended
options in their open routine (that is, an openx subroutine). Additional extended
options to the open are also allowed, but they must not conflict with predefined
open options. The defined extended options are bit flags in the ext open parameter.
These options can be specified singly or in combination with each other. The
required ext options are defined in the /usr/include/sys/scsi.h header file and can

Chapter 12. Small Computer System Interface Subsystem 223

have one of the following values:

SC_FORCED_OPEN Do not honor device reservation-conflict status.
SC_RETAIN_RESERVATION Do not release SCSI device on close.
SC_DIAGNOSTIC Enter diagnostic mode for this device.
SC_NO_RESERVE Prevents the reservation of the device during an openx

subroutine call to that device. Allows multiple hosts to
share a device.

SC_SINGLE Places the selected device in Exclusive Access mode.
SC_RESV_05 Reserved for future expansion.
SC_RESV_07 Reserved for future expansion.
SC_RESV_08 Reserved for future expansion.

Using the SC_FORCED_OPEN Option

The SC_FORCED_OPEN option causes the SCSI device driver to call the SCSI
adapter device driver’s Bus Device Reset ioctl (SCIORESET) operation on the first
open. This forces the device to release another initiator’s reservation. After the
SCIORESET command is completed, other SCSI commands are sent as in a normal
open. If any of the SCSI commands fail due to a reservation conflict, the open
registers the failure as an EBUSY status. This is also the result if a reservation
conflict occurs during a normal open. The SCSI device driver should require the
caller to have appropriate authority to request the SC_FORCED_OPEN option
since this request can force a device to drop a SCSI reservation. If the caller
attempts to execute this system call without the proper authority, the SCSI device
driver should return a value of -1, with the errno global variable set to a value of
EPERM.

Using the SC_RETAIN_RESERVATION Option

The SC_RETAIN_RESERVATION option causes the SCSI device driver not to
issue the SCSI release command during the close of the device. This guarantees a
calling program control of the device (using SCSI reservation) through open and
close cycles. For shared devices (for example, disk or CD-ROM), the SCSI device
driver must OR together this option for all opens to a given device. If any caller
requests this option, the close routine does not issue the release even if other opens
to the device do not set SC_RETAIN_RESERVATION. The SCSI device driver
should require the caller to have appropriate authority to request the
SC_RETAIN_RESERVATION option since this request can allow a program to
monopolize a device (for example, if this is a nonshared device). If the caller
attempts to execute this system call without the proper authority, the SCSI device
driver should return a value of -1, with the errno global variable set to a value of
EPERM.

Using the SC_DIAGNOSTIC Option

The SC_DIAGNOSTIC option causes the SCSI device driver to enter Diagnostic
mode for the given device. This option directs the SCSI device driver to perform
only minimal operations to open a logical path to the device. No SCSI commands
should be sent to the device in the open or close routine when the device is in
Diagnostic mode. One or more ioctl operations should be provided by the SCSI
device driver to allow the caller to issue SCSI commands to the attached device for
diagnostic purposes.

The SC_DIAGNOSTIC option gives the caller an exclusive open to the selected

device. This option requires appropriate authority to execute. If the caller attempts
to execute this system call without the proper authority, the SCSI device driver

224 Kernel Extensions and Device Support Programming Concepts

should return a value of -1, with the errno global variable set to a value of
EPERM. The SC_DIAGNOSTIC option may be executed only if the device is not
already opened for normal operation. If this ioctl operation is attempted when the
device is already opened, or if an openx call with the SC_DIAGNOSTIC option is
already in progress, a return value of -1 should be passed, with the errno global
variable set to a value of EACCES. Once successfully opened with the
SC_DIAGNOSTIC flag, the SCSI device driver is placed in Diagnostic mode for
the selected device.

Using the SC_NO_RESERVE Option

The SC_NO_RESERVE option causes the SCSI device driver not to issue the SCSI
reserve command during the opening of the device and not to issue the SCSI
release command during the close of the device. This allows multiple hosts to
share the device. The SCSI device driver should require the caller to have
appropriate authority to request the SC_NO_RESERVE option, since this request
allows other hosts to modify data on the device. If a caller does this kind of
request then the caller must ensure data integrity between multiple hosts. If the
caller attempts to execute this system call without the proper authority, the SCSI
device driver should return a value of -1, with the errno global variable set to a
value of EPERM.

Using the SC_SINGLE Option

The SC_SINGLE option causes the SCSI device driver to issue a normal open, but
does not allow another caller to issue another open until the first caller has closed
the device. This request gives the caller an exclusive open to the selected device. If
this openx is attempted when the device is already open, a return value of -1 is
passed, with the errno global variable set to a value of EBUSY.

Once sucessfully opened, the device is placed in Exclusive Access mode. If another
caller tries to do any type of open, a return value of -1 is passed, with the errno
global variable set to a value of EACCES.

The remaining options for the ext parameter are reserved for future requirements.

Implementation note: The following table shows how the various combinations of
ext options should be handled in the SCSI device driver.

EXT OPTIONS

Device Driver Action

openx ext option Open Close
none normal normal
diag no SCSI commands no SCSI commands

diag + force

issue SCIORESET otherwise,
no SCSI commands issued

no SCSI commands

diag + force + no_reserve

issue SCIORESET; otherwise,
no SCSI commands isssued

no SCSI commands

diag + force + no_reserve +
single

issue SCIORESET; otherwise,
no SCSI commands isssued

no SCSI commands

diag + force +retain

issue SCIORESET; otherwise,
no SCSI commands issued

no SCSI commands

diag + force +retain +
no_reserve

issue SCIORESET; otherwise,
no SCSI commands issued

no SCSI commands

Chapter 12. Small Computer System Interface Subsystem 225

EXT OPTIONS

Device Driver Action

openx ext option

Open

Close

diag + force +retain +
no_reserve + single

issue SCIORESET; otherwise,
no SCSI commands issued

no SCSI commands

diag + force +retain + single

issue SCIORESET; otherwise,
no SCSI commands issued

no SCSI commands

diag + force + single

issue SCIORESET; otherwise,
no SCSI commands issued

no SCSI commands

diag+no_reserve

no SCSI commands

no SCSI commands

diag + retain

no SCSI commands

no SCSI commands

diag + retain + no_reserve

no SCSI commands

no SCSI commands

diag + retain + no_reserve +
single

no SCSI commands

no SCSI commands

diag + retain + single

no SCSI commands

no SCSI commands

diag + single

no SCSI commands

no SCSI commands

diag + single + no_reserve

no SCSI commands

no SCSI commands

force

normal, except SCIORESET
issued prior toany SCSI
commands

normal

force + no_reserve

normal except SCIORESET
issued prior to any SCSI
commands. No RESERVE
command issued.

normal except no RELEASE

force + retain

normal, except SCIORESET
issued prior to any SCSI
commands

no RELEASE

force + retain + no_reserve

normal except SCIORESET
issued prior to any SCSI
commands. No RESERVE
command issued.

no RELEASE

force + retain + no_reserve +
single

normal except SCIORESET
issued prior to any SCSI
commands. No RESERVE
command issued.

no RELEASE

force + retain + single

normal except SCIORESET
issued prior to any SCSI
commands

no RELEASE

force + single

normal except SCIORESET
issued prior to any SCSI
commands

normal

force + single + no_reserve

normal except SCIORESET
issued prior to any SCSI
commands. No RESERVE
command issued.

no RELEASE

no_reserve

no RESERVE

no RELEASE

retain

normal

no RELEASE

retain + no_reserve

no RESERVE

no RELEASE

retain + single

normal

no RELEASE

226 Kernel Extensions and Device Support Programming Concepts

EXT OPTIONS Device Driver Action

openx ext option Open Close

retain + single + no_reserve |normal except no RESERVE |no RELEASE
command issued

single normal normal

single + no_reserve no RESERVE no RELEASE

Closing the SCSI Device

When a SCSI device driver is preparing to close a device through the SCSI adapter
device driver, it must ensure that all transactions are complete. When the SCSI
adapter device driver receives a SCIOSTOP ioctl operation and there are pending
I/0 requests, the ioctl operation does not return until all have completed. New
requests received during this time are rejected from the adapter device driver’s
ddstrategy routine.

When the SCSI adapter device driver receives an SCIOSTOPTGT ioctl operation,
it must forcibly free any receive data buffers that have been queued to the SCSI
device driver for this device and have not been returned to the SCSI adapter
device driver through the buffer free routine. The SCSI device driver is responsible
for making sure all the receive data buffers are freed before calling the
SCIOSTOPTGT ioctl operation. However, the SCSI adapter device driver must
check that this is done, and, if necessary, forcibly free the buffers. The buffers must
be freed because those not freed result in memory areas being permanently lost to
the system (until the next boot).

To allow the SCSI adapter device driver to free buffers that are sent to the SCSI
device driver but never returned, it must track which tm_bufs are currently
queued to the SCSI device driver. Tracking tm_bufs requires the SCSI adapter
device driver to violate the general SCSI rule, which states the SCSI adapter device
driver should not modify the tm_bufs structure while it is queued to the SCSI
device driver. This exception to the rule is necessary since it is never acceptable not
to free memory allocated from the system.

SCSI Error Processing

It is the responsibility of the SCSI device driver to process SCSI check conditions
and other returned errors properly. The SCSI adapter device driver only passes
SCSI commands without otherwise processing them and is not responsible for
device error recovery.

Device Driver and Adapter Device Driver Interfaces

The SCSI device drivers can have both character (raw) and block special files in the
/dev directory. The SCSI adapter device driver has only character (raw) special files
in the /dev directory and has only the ddconfig, ddopen, ddclose, dddump, and
ddioctl entry points available to operating system programs. The ddread and
ddwrite entry points are not implemented.

Internally, the devsw table has entry points for the ddconfig, ddopen, ddclose,

dddump, ddioctl, and ddstrategy routines. The SCSI device drivers pass their SCSI
commands to the SCSI adapter device driver by calling the SCSI adapter device

Chapter 12. Small Computer System Interface Subsystem 227

driver ddstrategy routine. (This routine is unavailable to other operating system
programs due to the lack of a block-device special file.)

Access to the SCSI adapter device driver’s ddconfig, ddopen, ddclose, dddump,
ddioctl, and ddstrategy entry points by the SCSI device drivers is performed
through the kernel services provided. These include such services as fp_opendev,
fp_close, fp_ioctl, devdump, and devstrategy.

Performing SCSI Dumps

A SCSI adapter device driver must have a dddump entry point if it is used to
access a system dump device. A SCSI device driver must have a dddump entry
point if it drives a dump device. Examples of dump devices are disks and tapes.

Note: System services providing interrupt and timer services are unavailable
for use in the dump routine. Kernel DMA services are assumed to be
available for use by the dump routine. The SCSI adapter device driver should
be designed to ignore extra DUMPINIT and DUMPSTART commands to the
dddump entry point.

The DUMPQUERY option should return a minimum transfer size of 0 bytes, and a
maximum transfer size equal to the maximum transfer size supported by the SCSI
adapter device driver.

Calls to the SCSI adapter device driver DUMPWRITE option should use the arg
parameter as a pointer to the sc_buf structure to be processed. Using this interface,
a SCSI write command can be executed on a previously started (opened) target
device. The uiop parameter is ignored by the SCSI adapter device driver during the
DUMPWRITE command. Spanned, or consolidated, commands are not supported
using the DUMPWRITE option. Gathered write commands are also not supported
using the DUMPWRITE option. No queuing of sc_buf structures is supported
during dump processing since the dump routine runs essentially as a subroutine
call from the caller’s dump routine. Control is returned when the entire sc_buf
structure has been processed.

Note: No error recovery is employed during a DUMPWRITE operation
because any error that occurs durin gthe operation is a problem. Return
values from the call to the dddump routine indicate the specific nature of the
failure.

Successful completion of the selected operation is indicated by a 0 return value to
the subroutine. Unsuccessful completion is indicated by a return code set to one of
the following values for the errno global variable. The various sc_buf status fields,
including the b_error field, are not set by the SCSI adapter device driver at
completion of the DUMPWRITE command. Error logging is, of necessity, not
supported during the dump.

* An errno value of EINVAL indicates that a request that was not valid passed to
the SCSI adapter device driver, such as to attempt a DUMPSTART command
before successfully executing a DUMPINIT command.

* An errno value of EIO indicates that the SCSI adapter device driver was unable
to complete the command due to a lack of required resources or an 1/O error.

* An errno value of ETIMEDOUT indicates that the adapter did not respond with
completion status before the passed command time-out value expired.

228 Kernel Extensions and Device Support Programming Concepts

SCSI Target-Mode Overview

Note: This operation is not supported by all SCSI I/O controllers.

The SCSI target-mode interface is intended to be used with the SCSI initiator-mode
interface to provide the equivalent of a full-duplex communications path between
processor type devices. Both communicating devices must support target-mode
and initiator-mode. To work with the SCSI subsystem in this manner, an attached
device’s target-mode and initiator-mode interfaces must meet certain minimum
requirements:

* The device’s target-mode interface must be capable of receiving and processing
at least the following SCSI commands:

- send

— request sense

— inquiry

The data returned by the inquiry command must set the peripheral device type
field to processor device. The device should support the vendor and product
identification fields. Additional functional SCSI requirements, such as SCSI

message support, must be addressed by examining the detailed functional
specification of the SCSI initiator that the target-mode device is attached to.

* The attached device’s initiator mode interface must be capable of sending the
following SCSI commands:

- send

— request sense

In addition, the inquiry command should be supported by the attached initiator
if it needs to identify SCSI target devices. Additional functional SCSI
requirements, such as SCSI message support, must be addressed by examining
the detailed functional specification of the SCSI target that the initiator-mode
device is attached to.

Configuring and Using SCSI Target Mode

The adapter, acting as either a target or initiator device, requires its own SCSI ID.
This ID, as well as the IDs of all attached devices on this SCSI bus, must be unique
and between 0 and 7, inclusive. Since each device on the bus must be at a unique
ID, the user must complete any installation and configuration of the SCSI devices
required to set the correct IDs before physically cabling the devices together.
Failure to do so will produce unpredictable results.

SCSI target mode in the SCSI subsystem does not attempt to implement any
receive-data protocol, with the exception of actions taken to prevent an application
from excessive receive-data-buffer usage. Any protocol required to maintain or
otherwise manage the communications of data must be implemented in
user-supplied programs. The only delays in receiving data are those inherent in the
SCSI subsystem and the hardware environment in which it operates.

The SCSI target mode is capable of simultaneously receiving data from all attached
SCSI IDs using SCSI send commands. In target-mode, the host adapter is assumed
to act as a single SCSI Logical Unit Number (LUN) at its assigned SCSI ID.
Therefore, only one logical connection is possible between each attached SCSI

Chapter 12. Small Computer System Interface Subsystem 229

initiator on the SCSI Bus and the host adapter. The SCSI subsystem is designed to
be fully capable of simultaneously sending SCSI commands in initiator-mode while
receiving data in target-mode.

Managing Receive-Data Buffers

In the SCSI subsystem target-mode interface, the SCSI adapter device driver is
responsible for managing the receive-data buffers versus the SCSI device driver
because the buffering is dependent upon how the adapter works. It is not possible
for the SCSI device driver to run a single approach that is capable of making full
use of the performance advantages of various adapter’s buffering schemes. With
the SCSI adapter device driver layer performing the buffer management, the SCSI
device driver can be interfaced to a variety of adapter types and can potentially get
the best possible performance out of each adapter. This approach also allows
multiple SCSI target-mode device drivers to be run on top of adapters that use a
shared-pool buffer management scheme. This would not be possible if the
target-mode device drivers managed the buffers.

Understanding Target-Mode Data Pacing

Because it is possible for the attached initiator device to send data faster than the
host operating system and associated application can process it, eventually the
situation arises in which all buffers for this device instance are in use at the same
time. There are two possible scenarios:

* The previous send command has been received by the adapter, but there is no
space for the next send command.

* The send command is not yet completed, and there is no space for the
remaining data.

In both cases, the combination of the SCSI adapter device driver and the SCSI
adapter must be capable of stopping the flow of data from the initiator device.

SCSI Adapter Device Driver
The adapter can handle both cases described previously by simply accepting the

send command (if newly received) and then disconnecting during the data phase.
When buffer space becomes available, the SCSI adapter reconnects and continues
the data transfer. As an alternative, when handling a newly received command, a
check condition can be given back to the initiator to indicate a lack of resources.
The implementation of this alternative is adapter-dependent. The technique of
accepting the command and then disconnecting until buffer space is available
should result in better throughput, as it avoids both a request sense command and
the retry of the send command.

For adapters allowing a shared pool of buffers to be used for all attached initiators’
data transfers, an additional problem can result. If any single initiator instance is
allowed to transfer data continually, the entire shared pool of buffers can fill up.
These filled-up buffers prevent other initiator instances from transferring data. To
solve this problem, the combination of the SCSI adapter device driver and the host
SCSI adapter must stop the flow of data from a particular initiator ID on the bus.
This could include disconnecting during the data phase for a particular ID but
allowing other IDs to continue data transfer. This could begin when the number of
tm_buf structures on a target-mode instance’s tm_buf queue equals the number of
buffers allocated for this device. When a threshold percentage of the number of
buffers is processed and returned to the SCSI adapter device driver’s buffer-free
routine, the ID can be enabled again for the continuation of data transfer.

230 Kernel Extensions and Device Support Programming Concepts

SCSI Device Driver
The SCSI device driver can optionally be informed by the SCSI adapter device

driver whenever all buffers for this device are in use. This is known as a
maximum-buffer-usage event. To pass this information, the SCSI device driver
must be registered for notification of asynchronous event status from the SCSI
adapter device driver. Registration is done by calling the SCSI adapter
device-driver ioctl entry point with the SCIOEVENT operation. If registering for
event notification, the SCSI device driver receives notification of all asynchronous
events, not just the maximum buffer usage event.

Understanding the SCSI Target Mode Device Driver Receive
Buffer Routine

The SCSI target-mode device-driver receive buffer routine must be a pinned
routine that the SCSI adapter device driver can directly address. This routine is
called directly from the SCSI adapter device driver hardware interrupt handling
routine. The SCSI device driver writer must be aware of how this routine affects
the design of the SCSI device driver.

First, since the receive buffer routine is running on the hardware interrupt level,
the SCSI device driver must limit operations in order to limit routine processing
time. In particular, the data copy, which occurs because the data is queued ahead
of the user read request, must not occur in the receive buffer routine. Data
copying in this routine will adversely affect system response time. Data copy is
best performed in a process level SCSI device-driver routine. This routine sleeps,
waiting for data, and is awakened by the receive buffer routine. Typically, this
process level routine is the SCSI device driver’s read routine.

Second, the receive buffer routine is called at the SCSI adapter device driver
hardware interrupt level, so care must be taken when disabling interrupts. They
must be disabled to the correct level in places in the SCSI device driver’s lower
execution priority routines which manipulate variables also modified in the receive
buffer routine. To allow the SCSI device driver to disable to the correct level, the
SCSI adapter device-driver writer must provide a configuration database attribute,
named intr_priority, that defines the interrupt class, or priority, the adapter runs
on. The SCSI device-driver configuration method should pass this attribute to the
SCSI device driver along with other configuration data for the device instance.

Third, the SCSI device-driver writer must follow any other general system rules for
writing a routine that must execute in an interrupt environment. For example, the
routine must not attempt to sleep or wait on I/O operations. It can perform
wake-up calls to allow the process level to handle those operations.

Duties of the SCSI device driver receive buffer routine include:

* Matching the data with the appropriate target-mode instance.

* Queuing the tm_buf structures to the appropriate target-mode instance.

* Waking up the process-level routine for further processing of the received data.

After the tm_buf structure has been passed to the SCSI device driver receive
buffer routine, the SCSI device driver is considered to be responsible for it.
Responsibilities include processing the data and any error conditions and also
maintaining the next pointer for chained tm_buf structures. The SCSI device
driver’s responsibilities for the tm_buf structures end when it passes the structure
back to the SCSI adapter device driver.

Chapter 12. Small Computer System Interface Subsystem 231

Until the tm_buf structure is again passed to the SCSI device driver receive buffer
routine, the SCSI adapter device driver is considered responsible for it. The SCSI
adapter device-driver writer must be aware that during the time the SCSI device
driver is responsible for the tm_buf structure, it is still possible for the SCSI
adapter device driver to access the structure’s contents. Access is possible because
only one copy of the structure is in memory, and only a pointer to the structure is
passed to the SCSI device driver.

Note: Under no circumstances should the SCSI adapter device driver access
the structure or modify its contents while the SCSI device driver is
responsible for it, or the other way around.

It is recommended that the SCSI device-driver writer implement a threshold level
to wake up the process level with available tm_buf structures. This way,
processing for some of the buffers, including copying the data to the user buffer,
can be overlapped with time spent waiting for more data. It is also recommended
the writer implement a threshold level for these buffers to handle cases where the
send command data length exceeds the aggregate receive-data buffer space. A
suggested threshold level is 25% of the device’s total buffers. That is, when 25% or
more of the number of buffers allocated for this device is queued and no end to
the send command is encountered, the SCSI device driver receive buffer routine
should wake the process level to process these buffers.

Understanding the tm_buf Structure

The tm_buf structure is used for communication between the SCSI device driver
and the SCSI adapter device driver for a target-mode received-data buffer. The
tm_buf structure is passed by pointer directly to routines whose entry points have
been registered through the SCIOSTARTTGT ioctl operation of the SCSI adapter
device driver. The SCSI device driver is required to call this ioctl operation when
opening a target-mode device instance.

Fields in the tm_buf Structure

The tm_buf structure contains certain fields used to pass a received data buffer
from the SCSI adapter device driver to the SCSI device driver. Other fields are
used to pass returned status back to the SCSI device driver. After processing the
data, the tm_buf structure is passed back from the SCSI device driver to the SCSI
adapter device driver to allow the buffer to be reused. The tm_buf structure is
defined in the /usr/include/sys/scsi.h file and contains the following fields:

Note: Reserved fields must not be modified by the SCSI device driver, unless
noted otherwise. Nonreserved fields can be modified, except where noted
otherwise.

1. The tm_correlator field is an optional field for the SCSI device driver. This
field is a copy of the field with the same name that was passed by the SCSI
device driver in the SCIOSTARTTGT ioctl. The SCSI device driver should use
this field to speed the search for the target-mode device instance the tm_buf
structure is associated with. Alternatively, the SCSI device driver can combine
the tm_buf.user_id and tm_buf.adap_devno fields to find the associated device.

2. The adap_devno field is the device major and minor numbers of the adapter
instance on which this target mode device is defined. This field may be used to
find the particular target-mode instance the tm_buf structure is associated with.

Note: The SCSI device driver must not modify this field.

232 Kernel Extensions and Device Support Programming Concepts

3. The data_addr field is the kernel space address where the data begins for this
buffer.

4. The data_len field is the length of valid data in the buffer starting at the
tm_buf.data_addr location in memory.

5. The user_flag field is a set of bit flags that can be set to communicate
information about this data buffer to the SCSI device driver. Except where
noted, one or more of the following flags can be set:

TM_HASDATA Set to indicate a valid tm_buf structure

TM_MORE_DATA Set if more data is coming (that is, more tm_buf structures) for a
particular send command. This is only possible for adapters that
support spanning the send command data across multiple receive
buffers. This flag cannot be used with the TM_ERROR flag.

TM_ERROR Set if any error occurred on a particular send command. This flag
cannot be used with the TM_MORE_DATA flag.

6. The user_id field is set to the SCSI ID of the initiator that sent the data to this
target mode instance. If more than one adapter is used for target mode in this
system, this ID may not be unique. Therefore, this field must be used in
combination with the tm_buf.adap_devno field to find the target-mode instance
this ID is associated with.

Note: The SCSI device driver must not modify this field.
7. The status_validity field contains the following bit flag:

SC_ADAPTER_ERROR Indicates the tm_buf.general card status is valid.

8. The general_card_status field is a returned status field that gives a broad
indication of the class of error encountered by the adapter. This field is valid
when its status-validity bit is set in the tm_buf.status_validity field. The
definition of this field is the same as that found in the structure definition (see
{1Inderstanding the sc_buf Structure” on page 218), except the
SC_CMD_TIMEOUT value is not possible and is never returned for a
target-mode transfer.

9. The next field is a tm_buf pointer that is either null, meaning this is the only
or last tm_buf structure, or else contains a non-null pointer to the next tm_buf
structure.

Understanding the Execution of SCSI Target-Mode Requests

The target-mode interface provided by the SCSI subsystem is designed to handle
data reception from SCSI send commands. The host SCSI adapter acts as a
secondary device that waits for an attached initiator device to issue a SCSI send
command. The SCSI send command data is received by buffers managed by the
SCSI adapter device driver. The tm_buf structure is used to manage individual
buffers. For each buffer of data received from an attached initiator, the SCSI
adapter device driver passes a tm_buf structure to the SCSI device driver for
processing. Multiple tm_buf structures can be linked together and passed to the
SCSI device driver at one time. When the SCSI device driver has processed one or
more tm_buf structures, it passes the tm_buf structures back to the SCSI adapter
device driver so they can be reused.

Detailed Execution of Target-Mode Requests
When a send command is received by the host SCSI adapter, data is placed in one

or more receive-data buffers. These buffers are made available to the adapter by
the SCSI adapter device driver. The procedure by which the data gets from the

Chapter 12. Small Computer System Interface Subsystem 233

SCSI bus to the system-memory buffer is adapter-dependent. The SCSI adapter
device driver takes the received data and updates the information in one or more
tm_buf structures in order to identify the data to the SCSI device driver. This
process includes filling the tm_correlator, adap_devno, data_addr, data_len,
user_flag, and user_id fields. Error status information is put in the
status_validity and general_card_status fields. The next field is set to null to
indicate this is the only element, or set to non-null to link multiple tm_buf
structures. If there are multiple tm_buf structures, the final tm_buf.next field is set
to null to terminate the chain. If there are multiple tm_buf structures and they are
linked, they must all be from the same initiator SCSI ID. The
tm_buf.tm_correlator field, in this case, has the same value as it does in the
SCIOSTARTTGT ioctl operation to the SCSI adapter device driver. The SCSI
device driver should use this field to speed the search for the target-mode instance
designated by this tm_buf structure. For example, when using the value of
tm_buf.tm_correlator as a pointer to the device-information structure associated
with this target-mode instance.

Each send command, no matter how short its data length, requires its own tm_buf
structure. For host SCSI adapters capable of spanning multiple receive-data buffers
with data from a single send command, the SCSI adapter device driver must set
the TM_MORE_DATA flag in the tm_buf.user_flag fields of all but the final
tm_buf structure holding data for the send command. The SCSI device driver
must be designed to support the TM_MORE_DATA flag. Using this flag, the
target-mode SCSI device driver can associate multiple buffers with the single
transfer they represent. The end of a send command will be the boundary used by
the SCSI device driver to satisfy a user read request.

The SCSI adapter device driver is responsible for sending the tm_buf structures for
a particular initiator SCSI ID to the SCSI device driver in the order they were
received. The SCSI device driver is responsible for processing these tm_buf
structures in the order they were received. There is no particular ordering implied
in the processing of simultaneous send commands from different SCSI IDs, as long
as the data from an individual SCSI ID’s send command is processed in the order
it was received.

The pointer to the tm_buf structure chain is passed by the SCSI adapter device
driver to the SCSI device driver’s receive buffer routine. The address of this routine
is registered with the SCSI adapter device driver by the SCSI device driver using
the SCIOSTARTTGT ioctl. The duties of the receive buffer routine include
queuing the tm_buf structures and waking up a process-level routine (typically the
SCSI device driver’s read routine) to process the received data.

