
Bull DPX/20
XTI/XX25

Administrator & User Guide

AIX

86 A2 04AP 02

ORDER REFERENCE

Bull DPX/20
XTI/XX25

Administrator & User Guide

AIX

Software

June 1996

Bull Electronics Angers S.A.

CEDOC

Atelier de Reprographie

331 Avenue Patton

49004 ANGERS CEDEX 01

FRANCE

86 A2 04AP 02

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States and other

countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making

derivative works.

Copyright Bull S.A. 1992, 1996

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the USA and other countries licensed exclusively through X/Open.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors

contained herein, or for incidental or consequential damages in connection with the use of this material.

iiiAbout this Book

About this Book

This document provides detailed information, with a variety of examples, on the
Bull-enhanced XTI, Bull implementation of the X/Open Transport Interface (XPG4 XTI) with
enhancements.

Warning: When nothing else is specified:

1. Bull-enhanced XTI or XTI refers to the Bull implementation of:
XTI onto TCP/IP,
XTI onto OSI Transport,
XTI onto NetShare,
XTI onto X.25 (or XX25).

2. Transport Provider refers in fact to:
a Transport Provider, TCP/IP, OSI Transport or NetShare,
a Network Provider, concerning XX25.

Who Should Use this Book
This guide is intended for:

• administrators who have to install, configure and maintain XTI,

• programmers who require the services defined by XTI, in order to develop an application.

The programmers who have to port an existing XTI application may refer to XTI Porting
Guide to have full information about the differences between XPG3 and XPG4.

Before you Begin
Working knowledge of AIX system programming and data communications concepts
(especially addressing concepts) is assumed. In particular, working knowledge of:

• TCP/IP is required when XTI is used onto TCP/IP,

• the Reference Model of Open Systems Interconnection (OSI) is required, when XTI is
used onto OSI Communication Stack or onto NetShare (RFC 1006),

• X.25 Standard when XX25 is used.

CAUTION:
The reader must be familiar with the XTI concepts developed in X/Open
Transport Interface XPG4 CAE Specification Version 2

Operating System Level
This document is at Revision 2 level, which applies to AIX Version 4.1

iv XTI/XX25 Administrator and User Guide

Document Overview
Chapter 1 Bull-enhanced XTI Overview presents the product architecture and the

Bull enhancements.

Chapter 2 Installation lists the prerequisites of Bull-enhanced XTI installation,
describes briefly how to install the software and provides a procedure to
start with Bull-enhanced XTI.

Chapter 3 Configurator describes how to configure the Bull-enhanced XTI
parameters: XTI library, XTI Data Base, XTI Option Profiles and XTI
Traces.

Chapter 4 XTI Library Functions. Each XTI function is described in conformity with
X/Open Transport Interface XPG4 CAE Specification Version 2. The
information specific to Transport Providers (TCP/IP, OSI Transport,
NetShare or XX25) has been integrated in the function description and the
information specific to Bull-enhanced XTI added under the respective
headings:

TCP/IP Implementation Specifics
OSI Implementation Specifics
XX25 Implementation Specifics
Bull Implementation Specifics.

Chapter 5 XTI Name Server Functions describes the subroutines of the Name
Server library, specific to Bull-enhanced XTI.

Chapter 6 XTI Name Server Commands describes the commands specific to
Bull-enhanced XTI, especially for use of XTI Name Server, Options and
Traces management.

Chapter 7 Cookbook provides procedures to prepare a Bull-enhanced XTI
application, to manage XTI options and use XTI Traces, and examples of
XTI applications with commentaries.

Appendix A Test Tools describes the bench, tconnect and xtistat tools provided by
Bull-enhanced XTI.

Appendix B File Formats describes the XTI Data Base files, used by the XTI Name
Server.

Appendix C Options list the options available with Bull-enhanced XTI (XTI_GENERIC,
ISO_TP, INET_TCP, INET_UDP and INET_IP, X25_NP).

Appendix D OSI Addressing describes briefly the OSI network types and associated
addresses used as input parameters of the XTI functions.

Appendix E XX25 Addressing describes briefly the XX25 addresses types used as
input parameters of the XTI/XX25 functions.

Glossary

Index

Revision 02 Modifications
Updates include the support of OSI ConnectionLess Transport Protocol CLTP.

vAbout this Book

Related Publications
• X/Open Transport Interface XPG4 CAE Specification Version 2

Reference: 40 A2 49AS.

• XTI Porting Guide
Reference: 86 A2 25AP.

• NetShare User’s Guide
Reference: 86 A2 95AP.

• OSI Services Reference Manual
Reference: 86 A2 05AQ.

• HiSpeed WAN Comm. Installation and Service Guide
Reference: 86 A1 81WG.

• XTI Diagnostics Guide
Reference: 86 A2 55AJ.
This document is not delivered with the Bull-enhanced XTI, but may be ordered
separately.

• AIX Installation Guide
Reference: 86 A2 60AP.

• AIX Performance Tuning Guide
Reference: 86 A2 72AP.

X/Open Specifications

• X/Open X.25 Programming Interface Using XTI, Preliminary Specifications (XX25)

ISO Standards

• ISO 8072
Transport Service Definition.

• ISO 8073
Connection-Oriented Transport Protocol Definition.

• ISO 8208 – The International Standard on information processing systems – Data
Communications – X.25 Packet Level Protocol for Data Terminal Equipment (1987).

RFC

• RFC 793
Transmission Control Protocol.

• RFC 768
User Datagram Protocol.

• RFC 791
Internet Protocol.

• RFC 1006
ISO Transport Services on top of the TCP.

Miscellaneous

AT&T – UNIX SVR4 STREAMS Programmer’s Guide.

vi XTI/XX25 Administrator and User Guide

viiTable of Contents

Table of Contents

Chapter 1. Bull-enhanced XTI Overview 1-1.

Bull-enhanced XTI with Respect to Other Transport Interfaces 1-3.

Bull-enhanced XTI Enhancements 1-4.

XTI Name Server 1-4.

XTI Trace 1-5.

XTI Tools 1-6.

Chapter 2. Installation 2-1.

Software Installation 2-1.

Package Contents 2-1.

Prerequisites 2-2.

License 2-2.

Configuration 2-3.

To Develop an XTI Application 2-3.

To Execute an XTI Application 2-3.

Chapter 3. Bull-enhanced XTI Configurator 3-1.

Bull-enhanced XTI Configurator Overview 3-1.

XTI onto TCP/IP Configurator 3-3.

How to Manage XTI TCP/IP Hosts 3-4.

List All Hosts 3-5.

Add a Host 3-5.

Change/Show Characteristics of a Host 3-6.

Remove a Host 3-6.

How to Manage XTI TCP/IP Services 3-7.

List All Services 3-8.

Add a Service 3-8.

Change/Show Characteristics of a Service 3-9.

Remove a Service 3-9.

XTI onto OSI Configurator 3-10.

How to Manage XTI OSI Hosts 3-11.

List All Hosts 3-12.

Add a Host 3-13.

Change/Show Characteristics of a Host 3-13.

Remove a Host 3-13.

How to Manage XTI OSI Services 3-14.

List All Services 3-15.

Add a Service 3-15.

Change/Show Characteristics of a Service 3-16.

Remove a Service 3-16.

XTI onto NetShare Configurator 3-17.

XTI onto X.25 (XX25) Configurator 3-18.

How to Manage XX25 Hosts 3-19.

List All Hosts 3-20.

Add a Host 3-20.

Change/Show Characteristics of a Host 3-21.

Remove a Host 3-21.

How to Manage XX25 Services 3-22.

List All Services 3-23.

viii XTI/XX25 Administrator and User Guide

Add a Service 3-23.

Change/Show Characteristics of a Service 3-24.

Remove a Service 3-24.

XTI Option Profile Configurator 3-25.

List an Option Profile 3-26.

Add an Option Profile 3-26.

Change Characteristics of an Option Profile 3-27.

Remove an Option Profile 3-27.

XTI Trace Configurator 3-28.

How to Set XTI Administrative Trace Levels 3-29.

Set XTI Libraries Trace Levels 3-30.

Set XTI Kernel Trace Levels 3-31.

Set XTI Libraries and Kernel Trace Levels 3-32.

How to Set XTI User Trace Levels 3-33.

Set XTI Libraries Trace Levels 3-34.

Set XTI Libraries and Kernel Trace Levels 3-35.

How to Use XTI Trace Utilities 3-36.

XTI Environments Configurator 3-37.

Chapter 4. XTI Library Functions 4-1.

List of Bull-enhanced XTI Library Functions 4-2.

t_accept Subroutine 4-3.

t_alloc Subroutine 4-7.

t_bind Subroutine 4-9.

t_close Subroutine 4-13.

t_connect Subroutine 4-14.

t_error Subroutine 4-19.

t_free Subroutine 4-20.

t_getinfo Subroutine 4-22.

t_getprotaddr Subroutine 4-26.

t_getstate Subroutine 4-28.

t_listen Subroutine 4-29.

t_look Subroutine 4-32.

t_open Subroutine 4-34.

t_optmgmt Subroutine 4-39.

t_rcv Subroutine 4-47.

t_rcvconnect Subroutine 4-50.

t_rcvdis Subroutine 4-53.

t_rcvrel Subroutine 4-56.

t_rcvudata Subroutine 4-57.

t_rcvuderr Subroutine 4-59.

t_snd Subroutine 4-61.

t_snddis Subroutine 4-65.

t_sndrel Subroutine 4-67.

t_sndudata Subroutine 4-68.

t_strerror Subroutine 4-70.

t_sync Subroutine 4-71.

t_unbind Subroutine 4-73.

ixTable of Contents

Chapter 5. – XTI Name Server Functions 5-1.

List of Bull-enhanced XTI Name Server Functions 5-2.

t_error_ns Subroutine 5-3.

t_getisotp Subroutine 5-4.

t_getladdr Subroutine 5-6.

t_getlname Subroutine 5-8.

t_getopt Subroutine 5-10.

t_getraddr Subroutine 5-11.

t_getrname Subroutine 5-13.

t_gettp Subroutine 5-15.

Chapter 6. – XTI Commands 6-1.

xtihost Command 6-2.

xtiserv Command 6-5.

xtitracelevel Command 6-8.

xtiopt Command 6-10.

chxti Command 6-12.

lsxti Command 6-14.

Chapter 7. – Cookbook 7-1.

How to Prepare a Bull-enhanced XTI Application 7-2.

Using the XTI_ENHANCED Toolkit 7-2.

Using the XX25 Toolkit 7-3.

How to Manage XTI Options 7-4.

How to Use XTI Traces 7-5.

How to Configure XTI Trace Levels 7-5.

How to Run XTI Traces 7-6.

Example of XTI traces 7-6.

Overview of an XTI Connection-oriented Mode Service 7-8.

Local Management in an XTI Connection-oriented Mode Service 7-10.

The Client 7-12.

The Server 7-14.

Connection Establishment in an XTI Connection-oriented Mode Service 7-17.

The Client 7-19.

The Server 7-22.

Data Transfer in an XTI Connection-oriented Mode Service 7-26.

The Server 7-27.

The Client 7-29.

Connection Release in an XTI Connection-oriented Mode Service 7-31.

The Client 7-32.

The Server 7-33.

Overview of an XTI Connectionless Mode Service 7-34.

Local Management in an XTI Connectionless Mode Service 7-36.

Data Transfer in an XTI Connectionless Mode Service 7-38.

Datagram Errors in an XTI Connectionless Mode Service 7-40.

Example of Read/Write Interface for XTI Applications 7-41.

XTI Program Example using Threads 7-44.

The Client 7-44.

The Server 7-53.

x XTI/XX25 Administrator and User Guide

Appendix A. XTI Test Tools A-1.

bench Tool A-2.

Connection–Oriented: A-2.

ConnectionLess: A-2.

benchd Daemon A-3.

bench Command A-5.

tconnect Tool A-8.

tconnectd Daemon A-9.

tconnect Command A-11.

xtistat Command A-13.

Appendix B. File Formats B-1.

xtihosts File B-2.

xtiprotocols File B-5.

xtiservices File B-7.

xtiopts File B-9.

xtitrace and xticnxtrace Files B-12.

Appendix C. Options C-1.

List of Bull-enhanced XTI Options C-1.

XTI_GENERIC-level Options: Options for any Transport Provider C-1.

ISO_TP-level Options: Options for OSI COTS and NetShare (RFC 1006) C-2.

INET_TCP, INET_UDP and INET_IP-level: Options for TCP/IP and UDP C-3.

X25_NP-level Options: Options for XX25 C-4.

Appendix D. OSI Addressing D-1.

Bull-enhanced XTI and OSI Addressing D-1.

XTI Functions and OSI Addressing D-1.

Addresses Format D-2.

OSI Addresses Components D-2.

Network Type and OSI Addressing D-5.

Appendix E. X.25 Addressing E-1.

XTI/XX25 Functions and X.25 Addressing E-1.

Addresses Format E-2.

XX25 Adresses Components E-2.

Glossary Gl–1.

Definitions Gl–1.

Acronyms Gl–3.

Index X-1.

1-1Overview

Chapter 1. Bull-enhanced XTI Overview

The Bull-enhanced XTI is an Application Programmatic Interface which allows multiple users
to communicate using the following communications providers:

• Transport Providers

– OSI with Connection-Oriented mode of service, usually named as COTS,

– OSI with ConnectionLess mode of service, usually named as CLTS,

– Internet with Connection-Oriented mode of service, TCP/IP,

– Internet with Connectionless mode of service, UDP/IP,

– OSI onto TCP/IP NetShare (RFC 1006) (Connection–Oriented mode of service),

• Network Provider

– X.25 with Connection-Oriented mode of service, usually named as XX25 (X.25
Programming Interface using XTI).

Warning: Transport and Network Provider are both named as Transport Provider all along
this documentation.

The Bull-enhanced XTI provides:

• XPG4 level of functionalities as defined in X/Open Transport Interface
XPG4 CAE Specification Version 2,

• a Name Server to simplify the manipulation of protocol-dependent objects such as
addresses and options,

• a Trace tool, to help in debug of XTI applications,

• a trouble-shooting tool (xtistat) and tests tools (bench and tconnect), to help in
maintenance of XTI applications,

• a fine-grain thread-safe library, which makes easier parallel programming.

The Bull-enhanced XTI is composed of the following components:

• The XTI Library is the set of functions defined by X/Open.
Refer to XTI Library Functions on page 4-1 for more details.

• The XTI Database contains Hosts and Services information, Option profiles and Trace
levels.

• The XTI Name Server library is a set of functions which access to the information
contained in the XTI Database.
Refer to XTI Name Server Functions on page 5-1 for more details.

• The XTI Configurator, based on SMIT, allows the management of the XTI Database and
the choice of the XTI development environment.
Refer to XTI Configurator Overview on page 3-1 for more details.

• The XTI4MOD Streams Module, in the kernel space is the interface between the XTI
library and the transport provider. It is not accessed directly by the XTI applications and
is an intrinsic component of the Bull-enhanced XTI implementation,

1-2 XTI/XX25 Administrator and User Guide

• The XPIMOD Streams Module, in the kernel space is the interface between XTI4MOD
and the X.25 provider (XPI_XD). It is not accessed directly by the XTI applications and is
an intrinsic component of the Bull-enhanced XTI implementation.

User Application

NetShare

UDP TCP

IP
Network Layer

Transport Layer

OSI Comm. Stack TCP/IP Comm. Stack

Bull–enhanced XTI
 components

User space

Kernel space

cotp/cltp
Streams Driver

tp1006
Streams Driver

xtiso
Streams Driver

TPI Interface

 XTI
DataBase

 XTI
Configurator

 XTI Library

 xti4mod Streams Module

NameServer
 Library

X.25 Comm. Stack

xpi_xd
Streams Driver

X.25 Provider

 xpimod
Streams Module

XPI Interface

Figure 1. Bull-enhanced XTI Architecture.

1-3Overview

Bull-enhanced XTI with Respect to Other Transport Interfaces

Four libraries, offering the same set of subroutines, are available to develop an application
accessing Transport Protocol.

1. Transport Library Interface (TLI), ancestor of XTI and used for porting applications
developed using the AT&T SystemV-based UNIX operating systems.
TLI is part of the Base Operating System (BOS) runtime.

2. X/OPEN Transport Library Interface (XTI), is a library implementation conformant to
X/OPEN XPG4 Common Application Environment (CAE) specification. It allows users to
communicate using TCP/IP and UDP/IP.
XTI is part of the Base Operating System (BOS) runtime.

3. X/OPEN Transport Library Interface with Bull Enhancements (named XTI too), is a
library implementation conformant to X/OPEN XPG4 Common Application Environment
(CAE) specification. This Bull-enhanced XTI package (xti_api LPP) provides in fact
two development toolkits:

– XTI_ENHANCED, specified in X/Open Transport Interface XPG4 CAE Specification
Version 2, allows users to communicate using TCP/IP and UDP/IP, OSi and OSI onto
TCP/IP i.e. NetShare (RFC 1006),

– XX25, specified in X/Open Transport Interface XPG4 CAE Specification Version 2 and
in X/Open Preliminary Specification, X.25 Programming Interface using XTI (August
1994) allows users to communicate using X.25, as well as TCP/IP and UDP/IP, OSi
and OSI onto TCP/IP i.e. NetShare (RFC 1006),

Moreover the Bull-enhanced XTI package provides:

A Name Server library to simplify the manipulation of protocol-dependent objects such as
addresses and options:

Trace, Trouble-shooting Tool (xtistat) and Tests Tools (bench and tconnect), to help in
debug and maintenance of XTI applications.

Notes:

1. Once the Bull-enhanced XTI is installed on a machine, it is used by default
when compiling and linking an XTI application.

2. The three XTI libraries (basic, XTI_ENHANCED and XX25) may be used on a
same machine to compile and link XTI applications. To validate the required
library, use the Bull-enhanced XTI configurator, on page 3-37, or the chxti
command, on page 6-12.

Warning:
This document is relative to Bull-enhanced XTI only (XTI_ENHANCED and XX25).

1-4 XTI/XX25 Administrator and User Guide

Bull-enhanced XTI Enhancements

The main enhancements brought by Bull-enhanced XTI, respecting conformance with
X/Open Transport Interface XPG4 CAE Specification Version 2 are:

• the XTI Name Server, on page 1-4,

• the XTI Trace, on page 1-5,

• the XTI Tools, on page 1-6.

XTI Name Server

In order to increase portability of XTI applications and to improve their independence with
respect to any Transport Provider, the XTI Name Server library contains a set of C
primitives, which helps the programmer to not take into account the actual format and
representation of transport addresses and options.

The XTI Name Server uses, when existing, Name Server routines and Database of
underlying Transport Provider. Its goal is not to replace these name servers but to provide a
unified XTI Name Server built on the specific existing name servers (i.e. INET name server
on TCP or UDP).

The Transport Providers for which XTI Name Servers allows addresses and options
management, are:

• OSI Connection–Oriented,

• OSI ConnectionLess,

• TCP and UDP,

• NetShare (RFC 1006),

• X.25 Connection-Oriented (XX25).

The XTI Name Server manages three types of objects, Services, Hosts and Option Profiles.

XTI Services
A Service object defines an association between an Application Name (and aliases) and:

• the Port Number, if TCP/IP,

• the Transport Selector, if OSI or NetShare (RFC 1006),

• the Subsequent Application Identifier (SAI) if XX25,

to be used in order to access to this application from the network.

It must be defined as well by the server which provides it as by the client which uses it.

The Services are saved in:

• /etc/services file for TCP/IP,

• /etc/xtiservices file for OSI, NetShare (RFC 1006) and XX25,

and may then be accessed, using the XTI Name Server library, in a transparent way with
respect to the Transport Provider.

1-5Overview

XTI Hosts
The definition of an XTI Host is different according to the Transport Provider used:

• a TCP/IP Host object defines an association between a Machine Name (and aliases) and
its Internet Address.

• an OSI Host object defines a path within the transport to access a remote host. It
includes in its definition:
– the remote Host name,
– the Network Type,
– the Remote Address, i.e. the address used to access the remote transport,
– the Local Address, i.e. the address through which the connection goes out to the

remote host.
According to the network type used to communicate, the addresses may be:
– SNPA (Sub–Network Point of Attachment),
– NSAP (Network Service Access Point).

• An XX25 Host object defines a path within the network to access a remote host. It
includes in its definition:
– the remote Host name,
– the Virtual Circuit type,
– the Remote Address, i.e. the address used to access the remote network layer,
– the Local Address, i.e. the address through which the connection goes out to the

remote host.

Once it is defined in the XTI Data Base, a Host may be accessed, using the XTI Name
Server library, in a transparent way with respect to the Transport Provider.

The Hosts are saved in:

• /etc/hosts file for TCP/IP and NetShare (RFC 1006),

• /etc/xtihosts file for OSI and XX25.

All the Hosts with which the XTI application has to communicate must be defined.

XTI Option Profiles
An Option Profile object is a set of XTI options conformant to the format definition done in
X/Open Transport Interface XPG4 CAE Specification Version 2. An Option Profile is made
of a set of items (level, name, value), where:
 – level identifies the XTI level or a protocol of the transport provider, for instance TCP,
 – name identifies the option within the level,
 – value is a value (optional) for the option.

An Option Profile defines options, which may be retrieved to build an XTI-XPG4
conformant buffer of options using the t_getopt () function.

Refer to Appendix C. Options for a complete list of XTI Options available.

The Option Profiles are saved in /etc/xtiopts file.

XTI Trace
The XTI Trace helps the programmer implementing XTI applications for problem
determination. It is based on the System Trace facility.

It allows to set trace levels, start and stop trace collections and generate trace reports.
Refer to How to Use XTI Traces, on page 7-5, for more details.

1-6 XTI/XX25 Administrator and User Guide

XTI Tools
Two types of tools are provided with the Bull-enhanced XTI:

• a Trouble-shooting Tool (xtistat) to help in maintenance of XTI applications.
The xtistat command displays global statistics of the XTI activity or the XTI activity of
each XTI Transport Endpoint.

• Test Tools (bench and tconnect) to establish Bull-enhanced XTI performances.
They may also be used to test if the Bull-enhanced XTI is correctly installed and
configured to be used.

2-1Installation

Chapter 2. Installation

Here are the sequential tasks to be performed for a correct installation of the Bull-enhanced
XTI:

• Software Installation, on page 2-1,

• Configuration, on page 2-3.

Software Installation
• The software installation must be performed by the system administrator (root authority).

• Check in the SRB (Software Release Bulletin) provided with the xti_api LPP, that your
system conforms to the hardware requirements (disk and memory space).

• The xti_api LPP is installed using the standard software installation procedure. Refer to
the booklet provided with the Communications Software CD-ROM for more information
about installation of the current release.

Package Contents
The xti_api LPP is made of the following OPPs:

• xti_api.com is mandatory on top of any transport provider. It contains the Bull-enhanced
XTI common objects, in particular the XTI and Name Server libraries, the include files,
the XTI commands, tools and application examples.

• xti_api.cotp is installed in complement of xti_api.com to use XTI onto OSI or NetShare
(RFC 1006). It contains the OSI objects, in particular the XTI OSI Data Base.

The OSI Stack LPP (osi_low) or (non exclusive) the NetShare (RFC 1006) LPP
(netshare) is a prerequisite for OPP xti_api.cotp.

• xti_api.xx25 is installed in complement of xti_api.com to use XX25.

The bullx25 LPP is a prerequisite for OPP xti_api.xx25.

2-2 XTI/XX25 Administrator and User Guide

Prerequisites

Transport Provider-Independent Prerequisites
Before installing the Bull-enhanced XTI on a machine verify that the following OPP are
present:

• <bos.rte.tty> to validate use of Streams modules.

• <bos.adt.base> if XTI applications have to be developed on this machine.

• <xlC.C> for C compiler.

• <bos.rte.libpthreads> if thread-safe XTI applications have to be developed and
used on this machine.

• <bos.sysmgt.trace> if XTI trace facility is used.

Transport Provider-Dependent Prerequisites

If XTI onto TCP/IP

• <bos.net.tcp.client> and its prerequisites.

If XTI onto OSI

• <osi_low.rte> and OSI stack prerequisites.

If XTI onto NetShare (RFC 1006)

• <netshare.rte> and its prerequisites.

If XTI onto X.25 (XX25)

• <bullx25.xpi> and its prerequisites.

License
This product uses iFOR/LS encrypted license keys for license management. It supports the
’Nodelocked’ license type only. License status is validated only when the product is used,
thus permitting installation and configuration without need of the license key.
Refer to the iFOR/LS Installation Notice and Password Order Form delivered with your
Communications Product.
Refer to the SRB file for details on how the product uses the license key.

The xti_api LPP provides two development toolkits:

• XTI_ENHANCED, to use XTI onto TCP/IP, OSI stack and NetShare (RFC 1006),

• XX25, to use XTI onto X.25 (XX25) as well as XTI onto TCP/IP, OSI stack and NetShare
(RFC 1006).

Each of these development toolkits are licensed independently.

2-3Installation

Configuration

To Develop an XTI Application
Define the XTI environments and validate Bull-enhanced XTI by choosing either the XTI
development toolkit XTI–ENHANCED or the XX25 development toolkit XX25.

Warning:
1. The C compiler must be installed to develop an XTI application,
2. If the C compiler was not installed before installing Bull-enhanced XTI, the /etc/xlC.cfg

file is not updated with the XTI targets (xticc, xticc_r, etc.).
To integrate them run the command:
/usr/bin/chxtientry –a –dflt –xpg4 /etc/xlC.cfg

Refer to XTI Environments Configurator, on page 3-37.

To Execute an XTI Application
If this application uses the XTI Name Server facilities, the Hosts, Services and Options
Profiles must be configured.

An XTI application using the XTI Name Server facilities is developed using objects. For
execution, it is easily customized by the end-user defining its own configuration of Transport
provider, Hosts, Services and Options.

Configuration of XTI Services
Refer to:

• How to manage XTI TCP/IP Services, on page 3-7, if XTI is running onto TCP/IP,

• How to Manage XTI OSI Services, on page 3-14, if XTI is running onto OSI or
NetShare (RFC 1006),

• How to Manage XX25 Services, on page 3-22, if XTI is running onto X.25 (XX25).

A Server application is waiting for incoming calls on a specific transport address:

• a port if XTI onto TCP/IP,

• a TSEL if XTI onto OSI or NetShare (RFC 1006),

• an SAI if XTI onto X.25 (XX25)

Two applications on a same machine cannot wait on the same transport address.

A Client application must know this transport address to be able to access the right
application on the remote machine.

1. Choose a transport address (port number, TSEL or SAI, according to the Transport
Provider) which is not used, neither on the server machine nor on the client machine.

The transport addresses already used may be listed using the entry List all Services of
the XTI configurator.

2. Configure this XTI Service on both the client and server machines using the entry Add a
Service of the XTI configurator.

2-4 XTI/XX25 Administrator and User Guide

Configuration of XTI Hosts

If XTI onto TCP/IP or NetShare (RFC 1006)

Refer to How to Manage XTI TCP/IP Host , on page 3-4,

1. Check whether the XTI Host has been previously configured using the command

ping host

2. If the command ping is not correct, configure the XTI Host using the entry Add a Host
of the XTI configurator and declaring:

the IP address of the Server on the Client machine,

the IP address of the Client on the Server machine.

If XTI onto OSI

Refer to How to Manage XTI OSI Hosts, on page 3-11.

The XTI Hosts have to be defined only for Client applications.

1. Determine which network service (Network type and LSAP) is used to access the server,
and consequently which type of addresses NSAP or SNPA have to be used.

If SNPA, determine them using the command osiadapterinfo.

If NSAP, determine which addresses to use and verify that they have previously
configured on OSI stack.

2. Configure this XTI Host using the entry Add a Host of the XTI configurator.

If XTI onto X.25 (XX25)

Refer to How to Manage XX25 Hosts, on page 3-19.

The XX25 Hosts have to be defined only for Client applications.

1. Determine which Virtual Circuit is used to access the server, and consequently which
type of addresses have to be used.

2. Configure this XX25 Host using the entry Add a Host of the XTI configurator.

Configuration of Options
Refer to XTI Option Profile Configurator, on page 3-25,

1. Consult the specifications of the XTI application in order to know which Options Profiles
and Options are used.

2. Determine to which values these options must be set in the specific environment of the
running application.

3. Add the necessary Option Profiles using the entry Add a profile/option of the XTI
configurator.

3-1Configurator

Chapter 3. Bull-enhanced XTI Configurator

Bull-enhanced XTI Configurator Overview

The XTI configurator allows administrators to:

• define XTI environments, in particular which library is used: AIX–issued XTI,
Bull-enhanced XTI or XX25,

• configure the XTI Data Base, i.e. defines Hosts and Services which may be used by the
XTI application through the XTI Name Server library.
This definition is specific to each Transport Provider, TCP/IP (or UDP/IP), OSI, NetShare
(RFC 1006), XX25,

• access to the general configuration of the Transport Provider (the XTI configurator is only
a bridge to the specific configurator),

• configure the XTI Option Profiles,

• manage the XTI Trace.

Using the XTI Configurator

The XTI configurator is accessed using the smit command.

In this configurator description:

• default values, if any, are provided between square braces (”[]”),

• mandatory attributes are preceded by an *,

• a sign + at the right-hand end of a line means that the value may be chosen from a list,

• on-line Help is available for all dialog fields.

Access Rights

Two levels of access are defined:

• any user can display information concerning the XTI configuration,

• only the XTI Administrator (root authority) can modify the XTI configuration
 (except for Set User Trace Levels, user means programmer).

Note: If NLS (National Language Support) is not installed, the messages are displayed in
US English language and are not able to be customized.
If NLS is installed, the LANG environment variable must be set; no catalog is
selected by default. The following catalog is provided with the XTI product:

US English language catalog (En_US).

3-2 XTI/XX25 Administrator and User Guide

XTI Configurator Menu

XTI

XTI onto

NetShare
XTI
Environments

XTI TraceXTI onto

XTI
Option
Manager

XTI onto

XTI onto

X.25 (XX25)

 Run
smit xti

TCP/IP

OSI

Figure 2. XTI Configurator Menu

Note: The ”XTI onto TCP/IP” menu includes UDP management.

The XTI configurator sub-menus are described in:

• XTI onto TCP/IP, on page 3-3,

• XTI onto OSI, on page 3-10,

• XTI onto NetShare, on page 3-17,

• XTI onto X.25 (XX25), on page 3-18,

• XTI Option Manager, on page 3-25,

• XTI Trace, on page 3-28,

• XTI Environments, on page 3-37.

3-3Configurator

XTI onto TCP/IP Configurator

Access
Running the command:

smit xtitcp

Description
This menu allows access to the configuration of XTI onto TCP/IP. Select the line
corresponding to the type of parameters to be configured.

XTI onto TCP/IP

XTI/TCP/IP services see page 3-7

XTI/TCP/IP hosts see page 3-4

TCP/IP General Configuration

Note: TCP/IP General Configuration is described in AIX System Management Guide:
Communications and Networks.

It may be accessed directly using the command: smit tcpip.

3-4 XTI/XX25 Administrator and User Guide

How to Manage XTI TCP/IP Hosts

Access
Using the XTI onto TCP/IP configurator, run the command:

smit xtitcp

Then select the function:

XTI/TCP/IP hosts

Description
A TCP/IP Host object defines an association between a Machine Name (and aliases) and
its Internet Address.

The TCP/IP Hosts are saved in /etc/hosts file and may be accessed using the XTI Name
Server library.

All the machines, with which the local XTI application has to communicate using TCP/IP,
must be defined as TCP/IP Hosts.

This menu allows access to the configuration operations of TCP/IP hosts. Select the line
corresponding to the action to be performed.

 Hosts Table (/etc/hosts)

 List All Hosts see page 3-5

 Add a Host see page 3-5

 Change / Show Characteristics of a Host see page 3-6

 Remove a Host see page 3-6

Note: This menu may be accessed directly, using the command: smit hostent

This menu is a bridge to TCP/IP configuration sub-menus, fully described in AIX System
Management Guide: Communications and Networks.

Associated Commands

/usr/sbin/hostent

3-5Configurator

List All Hosts

 List All Hosts

 Address HostName HostName Comment

 180.200.20.1 host1

 180.200.20.2 host2

 180.200.200.10 name.host

Note: This menu may be accessed directly, using the command: smit lshostent

Lists all the defined TCP/IP Hosts with their attributes, according to the displayed format:

• Address is an IP address specified in dotted decimal,

• HostName is the name of a Host specified in either relative or absolute domain name
format. Multiple Hostnames (or aliases) can be specified,

• a Comment may be added.

Add a Host

 Add a Host

* INTERNET ADDRESS (dotted decimal) []

* HOST NAME []

 ALIAS(ES) (if any – separated by blank space) []

 COMMENT (if any – for the host entry) []

Note: This menu may be accessed directly, using the command: smit mkhostent

Allows all attributes, relative to a new Host to be added, to be defined.

3-6 XTI/XX25 Administrator and User Guide

Change/Show Characteristics of a Host

 Change / Show Characteristics of a Host

 Host Name or INTERNET Address (dotted decimal) [] +

 Current INTERNET address 129.183.48.162

 New INTERNET ADDRESS (dotted decimal) []

 HOSTNAME [host1]

 ALIAS(ES) (if any – separated by blank space) []

 COMMENT (if any – for the host entry) [#example]

Note: This menu may be accessed directly, using the command: smit chhostent

Allows the attributes relative to a Host to be displayed or modified.

The name of the host to be displayed or modified is selected from the list and the
corresponding attributes to be read or modified are displayed.

Remove a Host

 Remove a Host

 Host Name or INTERNET Address (dotted decimal) [] +

Note: This menu may be accessed directly, using the command: smit rmhostent

Removes a Host from the list of defined Hosts.

3-7Configurator

How to Manage XTI TCP/IP Services

Access
Using the XTI onto TCP/IP configurator, run the command:

smit xtitcp

Then select the function:

XTI/TCP/IP services

Description
A TCP/IP Service object defines an association between a Server-Application Name (and
aliases) and the Port Number to be used, in order to access to this application from the
network.

It must be defined both by the server which provides it as well as by the client who uses it.

The TCP/IP Services are saved in /etc/services file and may be accessed using the XTI
Name Server library.

The XTI TCP/IP Services, which are part of the XTI product, are automatically defined in the
XTI DataBase at the XTI installation:

• cots_server, select_server, poll_server, benchd and tconnectd for TCP,

• clts_server and benchd for UDP.

Afterwards, new XTI TCP/IP Services (user applications) can be defined in the XTI
DataBase.

This menu allows access to the configuration operations of TCP/IP services. Select the line
corresponding to the action to be performed.

 Services (/etc/services)

 List All Services see page 3-8

 Add a Service see page 3-8

 Change / Show Characteristics of a Service see page 3-9

 Remove a Service see page 3-9

Note: This menu may be accessed directly, using the command: smit inetserv

This menu is a bridge to TCP/IP configuration sub-menus, fully described in AIX System
Management Guide: Communications and Networks.

Associated Commands

cat /etc/services | sed –e ’/^#/d’
List All Services

/usr/sbin/chservices
Add a Service
Change/Show Characteristics of a Service

3-8 XTI/XX25 Administrator and User Guide

List All Services

 List All Services

Service Port/Protocol Aliases Comment

cots_server 20001/tcp COTS_SERVER COTS_server #XTI NS config

select_server 20002/tcp SELECT_SERVER SELECT_server #XTI NS config

poll_server 20003/tcp POLL_SERVER POLL_server #XTI NS config

benchd 20004/tcp BENCHD xtibenchd #XTI NS config

tconnectd 20005/tcp TCONNECTD xticonnectd #XTI NS config

clts_server 20001/udp CLTS_SERVER CLTS_server #XTI NS config

benchd 20004/udp BENCHD xtibenchd #XTI NS config

Note: This menu may be accessed directly, using the command: smit lsservices

Lists all the defined TCP/IP Services with their attributes, according to the displayed format:

• Service is the official Internet Service name,

• Port is the Port Number,

• Protocol indicates the protocol used (tcp or udp),

• Aliases is the list of nicknames used for this Service,

• a Comment may be added.

The example lists the services defined at the XTI installation.

Add a Service

 Add a Service

* Official Internet SERVICE Name []

* Transport PROTOCOL tcp +

* Socket PORT number [] #

 Unofficial Internet SERVICE NAMES []

 (separate names with blanks)

Note: This menu may be accessed directly, using the command: smit mkservices

Allows all attributes, relative to a new Service to be added, to be defined.

3-9Configurator

Change/Show Characteristics of a Service

Change / Show Characteristics of a Service

* Internet Service Name [] +

 Old Internet Service Name cots_server

 Old protocol tcp

 Old Socket PORT Number 20001

 New Internet SERVICE Name [cots_server] +

 New PROTOCOL tcp +

 Socket PORT number [20001] #

 Unofficial Internet SERVICE NAMES []

 (separate names with blanks)

Note: This menu may be accessed directly, using the command: smit chservices

Allows attributes relative to a Service to be displayed or modified.

The name of the service to be displayed or modified is selected from the list and the
corresponding attributes to be read or modified are displayed.

Remove a Service

 Remove a Service

 * Internet Service Name [] +

Note: This menu may be accessed directly, using the command: smit rmservices

Removes a Service from the list of defined Services.

3-10 XTI/XX25 Administrator and User Guide

XTI onto OSI Configurator

Access
Running the command:

smit xtiosi

Description
This menu allows access to the configuration of XTI onto OSI. Select the line corresponding
to the type of parameters to be configured.

XTI onto OSI

XTI/OSI services see page 3-14

XTI/OSI hosts see page 3-11

OSI General Configuration

Note: OSI General Configuration is described in OSI Services Reference Manual.

It may be accessed directly using smit OSIconf.

3-11Configurator

How to Manage XTI OSI Hosts

Access
Using the XTI onto OSI configurator, run the command:

smit xtiosi

Then select the function:

XTI/OSI hosts

Description
An OSI Host object defines a path within the transport to access a remote host. The
description of an OSI Host includes the:

• remote Host name,

• Network Type,

• Remote Address, i.e. the address used to access the remote transport,

• Local Address, i.e. the address through which the connection goes out to the remote
host.

According to the type of communications network, the addresses may be:

• NSAP (Network Service Access Point),

• SNPA (Sub–Network Point of Attachment).

The OSI Hosts are saved in /etc/xtihosts file and may be accessed using the XTI Name
Server library.

This menu allows access to the configuration operations of XTI/OSI hosts. Select the line
corresponding to the action to be performed.

 XTI/OSI hosts

List all hosts see page 3-12

Add a host see page 3-13

Change/Show characteristics of a host see page 3-13

Remove a host see page 3-13

Note: This menu may be accessed directly, using the command: smit xtihost

Associated Commands

xtihost Manages OSI Hosts in the XTI Data Base

Note: A complete description and syntax of the XTI/OSI Hosts attributes described below
can be found in xtihost command on page 6-2.

3-12 XTI/XX25 Administrator and User Guide

List All Hosts
Host Remote address Local address Network Type Lsa Aliases

localhost 0x02 CLNS OSI

h_x25_pvc ”PVCone” CONS/WAN/PVC OSI new_type example_6

h_x25_svc 138000000000002 138000000000001 CONS/WAN/SVC OSI old_nt_1 example_1

h_nullip_osi 0x02608c222222 0x02608c111111 I_CLNS/LAN OSI old_nt_4 example_4

h_nullip_dsa 0x003001020304 0x003001020304 I_CLNS/LAN DSA old_nt_2 example_2

h_fullip 0x0a0b0c0d CLNS OSI old_nt_3 example_3

h_spee 0xabef SPEE OSI old_nt_5 example_5

localhost 0x12 CLNS OSI

Lists all the defined XTI/OSI Hosts with their attributes, according to the displayed format:

• Host is the remote Host name.

• Remote Address is the address used to access the remote transport.

The value meaning depends on the Network Type, it may be:

– a Network Service Access Point (NSAP),

– a Sub-Network Point of Attachment (SNPA), X.121 or MAC address.

• Local Address is the address through which the connection goes out to the remote host.

The value meaning is the same as for Remote Address.

• Network Type identifies the network used. It may be:

CONS/WAN/PVC
COTS over CONS on Permanent Virtual Circuit.
The local address is the name of the local PVC to use; the remote address
is not significant and should be left blank.

CONS/WAN/SVC
COTS over CONS on Switched Virtual Circuit.
The local and remote addresses are the Sub-Network Point of Attachment
(SNPA), in this case the X.121 addresses.

I_CLNS/LAN
COTS over Inactive CLNS.
The remote and local address are the Sub-Network Point of Attachment
(SNPA), in this case the MAC addresses.
There are two modes of use for this network type, depending on LSAP:
if OSI: I_CLNS/LAN Full OSI conformance,
if DSA: I_CLNS/LAN Non Full OSI conformance.

CLNS COTS over CLNS on LAN and WAN (Full OSI conformance).
The remote address is the Network Service Access Point (NSAP); the local
address is optional.

SPEE COTS over CONS on WAN or COTS over CLNS on LAN.
The remote address is the Network Service Access Point (NSAP), the local
address is optional.

• LSAP: is the Link Service Access Point used. It is significant only on an I_CLNS/LAN
network and may be:

– OSI

– DSA.

• Aliases: are alternative names for Host (maximum 2).

3-13Configurator

Add a Host

 Add a Host

* Host name: []

 Local address (NSAP/SNPA): [] +

 Remote address (NSAP/SNPA): []

* Network type: CLNS +

* Link Service Access Point (LSAP) OSI +

* Protocols (COTS–CLTS) COTS

 Aliases: []

Note: This menu may be accessed directly, using the command: smit xtihostadd

Protocol is the Protocol Name, as defined in the XTI database /etc/xtiprotocols). Can be
tpid_osi_cots or tpid_osi_clts.

Allows all the attributes, relative to a new Host to be added, to be defined.

Change/Show Characteristics of a Host

 Change / Show Characteristics of a Host

 Name of the existing host: +

* Old Name: h_nullip_osi

 New host name: [h_nullip_osi]

 New local address (NSAP/SNPA): [0x02608c111111] +

 New remote address (NSAP/SNPA): [0x02608c222222] +

 New Network type: I_CLNS/LAN +

 New Link Service Access Point (LSAP): OSI +

 Aliases: old_nt_4 example_4

Note: This menu may be accessed directly, using the command: smit xtihostchg_sel

Allows the attributes relative to a Host to be displayed or modified.

The name of the host to be displayed or modified is selected in the list and the
corresponding attributes to be read or modified are displayed.

Remove a Host

 Remove a Host

Name of the existing host: +

Note: This menu may be accessed directly, using the command: smit xtihostrem_sel

Removes a Host from the list of defined Hosts.

3-14 XTI/XX25 Administrator and User Guide

How to Manage XTI OSI Services

Access
Using the XTI onto OSI configurator, run the command:

smit xtiosi

Then select the function:

XTI/OSI services

Description
An XTI/OSI Service object defines an association between a Server-Application Name (and
aliases) and the Transport Selector to be used in order to access to this application from the
network.

It must be defined both by the server which provides it as well as by the client who uses it.

The XTI/OSI Services are saved in /etc/xtiservices file and may be accessed using the XTI
Name Server library.

The XTI OSI Services, which are part of the XTI product, are defined in the XTI DataBase
automatically at the XTI installation:

cots_server, clts_server, select_server, poll_server, benchd and tconnectd.

Afterwards, new XTI OSI Services (user applications) can be defined in the XTI DataBase.

This menu allows access to the configuration operations of OSI services. Select the line
corresponding to the action to be performed.

 XTI/OSI services

 List All Services see page 3-15

 Add a Service see page 3-15

 Change / Show Characteristics of a Service see page 3-16

 Remove a Service see page 3-16

Note: This menu may be accessed directly, using the command: smit xtiserv

Associated Command

xtiserv Manages XTI/OSI Services in the XTI Data Base

Note: A complete description and syntax of the XTI/OSI Services attributes can be found
in xtiserv command on page 6-5.

3-15Configurator

List All Services

 List All Services

Service TSEL–SAI/Proto Aliases

cons_server 0xC4020301/npid_x25_cons CONS_SERVER CONS_server

cots_server 0xC4020302/npid_x25_cons COTS_SERVER COTS_server

select_server 0xC4020303/npid_x25_cons SELECT_SERVER SELECT_server

poll_server 0xC4020304/npid_x25_cons POLL_SERVER POLL_server

benchd 0xC4020305/npid_x25_cons BENCHD xtibenchd

tconnectd 0xC4020306/npid_x25_cons TCONNECTD xtitconnectd

cots_server 0x01020301/tpid_osi_cots COTS_SERVER COTS_server

select_server 0x01020302/tpid_osi_cots SELECT_SERVER SELECT_server

poll_server 0x01020303/tpid_osi_cots POLL_SERVER POLL_server

benchd 0x01020304/tpid_osi_cots BENCHD xtibenchd

tconnectd 0x01020305/tpid_osi_cots TCONNECTD xtitconnectd

clts_server 0x01020306/tpid_osi_clts CLTS_SERVER CLTS_server

Lists all the defined OSI Services with their attributes, according to the displayed format:

• Service is the Service name,

• TSEL is the OSI Transport SELector,

• Protocol is the Protocol name, as defined in the XTI Database (/etc/xtiprotocols)

Can be equal to tpid_osi_cots, tpid_osi_clts or npid_x25_cons.