When the process-level SCSI device driver routine finishes processing one or more
tm_buf structures, it passes them to the SCSI adapter device driver’s buffer-free
routine. The address of this routine is registered with the SCSI device driver in an
output field in the structure passed to the SCSI adapter device driver
SCIOSTARTTGT ioctl operation. The buffer-free routine must be a pinned routine
the SCSI device driver can directly access. The buffer-free routine is typically called
directly from the SCSI device driver buffer-handling routine. The SCSI device
driver chains one or more tm_buf structures by using the next field (a null value
for the last tm_buf next field ends the chain). It then passes a pointer, which points
to the head of the chain, to the SCSI adapter device driver buffer-free routine.
These tm_buf structures must all be for the same target-mode instance. Also, the
SCSI device driver must not modify the tm_buf.user_id or tm_buf.adap_devno
field.

234 Kernel Extensions and Device Support Programming Concepts

The SCSI adapter device driver takes the tm_buf structures passed to its buffer-free
routine and attempts to make the described receive buffers available to the adapter
for future data transfers. Since it is desirable to keep as many buffers as possible
available to the adapter, the SCSI device driver should pass processed tm_buf
structures to the SCSI-adapter device driver’s buffer-free routine as quickly as
possible. The writer of a SCSI device driver should avoid requiring the last buffer
of a send command to be received before processing buffers, as this could cause a
situation where all buffers are in use and the send command has not completed. It
is recommended that the writer therefore place a threshold of 25% on the free
buffers. That is, when 25% or more of the number of buffers allocated for this
device have been processed and the send command is not completed, the SCSI
device driver should free the processed buffers by passing them to the SCSI
adapter device driver’s buffer-free routine.

Required SCSI Adapter Device Driver ioctl Commands

Various ioctl operations must be performed for proper operation of the SCSI
adapter device driver. The ioctl operations described here are the minimum set of
commands the SCSI adapter device driver must implement to support SCSI device
drivers. Other operations may be required in the SCSI adapter device driver to
support, for example, system management facilities and diagnostics. SCSI device
driver writers also need to understand these ioctl operations.

Every SCSI adapter device driver must support the IOCINFO ioctl operation. The
structure to be returned to the caller is the devinfo structure, including the scsi
union definition for the SCSI adapter, which can be found in the
[usr/include/sys/devinfo.h file. The SCSI device driver should request the
IOCINFO ioctl operation (probably during its open routine) to get the maximum
transfer size of the adapter.

Note: The SCSI adapter device driver ioctl operations can only be called from
the process level. They cannot be executed from a call on any more favored
priority levels. Attempting to call them from a more favored priority level can
result in a system crash.

Initiator-Mode ioctl Commands

The following SCIOSTART and SCIOSTOP operations must be sent by the SCSI
device driver (for the open and close routines, respectively) for each device. They
cause the SCSI adapter device driver to allocate and initialize internal resources.
The SCIOHALT ioctl operation is used to abort pending or running commands,
usually after signal processing by the SCSI device driver. This might be used by a
SCSI device driver to end an operation instead of waiting for completion or a time
out. The SCIORESET operation is provided for clearing device hard errors and
competing initiator reservations during open processing by the SCSI device driver.
The SCIOGTHW operation is supported by SCSI adapter device drivers that
support gathered write commands to target devices.

Except where noted otherwise, the arg parameter for each of the ioctl operations
described here must contain a long integer. In this field, the least significant byte is
the SCSI LUN and the next least significant byte is the SCSI ID value. (The upper
two bytes are reserved and should be set to 0.) This provides the information
required to allocate or deallocate resources and perform SCSI bus operations for
the ioctl operation requested.

Chapter 12. Small Computer System Interface Subsystem 235

The following information is provided on the various ioctl operations:

SCIOSTART This operation allocates and initializes SCSI device-dependent information
local to the SCSI adapter device driver. Run this operation only on the first
open of an ID/LUN device. Subsequent SCIOSTART commands to the same
ID/LUN fail unless an intervening SCIOSTOP command is issued.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EIO Indicates lack of resources or other error-preventing device
allocation.

EINVAL

Indicates that the selected SCSI ID and LUN are already in use, or
the SCSI ID matches the adapter ID.

ETIMEDOUT
Indicates that the command did not complete.

SCIOSTOP This operation deallocates resources local to the SCSI adapter device driver
for this SCSI device. This should be run on the last close of an ID/LUN
device. If an SCIOSTART operation has not been previously issued, this
command is unsuccessful.

The following values for the errno global variable should be supported:
0 Indicates successful completion.
EIO Indicates error preventing device deallocation.

EINVAL
Indicates that the selected SCSI ID and LUN have not been started.

ETIMEDOUT
Indicates that the command did not complete.

SCIOHALT This operation halts outstanding transactions to this ID/LUN device and
causes the SCSI adapter device driver to stop accepting transactions for this
device. This situation remains in effect until the SCSI device driver sends
another transaction with the SC_RESUME flag set (in the sc_buf.flags field)
for this ID/LUN combination. The SCIOHALT ioctl operation causes the
SCSI adapter device driver to fail the command in progress, if any, as well as
all queued commands for the device with a return value of ENXIO in the
sc_buf.bufstruct.b_error field. If an SCIOSTART operation has not been
previously issued, this command fails.

The following values for the errno global variable are supported:
0 Indicates successful completion.
EIO Indicates an unrecovered I/O error occurred.

EINVAL
Indicates that the selected SCSI ID and LUN have not been started.

ETIMEDOUT
Indicates that the command did not complete.

236 Kernel Extensions and Device Support Programming Concepts

SCIORESET This operation causes the SCSI adapter device driver to send a SCSI Bus
Device Reset (BDR) message to the selected SCSI ID. For this operation, the
SCSI device driver should set the LUN in the arg parameter to the LUN ID
of a LUN on this SCSI ID, which has been successfully started using the
SCIOSTART operation.

The SCSI device driver should use this command only when directed to do a
forced open. This occurs in two possible situations: one, when it is desirable to
force the device to drop a SCSI reservation; two, when the device needs to be
reset to clear an error condition (for example, when running diagnostics on
this device).
Note: In normal system operation, this command should not be issued,
as it would force the device to drop a SCSI reservation another initiator
(and, hence, another system) may have. If an SCIOSTART operation
has not been previously issued, this command is unsuccessful.

The following values for the errno global variable are supported:
0 Indicates successful completion.
EIO Indicates an unrecovered 1/O error occurred.

EINVAL
Indicates that the selected SCSI ID and LUN have not been started.

ETIMEDOUT
Indicates that the command did not complete.

SCIOGTHW This operation is only supported by SCSI adapter device drivers that support
gathered write commands. The purpose of the operation is to indicate
support for gathered writes to SCSI device drivers that intend to use this
facility. If the SCSI adapter device driver does not support gathered write
commands, it must fail the operation. The SCSI device driver should call this
operation from its open routine for a particular device instance. If the
operation is unsuccessful, the SCSI device driver should not attempt to run a
gathered write command.

The arg parameter to the SCIOGTHW is set to null by the caller to indicate
that no input parameter is passed:

The following values for the errno global variable are supported:

0 Indicates successful completion and in particular that the adapter
driver supports gathered writes.

EINVAL
Indicates that the SCSI adapter device driver does not support
gathered writes.

Target-Mode ioctl Commands

The following SCIOSTARTTGT and SCIOSTOPTGT operations must be sent by
the SCSI device driver (for the open and close routines, respectively) for each
target-mode device instance. This causes the SCSI adapter device driver to allocate
and initialize internal resources, and, if necessary, prepare the hardware for
operation.

Target-mode support in the SCSI device driver and SCSI adapter device driver is
optional. A failing return code from these commands, in the absence of any

Chapter 12. Small Computer System Interface Subsystem 237

programming error, indicates target mode is not supported. If the SCSI device
driver requires target mode, it must check the return code to verify the SCSI
adapter device driver supports it.

Only a kernel process or device driver can call these ioctls. If attempted by a user
process, the ioctl will fail, and the errno global variable will be set to EPERM.

The following information is provided on the various target-mode ioctl operations:

SCIOSTARTTGT
This operation opens a logical path to a SCSI initiator device. It allocates
and initializes SCSI device-dependent information local to the SCSI adapter
device driver. This is run by the SCSI device driver in its open routine.
Subsequent SCIOSTARTTGT commands to the same ID (LUN is always
0) are unsuccessful unless an intervening SCIOSTOPTGT is issued. This
command also causes the SCSI adapter device driver to allocate system
buffer areas to hold data received from the initiator, and makes the adapter
ready to receive data from the selected initiator.

The arg parameter to the SCIOSTARTTGT should be set to the address of
an sc_strt_tgt structure, which is defined in the /usr/include/sys/scsi.h file.
The following parameters are supported:

id The caller fills in the SCSI ID of the attached SCSI initiator.

lun The caller sets the LUN to 0, as the initiator LUN is ignored for
received data.

buf_size
The caller specifies size in bytes to be used for each receive buffer
allocated for this host target instance.

num_bufs
The caller specifies how many buffers to allocate for this target
instance.

tm_correlator
The caller optionally places a value in this field to be passed back
in each tm_buf for this target instance.

recv_func

The caller places in this field the address of a pinned routine the
SCSI adapter device driver should call to pass tm_bufs received
for this target instance.

free_func
This is an output parameter the SCSI adapter device driver fills
with the address of a pinned routine which the SCSI device driver
calls to pass tm_bufs after they have been processed. The SCSI
adapter device driver ignores the value passed as input.

Note: All reserved fields should be set to 0 by the caller.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EINVAL
An SCIOSTARTTGT command has already been issued to this
SCSI ID.

238 Kernel Extensions and Device Support Programming Concepts

The passed SCSI ID is the same as that of the adapter.

The LUN ID field is not set to zero.

The buf_size is not valid. This is an adapter dependent value.
The num_bufs is not valid. This is an adapter dependent value.

The recv_func value, which cannot be null, is not valid.

EPERM
Indicates the caller is not running in kernel mode, which is the
only mode allowed to execute this operation.

ENOMEM
Indicates that a memory allocation failure has occurred.

EIO Indicates an I/O error occurred, preventing the device driver from
completing SCIOSTARTTGT processing.

SCIOSTOPTGT
This operation closes a logical path to a SCSI initiator device. It causes the
SCSI adapter device driver to deallocate device dependent information
areas allocated in response to a SCIOSTARTTGT operation. It also causes
the SCSI adapter device driver to deallocate system buffer areas used to
hold data received from the initiator, and to disable the host adapter’s
ability to receive data from the selected initiator.

The arg parameter to the SCIOSTOPTGT ioctl should be set to the address
of an sc_stop_tgt structure, which is defined in the /usr/include/sys/scsi.h
file. The caller fills in the id field with the SCSI ID of the SCSI initiator,
and sets the lun field to 0 as the initiator LUN is ignored for received data.
Reserved fields should be set to 0 by the caller.

The following values for the errno global variable should be supported:
0 Indicates successful completion.

EINVAL
An SCIOSTARTTGT command has not been previously issued to
this SCSI ID.

EPERM
Indicates the caller is not running in kernel mode, which is the
only mode allowed to execute this operation.

Target- and Initiator-Mode ioctl Commands

For either target or initiator mode, the SCSI device driver may issue an
SCIOEVENT ioctl operation to register for receiving asynchronous event status
from the SCSI adapter device driver for a particular device instance. This is an
optional call for the SCSI device driver, and is optionally supported for the SCSI
adapter device driver. A failing return code from this command, in the absence of
any programming error, indicates it is not supported. If the SCSI device driver
requires this function, it must check the return code to verify the SCSI adapter
device driver supports it.

Only a kernel process or device driver can invoke these ioctls. If attempted by a
user process, the ioctl will fail, and the errno global variable will be set to EPERM.

Chapter 12. Small Computer System Interface Subsystem 239

The event registration performed by this ioctl operation is allowed once per device
session. Only the first SCIOEVENT ioctl operation is accepted after the device
session is opened. Succeeding SCIOEVENT ioctl operations will fail, and the errno
global variable will be set to EINVAL. The event registration is canceled
automatically when the device session is closed.

The arg parameter to the SCIOEVENT ioctl operation should be set to the address
of an sc_event_struct structure, which is defined in the /usr/include/sys/scsi.h file.
The following parameters are supported:

id

lun

mode

async_correlator

async_func

The caller sets id to the SCSI ID of the attached SCSI target device
for initiator-mode. For target-mode, the caller sets the id to the
SCSI ID of the attached SCSI initiator device.

The caller sets the Tun field to the SCSI LUN of the attached SCSI
target device for initiator-mode. For target-mode, the caller sets
the Tun field to 0.

Identifies whether the initiator- or target-mode device is being
registered. These values are possible:

SC_IM_MODE
This is an initiator mode device.

SC_TM_MODE
This is a target mode device.

The caller places a value in this optional field which is saved by
the SCSI adapter device driver and returned when an event occurs
in this field in the sc_event_info structure. This structure is
defined in the /user/include/sys/scsi.h file.

The caller fills in the address of a pinned routine which the SCSI
adapter device driver calls whenever asynchronous event status is
available. The SCSI adapter device driver passes a pointer to a
sc_event_info structure to the caller’s async_func routine.

Note: All reserved fields should be set to 0 by the caller.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EINVAL Either an SCIOSTART or SCIOSTARTTGT has not been issued to this device
instance, or this device is already registered for async events.

EPERM Indicates the caller is not running in kernel mode, which is the only mode
allowed to execute this operation.

240 Kernel Extensions and Device Support Programming Concepts

Chapter 13. Fibre Channel Protocol for SCSI Subsystem

This overview describes the interface between a Fibre Channel Protocol for SCSI
(FCP) device driver and a FCP adapter device driver. The term FC SCSI is also
used to refer to FCP devices. It is directed toward those wishing to design and
write a FCP device driver that interfaces with an existing FCP adapter device
driver. It is also meant for those wishing to design and write a FCP adapter device
driver that interfaces with existing FCP device drivers.

FCP Subsystem Overview

The main topics covered in this overview are:
. I’Rpepnnqﬂnﬂifipc of the ECP Adapter Device Drix er’]

. r’Rprnncihi]inQ of the ECP Device Driver’]

. ” . . . 173

G p 77

This section frequently refers to both a FCP device driver and a FCP adapter
device driver. These two distinct device drivers work together in a layered
approach to support attachment of a range of FCP devices. The FCP adapter device
driver is the lower device driver of the pair, and the FCP device driver is the upper
device driver.

Responsibilities of the FCP Adapter Device Driver

The FCP adapter device driver (the lower layer) is the software interface to the
system hardware. This hardware includes the FCP transport layer hardware plus
any other system I/O hardware required to run an I/O request. The FCP adapter
device driver hides the details of the I/O hardware from the FCP device driver.
The design of the software interface allows a user with limited knowledge of the
system hardware to write the upper device driver.

The FCP adapter device driver manages the FCP transport layer but not the FCP
devices. It can send and receive FCP commands, but it cannot interpret the
contents of the command. The lower driver also provides recovery and logging for
errors related to the FCP transport layer and system I/O hardware. Management
of the device specifics is left to the FCP device driver. The interface of the two
drivers allows the upper driver to communicate with different FCP transport layer
adapters without requiring special code paths for each adapter.

Responsibilities of the FCP Device Driver

The FCP device driver (the upper layer) provides the rest of the operating system
with the software interface to a given FCP device or device class. The upper layer
recognizes which FCP commands are required to control a particular FCP device or
device class. The FCP device driver builds I/O requests containing device FCP
commands and sends them to the FCP adapter device driver in the sequence
needed to operate the device successfully. The FCP device driver cannot manage
adapter resources or give the FCP command to the adapter. Specifics about the
adapter and system hardware are left to the lower layer.

The FCP device driver also provides recovery and logging for errors related to the
FCP device it controls.

© Copyright IBM Corp. 1997, 1999 241

The operating system provides several kernel services allowing the FCP device
driver to communicate with FCP adapter device driver entry points without
having the actual name or address of those entry points. The description contained
in Logical File System Kernel Services can provide more information.

Communication between FCP Devices

When two FCP devices communicate, one assumes the initiator-mode role, and the
other assumes the target-mode role. The initiator-mode device generates the FCP
command, which requests an operation, and the target-mode device receives the
FCP command and acts. It is possible for a FCP device to perform both roles
simultaneously.

When writing a new FCP adapter device driver, the writer must know which mode
or modes must be supported to meet the requirements of the FCP adapter and any
interfaced FCP device drivers.

Initiator-Mode Support

The interface between the FCP device driver and the FCP adapter device driver for
initiator-mode support (that is, the attached device acts as a target) is accessed
through calls to the FCP adapter device driver open
U'clase” on page 276), ioct] (Hiactl”), and strategy (

m) routines. I/O requests are queued to the FCP adapter device driver
through calls to its strategy entry point.

Communication between the FCP device driver and the FCP adapter device driver
for a particular initiator I/O request is made through the scsi_buf structure, which
is passed to and from the strategy routine in the same way a standard driver uses

a struct buf structure.

Understanding FCP Asynchronous Event Handling

Note: This operation is not supported by all FCP I/O controllers.

A FCP device driver can register a particular device instance for receiving
asynchronous event status by calling the SCIOLEVENT ioctl operation for the
FCP-adapter device driver (see 'SCIOL EVENT” an page 266). When an event
covered by the SCIOLEVENT ioctl operation is detected by the FCP adapter
device driver, it builds an scsi_event_info structure and passes a pointer to the
structure and to the asynchronous event-handler routine entry point, which was
previously registered. The fields in the structure are filled in by the FCP adapter
device driver as follows:

scsi_id
For initiator mode, this is set to the SCSI ID of the attached FCP target
device. For target mode, this is set to the SCSI ID of the attached FCP
initiator device.

lun_id For initiator mode, this is set to the SCSI LUN of the attached FCP target
device. For target mode, this is set to 0).

mode Identifies whether the initiator or target mode device is being reported.
The following values are possible:

SCSI_IM MODE
An initiator mode device is being reported.

242 Kernel Extensions and Device Support Programming Concepts

SCSI_TM_MODE
A target mode device is being reported.

events This field is set to indicate what event or events are being reported. The
following values are possible, as defined in the /ust/include/sys/scsi.h file:

SCSI_FATAL_HDW_ERR
A fatal adapter hardware error occurred.

SCSI_ADAP_CMD_FAILED
An unrecoverable adapter command failure occurred.

SCSI_RESET_EVENT
A FCP transport layer reset was detected.

SCSI_BUFS_EXHAUSTED
In target-mode, a maximum buffer usage event has occurred.

adap_devno
This field is set to indicate the device major and minor numbers of the
adapter on which the device is located.

async_correlator
This field is set to the value passed to the FCP adapter device driver in the
scsi_event_struct structure. The FCP device driver may optionally use this
field to provide an efficient means of associating event status with the
device instance it goes with. Alternatively, the FCP device driver would
use the combination of the id, lun, mode, and adap_devno fields to
identify the device instance.

The information reported in the scsi_event_info.events field does not queue to the
FCP device driver, but is instead reported as one or more flags as they occur. Since
the data does not queue, the FCP adapter device driver writer can use a single
scsi_event_info structure and pass it one at a time, by pointer, to each
asynchronous event handler routine for the appropriate device instance. After
determining for which device the events are being reported, the FCP device driver
must copy the scsi_event_info.events field into local space and must not modify
the contents of the rest of the scsi_event_info structure.

Since the event status is optional, the FCP device driver writer determines what
action is necessary to take upon receiving event status. The writer may decide to
save the status and report it back to the calling application, or the FCP device
driver or application level program can take error recovery actions.

Defined Events and Recovery Actions

The adapter fatal hardware failure event is intended to indicate that no further
commands to or from this FCP device are likely to succeed, since the adapter it is
attached to has failed. It is recommended that the application end the session with
the device.

The unrecoverable adapter command failure event is not necessarily a fatal
condition, but it can indicate that the adapter is not functioning properly. Possible
actions by the application program include:

* Ending of the session with the device in the near future.
* Ending of the session after multiple (two or more) such events.
* Attempt to continue the session indefinitely.

The SCSI Reset detection event is mainly intended as information only, but may be
used by the application to perform further actions, if necessary.

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 243

The maximum buffer usage detected event only applies to a given target-mode
device; it will not be reported for an initiator-mode device. This event indicates to
the application that this particular target-mode device instance has filled its
maximum allotted buffer space. The application should perform read system calls
fast enough to prevent this condition. If this event occurs, data is not lost, but it is
delayed to prevent further buffer usage. Data reception will be restored when the
application empties enough buffers to continue reasonable operations. The
num_bufs attribute may need to be increased to help minimize this problem. Also,
it is possible that regardless of the number of buffers, the application simply is not
processing received data fast enough. This may require some fine tuning of the
application’s data processing routines.

Asynchronous Event-Handling Routine

The FCP-device driver asynchronous event-handling routine is typically called
directly from the hardware interrupt-handling routine for the FCP adapter device
driver. The FCP device driver writer must be aware of how this affects the design
of the FCP device driver.

Since the event handling routine is running on the hardware interrupt level, the
FCP device driver must be careful to limit operations in that routine. Processing
should be kept to a minimum. In particular, if any error recovery actions are
performed, it is recommended that the event-handling routine set state or status
flags only and allow a process level routine to perform the actual operations.

The FCP device driver must be careful to disable interrupts at the correct level in
places where the FCP device driver’s lower execution priority routines manipulate
variables that are also modified by the event-handling routine. To allow the FCP
device driver to disable at the correct level, the FCP adapter device driver writer
must provide a configuration database attribute that defines the interrupt class, or
priority, it runs on. This attribute must be named intr_priority so that the FCP
device driver configuration method knows which attribute of the parent adapter to
query. The FCP device driver configuration method should then pass this interrupt
priority value to the FCP device driver along with other configuration data for the
device instance.

The FCP device driver writer must follow any other general system rules for
writing a routine which must execute in an interrupt environment. For example,
the routine must not attempt to sleep or wait on I/O operations. It can perform
wakeups to allow the process level to handle those operations.

Since the FCP device driver copies the information from the scsi_event_info.events
field on each call to its asynchronous event-handling routine, there is no resource
to free or any information which must be passed back later to the FCP adapter
device driver.

FCP Error Recovery

If the device is in initiator mode, the error-recovery process varies depending on
whether or not the device is supporting command queuing. Also some devices
may support NACA=1 error recovery. Thus FCP error recovery needs to deal with
the two following concepts.

244 Kernel Extensions and Device Support Programming Concepts

autosense data

When an FCP device returns a check condition or command terminated (the
scsi_buf.scsi_status will have the value of SC_CHECK_CONDITION or
SC_COMMAND_TERMINATED, respectively), it will also return the request sense data.

Note: Subsequent commands to the FCP device will clear the request sense
data.

If the FCP device driver has specified a valid autosense buffer
(scsi_buf.autosense_length > 0 and the scsi_buf.autosense_buffer_ptr field is not
NULL), then the FCP adapter device driver will copy the returned autosense data
into the buffer referenced by scsi_buf.autosense_buffer_ptr. When this occurs the
FCP adapter device driver will set the SC_AUTOSENSE_DATA_VALID flag in the
scsi_buf.adap_set_flags.

When the FCP device driver receives the SCSI status of check condition or
command terminated (the scsi_buf.scsi_status will have the value of
SC_CHECK_CONDITION or SC_COMMAND_TERMINATED, respectively), it should then
determine if the SC_AUTOSENSE_DATA_VALID flag is set in the
scsi_buf.adap_set_flags. If so then it should process the autosense data and not
send a SCSI request sense command.

NACA=1 error recovery

Some FCP devices support setting the NACA (Normal Auto Contingent Allegiance)
bit to a value of one (NACA=1) in the control byte of the SCSI command. If an
FCP device returns a check condition or command terminated (the
scsi_buf.scsi_status will have the value of SC_CHECK CONDITION or
SC_COMMAND_TERMINATED, respectively) for a command with NACA=1 set, then the
FCP device will require a Clear ACA task management request to clear the error
condition on the drive. The FCP device driver can issue a Clear ACA task
management request by sending a transaction with the SC_CLEAR_ACA flag in
the sc_buf.flags field. The SC_CLEAR_ACA flag can be used in conjunction with
the SC_Q_CLR and SC_Q_RESUME flag in the sc_buf.flags to clear or resume the
queue of transactions for this device, respectively. (See 'ECP Initiator-Modd

Recovery During Command Tag Queuing” on page 246.)
FCP Initiator-Mode Recovery When Not Command Tag Queuing

If an error such as a check condition or hardware failure occurs, the transaction
active during the error is returned with the scsi_buf.bufstruct.b_error field set to
EIO0. Other transactions in the queue may be returned with the
scsi_buf.bufstruct.b_error field set to ENXIO. If the FCP adapter driver decides not
return other outstanding commands it has queued to it, then the failed transaction
will be returned to the FCP device driver with an indication that the queue for this
device is not cleared by setting the SC_DID_NOT_CLEAR_Q flag in the
scsi_buf.adap_q_status field. The FCP device driver should process or recover the
condition, rerunning any mode selects or device reservations to recover from this
condition properly. After this recovery, it should reschedule the transaction that
had the error. In many cases, the FCP device driver only needs to retry the
unsuccessful operation.

The FCP adapter device driver should never retry a SCSI command on error after
the command has successfully been given to the adapter. The consequences for
retrying a FCP command at this point range from minimal to catastrophic,
depending upon the type of device. Commands for certain devices cannot be

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 245

retried immediately after a failure (for example, tapes and other sequential access
devices). If such an error occurs, the failed command returns an appropriate error
status with an iodone call to the FCP device driver for error recovery. Only the
FCP device driver that originally issued the command knows if the command can
be retried on the device. The FCP adapter device driver must only retry commands
that were never successfully transferred to the adapter. In this case, if retries are
successful, the scsi_buf status should not reflect an error. However, the FCP
adapter device driver should perform error logging on the retried condition.

The first transaction passed to the FCP adapter device driver during error recovery
must include a special flag. This SC_RESUME flag in the scsi_buf.flags field must
be set to inform the FCP adapter device driver that the FCP device driver has
recognized the fatal error and is beginning recovery operations. Any transactions
passed to the FCP adapter device driver, after the fatal error occurs and before the
SC_RESUME transaction is issued, should be flushed; that is, returned with an
error type of ENXIO through an iodone call.

Note: If a FCP device driver continues to pass transactions to the FCP adapter
device driver after the FCP adapter device driver has flushed the queue, these
transactions are also flushed with an error return of ENXIO through the iodone
service. This gives the FCP device driver a positive indication of all
transactions flushed.

FCP Initiator-Mode Recovery During Command Tag Queuing

If the FCP device driver is queuing multiple transactions to the device and either a
check condition error or a command terminated error occurs, the FCP adapter
driver does not clear all transactions in its queues for the device. It returns the
failed transaction to the FCP device driver with an indication that the queue for
this device is not cleared by setting the SC_DID_NOT_CLEAR_Q flag in the
scsi_buf.adap_q_status field. The FCP adapter driver halts the queue for this
device awaiting error recovery notification from the FCP device driver. The FCP
device driver then has three options to recover from this error:

* Send one error recovery command (request sense) to the device.
* Clear the FCP adapter driver’s queue for this device.

* Resume the FCP adapter driver’s queue for this device.

When the FCP adapter driver’s queue is halted, the FCP device drive can get sense
data from a device by setting the SC_RESUME flag in the scsi_buf.flags field and
the SC_NO_Q flag in scsi_buf.q_tag msg field of the request-sense scsi_buf. This
action notifies the FCP adapter driver that this is an error-recovery transaction and
should be sent to the device while the remainder of the queue for the device
remains halted. When the request sense completes, the FCP device driver needs to
either clear or resume the FCP adapter driver’s queue for this device.

The FCP device driver can notify the FCP adapter driver to clear its halted queue
by sending a transaction with the SC_Q_CLR flag in the scsi_buf.flags field. This
transaction must not contain a FCP command because it is cleared from the FCP
adapter driver’s queue without being sent to the adapter. However, this transaction
must have the SCSI ID field (scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id)
filled in with the device’s SCSI ID and logical unit number (LUN), respectively.
Upon receiving an SC_Q_CLR transaction, the FCP adapter driver flushes all
transactions for this device and sets their scsi_buf.bufstruct.b_error fields to ENXIO.
The FCP device driver must wait until the scsi_buf with the SC_Q_CLR flag set is
returned before it resumes issuing transactions. The first transaction sent by the

246 Kernel Extensions and Device Support Programming Concepts

FCP device driver after it receives the returned SC_Q_ CLR transaction must have
the SC_RESUME flag set in the scsi_buf.flags fields.