• Aliases are nicknames for Service name (maximum 2).

The example lists the services defined at the XTI installation.

Add a Service

 Add a Service

* Name: []

* Transport SELector (TSEL): []

* Protocol: tpid_osi_cots

 Aliases: []

Note: This menu may be accessed directly, using the command: smit xtiservadd

Allows to define all the attributes relative to a new Service to be added.

The name of the Protocol is selected from the list. tpid_osi_cots or tpid_osi_clts can be
selected.

3-16 XTI/XX25 Administrator and User Guide

Change/Show Characteristics of a Service

Change / Show Characteristics of a Service

Name of the existing service: +

* Old name: cots_server

* Protocol: tpid_osi_cots

 New name: [cots_server]

 New tsel: [0x01020301]

 Aliases: COTS_SERVER COTS_server

Note: This menu may be accessed directly, using the command: smit xtiservchg_sel

Allows to display or modify the attributes relative to a Service.

The name of the service to be displayed or modified is selected in the list, and the
corresponding attributes are displayed to be read or modified.

Remove a Service

 Remove a Service

 Name of the existing service: +

Note: This menu may be accessed directly, using the command: smit xtiservrem_sel

Removes a Service from the list of defined Services.

3-17Configurator

XTI onto NetShare Configurator

Access
Running the command:

smit xtinetshare

Description
This menu allows access to the configuration of XTI onto NetShare. Select the line
corresponding to the type of parameters to be configured.

XTI onto NetShare

 XTI/TCP/IP hosts

 XTI/OSI services

Note: This sub-menu is available only if NetShare (RFC 1006) is installed.

As NetShare (RFC 1006) uses:

• the Internet addressing domain for Host machine declaration,

• OSI Transport selectors for Service definitions.

This sub-menu provides access to the two configuration tasks:

• XTI TCP/IP Hosts Configuration, on page 3-4,

• XTI OSI Services Configuration, on page 3-14.

3-18 XTI/XX25 Administrator and User Guide

XTI onto X.25 (XX25) Configurator

Access
Running the command:

smit xtix25

Description
This menu allows access to the configuration of XTI onto X.25. Select the line
corresponding to the type of parameters to be configured.

XTI onto X.25 (XX25)

 XX25 services see on page 3-22

 XX25 hosts see on page 3-19

 XX25 General Configuration

Note: XX25 General Configuration is described in HiSpeed WAN Comm. Installation and
Services Guide.

It may be accessed directly using smit x25d.

3-19Configurator

How to Manage XX25 Hosts

Access
Using the XTI onto X.25 configurator, run the command:

smit xtix25

Then select the function:

XX25 hosts

Description
An XX25 Host object defines a path within the network to access a remote host. The
description of an XX25 Host includes the:

• remote Host name,

• Virtual Circuit type (listed as Network Type in the menus),

• Remote Address, i.e. the address used to access the remote network layer,

• Local Address, i.e. the address through which the connection goes out to the remote
host.

The XX25 Hosts are saved in /etc/xtihosts file and may be accessed using the XTI Name
Server library.

This menu allows access to the configuration operations of XX25 hosts. Select the line
corresponding to the action to be performed.

 XX25 Hosts

 List All Hosts see on page 3-20

 Add a Host see on page 3-20

 Change / Show Characteristics of a Host see on page 3-21

 Remove a Host see on page 3-21

Note: This menu may be accessed directly, using the command: smit xx25host

Associated Commands

xtihost

3-20 XTI/XX25 Administrator and User Guide

List All Hosts
Host Remote address Local address Network Type Lsa Aliases

localhost 138002 138001 SVC old_nt_1 example_1

lb01 138002 138001 SVC 0_to_1

lb01 138001 138002 SVC 0_to_1

hx25 138001/1 PVC

h_x25_xx25 13800101 138002 SVC

Lists all the defined XX25 Hosts with their attributes, according to the displayed format:

• Host is the remote Host name.

• Remote Address (if any) is the X121 address of the Host.

• Local Address (if any) is the local X.121 address plus in case of PVC, the logical
channel identifier.

• Network Type identifies the type of the Virtual Circuit used. It may be: SVC or PVC

• Aliases: are alternative names for Host (maximum 2).

Add a Host

 Add a Host

* Host name: []

* Provider name: npid_x25_cons

 Local address: [] +

 Remote address: []

* Circuit type: [SVC] +

 Aliases: []

Note: This menu may be accessed directly, using the command: smit xx25hostadd

Allows all attributes, relative to a new Host to be added, to be defined.

3-21Configurator

Change/Show Characteristics of a Host

 Change / Show Characteristics of a Host

 Name of the existing host: +

* Old host name: localhost

 New host name: [localhost]

* Provider name: npid_x25_cons

 New local address: [138001] +

 New remote address: [138002] +

* Circuit type: [SVC] +

 Aliases: old_nt_1 example_1

Note: This menu may be accessed directly, using the command: smit xx25hostchg_sel

Allows the attributes relative to a Host to be displayed or modified.

The name of the host to be displayed or modified is selected from the list and the
corresponding attributes to be read or modified are displayed.

Remove a Host

 Remove a Host

 Name of the existing host: +

Note: This menu may be accessed directly, using the command: smit xx25hostrem_sel

Removes a Host from the list of defined Hosts.

3-22 XTI/XX25 Administrator and User Guide

How to Manage XX25 Services

Access
Using the XTI onto X.25 configurator, run the command:

smit xtix25

Then select the function:

XX25 services

Description
An XX25 Service object defines an association between a Server-Application Name (and
aliases) and the Subsequent Application Identifier (SAI) to be used in order to access to this
application from the network.

It must be defined both by the server which provides it as well as by the client who uses it.

The XX25 Services are saved in /etc/xtiservices file and may be accessed using the XTI
Name Server library.

The XX25 Services, which are part of the XTI product, are defined in the XTI DataBase
automatically at the XTI installation:

cons_server, cots_server, select_server, poll_server, benchd and tconnectd.

Afterwards, new XX25 Services (user applications) can be defined in the XTI DataBase.

This menu allows access to the configuration operations of XX25 services. Select the line
corresponding to the action to be performed.

 XX25 services

 List All Services see page 3-23

 Add a Service see page 3-23

 Change / Show Characteristics of a Service see page 3-24

 Remove a Service see page 3-24

Note: This menu may be accessed directly, using the command: smit xx25serv

Associated Commands

xtiserv

3-23Configurator

List All Services

 List All Services

Service TSEL–SAI/Proto Aliases

cons_server 0xC4020301/npid_x25_cons CONS_SERVER CONS_server

cots_server 0xC4020302/npid_x25_cons COTS_SERVER COTS_server

select_server 0xC4020303/npid_x25_cons SELECT_SERVER SELECT_server

poll_server 0xC4020304/npid_x25_cons POLL_SERVER POLL_server

benchd 0xC4020305/npid_x25_cons BENCHD xtibenchd

tconnectd 0xC4020306/npid_x25_cons TCONNECTD xtitconnectd

Lists all the defined XX25 Services with their attributes, according to the displayed format:

• Service is the Service name,

• SAI is the Subsequent Application Identifier (analogous to an OSI Transport Selector),

• Protocol is the Protocol name, as defined in the XTI Database (/etc/xtiprotocols)

Always equal to npid_x25_cons

• Aliases are nicknames for Service name (maximum 2).

The example lists the services defined at the XTI/XX25 installation

Add a Service

 Add a Service

* Name: []

* XX25 Subsequent Application Identifier (SAI): []

* Protocol: npid_x25_cons

 Aliases: []

Note: This menu may be accessed directly, using the command: smit xx25servadd

Allows all attributes, relative to a new Service to be added, to be defined.

3-24 XTI/XX25 Administrator and User Guide

Change/Show Characteristics of a Service

Change / Show Characteristics of a Service

 Name of the existing service: +

* Old name: benchd

* Protocol: npid_x25_cons

 New name: [benchd]

 New SAI: [0xC4020304]

 Aliases: BENCHD xtibenchd

Note: This menu may be accessed directly, using the command: smit xx25servchg_sel

Allows attributes relative to a Service to be displayed or modified.

The name of the service to be displayed or modified is selected from the list and the
corresponding attributes to be read or modified are displayed.

Remove a Service

 Remove a Service

 Name of the existing service: +

Note: This menu may be accessed directly, using the command: smit xx25servrem_sel

Removes a Service from the list of defined Services.

3-25Configurator

XTI Option Profile Configurator

Access
Running the command:

smit xtiopt

Description

XTI Option Manager

 List profile(s) see on page 3-26

 Add a profile/option see on page 3-26

 Change characteristics of a profile/option see on page 3-27

 Remove a profile see on page 3-27

An Option Profile object is a set of XTI options conformant to the format definition in
X/Open Transport Interface XPG4 CAE Specification Version 2. An Option Profile is made
of a set of items (level, name, value), where:

• level identifies the XTI level or a protocol of the transport provider, for instance
INET_TCP or X25_NP,

• name identifies the option within the level,

• value is a value (optional) for the option.

Refer to Appendix C. Options for a complete list of the XTI Options.

The Option Profiles are saved in the /etc/xtiopts file and may be accessed using the XTI
Name Server library.

This menu allows access to the configuration of XTI Option Profiles. Select the line
corresponding to the action to be performed.

Associated Commands

xtiopt

3-26 XTI/XX25 Administrator and User Guide

List an Option Profile

 List profile

 Profile to list: [] +

PROFILE Name :

 OptionLevel OptionName Value(s)

PROFILE example_ltpdu :

 ISO_TP TCO_LTPDU 1024

Note: This menu may be accessed directly, using the command: smit xtioptlist

Displays the characteristics of an option profile chosen from the list of defined Option
Profiles.

Where:

• ProfileName is the name of the Option Profile. It is a string of 40 digits maximum.

• OptionLevel defines on which level the option is significant:

XTI_GENERIC, INET_TCP, INET_UDP or INET_IP, ISO_TP, or X25_NP.

• OptionName defines the option according to the OptionLevel.

• Value(s) is a list of 40 digits maximum. Each value is separated by a comma.

Add an Option Profile

 Add a profile/option

* Profile Name: [] +

* Level of option: [] +

* Name of option: [] +

 Value(s): [] +

Note: This menu may be accessed directly, using the command: smit xtioptadd

Allows a new option profile to be defined or to add an option in an existing profile. The
parameters to be defined are described in List an Option Profile. Except for the
ProfileName which is user-specific, the values of the other parameters may be defined by
choice from a list.

3-27Configurator

Change Characteristics of an Option Profile

 Change characteristics of a profile/option

 * Name of the Profile: +

* Old profile name: example_ltpdu

 New profile name: [example_ltpdu]

 Option name: [] +

 New level: [] +

 New option: [] +

 New value(s): [] +

Note: This menu may be accessed directly, using the command: smit xtioptchg_sel

Allows an Option Profile to be modified.

The name of the Profile to be modified is selected from the list. For each option of the profile
the parameters to be modified may be re-defined by selection from a list.

Remove an Option Profile

 Remove a profile

 * Name: [] +

Note: This menu may be accessed directly, using the command: smit xtioptrem

Removes a Profile from the list of defined Profiles.

3-28 XTI/XX25 Administrator and User Guide

XTI Trace Configurator

Access
Running the command:

smit xtitrace

Description
This menu allows access to the configuration of XTI Traces. Select the line corresponding
to the type of operation to be performed.

XTI Trace

 Change/Show User Trace Levels see on page 3-33

 Use XTI Trace Utilities see on page 3-36

 Use Common Trace Utilities

 Change/Show Administrative Trace Levels see on page 3-29

Note: Common Trace Utilities permits to trace any application or process, knowing the
corresponding hook-id. This is equivalent to the command smit trace.

Refer to AIX Performance Tuning Guide for more details.

Refer to How to Use XTI Traces, on page 7-5, for the description of the impact of these XTI
trace levels and for an example of XTI trace report.

3-29Configurator

How to Set XTI Administrative Trace Levels

Access
Using the XTI onto OSI configurator, run the command:

smit xtitrace

Then select the function:

Change/Show Administrative Trace Levels

Description
The Administrative Trace Levels may be modified only by the administrator (root authority)
and are trace levels used by default if the user does not set specific trace levels.

Traces may be set in user-space (XTI Libraries) and/or in kernel-space (XTI kernel).

This menu allows access to the configuration of XTI administrative trace levels. Select the
line corresponding to the action to be performed.

 Change/Show Administrative Trace Levels

Change/Show Default XTI Libraries Trace Levels see on page 3-30

Change/Show Default XTI Libraries and Kernel Trace Levels

 see on page 3-32

Change/Show XTI Kernel Trace Levels see on page 3-31

Note: This menu may be accessed directly, using the command: smit xtitraceglob

Associated Command

xtitracelevel

Note: The trace levels are taken into account by an XTI application on a call to a t_open()
or a t_sync() XTI function, or a call to a Name Server library function.

3-30 XTI/XX25 Administrator and User Guide

Set XTI Libraries Trace Levels

 Change/Show Default XTI Libraries Trace Level

 Warning and protocol errors: yes

 CONNECTION functionnalities: yes +

 MANAGEMENT functionnalities: yes +

 DATA TRANSFER functionnalities: yes +

 Entry and return of external XTI lib. func.: yes +

 Description of I/O parameters values: no +

 States transitions in automatas: no +

 Data part of messages (limit 4096 bytes): no +

Note: This menu may be accessed directly, using the command: smit xtitracegloblib

Note: Default values are provided and displayed. All these trace levels may be set to yes
or no, except for the Warning and Protocol Errors level which is always set to yes.

Sets the default trace levels in user-space (XTI libraries).

The resulting values are saved in /etc/xtitrace file.

The XTI Libraries trace levels have the following meaning:

• Warning and protocol errors: XTI_LEVEL0

• CONNECTION functionalities: XTI_LEVEL28

If Entry and return of external XTI lib. func. is set, allows to trace the connection
functions: t_accept, t_bind, t_close, t_connect, t_listen, t_open, t_rcvconnect, t_rcvdis,
t_rcvrel, t_snddis, t_sndrel, t_unbind.

If the t_listen function is executed in asynchronous mode and is the only XTI primitive
called in a loop, the identical sequence of traces are not repeated. A trace indicates the
number of repetitions.

• MANAGEMENT functionalities: XTI_LEVEL29

If Entry and return of external XTI lib. func. is set, allows the management functions
to be traced: t_alloc, t_error, t_free, t_getinfo, t_getstate, t_look, t_optmgmt, t_sync.

If the t_look function is the only XTI primitive called in a loop, the identical sequence of
traces is not repeated. A trace indicates the number of repetitions.

• DATA TRANSFER functionalities: XTI_LEVEL30

If Entry and return of external XTI lib. func. is set, allows to trace the data transfer
functions: t_rcv, t_rcvudata, t_rcvuderr, t_snd, t_sndudata.

• Entry and return of external XTI lib. func.: XTI_LEVEL11

Validates the trace of XTI functions, according to the levels set previously,
CONNECTION, MANAGEMENT or DATA TRANSFER.

– On entry, trace reports the pointer addresses and simple parameter values given on
the function call.

– On exit, trace reports the return value if any.

• Description of I/O parameters values: XTI_LEVEL24

This level must be set in conjunction with Entry and return of external XTI lib. func.

3-31Configurator

Allows input and output parameters values on the entry and exit of XTI functions to be
traced, according to the levels set previously, CONNECTION, MANAGEMENT or DATA
TRANSFER.

• States transitions in automatas: XTI_LEVEL10

• Data part of messages (limit 4096 bytes): XTI_LEVEL27

Allows the Data part of messages, transmitted through XTI, to be traced.

Set XTI Kernel Trace Levels

 Change/Show XTI Kernel Trace Levels

 Warning and protocol errors: yes

 Description of I/O parameters values: yes +

 States transitions in automatas: yes +

 XTI kernel msg to (from) Provider Interface: yes +

 Data part of messages (limit 4096 bytes): no +

Note: This menu may be accessed directly, using the command: smit xtitraceglobxti3

Note: Default values are provided and displayed. All these trace levels may be set to yes
or no, except for the Warning and Protocol Errors level which is always set to yes.

Sets the default trace levels in kernel-space.

The XTI kernel trace levels have the following meaning:

• Warning and protocol errors: XTI_LEVEL0

• Description of I/O parameters values: XTI_LEVEL24

Allows input and output parameter values to be traced on the entry and exit of XTI kernel
STREAMS entry points: open (), close (), wput () and rput ().

• States transitions in automatas: XTI_LEVEL10

• XTI4 Kernel msg to (from) Provider Interface: XTI_LEVEL26

Allows Provider Interface messages sent by the xti4mod streams module to the lower
layer to be traced and received by xti4mod from the lower layer.

• Data part of messages (limit 4096 bytes): XTI_LEVEL27

Allows the Data part of messages transmitted through XTI kernel part to be traced.

3-32 XTI/XX25 Administrator and User Guide

Set XTI Libraries and Kernel Trace Levels

 Change/Show Default XTI Libraries and Kernel Trace Levels

 Warning and protocol errors: yes

 CONNECTION functionnalities: yes +

 MANAGEMENT functionnalities: yes +

 DATA TRANSFER functionnalities: yes +

 Entry and return of all external XTI func.: no +

 Description of I/O parameters values: no +

 States transitions in automatas: no +

 XTI kernel msg to (from) Provider Interface: no +

 Data part of messages (limit 4096 bytes): no +

Note: This menu may be accessed directly, using the command: smit xtitraceglobcnx

Note: Default values are provided and displayed. All these trace levels may be set to yes
or no, except for the Warning and Protocol Errors level which is always set to yes.

Sets the default trace levels in user-space and kernel-space.

The resulting values are saved in /etc/xticnxtrace file.

The XTI Libraries and Kernel trace levels have the same meaning as for XTI Libraries trace
levels, on page 3-30 and for XTI Kernel trace levels, on page 3-31.

3-33Configurator

How to Set XTI User Trace Levels

Access
Using the XTI onto OSI configurator, run the command:

smit xtitrace

Then select the function:

Change/Show User Trace Levels

Description
This menu allows access to the configuration of XTI user trace levels. Select the line
corresponding to the action to be performed.

 Change/Show User Trace Levels

Change/Show XTI Libraries Trace Levels see on page 3-34

Change/Show XTI Libraries and Kernel Trace Levels see on page 3-35

Note: This menu may be accessed directly, using the command: smit xtitraceuser

Any user may modify specific Trace Levels in user-space (XTI Libraries) and in
kernel-space (XTI kernel). These user trace levels are saved in user files whose full path
name are defined in shell environment variables XTI_FILE_TRACE_LEVEL and
XTI_FILE_TRACE_LEVELCNX.

If these Shell environment variables XTI_FILE_TRACE_LEVEL and
XTI_FILE_TRACE_LEVELCNX do not exist, the default trace levels defined by the
administrator are used.

Associated Command

xtitracelevel

Note: The trace levels are taken into account by an XTI application on a call to a t_open()
or a t_sync() XTI function, or a call to a Name Server library function.

3-34 XTI/XX25 Administrator and User Guide

Set XTI Libraries Trace Levels

 Change/Show XTI Libraries Trace Level

 XTI libraries trace levels file: [] +

 Warning and protocol errors: yes

 CONNECTION functionnalities: no +

 MANAGEMENT functionnalities: no +

 DATA TRANSFER functionnalities: no +

 Entry and return of external XTI lib. func.: no +

 Description of I/O parameters values: no +

 States transitions in automatas: no +

 Data part of messages (limit 4096 bytes): no +

Note: This menu may be accessed directly, using the command: smit xtitraceuserlib

Note: Default values are provided and displayed. All these trace levels may be set to yes
or no, except for the Warning and Protocol Errors level which is always set to yes.

Sets the user trace levels in user-space (XTI libraries).

XTI libraries trace levels file is the file where the user library trace level are saved.
This file is built with the same syntax as /etc/xtitrace file and is defined in the shell
environment variable XTI_FILE_TRACE_LEVEL.

The user XTI Libraries trace levels have the same meaning as for Administrative XTI
Libraries trace levels, on page 3-30.

3-35Configurator

Set XTI Libraries and Kernel Trace Levels

 Change/Show XTI Libraries and Kernel Trace Levels

 XTI libraries and Kernel trace levels file: [] +

 Warning and protocol errors: yes

 CONNECTION functionnalities: yes +

 MANAGEMENT functionnalities: yes +

 DATA TRANSFER functionnalities: yes +

 Entry and return of all external XTI func.: no +

 Description of I/O parameters values: no +

 States transitions in automatas: no +

 XTI kernel msg to (from) Provider Interface: no +

 Data part of messages (limit 4096 bytes): no +

Note: This menu may be accessed directly, using the command: smit xtitraceusercnx

Note: Default values are provided and displayed. All these trace levels may be set to yes
or no, except for the Warning and Protocol Errors level which is always set to yes.

Sets the default trace levels in user-space and kernel-space.

XTI libraries and kernel trace levels file is the file where the user library and kernel trace
levels are saved.
This file is built with the same syntax as /etc/xticnxtrace file and is defined in the shell
environment variable XTI_FILE_TRACE_LEVELCNX.

The XTI Libraries and Kernel trace levels have the same meaning as for Administrative XTI
Libraries trace levels, on page 3-30. An additional level is provided:

• XTI4 Kernel msg to (from) Provider Interface: XTI_LEVEL26

Allows Provider Interface messages sent by the xti4mod streams module to the lower
layer to be traced and received by xti4mod from the lower layer.

3-36 XTI/XX25 Administrator and User Guide

How to Use XTI Trace Utilities

Access
Using the XTI onto OSI configurator, run the command:

smit xtitrace

Then select the function:

Use XTI Trace Utilities

Description

This menu allows access to the configuration of XTI administrative trace levels. Select the
line corresponding to the action to be performed.