If the FCP device driver wants the FCP adapter driver to resume its halted queue,
it must send a transaction with the SC_Q_RESUME flag set in the scsi_buf.flags
field. This transaction can contain an actual FCP command, but it is not required.
However, this transaction must have the SCSI ID field (scsi_buf.scsi_id) and the
LUN field (scsi_buf.lun_id) filled in with the device’s SCSI ID and logical unit
number (LUN). If this is the first transaction issued by the FCP device driver after
receiving the error (indicating that the adapter driver’s queue is halted),then the
SC_RESUME flag must be set as well as the SC_Q_RESUME flag.

Analyzing Returned Status

The following order of precedence should be followed by FCP device drivers when
analyzing the returned status:

1.

If the scsi_buf.bufstruct.b_flags field has the B_LERROR flag set, then an error
has occurred and the scsi_buf.bufstruct.b_error field contains a valid errmo
value.

If the b_error field contains the ENXIO value, either the command needs to be
restarted or it was canceled at the request of the FCP device driver.

If the b_error field contains the EIO value, then either one or no flag is set in
the scsi_buf.status_validity field. If a flag is set, an error in either the
scsi_status or adapter_status field is the cause.

If the status_validity field is 0, then the scsi_buf.bufstruct.b_resid field should
be examined to see if the FCP command issued was in error. The b_resid field
can have a value without an error having occurred. To decide whether an error
has occurred, the FCP device driver must evaluate this field with regard to the
FCP command being sent and the FCP device being driven.

If the SC_CHECK_CONDITION or SC_COMMAND_TERMINATED is set in
scsi_status, then a FCP device driver must analyze the value of
sc_buf.scsi_fields.adap_set_flags (i.e. sc_buf.scsi_fields must point to a valid

scsi3_fields structure) to determine if autosense data was returned from the
FCP device.

If the SC_AUTOSENSE_DATA_VALID flag is set in the
sc_buf.scsi_fields.adap_set_flags field for a FCP device, then the FCP device
returned autosense data in the buffer referenced by
sc_buf.scsi_fields.autosense_buffer_ptr. In this situation the FCP device driver
does not need to issue a SCSI request sense to determine the appropriate error
recovery for the FCP devices.

If the FCP device driver is queuing multiple transactions to the device and if
either SC_CHECK_CONDITION or SC_COMMAND_TERMINATED is set in
scsi_status, then the value of scsi_buf.adap_q_status must be analyzed to
determine if the adapter driver has cleared its queue for this device. If the FCP
adapter driver has not cleared its queue after an error, then it holds that queue
in a halted state.

If scsi_buf.adap_q_status is set to 0, the FCP adapter driver has cleared its
queue for this device and any transactions outstanding are flushed back to the
FCP device driver with an error of ENXIO.

If the SC_DID_NOT_CLEAR_Q flag is set in the scsi_buf.adap_q_status field,
the adapter driver has not cleared its queue for this device. When this
condition occurs, the FCP adapter driver allows the FCP device driver to send
one error recovery transaction (request sense) that has the field
scsi_buf.q_tag_msg set to SC_NO_Q and the field scsi_buf.flags set to SC_RESUME.

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 247

The FCP device driver can then notify the FCP adapter driver to clear or
resume its queue for the device by sending a SC_Q CLR or SC_Q_RESUME
transaction.

If the FCP device driver does not queue multiple transactions to the device
(that is, the SC_NO_Q is set in scsi_buf.q_tag_msg), then the FCP adapter
clears its queue on error and sets scsi_buf.adap_q_status to 0.

2. If the scsi_buf.bufstruct.b_flags field does not have the B_ERROR flag set,
then no error is being reported. However, the FCP device driver should
examine the b_resid field to check for cases where less data was transferred
than expected. For some FCP commands, this occurrence may not represent an
error. The FCP device driver must determine if an error has occurred.

If a nonzero b_resid field does represent an error condition, then the device
queue is not halted by the FCP adapter device driver. It is possible for one or
more succeeding queued commands to be sent to the adapter (and possibly the
device). Recovering from this situation is the responsibility of the FCP device
driver.

3. In any of the above cases, if scsi_buf.bufstruct.b_flags field has the B_ERROR
flag set, then the queue of the device in question has been halted. The first

scsi_buf structure sent to recover the error (or continue operations) must have
the SC_RESUME bit set in the scsi_buf.flags field.

A Typical Initiator-Mode FCP Driver Transaction Sequence

A simplified sequence of events for a transaction between a FCP device driver and
a FCP adapter device driver follows. In this sequence, routine names preceded by
a dd_ are part of the FCP device driver, while those preceded by a scsi_ are part of
the FCP adapter device driver.

1. The FCP device driver receives a call to its dd_strategy routine; any required
internal queuing occurs in this routine. The dd_strategy entry point then
triggers the operation by calling the dd_start entry point. The dd_start routine
invokes the scsi_strategy entry point by calling the devstrategy kernel service
with the relevant scsi_buf structure as a parameter.

2. The scsi_strategy entry point initially checks the scsi_buf structure for validity.
These checks include validating the devno field, matching the SCSI ID/LUN to
internal tables for configuration purposes, and validating the request size.

3. Although the FCP adapter device driver cannot reorder transactions, it does
perform queue chaining. If no other transactions are pending for the requested
device, the scsi_strategy routine immediately calls the scsi_start routine with
the new transaction. If there are other transactions pending, the new transaction
is added to the tail of the device chain.

4. At each interrupt, the scsi_intr interrupt handler verifies the current status. The
FCP adapter device driver fills in the scsi_buf status_validity field, updating
the scsi_status and adapter_status fields as required. The FCP adapter device
driver also fills in the bufstruct.b_resid field with the number of bytes not
transferred from the request. If all the data was transferred, the b_resid field is
set to a value of 0. If the SCSI adapter driver is a FCP adapter driver and
autosense data is returned from the FCP device, then the adapter driver will
also fill in the adap_set_flags and autosense_buffer_ptr fields of the scsi_buf
structure. When a transaction completes, the scsi_intr routine causes the
scsi_buf entry to be removed from the device queue and calls the iodone
kernel service, passing the just dequeued scsi_buf structure for the device as
the parameter. The scsi_start routine is then called again to process the next

248 Kernel Extensions and Device Support Programming Concepts

transaction on the device queue. The iodone kernel service calls the FCP device
driver dd_iodone entry point, signaling the FCP device driver that the
particular transaction has completed.

5. The FCP device driver dd_iodone routine investigates the I/O completion
codes in the scsi_buf status entries and performs error recovery, if required. If
the operation completed correctly, the FCP device driver dequeues the original
buffer structures. It calls the iodone kernel service with the original buffer
pointers to notify the originator of the request.

Understanding FCP Device Driver Internal Commands

During initialization, error recovery, and open or close operations, FCP device
drivers initiate some transactions not directly related to an operating system
request. These transactions are called internal commands and are relatively simple to
handle.

Internal commands differ from operating system-initiated transactions in several
ways. The primary difference is that the FCP device driver is required to generate
a struct buf that is not related to a specific request. Also, the actual FCP
commands are typically more control-oriented than data transfer-related.

The only special requirement for commands with short data-phase transfers (less
than or equal to 256 bytes) is that the FCP device driver must have pinned the
memory being transferred into or out of system memory pages. However, due to
system hardware considerations, additional precautions must be taken for data
transfers into system memory pages when the transfers are larger than 256 bytes.
The problem is that any system memory area with a DMA data operation in
progress causes the entire memory page that contains it to become inaccessible.

As a result, a FCP device driver that initiates an internal command with more than
256 bytes must have preallocated and pinned an area of some multiple whose size
is the system page size. The driver must not place in this area any other data areas
that it may need to access while I/O is being performed into or out of that page.
Memory pages so allocated must be avoided by the device driver from the
moment the transaction is passed to the adapter device driver until the device
driver iodone routine is called for the transaction (and for any other transactions
to those pages).

Understanding the Execution of Initiator I/O Requests

During normal processing, many transactions are queued in the FCP device driver.
As the FCP device driver processes these transactions and passes them to the FCP
adapter device driver, the FCP device driver moves them to the in-process queue.
When the FCP adapter device driver returns through the iodone service with one
of these transactions, the FCP device driver either recovers any errors on the
transaction or returns using the iodone kernel service to the calling level.

The FCP device driver can send only one scsi_buf structure per call to the FCP
adapter device driver. Thus, the scsi_buf.bufstruct.av_forw pointer should be nul1l
when given to the FCP adapter device driver, which indicates that this is the only
request. The FCP device driver can queue multiple scsi_buf requests by making
multiple calls to the FCP adapter device driver strategy routine.

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 249

Spanned (Consolidated) Commands

Some kernel operations may be composed of sequential operations to a device. For
example, if consecutive blocks are written to disk, blocks may or may not be in
physically consecutive buffer pool blocks.

To enhance FCP transport layer performance, the FCP device driver should
consolidate multiple queued requests when possible into a single FCP command.
To allow the FCP adapter device driver the ability to handle the scatter and gather
operations required, the scsi_buf.bp should always point to the first buf structure
entry for the spanned transaction. A null-terminated list of additional struct buf
entries should be chained from the first field through the buf.av_forw field to give
the FCP adapter device driver enough information to perform the DMA scatter and
gather operations required. This information must include at least the buffer’s
starting address, length, and cross-memory descriptor.

The spanned requests should always be for requests in either the read or write
direction but not both, since the FCP adapter device driver must be given a single
FCP command to handle the requests. The spanned request should always consist
of complete I/O requests (including the additional struct buf entries). The FCP
device driver should not attempt to use partial requests to reach the maximum
transfer size.

The maximum transfer size is actually adapter-dependent. The IOCINFO ioctl
operation can be used to discover the FCP adapter device driver’s maximum
allowable transfer size. To ease the design, implementation, and testing of
components that may need to interact with multiple FCP-adapter device drivers, a
required minimum size has been established that all FCP adapter device drivers
must be capable of supporting. The value of this minimum/maximum transfer size
is defined as the following value in the /usr/include/sys/scsi_buf.h file:

SC_MAXREQUEST /* maximum transfer request for a single */
/* FCP command (in bytes) */

If a transfer size larger than the supported maximum is attempted, the FCP
adapter device driver returns a value of EINVAL in the scsi_buf.bufstruct.b_error
field.

Due to system hardware requirements, the FCP device driver must consolidate
only commands that are memory page-aligned at both their starting and ending
addresses. Specifically, this applies to the consolidation of inner memory buffers.
The ending address of the first buffer and the starting address of all subsequent
buffers should be memory page-aligned. However, the starting address of the first
memory buffer and the ending address of the last do not need to be aligned so.

The purpose of consolidating transactions is to decrease the number of FCP
commands and transport layer phases required to perform the required operation.
The time required to maintain the simple chain of buf structure entries is
significantly less than the overhead of multiple (even two) FCP transport layer
transactions.

Fragmented Commands

Single I/O requests larger than the maximum transfer size must be divided into
smaller requests by the FCP device driver. For calls to a FCP device driver’s
character I/O (read/write) entry points, the uphysio kernel service can be used to
break up these requests. For a fragmented command such as this, the scsi_buf.bp

250 Kernel Extensions and Device Support Programming Concepts

field should be null so that the FCP adapter device driver uses only the
information in the scsi_buf structure to prepare for the DMA operation.

FCP Command Tag Queuing

Note: This operation is not supported by all FCP I/O controllers.

FCP command tag queuing refers to queuing multiple commands to a FCP device.
Queuing to the FCP device can improve performance because the device itself
determines the most efficient way to order and process commands. FCP devices
that support command tag queuing can be divided into two classes: those that
clear their queues on error and those that do not. Devices that do not clear their
queues on error resume processing of queued commands when the error condition
is cleared (typically by receiving the next command). Devices that do clear their
queues flush all commands currently outstanding.

Command tag queuing requires the FCP adapter, the FCP device, the FCP device
driver, and the FCP adapter driver to support this capability. For a FCP device
driver to queue multiple commands to a FCP device (that supports command tag
queuing), it must be able to provide at least one of the following values in the
scsi_buf.q_tag msg: SC_SIMPLE_Q, SC_HEAD_OF_Q, or SC_ORDERED_Q. The FCP disk
device driver and FCP adapter driver do support this capability. This
implementation provides some queuing-specific changeable attributes for disks that
can queue commands. With this information, the disk device driver attempts to
queue to the disk, first by queuing commands to the adapter driver. The FCP
adapter driver then queues these commands to the adapter, providing that the
adapter supports command tag queuing. If the FCP adapter does not support
command tag queuing, then the FCP adapter driver sends only one command at a
time to the FCP adapter and so multiple commands are not queued to the FCP
disk.

Understanding the scsi_buf Structure

Fields

The scsi_buf structure is used for communication between the FCP device driver
and the FCP adapter device driver during an initiator I/O request. This structure is
passed to and from the strategy routine in the same way a standard driver uses a
struct buf structure.

in the scsi_buf Structure

The scsi_buf structure contains certain fields used to pass a FCP command and
associated parameters to the FCP adapter device driver. Other fields within this
structure are used to pass returned status back to the FCP device driver. The
scsi_buf structure is defined in the /usr/include/sys/scsi_buf.h file.

Fields in the scsi_buf structure are used as follows:
1. Reserved fields should be set to a value of 0, except where noted.

2. The bufstruct field contains a copy of the standard buf buffer structure that
documents the I/O request. Included in this structure, for example, are the
buffer address, byte count, and transfer direction. The b_work field in the buf
structure is reserved for use by the FCP adapter device driver. The current
definition of the buf structure is in the /usr/include/sys/buf.h include file.

3. The bp field points to the original buffer structure received by the FCP Device
Driver from the caller, if any. This can be a chain of entries in the case of
spanned transfers (FCP commands that transfer data from or to more than one

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 251

system-memory buffer). A null pointer indicates a nonspanned transfer. The
null value specifically tells the FCP adapter device driver that all the
information needed to perform the DMA data transfer is contained in the
bufstruct fields of the scsi_buf structure.

4. The scsi_command field, defined as a scsi_cmd structure, contains, for
example, the SCSI command length, SCSI command, and a flag variable:

a. The scsi_length field is the number of bytes in the actual SCSI command.
This is normally 6, 10, 12, or 16 (decimal).

b. The FCP_flags field contains the following bit flags:

SC_NODISC
Do not allow the target to disconnect during this command.

SC_ASYNC
Do not allow the adapter to negotiate for synchronous transfer to
the FCP device.

During normal use, the SC_NODISC bit should not be set. Setting this bit
allows a device executing commands to monopolize the FCP transport
layer. Sometimes it is desirable for a particular device to maintain control
of the transport layer once it has successfully arbitrated for it; for instance,
when this is the only device on the FCP transport layer or the only device
that will be in use. For performance reasons, it may not be desirable to go
through FCP selections again to save FCP transport layer overhead on each
command.

Also during normal use, the SC_ASYNC bit must not be set. It should be
set only in cases where a previous command to the device ended in an
unexpected FCP transport free condition. This condition is noted as
SCSI_TRANSPORT_FAULT in the adapter_status field of the scsi_cmd
structure. Since other errors may also result in the SCSI_TRANSPORT_FAULT
flag being set, the SC_ASYNC bit should only be set on the last retry of
the failed command.

C. The scsi_cdb structure contains the physical SCSI command block. The 6 to
16 bytes of a single SCSI command are stored in consecutive bytes, with
the op code identified individually. The scsi_cdb structure contains the
following fields:

scsi_op_code
This field specifies the standard FCP op code for this command.

scsi_bytes
This field contains the remaining command-unique bytes of the
FCP command block. The actual number of bytes depends on the
value in the scsi_op_code field.

5. The timeout_value field specifies the time-out limit (in seconds) to be used for
completion of this command. A time-out value of 0 means no time-out is
applied to this I/O request.

6. The status_validity field contains an output parameter that can have one of the
following bit flags as a value:

SC_SCSI_ERROR
The scsi_status field is valid.

SC_ADAPTER_ERROR
The adapter_status field is valid.

252 Kernel Extensions and Device Support Programming Concepts

7. The scsi_status field in the scsi_buf structure is an output parameter that
provides valid FCP command completion status when its status_validity bit is
nonzero. The scsi_buf.bufstruct.b_error field should be set to EIO any time the
scsi_status field is valid. Typical status values include:

SC_GOOD_STATUS
The target successfully completed the command.

SC_CHECK_CONDITION
The target is reporting an error, exception, or other conditions.

SC_BUSY_STATUS
The target is currently transporting and cannot accept a command now.

SC_RESERVATION_CONFLICT
The target is reserved by another initiator and cannot be accessed.

SC_COMMAND_TERMINATED
The target terminated this command after receiving a terminate I/O
process message from the FCP adapter.

SC_QUEUE_FULL
The target’s command queue is full, so this command is returned.

SC_ACA_ACTIVE
The FCP device has an ACA (auto contingent allegiance) condition that
requires a Clear ACA to request to clear it.

8. The adapter_status field is an output parameter that is valid when its
status_validity bit is nonzero. The scsi_buf.bufstruct.b_error field should be
set to EIO any time the adapter_status field is valid. This field contains generic
FCP adapter card status. It is intentionally general in coverage so that it can
report error status from any typical FCP adapter.

If an error is detected during execution of a FCP command, and the error
prevented the FCP command from actually being sent to the FCP transport
layer by the adapter, then the error should be processed or recovered, or both,
by the FCP adapter device driver.

If it is recovered successfully by the FCP adapter device driver, the error is
logged, as appropriate, but is not reflected in the adapter_status byte. If the
error cannot be recovered by the FCP adapter device driver, the appropriate
adapter_status bit is set and the scsi_buf structure is returned to the FCP
device driver for further processing.

If an error is detected after the command was actually sent to the FCP device,
then it should be processed or recovered, or both, by the FCP device driver.
For error logging, the FCP adapter device driver logs FCP transport layer and
adapter-related conditions, while the FCP device driver logs FCP device-related
errors. In the following description, a capital letter (A) after the error name
indicates that the FCP adapter device driver handles error logging. A capital
letter (H) indicates that the FCP device driver handles error logging.

Some of the following error conditions indicate a FCP device failure. Others are
FCP transport layer or adapter-related.

SCSI_HOST_IO_BUS_ERR (A)
The system I/O transport layer generated or detected an error during a
DMA or Programmed I/O (PIO) transfer.

SCSI_TRANSPORT_FAULT (H)
The FCP transport protocol or hardware was unsuccessful.

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 253

SCSI_CMD_TIMEOUT (H)
The command timed out before completion.

SCSI_NO_DEVICE_RESPONSE (H)
The target device did not respond to selection phase.

SCSI_ADAPTER_HDW_FAILURE (A)
The adapter indicated an onboard hardware failure.

SCSI_ADAPTER_SFW_FAILURE (A)
The adapter indicated microcode failure.

SCSI_FUSE_OR_TERMINAL_PWR (A)
The adapter indicated a blown terminator fuse or bad termination.

SCSI_TRANSPORT_RESET (A)
The adapter indicated the FCP transport layer has been reset.

SCSI_WW_NAME_CHANGE (A)
The adapter indicated the device at this SCSI ID has a new FCS world
wide name.

9. The add_status field contains additional device status. For FCP devices, this
field contains the FCP Response code returned.

10. When the FCP device driver queues multiple transactions to a device, the
adap_q_status field indicates whether or not the FCP adapter driver has
cleared its queue for this device after an error has occurred. The flag of
SC_DID_NOT CLEAR_Q indicates that the FCP adapter driver has not cleared its
queue for this device and that it is in a halted state (so none of the pending
queued transactions are sent to the device).

11. The q_tag msg field indicates if the FCP adapter can attempt to queue this
transaction to the device. This information causes the FCP adapter to fill in the
Queue Tag Message Code of the queue tag message for a FCP command. The
following values are valid for this field:

SC_NO_Q
Specifies that the FCP adapter does not send a queue tag message for
this command, and so the device does not allow more than one FCP
command on its command queue. This value must be used for all
commands sent to FCP devices that do not support command tag
queuing.

SC_SIMPLE_Q
Specifies placing this command in the device’s command queue. The
device determines the order that it executes commands in its queue.
The SCSI-2 specification calls this value the "Simple Queue Tag
Message”.

SC_HEAD_OF_Q
Specifies placing this command first in the device’s command queue.
This command does not preempt an active command at the device,
but it is executed before all other commands in the command queue.
The SCSI-2 specification calls this value the "Head of Queue Tag
Message”.

SC_ORDERED _Q
Specifies placing this command in the device’s command queue. The
device processes these commands in the order that they are received.
The SCSI-2 specification calls this value the "Ordered Queue Tag
Message”.

254 Kernel Extensions and Device Support Programming Concepts

SC_ACA_Q
Specifies placing this command in the device’s command queue, when
the device has an ACA (Auto Contingent Allegiance) condition. The
SCSI-3 Architecture Model calls this value the "ACA task attribute”.

Note: Commands with the value of SC_NO_Q for the q_tag_msg field
(except for request sense commands) should not be queued to a device
whose queue contains a command with another value for q_tag_msg. If
commands with the SC_NO_Q value (except for request sense) are sent to
the device, then the FCP device driver must make sure that no active
commands are using different values for q_tag_msg. Similarly, the FCP
device driver must also make sure that a command with a q_tag_msg
value of SC_ORDERED_Q, SC_HEAD_Q, or SC_SIMPLE_Q is not sent to a device
that has a command with the q_tag_msg field of SC_NO_Q.

12. The flags field contains bit flags sent from the FCP device driver to the FCP
adapter device driver. The following flags are defined:

SC_RESUME
When set, means the FCP adapter device driver should resume
transaction queuing for this ID/LUN. Error recovery is complete after
a SCIOLHALT operation, check condition, or severe FCP transport
error (see 'SCIOLHAIT” on page 287). This flag is used to restart the
FCP adapter device driver following a reported error.

SC_DELAY_CMD
When set, means the FCP adapter device driver should delay sending
this command (following a FCP reset or BDR to this device) by at
least the number of seconds specified to the FCP adapter device driver
in its configuration information. For FCP devices that do not require
this function, this flag should not be set.

SC_Q_CLR
When set, means the FCP adapter driver should clear its transaction
queue for this ID/LUN. The transaction containing this flag setting
does not require an actual FCP command in the scsi_buf because it is
flushed back to the FCP device driver with the rest of the transactions
for this ID/LUN. However, this transaction must have the SCSI ID
field (scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in
with the device’s SCSI ID and logical unit number (LUN). This flag is
valid only during error recovery of a check condition or command
terminated at a command tag queuing device when the
SC_DID_NOT_CLR_Q flag is set in the scsi_buf.adap_q_status field.

SC_Q_RESUME
When set, means that the FCP adapter driver should resume its halted
transaction queue for this ID/LUN. The transaction containing this
flag setting does not require an actual FCP command to be sent to the
FCP adapter driver. However, this transaction must have the SCSI ID
field (scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in
with the device’s SCSI ID and logical unit number (LUN). If the
transaction containing this flag setting is the first issued by the FCP
device driver after it receives an error (indicating that the adapter
driver’s queue is halted), then the SC_RESUME flag must be set also.

SC_CLEAR_ACA
When set, means the SCSI adapter driver should issue a Clear ACA
task management request for this ID/LUN. This flag should be used
in conjunction with either the SC_Q_CLEAR or SC_Q_RESUME flags to clear

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 255

13.

14.
15.

16.

17.

or resume the SCSI adapter driver’s queue for this device. If neither of
these flags is used, then this transaction is treated as if the
SC_Q_RESUME flag is also set. The transaction containing the
SC_CLEAR_ACA flag setting does not require an actual SCSI command in
the sc_buf. If this transaction contains a SCSI command then it will be
processed depending on whether SC_Q_CLR or SC_Q_RESUME is set.

This transaction must have the SCSI ID field (scsi_buf.scsi_id) and the
LUN field (scsi_buf.lun_id) filled in with the device’s SCSI ID and
logical unit number (LUN). This flag is valid only during error
recovery of a check condition or command terminated at a command
tag queuing.
The dev_flags field contains additional values sent from the FCP device driver
to the FCP adapter device driver. The following values are defined:

FC_CLASS1
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 1 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

FC_CLASS2
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 2 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

FC_CLASS3
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 3 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

FC_CLASS4
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 4 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

The add_work field is reserved for use by the FCP adapter device driver.

The adap_set_flags field contains an output parameter that can have one of
the following bit flags as a value:

SC_AUTOSENSE_DATA_VALID
Autosense data was placed in the autosense buffer referenced by the
autosense_buffer_ptr field.

The autosense_length field contains the length in bytes of the SCSI device
driver’s sense buffer, which is referenced via the autosense_buffer_ptr field.
For FCP devices this field must be non-zero, otherwise the autosense data will
be lost.

The autosense_buffer_ ptr field contains the address of the SCSI devices
driver’s autosense buffer for this command. For FCP devices this field must be
non-NULL, otherwise the autosense data will be lost.

256 Kernel Extensions and Device Support Programming Concepts

18. The dev_burst_len field contains the burst size if this write operation in bytes.
This should only be set by the FCP device driver if it h as negotiated with the
device and it allows burst of write data without transfer readys. For most
operations, this should be set to 0.

19. The scsi_id field contains the 64-bit SCSI ID for this device. This field must be
set for FCP devices.

20. The lun_id field contains the 64-bit lun ID for this device. This field must be
set for FCP devices.

Other FCP Design Considerations

Responsibilities of the FCP Device Driver
FCP device drivers are responsible for the following actions:

¢ Interfacing with block I/O and logical-volume device-driver code in the
operating system.

* Translating I/O requests from the operating system into FCP commands suitable
for the particular FCP device. These commands are then given to the FCP
adapter device driver for execution.

* Issuing any and all FCP commands to the attached device. The FCP adapter
device driver sends no FCP commands except those it is directed to send by the
calling FCP device driver.

* Managing FCP device reservations and releases. In the operating system, it is
assumed that other FCP initiators may be active on the FCP transport layer.
Usually, the FCP device driver reserves the FCP device at open time and releases
it at close time (except when told to do otherwise through parameters in the
FCP device driver interface). Once the device is reserved, the FCP device driver
must be prepared to reserve the FCP device again whenever a Unit Attention
condition is reported through the FCP request-sense data.

FCP Options to the openx Subroutine

FCP device drivers in the operating system must support eight defined extended
options in their open routine (see Lopenx” an page 27d). Additional extended
options to the open are also allowed, but they must not conflict with predefined
open options. The defined extended options are bit flags in the ext open parameter.
These options can be specified singly or in combination with each other. The
required ext options are defined in the /usr/include/sys/scsi.h header file and can
have one of the following values:

SC_FORCED_OPEN
Do not honor device reservation-conflict status. (See m
BC_FORCED_QPEN Option” on page 258.)

SC_RETAIN_RESERVATION

Do not release FCP device on close. (See m
BC_RETAIN_RESERVATION Option” on page 258.)

SC_DIAGNOSTIC
Enter diagnostic mode for this device. (See I'Lising the SC_ DIAGNQSTIC

Option” on page 258.)
SC_NO_RESERVE

Prevents the reservation of the device during an openx subroutine call to
that device. Allows multiple hosts to share a device. (See

BC_NO RFSERVE Option” an page 259.)

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 257

SC_SINGLE

Places the selected device in Exclusive Access mode. (See m
BC_SINGIE Option” on page ’7"‘»d)

SC_RESV_04
Reserved for future expansion.

SC_RESV_05
Reserved for future expansion.

SC_RESV_06
Reserved for future expansion.

SC_RESV_07
Reserved for future expansion.

SC_RESV_08
Reserved for future expansion.

Using the SC_FORCED_OPEN Option

The SC_FORCED_OPEN option causes the FCP device driver to call the FCP
adapter device driver’s transport Device Reset ioctl operation on the first open (see
U'SCIOL RESET” on page 263). This forces the device to release another initiator’s
reservation. After the SCIOLRESET command is completed, other FCP commands
are sent as in a normal open. If any of the FCP commands fail due to a reservation
conflict, the open registers the failure as an EBUSY status. This is also the result if
a reservation conflict occurs during a normal open. The FCP device driver should
require the caller to have appropriate authority to request the SC_FORCED_OPEN
option since this request can force a device to drop a FCP reservation. If the caller
attempts to execute this system call without the proper authority, the FCP device
driver should return a value of -1, with the errno global variable set to a value of
EPERM.

Using the SC_RETAIN_RESERVATION Option

The SC_RETAIN_RESERVATION option causes the FCP device driver not to issue
the FCP release command during the close of the device. This guarantees a calling
program control of the device (using FCP reservation) through open and close
cycles. For shared devices (for example, disk or CD-ROM), the FCP device driver
must OR together this option for all opens to a given device. If any caller requests
this option, the close routine does not issue the release even if other opens to the
device do not set SC_RETAIN_RESERVATION (see l‘close” on page 27d). The FCP
device driver should require the caller to have appropriate authority to request the
SC_RETAIN_RESERVATION option since this request can allow a program to
monopolize a device (for example, if this is a nonshared device). If the caller
attempts to execute this system call without the proper authority, the FCP device
driver should return a value of -1, with the errno global variable set to a value of
EPERM.

Using the SC_DIAGNOSTIC Option

The SC_DIAGNOSTIC option causes the FCP device driver to enter Diagnostic
mode for the given device. This option directs the FCP device driver to perform
only minimal operations to open a logical path to the device. No FCP commands
should be sent to the device in the open (see l‘apen” an page 276) or close (see
t'close” on page 276) routine when the device is in Diagnostic mode. One or more
ioctl operations should be provided by the FCP device driver to allow the caller to
issue FCP commands to the attached device for diagnostic purposes.

258 Kernel Extensions and Device Support Programming Concepts

The SC_DIAGNOSTIC option gives the caller an exclusive open to the selected
device. This option requires appropriate authority to execute. If the caller attempts
to execute this system call without the proper authority, the FCP device driver
should return a value of -1, with the errno global variable set to a value of EPERM.
The SC_DIAGNOSTIC option may be executed only if the device is not already
opened for normal operation. If this ioctl operation is attempted when the device is
already opened, or if an openx (see L'openx” an page 27d) call with the
SC_DIAGNOSTIC option is already in progress, a return value of -1 should be
passed, with the errno global variable set to a value of EACCES. Once successfully
opened with the SC_DIAGNOSTIC flag, the FCP device driver is placed in
Diagnostic mode for the selected device.

Using the SC_NO_RESERVE Option

The SC_NO_RESERVE option causes the FCP device driver not to issue the FCP
reserve command during the opening of the device and not to issue the FCP
release command during the close of the device. This allows multiple hosts to
share the device. The FCP device driver should require the caller to have
appropriate authority to request the SC_NO_RESERVE option, since this request
allows other hosts to modify data on the device. If a caller does this kind of
request then the caller must ensure data integrity between multiple hosts. If the
caller attempts to execute this system call without the proper authority, the FCP
device driver should return a value of -1, with the errno global variable set to a
value of EPERM.

Using the SC_SINGLE Option

The SC_SINGLE option causes the FCP device driver to issue a normal open, but
does not allow another caller to issue another open until the first caller has closed
the device. This request gives the caller an exclusive open to the selected device. If
this openx routine is attempted when the device is already open, a return value of
-1is Eassed, with the errno global variable set to a value of EBUSY (see

).

Once successfully opened, the device is placed in Exclusive Access mode. If
another caller tries to do any type of open routine (see open” on page 274), a

return value of -1 is passed, with the errno global variable set to a value of EACCES.

The remaining options for the ext parameter are reserved for future requirements.

Note: The following table shows how the various combinations of ext options
should be handled in the FCP device driver.

EXT OPTIONS Device Driver Action

openx ext option Open Close

none normal normal

diag no FCP commands no FCP commands
diag + force issue SCIOLRESET; no FCP commands

otherwise, no FCP
commands issued

diag + force + no_reserve issue SCIOLRESET; no FCP commands
otherwise, no FCP
commands issued

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 259

EXT OPTIONS

Device Driver Action

openx ext option

Open

Close

diag + force + no_reserve +
single

issue SCIOLRESET;
otherwise, no FCP
commands issued.

no FCP commands

diag + force + retain

issue SCIOLRESET;
otherwise, no FCP
commands issued

no FCP commands

diag + force + retain +
no_reserve

issue SCIOLRESET;
otherwise, no FCP
commands issued

no FCP commands

diag + force + retain +
no_reserve + single

issue SCIOLRESET;
otherwise, no FCP
commands issued

no FCP commands

diag + force + retain + single

issue SCIOLRESET;
otherwise, no FCP
commands issued

no FCP commands

diag + force + single

issue SCIOLRESET;
otherwise, no FCP
commands issued

no FCP commands

diag + no_reserve

no FCP commands

no FCP commands

diag + retain

no FCP commands

no FCP commands

diag + retain + no_reserve

no FCP commands

no FCP commands

diag + retain + no_reserve +
single

no FCP commands

no FCP commands

diag + retain + single

no FCP commands

no FCP commands

diag + single

no FCP commands

no FCP commands

diag + single + no_reserve

no FCP commands

no FCP commands

force

normal, except SCIOLRESET
issued prior to any FCP
commands.

normal

force + no_reserve

normal, except SCIOLRESET
issued prior to any FCP
commands. No RESERVE
command issued

normal except no RELEASE

force + retain

normal, except SCIOLRESET
issued prior to any FCP
commands

no RELEASE

force + retain + no_reserve

normal except SCIOLRESET
issued prior to any FCP
commands. No RESERVE
command issued.

no RELEASE

force + retain + no_reserve +
single

normal, except SCIOLRESET
issued prior to any FCP
commands. No RESERVE
command issued.

no RELEASE

force + retain + single

normal, except SCIOLRESET
issued prior to any FCP
commands.

no RELEASE

260 Kernel Extensions and Device Support Programming Concepts

EXT OPTIONS Device Driver Action

openx ext option Open Close
force + single normal, except SCIOLRESET | normal
issued prior to any FCP
commands.

force + single + no_reserve | normal, except SCIOLRESET |no RELEASE
issued prior to any FCP
commands. No RESERVE
command issued

no_reserve no RESERVE no RELEASE
retain normal no RELEASE
retain + no_reserve no RESERVE no RELEASE
retain + single normal no RELEASE

retain + single + no_reserve |normal, except no RESERVE |no RELEASE
command issued

single normal normal

single + no_reserve no RESERVE no RELEASE

Closing the FCP Device

When a FCP device driver is preparing to close a device through the FCP adapter
device driver, it must ensure that all transactions are complete. When the FCP
adapter device driver receives a SCIOLSTOP ioctl operation and there are pending
1/0 requests, the ioctl operation does not return until all have completed (see
U'SCIQLSTQP” an page 264). New requests received during this time are rejected
from the adapter device driver’s ddstrategy routine.

FCP Error Processing

It is the responsibility of the FCP device driver to process FCP check conditions
and other returned errors properly. The FCP adapter device driver only passes FCP
commands without otherwise processing them and is not responsible for device
€ITOr recovery.

Length of Data Transfer for FCP Commands

Commands initiated by the FCP device driver internally or as subordinates to a
transaction from above must have data phase transfers of 256 bytes or less to
prevent DMA /CPU memory conflicts. The length indicates to the FCP adapter
device driver that data phase transfers are to be handled internally in its address
space. This is required to prevent DMA/CPU memory conflicts for the FCP device
driver. The FCP adapter device driver specifically interprets a byte count of 256 or
less as an indication that it can not perform data-phase DMA transfers directly to
or from the destination buffer.

The actual DMA transfer goes to a dummy bulffer inside the FCP adapter device
driver and then is block-copied to the destination buffer. Internal FCP device
driver operations that typically have small data-transfer phases are FCP
control-type commands, such as Mode select, Mode sense, and Request sense.
However, this discussion applies to any command received by the FCP adapter
device driver that has a data-phase size of 256 bytes or less.

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 261

Internal commands with data phases larger than 256 bytes require the FCP device
driver to allocate specifically the required memory on the process level. The
memory pages containing this memory cannot be accessed in any way by the CPU
(that is, the FCP device driver) from the time the transaction is passed to the FCP
adapter device driver until the FCP device driver receives the iodone call for the
transaction.

Device Driver and Adapter Device Driver Interfaces

The FCP device drivers can have both character (raw) and block special files in the
/dev directory. The FCP adapter device driver has only character (raw) special files
in the /dev directory and has only the ddconfig, ddopen, ddclose, dddump, and
ddioctl entry points available to operating system programs. The ddread and
ddwrite entry points are not implemented.

Internally, the devsw table has entry points for the ddconfig, ddopen, ddclose,
dddump, ddioctl, and ddstrat routines. The FCP device drivers pass their FCP
commands to the FCP adapter device driver by calling the FCP adapter device
driver ddstrat routine. (This routine is unavailable to other operating system
programs due to the lack of a block-device special file.)

Access to the FCP adapter device driver’s ddconfig, ddopen, ddclose, dddump,
ddioctl, and ddstrat entry points by the FCP device drivers is performed through
the kernel services provided. These include such services as fp_opendev, fp_close,
fp_ioctl, devdump, and devstrat.

Performing FCP Dumps

A FCP adapter device driver must have a dddump entry point if it is used to
access a system dump device. A FCP device driver must have a dddump entry
point if it drives a dump device. Examples of dump devices are disks and tapes.

Note: FCP adapter-device-driver writers should be aware that system services
providing interrupt and timer services are unavailable for use in the dump
routine. Kernel DMA services are assumed to be available for use by the
dump routine. The FCP adapter device driver should be designed to ignore
extra DUMPINIT and DUMPSTART commands to the dddump entry point.

The DUMPQUERY option should return a minimum transfer size of 0 bytes, and a
maximum transfer size equal to the maximum transfer size supported by the FCP
adapter device driver.

Calls to the FCP adapter device driver DUMPWRITE option should use the arg
parameter as a pointer to the scsi_buf structure to be processed. Using this
interface, a FCP write command can be executed on a previously started (opened)
target device. The uiop parameter is ignored by the FCP adapter device driver
during the DUMPWRITE command. Spanned, or consolidated, commands are not
supported using the DUMPWRITE option. Gathered write commands are also not
supported using the DUMPWRITE option. No queuing of scsi_buf structures is
supported during dump processing since the dump routine runs essentially as a
subroutine call from the caller’'s dump routine. Control is returned when the entire
scsi_buf structure has been processed.

Warning: Also, both adapter-device-driver and device-driver writers should
be aware that any error occurring during the DUMPWRITE option is

262 Kernel Extensions and Device Support Programming Concepts

considered unsuccessful. Therefore, no error recovery is employed during the
DUMPWRITE. Return values from the call to the dddump routine indicate
the specific nature of the failure.

Successful completion of the selected operation is indicated by a 0 return value to
the subroutine. Unsuccessful completion is indicated by a return code set to one of
the following values for the errno global variable. The various scsi_buf status
fields, including the b_error field, are not set by the FCP adapter device driver at
completion of the DUMPWRITE command. Error logging is, of necessity, not
supported during the dump.

* An errno value of EINVAL indicates that a request that was not valid passed to
the FCP adapter device driver, such as to attempt a DUMPSTART command
before successfully executing a DUMPINIT command.

* An errno value of EI0 indicates that the FCP adapter device driver was unable
to complete the command due to a lack of required resources or an I/O error.

* An errno value of ETIMEDOUT indicates that the adapter did not respond with
completion status before the passed command time-out value expired.

Required FCP Adapter Device Driver ioctl Commands

Description

Various ioctl operations must be performed for proper operation of the FCP
adapter device driver. The ioctl operations described here are the minimum set of
commands the FCP adapter device driver must implement to support FCP device
drivers. Other operations may be required in the FCP adapter device driver to
support, for example, system management facilities and diagnostics. FCP device
driver writers also need to understand these ioctl operations.

Every FCP adapter device driver must support the IOCINFO ioctl operation. The
structure to be returned to the caller is the devinfo structure, including the FCP
union definition for the FCP adapter, which can be found in the
fusr/include/sys/devinfo.h file. The FCP device driver should request the
IOCINFO ioctl operation (probably during its open routine) to get the maximum
transfer size of the adapter.

Note: The FCP adapter device driver ioctl operations can only be called from
the process level. They cannot be executed from a call on any more favored
priority levels. Attempting to call them from a more favored priority level can
result in a system crash.

Initiator-Mode ioctl Commands

The following SCIOLSTART and SCIOLSTOP operations must be sent by the FCP
device driver (for the open and close routines, respectively) for each device (see
'SCIQLSTART” an page 264 or 'SCIOL STOP” an page 264). They cause the FCP
adapter device driver to allocate and initialize internal resources. The SCIOLHALT
ioctl operation is used to abort pending or running commands, usually after signal
processing by the FCP device driver (see 'SCIOLHAIT” an page 287). This might
be used by a FCP device driver to end an operation instead of waiting for
completion or a time out. The SCIOLRESET operation is provided for clearing
device hard errors and competing initiator reservations during open processing by
the FCP device driver. (See !SCIOI RESET” an page 263.)

Except where noted otherwise, the arg parameter for each of the ioctl operations
described here must contain a long integer. In this field, the least significant byte is

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 263

the FCP LUN and the next least significant byte is the FCP ID value. (The upper
two bytes are reserved and should be set to 0.) This provides the information
required to allocate or deallocate resources and perform FCP transport layer
operations for the ioctl operation requested.

The following information is provided on the various ioctl operations:

SCIOLSTART

This operation allocates and initializes FCP device-dependent information local to
the FCP adapter device driver. Run this operation only on the first open of an
ID/LUN device. Subsequent SCIOLSTART commands to the same ID/LUN fail
unless an intervening SCIOLSTOP command is issued.

For this operation an scsi_sciolst structure (The scsi_sciolst structure is defined in
the /usr/include/sys/scsi_buf.h file.) must be used to specify the FCP device’s SCSI
id and LUN id. In addition, the scsi_sciolst structure can be used to specify an
explicit FCP process login for this operation.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EIO Indicates lack of resources or other error-preventing device allocation.

EINVAL Indicates that the selected SCSI ID and LUN are already in use, or the
SCSI ID matches the adapter ID.

ENOMEM Indicates that system resources are not available to start this device.

ETIMEDOUT Indicates that the command did not complete.

ENODEV Indicates that no FCP device responded to the explicit process login
at this SCSI ID.

ECONNREFUSED Indicates that the FCP device at this SCSI ID rejected explicit process

login. This could be due to the device rejecting the security password
or the device does not support FCP.

SCIOLSTOP

This operation deallocates resources local to the FCP adapter device driver for this
FCP device. This should be run on the last close of an ID/LUN device. If an
SCIOLSTART operation has not been previously issued, this command is
unsuccessful. For this operation an scsi_sciolst structure (The scsi_sciolst structure
is defined in the /ust/include/sys/scsi_buf.h file.) must be used to specify the FCP
device’s SCSI id and LUN id. In addition the scsi_sciolst structure can be used to
specify an explicit FCP process login for this operation.

The following values for the errno global variable should be supported:

0 Indicates successful completion.

EIO Indicates error preventing device deallocation.

EINVAL Indicates that the selected FCP ID and LUN have not been started.
ETIMEDOUT Indicates that the command did not complete.

SCIOLHALT

This operation halts outstanding transactions to this ID/LUN device and causes
the FCP adapter device driver to stop accepting transactions for this device. This
situation remains in effect until the FCP device driver sends another transaction
with the SC_RESUME flag set (in the scsi_buf.flags field) for this ID/LUN
combination. The SCIOLHALT ioctl operation causes the FCP adapter device
driver to fail the command in progress, if any, as well as all queued commands for
the device with a return value of ENXIO in the scsi_buf.bufstruct.b_error field. If

264 Kernel Extensions and Device Support Programming Concepts

an SCIOLSTART operation has not been previously issued, this command fails.
For this operation an scsi_sciolst structure (The scsi_sciolst structure is defined in
the /usr/include/sys/scsi_buf.h file.) must be used to specify the FCP device’s SCSI
id and LUN id. In addition the scsi_sciolst structure can be used to specify an
explicit FCP process login for this operation.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EIO Indicates an unrecovered 1/0 error occurred.

EINVAL Indicates that the selected FCP ID and LUN have not been started.
ETIMEDOUT Indicates that the command did not complete.

SCIOLRESET

This operation causes the FCP adapter device driver to send a FCP transport
Device Reset (BDR) message to the selected FCP ID. For this operation, the FCP
device driver should set the LUN in the arg parameter to the LUN ID of a LUN on
this FCP ID, which has been successfully started using the SCIOLSTART
operation. For this operation an scsi_sciolst structure (The scsi_sciolst structure is
defined in the /usr/include/sys/scsi_buf.h file.) must be used to specify the FCP
device’s SCSI id and LUN id. In addition the scsi_sciolst structure can be used to
specify an explicit FCP process login for this operation.

The FCP device driver should use this command only when directed to do a forced
open. This occurs in two possible situations: one, when it is desirable to force the
device to drop a FCP reservation; two, when the device needs to be reset to clear
an error condition (for example, when running diagnostics on this device).

Note: In normal system operation, this command should not be issued, as it
would force the device to drop a FCP reservation another initiator (and,
hence, another system) may have. If an SCIOLSTART operation has not been
previously issued, this command is unsuccessful.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EIO Indicates an unrecovered I/O error occurred.

EINVAL Indicates that the selected FCP ID and LUN have not been started.
ETIMEDOUT Indicates that the command did not complete.

SCIOLCMD

This operation provides the means for issuing any SCSI command to the specified
device. The SCSI adapter driver performs no error recovery or logging on failures
of this ioctl operation.

The following values for the errno global variable are supported:

0 Indicates successful completion.

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 265

EIO A system error has occurred. Retry the operation (about three times).
If an EIO error occurs and the status_validity field is set to
SC_SCSI_ERROR, then the scsi_status field has a valid value and should
be inspected.

If the status_validity field is zero and remains so on successive
retries, then an unrecoverable error has occurred with the device.

If the status_validity field is SC_SCSI_ERROR and the scsi_status field
contains a Check Condition status, then a SCSI request sense should
be issued via the SCIOLCMD ioctl to recover the the sense data.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Retry the operation.

ENODEV The device is not responding.

ETIMEDOUT The operation did not complete before the time-out value was
exceeded.

Initiator-Mode ioctl Command used by FCP Device Drivers

SCIOLEVENT

For initiator mode, the FCP device driver may issue an SCIOLEVENT ioctl
operation to register for receiving asynchronous event status from the FCP adapter
device driver for a particular device instance. This is an optional call for the FCP
device driver, and is optionally supported for the FCP adapter device driver. A
failing return code from this command, in the absence of any programming error,
indicates it is not supported. If the FCP device driver requires this function, it must
check the return code to verify the FCP adapter device driver supports it.

Only a kernel process or device driver can invoke these ioctls. If attempted by a
user process, the ioctl will fail, and the errno global variable will be set to EPERM.

The event registration performed by this ioctl operation is allowed once per device
session. Only the first SCIOLEVENT ioctl operation is accepted after the device
session is opened. Succeeding SCIOLEVENT ioctl operations will fail, and the
errno global variable will be set to EINVAL. The event registration is canceled
automatically when the device session is closed.

The arg parameter to the SCIOLEVENT ioctl operation should be set to the
address of an scsi_event_struct structure, which is defined in the
lusr/include/sys/scsi_buf.h file. The following parameters are supported:

id The caller sets id to the FCP ID of the attached FCP target device for
initiator-mode. For target-mode, the caller sets the id to the FCP ID of the
attached FCP initiator device.

Iun The caller sets the lun field to the FCP LUN of the attached FCP target
device for initiator-mode. For target-mode, the caller sets the lun field to 0.

mode Identifies whether the initiator-mode or target-mode device is being
registered. These values are possible:

SC_IM_MODE
This is an initiator-mode device.

SC_TM_MODE
This is a target-mode device.

266 Kernel Extensions and Device Support Programming Concepts

async_correlator
The caller places a value in this optional field which is saved by the FCP
adapter device driver and returned when an event occurs in this field in
the scsi_event_info structure. This structure is defined in the
luser/include/sys/scsi_buf.h.

async_func
The caller fills in the address of a pinned routine which the FCP adapter
device driver calls whenever asynchronous event status is available. The
FCP adapter device driver passes a pointer to a scsi_event_info structure
to the caller’s async_func routine.

Note: All reserved fields should be set to 0 by the caller.

The following values for the errno global variable are supported:

0 Indicates successful completion.

EINVAL An SCIOLSTART has not been issued to this device instance, or this
device is already registered for async events.

EPERM Indicates the caller is not running in kernel mode, which is the only mode

allowed to execute this operation.

Chapter 13. Fibre Channel Protocol for SCSI Subsystem 267

268 Kernel Extensions and Device Support Programming Concepts

Chapter 14. FCP Device Drivers

Programming FCP Device Drivers

The AIX Fibre Channel Protocol for SCSI (FCP) subsystem has two parts:
* FCP Device Driver
* FCP Adapter Device Driver

The FCP adapter device driver is designed to shield you from having to
communicate directly with the system I/O hardware. This gives you the ability to
successfully write a FCP device driver without having a detailed knowledge of the
system hardware. You can look at the FCP subsystem as a two-tiered structure in
which the adapter device driver is the bottom or supporting layer. As a
programmer, you need only worry about the upper layer. This chapter only
discusses writing a FCP device driver, because the FCP adapter device driver is
already provided in AIX.

The FCP adapter device driver, or lower layer, is responsible only for the
communications to and from the FCP bus, and any error logging and recovery. The
upper layer is responsible for all of the device-specific commands. The FCP device
driver should handle all commands directed towards its specific device by building
the necessary sequence of I/O requests to the FCP adapter device driver in order
to properly communicate with the device.

These I/O requests contain the FCP commands that are needed by the FCP device.
One important aspect to note is that the FCP device driver cannot access any of the
adapter resources and should never try to pass the FCP commands directly to the
adapter, since it has absolutely no knowledge of the meaning of those commands.

FCP Device Driver Overview

The role of the FCP device driver is to pass information between the operating
system and the FCP adapter device driver by accepting 1/O requests and passing
these requests to the FCP adapter device driver. The device driver should accept
either character or block I/O requests, build the necessary FCP commands, and
then issue these commands to the device through the FCP adapter device driver.

The FCP device driver should also process the various required reservations and
releases needed for the device. The device driver is notified through the iodone
kernel service once the adapter has completed the processing of the command. The
device driver should then notify its calling process that the request has completed
processing through the iodone kernel service.

FCP Adapter Device Driver Overview

Unlike most other device drivers, the FCP adapter device driver does not support
the read and write subroutines. It only supports the open, close, ioctl, config, and
strategy subroutines. Included with the open subroutine call is the openx
subroutine that allows FCP adapter diagnostics.

A FCP device driver does not need to access the FCP diagnostic commands.
Commands received from the device driver through the strategy routine of the

© Copyright IBM Corp. 1997, 1999 269

adapter are processed from a queue. Once the command has completed, the device
driver is notified through the iodone kernel service.

FCP Adapter/Device Interface

The AIX FCP adapter device driver does not contain the ddread and ddwrite entry
points, but does contain the ddconfig, ddopen, ddclose, dddump, and ddioctl
entry points.

Therefore, the adapter device driver’s entry in the kernel devsw table contains only
those entries plus an additional ddstrategy entry point. This ddstrategy routine is
the path that the FCP device driver uses to pass commands to the device driver.
Access to these entry points is possible through the following kernel services:

* fp_open

* fp_close

* devdump

* fp_ioctl

* devstrat

The FCP adapter is accessed by the device driver through the /dev/fscsi# special
files, where # indicates ascending numbers 0,1, 2, and so on. The adapter is
designed so that multiple devices on the same adapter can be accessed at the same
time.

For additional information on spanned and gathered write commands, see
Understanding the Execution of Initiator I/O Requests.

scsi_buf Structure

The I/0 requests made from the FCP device driver to the FCP adapter device
driver are completed through the use of the scsi_buf structure, which is defined in
the /usr/include/sys/scsi_buf.h header file. This structure, which is similar to the
buf structure in other drivers, is passed between the two FCP subsystem drivers

through the strategy routine (see strategy” on page 277). The following is a brief

description of the fields contained in the scsi_buf structure:

1. Reserved fields should be set to a value of 0, except where noted.

2. The bufstruct field contains a copy of the standard buf buffer structure that
documents the I/O request. Included in this structure, for example, are the
buffer address, byte count, and transfer direction. The b_work field in the buf
structure is reserved for use by the FCP adapter device driver. The current
definition of the buf structure is in the /usr/include/sys/buf.h include file.

3. The bp field points to the original buffer structure received by the FCP Device
Driver from the caller, if any. This can be a chain of entries in the case of
spanned transfers (FCP commands that transfer data from or to more than one
system-memory buffer). A null pointer indicates a nonspanned transfer. The
null value specifically tells the FCP adapter device driver that all the
information needed to perform the DMA data transfer is contained in the
bufstruct fields of the scsi_buf structure.

4. The scsi_command field, defined as a scsi_cmd structure, contains, for
example, the SCSI command length, SCSI command, and a flag variable:

a. The scsi_length field is the number of bytes in the actual SCSI command.
This is normally 6,10,12, or 16 (decimal).

b. The FCP_flags field contains the following bit flags:

270 Kernel Extensions and Device Support Programming Concepts

SC_NODISC
Do not allow the target to disconnect during this command.

SC_ASYNC
Do not allow the adapter to negotiate for synchronous transfer to
the FCP device.

During normal use, the SC_NODISC bit should not be set. Setting this bit
allows a device executing commands to monopolize the FCP transport
layer. Sometimes it is desirable for a particular device to maintain control
of the transport layer once it has successfully arbitrated for it; for instance,
when this is the only device on the FCP transport layer or the only device
that will be in use. For performance reasons, it may not be desirable to go
through FCP selections again to save FCP transport layer overhead on each
command.

Also during normal use, the SC_ASYNC bit must not be set. It should be
set only in cases where a previous command to the device ended in an
unexpected FCP transport free condition. This condition is noted as
SCSI_TRANSPORT_FAULT in the adapter_status field of the scsi_cmd
structure. Since other errors may also result in the
SCSI_TRANSPORT_FAULT flag being set, the SC_ASYNC bit should
only be set on the last retry of the failed command.

c. The scsi_cdb structure contains the physical SCSI command block. The 6 to

16 bytes of a single SCSI command are stored in consecutive bytes, with

the op code identified individually. The scsi_cdb structure contains the

following fields:

1) The scsi_op_code field specifies the standard FCP op code for this
command.

2) The scsi_bytes field contains the remaining command-unique bytes of
the FCP command block. The actual number of bytes depends on the
value in the scsi_op_code field.

5. The timeout_value field specifies the time-out limit (in seconds) to be used for
completion of this command. A time-out value of ® means no time-out is
applied to this I/O request.

6. The status_validity field contains an output parameter that can have one of the
following bit flags as a value:

SC_SCSI_ERROR
The scsi_status field is valid.

SC_ADAPTER_ERROR
The adapter_status field is valid.

7. The scsi_status field in the scsi_buf structure is an output parameter that
provides valid FCP command completion status when its status_validity bit is
nonzero. The scsi_buf.bufstruct.b_error field should be set to EI0 anytime the
scsi_status field is valid. Typical status values include:

SC_GOOD_STATUS
The target successfully completed the command.

SC_CHECK_CONDITION
The target is reporting an error, exception, or other conditions.