 Use XTI Trace Utilities

 Start XTI Trace

 Stop XTI Trace

 Generate an XTI Trace Report

Note: This menu may be accessed directly, using the command: smit xtitraceuse

Associated Commands

trace, trcstop, trcrpt

Note: The commands trace, trcstop and trcrpt are described in AIX Performance Tuning
Guide

Any user may access trace utilities in his own environment to:

• Start XTI Trace

Equivalent to running AIX trace command in asynchronous mode with the hook–id 906
(XTI–API).

Note: This command fails if XTI trace has been started previously by another user.

• Stop XTI Trace

• Generate an XTI Trace Report on a user-specific trace file. By default the file /tmp/xti.tr
is used.

3-37Configurator

XTI Environments Configurator

Access
Running the command:

smit chxti

Description

 XTI Environments

 C Compiler resource file: [/etc/xlC.cfg] /

 Development toolkit name: XTI_BASE +

 Transport providers path : NULL +

This menu displays and allows the current XTI attribute to be modified:

• C Compiler resource file is the application development toolkit configuration file. The
/etc/xlC.cfg is used by default, but any C compiler resource configuration file may be
used instead.

• Development toolkit name defines which XTI library is used by default to compile an
XTI application. (By default means using the standard /etc/xlC.cfg file and the cc
command without any options)

Three possible values may be chosen from the list:

XTI–ENHANCED: for the Bull-enhanced XTI library over TCP/IP, OSI Transport and
NetShare,

XX25: for the XX25 library (Bull-enhanced XTI onto X.25),

XTI–BASE for the AIX-issued XTI library.

• Transport provider path is a list of transport providers classified in priority order. This
list is used for the automatic selection of providers by the t_gettp()(on page 5-15)
function of the XTI Name Server. The transport providers and associated priority may be
chosen from a list.

Associated Commands

lsxti Displays the current XTI attributes.

chxti Changes the current XTI attributes.

3-38 XTI/XX25 Administrator and User Guide

4-1XTI Library Functions

Chapter 4. XTI Library Functions

Each XTI function is described in conformity with X/Open Transport Interface
XPG4 CAE Specification Version 2. The information specific to Transport Providers has
been integrated in the function description and the information specific to Bull-enhanced XTI
added under the headings:

• TCP/IP Implementation Specifics

• OSI Implementation Specifics

• XX25 Implementation Specifics

• Bull Implementation Specifics

For each XTI function, a table is given which summarizes the contents of the input and
output parameter. The key is given below:

x The parameter value is meaningful. (Input parameter must be set before
the call and output parameter may be read after the call.)

(x) The content of the object pointed to by the x pointer is meaningful.

? The parameter value is meaningful but the parameter is optional.

(?) The content of the object pointed to by the ? pointer is optional.

/ The parameter value is meaningless.

= The parameter after the call keeps the same value as before the call.

Refer to How to Prepare a Bull-enhanced XTI Application, on page 7-2, to use the
appropriate options in compiling and linking the application-program.

4-2 XTI/XX25 Administrator and User Guide

List of Bull-enhanced XTI Library Functions
t_accept() Accepts a connect request, on page 4-3,

t_alloc() Allocates a library structure, on page 4-7,

t_bind() Binds an address to a transport endpoint, on page 4-9,

t_close() Closes a transport endpoint, on page 4-13,

t_connect() Establishes a connection with another transport user, on page 4-14,

t_error() Produces error message, on page 4-19,

t_free() Frees a library structure, on page 4-20,

t_getinfo() Gets protocol–specific service information, on page 4-22,

t_getprotaddr() Gets the protocol address, on page 4-26,

t_getstate() Gets the current state, on page 4-28,

t_listen() Listens for a connect indication, on page 4-29,

t_look() Looks at the current event on the transport endpoint, on page 4-32,

t_open() Establishes a transport endpoint, on page 4-34,

t_optmgmt() Manages options for a transport endpoint, on page 4-39,

t_rcv() Receives data or expedited data sent over a connection, on page 4-47,

t_rcvconnect() Receives the confirmation from a connect request, on page 4-50,

t_rcvdis() Retrieves information from disconnect, on page 4-53,

t_rcvrel() Acknowledges receipt of an orderly release indication, on page 4-56,

t_rcvudata() Receives a data unit, on page 4-57,

t_rcvuderr() Receives a unit data error indication, on page 4-59,

t_snd() Sends data or expedited data over a connection, on page 4-61,

t_snddis() Sends user–initiated disconnect request, on page 4-65,

t_sndrel() Initiates an orderly release, on page 4-67,

t_sndudata() Sends a data unit, on page 4-68,

t_strerror() Produces an error message string, on page 4-70,

t_sync() Synchronises transport library, on page 4-71,

t_unbind() Disables a transport endpoint, on page 4-73.

4-3XTI Library Functions

t_accept Subroutine

Purpose
Accept a connect request.

Syntax
#include <xti.h>

int t_accept (fd, resfd, call)
int fd;
int resfd;
struct t_call *call;

Description

Parameters Before call After call

fd x /

resfd x /

call–>addr.maxlen / /

call–>addr.len x /

call–>addr.buf ?(?) /

call–>opt.maxlen / /

call–>opt.len x /

call–>opt.buf ?(?) /

call–>udata.maxlen / /

call–>udata.len x /

call–>udata.buf ?(?) /

call–>sequence x /

This function is issued by a transport user to accept a connect request. The parameter fd
identifies the local transport endpoint where the connect indication arrived, resfd specifies
the local transport endpoint where the connection is to be established and call contains
information required by the transport provider to complete the connection. The parameter
call points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In call, addr is the protocol address of the calling transport user, opt indicates any options
associated with the connection, udata points to any user data to be returned to the caller,
and sequence is the value returned by t_listen() that uniquely associates the response with
a previously received connect indication. The address of the caller, addr may be null (length
zero). Where addr is not null then it may optionally be checked by XTI.

A transport user may accept a connection on either the same, or on a different, local
transport endpoint than the one on which the connect indication arrived. Before the
connection can be accepted on the same endpoint (resfd==fd), the user must have
responded to any previous connect indications received on that transport endpoint (via
t_accept() or t_snddis()). Otherwise, t_accept() will fail and set t_errno to [TINDOUT].

If a different transport endpoint is specified (resfd!=fd), then the user may or may not choose
to bind the endpoint before the t_accept is issued. If the endpoint is not bound prior to the

4-4 XTI/XX25 Administrator and User Guide

t_accept(), then the transport provider will automatically bind it to the same protocol address
fd is bound to. If the transport user chooses to bind the endpoint it must be bound to a
protocol address with a qlen of zero and must be in the T_IDLE state before the t_accept()
is issued.

The call to t_accept() will fail with t_errno set to [TLOOK] if there are indications (e.g.
connect or disconnect) waiting to be received on the endpoint fd.

The udata argument enables the called transport user to send user data to the caller and
the amount of user data must not exceed the limits supported by the transport provider as
returned in the connect field of the info argument of t_open() or t_getinfo(). If the len field of
udata is zero, no data will be sent to the caller. All the maxlen fields are meaningless.

When the user does not indicate any option (call–>opt.len = 0) it is assumed that the
connection is to be accepted unconditionally. The transport provider may choose options
other than the defaults to ensure that the connection is accepted successfully.

Caveats
There may be transport provider specific restrictions on address binding.

Some transport providers do not differentiate between a connect indication and the
connection itself. If the connection has already been established after a successful return or
t_listen(), t_accept() will assign the existing connection to the transport endpoint specified
by resfd.

Refer to OSI Implementation Specifics and TCP/IP Implementation Specifics for more
information.

Valid States
fd: T_INCON

resfd (fd!=resfd): T_IDLE

Errors
On failure, t_errno is set to one of the following:

[TBADF] The file descriptor fd or resfd does not refer to a transport endpoint.

[TOUTSTATE] The function was called in the wrong sequence on the transport endpoint
referenced by fd, or the transport endpoint referred to by resfd is not in the
appropriate state.

[TACCES] The user does not have permission to accept a connection on the
responding transport endpoint or to use the specified options.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADSEQ] An invalid sequence number was specified.

[TLOOK] An asynchronous event has occurred on the transport endpoint referenced
by fd and requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TINDOUT] The function was called with fd==resfd but there are outstanding connection
indications on the endpoint. Those other connection indications must be

4-5XTI Library Functions

handled either by rejecting them via t_snddis(3) or by accepting them on a
different endpoint via t_accept(3).

[TPROVMISMATCH]
The file descriptors fd and resfd do not refer to the same transport provider.

[TRESQLEN] The endpoint referenced by resfd (where resfd != fd) was bound to a
protocol address with a qlen that is greater than zero.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

[TRESADDR] This transport provider requires both fd and resfd to be bound to the same
address. This error results if they are not.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
Issuing t_accept() assigns an already established connection to resfd.

Since user data cannot be exchanged during the connection establishment phase,
call–>udata.len must be set to 0. Also, resfd must be bound to the same address as fd. A
potential restriction on the binding of endpoints to protocol addresses is described under
t_bind().

If association related options (IP_OPTIONS, IP_TOS) are to be sent with the connect
confirmation, the values of these options must be set with t_optmgmt() before the
T_LISTEN event occurs. When the transport user detects a T_LISTEN, TCP has already
established the connection. Association-related options passed with t_accept() become
effective at once, but since the connection is already established, they are transmitted with
subsequent IP diagrams sent out in the T_DATAXFER state.

OSI Implementation Specifics
The parameter call–>udata.len must be in the range 0 to 32. The user may send up to 32
octets of data when accepting the connection.

If fd is not equal to resfd, resfd should either be in the state T_UNBND or be in the state
T_IDLE and be bound to the same address as fd with the qlen parameter set to 0.

A process can listen for an incoming indication on a given fd and then accept the connection
on another endpoint resfd which has been bound to the same or a different protocol address
with the qlen parameter (of the t_bind() function) set to 0. The protocol address bound to
the new accepting endpoint (resfd) should in general be the same as the listening endpoint
(fd), because at the present time, the ISO transport service definition (ISO 8072:1986) does
not authorise acceptance of an incoming connection indication with a responding address
different from the called address, except under certain conditions (see ISO 8072:1986
paragraph 12.2.4, Responding Address), but it also states that it may be changed in the
future.

The t_accept subroutine is not applicable for ConnectionLess Transport Service.

XX25 Implementation Specifics
The call–>udata.len parameter must be:

• 0 in basic format,

• in the range 0 to 128 in extended format, format negotiated using the option
T_X25_FASTSELECT. (Refer to Appendix C. Bull-enhanced XTI Options.)

4-6 XTI/XX25 Administrator and User Guide

Bull Implementation Specifics
The options (call–>opt parameter) supported by Bull-enhanced XTI, XTI_GENERIC,
ISO_TP, INET_TCP and INET_IP, X25_NP, are listed in Bull-enhanced XTI Options in
Appendix C.

See also
t connect(), t getstate(), t listen(), t open(), t optmgmt(), t rcvconnect().

4-7XTI Library Functions

t_alloc Subroutine

Purpose
Allocate a library structure.

Syntax
#include <xti.h>

char *t_alloc (fd, struct_type, fields)
int fd;
int struct_type;
int fields;

Description

Parameters Before call After call

fd x /

struct_type x /

fields x /

The t_alloc() function dynamically allocates memory for the various transport function
argument structures as specified below. This function will allocate memory for the specified
structure, and will also allocate memory for buffers referenced by the structure.

The structure to allocate is specified by struct_type and must be one of the following:

T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or more
transport functions.

Each of the above structures, except T_INFO, contains at least one field of type struct
netbuf. For each field of this type, the user may specify that the buffer for that field should
be allocated as well. The length of the buffer allocated will be equal to or greater than the
appropriate size as returned in the info argument of t_open() or t_getinfo(). The relevant
fields of the info argument are described in the following list. The fields argument specifies
which buffers to allocate, where the argument is the bitwise-or of any of the following:

T_ADDR The addr field of the t_bind , t_call , t_unitdata or t_uderr structures.

T_OPT The opt field of the t_optmgmt , t_call , t_unitdata or t_uderr structures.

T_UDATA The udata field of the t_call , t_discon or t_unitdata structures.

T_ALL All relevant fields of the given structure. Fields which are not supported by
the transport provider specified by fd will not be allocated.

For each relevant field specified in fields, t_alloc() will allocate memory for the buffer
associated with the field, and initialise the len field to zero and the buf pointer and maxlen
field accordingly. Irrelevant or unknown values passed in fields are ignored. Since the length
of the buffer allocated will be based on the same size information that is returned to the user
on a call to t_open() and t_getinfo(), fd must refer to the transport endpoint through which
the newly allocated structure will be passed. In this way the appropriate size information can
be accessed. If the size value associated with any specified field is –1 or –2 (see t_open()

4-8 XTI/XX25 Administrator and User Guide

or t_getinfo()), t_alloc() will be unable to determine the size of the buffer to allocate and will
fail, setting t_errno to [TSYSERR] and errno to [EINVAL]. For any field not specified in fields,
buf will be set to the null pointer and len and maxlen will be set to zero.

Use of t_alloc() to allocate structures will help ensure the compatibility of user programs with
future releases of the transport interface functions.

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TNOSTRUCTYPE]
Unsupported struct_type requested. This can include a request for a
structure type which is inconsistent with the transport provider type
specified, that is, connection–oriented or connectionless.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
On successful completion, t alloc() returns a pointer to the newly allocated structure. On
failure, a null pointer is returned.

See also
t_free(), t_getinfo(), t_open().

4-9XTI Library Functions

t_bind Subroutine

Purpose
Bind an address to a transport endpoint.

Syntax
#include <xti.h>

int t_bind(fd, req, ret)
int fd;
struct t_bind *req;
struct t_bind *ret;

Description

Parameters Before call After call

fd x /

req–>addr.maxlen / /

req–>addr.len x >=0 /

req–>addr.buf x(x) /

req–>qlen x >=0 /

ret–>addr.maxlen x /

ret–>addr.len / x

ret–>addr.buf ? (?)

ret–>qlen / x >=0

This function associates a protocol address with the transport endpoint specified by fd and
activates that transport endpoint. In connection mode, the transport provider may begin
enqueuing incoming connect indications or servicing a connection request on the transport
endpoint. In connectionless mode, the transport user may send or receive data units
through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the following members:

struct netbuf addr;

unsigned qlen;

The addr field of the t_bind structure specifies a protocol address, and the qlen field is
used to indicate the maximum number of outstanding connect indications.

The parameter req is used to request that an address, represented by the netbuf structure,
be bound to the given transport endpoint. The parameter len specifies the number of bytes
in the address and buf points to the address buffer. The parameter maxlen has no meaning
for the req argument. On return, ret contains the address that the transport provider actually
bound to the transport endpoint; this is the same as the address specified by the user in req.
In ret, the user specifies maxlen, which is the maximum size of the address buffer and buf
which points to the buffer where the address is to be placed. On return, len specifies the
number of bytes in the bound address and buf points to the bound address. If maxlen is not
large enough to hold the returned address, an error will result.

If the requested address is not available, t_bind() will return –1 with t_errno set as
appropriate. If no address is specified in req (the len field of addr in req is zero or req is
NULL) the transport provider will assign an appropriate address to be bound, and will return
that address in the addr field of ret. If the transport provider could not allocate an address,
t_bind() will fail with t_errno set to [TNOADDR].

4-10 XTI/XX25 Administrator and User Guide

The parameter req may be a null pointer, if the user does not wish to specify an address to
be bound. Here, the value of qlen is assumed to be zero, and the transport provider will
assign an address to the transport endpoint. Similarly, ret may be a null pointer, if the user
does not care what address was bound by the provider and is not interested in the
negotiated value of qlen. It is valid to set req and ret to the null pointer for the same call, in
which case the provider chooses the address to bind to the transport endpoint and does not
return that information to the user.

The qlen field has meaning only when initialising a connection–mode service. It specifies the
number of outstanding connect indications that the transport provider should support for the
given transport endpoint. An outstanding connect indication is one that has been passed to
the transport user by the transport provider but which has not been accepted or rejected. A
value of qlen greater than zero is only meaningful when issued by a passive transport user
that expects other users to call it. The value of qlen will be negotiated by the transport
provider and may be changed if the transport provider cannot support the specified number
of outstanding connect indications. However, this value of qlen will never be negotiated from
a requested value greater than zero to zero. This is a requirement on transport providers;
see CAVEATS below. On return, the qlen field in ret will contain the negotiated value.

If fd refers to a connection-mode service, this function allows more than one transport
endpoint to be bound to the same protocol address (however, the transport provider must
also support this capability), but it is not possible to bind more than one protocol address to
the same transport endpoint. If a user binds more than one transport endpoint to the same
protocol address, only one endpoint can be used to listen for connect indications associated
with that protocol address. In other words, only one t_bind() for a given protocol address
may specify a value of qlen greater than zero. In this way, the transport provider can identify
which transport endpoint should be notified of an incoming connect indication. If a user
attempts to bind a protocol address to a second transport endpoint with a value of qlen
greater than zero, t_bind() will return –1 and set t_errno to [TADDRBUSY]. When a user
accepts a connection on the transport endpoint that is being used as the listening endpoint,
the bound protocol address will be found to be busy for the duration of the connection, until
a t_unbind() or t_close() call has been issued. No other transport endpoints may be bound
for listening on that same protocol address while that initial listening endpoint is active (in
the data transfer phase or in the T_IDLE state). This will prevent more than one transport
endpoint bound to the same protocol address from accepting connect indications.

If fd refers to a connectionless-mode service, only one endpoint may be associated with a
protocol address. If a user attempts to bind a second transport endpoint ot an already bound
protocol address, t_bind() will return –1 and set t_errno to [TADDRBUSY].

Valid States
T_UNBND

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TNOADDR] The transport provider could not allocate an address.

[TACCES] The user does not have permission to use the specified address.

[TBUFOVFLW] The number of bytes allowed for an incoming argument (maxlen) is greater
than 0 but not sufficient to store the value of that argument. The provider’s
state will change to T_IDLE and the information to be returned in ret will be
discarded.

[TSYSERR] A system error has occurred during execution of this function.

4-11XTI Library Functions

[TADDRBUSY] The requested address is in use.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

Caveats
The requirement that the value of qlen never be negotiated from a requested value greater
than zero to zero implies that transport providers, rather than the XTI implementation itself,
accept this restriction.

A transport provider may not allow an explicit binding of more than one transport endpoint to
the same protocol address, although it allows more than one connection to be accepted for
the same protocol address. To ensure portability, it is, therefore, recommended not to bind
transport endpoints that are used as responding endpoints (resfd) in a call to t_accept(), if
the responding address is to be the same as the called address.

TCP/IP Implementation Specifics
The addr field of the t_bind structure represents the local socket, i.e. an address which
specifically includes a port identifier.

In the connection-oriented mode (i.e. TCP), the t_bind() function may only bind one
transport endpoint to any particular protocol address. If that endpoint was bound in passive
mode, i.e. qlen > 0, then other endpoints will be bound to the passive endpoint’s protocol
address via the t_accept() function only; that is, if fd refers to the passive endpoint and
resfd refers to the new endpoint on which the connection is to be accepted, resfd will be
bound to the same protocol address as fd after the successful completion of the t_accept()
function.

OSI Implementation Specifics
The addr field of the t_bind structure represents the local TSAP.

XX25 Implementation Specifics
The address field of the t_bind() structure contains the matching requirements for routing
incoming calls to the endpoint. This may include (but is not limited to) representations of one
or more of the following:

• a local SNPA identifier,

• a local X.25 address,

• a local X.25 subaddress,

• a local NSAP,

• a call user data matching requirement,

• a PVC number.

Where an incoming call can be routed to multiple endpoints on basis of their matching
requirements, the actual endpoint selected will be implementation dependent.

Note: An implementation may choose to provide support for a wildcard mechanism for
address information, for exemple to route incoming calls whose call user data starts
with a particular pattern.

4-12 XTI/XX25 Administrator and User Guide

Bull Implementation Specifics

OSI Addressing
The OSI Communication Stack addressing is implementation specific and is described in
Appendix D. OSI Addressing

XX25 Addressing
The XX25 addressing is implementation specific and is described in Appendix E. XX25
Addressing

See also
t_alloc(), t_close(), t_open(), t_optmgmt(), t_unbind().

4-13XTI Library Functions

t_close Subroutine

Purpose
Close a transport endpoint.

Syntax
#include <xti.h>

int t_close (fd)
int fd;

Description

Parameters Before call After call

fd x /

The t_close() function informs the transport provider that the user is finished with the
transport endpoint specified by fd, and frees any local library resources associated with the
endpoint. In addition, t_close() closes the file associated with the transport endpoint.

The function t_close() should be called from the T_UNBND state (see t_getstate()).
However, this function does not check state information, so it may be called from any state
to close a transport endpoint. If this occurs, the local library resources associated with the
endpoint will be freed automatically. In addition, close() will be issued for that file descriptor;
the close() will be abortive if there are no other descriptors in this, or in another process
which reference the transport endpoint, and in this case will break any transport connection
that may be associated with that endpoint.

A t_close() issued on a connection endpoint may cause data previously sent, or data not yet
received, to be lost. It is the responsibility of the transport user to ensure that data is
received by the remote peer.

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

See also
t_getstate(), t_open(), t_unbind().

4-14 XTI/XX25 Administrator and User Guide

t_connect Subroutine

Purpose
Establish a connection with another transport user.

Syntax
#include <xti.h>

int t_connect (fd, snd call, rcvcall)
int fd;
struct t_call *sndcall;
struct t_call *rcvcall;

Description

Parameters Before call After call

fd x /

sndcall–>addr.maxlen / /

sndcall–>addr.len x /

sndcall–>addr.buf x(x) /

sndcall–>opt.maxlen / /

sndcall–>opt.len x /

sndcall–>opt.buf x(x) /

sndcall–>udata.maxlen / /

sndcall–>udata.len x /

sndcall–>udata.buf ?(?) /

sndcall–>sequence / /

rcvcall–>addr.maxlen x /

rcvcall–>addr.len / x

rcvcall–>addr.buf ? (?)

rcvcall–>opt.maxlen x /

rcvcall–>opt.len / x

rcvcall–>opt.buf ? (?)

rcvcall–>udata.maxlen x /

rcvcall–>udata.len / x

rcvcall–>udata.buf ? (?)

rcvcall–>sequence / /

This function enables a transport user to request a connection to the specified destination
transport user. This function can only be issued in the T_IDLE state. The parameter fd
identifies the local transport endpoint where communication will be established, while
sndcall and rcvcall point to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

4-15XTI Library Functions

The parameter sndcall specifies information needed by the transport provider to establish a
connection and rcvcall specifies information that is associated with the newly established
connection.

In sndcall, addr specifies the protocol address of the destination transport user, opt presents
any protocol–specific information that might be needed by the transport provider, udata
points to optional user data that may be passed to the destination transport user during
connection establishment and sequence has no meaning for this function.

On return, in rcvcall, addr contains the protocol address associated with the responding
transport endpoint, opt represents any protocol–specific information associated with the
connection, udata points to optional user data that may be returned by the destination
transport user during connection establishment and sequence has no meaning for this
function.

The opt argument permits users to define the options that may be passed to the transport
provider. These options are specific to the underlying protocol of the transport provider and
are listed for ISO and TCP protocols in Bull-enhanced XTI Options in Appendix C. The user
may choose not to negotiate protocol options by setting the len field of opt to zero. In this
case, the provider may use default options.

If used, sndcall–>opt.buf must point to a buffer with the corresponding options; the maxlen
and buf fields of the netbuf structure pointed by rcvcall–>addr and rcvcall–>opt must be set
before the call.

The udata argument enables the caller to pass user data to the destination transport user
and receive user data from the destination user during connection establishment. However,
the amount of user data must not exceed the limits supported by the transport provider as
returned in the connect field of the info argument of t_open() or t_getinfo(). If the len of
udata is zero in sndcall, no data will be sent to the destination transport user.

On return, the addr, opt and udata fields of rcvcall will be updated to reflect values
associated with the connection. Thus, the maxlen field of each argument must be set before
issuing this function to indicate the maximum size of the buffer for each. However, rcvcall
may be a null pointer, in which case no information is given to the user on return from
t_connect().

By default, t_connect() executes in synchronous mode, and will wait for the destination
user’s response before returning control to the local user. A successful return (i.e., return
value of zero) indicates that the requested connection has been established. However, if
O_NONBLOCK is set (via t_open() or fcntl()), t_connect() executes in asynchronous mode.
In this case, the call will not wait for the remote user’s response, but will return control
immediately to the local user and return –1 with t_errno set to [TNODATA] to indicate that
the connection has not yet been established. In this way, the function simply initiates the
connection establishment procedure by sending a connect request to the destination
transport user. The t_rcvconnect() function is used in conjunction with t_connect() to
determine the status of the requested connection.

When a synchronous t_connect() call is interrupted by the arrival of a signal, the state of the
corresponding transport endpoint is T_OUTCON, allowing a further call to either
t_rcvconnect(), t_rcvdis(), or t_snddis().

Valid States
T_IDLE

4-16 XTI/XX25 Administrator and User Guide

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TNODATA] O_NONBLOCK was set, so the function successfully initiated the
connection establishment procedure, but did not wait for a response from
the remote user.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADOPT] The specified protocol options were in an incorrect format or contained
illegal information.

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider.

[TACCES] The user does not have permission to use the specified address or options.

[TBUFOVFLW] The number of bytes allowed for an incoming argument is greater than 0
but not sufficient to store the value of that argument. If executed in
synchronous mode, the provider’s state, as seen by the user, changes to
T_DATAXFER, and the information to be returned in rcvcall will be
discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TADDRBUSY] This transport provider does not support multiple connections with the same
local and remote addresses. This error indicates that a connection already
exists.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
The sndcall–>addr structure specifies the remote socket. In the present version, the
returned address set in rcvcall–>addr will have the same value. Since user data cannot be
exchanged during the connection establishment phase, sndcall–>udata.len must be set to 0.

Note that the peer TCP, and not the peer transport user, confirms the connection.

OSI Implementation Specifics
The sndcall–>addr structure specifies the remote called TSAP. In the present version, the
returned address set in rcvcall–>addr will have the same value.

The setting of sndcall–>udata is optional for ISO connections, but with no data, the len field
of udata must be set to 0. The maxlen and buf fields of the netbuf structure, pointed to by
rcvcall–>addr and rcvcall–>opt, must be set before the call.

The t_connect subroutine is not applicable for ConnectionLess Transport Service.

4-17XTI Library Functions

XX25 Implementation Specifics
The sndcall–>udata.len parameter must be:

• in the range 0 to 16 in basic format,

• in the range 0 to 128 in extended format, format negotiated using the option
T_X25_FASTSELECT. (Refer to Appendix C. Bull-enhanced XTI Options.)

The sndcall–>addr is used to select either an SVC or a PVC.

• For an SVC the sndcall–>addr structure contains a representation of the addressing
information necessary to reach the destination, it may contain (but is not limited to) one or
more of the following:
– a remote X.25 address,
– a local X.25 address,
– a call user data matching requirement.
When the connection has been established, the rcvcall–>addr structure represents the
address on which the call has been accepted.

• For a PVC, the sndcall–>addr structure contains the PVC number to be used
(t_connect() associates the user with the PVC). If it is already in use, the error
[TADDRBUSY] is returned. On successful return:
– In synchronous mode, the PVC will be in state T_DATAXFER,
– In asynchronous mode, the PVC will be in state T_OUTCON and a T_CONNECT

event will be outstanding.
When the connection has been established, the rcvcall–>addr structure represents the
actual PVC allocated.

Bull Implementation Specifics

OSI Addressing
The OSI Communication Stack addressing is implementation specific and is described in
Appendix D. OSI Addressing

NetShare (RFC 1006) Addressing
The same behavior as for the pure OSI Communication Stack and a subset of the wildcard
values (OSI_TSEL_ANY, OSI_NSAP_ANY) are provided by the NetShare (RFC 1006)
provider.

The other specific values defined for pure OSI Communication Stack are meaningless for
the NetShare (RFC 1006) provider.

54 0_72_87_22 03 18_02_00_02_00_01 00_10_2 0

PaddingPortIP AddressPrefix

Byte

1 2–5 6 7–12 13–15

constant optional

Figure 3. NetShare (RFC 1006) Addressing

4-18 XTI/XX25 Administrator and User Guide

XX25 Addressing
The XX25 addressing is implementation specific and is described in Appendix E. XX25
Addressing.

Supported Options:
The supported options are listed in Bull-enhanced XTI Option Profiles in Appendix C.

See also
t_accept(), t_alloc(), t_getinfo(), t_listen(), t_open(), t_optmgmt(), t_rcvconnect().

4-19XTI Library Functions

t_error Subroutine

Purpose
Produce error message.

Syntax
#include <xti.h>

int t_error (errmsg)
char *errmsg;

Description

Parameters Before call After call

errmsg x /

The t_error() function produces a language-dependent message on the standard error
output which describes the last error encountered during a call to a transport function. The
argument string errmsg is a user-supplied error message that gives context to the error.

The error message is written as follows: first (if errmsg is not a null pointer and the character
pointed to be errmsg is not the null character) the string pointed to by errmsg followed by a
colon and a space; then a standard error message string for the current error defined in
t_errno. If t_errno has a value different from [TSYSERR], the standard error message string
is followed by a newline character. If, however, t_errno is equal to [TSYSERR], the t_errno
string is followed by the standard error message string for the current error defined in errno
followed by a newline.

The language for error message strings written by t_error() is implementation–defined. If it is
in English, the error message string describing the value in t_errno is identical to the
comments following the t_errno codes defined in xti.h. The contents of the error message
strings describing the value in errno are the same as those returned by the strerror(3C)
function with an argument of errno.

The error number, t_errno, is only set when an error occurs and it is not cleared on
successful calls.

Example
If a t_connect() function fails on transport endpoint fd2 because a bad address was given,
the following call might follow the failure:

t_error(“t_connect failed on fd2”);

The diagnostic message to be printed would look like:

t_connect failed on fd2: Incorrect address format

where Incorrect address format identifies the specific error that occurred, and t_connect
failed on fd2 tells the user which function failed on which transport endpoint.

Valid States
ALL– apart from T_UNINIT.

Errors
No errors are defined for the t_error() function.

Return Values
Upon successful completion, a value of 0 is returned.

4-20 XTI/XX25 Administrator and User Guide

t_free Subroutine

Purpose
Free a library structure.

Syntax
#include <xti.h>

int t_free (ptr, struct_type)
char *ptr;
int struct_type;

Description

Parameters Before call After call

ptr x /

struct_type x /

The t_free() function frees memory previously allocated by t_alloc(). This function will free
memory for the specified structure, and will also free memory for buffers referenced by the
structure.

The argument ptr points to one of the seven structure types described for t_alloc(), and
struct_type identifies the type of that structure which must be one of the following:

T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures is used as an argument to one or more transport functions.

The function t_free() will check the addr, opt and udata fields of the given structure (as
appropriate) and free the buffers pointed to by the buf field of the netbuf structure. If buf is a
null pointer, t_free() will not attempt to free memory. After all buffers are freed, t_free() will
free the memory associated with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of memory that
was not previously allocated by t_alloc().

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to the following:

[TSYSERR] A system error has occurred during execution of this function.

[TNOSTRUCTYPE] Unsupported struct_type requested.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI (t_errno).

4-21XTI Library Functions

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

See also
t_alloc()

4-22 XTI/XX25 Administrator and User Guide

t_getinfo Subroutine

Purpose
Get protocol–specific service information.

Syntax
#include <xti.h>

int t_getinfo (fd, info)
int fd;
struct t_info *info;

Description

Parameters Before call After call

fd x /

info–>addr / x

info–>options / x

info–>tsdu / x

info–>etsdu / x

info–>connect / x

info–>discon / x

info–>servtype / x

info–>flags / x

This function returns the current characteristics of the underlying transport protocol and/or
transport connection associated with file descriptor fd. The info pointer is used to return the
same information returned by t_open(), although not necessarily precisely the same values.
This function enables a transport user to access this information during any phase of
communication.

This argument points to a t_info structure which contains the following members:

long addr; /* max size of the transport protocol address */

long options; /* max number of bytes of protocol–specific */

/* options */

long tsdu; /* max size of a transport service data unit */

/* (TSDU) */

long etsdu; /* max size of an expedited transport service */

/* data unit (ETSDU) */

long connect; /* max amount of data allowed on connection */

/* establishment functions */

long discon; /* max amount of data allowed on t_snddis() */

/* and t_rcvdis() functions */

long servtype; /* service type supported by the transport */

/* provider */

long flags; /* other info about the transport provider */

The values of the fields have the following meanings:

addr A value greater than zero indicates the maximum size of a transport
protocol address and a value of –2 specifies that the transport provider
does not provide user access to transport protocol addresses.

4-23XTI Library Functions

options A value greater than zero indicates the maximum number of bytes of
protocol–specific options supported by the provider and a value of –2
specifies that the transport provider does not support user–settable options.

tsdu A value greater than zero specifies the maximum size of a transport service
data unit (TSDU); a value of zero specifies that the transport provider does
not support the concept of TSDU, although it does support the sending of a
data stream with no logical boundaries preserved across a connection; a
value of –1 specifies that there is no limit on the size of a TSDU; and a
value of –2 specifies that the transfer of normal data is not supported by the
transport provider.

etsdu A value greater than zero specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero specifies that the
transport provider does not support the concept of ETSDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a value of –1 specifies that there is no limit
on the size of an ETSDU; and a value of –2 specifies that the transfer of
expedited data is not supported by the transport provider. Note that the
semantics of expedited data might be quite different for different transport
providers. Refer to OSI Implementation Specifics and TCP/IP
Implementation Specifics.

connect A value greater than zero specifies the maximum amount of data that may
be associated with connection establishment functions and a value of –2
specifies that the transport provider does not allow data to be sent with
connection establishment functions.

discon A value greater than zero specifies the maximum amount of data that may
be associated with the t_snddis() and t_rcvdis() functions and a value of –2
specifies that the transport provider does not allow data to be sent with the
abortive release functions.

servtype This field specifies the service type supported by the transport provider, as
described below.

flags This is a bit field used to specify other information about the transport
provider. If the T_SENDZERO bit is set in flags, this indicates that the
underlying transport provider supports the sending of zero-length TSDUs.

If a transport user is concerned with protocol independence, the above sizes may be
accessed to determine how large the buffers must be to hold each piece of information.
Alternatively, the t_alloc() function may be used to allocate these buffers. An error will result
if a transport user exceeds the allowed data size on any function. The value of each field
may change as a result of option negotiation during connection establishment (the
t_optmgmt() call has no effect on the values returned by t_getinfo()). These values will only
change from the values presented to t_open() after the endpoint enters the T_DATAXFER
state.

The servtype field of info specifies one of the following values on return:

T_COTS The transport provider supports a connection–mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection–mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless–mode service. For this
service type, t_open() will return –2 for etsdu, connect and discon.

Valid States
ALL – apart from T_UNINIT.

4-24 XTI/XX25 Administrator and User Guide

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
This table is specific to Bull implementation.

Parameters Before call After call

TCP/IP UDP/IP

fd x / /

info–>addr 16 16

info–>options / 512 512

info–>tsdu / 0 8192

info–>etsdu / –1 –2

info–>connect / –2 –2

info–>discon / –2 –2

info–>servtype / T_COTS/T_COTS_ORD T_CLTS

info–>flags / T_SNDZERO T_SNDZERO

OSI Implementation Specifics
The information returned by t_getinfo() reflects the characteristics of the transport
connection or, if no connection is established, the maximum characteristics a transport
connection could take on using the underlying transport provider. In all possible states
except T_DATAXFER, the function t_getinfo() returns in the parameter info the same
information as was returned by t_open(). In T_DATAXFER, however, the information
returned may differ from that returned by t_open(), depending on:

• the transport class negotiated during connection establishment (ISO transport provider
only), and

• the negotiation of expedited data transfer for this connection.

In T_DATAXFER, the estdu field in the t_info structure is set to –2 if no expedited data
transfer was negotiated, and to 16 otherwise. The remaining fields are set according to the
characteristics of the transport protocol class in use for this connection, as defined in the
table below, specific to Bull implementation.

4-25XTI Library Functions

Parameters Before call After call

Connection
class 0

Connection
class 1–4

ISO–over–TCP

fd x / / /

info–>addr 107 107 68

info–>options / 2000 2000 256

info–>tsdu / –1 –1 –1

info–>etsdu / –2 16/–2 (1) 16

info–>connect / –2 32 32

info–>discon / –2 64 –2

info–>servtype / T_COTS T_COTS T_COTS

info–>flags / 0 0 0

1. Depending on the negotiation of expedited data transfer.

XX25 Implementation Specifics
The information returned by t_getinfo() reflects the characteristics of the X.25 connection or,
if no connection is established, the maximum characteristics an X.25 connection could take
on using the underlying X.25 provider.

The parameters of the t_getinfo() function, for the different versions of the X.25 protocol
((X.25–1980, X.25–1984, X.25–1988, X.25–1993, and so on) are presented in the table
below.

Parameters Before call After call

X.25–1988
X.25–1984

X.25–1980

fd x / /

info–>addr x x

info–>options / x x

info–>tsdu / x (1) x (1)

info–>etsdu / –2/32 (2) –2/1 (3)

info–>connect / 16/128 (4) 16/128 (4)

info–>discon / 0/128 (5) 0/128 (5)

info–>servtype / T_COTS T_COTS

info–>flags / T_SENDZERO T_SENDZERO

1. –1 or an integral number greater than zero.
2. –2 if no expedited data transfer can be exchanged, and 32 otherwise.
3. –2 if no expedited data transfer can be exchanged, and 1 otherwise.
4. 16 in basic format or 128 in extended format (if the T_X25_FASTSELECT option has

been negotiated).
5. 0 in basic format or 128 in extended format (if the T_X25_FASTSELECT option has been

negotiated).

See also
t_alloc(), t_open().

4-26 XTI/XX25 Administrator and User Guide

t_getprotaddr Subroutine

Purpose
Get the protocol address.

Syntax
#include <xti.h>

int t_getprotaddr (fd, boundaddr, peeraddr)
int fd;
struct t_bind *boundaddr;
struct t_bind *peeraddr;

Description

Parameters Before
call

After call

fd x /

boundaddr–>maxlen x /

boundaddr–>addr.len / x

boundaddr–>addr.buf ? (?)

boundaddr–>qlen / /

peeraddr–>maxlen x /

peeraddr–>addr.len / x

peeraddr–>addr.buf ? (?)

peeraddr–>qlen / /

The t_getprotaddr() function returns local and remote protocol addresses currently
associated with the transport endpoint specified by fd. In boundaddr and peeraddr, the user
specifies maxlen, which is the maximum size of the address buffer and buf which points to
the buffer where the address is to be placed. On return, the buf field of boundaddr points to
the address, if any, currently bound to fd, and the len field specifies the length of the
address. If the transport endpoint is in the T_UNBND state, zero is returned in the len field
of boundaddr. The buf field of the peeraddr points to the address, if any, currently connected
to fd, and the len field specifies the length of the address. If the transport endpoint is not in
the T_DATAXFER state, zero is returned in the len field of peeraddr.

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allowed for an incoming argument is greater than 0
but not sufficient to store the value of that argument.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

4-27XTI Library Functions

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate the error.

See also
t_bind().

4-28 XTI/XX25 Administrator and User Guide

t_getstate Subroutine

Purpose
Get the current state.

Syntax
#include <xti.h>

int t_getstate (fd)
int fd;

Description

Parameters Before call After call

fd x /

The t_getstate() function returns the current state of the provider associated with the
transport endpoint specified by fd.

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSTATECHNG]
The transport provider is undergoing a transient state change.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
State is returned upon successful completion. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error. The current state is one of the following:

T_UNBND unbound

T_IDLE idle

T_OUTCON outgoing connection pending

T_INCON incoming connection pending

T_DATAXFER data transfer

T_OUTREL outgoing orderly release (waiting for an orderly release indication)

T_INREL incoming orderly release (waiting to send an orderly release request)

If the provider is undergoing a state transition when t_getstate() is called, the function will
fail.

See also
t_open().

4-29XTI Library Functions

t_listen Subroutine

Purpose
Listen for a connect indication.

Syntax
#include <xti.h>

int t_listen (fd,call)
int fd;
struct t_call *call;

Description

Parameters Before call After call

fd x /

call–>addr.maxlen x /

call–>addr.len / x

call–>addr.buf ? (?)

call–>opt.maxlen x /

call–>opt.len / x

call–>opt.buf ? (?)

call–>udata.maxlen x /

call–>udata.len / x

call–>udata.buf ? (?)

call–>sequence / x

This function listens for a connect request from a calling transport user. The argument fd
identifies the local transport endpoint where connect indications arrive, and on return, call
contains information describing the connect indication. The parameter call points to a t_call
structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In call, addr returns the protocol address of the calling transport user. This address is in a
format usable in future calls to t_connect(). Note, however, that t_connect() may fail for
other reasons, for example [T_ADDRBUSY]. opt returns options associated with the
connect request, udata returns any user data sent by the caller on the connect request and
sequence is a number that uniquely identifies the returned connect indication. The value of
sequence enables the user to listen for multiple connect indications before responding to
any of them.

Since this function returns values for the addr, opt and udata fields of call, the maxlen field
of each must be set before issuing the t_listen() to indicate the maximum size of the buffer
for each.

By default, t_listen() executes in synchronous mode and waits for a connect indication to
arrive before returning to the user. However, if O_NONBLOCK is set via t_open() or fcntl(),
t_listen() executes asynchronously, reducing to a poll for existing connect indications. If
none are available, it returns –1 and sets t_errno to [TNODATA].

4-30 XTI/XX25 Administrator and User Guide

Valid States
T_IDLE, T_INCON.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADQLEN] The argument qlen of the endpoint referenced by fd is zero.

[TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument. The
provider’s state, as seen by the user, changes to T_INCON, and the
connect indication information to be returned in call is discarded. The value
of sequence returned can be used to do a t snddis().

[TNODATA] O_NONBLOCK was set, but no connect indications had been queued.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TQFULL] The maximum number of outstanding indications has been reached for the
endpoint referenced by fd.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Caveats
Some transport providers do not differenciate between a connect indication and the
connection itself. If this is the case, a successful return of t_listen() indicates an existing
connection.

TCP/IP Implementation Specifics
Upon successful return, t_listen() indicates an existing connection and not a connection
indication.

Since user data cannot be exchanged during the connection establishment phase,
call–>udata.maxlen must be set to zero before the call to t_listen(). The call–>addr structure
contains the remote calling socket.

OSI Implementation Specifics
The call–>addr structure contains the remote calling TSAP. Since, at most, 32 octets of data
will be returned with the connect indication, call–>udata.maxlen should be set to 32 before
the call to t_listen().

If the user has set qlen greater than 1 (on the call to t_bind()), then the user may queue up
several connect indications before responding to any of them. The user should be
forewarned that the ISO transport provider may start a timer to be sure of obtaining a
response to the connect request in a finite time. So if the user queues the connect
indications for too long before responding to them, the transport provider initiating the
connection will disconnect it.

4-31XTI Library Functions

Bull Implementation Specifics

OSI Addressing
The OSI Communication Stack addressing is implementation specific and is described in
Appendix D. OSI Addressing

XX25 Addressing
The XX25 addressing is implementation specific and is described in Appendix E. XX25
Addressing

Supported Options
The supported options are listed in Appendix C. Bull-enhanced XTI Option Profiles.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

See also
fcntl(), t_accept(), t_alloc(), t_bind(), t_connect(), t_open(), t_optmgmt(), t_rcvconnect().

4-32 XTI/XX25 Administrator and User Guide

t_look Subroutine

Purpose
Look at the current event on a transport endpoint.

Syntax
#include <xti.h>

int t_look (fd)
int fd;

Description

Parameters Before call After call

fd x /

This function returns the current event on the transport endpoint specified by fd. This
function enables a transport provider to notify a transport user of an asynchronous event
when the user is calling functions in synchronous mode. Certain events require immediate
notification of the user and are indicated by a specific error, [TLOOK], on the current or next
function to be executed. Details on events which cause functions to fail [T_LOOK] may be
found in X/Open Transport Interface XPG4 CAE Specification Version 2,
 Section 4.6, Events and TLOOK Error Indication

This function also enables a transport user to poll a transport endpoint periodically for
asynchronous events.

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon success, t_look() returns a value that indicates which of the allowable events has
occurred, or returns zero if no event exists. One of the following events is returned:

T_LISTEN connection indication received.

T_CONNECT connect confirmation received.

T_DATA normal data received.

T_EXDATA expedited data received.

T_DISCONNECT
disconnect received.

T_UDERR datagram error indication.