SC_BUSY_STATUS
The target is currently transporting and cannot accept a command now.

Chapter 14. FCP Device Drivers 271

SC_RESERVATION_CONFLICT
The target is reserved by another initiator and cannot be accessed.

SC_COMMAND_TERMINATED
The target terminated this command after receiving a terminate I/O
process message from the FCP adapter.

SC_QUEUE_FULL
The target’s command queue is full, so this command is returned.

SC_ACA_ACTIVE
The FCP device has an ACA (auto contingent allegiance) condition that
requires a Clear ACA to request to clear it.

8. The adapter_status field is an output parameter that is valid when its
status_validity bit is nonzero. The scsi_buf.bufstruct.b_erro field should be set
to EI0 anytime the adapter_status field is valid. This field contains generic FCP
adapter card status. It is intentionally general in coverage so that it can report
error status from any typical FCP adapter.

If an error is detected during execution of a FCP command, and the error
prevented the FCP command from actually being sent to the FCP transport
layer by the adapter, then the error should be processed or recovered, or both,
by the FCP adapter device driver.

If it is recovered successfully by the FCP adapter device driver, the error is
logged, as appropriate, but is not reflected in the adapter_status byte. If the
error cannot be recovered by the FCP adapter device driver, the appropriate
adapter_status bit is set and the scsi_buf structure is returned to the FCP
device driver for further processing.

If an error is detected after the command was actually sent to the FCP device,
then it should be processed or recovered, or both, by the FCP device driver.
For error logging, the FCP adapter device driver logs FCP transport layer and
adapter-related conditions, while the FCP device driver logs FCP device-related
errors. In the following description, a capital letter (A) after the error name
indicates that the FCP adapter device driver handles error logging. A capital
letter (H) indicates that the FCP device driver handles error logging.

Some of the following error conditions indicate a FCP device failure. Others are
FCP transport layer or adapter-related.

SCSI_HOST_IO_BUS_ERR (A)
The system 1/O transport layer generated or detected an error during a
DMA or Programmed I/0 (PIO) transfer.

SCSI_TRANSPORT_FAULT (H)
The FCP transport protocol or hardware was unsuccessful.

SCSI_CMD_TIMEOUT (H)
The command timed out before completion.

SCSI_NO_DEVICE_RESPONSE (H)
The target device did not respond to selection phase.

SCSI_ADAPTER_HDW_FAILURE (A)
The adapter indicated an onboard hardware failure.

SCSI_ADAPTER_SFW_FAILURE (A)
The adapter indicated microcode failure.

SCSI_FUSE_OR_TERMINAL_PWR (A)
The adapter indicated a blown terminator fuse or bad termination.

272 Kernel Extensions and Device Support Programming Concepts

9.

SCSI_TRANSPORT_RESET (A)
The adapter indicated the FCP transport layer has been reset.

SCSI_WW_NAME_CHANGE (A)
The adapter indicated the device at this SCSI ID has a new FCS world
wide name.
The add_status field contains additional device status. For FCP devices, this
field contains the FCP Response code returned.

10. When the FCP device driver queues multiple transactions to a device, the

11.

adap_q_status field indicates whether or not the FCP adapter driver has
cleared its queue for this device after an error has occurred. The flag of
SC_DID_NOT CLEAR_Q indicates that the FCP adapter driver has not
cleared its queue for this device and that it is in a halted state (so none of the
pending queued transactions are sent to the device).

The q_tag_msg field indicates if the FCP adapter can attempt to queue this
transaction to the device. This information causes the FCP adapter to fill in the
Queue Tag Message Code of the queue tag message for a FCP command. The
following values are valid for this field:

SC_NO_Q
Specifies that the FCP adapter does not send a queue tag message for
this command, and so the device does not allow more than one FCP
command on its command queue. This value must be used for all
commands sent to FCP devices that do not support command tag
queuing.

SC_SIMPLE_Q
Specifies placing this command in the device’s command queue. The
device determines the order that it executes commands in its queue.
The SCSI-2 specification calls this value the Simple Queue Tag Message.

SC_HEAD_OF_Q
Specifies placing this command first in the device’s command queue.
This command does not preempt an active command at the device,
but it is executed before all other commands in the command queue.
The SCSI-2 specification calls this value the Head of Queue Tag
Message.

SC_ORDERED_(Q
Specifies placing this command in the device’s command queue. The
device processes these commands in the order that they are received.
The SCSI-2 specification calls this value the Ordered Queue Tag
Message.

SC_ACA_Q
Specifies placing this command in the device’s command queue, when
the device has an ACA (auto contingent allegiance) condition. The
SCSI-3 Architecture Model calls this value the ACA task attribute.

Note: Commands with the value of SC_NO_Q for the q_tag_msg field
(except for request sense commands) should not be queued to a device
whose queue contains a command with another value for q_tag_msg. If
commands with the SC_NO_Q value (except for request sense) are sent to
the device, then the FCP device driver must make sure that no active
commands are using different values for q_tag_ms. Similarly, the FCP
device driver must also make sure that a command with a q_tag_msg
value of SC_ORDERED_Q, SC_HEAD_Q, or SC_SIMPLE_Q is not sent to a device
that has a command with the q_tag msg field of SC_NO_Q.

Chapter 14. FCP Device Drivers 273

12. The flags field contains bit flags sent from the FCP device driver to the FCP
adapter device driver. The following flags are defined:

SC_RESUME
When set, means the FCP adapter device driver should resume
transaction queuing for this ID/LUN. Error recovery is complete after
a SCIOLHALT operation, check condition, or severe FCP transport
error. This flag is used to restart the FCP adapter device driver
following a reported error.

SC_DELAY_CMD
When set, means the FCP adapter device driver should delay sending
this command (following a FCP reset or BDR to this device) by at
least the number of seconds specified to the FCP adapter device driver
in its configuration information. For FCP devices that do not require
this function, this flag should not be set.

SC_Q_CLR
When set, means the FCP adapter driver should clear its transaction
queue for this ID/LUN. The transaction containing this flag setting
does not require an actual FCP command in the scsi_buf because it is
flushed back to the FCP device driver with the rest of the transactions
for this ID/LUN. However, this transaction must have the SCSI ID
field (scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in
with the device’s SCSI ID and logical unit number (LUN). This flag is
valid only during error recovery of a check condition or command
terminated at a command tag queuing device when the
SC_DID_NOT_CLR_Q flag is set in the scsi_buf.adap_q_status field.

SC_Q_RESUME
When set, means that the FCP adapter driver should resume its halted
transaction queue for this ID/LUN. The transaction containing this
flag setting does not require an actual FCP command to be sent to the
FCP adapter driver. However, this transaction must have the SCSI ID
field (scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in
with the device’s SCSI ID and logical unit number (LUN). If the
transaction containing this flag setting is the first issued by the FCP
device driver after it receives an error (indicating that the adapter
driver’s queue is halted), then the SC_RESUME flag must be set also.

SC_CLEAR_ACA
When set, means the SCSI adapter driver should issue a Clear ACA
task management request for this ID/LUN. This flag should be used
in conjunction with either the SC_Q_CLEAR or SC_Q_RESUME flags
to clear or resume the SCSI adapter driver’s queue for this device. If
neither of these flags is used, then this transaction is treated as if the
SC_Q_RESUME flag is also set. The transaction containing the
SC_CLEAR_ACA flag setting does not require an actual SCSI
command in the sc_buf. If this transaction contains a SCSI command
then it will be processed depending on whether SC_Q_CLR or
SC_Q_RESUME is set. This transaction must have the SCSI ID field
(scsi_buf.scsi_id) and the LUN field (scsi_buf.lun_id) filled in with
the device’s SCSI ID and logical unit number (LUN). This flag is valid
only during error recovery of a check condition or command
terminated at a command tag queuing.

13. The dev_flags field contains additional values sent from the FCP device driver
to the FCP adapter device driver. The following values are defined:

274 Kernel Extensions and Device Support Programming Concepts

14.
15.

16.

17.

18.

19.

20.

FC_CLASS1
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 1 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

FC_CLASS2
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 2 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

FC_CLASS3
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 3 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

FC_CLASS4
When set, this tells the SCSI adapter driver that it should issue this
request as a Fibre Channel Class 4 request. If the SCSI adapter driver
does not support this class, then it will fail the scsi_buf with an error
of EINVAL. If no Fibre Channel Class is specified in the scsi_buf then
the SCSI adapter will default to a Fibre Channel Class.

The add_work field is reserved for use by the FCP adapter device driver.

The adap_set_flags field contains an output parameter that can have one of
the following bit flags as a value:

SC_AUTOSENSE_DATA_VALID
Autosense data was placed in the autosense buffer referenced by the
autosense_buffer_ptr field.

The autosense_length field contains the length in bytes of the SCSI device
driver’s sense buffer, which is referenced via the autosense_buffer_ ptr field.
For FCP devices this field must be non-zero, otherwise the autosense data will
be lost.

The autosense_buffer_ptr field contains the address of the SCSI devices
driver’s autosense buffer for this command. For FCP devices this field must be
non-NULL, otherwise the autosense data will be lost.

The dev_burst_len field contains the burst size if this write operation in bytes.
This should only be set by the FCP device driver if it has negotiated with the
device and it allows burst of write data without transfer readys. For most
operations, this should be set to 0.

The scsi_id field contains the 64-bit SCSI ID for this device. This field must be
set for FCP devices.

The lun_id field contains the 64-bit lun ID for this device. This field must be
set for FCP devices.

Adapter/Device Driver Intercommunication

In a typical request to the device driver, a call is first made to the device driver’s
strategy routine, which takes care of any necessary queuing. The device driver’s
strategy routine then calls the device driver’s start routine, which fills in the
scsi_buf structure and calls the adapter driver’s strategy routine through the
devstrat kernel service.

Chapter 14. FCP Device Drivers 275

The adapter driver’s strategy routine validates all of the information contained in
the scsi_buf structure and also performs any necessary queuing of the transaction
request. If no queuing is necessary, the adapter driver’s start subroutine is called.

When an interrupt occurs, the FCP adapter interrupt routine fills in the
status_validity field and the appropriate scsi_status or adapter_status field of the
scsi_buf structure. The bufstruct.b_resid field is also filled in with the value of
nontransferred bytes. The adapter driver’s interrupt routine then passes this newly
filled in scsi_buf structure to the iodone kernel service which then signals the FCP
device driver’s iodone subroutine. The adapter driver’s start routine is also called
from the interrupt routine to process any additional transactions on the queue.

The device driver’s iodone routine should then process all of the applicable fields
in the queued scsi_buf structure for any errors and attempt error recovery if
necessary. The device driver should then dequeue the scsi_buf structure and then
pass a pointer to the structure back to the iodone kernel service so that it can
notify the originator of the request.

FCP Adapter Device Driver Routines

config

open

close

openx

The config routine performs all of the processing needed to configure, unconfigure,
and read Vital Product Data (VPD) for the FCP adapter. When this routine is called
to configure an adapter, it performs the required checks and building of data
structures needed to prepare the adapter for the processing of requests.

When asked to unconfigure or terminate an adapter, this routine deallocates any
structures defined for the adapter and marks the adapter as unconfigured. This
routine can also be called to return the Vital Product Data for the adapter, which
contains information that is used to identify the serial number, change level, or
part number of the adapter.

The open routine establishes a connection between a special file and a file
descriptor. This file descriptor is the link to the special file that is the access point
to a device and is used by all subsequent calls to perform 1/O requests to the
device. Interrupts are enabled and any data structures needed by the adapter
driver are also initialized.

The close routine marks the adapter as closed and disables all future interrupts,
which causes the driver to reject all future requests to this adapter.

The openx routine allows a process with the proper authority to open the adapter
in diagnostic mode. If the adapter is already open in either normal or diagnostic
mode, the openx subroutine has a return value of -1. Improper authority results in
an errno value of EPERM,while an already open error results in an errno value of
EACCES. If the adapter is in diagnostic mode, only the close and ioctl routines are
allowed. All other routines return a value of -1 and an errno value of EACCES.

276 Kernel Extensions and Device Support Programming Concepts

While in diagnostics mode, the adapter can run diagnostics, run wrap tests, and
download microcode. The openx routine is called with an ext parameter that
contains the adapter mode and the SC_DIAGNOSTIC value, both of which are
defined in the sys/scsi.h header file.

strategy

The strategy routine is the link between the device driver and the FCP adapter
device driver for all normal I/O requests. Whenever the FCP device driver receives
a call, it builds an scsi_buf structure with the correct parameters and then passes it
to this routine, which in turn queues up the request if necessary. Each request on
the pending queue is then processed by building the necessary FCP commands
required to carry out the request. When the command has completed, the FCP
device driver is notified through the iodone kernel service.

ioctl

The ioctl routine allows various diagnostic and nondiagnostic adapter operations.
Operations include the following:

« IOCINFO

« SCIOLSTART
+ SCIOLSTOP
 SCIOLINQU
 SCIOLEVENT
+ SCIOLSTUNIT
 SCIOLTUR

« SCIOLREAD
« SCIOLRESET
« SCIOLHALT
+ SCIOLCMD

start

The start routine is responsible for checking all pending queues and issuing
commands to the adapter. When a command is issued to the adapter, the scsi_buf
is converted into an adapter specific request needed for the scsi_buf. At this time,
the bufstruct.b_addr for the scsi_buf will be mapped for DMA. When the adapter
specific request is completed, the adapter will be notified of this request.

interrupt

The interrupt routine is called whenever the adapter posts an interrupt. When this
occurs, the interrupt routine will find the scsi_buf corresponding to this interrupt.
The buffer for the scsi_buf will be unmapped from DMA. If an error occurred, the
status_validity, scsi_status, and adapter_status fields will be set accordingly. The
bufstruct.b_resid field will be set with the number of nontransferred bytes. The
interrupt handler will then iodone this scsi_buf, which will send the scsi_buf back
to the device driver which originated it.

FCP Adapter ioctl Operations
IOCINFO

This operation allows a FCP device driver to obtain important information about a
FCP adapter, including the adapter’s SCSI ID, the maximum data transfer size in

Chapter 14. FCP Device Drivers 277

bytes, and the FC topology to which the adapter is connected. By knowing the
maximum data transfer size, a FCP device driver can control several different
devices on several different adapters. This operation returns a devinfo structure as
defined in the sys/devinfo.h header file with the device type DD_BUS and
subtype DS_FCP. The following is an example of a call to obtain the information:

rc = fp_ioct1(fp, IOCINFO, &infostruct, NULL);

where fp is a pointer to a file structure and infostruct is a devinfo structure. A
non-zero rc value indicates an error. Note that the devinfo structure is a union of
several structures and that fcp is the structure that applies to the adapter.

For example, the maximum transfer size value is contained in the variable
infostruct.un.fcp.max_transfer and the card ID is contained in
infostruct.un.fcp.scsi_id.

SCIOLSTART

This operation opens a logical path to the FCP device and causes the FCP adapter
device driver to allocate and initialize all of the data areas needed for the FCP
device. The SCIOLSTOP operation should be issued when those data areas are no
longer needed. This operation should be issued before any nondiagnostic operation
except for IOCINFO. The following is a typical call:

rc = fp_ioct1(fp, SCIOLSTART, &sciolst);

where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure
(defined in /usr/include/sys/scsi_buf.h) that contains the SCSI and Logical Unit
Number (LUN) ID values of the device to be started. In addition the scsi_sciolst
structure can be used to specify an explicit FCP process login for this operation.

A nonzero return value indicates an error has occurred and all operations to this
SCSI/LUN pair should cease since the device is either already started or failed the
start operation. Possible errno values are

EIO The command could not complete due to a system error.

EINVAL Either the Logical Unit Number (LUN) ID or SCSI ID is invalid, or
the adapter is already open.

ENOMEM Indicates that system resources are not available to start this device.

ETIMEDOUT Indicates that the command did not complete.

ENODEV Indicates that no FCP device responded to the explicit process login
at this SCSI ID.

ECONNREFUSED Indicates that the FCP device at this SCSI ID rejected explicit process

login. This could be due to the device rejecting the security password
or the device does not support FCP.
EACCES The adapter is not in normal mode.

SCIOLSTOP

This operation closes a logical path to the FCP device and causes the FCP adapter
device driver to deallocate all data areas that were allocated by the SCIOLSTART
operation. This operation should only be issued after a successful SCIOLSTART
operation to a device. The following is a typical call:

rc = fp_ioct1(fp, SCIOLSTOP, &sciolst);
where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure

(defined in /usr/include/sys/scsi_buf.h) that contains the SCSI and Logical Unit
Number (LUN) ID values of the device to be started.

278 Kernel Extensions and Device Support Programming Concepts

A non-zero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.
EINVAL The adapter was not in open mode.

This operation requires SCIOLSTART to be run first.

SCIOLEVENT

This operation allows a FCP device driver to register a particular device instance
for receiving asynchronous event status by calling the SCIOLEVENT ioctl
operation for the FCP-adapter device driver. When an event covered by the
SCIOLEVENT ioctl operation is detected by the FCP adapter device driver, it
builds an scsi_event_info structure and passes a pointer to the structure and to the
asynchronous event-handler routine entry point, which was previously registered.

The information reported in the scsi_event_info.events field does not queue to the
FCP device driver, but is instead reported as one or more flags as they occur. Since
the data does not queue, the FCP adapter device driver writer can use a single
scsi_event_info structure and pass it one at a time, by pointer, to each
asynchronous event handler routine for the appropriate device instance. After
determining for which device the events are being reported, the FCP device driver
must copy the scsi_event_info.events field into local space and must not modify
the contents of the rest of the scsi_event_info structure.

Since the event status is optional, the FCP device driver writer determines what
action is necessary to take upon receiving event status. The writer may decide to
save the status and report it back to the calling application, or the FCP device
driver or application level program can take error recovery actions.

This operation should only be issued after a successful SCIOLSTART operation to a
device. The following is a typical call:

rc = fp_ioct1(fp, SCIOLEVENT, &scevent);

where fp is a pointer to a file structure and scevent is a scsi_event_struct structure
(defined in /usr/include/sys/scsi_buf.h) that contains the SCSI and Logical Unit
Number (LUN) ID values of the device to be started.

A non-zero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.
EINVAL The adapter was not in open mode.

This operation requires SCIOLSTART to be run first.

SCIOLINQU

This operation issues an inquiry command to a FCP device and is used to aid in
FCP device configuration. The following is a typical call:

rc = joctl(adapter, SCIOLINQU, &inquiry_block);

where adapter is a file descriptor and inquiry_block is a scsi_inquiry structure as
defined in the /usr/include/sys/scsi_buf.h header file. The FCP ID and LUN should
be placed in the scsi_inquiry parameter block. The SC_ASYNC flag should not be
set on the first call to this operation and should only be set if a bus fault has

Chapter 14. FCP Device Drivers 279

occurred. Possible errno values are:

EIO A system error has occurred. Retry the operation.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Retry the operation.

ENODEV The device is not responding. Possibly no LUNSs exist on the present
FCP ID.

ENOCONNECT A bus fault has occurred and the operation should be retried with the

SC_ASYNC flag set in the scsi_inquiry structure. In the case of
multiple retries, this flag should be set only on the last retry.

This operation requires SCIOLSTART to be run first.

SCIOLSTUNIT

This operation issues a start unit command to a FCP device and is used to aid in
FCP device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOLSTUNIT, &start_block);

where adapter is a file descriptor and start_block is a scsi_startunit structure as
defined in the /ust/include/sys/scsi_buf.h header file. The FCP ID and LUN should
be placed in the scsi_startunit parameter block. The start_flag field designates the
start option, which when set to true, makes the device available for use. When this
field is set to false, the device is stopped.

The SC_ASYNC flag should not be set on the first call to this operation and
should only be set if a bus fault has occurred. The immed_flag field allows
overlapping start operations to several devices on the FCP bus. When this field is
set to false, status is returned only when the operation has completed. When this
field is set to true, status is returned as soon as the device receives the command.
The SCIOLTUR operation can then be issued to check on completion of the
operation on a particular device.

Note that when the FCP adapter is allowed to issue simultaneous start operations,
it is important that a delay of 10 seconds be allowed between successive
SCIOLSTUNIT operations to devices sharing a common power supply since
damage to the system or devices can occur if this precaution is not followed.
Possible errno values are:

EIO A system error has occurred. Retry the operation.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Retry the operation.

ENODEV The device is not responding. Possibly no LUNSs exist on the present
FCP ID.

ENOCONNECT A bus fault has occurred. Try the operation again with the

SC_ASYNC flag set in the scsi_inquiry structure. In the case of
multiple retries, this flag should be set only on the last retry.

This operation requires SCIOLSTART to be run first.

280 Kernel Extensions and Device Support Programming Concepts

SCIOLTUR

This operation issues a FCP Test Unit Ready command to an adapter and aids in
FCP device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOLTUR, &ready struct);

where adapter is a file descriptor and ready_struct is a scsi_ready structure as
defined in the /ust/include/sys/scsi_buf.h header file. The FCP ID and LUN should
be placed in the scsi_ready parameter block. The SC_ASYNC flag should not be
set on the first call to this operation and should only be set if a bus fault has
occurred. The status of the device can be determined by evaluating the two output
fields: status_validity and scsi_status. Possible errno values are:

EIO A system error has occurred. Retry the operation. If an EIO error
occurs and the status_validity field is set to SC_FCP_ERROR, then the
scsi_status field has a valid value and should be inspected.

If the status_validit field is zero and remains so on successive retries,
then an unrecoverable error has occurred with the device.

If the status_validity field is SC_FCP_ERROR and the scsi_status field
contains a Check Condition status, then the SCIOLTUR operation
should be retried after several seconds.

If after successive retries, the Check Condition status remains, the
device should be considered inoperable.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Retry the operation.

ENODEV The device is not responding and possibly no LUNs exist on the
present FCP ID.

ENOCONNECT A bus fault has occurred and the operation should be retried with the

SC_ASYNC flag set in the scsi_inquiry structure. In the case of
multiple retries, this flag should be set only on the last retry.

This operation requires SCIOLSTART to be run first.

SCIOLREAD

This operation issues an read command to a FCP device and is used to aid in FCP
device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOLREAD, &readblk);

where adapter is a file descriptor and readblk is a scsi_readblk structure as defined
in the /usr/include/sys/scsi_buf.h header file. The FCP ID and LUN should be
placed in the scsi_readblk parameter block. The SC_ASYNC flag should not be set
on the first call to this operation and should only be set if a bus fault has occurred.
Possible errno values are:

EIO A system error has occurred. Retry the operation.
EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Retry the operation.

Chapter 14. FCP Device Drivers 281

ENODEV The device is not responding. Possibly no LUNSs exist on the present
FCP ID.

ENOCONNECT A bus fault has occurred and the operation should be retried with the
SC_ASYNC flag set in the scsi_readblk structure. In the case of
multiple retries, this flag should be set only on the last retry.

This operation requires SCIOLSTART to be run first.

SCIOLRESET

This operation causes a FCP device to release all reservations, clear all current
commands, and return to an initial state by issuing a Bus Device Reset (BDR) to all
LUNSs associated with the specified FCP ID. A FCP reserve command should be
issued after the SCIOLRESET operation to prevent other initiators from claiming
the device. Note that because a certain amount of time exists between a reset and
reserve command, it is still possible for another initiator to successfully reserve a
particular device. The following is a typical call:

rc = fp_ioct1(fp, SCIOLRESET, &sciolst);

where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure
(defined in /usr/include/sys/scsi_buf.h) that contains the SCSI and Logical Unit
Number (LUN) ID values of the device to be started.

A nonzero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ETIMEDOUT The operation did not complete before the time-out value was
exceeded.

This operation requires SCIOLSTART to be run first.

SCIOLHALT

This operation stops the current command of the selected device, clears the
command queue of any pending commands, and brings the device to a halted
state. The FCP adapter sends a FCP abort message to the device and is usually
used by the FCP device driver to abort the current operation instead of allowing it
to complete or time out.

After the SCIOLHALT operation is sent, the device driver must set the
SC_RESUME flag in the next scsi_buf structure sent to the adapter device driver,
or all subsequent scsi_buf structures sent are ignored.

The FCP adapter also performs normal error recovery procedures during this
command which include issuing a FCP bus reset in response to a FCP bus hang.
The following is a typical call:

rc = fp_ioct1(fp, SCIOLHALT, &sciolst);
where fp is a pointer to a file structure and sciolst is a scsi_sciolst structure

(defined in /usr/include/sys/scsi_buf.h) that contains the SCSI and Logical Unit
Number (LUN) ID values of the device to be started.

282 Kernel Extensions and Device Support Programming Concepts

A nonzero return value indicates an error has occurred. Possible errno values are:

EIO An unrecoverable system error has occurred.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ETIMEDOUT The operation did not complete before the time-out value was
exceeded.

This operation requires SCIOLSTART to be run first.

SCIOLCMD

When the SCSI device has been successfully started (SCIOLSTART), this operation
provides the means for issuing any SCSI command to the specified device. The
SCSI adapter driver performs no error recovery or logging on failures of this ioctl
operation. The following is a typical call:

rc = ioctl(adapter, SCIOLCMD, &iocmd);

where adapter is a file descriptor and iocmd is a scsi_iocmd structure as defined in
the /usr/include/sys/scsi_buf.h header file. The SCSI ID and LUN should be placed
in the scsi_iocmd parameter block.

The SCSI status byte and the adapter status bytes are returned via the scsi_iocmd
structure. If the SCIOLCMD operation returns a value of -1 and theerrno global
variable is set to a nonzero value, the requested operation has failed. In this case,
the caller should evaluate the returned status bytes to determine why the operation
failed and what recovery actions should be taken.

The devinfo structure defines the maximum transfer size for the command. If an
attempt is made to transfer more than the maximum, a value of -1 is returned and
the errno global variable set to a value of EINVAL. Refer to the Small Computer
System Interface (SCSI) Specification for the applicable device to get request sense
information.

Possible errno values are:

EIO A system error has occurred. Retry the operation. If an EIO error
occurs and the status_validity field is set to SC_SCSI_ERROR, then the
scsi_status field has a valid value and should be inspected.

If the status_validity field is zero and remains so on successive retries
then an unrecoverable error has occurred with the device.

If the status_validity field is SC_SCSI_ERROR and the scsi_status field
contains a Check Condition status, then a SCSI request sense should
be issued via the SCIOLCMD ioctl to recover the the sense data.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Retry the operation.

ENODEV The device is not responding.

ETIMEDOUT The operation did not complete before the time-out value was
exceeded.

Chapter 14. FCP Device Drivers 283

This operation requires SCIOLSTART to be run first. (See !SCIOI START” orl
)

284 Kernel Extensions and Device Support Programming Concepts

Chapter 15. Integrated Device Electronics (IDE) Subsystem

This overview describes the interface between an Integrated Device Electronics
(IDE) device driver and an IDE adapter device driver. It is directed toward those
designing and writing an IDE device driver that interfaces with an existing IDE
adapter device driver. It is also meant for those designing and writing an IDE
adapter device driver that interfaces with existing IDE device drivers.

The main topics covered in this overview are:
* Responsibilities of the IDE Adapter Device Driver
. r’RpQPanihi]inQ of the TDE Device Driver]

e I'Communication Between IDE Device Drivers and IDE A(‘]ﬂpfpt‘ Device Drivers’]

bn page 284

This section frequently refers to both an IDE device driver and an IDE adapter
device driver. These two distinct device drivers work together in a layered
approach to support attachment of a range of IDE devices. The IDE adapter device
driver is the lower device driver of the pair, and the IDE device driver is the upper
device driver.

Responsibilities of the IDE Adapter Device Driver

The IDE adapter device driver (the lower layer) is the software interface to the
system hardware. This hardware includes the IDE bus hardware plus any other
system 1/0O hardware required to run an I/O request. The IDE adapter device
driver hides the details of the I/O hardware from the IDE device driver. The
design of the software interface allows a user with limited knowledge of the
system hardware to write the upper device driver.