T_ORDREL orderly release indication.

4-33XTI Library Functions

T_GODATA Flow control restrictions on normal data flow that led to a [TFLOW] error
have been lifted. Normal data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that led to a [TFLOW] error
have been lifted. Expedited data may be sent again.

On failure, –1 is returned and t_errno is set to indicate the error.

TCP/IP Implementation Specifics
As soon as a segment with the TCP urgent pointer set enters the TCP receive buffer, the
event T_EXDATA is indicated. T_EXDATA remains set until all data up to the byte pointed to
by the TCP urgent pointer has been received. If the urgent pointer is updated, and the user
has not yet received the byte previously pointed to by the urgent pointer, the update is
invisible to the user.

See also
t_open(), t_snd(), t_sndudata().

Application Usage
Additional functionality is provided through the Event Management interface (EM).

4-34 XTI/XX25 Administrator and User Guide

t_open Subroutine

Purpose
Establish a transport endpoint.

Syntax
#include <xti.h>
#include <fcntl.h>

int t_open (name, oflag, info)
char *name;
int oflag;
struct t_info *info;

Description

Parameters Before call After call

name x /

oflag x /

info–>addr / x

info–>options / x

info–>tsdu / x

info–>etsdu / x

info–>connect / x

info–>discon / x

info–>servtype / x

info–>flags / x

The t_open() function must be called as the first step in the initialisation of a transport
endpoint. This function establishes a transport endpoint by supplying a transport provider
identifier that indicates a particular transport provider (i.e., transport protocol) and returning
a file descriptor that identifies that endpoint.

The argument name points to a transport provider identifier and oflag identifies any open
flags (as in open()). The argument oflag is constructed from O_RDWR optionally bitwise
inclusive–or’ed with O_NONBLOCK. These flags are defined by the header <fcntl.h>. The
file descriptor returned by t_open() will be used by all subsequent functions to identify the
particular local transport endpoint.

This function also returns various default characteristics of the underlying transport protocol
by setting fields in the t_info structure. This argument points to a t_info which contains the
following members:

long addr; /* max size of the transport protocol */

/* address */

long options; /* max number of bytes of */

/* protocol–specific options */

long tsdu; /* max size of a transport service data */

/* unit (TSDU) */

long etsdu; /* max size of an expedited transport */

/* service data unit (ETSDU) */

long connect; /* max amount of data allowed on */

/* connection establishment functions */

4-35XTI Library Functions

long discon; /* max amount of data allowed on */

/* t_snddis() and t_rcvdis() functions */

long servtype; /* service type supported by the */

/* transport provider */

long flags; /* other info about the transport provider */

The values of the fields have the following meanings:

addr A value greater than zero indicates the maximum size of a transport
protocol address and a value of –2 specifies that the transport provider
does not provide user access to transport protocol addresses.

options A value greater than zero indicates the maximum number of bytes of
protocol–specific options supported by the provider and a value of –2
specifies that the transport provider does not support user–settable options.

tsdu A value greater than zero specifies the maximum size of a transport service
data unit (TSDU); a value of zero specifies that the transport provider does
not support the concept of TSDU, although it does support the sending of a
data stream with no logical boundaries preserved across a connection; a
value of –1 specifies that there is no limit on the size of a TSDU; and a
value of –2 specifies that the transfer of normal data is not supported by the
transport provider.

etsdu A value greater than zero specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero specifies that the
transport provider does not support the concept of ETSDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a value of –1 specifies that there is no limit
on the size of an ETSDU; and a value of –2 specifies that the transfer of
expedited data is not supported by the transport provider. The semantics of
expedited data may be quite different for different transport providers.

connect A value greater than zero specifies the maximum amount of data that may
be associated with connection establishment functions and a value of –2
specifies that the transport provider does not allow data to be sent with
connection establishment functions.

discon A value greater than zero specifies the maximum amount of data that may
be associated with the t_snddis() and t_rcvdis() functions and a value of –2
specifies that the transport provider does not allow data to be sent with the
abortive release functions.

servtype This field specifies the service type supported by the transport provider, as
described below.

flags This is a bit field used to specify other information about the transport
provider. If the T_SENDZERO bit is set in flags, this indicates the
underlying transport provider supports the sending of zero–length TSDUs.

If a transport user is concerned with protocol independence, the above sizes may be
accessed to determine how large the buffers must be to hold each piece of information.
Alternatively, the t_alloc() function may be used to allocate these buffers. An error will result
if a transport user exceeds the allowed data size on any function.

The servtype field of info specifies one of the following values on return:

T_COTS The transport provider supports a connection–mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection–mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless–mode service. For this
service type, t_open() will return –2 for etsdu, connect and discon.

4-36 XTI/XX25 Administrator and User Guide

A single transport endpoint may support only one of the above services at one time.

If info is set to a null pointer by the transport user, no protocol information is returned by
t_open().

Valid States
T_UNINIT.

Errors
On failure, t_errno is set to the following:

[TBADFLAG] An invalid flag is specified.

[TBADNAME] Invalid transport provider name.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
A valid file descriptor is returned upon successful completion. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
t_open() is called as the first step in the initialisation of a transport endpoint. This function
returns various default characteristics of the underlying transport protocol by setting fields in
the t_info structure.

The following, specific to Bull implementation, should be the values returned by the call to
t_open() with the indicated transport providers.

Parameters Before call After call

TCP/IP UDP/IP

name x / /

oflag x / /

info–>addr / 16 16

info–>options / 512 512

info–>tsdu / 0 8192

info–>etsdu / –1 –2

info–>connect / –2 –2

info–>discon / –2 –2

info–>servtype / T_COTS/T_COTS_ORD T_CLTS

info–>flags / T_SENDZERO T_SENDZERO

OSI Implementation Specifics
The function t_open is called as the first step in the initialisation of a transport endpoint. This
function returns various default characteristics associated with the different classes.
According to ISO 8073:1992, an OSI transport provider supports one or several out of five
different transport protocols, class 0 through class 4. The default characteristics returned in
the parameter info are those of the highest-numbered protocol class the transport provider
is able to support. If, for example, a transport provider supports classes 2 and 0, the
characteristics returned are those of class 2.

4-37XTI Library Functions

The table below, specific to Bull implementation, gives the characteristics associated with
the different classes.

Parameters Before call After call

Connection
class 0

Connection
class 1–4

ISO–over–
TCP CLTP

name x / / / /

oflag x / / / /

info–>addr / 107 107 68 107

info–>options / 2000 2000 256 2000

info–>tsdu / –1 –1 –1 (1)

info–>etsdu / –2 16 16 –2

info–>connect / –2 32 32 –2

info–>discon / –2 64 –2 –2

info–>servtype / T_COTS T_COTS T_COTS T_CLTS

info–>flags / 0 0 0 0

1. Depending on the Profile network (size of NSDU).

XX25 Implementation Specifics
The function t_open() is called at the first step in the initialisation of an X.25 endpoint. This
function returns various default characteristics associated with the different versions of X.25
that are supported. If, for example an X.25 provider supports X.25–1984 and X.25–1988,
the characteristics returned are those of X.25–1988. Il the X.25 provider is limited to
X.25–1980, the characteristics returned are those of X.25–1980.

The parameters of the t_open() function, for the different versions of the X.25 protocol
(X.25–1980, X.25–1984, X.25–1988, X.25–1993, and so on) are presented in the table
below.

Parameters Before call After call

X.25–1988
X.25–1984

X.25–1980

fd x / /

info–>addr x x

info–>options / x x

info–>tsdu / x (1) x (1)

info–>etsdu / –2/32 (2) –2/1 (3)

info–>connect / 16/128 (4) 16/128 (4)

info–>discon / 0/128 (5) 0/128 (5)

info–>servtype / T_COTS T_COTS

info–>flags / T_SENDZERO T_SENDZERO

1. –1 or an integral number greater than zero.

2. –2 if no expedited data transfer can be exchanged, and 32 otherwise.

3. –2 if no expedited data transfer can be exchanged, and 1 otherwise.

4. 16 in basic format or 128 in extented format (if the X.25 facility Fast Select has been
negotiated).

4-38 XTI/XX25 Administrator and User Guide

5. 0 in basic format or 128 in extended format (if the X.25 facility Fast Select has been
negotiated).

See also
open().

4-39XTI Library Functions

t_optmgmt Subroutine

Purpose
Manage options for a transport endpoint.

Syntax
#include <xti.h>

int t_optmgmt (fd, req, ret)
int fd;
struct t_optmgmt *req;
struct t_optmgmt *ret;

Description

Parameters Before call After call

fd x /

req–>opt.maxlen / /

req–>opt.len x /

req–>opt.buf x (x) /

req–>flags x /

ret–>opt.maxlen x /

ret–>opt.len / x

ret–>opt.buf ? (?)

ret–>flags / x

The t_optmgmt() function enables a transport user to retrieve, verify or negotiate protocol
options with the transport provider. The argument fd identifies a transport endpoint.

The req and ret arguments point to a t_optmgmt structure containing the following
members:

struct netbuf opt;

long flags;

The opt field identifies protocol options and the flags field is used to specify the action to
take with those options.

The options are represented by a netbuf structure in a manner similar to the address in
t_bind(). The argument req is used to request a specific action of the provider and to send
options to the provider. The argument len specifies the number of bytes in the options, buf
points to the options buffer and maxlen has no meaning for the req argument. The transport
provider may return options and flag values to the user through ret. For ret, maxlen specifies
the maximum size of the options buffer and buf points to the buffer where the options are to
be placed. On return, len specifies the number of bytes of options returned. The value in
maxlen has no meaning for the req argument, but must be set in the ret argument to specify
the maximum number of bytes the options buffer can hold.

Each option in the options buffer is defined in a t_opthdr structure possibly followed by an
option value.

4-40 XTI/XX25 Administrator and User Guide

struct t_opthdr {

unsigned long len;

/* total option length– sizeof(struct t_opthdr)

 + length of option value in bytes */

unsigned long level; /* protocol affected */

unsigned long name; /* option name */

unsigned long status; /* status value */

/* followed by the option value */

};

The level field of struct t_opthdr identifies the XTI level or a protocol of the transport
provider. The name field identifies the option within the level, and len contains its total
length, i.e. the length of the option header t_opthdr plus the length of the option value. If
t_optmgmt() is called with the action T_NEGOTIATE set, the status field of the returned
options contains information about the success or failure of a negotiation.

Each option in the input or output option buffer must start at a long–word boundary. The
macro OPT_NEXTHDR(pbuf, buflen, poption) can be used for that purpose. The
parameter pbuf denotes a pointer to an option buffer opt.buf, and buflen is its length. The
parameter poption points to the current option in the option buffer. OPT_NEXTHDR returns
a pointer to the position of the next option or returns a null pointer if the option buffer is
exhausted. The macro is helpful for writing and reading. Refer to <xti.h> include file for the
exact definition.

If the transport user specifies several options on input, all options must address the same
level.

If any option in the options buffer does not indicate the same level as the first option, or the
level specified is unsupported, then the t_optmgmt() request will fail with [TBADOPT]. If the
error is detected, some options have possibly been successfully negotiated. The transport
user can check the current status by calling t_optmgmt() with the T_CURRENT flag set.

Note: In X/Open Transport Interface XPG4 CAE Specification Version 2 (Chapter 5. The
Use of Options), a detailed description about the use of options should be read
before using this function.

The flags field of req must specify one of the following actions:

T_NEGOTIATE This action enables the transport user to negotiate option values.
The user specifies the options of interest and their values in the buffer
specified by req–>opt.buf and req–>opt.len. The negotiated option values
are returned in the buffer pointed to by ret–>opt.buf. The status field of each
returned option is set to indicate the result of the negotiation. The value is
T_SUCCESS if the proposed value was negotiated, T_PARTSUCCESS if a
degraded value was negotiated, T_FAILURE if the negotiation failed
(according to the negotiation rules), T_NOTSUPPORT if the transport
provider does not support this option or illegally requests negotiation of a
privileged option, and T_READONLY if modification of a read–only option
was requested. If the status is T_SUCCESS, T_FAILURE,
T_NOTSUPPORT or T_READONLY, the returned option value is the same
as the one requested on input.
The overall result of the negotiation is returned in ret–>flags.
This field contains the worst single result, whereby the rating is done
according to the order T_NOTSUPPORT, T_READONLY, T_FAILURE,
T_PARTSUCCESS, T_SUCCESS. The value T_NOTSUPPORT is the
worst result and T_SUCCESS is the best.

4-41XTI Library Functions

For each level, the option T_ALLOPT (see below) can be requested on
input. No value is given with this option; only the t_opthdr part is specified.
This input requests to negotiate all supported options of this level to their
default values. The result is returned option by option in ret–>opt.buf. (Note
that depending on the state of the transport endpoint, not all requests to
negotiate the default value may be successful.)

T_CHECK This action enables the user to verify whether the options specified in req
are supported by the transport provider.
If an option is specified with no option value (it consists only of a t_opthdr
structure), the option is returned with its status field set to T_SUCCESS if it
is supported, T_NOTSUPPORT if it is not or needs additional user
privileges, and T_READONLY if it is read–only (in the current XTI state). No
option value is returned.
If an option is specified with an option value, the status field of the returned
option has the same value, as if the user had tried to negotiate this value
with T_NEGOTIATE. If the status is T_SUCCESS, T_FAILURE,
T_NOTSUPPORT or T_READONLY, the returned option value is the same
as the one requested on input.
The overall result of the option checks is returned in ret–>flags. This field
contains the worst single result of the option checks, whereby the rating is
the same as for T_NEGOTIATE.
Note that no negotiation takes place. All currently effective option values
remain unchanged.

T_DEFAULT This action enables the transport user to retrieve the default option values.
The user specifies the options of interest in req–>opt.buf. The option values
are irrelevant and will be ignored; it is sufficient to specify the t_opthdr part
of an option only. The default values are then returned in ret–>opt.buf.
The status field returned is T_NOTSUPPORT if the protocol level does not
support this option or the transport user illegally requested a privileged
option, T_READONLY if the option is read–only, and set to T_SUCCESS in
all other cases. The overall result of the request is returned in ret–>flags.
This field contains the worst single result, whereby the rating is the same as
for T_NEGOTIATE.
For each level, the option T_ALLOPT (see below) can be requested on
input. All supported options of this level with their default values are then
returned. In this case, ret–>opt.maxlen must be given at least the value of
info–>options (see t_getinfo(), t_open()) before the call.

T_CURRENT This action enables the transport user to retrieve the currently effective
option values. The user specifies the options of interest in req–>opt.buf.
The option values are irrelevant and will be ignored; it is sufficient to specify
the t_opthdr part of an option only. The currently effective values are then
returned in ret–>opt.buf.
The status field returned is T_NOTSUPPORT if the protocol level does not
support this option or the transport user illegally requested a privileged
option, T_READONLY if the option is read–only, and set to T_SUCCESS in
all other cases. The overall result of the request is returned in ret–>flags.
This field contains the worst single result, whereby the rating is the same as
for T_NEGOTIATE.
For each level, the option T_ALLOPT (see below) can be requested on
input. All supported options of this level with their currently effective values
are then returned.

4-42 XTI/XX25 Administrator and User Guide

The option T_ALLOPT can only be used with t_optmgmt() and the actions T_NEGOTIATE,
T_DEFAULT and T_CURRENT. It can be used with any supported level and addresses all
supported options of this level. The option has no value; it consists of a t_opthdr only. Since
in a t_optmgmt() call only options of one level may be addressed, this option should not be
requested together with other options. The function returns as soon as this option has been
processed.

Options are independently processed in the order they appear in the input option buffer. If
an option is multiply input, it depends on the implementation whether it is multiply output or
whether it is returned only once.

Transport providers may not be able to provide an interface capable of supporting
T_NEGOTIATE and/or T_CHECK functionalities. When this is the case, the error
[TNOTSUPPORT] is returned.

The function t_optmgmt() may block under various circumstances and depending on the
implementation. The function will block for instance, if the protocol addressed by the call
resides on a separate controller. It may also block due to flow control constraints, i.e. if data
sent previously across this transport endpoint has not yet been fully processed. If the
function is interrupted by a signal, the option negotiations that have been done so far may
remain valid. The behaviour of the function is not changed if O_NONBLOCK is set.

XTI–level options
XTI–level options are not specific for a particular transport provider. An XTI implementation
supports none, all or any subset of the options defined below. An implementation may
restrict the use of any of these options by offering them only in the privileged or read–only
mode, or if fd relates to specific transport providers.

The subsequent options are not association–related. They may be negotiated in all XTI
states except T_UNINIT.

The protocol level is XTI_GENERIC. For this level, the following options are defined:

option name type of option value legal option value meaning

XTI_DEBUG array of
 unsigned longs

see text enable debugging

XTI_LINGER struct linger see text linger on close
 if data is present

XTI_RCVBUF unsigned long size in octets receive buffer size

XTI_RCVLOWAT unsigned long size in octets receive
low–water mark

XTI_SNDBUF unsigned long size in octets send buffer size

XTI_SNDLOWAT unsigned long size in octets send low–water mark

Figure 4. XTI-level options

A request for XTI_DEBUG is an absolute requirement.

A request to activate XTI_LINGER is an absolute requirement; the timeout value to this
option is not.

XTI_RCVBUF, XTI_RCVLOWAT, XTI_SNDBUF and XTI_SNDLOWAT are not absolute
requirements.

XTI_DEBUG This option enables debugging. The values of this option are
implementation–defined. Debugging is disabled if the option is specified
with ”no value”, i.e. with an option header only.

4-43XTI Library Functions

The system supplies utilities to process the traces. Note that an
implementation may also provide other means for debugging.

XTI_LINGER This option is used to linger the execution of a t_close() or close() if send
data is still queued in the send buffer. The option value specifies the linger
period. If a close() or t_close() is issued and the send buffer is not empty,
the system attempts to send the pending data within the linger period
before closing the endpoint. Data still pending after the linger period has
elapsed is discarded.

Depending on the implementation, t_close() or close() either block for at
maximum the linger period, or immediately return, whereupon the system
holds the connection in existence for at most the linger period.

The option value consists of a structure t_linger declared as:

struct t_linger {

long l_onoff; /* switch option on/off */

long l_linger; /* linger period in seconds */

}

Legal values for the field l_onoff are:
T_NO switch option off
T_YES activate option.

The value l_onoff is an absolute requirement.

The field l_linger determines the linger period in seconds. The transport
user can request the default value by setting the field to T_UNSPEC. The
default timeout value depends on the underlying transport provider (it is
often T_INFINITE) and all non-negative numbers.

The l_linger value is not an absolute requirement. The implementation may
place upper and lower limits to this value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Note that this option does not linger the execution of t_snddis().

XTI_RCVBUF This option is used to adjust the internal buffer size allocated for the receive
buffer. The buffer size may be increased for high-volume connections, or
decreased to limit the possible backlog of incoming data.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_RCVLOWAT
This option is used to set a low–water mark in the receive buffer. The option
value gives the minimum number of bytes that must have been
accumulated in the receive buffer before they become visible to the
transport user. If and when the amount of accumulated receive data
exceeds the low–water mark, a T_DATA event is created, an event
mechanism (e.g. poll() or select()) indicates the data, and the data can be
read by t_rcv() or t_rcvudata().

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

4-44 XTI/XX25 Administrator and User Guide

XTI_SNDBUF This option is used to adjust the internal buffer size allocated for the send
buffer.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_SNDLOWAT
This option is used to set a low–water mark in the send buffer. The option
value gives the minimal number of bytes that must have accumulated in the
send buffer before they are sent.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TACCES] The user does not have permission to negotiate the specified options.

[TBADOPT] The specified protocol options were in an incorrect format or contained
illegal information.

[TBADFLAG] An invalid flag was specified.

[TBUFOVFLW] The number of bytes allowed for an incoming argument (maxlen) is gretaer
than 0 but not sufficient to store the value of that argument. The information
to be returned in ret will be discarded.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

[TNOTSUPPORT]
This function is not supported by the transport provider.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

Bull Implementation Specifics

Supported Options
The options supported by Bull-enhanced XTI: XTI_GENERIC, ISO_TP, INET_TCP and
INET_IP, X25_NP are listed in Bull-enhanced XTI Options in Appendix C.

The XTI_DEBUG option of the XTI_GENERIC protocol level is implemented through the
Bull-enhanced XTI Trace tool.

4-45XTI Library Functions

Setting Trace Levels
t_optmgmt() allows to modify XTI Trace Levels in a whole application or in some parts of
the application. The XTI Trace Levels thus defined overwrite those previously configured by
the administrator or the user.

struct t_opthdr {

unsigned long len;

/* total option length– sizeof(struct t_opthdr)

 + length of option value in bytes */

unsigned long level; /* protocol affected */

unsigned long name; /* option name */

unsigned long status; /* status value */

/* followed by the option value */

};

struct t_deblevel {

unsigned long LEVEL_type; /* CON_TRACE_LEVEL=1 */

unsigned long LEVEL_value; /* Trace level value */

};

The XTI trace levels are defined in a t_opthdr structure form, followed by a t_deblevel
structure which provides the option value (see <xti.h>):

• the level field of t_opthdr equals XTI_GENERIC.

• the name field equals XTI_DEBUG.

• the len field equals the total lenght = size of t_opthdr + size of t_deblevel.

• the LEVEL_type field of t_deblevel equals CON_TRACE_LEVEL, which means that the
traces are set both in the XTI library and XTI kernel.

• the LEVEL_value field contains the XTI trace levels.
The Trace level variable is a 32 bits-variable, where each bit represents a trace level.
The trace levels are a set of values between XTI_LEVEL0 and XTI_LEVEL32.
XTI_LEVELn is tested with the mask 2n–1 (the n–th bit from the least significant bit) and
XTI_LEVEL0 is always set.

XTI_LEVEL0 Warning and protocol errors.

XTI_LEVEL10 State transitions in Automatas.
For each transition, the old state, the received event and the new state are
traced.

XTI_LEVEL11 Entry and exit points of every XTI libraries functions and xti4mod module
primitives (open, close and put procedures).
An entry trace reports the pointers addresses and simple parameters
values given on the function call and an exit trace reports the return value if
any. In order to trace contents of input and output parameters,
XTI_LEVEL24 must be set.

XTI_LEVEL24 Input and output parameters.
Contents of input and output parameters are traced on the entry and exit of
each function.
Must be set with XTI_LEVEL11.

XTI_LEVEL26 TPI messages sent by the xti4mod module to the lower layer and those
received xti4mod from the lower layer.

XTI_LEVEL27 Data part of messages transmitted through XTI.

XTI_LEVEL28 CONNECTION functionnalities.
Trace the connection functions, t_accept(), t_bind(), t_close(), t_connect(),
t_listen(), t_open(), t_rcvconnect(), t_rcvdis(), t_rcvrel(), t_snddis(),
t_sndrel(), t_unbind().
Must be set with XTI_LEVEL11.

4-46 XTI/XX25 Administrator and User Guide

Note: If the t_listen() primitive is executed in asynchronous mode and is the only XTI
primitive called in a loop, the identical sequence of traces are not repeated. A trace
indicates the number of repetitions.

XTI_LEVEL29 MANAGEMENT functionnalities.
Trace the management functions, t_alloc(), t_error(), t_free(), t_getinfo(),
t_getstate(), t_look(), t_optmgmt(), t_sync(), and t_optmgmt().
Must be set with XTI_LEVEL11.

Note: If the t_look() primitive is executed in asynchronous mode and the only XTI primitive
called in a loop, the identical sequence of traces are not repeated. A trace indicates
the number of repetitions.

XTI_LEVEL30 DATA TRANSFER functionnalities.
Trace the data transfer functions,t_rcv(), t_rcvudata(), t_rcvuderr(), t_snd()
and t_sndudata().
Must be set with XTI_LEVEL11.

See also
t_accept(), t_alloc(), t_connect(), t_getinfo(), t_listen(), t_open(), t_rcvconnect().

Bull-enhanced XTI Options in Appendix C.

4-47XTI Library Functions

t_rcv Subroutine

Purpose
Receive data or expedited data sent over a connection.

Syntax
#include <xti.h>

int t_rcv (fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int *flags;

Description

Parameters Before call After call

fd x /

buf x (x)

nbytes x /

flags / x

This function receives either normal or expedited data. The argument fd identifies the local
transport endpoint through which data will arrive, buf points to a receive buffer where user
data will be placed and nbytes specifies the size of the receive buffer. The argument flags
may be set on return from t_rcv() and specifies optional flags as described below.

By default, t_rcv() operates in synchronous mode and will wait for data to arrive if none is
currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()), t_rcv() will
execute in asynchronous mode and will fail if no data is available. (See [TNODATA] below.)

On return from the call, if T_MORE is set in flags, this indicates that there is more data and
the current transport service data unit (TSDU) or expedited transport service data unit
(ETSDU) must be received in multiple t_rcv() calls. In the asynchronous mode, the
T_MORE flag may be set on return from the t_rcv() call even when the number of bytes
received is less than the size of the receive buffer specified. Each t_rcv() with the T_MORE
flag set indicates that another t_rcv() must follow to get more data for the current TSDU.
The end of the TSDU is identified by the return of a t_rcv() call with the T_MORE flag not
set. If the transport provider does not support the concept of a TSDU as indicated in the info
argument on return from t_open() or t_getinfo(), the T_MORE flag is not meaningful and
should be ignored. If nbytes is greater than zero on the call to t_rcv(), t_rcv() will return 0
only if the end of a TSDU is being returned to the user.

On return, the data returned is expedited data if T_EXPEDITED is set in flags. If the number
of bytes of expedited data exceeds nbytes, t rcv() will set T_EXPEDITED and T_MORE on
return from the initial call. Subsequent calls to retrieve the remaining ETSDU will have
T_EXPEDITED set on return. The end of the ETSDU is identified by the return of a t_rcv()
call with the T_MORE flag not set.

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for the T_DATA or T_EXDATA events using
the t_look function. Additionally, the process can arrange to be notified via the EM interface.

Valid States
T_DATAXFER, T_OUTREL.

4-48 XTI/XX25 Administrator and User Guide

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNODATA] O_NONBLOCK was set, but no data is currently available from the
transport provider.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
On successful completion, t_rcv() returns the number of bytes received.
Otherwise, it returns –1 on failure and t_errno is set to indicate the error.

TCP/IP Implementation Specifics
The T_MORE flag should be ignored if normal data is delivered. If a byte in the data stream
is pointed to by the TCP urgent pointer, as many bytes as possible preceding this marked
byte and the marked byte itself are denoted as urgent data and are received with the
T_EXPEDITED flag set. If the buffer supplied by the user is too small to hold all urgent data,
the T_MORE flag will be set, indicating that urgent data still remains to be read. Note that
the number of bytes received with the T_EXPEDITED flag set is not necessarily equal to the
number of bytes sent by the peer user with the T_EXPEDITED flag set.

OSI Implementation Specifics
If expedited data arrives after part of a TSDU has been retrieved, receipt of the remainder of
the TSDU will be suspended until the ETSDU has been processed. Only after the full
ETSDU has been retrieved (T_MORE not set), will the remainder of the TSDU be available
to the user.

The t_rcv subroutine is not applicable for ConnectionLess Transport Service. See
t_rcvudata().

XX25 Implementation Specifics
The behaviour of the function t_rcv() remains unchanged. The function can operate in
synchronous and synchronous modes. It follows the current flow control rules.

The default behaviour is to acknowledge, in an automatic way, data sent with the Delivery
Confirmation bit and expedited data.

The optional explicit acknowledgement is selected in the functions t_optmgmt(), t_connect(),
t_accept() either with the T_X25_USER_DACK option, for the acknowledgement of data
sent with the D bit, or with the T_X25_USER_EACK option, for the acknowledgement of
expedited data.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the remainder of
the TSDU is suspended until the ETSDU has been processed. Only after the full ETSDU
has been retrieved (the T_MORE flag not set), the remainder of the TSDU is made available
to the user.

4-49XTI Library Functions

In addition to the T_EXPEDITED and T_MORE flags, the followings flags can be set in the
argument flags:

• On return from the call, if T_X25_D is set in flags, this indicates that the data returned
was sent with the D bit, and the T_X25_USER_DACK option is set. This data has to be
acknowledged explicitly by the receiver.

• On return from the call, if the T_X25_DACK flag is set, data, previously sent with the
D bit, has been acknowledged.

• On return from the call, if the T_X25_EACK flag is set, the previously sent expedited data
has been acknowledged.

Note: If either of T_X25_DACK or T_X25_EACK is set in flags, then no other flags are
set and no user data is returned to the user.

• On return from the call, if T_X25_Q is set in flags, the data returned are qualified.

• On return from the call, if T_X25_RST is set in flags, this indicates that a reset indication
occurred.

When T_X25_RST is returned, the argument buf contains the cause and diagnostic of the
reset. Each one is coded into one octet. The cause is encoded in the first octet, and the
diagnostic in the second octet. If the user’s buffer is less than two bytes long then the
diagnostic value is discarded, and if the length is zero the cause is also discarded.

See also
fcntl(), t_getinfo(), t_look(), t_open(), t_snd().

4-50 XTI/XX25 Administrator and User Guide

t_rcvconnect Subroutine

Purpose
Receive the confirmation from a connect request.

Syntax
#include <xti.h>

int t_rcvconnect (fd, call)
int fd;
struct t_call *call;

Description

Parameters Before call After call

fd x /

call–>addr.maxlen x /

call–>addr.len / x

call–>addr.buf ? (?)

call–>opt.maxlen x /

call–>opt.len / x

call–>opt.buf ? (?)

call–>udata.maxlen x /

call–>udata.len / x

call–>udata.buf ? (?)

call–>sequence / /

This function enables a calling transport user to determine the status of a previously sent
connect request and is used in conjunction with t_connect() to establish a connection in
asynchronous mode. The connection will be established on successful completion of this
function.

The argument fd identifies the local transport endpoint where communication will be
established, and call contains information associated with the newly established connection.
The argument call points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In call, addr returns the protocol address associated with the responding transport endpoint,
opt presents any options associated with the connection, udata points to optional user data
that may be returned by the destination transport user during connection establishment and
sequence has no meaning for this function.

The maxlen field of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However, call may be a null pointer, in which case no
information is given to the user on return from t_rcvconnect(). By default, t_rcvconnect()
executes in synchronous mode and waits for the connection to be established before
returning. On return, the addr, opt and udata fields reflect values associated with the
connection.

4-51XTI Library Functions

If O_NONBLOCK is set (via t_open() or fcntl()), t_rcvconnect() executes in asynchronous
mode, and reduces to a poll for existing connect confirmations. If none are available,
t_rcvconnect() fails and returns immediately without waiting for the connection to be
established. (See [TNODATA] below.) In this case, t_rcvconnect() must be called again to
complete the connection establishment phase and retrieve the information returned in call.

Valid States
T_OUTCON

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument and the
connect information to be returned in call will be discarded. The provider’s
state, as seen by the user, will be changed to T_DATAXFER.

[TNODATA] O_NONBLOCK was set, but a connect confirmation has not yet arrived.

[TLOOK] An asynchronous event has occurred on this transport connection and
requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
Since user data cannot be exchanged during the connection establishment phase,
call–>udata.maxlen must be set to 0 before the call to t_rcvconnect(). On return, the
call–>addr structure contains the remote calling socket.

OSI Implementation Specifics
On return, the call–>addr structure contains the remote calling TSAP. Since, at most, 32
octets of data will be returned to the user, call–>udata.maxlen should be set to 32 before the
call to t_rcvconnect().

XX25 Implementation Specifics
On return:

• the call–>addr structure contains the responding X.25 address,

• the call–>udata.len field is
– 0 in basic format,
– in the range 0 to 128 in extended format, format negotiated using the option

T_X25_FASTSELECT. (Refer to Appendix C. Bull-enhanced XTI Options.)
Therefore call–>udata.maxlen should be set to 0 or 128, according to the format, before
the call to t_rcvconnect().

4-52 XTI/XX25 Administrator and User Guide

Bull Implementation Specifics

OSI Addressing
The OSI Communication Stack addressing is implementation specific and is described in
Appendix D. OSI Addressing

XX25 Addressing
The XX25 addressing is implementation specific and is described in Appendix E. XX25
Addressing.

Supported Options
The supported options are listed in Appendix C. Bull-enhanced XTI Option Profiles.

See also
t_accept(), t_alloc(), t_bind(), t_connect(), t_listen(), t_open(), t_optmgmt().

4-53XTI Library Functions

t_rcvdis Subroutine

Purpose
Retrieve information from disconnect.

Syntax
#include <xti.h>

int t_rcvdis (fd, discon)
int fd;
struct t_discon *discon;

Description

Parameters Before call After call

fd x /

discon–>udata.maxlen x /

discon–>udata.len / x

discon–>udata.buf ? (?)

discon–>reason / x

discon–>sequence / ?

This function is used to identify the cause of a disconnect and to retrieve any user data sent
with the disconnect. The argument fd identifies the local transport endpoint where the
connection existed, and discon points to a t_discon structure containing the following
members:

struct netbuf udata;

int reason;

int sequence;

The field reason specifies the reason for the disconnect through a protocol–dependent
reason code, udata identifies any user data that was sent with the disconnect, and
sequence may identify an outstanding connect indication with which the disconnect is
associated. The field sequence is only meaningful when t_rcvdis() is issued by a passive
transport user who has executed one or more t_listen() functions and is processing the
resulting connect indications. If a disconnect indication occurs, sequence can be used to
identify which of the outstanding connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the value of
reason or sequence, discon may be a null pointer and any user data associated with the
disconnect will be discarded. However, if a user has retrieved more than one outstanding
connect indication (via t_listen()) and discon is a null pointer, the user will be unable to
identify with which connect indication the disconnect is associated.

Valid States
T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON (ocnt >0).

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNODIS] No disconnect indication currently exists on the specified transport
endpoint.

4-54 XTI/XX25 Administrator and User Guide

[TBUFOVFLW] The number of bytes allocated for incoming data (maxlen) is greater than 0
but not sufficient to store the data. If fd is a passive endpoint with ocnt > 1,
it remains in state T_INCON; otherwise, the endpoint state is set to T_IDLE.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
Since data may not be sent with a disconnect, the discon–>udata structure will not be
meaningful.

OSI Implementation Specifics
Since at most 64 octets of data will be returned to the user, discon–>udata.maxlen should
be set to 64 before the call to t_rcvdis().

XX25 Implementation Specifics
The field discon–>reason contains the X.25 cause and diagnostic of the connection release.
The cause and the diagnostic are both encoded in an octet and can be retrieved by using
respectively the T_X25_GET_CAUSE macro and the T_X25_GET_DIAG macro.

This function allows operations in accordance with XTI, but cannot be used to retrieve
charging information or the address of the user that released the connection. For these
purposes, the user has to call the function t_optmgmt() and retrieve the meaningful options.

On return, the discon–>udata.len field is

• 0 in basic format,

• in the range 0 to 128 in extended format, format negotiated using the option
T_X25_FASTSELECT. (Refer to Appendix C. Bull-enhanced XTI Options.)

Therefore discon–>udata.maxlen should be set to 0 or 128, according to the format, before
the call to t_rcvdis().

Bull Implementation Specifics
The field reason specifies the reason for the disconnect and its meaning is
protocol-dependent:

For TCP/IP
[XTID_TPINIT] Initiated by transport provider.
[XTID_REMWITHDRAW] Connect request withdrawn by remote.
[XTID_REMREJECT] Connect request rejected by remote.
[XTID_REMINIT] Disconnect request initiated by remote.

For OSI
The reason can be analyzed using the command pmaderror.

4-55XTI Library Functions

For XX25
Causes and diagnostics are described in ISO 8208 standard.

For NetShare (RFC 1006)
Same values as for TCP/IP and this additional reason.

0x80 Normal disconnect initiated by session entity.

See also
t_alloc(), t_connect(), t_listen(), t_open(), t_snddis().

4-56 XTI/XX25 Administrator and User Guide

t_rcvrel Subroutine

Purpose
Acknowledge receipt of an orderly release indication.

Syntax
#include <xti.h>

int t_rcvrel (fd)
int fd;

Description

Parameters Before call After call

fd x /

This function is used to acknowledge receipt of an orderly release indication. The argument
fd identifies the local transport endpoint where the connection exists. After receipt of this
indication, the user may not attempt to receive more data because such an attempt will
block forever. However, the user may continue to send data over the connection if t_sndrel()
has not been called by the user. This function is an optional service of the transport
provider, and is only supported if the transport provider returned service type
T_COTS_ORD on t_open() or t_getinfo().

Valid States
T_DATAXFER, T_OUTREL.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNOREL] No orderly release indication currently exists on the specified transport
endpoint.

[TLOOK] An asynchronous event has occurred on this transport connection and
requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Uppon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

See also
t_getinfo(), t_open(), t_sndrel().

4-57XTI Library Functions

t_rcvudata Subroutine

Purpose
Receive a data unit.

Syntax
#include <xti.h>

int t_rcvudata (fd, unitdata, flags)
int fd;
struct t_unitdata *unitdata;
int *flags;

Description

Parameters Before call After call

fd x /

unitdata–>addr.maxlen x /

unitdata–>addr.len / x

unitdata–>addr.buf ? (?)

unitdata–>opt.maxlen x /

unitdata–>opt.len / x

unitdata–>opt.buf ? (?)

unitdata–>udata.maxlen x /

unitdata–>udata.len / x

unitdata–>udata.buf ? (?)

flags / x

This function is used in connectionless mode to receive a data unit from another transport
user. The argument fd identifies the local transport endpoint through which data will be
received, unitdata holds information associated with the received data unit, and flags is set
on return to indicate that the complete data unit was not received. The argument unitdata
points to a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

The maxlen field of addr, opt and udata must be set before calling this function to indicate
the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending user, opt
identifies options that were associated with this data unit, and udata specifies the user data
that was received.

By default, t_rcvudata() operates in synchronous mode and will wait for a data unit to arrive
if none is currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()),
t_rcvudata will execute in asynchronous mode and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold the current data
unit, the buffer will be filled and T_MORE will be set in flags on return to indicate that
another t_rcvudata() should be called to retrieve the rest of the data unit. Subsequent calls
to t_rcvudata() will return zero for the length of the address and options until the full data
unit has been received.

4-58 XTI/XX25 Administrator and User Guide

Valid States
T_IDLE.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNODATA] O_NONBLOCK was set, but no data units are currently available from the
transport provider.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or options
(maxlen) is greater than 0 but not sufficient to store the information. The
unit data information to be returned in unitdata will be discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

OSI Implementation Specifics
The unitdata–>addr structure specifies the remote TSAP. If the T_MORE flag is set, an
additional t_rcvudata() call is needed to retrieve the entire TSDU. Only normal data is
returned via the t_rcvudata() call. This function is not supported by an ISO–over–TCP
transport provider.

Bull Implementation Specifics
Supported options

The supported options are listed in Bull-enhanced XTI Option Profiles in Appendix C.

See also
fcntl(), t_alloc(), t_open(), t_rcvuderr(), t_sndudata().

4-59XTI Library Functions

t_rcvuderr Subroutine

Purpose
Receive a unit data error indication.

Syntax
#include <xti.h>

int t_rcvuderr (fd, uderr)
int fd;
struct t_uderr *uderr;

Description

Parameters Before call After call

fd x /

uderr–>addr.max-
len

x /

uderr–>addr.len / x

uderr–>addr.buf ? (?)

uderr–>opt.maxlen x /

uderr–>opt.len / x

uderr–>opt.buf ? (?)

uderr–>error / x

This function is used in connectionless mode to receive information concerning an error on
a previously sent data unit, and should only be issued following a unit data error indication.
It informs the transport user that a data unit with a specific destination address and protocol
options produced an error. The argument fd identifies the local transport endpoint through
which the error report will be received, and uderr points to a t_uderr structure containing the
following members:

struct netbuf addr;

struct netbuf opt;

long error;

The maxlen field of addr and opt must be set before calling this function to indicate the
maximum size of the buffer for each.

On return from this call, the addr structure specifies the destination protocol address of the
erroneous data unit, the opt structure identifies options that were associated with the data
unit and error specifies a protocol dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may be set to
a null pointer, and t_rcvuderr() will simply clear the error indication without reporting any
information to the user.

Valid States
T_IDLE.

4-60 XTI/XX25 Administrator and User Guide

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNOUDERR] No unit data error indication currently exists on the specified transport
endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or options
(maxlen) is greater than 0 but not sufficient to store the information. The
unit data error information to be returned in uderr will be discarded.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

OSI Implementation Specifics
The uderr–>addr structure contains the remote TSAP.

Bull Implementation Specifics
Supported options

The supported options are listed in Bull-enhanced XTI Option Profiles in Appendix C.

See also
t_rcvudata(), t_sndudata().

4-61XTI Library Functions

t_snd Subroutine

Purpose
Send data or expedited data over a connection.

Syntax
#include <xti.h>

int t_snd (fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned int nbytes;
int flags;

Description

Parameters Before call After call

fd x /

buf x (x) /

nbytes x /

flags x /

This function is used to send either normal or expedited data. The argument fd identifies the
local transport endpoint over which data should be sent, buf points to the user data, nbytes
specifies the number of bytes of user data to be sent and flags specifies any optional flags
described below:

T_EXPEDITED If set in flags, the data will be sent as expedited data and will be subject to
the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the transport
service data unit (TSDU) (or expedited transport service data unit –
ETSDU) is being sent through multiple t_snd() calls. Each t_snd() with the
T_MORE flag set indicates that another t_snd() will follow with more data
for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_snd() call with the
T_MORE flag not set. Use of T_MORE enables a user to break up large
logical data units without losing the boundaries of those units at the other
end of the connection. The flag implies nothing about how the data is
packaged for transfer below the transport interface. If the transport provider
does not support the concept of a TSDU as indicated in the info argument
on return from t_open() or t_getinfo(), the T_MORE flag is not meaningful
and will be ignored if set.

The sending of a zero–length fragment of a TSDU or ETSDU is only
permitted where this is used to indicate the end of a TSDU or ETSDU, i.e.
when the T_MORE flag is not set. Some transport providers also forbid
zero–length TSDUs and ETSDUs. Refer to X/Open Transport Interface
XPG4 CAE Specification Version 2, Appendix A, for a fuller explanation.

By default, t snd() operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is
made. However, if O_NONBLOCK is set (via t_open() or fcntl()), t_snd() will execute in
asynchronous mode, and will fail immediately if there are flow control restrictions. The
process can arrange to be informed when the flow control restrictions are cleared via either
t_look() or the EM interface.

4-62 XTI/XX25 Administrator and User Guide

On successful completion, t_snd() returns the number of bytes accepted by the transport
provider. Normally this will equal the number of bytes specified in nbytes. However, if
O_NONBLOCK is set, it is possible that only part of the data will actually be accepted by the
transport provider. In this case, t_snd() will return a value that is less than the value of
nbytes. If nbytes is zero and sending of zero octets is not supported by the underlying
transport service, t_snd() will return –1 with t_errno set to [TBADDATA].

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as
returned in the TSDU or ETSDU fields of the info argument returned by t_getinfo().

The error [TLOOK] may be returned to inform the process that an event (e.g., a disconnect)
has occurred.

Valid States
T_DATAXFER, T_INREL.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADDATA] Illegal amount of data:

• A single send was attempted specifying a TSDU (ETSDU) or fragment TSDU (ETSDU)
greater than that specified by the current values of the TSDU or ETSDU fields in the info
argument;

• a send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU (ETSDU) is not
supported by the provider,

• multiple sends were attempted resulting in a TSDU (ETSDU) larger than that specified by
the current value of the TSDU or ETSDU fields in the info argument – the ability of an XTI
implementation to detect such an error case is implementation–dependent (see Caveats
below and Implementation Specifics).

[TBADFLAG] An invalid flag was specified.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
On successful completion, t_snd() returns the number of bytes accepted by the transport
provider. Otherwise, –1 is returned on failure and t_errno is set to indicate the error.

Note: In asynchronous mode, if the number of bytes accepted by the transport provider is
less than the number of bytes requested, this may indicate that the transport
provider is blocked due to flow control.

4-63XTI Library Functions

Caveats
It is important to remember that the transport provider treats all users of a transport endpoint
as a single user. Therefore if several processes issue concurrent t_snd() calls then the
different data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by
XTI. In this case, an implementation–dependent error will result (generated by the transport
provider) perhaps on a subsequent XTI call. This error may take the form of a connection
abort, a [TSYSERR], a [TBADDATA] or a [TPROTO] error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI,
t_snd() fails with [TBADDATA].

TCP/IP Implementation Specifics
The T_MORE flag should be ignored. If t_snd() is called with more than one byte specified
and with the T_EXPEDITED flag set, then the last byte of the buffer will be the byte pointed
to by the TCP urgent pointer. If the T_EXPEDITED flag is set, at least one byte must be
sent.