The IDE adapter device driver manages the IDE bus, but not the IDE devices. It
can send and receive IDE commands, but it cannot interpret the contents of the
command. The lower driver also provides recovery and logging for errors related
to the IDE bus and system I/O hardware. Management of the device specifics is
left to the IDE device driver. The interface of the two drivers allows the upper
driver to communicate with different IDE bus adapters without requiring special
code paths for each adapter.

Responsibilities of the IDE Device Driver

The IDE device driver (the upper layer) provides the rest of the operating system
with the software interface to a given IDE device or device class. The upper layer
recognizes which IDE commands are required to control a particular IDE device or
device class. The IDE device driver builds I/O requests containing device IDE
commands and sends them to the IDE adapter device driver in the sequence
needed to operate the device successfully. The IDE device driver cannot manage
adapter resources or give the IDE command to the adapter. Specifics about the
adapter and system hardware are left to the lower layer.

The IDE device driver also provides recovery and logging for errors related to the
IDE device it controls.

© Copyright IBM Corp. 1997, 1999 285

The operating system provides several kernel services allowing the IDE device
driver to communicate with IDE adapter device driver entry pomts without having
the actual name or address of those entry points. See I

Bervices” on page 51 for more information.

Communication Between IDE Device Drivers and IDE Adapter Device
Drivers

The interface between the IDE device driver and the IDE adapter device driver is
accessed through calls to the IDE adapter device driver open, close, ioctl, and
strategy routines. I/O requests are queued to the IDE adapter device driver
through calls to its strategy entry point.

Communication between the IDE device driver and the IDE adapter device driver
for a particular I/O request is made through the ataide_buf structure, which is
passed to and from the strategy routine in the same way a standard driver uses a
struct buf structure. The ataide_buf.ata structure represents the ATA or ATAPI
command that the adapter driver must send to the specified IDE device. The

ataide buf.status_validity field and the ataide_buf.ata structure contain
completion status returned to the IDE device driver.

IDE Error Recovery

If an error, such as a check condition or hardware failure occurs, the transaction
active during the error is returned with the ataide_buf.bufstruct.b_error field set
to EIO. The IDE device driver should process or recover the condition, rerunning
any mode selects to recover from this condition properly. After this recovery, it
should reschedule the transaction that had the error. In many cases, the IDE device
driver only needs to retry the unsuccessful operation.

The IDE adapter device driver should never retry an IDE command on error after
the command has successfully been given to the adapter. The consequences for
retrying an IDE command at this point range from minimal to catastrophic,
depending upon the type of device. Commands for certain devices cannot be
retried immediately after a failure (for example, tapes and other sequential access
devices). If such an error occurs, the failed command returns an appropriate error
status with an iodone call to the IDE device driver for error recovery. Only the IDE
device driver that originally issued the command knows if the command can be
retried on the device. The IDE adapter device driver must only retry commands
that were never successfully transferred to the adapter. In this case, if retries are
successful, the ataide_buf status should not reflect an error. However, the IDE
adapter device driver should perform error logging on the retried condition.

Analyzing Returned Status

The following order of precedence should be followed by IDE device drivers when
analyzing the returned status:

1. If the ataide_buf.bufstruct.b_flags field has the B_ERROR flag set, then an
error has occurred and the ataide buf.bufstruct.b_error field contains a valid
errno value.

If the b_error field contains the ENXIO value, either the command needs to be
restarted or it was canceled at the request of the IDE device driver.

286 Kernel Extensions and Device Support Programming Concepts

If the b_error field contains the EIO value, then either one or no flag is set in
the ataide_buf.status_validity field. If a flag is set, an error in either the
ata.status or ata.errval field is the cause.

If the status_validity field is O, then the ataide buf.bufstruct.b resid field
should be examined to see if the IDE command issued was in error. The
b_resid field can have a value without an error having occurred. To decide
whether an error has occurred, the IDE device driver must evaluate this field
with regard to the IDE command being sent and the IDE device being driven.

If the ataide_buf.bufstruct.b_flags field does not have the B_ERROR flag
set, then no error is being reported. However, the IDE device driver should
examine the b_resid field to check for cases where less data was transferred
than expected. For some IDE commands, this occurrence may not represent an
error. The IDE device driver must determine if an error has occurred.

There is a special case when b_resid will be nonzero. The DMA service routine
may not be able to map all virtual to real memory pages for a single DMA
transfer. This may occur when sending close to the maximum amount of data
that the adapter driver supports. In this case, the adapter driver transfers as
much of the data that can be mapped by the DMA service. The unmapped size
is returned in the b_resid field, and the status_validity will have the
ATA_IDE_DMA_NORES bit set. The IDE device driver is expected to send the
data represented by the b_resid field in a separate request.

If a nonzero b_resid field does represent an error condition, then the device
queue is not halted by the IDE adapter device driver. It is possible for one or
more succeeding queued commands to be sent to the adapter (and possibly the
device). Recovering from this situation is the responsibility of the IDE device
driver.

A Typical IDE Driver Transaction Sequence

A simplified sequence of events for a transaction between an IDE device driver
and an IDE adapter device driver follows. In this sequence, routine names
preceded by a dd_ are part of the IDE device driver, while those preceded by an
ide_ are part of the IDE adapter device driver.

1.

The IDE device driver receives a call to its dd_strategy routine; any required
internal queuing occurs in this routine. The dd_strategy entry point then
triggers the operation by calling the dd_start entry point. The dd_start routine
invokes the ide_strategy entry point by calling the devstrat kernel service with
the relevant ataide_buf structure as a parameter.

The ide_strategy entry point initially checks the ataide_buf structure for
validity. These checks include validating the devno field, matching the IDE
device ID to internal tables for configuration purposes, and validating the
request size.

The IDE adapter device driver does not queue transactions. Only a single
transaction is accepted per device (one master, one slave). If no transaction is
currently active, the ide_strategy routine immediately calls the ide_start routine
with the new transaction. If there is a current transaction for the same device,
the new transaction is returned with an error indicated in the ataide_buf
structure. If there is a current transaction for the other device, the new
transaction is queued to the inactive device.

At each interrupt, the ide_intr interrupt handler verifies the current status. The
IDE adapter device driver fills in the ataide_buf status_validity field,
updating the ata.status and ata.errval fields as required. The IDE adapter
device driver also fills in the bufstruct.b_resid field with the number of bytes

Chapter 15. Integrated Device Electronics (IDE) Subsystem 287

not transferred from the request. If all the data was transferred, the b_resid
field is set to a value of 0. When a transaction completes, the ide_intr routine
causes the ataide_buf entry to be removed from the device queue and calls the
iodone kernel service, passing the just dequeued ataide_buf structure for the
device as the parameter. The ide_start routine is then called again to process
the next transaction on the device queue. The iodone kernel service calls the
IDE device driver dd_iodone entry point, signaling the IDE device driver that
the particular transaction has completed.

5. The IDE device driver dd_iodone routine investigates the I/O completion
codes in the ataide_buf status entries and performs error recovery, if required.
If the operation completed correctly, the IDE device driver dequeues the
original buffer structures. It calls the iodone kernel service with the original
buffer pointers to notify the originator of the request.

IDE Device Driver Internal Commands

During initialization, error recovery, and open or close operations, IDE device
drivers initiate some transactions not directly related to an operating system
request. These transactions are called internal commands and are relatively simple
to handle.

Internal commands differ from operating system-initiated transactions in several
ways. The primary difference is that the IDE device driver is required to generate a
struct buf that is not related to a specific request. Also, the actual IDE commands
are typically more control oriented than data transfer-related.

The only special requirement for commands is that the IDE device driver must
have pinned the memory transferred into or out of system memory pages.
However, due to system hardware considerations, additional precautions must be
taken for data transfers into system memory pages. The problem is that any
system memory area with a DMA data operation in progress causes the entire
memory page that contains it to become inaccessible.

As a result, an IDE device driver that initiates an internal command must have
preallocated and pinned an area of some multiple whose size is the system page
size. The driver must not place in this area any other data areas that it may need
to access while I/O is being performed into or out of that page. Memory pages
allocated must be avoided by the device driver from the moment the transaction is
passed to the adapter device driver until the device driver iodone routine is called
for the transaction (and for any other transactions to those pages).

Execution of I/0 Requests

During normal processing, many transactions are queued in the IDE device driver.
As the IDE device driver processes these transactions and passes them to the IDE
adapter device driver, the IDE device driver moves them to the in-process queue.
When the IDE adapter device driver returns through the iodone service with one
of these transactions, the IDE device driver either recovers any errors on the
transaction or returns using the iodone kernel service to the calling level.

The IDE device driver can send only one ataide_buf structure per call to the IDE
adapter device driver. Thus, the ataide_buf.bufstruct.av_forw pointer should be

288 Kernel Extensions and Device Support Programming Concepts

null when given to the IDE adapter device driver, which indicates that this is the
only request. The IDE adapter driver does not support queuing multiple requests
to the same device.

Spanned (Consolidated) Commands

Some kernel operations may be composed of sequential operations to a device. For
example, if consecutive blocks are written to disk, blocks may or may not be in
physically consecutive buffer pool blocks.

To enhance IDE bus performance, the IDE device driver should consolidate
multiple queued requests when possible into a single IDE command. To allow the
IDE adapter device driver the ability to handle the scatter and gather operations
required, the ataide_buf.bp should always point to the first buf structure entry for
the spanned transaction. A null-terminated list of additional struct buf entries
should be chained from the first field through the buf.av_forw field to give the
IDE adapter device driver enough information to perform the DMA scatter and
gather operations required. This information must include at least the buffer’s
starting address, length, and cross-memory descriptor.

The spanned requests should always be for requests in either the read or write
direction but not both, since the IDE adapter device driver must be given a single
IDE command to handle the requests. The spanned request should always consist
of complete I/0 requests (including the additional struct buf entries). The IDE
device driver should not attempt to use partial requests to reach the maximum
transfer size.

The maximum transfer size is actually adapter-dependent. The IOCINFO ioctl
operation can be used to discover the IDE adapter device driver’s maximum
allowable transfer size. To ease the design, implementation, and testing of
components that may need to interact with multiple IDE-adapter device drivers, a
required minimum size has been established that all IDE adapter device drivers
must be capable of supporting. The value of this minimum/maximum transfer size
is defined as the following value in the /usr/include/sys/ide.h file:

IDE_MAXREQUEST /* maximum transfer request for a single IDE command (in bytes) */

If a transfer size larger than the supported maximum is attempted, the IDE adapter
device driver returns a value of EINVAL in the ataide buf.bufstruct.b_error
field.

Due to system hardware requirements, the IDE device driver must consolidate
only commands that are memory page-aligned at both their starting and ending
addresses. Specifically, this applies to the consolidation of inner memory buffers.
The ending address of the first buffer and the starting address of all subsequent
buffers should be memory page-aligned. However, the starting address of the first
memory buffer and the ending address of the last do not need to be aligned.

The purpose of consolidating transactions is to decrease the number of IDE
commands and bus phases required to perform the required operation. The time
required to maintain the simple chain of buf structure entries is significantly less
than the overhead of multiple (even two) IDE bus transactions.

Chapter 15. Integrated Device Electronics (IDE) Subsystem 289

Fragmented Commands

Single I/O requests larger than the maximum transfer size must be divided into
smaller requests by the IDE device driver. For calls to an IDE device driver’s
character I/O (read/write) entry points, the uphysio kernel service can be used to
break up these requests. For a fragmented command such as this, the
ataide_buf.bp field should be NULL so that the IDE adapter device driver uses
only the information in the ataide_buf structure to prepare for the DMA operation.

Gathered Write Commands

The gathered write commands facilitate communications applications that are
required to send header and trailer messages with data buffers. These headers and
trailers are typically the same or similar for each transfer. Therefore, there may be a
single copy of these messages but multiple data buffers.

The gathered write commands, accessed through the ataide_buf.sg_ptr field,
differ from the spanned commands, accessed through the ataide_buf.bp field, in
several ways:

* Gathered write commands can transfer data regardless of address alignment,
while spanned commands must be memory page-aligned in address and length,
making small transfers difficult.

* Gathered write commands can be implemented either in software (which
requires the extra step of copying the data to temporary buffers) or hardware.
Spanned commands can be implemented in system hardware due to
address-alignment requirements. As a result, spanned commands are potentially
faster to run.

* Gathered write commands are not able to handle read requests. Spanned
commands can handle both read and write requests.

* Gathered write commands can be initiated only on the process level, but
spanned commands can be initiated on either the process or interrupt level.

To execute a gathered write command, the IDE device driver must:
* Fill in the sg_ptr field with a pointer to the uio struct.

* Call the IDE adapter device driver on the same process level with the
ataide_buf structure in question.

* Be attempting a write.
* Not have put a non-null value in the ataide_buf.bp field.

If any of these conditions are not met, the gather write commands do not succeed
and the ataide_buf.bufstruct.b_error is set to EINVAL.

This interface allows the IDE adapter device driver to perform the gathered write
commands in both software or hardware as long as the adapter supports this
capability. Because the gathered write commands can be performed in software (by
using such kernel services as uiomove), the contents of the sg_ptr field and the
uio struct can be altered. Therefore, the caller must restore the contents of both the
sg_ptr field and the uio struct before attempting a retry. Also, the retry must occur
from the process level; it must not be performed from the caller’s iodone
subroutine.

To support IDE adapter device drivers that perform the gathered write commands
in software, additional return values in the ataide_buf.bufstruct.b_error field are

290 Kernel Extensions and Device Support Programming Concepts

possible when gathered write commands are unsuccessful.

ENOMEM Error due to lack of system memory to perform copy.
EFAULT Error due to memory copy problem.

Note: The gathered write command facility is optional for both the IDE
device driver and the IDE adapter device driver. Attempting a gathered write
command to a IDE adapter device driver that does not support gathered
write can cause a system crash. Therefore, any IDE device driver must issue
an IDEIOGTHW ioctl operation to the IDE adapter device driver before
using gathered writes. An IDE adapter device driver that supports gathered
writes must support the IDEIOGTHW ioctl as well. The ioctl returns a
successful return code if gathered writes are supported. If the ioctl fails, the
IDE device driver must not attempt a gathered write. Typically, an IDE device
driver places the IDEIOGTHW call in its open routine for device instances
that it will send gathered writes to.

ataide buf Structure

Fields

The ataide_buf structure is used for communication between the IDE device driver
and the IDE adapter device driver during an initiator I/O request. This structure is
passed to and from the strategy routine in the same way a standard driver uses a
struct buf structure.

in the ataide buf Structure

The ataide_buf structure contains certain fields used to pass an IDE command and
associated parameters to the IDE adapter device driver. Other fields within this
structure are used to pass returned status back to the IDE device driver. The
ataide_buf structure is defined in the /usr/include/sys/ide.h file.

Fields in the ataide_buf structure are used as follows:
1. Reserved fields should be set to a value of 0, except where noted.

2. The bufstruct field contains a copy of the standard buf buffer structure that
documents the I/O request. Included in this structure, for example, are the
buffer address, byte count, and transfer direction. The b_work field in the buf
structure is reserved for use by the IDE adapter device driver. The current
definition of the buf structure is in the /usr/include/sys/buf.h include file.

3. The bp field points to the original buffer structure received by the IDE device
driver from the caller, if any. This can be a chain of entries in the case of
spanned transfers (IDE commands that transfer data from or to more than one
system-memory buffer). A null pointer indicates a nonspanned transfer. The
null value specifically tells the IDE adapter device driver all the information
needed to perform the DMA data transfer is contained in the bufstruct fields
of the ataide_buf structure. If the bp field is set to a non-null value, the
ataide_buf.sg_ptr field must have a value of null, or else the operation is not
allowed.

4. The ata field, defined as an ata_cmd structure, contains the IDE command
(ATA or ATAPI), status, error indicator, and a flag variable:

* The flags field contains the following bit flags:

ATA_CHS_MODE Execute the command in cylinder head sector mode.
ATA_LBA_MODE Execute the command in logical block addressing mode.
ATA_BUS_RESET Reset the ATA bus, ignore the current command.

Chapter 15. Integrated Device Electronics (IDE) Subsystem 291

¢ The command field is the IDE ATA command opcode. For ATAPI packet
commands, this field must be set to ATA_ATAPI_PACKET_COMMAND
(0xA1).

* The device field is the IDE indicator for either the master (0) or slave (1) IDE
device.

* The sector_cnt_cmd field is the number of sectors affected by the command.
A value of zero usually indicates 256 sectors.

e The startblk field is the starting LBA or CHS sector.
* The feature field is the ATA feature register.

* The status field is an output parameter indicating the ending status for the
command. This field is updated by the IDE adapter device driver upon
completion of a command.

* The errval field is the error type indicator when the ATA_ERROR bit is set
in the status field. This field has slightly different interpretations for ATA and
ATAPI commands.

* The sector_cnt_ret field is the number of sectors not processed by the
device.

* The endblk field is the completion LBA or CHS sector.

* The atapi field is defined as an atapi_command structure, which contains
the IDE ATAPI command. The 12 or 16 bytes of a single IDE command are
stored in consecutive bytes, with the opcode identified individually. The
atapi_command structure contains the following fields:

* The Tength field is the number of bytes in the actual IDE command. This is
normally 12 or 16 (decimal).

* The packet.op_code field specifies the standard IDE ATAPI opcode for this
command.

* The packet.bytes field contains the remaining command-unique bytes of the
IDE ATAPI command block. The actual number of bytes depends on the
value in the length field.

5. The sg_ptr field is set to a non-null value to indicate a request for a gathered
write. A gathered write means the IDE command conducts a system-to-device
data transfer where multiple, noncontiguous system buffers contain the write
data. This data is transferred in order as a single data transfer for the IDE
command in this ataide_buf structure.

The contents of the sg_ptr field, if non-null, must be a pointer to the uio
structure that is passed to the IDE device driver. The IDE adapter device driver
treats the sg_ptr field as a pointer to a uio structure that accesses the iovec
structures containing pointers to the data. There are no address-alignment
restrictions on the data in the iovec structures. The only restriction is that the
total transfer length of all the data must not exceed the maximum transfer
length for the adapter device driver.

The ataide_buf.bufstruct.b_un.b_addr field normally contains the starting
system-buffer address and is ignored and can be altered by the IDE adapter
device driver when the ataide_buf is returned. The
ataide_buf.bufstruct.b_bcount field should be set by the caller to the total
transfer length for the data.

6. The timeout_value field specifies the time-out limit (in seconds) to be used for
completion of this command. A time-out value of 0 means no time-out is
applied to this I/O request.

7. The status_validity field contains an output parameter that can have the
following bit flags as a value:

292 Kernel Extensions and Device Support Programming Concepts

ATA_IDE_STATUS The ata.status field is valid.

ATA_ERROR_VALID The ata.errval field contains a valid error indicator.

ATA_CMD_TIMEOUT The IDE adapter driver caused the command to time out.

ATA_NO_DEVICE_RESPONSE The IDE device is not ready.

ATA_IDE_DMA_ERROR The IDE adapter driver encountered a DMA error.

ATA_IDE_DMA_NORES The IDE adapter driver was not able to transfer entire
request. The bufstruct.b_resid contains the count not
transferred.

If an error is detected during execution of an IDE command, and the error
prevented the IDE command from actually being sent to the IDE bus by the
adapter, then the error should be processed or recovered, or both, by the IDE
adapter device driver.

If it is recovered successfully by the IDE adapter device driver, the error is logged,
as appropriate, but is not reflected in the ata.errval byte. If the error cannot be
recovered by the IDE adapter device driver, the appropriate ata.errval bit is set
and the ataide_buf structure is returned to the IDE device driver for further
processing.

If an error is detected after the command was actually sent to the IDE device, then
it should be processed or recovered, or both, by the IDE device driver.

For error logging, the IDE adapter device driver logs IDE bus- and adapter-related
conditions, while the IDE device driver logs IDE device-related errors. In the
following description, a capital letter "A" after the error name indicates that the
IDE adapter device driver handles error logging. A capital letter "H" indicates that
the IDE device driver handles error logging.

Some of the following error conditions indicate an IDE device failure. Others are
IDE bus- or adapter-related.

ATA_IDE_DMA_ERROR (A) The system I/O bus generated or detected an error
during a DMA transfer.

ATA_ERROR_VALID (H) The request sent to the device failed.

ATA_CMD_TIMEOUT (H) The command timed out before completion.

ATA_NO_DEVICE_RESPONSE (A) The target device did not respond.

ATA_IDE_BUS_RESET (A) The adapter indicated the IDE bus reset failed.

Other IDE Design Considerations

IDE Device Driver Tasks
IDE device drivers are responsible for the following actions:

* Interfacing with block I/O and logical volume device driver code in the
operating system.

 Translating I/O requests from the operating system into IDE commands suitable
for the particular IDE device. These commands are then given to the IDE
adapter device driver for execution.

* Issuing any and all IDE commands to the attached device. The IDE adapter
device driver sends no IDE commands except those it is directed to send by the
calling IDE device driver.

Chapter 15. Integrated Device Electronics (IDE) Subsystem 293

Closing the IDE Device

When an IDE device driver is preparing to close a device through the IDE adapter
device driver, it must ensure that all transactions are complete. When the IDE
adapter device driver receives an IDEIOSTOP ioctl operation and there are
pending I/O requests, the ioctl operation does not return until all have completed.
New requests received during this time are rejected from the adapter device
driver’s ddstrategy routine.

IDE Error Processing

It is the responsibility of the IDE device driver to process IDE check conditions and
other returned errors properly. The IDE adapter device driver only passes IDE
commands without otherwise processing them and is not responsible for device
error recovery.

Device Driver and Adapter Device Driver Interfaces

The IDE device drivers can have both character (raw) and block special files in the
/dev directory. The IDE adapter device driver has only character (raw) special files
in the /dev directory and has only the ddconfig, ddopen, ddclose, dddump, and
ddioctl entry points available to operating system programs. The ddread and
ddwrite entry points are not implemented.

Internally, the devsw table has entry points for the ddconfig, ddopen, ddclose,
dddump, ddioctl, and ddstrategy routines. The IDE device drivers pass their IDE
commands to the IDE adapter device driver by calling the IDE adapter device
driver ddstrategy routine. (This routine is unavailable to other operating system
programs due to the lack of a block-device special file.)

Access to the IDE adapter device driver’s ddconfig, ddopen, ddclose, dddump,
ddioctl, and ddstrategy entry points by the IDE device drivers is performed
through the kernel services provided. These include such services as fp_opendev,
fp_close, fp_ioctl, devdump, and devstrat.

Performing IDE Dumps

An IDE adapter device driver must have a dddump entry point if it is used to
access a system dump device. An IDE device driver must have a dddump entry
point if it drives a dump device. Examples of dump devices are disks and tapes.

Note: IDE adapter device driver writers should be aware that system services
providing interrupt and timer services are unavailable for use in the dump
routine. Kernel DMA services are assumed to be available for use by the
dump routine. The IDE adapter device driver should be designed to ignore
extra DUMPINIT and DUMPSTART commands to the dddump entry point.

The DUMPQUERY option should return a minimum transfer size of 0 bytes, and a
maximum transfer size equal to the maximum transfer size supported by the IDE
adapter device driver.

Calls to the IDE adapter device driver DUMPWRITE option should use the arg
parameter as a pointer to the ataide_buf structure to be processed. Using this
interface, an IDE write command can be executed on a previously started (opened)
target device. The uiop parameter is ignored by the IDE adapter device driver

294 Kernel Extensions and Device Support Programming Concepts

during the DUMPWRITE command. Spanned or consolidated commands are not
supported using the DUMPWRITE option. Gathered write commands are also not
supported using the DUMPWRITE option. No queuing of ataide_buf structures is
supported during dump processing since the dump routine runs essentially as a
subroutine call from the caller’s dump routine. Control is returned when the entire
ataide_buf structure has been processed.

Note: No error recovery techniques are used during the DUMPWRITE option
because any error occurring during DUMPWRITE is a true problem. Return
values from the call to the dddump routine indicate the specific nature of the
failure.

Successful completion of the selected operation is indicated by a 0 return value to
the subroutine. Unsuccessful completion is indicated by a return code set to one of
the following values for the errno global variable. The various ataide_buf status
fields, including the b_error field, are not set by the IDE adapter device driver at
completion of the DUMPWRITE command. Error logging is, of necessity, not
supported during the dump.

* An errno value of EINVAL indicates that a request that was not valid passed to
the IDE adapter device driver, such as to attempt a DUMPSTART command
before successfully executing a DUMPINIT command.

* An errno value of EIO indicates that the IDE adapter device driver was unable
to complete the command due to a lack of required resources or an I/O error.

* An errno value of ETIMEDOUT indicates that the adapter did not respond with
completion status before the passed command time-out value expired.

Required IDE Adapter Device Driver ioctl Commands

Various ioctl operations must be performed for proper operation of the IDE
adapter device driver. The ioctl operations described here are the minimum set of
commands the IDE adapter device driver must implement to support IDE device
drivers. Other operations may be required in the IDE adapter device driver to
support, for example, system management facilities. IDE device driver writers also
need to understand these ioctl operations.

Every IDE adapter device driver must support the IOCINFO ioctl operation. The
structure to be returned to the caller is the devinfo structure, including the ide
union definition for the IDE adapter found in the /usr/include/sys/devinfo.h file.
The IDE device driver should request the IOCINFO ioctl operation (probably
during its open routine) to get the maximum transfer size of the adapter.

Note: The IDE adapter device driver ioctl operations can only be called from
the process level. They cannot be executed from a call on any more favored
priority levels. Attempting to call them from a more favored priority level can
result in a system crash.

ioctl Commands

The following IDEIOSTART and IDEIOSTOP operations must be sent by the IDE
device driver (for the open and close routines, respectively) for each device. They
cause the IDE adapter device driver to allocate and initialize internal resources.
The IDEIORESET operation is provided for clearing device hard errors. The
IDEIOGTHW operation is supported by IDE adapter device drivers that support
gathered write commands to target devices.

Chapter 15. Integrated Device Electronics (IDE) Subsystem 295

Except where noted otherwise, the arg parameter for each of the ioctl operations
described here must contain a long integer. In this field, the least significant byte is
the IDE device ID value. (The upper three bytes are reserved and should be set to
0.) This provides the information required to allocate or deallocate resources and
perform IDE bus operations for the ioctl operation requested.

The following information is provided on the various ioctl operations:

IDEIOSTART This operation allocates and initializes IDE device-dependent information
local to the IDE adapter device driver. Run this operation only on the first
open of a device. Subsequent IDEIOSTART commands to the same device
fail unless an intervening IDEIOSTOP command is issued.

The following values for the errno global variable are supported:
0 Indicates successful completion.

EIO Indicates lack of resources or other error-preventing device
allocation.

EINVAL
Indicates that the selected IDE device ID is already in use.

ETIMEDOUT

Indicates that the command did not complete.

IDEIOSTOP This operation deallocates resources local to the IDE adapter device driver
for this IDE device. This should be run on the last close of an IDE device. If
an IDEIOSTART operation has not been previously issued, this command
is unsuccessful.

The following values for the errno global variable should be supported:
0 Indicates successful completion.
EIO Indicates error preventing device deallocation.

EINVAL
Indicates that the selected IDE device ID has not been started.

ETIMEDOUT
Indicates that the command did not complete.

296 Kernel Extensions and Device Support Programming Concepts

IDEIORESET

This operation causes the IDE adapter device driver to send an ATAPI
device reset to the specified IDE device ID.

The IDE device driver should use this command only when directed to do
a forced open. This occurs in for the situation when the device needs to be
reset to clear an error condition.
Note: In normal system operation, this command should not be
issued, as it would reset all devices connected to the controller. If an
IDEIOSTART operation has not been previously issued, this
command is unsuccessful.

The following values for the errno global variable are supported:
0 Indicates successful completion.
EIO Indicates an unrecovered I/0O error occurred.

EINVAL
Indicates that the selected IDE device ID has not been started.

ETIMEDOUT
Indicates that the command did not complete.

Chapter 15. Integrated Device Electronics (IDE) Subsystem 297

IDEIOGTHW This operation is only supported by IDE adapter device drivers that
support gathered write commands. The purpose of the operation is to
indicate support for gathered writes to IDE device drivers that intend to
use this facility. If the IDE adapter device driver does not support gathered
write commands, it must fail the operation. The IDE device driver should
call this operation from its open routine for a particular device instance. If
the operation is unsuccessful, the IDE device driver should not attempt to
run a gathered write command.

The arg parameter to the IDEIOGTHW is set to NULL by the caller to
indicate that no input parameter is passed:

The following values for the errno global variable are supported.

0 Indicates successful completion and in particular that the adapter
driver supports gathered writes.

EINVAL
Indicates that the IDE adapter device driver does not support
gathered writes.

298 Kernel Extensions and Device Support Programming Concepts

Chapter 16. Serial Direct Access Storage Device Subsystem

With sequential access to a storage device, such as with tape, a system enters and
retrieves data based on the location of the data, and on a reference to information
previously accessed. The closer the physical location of information on the storage
device, the quicker the information can be processed.

In contrast, with direct access, entering and retrieving information depends only on
the location of the data and not on a reference to data previously accessed. Because
of this, access time for information on direct access storage devices (DASDs) is
effectively independent of the location of the data.

Direct access storage devices (DASDs) include both fixed and removable storage
devices. Typically, these devices are hard disks. A fixed storage device is any
storage device defined during system configuration to be an integral part of the
system DASD. If a fixed storage device is not available at some time during
normal operation, the operating system detects an error.

A removable storage device is any storage device you define during system
configuration to be an optional part of the system DASD. Removable storage
devices can be removed from the system at any time during normal operation. As
long as the device is logically unmounted before you remove it, the operating
system does not detect an error.

The following types of devices are not considered DASD and are not supported by
the logical volume manager (LVM):

* Diskettes
* CD-ROM (compact disk read-only memory)
* WORM (write-once read-mostly)

DASD Device Block Level Description

The DASD device block (or sector) level is the level at which a processing unit can
request low-level operations on a device block address basis. Typical low-level
operations for DASD are read-sector, write-sector, read-track, write-track, and
format-track.

By using direct access storage, you can quickly retrieve information from random
addresses as a stream of one or more blocks. Many DASDs perform best when the
blocks to be retrieved are close in physical address to each other.

A DASD consists of a set of flat, circular rotating platters. Each platter has one or
two sides on which data is stored. Platters are read by a set of nonrotating, but
positionable, read or read/write heads that move together as a unit.

The following terms are used when discussing DASD device block operations:
sector An addressable subdivision of a track used to record one block of a program

or data. On a DASD, this is a contiguous, fixed-size block. Every sector of
every DASD is exactly 512 bytes.

© Copyright IBM Corp. 1997, 1999 299

track A circular path on the surface of a disk on which information is recorded and
from which recorded information is read; a contiguous set of sectors. A track
corresponds to the surface area of a single platter swept out by a single head
while the head remains stationary.

A DASD contains at least 17 sectors per track. Otherwise, the number of
sectors per track is not defined architecturally and is device-dependent. A
typical DASD track can contain 17, 35, or 75 sectors.

A DASD may contain 1024 tracks. The number of tracks per DASD is not
defined architecturally and is device-dependent.

head A head is a positionable entity that can read and write data from a given track
located on one side of a platter. Usually a DASD has a small set of heads that
move from track to track as a unit.

There must be at least 43 heads on a DASD. Otherwise, the number is not
defined architecturally and is device-dependent. A typical DASD has 8 heads.

cylinder The tracks of a DASD that can be accessed without repositioning the heads. If
a DASD has n number of vertically aligned heads, a cylinder has n number of
vertically aligned tracks.

300 Kernel Extensions and Device Support Programming Concepts

Chapter 17. Debugging Tools

This chapter provides information about the available procedures for debugging a
device driver which is under development. The procedures discussed include:

* Saving device driver information in a system dump.
* Using the crash command to interpret and format system structures.

* Using the LLDB Kernel Debugger to set breakpoints and display variables and
registers.

* Using the KDB Kernel Debugger and Command to set breakpoints and display
variables and registers.

* Error logging to record device-specific hardware or software abnormalities.

* Using the Debug and Performance Tracing to monitor entry and exit of device
drivers and selectable system events.

* Using the Memory Overlay Detection System (MODS) to help detect memory
overlay problems in the AIX kernel, kernel extensions, and device drivers.

System Dump

The system dump copies selected kernel structures to the dump when an
unexpected system halt occurs, when the reset button is pressed, or when the
special system dump key sequences are entered. You can also initiate a system
dump through the System Management Interface Tool (SMIT). For more
information, see "Start a System Dump” in AIX Version 4.3 Problem Solving Guide
and Reference.

The dump device can be dynamically configured, which means that either the tape
or logical volumes on hard disk can be used to receive the system dump. Use the
sysdumpdev command to dynamically configure the dump device.

You can also define primary and secondary dump devices. A primary dump device
is a dedicated dump device, while a secondary dump device is shared.

The system kernel dump routine contains all the vital structures of the running
system, such as the process table, the kernel’s global memory segment, and the
data and stack segment of each process.

Be sure to refer to the system header files in the /usr/include/sys directory. The

name of the file tells which structure and associated information it contains. For
example, the user block is defined in sys/user.h. The process block is defined in
sys/proc.h.

When you examine system data that maps into these structures, you can gain
valuable kernel information that can explain why the dump was called.

Initiating a System Dump

A system dump initiated by a kernel panic is written to the primary dump device.
If you initiate a system dump by pressing the reset button, the system dump is
written to the primary dump device.

© Copyright IBM Corp. 1997, 1999 301

Use the special key sequences to determine whether the write of a system dump
goes to the primary dump device or to the secondary dump device. To write to the
primary dump device, use the sequence Ctrl-Alt-NumPad1. To write to the
secondary dump device, use the sequence Ctrl-Alt-NumPad2.

To use SMIT, select Problem Determination from the main menu, then select
System Dump. This presents a menu that allows you to initiate a system dump to
either the primary or secondary device, and manipulate the dump devices and the
system dump files.

If you prefer to initiate the system dump from the command line, use the
sysdumpstart command. Use the -p flag to write to the primary device or the -s
flag to write to the secondary device.

If you want your device to be a primary or secondary device, the driver must
contain a dddump routine.

When the system dump completes, the system either halts or reboots, depending
upon the setting of the autorestart attribute of sys0. This can be shown and altered
using SMIT by selecting System Environments, then Change /Show
Characteristics of Operating System. The Automatically REBOOT system after a
crash item shows and sets this value.

Including Device Driver Information in a System Dump

The system dump is table driven. The two parts of the table are:

master dump table Contains a pointer to a function which is provided
by the device driver. The function is called by the
kernel dump routine when a system dump occurs.
The function must return a pointer to a component
dump table.

component dump table Specifies memory areas to be included in a system
dump.

Both the master dump table and the component dump table must reside in pinned
global memory.

When a dump occurs, the kernel dump routine calls the function pointed to in the
master dump table twice. On the first call, an argument of 1 indicates that the
kernel dump routine is starting to dump the data specified by the component
dump table.

On the second call, an argument of 2 indicates that the kernel dump routine has
finished dumping the data specified by the component dump table. The
component dump table should be allocated and pinned during initialization. The
entries in the component dump table can be filled in later. The function pointed to
in the master dump table must not attempt to allocate memory when it is called.
The "System Dump Flow” figure shows the flow of a system dump.

302 Kernel Extensions and Device Support Programming Concepts

SMIT

Menu
v
sysdumpstart sysdumpdev crash
Command Command Command
APPL
KERNEL
Kernel » dmp_add()
Component dmp_del()
Component
Dump
Table Master
Dump
Table
Dump b
dmp_do /dev/dum Media ump
p_do0 vieume Device Device
Driver

Kernel Abend

Key Sequence

System Dump Flow

To have your device driver data areas included in a system dump, you must
register the data areas in the master dump table. Use the dmp_add kernel service
to add an entry to the master dump table. Conversely, use the dmp_del kernel
service to delete an entry from the master dump table. The syntax is as follows:
#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dump.h>

int dmp_add(cdt_func) or int dmp_del(cdt_func)

int cdt * ((xcdt_func) ());

The cdt structure is defined in the sys/dump.h header file. A cdt structure consists
of a fixed-length header (cdt_head structure) and an array of one or more
cdt_entry structures.

The cdt_head structure contains a component name field, containing the name of
the device driver, and the length of the component dump table. Each cdt_entry
structure describes a contiguous data area, giving a pointer to the data area, its
length, a segment register, and a name for the data area. Use the name supplied
for the data area to refer to it when the crash command formats the dump. The
"Kernel Dump Image” figure illustrates a dump image.

Chapter 17. Debugging Tools 303

Component Dump Table — A

Bitmap for 1st data area

1st data area for component A

Bitmap for 2nd data area

2nd data area for component A

Component Dump Table — N

Bitmap for 1st data area

1st data area for component N

Bitmap for 2nd data area

2nd data area for component N

Kernel Dump Image

Formatting a System Dump

Each device driver that includes data in a system dump can install a unique
formatting routine in the /usr/lib/ras/dmprtns directory. A formatting routine is a
command that is called by the crash command. The name of the formatting routine
must match the component name field of the corresponding component dump
table.

The crash command forks a child process that runs the formatting routines. If a
formatting routine is not provided for a component name, the crash command
runs the _default_dmp_fmt default-formatting routine, which prints out the data
areas in hex.

The crash command calls the formatting routine as a command, passing the file
descriptor of the open dump image file as a command line argument. The syntax
for this argument is -ffile_descriptor.

The dump image file includes a copy of each component dump table used to
dump memory. Before calling a formatting routine, the crash command positions
the file pointer for the dump image file to the beginning of the relevant component
dump table copy.

The dumped memory is laid out in the dump image file with the component
dump table and is followed by a bitmap for the first data area, then the first data
area itself. A bitmap for the next data area follows, then the next data area itself,
and so on.

304 Kernel Extensions and Device Support Programming Concepts

The bitmap for a given data area indicates which pages of the data area are
actually present in the dump image and which are not. Pages that were not in
memory when the dump occurred were not dumped. The least significant bit of
the first byte of the bitmap is set to 1 if the first page is present. The next least
significant bit indicates the presence or absence of the second page, and so on. A
macro for determining the size of a bitmap is provided in sys/dump.h.

Note: A sample dump formatter is shipped with bos.sysmgt.serve_aid in the
lusr/samples/dumpfmt directory.

The crash Command

The crash command is a particularly useful tool for device-driver development and
debugging, which interprets and formats the system structures. The crash
command is interactive and allows you to examine an operating system image or
an active system. An operating system image is held in a system dump file, either
as a file or on the dump device. When you run the crash command, you can
optionally specify a system image file and kernel file, as shown in the syntax
below:

crash [-a] [-i IncludeFile] [SystemImageFile [KernelFile]]

The default SystemImageFile is /dev/mem and the default KernelFile is
lusr/lib/boot/unix.

To run the crash command on the active system, enter:
crash

Because the command uses /dev/mem, you need root permissions.

To invoke the crash command on a system image file, enter:
crash SystemImageFile

where SystemImageFile is either a file name or the name of the dump device.

Note that by convention, the symbol names for function entry points always begin
with a . (period). In most cases, there is a corresponding symbol name without the
period that points to the function descriptor. However, when you specify a
function symbol name on a crash command, without a leading period, crash
inserts the period for you. For data items, there usually are table-of-contents (TOC)
entries corresponding to each data item, but there are no differences in the names.
The crash command assumes that when a data item symbol is specified, it is the
actual data item that is wanted, not the TOC entry.

Use the -a flag to generate a list of data structures without using subcommands.
The resulting list is large, so you can redirect the output to either a file or to a
printer.

Use the -i flag to read the given include file, allowing the print subcommand to
output data according to the include file structures.

You can use a variety of subcommands to view the system structures. These

subcommands can have flags that modify the format of the data. If you do not use
a flag to specify what you want to see, all valid entries are displayed.

Chapter 17. Debugging Tools 305

Addresses in crash

Many of the commands in crash take addresses as parameters. Addresses are
always specified in hexadecimal, and can usually be specified in one of the
following forms:

addr An 8 digit hexadecimal number, which is treated as an effective
address within the context of the current process and thread, or
(in some cases) the context of the thread specified on a previous
cm command. addr can be prefixed with the characters 0x.

segid:offset segid is the segment ID for a virtual memory segment. The
maximum size is 6 hex digits. offset is the offset (in bytes) from
the beginning of that segment. The maximum size is 7 hex digits.

r:rrealaddr r is the literal character "r". realaddr is a real memory address.
This form can only be used when running crash against a system
dump, and it only will display dump data areas that were
dumped by real address instead of virtual address. readaddr can
be up to 12 hexadecimal digits.

non

To enhance readability, you may include underscores (
values.

) anywhere within these

Examples:

18340050
2314:55300
r:14 3370_0560 (same as r:1433700560)

Command-line Editing

The crash command provides command line editing features similar to those
provided by the Korn shell. vi mode provides vi-like editing features, while emacs
mode gives you controls similar to emacs. You can turn these features on by using
the crash subcommand set edit. So, to turn on vi-style command-line editing, you
would type the subcommand set edit vi.

Output Redirection

The crash command provides a subset of Korn shell input/output redirection.
Specifically, the following operators are provided:

| (pipe symbol)

Pipes all output of the command before the symbol to the input of the command
after the symbol. Both standard output and error output are affected, which is
different than standard shell behavior.

> filename

Writes the output of the command before the > to filename. Both standard and
error output are written to the file.

>> filename

Adds the output of the command before the >> to the end of filename. Both
standard and error output are written to the file.

306 Kernel Extensions and Device Support Programming Concepts

crash Subcommands

Once you initiate the crash command, > is the prompt character. For a list of the
available subcommands, type the ? character. To exit, type q. You can run any shell
command from within the crash command by preceding it with an ! (exclamation
mark).

Since the crash command only deals with kernel threads, the word "thread” when
used alone will be used to mean kernel thread in the crash documentation that
follows. The default thread for several subcommands is the current thread (the
thread currently running). On a multiprocessor system, you can use the cpu
subcommand to change the current processor; the default thread becomes the
running thread on the selected processor.

The parameters ProcessSlotNumber and ThreadSlotNumber are used in many
subcommands to indicate a process or thread respectively. These parameters are
simply numbers for table entry indexes which can be displayed using the proc and
thread subcommands.

Note that many structures displayed are longer than one screen length.
buf [BufferHeaderNumber]

The buf subcommand displays the system buffer headers. A buffer header contains
the information required to perform block I/O. If you type the buf subcommand
with no BufferHeaderNumber, a summary of the system buffer headers is displayed.

Aliases = bufhdr, hdr

> buf

BUF MAJ MIN BLOCK FLAGS
0 000a 000b 8 done stale
1 000a 000b 243 done stale
2 000a 000b 24 done stale

If you type the buf subcommand with a BufferHeaderNumber, a single complete
header is displayed:

> buf 3

BUFFER HEADER 3:

b_forw: 0x014d0528, b_back: 0x014d0160, b_vp: 0x00000000
av_forw: 0x014d0160, av_back: 0x014d0528, b_iodone: 0x000185f8
b_dev: 0x000a000b, b_blkno: 0, b_addr: 0x014e9000
b_bcount: 4096, b_error: 0, b_resid: ¢]
b_work: 0x80000000, b _options:0x00000000, b_event: Oxffffffff
b_start.tv_sec: 0, b_start.tv_nsec: 0

b_xmemd.aspace_id: 0x00000000, b_xmemd.subspace_id: 0x00000000
b_flags: read done stale

Refer to the sys/buf.h header file for the structure definition.
buffer [Format] [BufferHeaderNumber]

The buffer subcommand displays the data in a system buffer according to the
Format parameter. When specifying a buffer header number, the buffer associated
with that buffer header is displayed. If you do not provide a Format parameter, the
previous Format is used. Valid options are decimal, octal, hex, character, byte,
i-node, directory, and write. The write option creates a file in the current directory
containing the buffer data.

Chapter 17. Debugging Tools 307

Aliases = b

> buffer hex 3

BUFFER FOR BUF_HDR 3

00000: 41495820 4c564342 00006a66 73000000
00020: 00000000 000O0COO 0OOOOOOO 00000000
00040: 00000000 00000000 00003030 30303033

callout

The callout subcommand displays all active entries on the active trblist. When the
time-out kernel extension is used in a device driver, this timer request is entered
on a system-wide list of active timer requests. This list of timer requests is the
trblist. Any timer which is active is on this list until it expires.

Aliases = ¢, call, calls, time, timeout, tout

>callout
TRB's On The Active List Of Processor 0.
TRB #1 on Active List

Timer addressS..eeeeeeeeeeeeenennnns 0x0

trb.to next...oviiiiiiiiiiiiie 0x0
trb.knext. ..o 0x59aal00
trb.kprev.. oo 0x0

Thread id (-1 for dev drv)......... Oxfffffffe
Timer flags..ooeeniiiiininninnnnnnns 0x12
trb.timerid...oovii i 0x0
trb.eventlist.....oceviiiiii, Oxffffffff
trb.timeout.it_interval.tv_nsec....0x0
trb.timeout.it_interval.tv_sec..... 0x0

Next scheduled timeout (secs)...... 0x2d63f6a8
Next scheduled timeout (nanosecs)..0xc849a80
Timeout function................... 0x8c748
Timeout function data.............. 0x59aa040

TRB #2 on Active List

Refer to sys/timer.h for the structure definitions, and to InfoExplorer for a
description of the time-out mechanism.

cm [Idron|ldroff] [vmmon|vmmoff] [ThreadSlotNumber
SegmentNumber]

The em subcommand changes the current segment map used by the od
subcommand. The cm subcommand changes the map of the crash command
internal pointers for any process thread segment not paged out, if you specify
ThreadSlotNumber and SegmentNumber. This allows the od subcommand to display
data from the segment desired rather than the segment for the current thread.
Specification of vmmon or vmmoff allows selection of whether effective addresses in
the range 0x70000000 through 0xafffffff are to be interpreted by the od
subcommand as kernel or VMM data references. Similarly, the 1dron and 1droff
options allow selection of whether effective addresses in segment 11 (Oxbxxxxxxx)
and segment 13 (Oxdxxxxxxx) are to be interpreted by the od subcommand as
references to loader data. Using the cm subcommand without any parameters
resets the map of internal pointers.

The following example sets the map to ThreadSlotNumber 3 and SegmentNumber 2,
then displays 20 words from segment 2 for the thread in slot number 3. It then
resets to the normal mapping by executing the ecm subcommand with no
parameters.

308 Kernel Extensions and Device Support Programming Concepts

Aliases = none

>cm 32

t3,2 >> od 2ff3b400 20

2ff3b400: 00000000 00000000 2ff22e28 00000000
2ff3b410: 00000306 00000000 0002a7ec 000010bO
2ff3b420: 82202220 0002a7ec 00000000 00O0001c
2ff3b430: 00000000 00000000 0000000 0OOOOOOO
2ff3b440: d80a5000 40000000 00002cOb d80a5000
t3,2 >> cm

The following example shows how the crash prompt changes as the various cm
options are used. First, the cm subcommand is issued to indicate that effective
address in segment 11 and 13 are to be considered loader references. Second, a cm
subcommand is used to indicate that effective address in the range 0x70000000
through Oxafffffff are to be considered VMM references. Then, the ecm subcommand
is used to indicate that reference to effective addresses for 0x2000000 through
Ox2fttttff are to use the segment id from segment register 2 of the thread in thread
slot 3 (see previous example). Then these options are individually cleared.

> cm ldron

LDR > cm vmmon

VMM LDR > cm 3 2

t3,2 VMM LDR >> cm ldroff

t3,2 VMM >> cm vmmoff

t3,2 >> cm
>

cpu [ProcessorNumber]

If no argument is given, the cpu subcommand displays the number of the
currently selected processor. Initially, the selected processor is processor 0 (on a
running system) or the processor on which the crash occurred (when running
crash against a dump). If the ProcessorNumber argument is given, the cpu
subcommand selects the specified processor as the current processor. By extension,
this selects the current kernel thread (the running kernel thread on the selected
processor). Processor numbering starts from zero.

Aliases = none

>cpu
Selected cpu number : 0

dblock [Address]

The dblock subcommand displays the allocated streams data-block headers. The
address parameter is required. If the address is not supplied, this command will
print an error message stating that the address is required. Refer to the
sys/stream.h file for the datab structure definitions. The freep and db_size
definitions are not included in /usr/include/sys/stream.h. These structure members
are described here:

freep Address of the free pointer
db_size Size of the data block

There is no checking performed on the address passed in as the required
parameter. The dblock subcommand will accept any address. It is up to the user to
be sure that a valid address is specified.

To determine a valid address, run the mblock subcommand. From the output of
the mblock subcommand, select a nonzero data block address under the
DATABLOCK column heading.

Chapter 17. Debugging Tools 309

This subcommand can be issued from crash on either a running system or a
system dump.

Aliases = dblk

> queue 59d5a74
QUEUE QINFO NEXT PRIVATE FLAGS HEAD OTHERQ COUNT
59d5a74 1884clc 59d5474 59d5500 0x003e 59elc00 59d5a00 4096
> mbTk 59elc00
ADDRESS NEXT PREVIOUS CONT RPTR WPTR DATABLOCK

59e1c00 0 0 0 59e2000 59e3000 59elc44
> dblk 59elc44

ADDRESS FREEP BASE LIM REFCNT TYPE SIZE

59%elc44 0 59e2000 59e3000 1 0 1000

dlock [Threadldentifier | -p [ProcessorNumber]]

Displays deadlock analysis information about all types of locks (simple, complex,
and lockl). The dlock subcommand searches for deadlocks from a given start point.
If Threadldentifier is given, the corresponding kernel thread is the start point. If -p is
given without a ProcessorNumber, the start point is the running kernel thread on the
current processor. If -p ProcessorNumber is given, the running kernel thread on the
specified processor is the start point. If no arguments are given, dlock searches for
deadlocks among all threads on all processors.

The first output line gives information about the starting kernel thread, including
the lock which is blocking the kernel thread, and a stack trace showing the
function calls which led to the blocking lock request. Each subsequent line shows
the lock held by the blocked kernel thread from the previous line, and identifies
the kernel thread or interrupt handler which is blocked by those locks. If the
information required for a full analysis is not available (paged out), an abbreviated
display is shown; in this case, examine the stack trace to locate the locking
operations which are causing the deadlock. The display stops when a lock is
encountered for a second time, or no blocking lock is found for the current kernel
thread.

Aliases = none

>dlock
Deadlock from tid 00d3f. This tid waits for the first line lock,
owned by Owner-Id that waits for the next line Tock, and so on...
LOCK NAME | ADDRESS OWNER-ID | WAITING FUNCTION
TockCl | 0x001f79e0 | Tid 113d | .Tock write_ppc
called from : .times + 0000020c
Dump data incomplete.Only 0 bytes found out of 4.
called from : .file + 0000000b
TockC2 | 0x001f79e8 | Tid d3f | .lock_write_ppc
called from : .times + 000001c8
Dump data incomplete.Only 0 bytes found out of 4.
called from : .file + 0000000b

dmodsw

The dmodsw subcommand displays the streams drivers-switch table. The
information printed is contained in an internal structure. The following members
of this internal structure are described here:

address Address of dmodsw

d_next Pointer to the next driver in the list
d_prev Pointer to the previous driver in the list
d_name Name of the driver

d_flags Flags specified at configuration time

310 Kernel Extensions and Device Support Programming Concepts

d_sqh Pointer to synch queue for driver-level synchronization

d_str Pointer to streamtab associated with the driver
d_sq_level Synchronization level specified at configuration time
d_refent Number of open or pushed count

d_major Major number of a driver

The flags structure member, if set, is based on one of the following values:

#define Value Description

F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3)
open/close parameters

F_MODSW_QSAFETY 0x2 Module requires safe
timeout/bufcall callbacks

F_MODSW_MPSAFE Ox4 Non-MP-Safe drivers need
funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h file.

This subcommand can be issued from crash on either a running system or a
system dump.

Aliases = none

> dmodsw

NAME ADDRESS NEXT PREVIOUS FLAG SYNCHQ STREAMTAB S-LVL COUNT MAJOR
sad 5a0cf40 5a0cf00 5a0c9cO Ox0 5a0ad4d 188c600 3 0 12
slog 5a0cf00 b5abcecO 5a0cf40 0x0 5a0ad20 188c8a0d 3 0 13
en 5a0cecOd 5a0ce80 5a0cfOO 0x0 5a0adod® 1893eed 3 0 27
et 5a0ce80 5a0ce40 5alOcecOd 0x0 5alace® 1893eed 3 0 28
tr 5a0ce40 5a0ce00 5a0ce80 0OxO0 5abaccO 1893ee0 3 0 29
fi 5a0ce00 5a0cdcO 5a0ced40 O0x0 5alaca® 1893eed 3 0 30
echo 5a0cdc® 5a0cd80 5alcedd 0Ox0 0 18951a0 5 0 31
nuls 5a0cd80 5a0cd40 5alOcdcO 0x0 0 1895190 5 0 32
Spx 5a0cd40 5a0cd00 5a0cd80 0x0 5a0ac80 1895d70 3 0 33
unixdg 5a0cd00 5a0cccO 5a0cd40 0x0 5alac60 18alded 3 0 34
unixst 5a0cccO® 5a0cc80 5a0cd00 0x0 5alac40 18alded 3 0 35
udp 5a0cc80 5a0cc40 5aOcccO 0x0 5alac20 18alded 3 0 36
tcp 5a0cc40 5a0ch40 5a0cc80 0x0 5a0acfO0 18alded 3 0 37
rs 5a0ch40 5a0ch00 5alcc40 0x0 0 18b31do 5 1 15
pts 5a0ch00 5a0cad0 5a0ch40 0x0 0 18fc930 4 7 24
ptc 5a0ca40 5a0cab0 5abch0O 0x0 0 18fahcO 4 2 23
ttyp 5a0cal0 5a0c9cO 5aOcadd 0Ox0 0 18fc950 4 0 26
ptyp 5a0c9cO0 5a0cf40 5abcabd 0x0 0 18fc940 4 0 25

ds [Address]

The ds subcommand returns the symbols closest to the given address. The ds
subcommand can take either a text address or a data address.

Aliases = ts
> ds 012345
.ioctl_systrace + 0x000001b5

When a number such as 0x000001b5 is displayed, it shows the number of bytes by
which the given address is offset from the entry point of the routine.

Chapter 17. Debugging Tools 311

du [SlotNumber ThreadSlotNumber]

Uses the specified process slot number to display a combined hex and ASCII dump
of the user block for any process that is not swapped out. The default is the
current process. Displays a combined hex and ASCII dump of the specified
thread’s uthread structure and of the user structure of the process which owns the
thread. If the data is not available (paged out), a message is displayed. The default
is the current thread.

Aliases = none

> du 3

Uthread structure of thread slot 3
00000000 00000000 00000000 2ff7fecd 00000000 *........ [oeennn. *
00000010 00000303 00000000 00030644 000010bO *........... D....*

00000020 22222828 00030644 00006244 00000009 *""((...D..bD....*

dump

The dump subcommand displays the name of each component for which there is
data present. After you select a component name from the list, the crash program
loads and runs the associated formatting routine contained in the
/usr/lib/ras/dmprtns directory.

If there is more than one data area for the selected component, the formatting
routine displays a list of the data areas and allows you to select one. The crash
command then displays the selected data area. You can enter the quit
subcommand to return to the previously displayed list and make another selection
or enter quit a second time to leave the dump subcommand loop.

Aliases = none

errpt [count]

Displays messages in the error log. Count is the number of messages to print that
have already been read by the errdemon process. (The default is 3 messages.) errpt
always prints all messages that have not yet been read by the errdemon process.
Aliases = none

file [FileSlotNumber]

The file subcommand displays the file table. Unless you request specific file
entries, the command displays only those with a nonzero reference.

Aliases = files, f
> f 3

SLOT REF INODE FLAGS
3 1 0x018e53f0 read

Refer to sys/file.h for the structure definition.
find [-u] [-s] [-p slot] [-c context] [-a alignment] pattern

Recognized by the x subcommand alias. Search user-space for a given pattern. The
default is to search the GPR save areas in the mstsave areas which are both on the

312 Kernel Extensions and Device Support Programming Concepts

Current Save Area Chain (CSA) and in each uthread area for every thread.

-u Search all process private segments, (Stack, Uarea,...)

-s Search all process private segment from the current stack pointer.
-c context Number of bytes of context to print on a match.

-a alignment Byte alignment for pattern. The default is 4.

-p slot Search only specified process. The default is to search all processes.

Note: Using the find command on a running system may cause system crashes.
Rules for pattern

pattern is a search pattern of any arbitrary length that contains either a hexadecimal
number or a string. To specify a hexadecimal pattern, just type the hex digits.
"Don’t care” digits can be represented with the character x. To specify a string
pattern, enclose the pattern in double quotes. "Don’t care” characters can be
represented with the sequence \x.

Examples:

> find -k 02x4
00110a28: 02140008
00110af0: 02640004 .d..

00110c80: 02e40004 cees
003f0ed8: 02242ff8 .$/.
> find -k "b\xt"

00012534: 6269745f bit_
00012618: 6269745f bit_
0001264c: 6269745f bit_
00021cb0: 62797465 byte
00021d60: 62797465 byte

> find -k "i_ena" 0 250000
001lceaa8: 695f656e 61626c65 |i_enable|

find -k [-c context][-a alignment] pattern [start[end]]

Recognized by the x subcommand alias. Search the kernel segments. The default
range is the whole of each kernel segment.

-c context Number of bytes of context to print on a match.
-a alignment Byte alignment for pattern. The default is 4.

find -b branch_addr [start_addr[end_addr]]

Recognized by the x subcommand alias. Search for a branch to the given address.
The default range is the whole of each kernel segment.

find -m [-a addr] [-t type] [-c] [-i] [start[end]]

Recognized by the x subcommand alias. Search the things that look like mbufs.
The default search range is the network memory heap.

-a Search for mbufs that point to this cluster address.
-t type Only search for this type of mbuf.

-C Only search for clusters.

-i Ignore length sanity checks.

Chapter 17. Debugging Tools 313

find -v [-f] wordval [start[end]]

Recognized by the x subcommand alias. Search for the first word not matching the
given value. The default is to search the kernel segments.

-f Force scan to continue when a region not in the dump is scanned.

find -U seg_id

Recognized by the x subcommand alias. Search for processes whose segment
registers contain the given segment ID.

fmodsw

The fmodsw subcommand displays the streams modules-switch table. The
information printed is contained in an internal structure. The following members
of this internal structure are described here:

address Address of fmodsw

d_next Pointer to the next module in the list

d_prev Pointer to the previous module in the list

d_name Name of the module

d_flags Flags specified at configuration time

d_sqh Pointer to synch queue for module-level synchronization
d_str Pointer to streamtab associated with the module
d_sq_level Synchronization level specified at configuration time
d_refent Number of open or pushed count

d_major -1

The flags structure member, if set, is based one of the following values:

#define Value Description

F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3)
open/close parameters

F_MODSW_QSAFETY 0x2 Module requires safe
timeout/bufcall callbacks

F_MODSW_MPSAFE 0x4 Non-MP-Safe drivers need
funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h file.

This subcommand can be issued from crash on either a running system or a
system dump.

Aliases = none

> fmodsw

NAME ADDRESS NEXT PREVIOUS FLAG SYNCHQ STREAMTAB S-LVL COUNT MAJOR
bufcall 5a0cf80 5a0ccO0 5a0ca80 0x1 5a0ad6d® 188bf80 3 0 -1
sC 5a0cc00 5alcbcO 5a0cf80 0x0 5alabed® 18a29b0 3 0 -1
timod 5a0cbcO® 5a0ch80 5a0ccO0 0x0 5alabc® 18a34b0 3 0 -1
tirdwr 5a0ch80 5alcacO 5aOchcOd 0x0 5alaba® 18a4010 3 0 -1
ldterm 5a0cacO 5a0ca80 5a0ch80 0x0 0 18ef460 4 8 -1

314 Kernel Extensions and Device Support Programming Concepts

fs [ThreadSlotNumber]

Traces a kernel stack for the thread specified by ThreadSlotNumber. Displays the
called subroutines with a hex dump of the stack frame for the subroutine that
contains the parameters passed to the subroutine. By default, the current thread is
traced. This subcommand will not work on the current thread of a running system
because it uses stack tracing; however, it does work on a dump image.

Aliases = none

> fs
STACK TRACE:

%%%x et wait *x
2ff97e78 2FF97ED8 0080D568 00000000 018F4C60 /.:....h
2ff97e88 2FF97EE8 0080D568 00082BCO 000BAO20 /.h..+.....
2ff97e98 2FF97ED8 28008044 00082418 2FF98000 /. .(..D..B./...
2ff97ea8 00000000 000B8468 00000000 00000000 h
2ff97eb8 2FF97F38 0000000B 00000004 00000004 /..8............
2ff97ec8 00000005 O1DFE258 00000000 E3000600 Xeweuvonnn

hide symbol...

Hide the specified symbol from the crash commands that convert addresses to
symbols and offsets. The main reason for this ability is to hide symbols that may
show up in the middle of a function. This occurs in assembly routines. See the

unhide symbol... subcommand on Funhide symhaol ” on page 329,

hide

Show all hidden symbols. See the unhide symbol... subcommand on
symbol " on page 329,

inode [-] [<Major <Minor <INumber]

The inode subcommand displays the i-node table and the i-node data block
addresses. You can display a specific i-node by specifying the major and minor
device numbers of the device where the i-node resides and the i-node number. The
command displays the i-node only if it is currently on the system hash list.

Aliases = ino, i

>inode

ADDRESS MAJ MIN INUMB REF LINK UID GID SIZE MODE SMAJ SMIN FLAGS
0x018e4e50 010 0007 11264 0 1 2 2 30 —777 - -
0x018f9fd0 010 0009 16384 1 6 201 0 512 d--755 - -
0x018e€a940 010 0011 0 1 0 0 0 0 — 0 - -

kfp [FramePointer]

If you use the kfp subcommand without parameters, it displays the last kernel
frame pointer address that was set using kfp. If you specify a frame pointer
address, it sets the kernel frame pointer to the new address. Use this subcommand
in conjunction with the -r flag of the trace subcommand.

Aliases = fp, 1l

> kfp
kfp: 00000000

Chapter 17. Debugging Tools 315

knlist [Symbol]

The knlist subcommand displays the addresses of all the specified symbol names.
If there is no such symbol, the subcommand displays a no match message. Run this
subcommand only on an active system.

The knlist subcommand runs a subroutine to the active kernel to obtain the
address from the system'’s knlist. The nm subcommand provides the same function
but searches the symbol table in the Kernel Image File for the address and
therefore can be used on a dump.

Aliases = none

> knlist open
open:0x000bbc98

le [-132|-164|-p proc_slot|-a] [[ADDRESS|NAME]...]

The le subcommand displays load list entries; the default is to display load list
entries starting at the kernel load anchor. If an address is specified, without the -a
option, only load list entries which include the address within the text or data area
are displayed. If a name is specified all load list entries which have a name that
includes the input string are displayed. If an attempt is made to display a
paged-out loader entry, the subcommand displays an error message. The following
options control the list entry chain that is searched/displayed:

-132 Use the 32-bit shared library load list anchor

-164 Use the 64-bit shared library load list anchor

-p proc_slot Use the load list anchor contained in the indicated processes user area

-a Display a single load list entry at a specified address (an address must be

specified with this option)

Aliases = none

The following example displays all load list entries starting at the kernel load
anchor.

> le

LoadList entry at 0x04e77700
Module start:0x00000000_0509c000 Module filesize:0x00000000 00086820
Module *end:0x00000000_05122820
*data:0x00000000_05113c60 data Tength:0x00000000_0000ebcOd
Use-count:0x0003 Toad_count:0x0001 =*file:0x00000000
flags:0x00000272 TEXT KERNELEX DATAINTEXT DATA DATAEXISTS
*exp:0x05123000 *1ex:0x00000000 =*deferred:0x00000000 *expsize:0x622f6c69
Name: /usr/vice/etc/dkload/afs.ext
ndepend:0x0001 maxdepend:0x0001
*depend[00] : 0x04e77680
le_next: 04e77a80

... other loader entries would follow ...

The following example displays any entry from the 32-bit shared library load list
chain for which the input address is between the Module start and Module *end
values.
> le -132 d0384101
LoadList entry at 0xb0a99a80
Module start:0x00000000_d0384100 Module filesize:0x00000000_00000eb7

Module *end:0x00000000_d0384fb7
*data:0x00000000 bObcead48 data Tength:0x00000000 00002138

316 Kernel Extensions and Device Support Programming Concepts

Use-count:0x0001 Toad_count:0x0000 =*file:0x10000c30

flags:0x000000c0 DATA LIBRARY

*exp:0xb0ach300 *Tex:0x00000000 =+deferred:0x00000000 *expsize:0x00000000
Name: /usr/lib/1ibdbm.a shr.o

ndepend:0x0002 maxdepend:0x0002

*depend[00] :0xb004c780

xdepend[01] : 0xb03afd80

le_next: b0a99a00

The following example displays load list entries for the process in process slot 20.

> le -p 20

LoadList entry at Ox2ff7f480
Module start:0x00000000_d0bc6000 Module filesize:0x00000000 00000304
Module *end:0x00000000_d0bc6304
*data:0x00000000_201541f0 data Tength:0x00000000_0000006c
Use-count:0x0002 Toad_count:0x0001 =*file:0x10002370
flags:0x00001240 DATA DATAEXISTS DATAMAPPED
*exp:0x2ff81040 *1ex:0x00000000 =*deferred:0x00000000 *expsize:0x00000000
Name: /opt/dcelocal/ext/dfsloadobj
ndepend:0x0002 maxdepend:0x0002
*depend[00] : 0xf0263d80
xdepend[01] : 0x04e77a80
le_next: 2ff7f400

... other loader entries would follow ...

Any of the above examples could include either addresses or names as additional
arguments. These additional arguments would simply limit the entries displayed to
those that contain the input addresses or names.

The following example displays a loader entry at a specified address.

> le -a 4e77500

LoadList entry at 0x04e77500
Module start:0x00000000_04fb0000 Module filesize:0x00000000_00000e88
Module *end:0x00000000_04fb0e88
*data:0x00000000_00000012 data Tength:0x00000000_00000000
Use-count:0x0002 Toad_count:0x0000 =*file:0x00000000
flags:0x00000248 SYSCALLS DATA DATAEXISTS
*exp:0x04fb1000 *Tex:0x00000000 +deferred:0x00000000 *expsize:0x00010cad
Name: /unix
ndepend:0x0002 maxdepend:0x0002
*depend[00] : 0x04e77080
xdepend[01] : 0x04e77480
le_next: 04ch3000

linkblk

The linkblk subcommand displays the streams linkblk table. Refer to the
lusr/include/sys/stream.h file for the 1inkb1k structure definitions. If there are no
1inkb1k structures found on the system, the linkblk subcommand will print a
message stating that no structures are found.

This subcommand can be issued from crash on either a running system or a
system dump.

Aliases = 1blk

This example shows a regular link:

> Tinkb1k
QTOoP QBOT INDEX
5ab8b74 5ae5074 5ab4200

Chapter 17. Debugging Tools 317

This example shows a persistent link:

> 1inkb1k
QTOP QBOT INDEX
0 5aeb5174 5adef00

mblock Address

The mblock subcommand displays the allocated streams message-block headers.
The address parameter is required. If the address is not supplied, this command
will print an error message stating that the address is required. Refer to the
lusr/include/sys/stream.h file for the queue structure definitions.

The mblock subcommand'’s checking of the address parameter is limited to
verifying that the address falls on a 128-byte boundary. It is up to the user to be
sure that a valid address is specified.

To determine a valid address, run the queue subcommand. From the output of the
queue subcommand, select a non-zero address for the head of the message queue
under the HEAD column heading for either a read queue or a write queue.

This subcommand can be issued from crash on either a running system or a
system dump.

Aliases = mblk

> queue
WRITEQ QINFO NEXT PRIVATE FLAGS HEAD READQ COUNT NAME

1802c08c 22dac00 1802c48c 1802c200 0x002a 0 1802c000 0 sth
1802c48c 2324960 1802ec8c 1807a2ec 0x0028 0 1802c400 0 mi_timod
1802ec8c 2320158 0 1802cc2c 0x8028 0 1802ec00 0 xtiso
1806ac8c 22dac00 1806c88c 1806aabd 0x002a 0 1806aco0 0 sth
1806c88c 2324960 1806ce8c 1807a02c 0x0028 0 1806c800 0 mi_timod
1806ce8c 2320158 0 1806cc2c 0x8028 0 1806ce00 0 xtiso
1806ae8c 22dac00 1806a88c 1806a000 0x002a 0 1806ae00 0 sth
1806a88c 2324960 1806a28c 1807a56¢c 0x0028 0 1806a800 0 mi_timod
1806a28c 2320158 0 1806a42c 0x8028 0 1806a200 0 xtiso
1802e68c 22dac00 1802ea8c 1802e400 0x002a 0 1802e600 0 sth
1802ea8c 2b2b580 1802e88c 1802e200 0x0028 0 1802ea00 0 ldterm
1802e88c 25a48d0 0 2b19130 0x0020 180abe00 1802e800 684 rs

> mblk 180abe00
ADDRESS NEXT PREVIOUS CONT RPTR WPTR DATABLOCK
180abe00® 180ab800 0 0 180abe6bc 180abeb8 0

mbuf [-c] [-d] [-1] [addF]

The mbuf subcommand displays mbuf structures in the system. These structures
are memory buffers that are chained together and can be manipulated by the
Memory Buffer kernel services. If you specify the -d flag, the subcommand also
displays the data associated with the mbuf structure. The -1 flag causes the
subcommand to display an entire chain of mbuf structures. The -c flag tells mbuf
to use the cluster free list rather than the mbuf pointer. If addr is not specified, then
mbuf defaults to using the system mbuf pointer. Note that valid mbuf pointers
must be on a 128-byte boundary.

> mbuf -1

mbuf:0x18099900 Tlen: 120 type: header act:00000000 next:18099400
data:1809995e

mbuf:0x18099400 1len: 62 type: header act:00000000 next:18099d00
data:1809942e

mbuf:0x18099d00 Ten: 156 type: header act:00000000 next:18096800
data:1809b858

318 Kernel Extensions and Device Support Programming Concepts

mbuf:0x18096800 Ten: 156 type: header act:00000000 next:18099300
data:1809b858
mbuf:0x18099300 len: 62 type: header act:00000000 next:18099700
data:1809932e
mbuf:0x18099700 Ten: 4 type: data act:00000000 next:18099500
data:180al03e

mst [-f] [Address] . ..

Displays the mstsave portion of the uthread structure at the addresses specified
(see the uthread.h and mstsave.h header files in /ust/include/sys). If you do not
specify an address, it displays all of the mstsave entries on the current save area
(CSA) chain except the first. If you specify the -f flag the first mstsave area on the
CSA chain displays.

Aliases = none

ndb

Displays network kernel data structures either for a running system or a system
dump. The ndb (network debugger) subcommand displays the following options:

? Provides first-level help information.

help Provides additional help information.

tcb [Addr] Shows TCBs. The default is HEAD TCB.

udb [Addr] Shows UDBs. The default is HEAD UDB.

sockets Shows sockets from the file table.

mbuf [Addr] Shows the mbuf at the specified address.

ifnet [Addr] Shows the ifnet structures at the specified address.
quit Stops the running option.

xit Exits the ndb submenu.

Aliases = none
nm [Symbol]
The nm subcommand displays the symbol value and type found in KernelFile.

Aliases = none

> nm open
00095484 000C70 PR SD <.open>
00095484 PR LD .open

000BBC98 00000C SV SD open

od [Idr:] [vmm:] [*...] [SymbolName | Address] [Count] [Format]

The od subcommand dumps the number of data values specified by Count starting
at the SymbolName value or Address according to Format. Possible formats are octal,
longoct, decimal, longdec, character, hex, instruction, and byte. The default is hex.
Note that if you use the Format parameter, you must also use Count. If the
SymbolName or Address is proceeded by an asterisk, then the symbol or address is
dereferenced before displaying the data. Additionally, the strings 1dr: and vmm:
may be used to indicate that addresses are to be considered loader or VMM
addresses, just as if the cm ldron and/or cm vmmon subcommands had been
issued.

Chapter 17. Debugging Tools 319

The od subcommand is especially useful during program development in order to
see structure values at a given point in time.

Aliases = none

> od open 10

00095484: 7c0802a6 bf21ffe4 90010008 9421ff30

00095494: 609c0000 832202e0 607b0000 60bd0OOO

000954a4: 63230000 38800000

> od open 10 byte

00095484: 0174 0010 0002 0246 0277 0041 0377 0344

0009548c: 0220 0001

> od 12345

warning: word alignment performed

00012344: 480001d8

> user -s 3

MST Segment Regs
0:0x00000000 1:0x00002cOb 2:0x00004411 3:0x007fffff
4:0x007fffff 5:0x007fffff 6:0x007fffff 7:0x007fffff
8:0x007fffff 9:0x007fffff 10:0x007fffff 11:0x007fffff
12:0x007fffff 13:0x007fffff 14:0x00001004 15:0x007fffff

> od 4411:ff3b400 12

004411:ff3b400: 00000000 00000000 2ff22e28 00000000
004411:ff3b410: 00000306 00000000 0002a7ec 000010b0O
004411:ff3b420: 82202220 0002a7ec 00000000 0000001c
> od Debug_record

001cc378: 00000000

> od *Debug_record

00000000: 00000000

ppd [ProcessorNumber | *]

Displays per-processor data area (PPDA) structures for the specified processor. If
no processor is specified, the current processor selected by the cpu subcommand is
used. If the asterisk argument is given, the PPDA of every enabled processor is

displayed.

Aliases = none

> ppd

Per Processor Data Area for processor 0
alsave[0]covvvunnnn. 0000000000000000
alsave[1]....oivinnnn... 0000000000000000
alsave[2]...cvvuvennnnn. 0000000000000000
alsave[3]...cevvviinnnn. 0000000000000000
alsave[4]...ccvvvvennnn. 0000000000000000
alsave[5].ceeeeiinnnn... 0000000000000000
alsave[6]..ccvvvinnnn... 0000000000000000
alsave[7]..cevuieinnnnn. 0000000000000000
alsave[8]...ccvvvnnnnn.. 0000000000000000
alsavel[9].cvvvvivnnnnnn. 0000000000000000
alsave[10]............... 0000000000000000
alsave[l1l].........ou.tt. 0000000000000000
alsave[l2]............... 0000000000000000
alsave[l3]....covinnnnn.. 0000000000000000
alsave[l4].....covvnnnn. 0000000000000000
alsave[l5]..coevvinnnn... 0000000000000000
CS@uennneenneeennnennnns 003f0ebd
mstack..oeeeeeneuenennnns 003efebd
fpowner...coviiiiininnnns 00000000

curthread................ e60013ec

320 Kernel Extensions and Device Support Programming Concepts

print [type] Address

Does dbx-style printing of structures. The -i option must be given on the command
line to use this feature.

If type is omitted, the default type set by the last print -d command is used.
Aliases = none
print -d type

Recognized by the pr, str, or struct subcommand aliases. Sets the default type for
subsequent print commands to fype.

Aliases = set prtype
proc [-] [-r] [ProcessSlotNumber]

The proc subcommand displays the process table, including the kernel thread
count (the number of threads in the process) and state of each process. Use the -r
flag to display only runnable processes. Use the - flag to display a longer listing of
the process table.

Aliases = ps, p

>p
SLT ST PID PPID PGRP UID EUID TCNT NAME
0 a 0 0 0 0 0 1 swapper
FLAGS: swapped_in no_swap fixed pri kproc
la 1 0 0 0 0 1 init
FLAGS: swapped_in no_swap
2 a 204 0 0 0 0 1 wait
FLAGS: swapped_in no_swap fixed_pri kproc
>p 20
SLT ST PID PPID PGRP UID EUID TCNT NAME
20 a 1406 1 1406 0 0 1 ksh
FLAGS: swapped_in no_swap
>p -0
SLT ST PID PPID PGRP UID EUID TCNT NAME
0a 0 0 0 0 0 1 swapper

FLAGS: swapped_in no_swap fixed_pri kproc

Links: *child:0xe30013b0 *siblings:0x00000000 *uidl:0xe3002490

*ganchor:0x00000000 +*pgrpl:0x00000000 =*ttyl:0x00000000
Dispatch Fields: pevent:0x00000000 =*synch:Oxffffffff

Tock:0x00000000 Tock_d:0x00000000
Thread Fields: =*threadlist:0xe6000000 threadcount:l
active:1 suspended:0 1local:0 terminating:0
Scheduler Fields: fixed pri: 16 repage:0x00000000 scount:0 sched pri:0

*sched_next:0x00000000 +*sched _back:0x00000000 cpticks:130

msgcnt:0 majfltsec:0
Misc: adspace:0x0000340d kstackseg:0x007fffff xstat:0x0000

*p_ipc:0x00000000 +*p_dbTist:0x00000000 +*p_dbnext:0x00000000
Signal Information:

pending:hi 0x00000000,10 0x00000000

sigcatch:hi 0x00000000,10 0x00000000 sigignore:hi Oxffffffff,1o Oxfff7ffff
Statistics: size:0x00000000(pages) audit:0x00000000

accounting page frames:0 page space blocks:0

Refer to the sys/proc.h header file for the structure definition.

Chapter 17. Debugging Tools 321

grun

The qrun subcommand displays the list of scheduled streams queues. If there are
no queues found for scheduling, the qgrun subcommand will print a message
stating there are no queues scheduled for service.

This subcommand can be issued from crash on either a running system or a
system dump.

Aliases = none

> qrun
QUEUE
59d5a74

queue [Address]

The queue subcommand displays the STREAMS queue. If the address optional
parameter is not supplied, crash will display information for all queues available.
Refer to the /usr/include/sys/stream.h file for the queue structure definitions.

If you wish to see the information stored for a read queue, issue the queue
subcommand with the read queue address specified as the parameter.

When you issue the queue subcommand with the address parameter, the column
headings do not distinguish between the read queue and the write queue. One
queue address will be displayed under the column heading QUEUE. The other queue
in the pair will be displayed under the column heading O0THERQ. The write queue
will have a numerically higher address than the read queue.

This subcommand can be issued from crash on either a running system or a
system dump.

Aliases = que

> queue
WRITEQ QINFO NEXT PRIVATE FLAGS HEAD READQ COUNT NAME

1802e08c 2268c00 1802e48c 1802e200 0x002a 0 1802e000 0 sth
1802e48c 22b2960 1802cc8c 1807a32c 0x0028 0 1802e400 0 mi_timod
1802cc8c 22aelb8 0 1802ec2c 0x8028 0 1802cc00 0 xtiso
1806cc8c 2268c00 1806a88c 1806cab0d 0x002a 0 1806cc00 0 sth
1806a88c 22b2960 1806ae8c 1807a06c 0x0028 0 1806a800 0 mi_timod
1806ae8c 22aelb8 0 1806ac2c 0x8028 0 1806ae00 0 xtiso
1806ce8c 2268c00 1806c88c 1806c000 0x002a 0 1806ce00 0 sth
1806c88c 22b2960 1806c28c 1807a5ac 0x0028 0 1806c800 0 mi_timod
1806c28c 22ael58 0 1806c42c 0x8028 0 1806c200 0 xtiso
1802c68c 2268c00 1802ca8c 1802c400 0x002a 0 1802c600 0 sth
1802ca8c 2ab9580 1802c88c 1802c200 0x0028 0 1802cal0 0 ldterm
1802c88c 25328d0 0 2aa7130 0x0028 0 1802c800 0 rs
quit

Exit from the crash command.

Aliases = q

search [-sn] name

Search the symbols table for name.

-s Prints symbols matching name in the nm format. Also prints the symbol

table entry for the last symbol found.

322 Kernel Extensions and Device Support Programming Concepts

-n Prevents the search from examining kernel extensions.

search[-n] addr

Search for the symbol with the largest value less than or equal to addr.

-n Prevents the search from examining kernel extensions.

segst64 [-p pslot | -t tslot] [-I limit [-s segflag[:value][,
segflag[:value]]...] [-n [start_esid [end_esid]]

Displays segstate information for a 64-bit process. The segstate for the current
process displays unless the -p or -t flags are specified. All of the segstate entries
display unless limited by the -1 flag or the starting esid, start_esid and possible
ending esid, end_esid. Specifying the -s flag limits the display to only those segstate
entries matching the given segflags, matching pattern types, as well as their
corresponding values. The -1 flag limits the display to a maximum number of
entries. The -n flag also prints the segnodes for the displayed data. Segnode entries
are not included in the count when limiting the data with -1.

-p pslot Specifies the process slot number.

-t tslot Specifies the thread slot number.

-s segflag:[value] Limits the display to the segstate entries matching that segflag
and value.

-1 limit Specifies the number of entries to print.

-n Prints the uadnodes for the displayed data.

Aliases = adspace, as, sr

select
Recognized by the sel subcommand alias. Displays all select control blocks.

select p proc_slot

Recognized by the sel subcommand alias. Displays select control blocks for process
in specified slot.

Note: The p flag is not prefixed with a -(dash).
select dev_id unique_id

Recognized by the sel subcommand alias. Displays select control blocks matching
the specified device and unique IDs.

set
Display crash variables and values.

set allhex [no]

Causes crash to use only hex values for both input and output as oppossed to a
mixture of hex and decimal. Specify no to turn this option off.

set edit [emacs | gmacs | none | vi]

Sets command line editing mode.

Chapter 17. Debugging Tools 323

set fpregs [yes | no | auto]

Specify whether or not floating-point registers should be displayed. If auto is used,
the fpeu variable in the mstsave area determines when to display the registers.

set idarch [ppc| pwr|auto]

Set instruction decode architecture. auto detects the architecture from the system.
set logfile [filename]

Set logfile to given name, or turn off logging if no name is given.

set loglevel [01112]

Set logging granularity to:

0 coarse-only commands will be logged.
1 medium-commands and output to terminal will be logged.
2 fine-commands and all outputs will be logged, including redirected.

set prtype [type]
Set the default print type. This is equivalent to print -d type.
set quiet [no]

Suppress error messages concerning missing or swapped out threads and
processes. Specify no to turn off this option.

socket [-]

The socket subcommand displays the system socket structures. Use the - flag to
also display the socket buffers.

Aliases = sock

> sock

1802e800: type:0x0002 (DGRAM) opts:0x0000 ()
state:0x0082 (ISCONNECTED|PRIV) 1linger:0x0000
pcb:0x1807a6¢c0 proto:0x000bbd30 q0:0x00000000 qOlen:0
q:0x00000000 qlen:0 qlimit:0 head:0x00000000
timeo:0 error:0 oobmark:0 pgid:0

18074400: type:0x0002 (DGRAM) opts:0x0000 ()
state:0x0080 (PRIV) Tinger:0x0000
pcb:0x1807a100 proto:0x000bbd30 q0:0x00000000 qOlen:0
q:0x00000000 glen:0 qlimit:0 head:0x00000000
timeo:0 error:0 oobmark:0 pgid:0

Refer to the sys/socket.h header file for structure definitions.

sr64 [-p pslot | -t tslot] [-I limit [-n [start_esid [end_esid]]
Recognized by the segst and seg subcommand aliases. Displays the effective
segment IDs (esid) and their corresponding segvals for a 64-bit process. If you do
not specify the -p or -t flags, st64 uses the current process. Otherwise