Implementor’s note: data for a t_snd() call with the T_EXPEDITED flag set may not pass
data sent previously.

OSI Implementation Specifics
Zero byte TSDUs are not supported. The T_EXPEDITED flag is not a legal flag unless
expedited data has been negotiated for this connection.

The t_snd subroutine is not applicable for ConnectionLess Transport Service. See
t_sndudata().

XX25 Implementation Specifics
The behaviour of the function t_snd() remains unchanged. The function can operate in
synchronous and asynchronous modes.

In addition to the T_EXPEDITED and T_MORE flags, the following flags can be set in the
argument flags:

• T_X25_D
If set in flags, the data is sent with the D bit set. This data has to be acknowledged by the
peer.
As with normal t_snd() requests, the user may issue multiple t_snd() requests with the
D–bit set which will be queued by the provider. A separate acknowledgement is
generated for each one. The normal flow control mechanism applies: if a t_snd() cannot
be accepted, the [TFLOW] code is returned.
Note: As a D–bit send requires end–to–end acknowledgement, it can considerably

delay the transmission of further packets.

• T_X25_Q
If set in flags, the data is sent as normal qualified data.

• T_X25_RST
If set in flags, this indicates to the underlying provider that a request or a confirmation of
reset is required.
The t_snd() function returns immediately. If further t_snd() calls are accepted while the
reset request is being performed they remain pending until the X.25 provider receives the
confirmation of reset. This confirmation of reset is not returned to the user. The normal
flow control mechanism may result in a subsequent t_snd() in synchronous mode
blocking, or t_snd() call in asynchronous mode returning the [TFLOW] error.
The cause and diagnostic of a reset request are encoded in the two first octets of the buf
argument. The cause in the first octet and the diagnostic in the second octet. If the buf
argument is NULL or the buf–>len is 0, then a cause of 0 and a diagnostic of 0xFA (that
means user resynchronisation) are used. If buf–>len is 1, the diagnostic is set to 0.

4-64 XTI/XX25 Administrator and User Guide

Any cause and diagnostic passed in the t_snd() call are ignored by the X.25 provider
when sending a reset confirmation.
Data received after a successful t_snd() call requesting a reset is data transmitted by the
peer after completion of the reset.

• T_X25_DACK
If set in flags, this indicates that an explicit acknowledgement of data with the D bit is
sent.

• T_X25_EACK
If set in flags, this indicates that an explicit acknowledgement of expedited data is sent.
Note: When either the T_X25_DACK or the T_X25_EACK flag is set, no other flags can

be set, and there must be no user data present on the t_snd() call.

An additional error code is also defined:

• [TX25NOTOACK]
The user attempts to send data acknowledgement but there is currently no pending
received data to acknowledge.

See also
t_getinfo(), t_open(), t_rcv().

4-65XTI Library Functions

t_snddis Subroutine

Purpose
Send user-initiated disconnect request.

Syntax
#include <xti.h>

int t_snddis (fd, call)
int fd;
struct t_call *call;

Description

Parameters Before call After call

fd x /

call–>addr.maxlen / /

call–>addr.len / /

call–>addr.buf / /

call–>opt.maxlen / /

call–>opt.len / /

call–>opt.buf / /

call–>udata.maxlen / /

call–>udata.len x /

call–>udata.buf ?(?) /

call–>sequence ? /

This function is used to initiate an abortive release on an already established connection or
to reject a connect request. The argument fd identifies the local transport endpoint of the
connection, and call specifies information associated with the abortive release. The
argument call points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The values in call have different semantics, depending on the context of the call to
t_snddis(). When rejecting a connect request, call must be non–null and contain a valid
value of sequence to uniquely identify the rejected connect indication to the transport
provider. The sequence field is only meaningful, if the transport connection is in the
T_INCON state. The addr and opt fields of call are ignored. In all other cases, call need only
be used when data is being sent with the disconnect request. The addr, opt and sequence
fields of the t_call structure are ignored. If the user does not wish to send data to the
remote user, the value of call may be a null pointer.

The udata structure specifies the user data to be sent to the remote user. The amount of
user data must not exceed the limits supported by the transport provider as returned in the
discon field of the info argument of t_open() or t_getinfo(). If the len field of udata is zero, no
data will be sent to the remote user.

Valid States
T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON (ocnt >0).

4-66 XTI/XX25 Administrator and User Guide

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider.

[TBADSEQ] An invalid sequence number was specified, or a null call pointer was
specified when rejecting a connect request.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TLOOK] An asynchronous event has occurred.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
Since data may not be sent with a disconnect, call–>udata.len must be set to zero.

OSI Implementation Specifics
Since at most 64 octets of data may be sent with the disconnect, call–>udata.len will have a
value of less than or equal to 64.

XX25 Implementation Specifics
The call–>udata.len field is

• equal to 0 in basic format,

• in the range 0 to 128 in extended format, format negotiated using the option
T_X25_FASTSELECT. (Refer to Appendix C. Bull-enhanced XTI Options.)

The function induces a state transfer to T_IDLE and returns at the receipt of the
confirmation of the connection release.

In case of PVC-connection mode, t_snddis() dissociates the user from the PVC and
normally resets the PVC.

See also
t_connect(), t_getinfo(), t_listen(), t_open().

Caveats
t_snddis() is an abortive disconnect. Therefore a t_snddis() issued on a connection endpoint
may cause data previously sent via t_snd(), or data not yet received, to be lost (even if an
error is returned).

4-67XTI Library Functions

t_sndrel Subroutine

Purpose
Initiate an orderly release.

Syntax
#include <xti.h>

int t_sndrel (fd)
int fd;

Description

Parameters Before call After call

fd x /

This function is used to initiate an orderly release of a transport connection and indicates to
the transport provider that the transport user has no more data to send. The argument fd
identifies the local transport endpoint where the connection exists. After calling t_sndrel(),
the user may not send any more data over the connection. However, a user may continue to
receive data if an orderly release indication has not been received.

This function is an optional service of the transport provider and is only supported if the
transport provider returned service type T_COTS_ORD on t_open() or t_getinfo().

Valid States
T_DATAXFER, T_INREL.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting the function at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

See also
t_getinfo(), t_open(), t_rcvrel().

4-68 XTI/XX25 Administrator and User Guide

t_sndudata Subroutine

Purpose
Send a data unit.

Syntax
#include <xti.h>

int t_sndudata (fd, unitdata)
int fd;
struct t_unitdata *unitdata;

Description

Parameters Before call After call

fd x /

unitdata–>addr.maxlen / /

unitdata–>addr.len x /

unitdata–>addr.buf x (x) /

unitdata–>opt.maxlen / /

unitdata–>opt.len x /

unitdata–>opt.buf ? (?) /

unitdata–>udata.maxlen / /

unitdata–>udata.len x /

unitdata–>udata.buf x (x) /

This function is used in connectionless mode to send a data unit to another transport user.
The argument fd identifies the local transport endpoint through which data will be sent, and
unitdata points to a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

In unitdata, addr specifies the protocol address of the destination user, opt identifies options
that the user wants associated with this request and udata specifies the user data to be
sent. The user may choose not to specify what protocol options are associated with the
transfer by setting the len field of opt to zero. In this case, the provider may use default
options.

If the len field of udata is zero, and sending of zero octets is not supported by the underlying
transport service, the t_sndudata() will return –1 with t_errno set to [TBADDATA].

By default, t_sndudata() operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the time
the call is made. However, if O_NONBLOCK is set (via t_open() or fcntl()), t_sndudata() will
execute in asynchronous mode and will fail under such conditions. The process can arrange
to be notified of the clearance of a flow control restriction via either t_look() or the EM
interface.

If the amount of data specified in udata exceeds the TSDU size as returned in the tsdu field
of the info argument of t_open() or t_getinfo(), a [TBADDATA] error will be generated. If
t_sndudata() is called before the destination user has activated its transport endpoint (see
t_bind()), the data unit may be discarded.

4-69XTI Library Functions

If it is not possible for the transport provider to immediately detect the conditions that cause
the errors [TBADADDR] and [TBADOPT]. These errors will alternatively be returned by
t_rcvuderr. Therefore, an application must be prepared to receive these errors in both of
these ways.

Valid States
T_IDLE.

Errors
On failure, t_errno is set to one of the following:

[TBADDATA] Illegal amount of data. A single send was attempted specifying a TSDU
greater than that specified in the info argument, or a send of a zero byte
TSDU is not supported by the provider.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADOPT] The specified protocol options were in an incorrect format or contained
illegal information.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

TCP/IP Implementation Specifics
Be aware that the maximum size of a connectionless TSDU varies among implementations.

OSI Implementation Specifics
The unitdata–>addr structure specifies the remote TSAP. The ISO connectionless transport
service does not support the sending of expedited data. This function is not supported by an
ISO–over–TCP transport provider.

For CLTS, TSDU size must be less than NSDU size, since CLTS does not offer
segmentation service.

Bull Implementation Specifics
The supported options are listed in Bull-enhanced XTI Option Profiles in Appendix C.)

See also
fcntl(), t_alloc(), t_open(), t_rcvudata(), t_rcvuderr().

4-70 XTI/XX25 Administrator and User Guide

t_strerror Subroutine

Purpose
Produce an error message string.

Syntax
#include <xti.h>

char *t_strerror (errnum)
int errnum;

Description

Parameters Before call After call

errnum x /

The t_strerror() function maps the error number in errnum that corresponds to an XTI error
to a language–dependent error message string and returns a pointer to the string. The
string pointed to will not be modified by the program, but may be overwritten by a
subsequent call to the t_strerror function. The string is not terminated by a newline
character. The language for error message strings written by t_strerror() is
implementation–defined. If it is English, the error message string describing the value in
t_errno is identical to the comments following the t_errno codes defined in <xti.h>. If an
error code is unknown, and the language is English, t_strerror() returns the string:

”<error>: error unknowm”

where <error> is the number supplied as input. In other languages, an equivalent text is
provided.

Valid States
ALL – apart from T_UNINIT.

Return Values
The function t_strerror() returns a pointer to the generated message string.

See also
t_error().

4-71XTI Library Functions

t_sync Subroutine

Purpose
Synchronise transport library.

Syntax
#include <xti.h>

int t_sync (fd)
int fd;

Description

Parameters Before call After call

fd x /

For the transport endpoint specified by fd, t_sync() synchronises the data structures
managed by the transport library with information from the underlying transport provider. In
doing so, it can convert an uninitialised file descriptor (obtained via open(), dup() or as a
result of a fork() and exec()) to an initialised transport endpoint, assuming that file descriptor
referenced a transport endpoint, by updating and allocating the necessary library data
structures. This function also allows two cooperating processes to synchronise their
interaction with a transport provider.

For example, if a process forks a new process and issues an exec(), the new process must
issue a t_sync() to build the private library data structure associated with a transport
endpoint and to synchronise the data structure with the relevant provider information.

It is important to remember that the transport provider treats all users of a transport endpoint
as a single user. If multiple processes are using the same endpoint, they should coordinate
their activities so as not to violate the state of the transport endpoint. The function t_sync()
returns the current state of the transport endpoint to the user, thereby enabling the user to
verify the state before taking further action. This coordination is only valid among
cooperating processes; it is possible that a process or an incoming event could change the
endpoint’s state after a t_sync() is issued.

If the transport endpoint is undergoing a state transition when t_sync() is called, the function
will fail.

Valid States
ALL – apart from T_UNINIT.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint. This
error may be returned when the fd has been previously closed or an
erroneous number may have been passed to the call.

[TSTATECHNG] The transport endpoint is undergoing a state change.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

4-72 XTI/XX25 Administrator and User Guide

Return Values
On successful completion, the state of the transport endpoint is returned. Otherwise, a value
of –1 is returned and t_errno is set to indicate an error. The state returned is one of the
following:

T_UNBND unbound.

T_IDLE idle.

T_OUTCON outgoing connection pending.

T_INCON incoming connection pending.

T_DATAXFER data transfer.

T_OUTREL outgoing orderly release (waiting for an orderly release indication).

T_INREL incoming orderly release (waiting for an orderly release request).

See also
dup(), exec(), fork(), open().

4-73XTI Library Functions

t_unbind Subroutine

Purpose
Disable a transport endpoint.

Syntax
#include <xti.h>

int t_unbind (fd)
int fd;

Description

Parameters Before call After call

fd x /

The t_unbind() function disables the transport endpoint specified by fd which was previously
bound by t_bind(). On completion of this call, no further data or events destined for this
transport endpoint will be accepted by the transport provider. An endpoint which is disabled
by using t_unbind() can be enabled by a subsequent call to t_bind().

Valid States
T_IDLE.

Errors
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI (t_errno).

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error.

See also
t_bind().

4-74 XTI/XX25 Administrator and User Guide

5-1XTI Name Server Functions

Chapter 5. – XTI Name Server Functions

The XTI Name Server facilitates the use of protocol-dependent addresses and options and
improves independence of XTI applications from Transport Provider. It is a set of
subroutines which help to write XTI applications portable from one Transport Provider to
another one.

For each XTI Name Server function, a table is given which summarises the contents of the
input and output parameter. The key is given below:

x The parameter value is meaningful. (Input parameter must be set before
the call and output parameter may be read after the call.)

(x) The content of the object pointed to by the x pointer is meaningful.

? The parameter value is meaningful but the parameter is optional.

(?) The content of the object pointed to by the ? pointer is optional.

/ The parameter value is meaningless.

= The parameter after the call keeps the same value as before the call.

R Reserved for internal use. The parameter must not be changed by the
programmer.

Refer to How to Prepare a Bull-enhanced XTI Application, on page 7-2, to use the
appropriate options in compiling and linking the application-program.

5-2 XTI/XX25 Administrator and User Guide

List of Bull-enhanced XTI Name Server Functions

Two functions identify a Transport Provider and its associated device (Transport Provider
identifier):

• t_gettp() Subroutine on page 5-15

Get the Transport Provider identifier (device name) associated with a specified Transport
Provider or a Transport Provider selected automatically.

• t_getisotp() Subroutine on page 5-4

Get the OSI Transport Provider and its identifier according to a Host to be connected to.

Five functions give access to addresses, name (Host and Service) and options
independently from the Transport Provider:

• t_getladdr() Subroutine on page 5-6

Get the address of a local XTI Service according to the Transport Provider used.

• t_getlname() Subroutine on page 5-8

Parse a local address according to a Transport Provider and get the XTI Service name
which is associated with this address.

• t_getraddr() Subroutine on page 5-11

Get the address to access a given XTI Service on a remote host according to the
Transport Provider used.

• t_getrname() Subroutine on page 5-13

Parse a remote address according to a Transport Provider and get the XTI Host and
Service name which are associated with this address.

• t_getopt() Subroutine on page 5-10

Initializes an option buffer according to an option profile name.

Another function helps in managing errors.

• t_error_ns() Subroutine on page 5-3

Produce an error message on the standard output.

5-3XTI Name Server Functions

t_error_ns Subroutine

Purpose
Produce an error message on the error output (stderr).

Syntax
#include <xti_ns.h>

int t_error_ns (errmsg)
char *errmsg;

Description

parameters before call after call

errmsg x /

The t_error_ns() function produces on the error output a message which describes the last
error encountered during a call to a Name Server function. The argument string errmsg is a
user-supplied error message that gives context to the error.

The user supplied error message is printed, followed by a colon and a standard error
message for the current error defined in t_errno.

The t_errno number is only set when an error occurs and it is not cleared on successful
calls.

Errors
No errors are defined for the t_error_ns() function.

Return Values
Upon successful completion, a value of 0 is returned.

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

See also
t_error() Subroutine.

5-4 XTI/XX25 Administrator and User Guide

t_getisotp Subroutine

Purpose
Get the OSI Transport Provider (COTS) and its identifier according to a Host to be
connected to.

Syntax
#include <xti_ns.h>

int t_getisotp (endsys,tp)
char * endsys;
struct xtitp *tp;

Description

parameters before call after call

endsys
tp–>tp_query
tp–>tp_id
tp–>tp_name
tp–>tp_reserved

x
/
/
/
R

/
/
x
x
R

t_getisotp() returns in tp–>tp_id an OSI Transport Provider and in tp–>tp_name its
Transport Provider identifier (device name) according to the Host name defined in endsys.

This function allows to define which Transport Provider to use, depending on the name of
the Host to be connected to:

• If the Host is found in the /etc/hosts file, the Transport Provider to use is NetShare (RFC
1006) (tp–>tp_id= TPID_RFC1006).

• If the Host is found in the /etc/xtihosts file, the Transport Provider to use is OSI
connection-oriented (tp–>tp_id= TPID_OSI_COTS).

• If the Host is found in both files, the NetShare (RFC 1006) Transport Provider is chosen
first.

The Transport Provider name is then used by t_open() in order to establish a transport
endpoint.

Errors
On failure, t_errno is set to the following:

[TENDSYSNOTFOUND] The host name specified by the application specification in
endsys is not in the host name database.

Return Value
Upon successfull completion, a value of 0 is returned.
Otherwise, a value –1 is returned and t_errno is set to indicate an error.

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

t_getisotp() does not apply to an application using TCP/IP, UDP or XX25 Providers.

5-5XTI Name Server Functions

Files
/etc/hosts

/etc/xtihosts

/etc/xtiprotocols

See also
t_open(), t_gettp() Subroutines.

5-6 XTI/XX25 Administrator and User Guide

t_getladdr Subroutine

Purpose
Get the address of a local XTI Service according to the Transport Provider used.

Syntax
#include <xti_ns.h>

int t_getladdr (tp, tappl, addr)
struct xtitp *tp;
char *tappl;
struct netbuf *addr;

Description

parameters before call after call

tp –>tp_query
tp –> tp_id
tp –> tp_name
tp –>tp_reserved
addr –> maxlen
addr –> len
addr –> buf
tappl

/
x
/
R
x
/
x
x

/
/
/
R
/
x

(x)
/

t_getladdr() returns in the netbuf structure referenced by addr, the local address of the XTI
Service defined:

tappl the Service Name (null-terminated C–string)
tp–>tp_id the Transport Provider.

• If the Transport Provider specified is OSI (Connection-Oriented or ConnectionLess),
NetShare (RFC 1006) or XX25, t_getladdr() looks for address in /etc/xtiservices.

• If the Transport Provider specified is TCP or UDP, t_getladdr() looks for the address in
/etc/services.

This local address is then used by t_bind() to bind the XTI Service to a transport endpoint.

Errors
On failure, t_errno is set to the following:

[TAPPLNOTFOUND]
The XTI Service specified by tappl is not defined in the XTI database.

[TBUFOVFLW] The address to be returned in addr is larger than the size specified in the
maxlen field of the addr netbuf structure.

[TNOTSUPPORT]
The tp parameter does not refer to a supported Transport Provider.

Return Value
Upon successfull completion, a value of 0 is returned.
Otherwise, a value of –1 is returned and t_errno is set to indicate an error.

5-7XTI Name Server Functions

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

Files
/etc/xtiservices

/etc/services

See also
t_bind(), t_getraddr() Subroutines.

5-8 XTI/XX25 Administrator and User Guide

t_getlname Subroutine

Purpose
Parse a local address according to a Transport Provider and get the XTI Service name
which is associated with this address.

Syntax
#include <xti_ns.h>

int t_getlname (tp, addr, tappl)
struct xtitp *tp;
struct netbuf *addr;
struct netbuf *tappl;

Description

parameters before call after call

tp–>tp_query
tp –> tp_id
tp –> tp_name
tp–>tp_reserved
addr –> maxlen
addr –> len
addr –> buf
tappl –> maxlen
tappl –> len
tappl –> buf

/
x
/
R
/
x

(x)
x
/
x

/
/
/
R
/
/
/
/
x

(x)

t_getlname() parses the local address specified in the netbuf structure referenced by addr
according to the Transport Provider specified by tp–>tp_id.

If it is correct, t_getlname() then looks up in the database the XTI Service name referenced
by this address.

• If the Transport Provider specified is OSI (Connection-Oriented or ConnectionLess),
NetShare (RFC 1006) or XX25, t_getlname looks for address in /etc/xtiservices.

• If the Transport Provider specified is TCP or UDP, t_getlname looks for address in
/etc/services.

The XTI Service name is returned in the netbuf structure referenced by tappl (tappl–>len
includes the NULL (0) byte which terminates a C–string).

If the XTI Service name is not found in the database, a string of the form ’a.b.c...’ is
returned, where each element (a,b,c,...) is a hexadecimal representation of one octet of the
local address. In this case, –1 will be returned and t_errno, will be set to
TAPPLNOTFOUND.

When no error is returned the string returned in tappl may be used by t_getladdr().

Errors
On failure, t_errno is set to the following:

[TBADADDR] The local address in addr is not in a recognizable format.

[TAPPLNOTFOUND]
No XTI Service associated with the local address addr is present in the
database.

5-9XTI Name Server Functions

[TBUFOVFLW] The Service name to be returned in tappl is larger than the size specified in
the maxlen field of the netbuf structure.

[TNOTSUPPORT]
The tp parameter does not refer to a supported Transport Provider.

Return Value
Upon successfull completion, a value of 0 is returned.
Otherwise, a value of –1 is returned and t_errno is set to indicate an error.

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

Files
/etc/xtiservices

/etc/services

See also
t_getladdr(), t_getraddr(), t_getrname() Subroutines.

5-10 XTI/XX25 Administrator and User Guide

t_getopt Subroutine

Purpose
Initialize an option buffer according to an option profile name and a Transport Provider.

Syntax
#include <xti_ns.h>

int t_getopt (tp, optname, optbuf)
struct xtitp *tp;
char *optname;
struct netbuf *optbuf;

Description

parameters before call after call

tp–>tp_query
tp–>tp_id
tp–>tp_name
tp–>tp_reserved
optname
optbuf–>maxlen
optbuf–>len
optbuf–>buf

/
x
/
R
x
x
/
x

/
/
/
R
/
/
x

(x)

Search an option profile in the XTI database (/etc/xtiopts file), extract the options available
with the specified Transport provider and put them in TLV format in the option buffer optbuf.

On return, the option buffer is formatted as described in X/Open Transport Interface
XPG4 CAE Specification Version 2 and can be used as input by:

t_optmgmt() in structure t_optmgmt,

t_accept(), t_connect(), in structure t_call,

t_sndudata in structure t_unitdata.

Errors
On failure, t_errno is set to the following:

[TOPTNOTFOUND] The option is not in the XTI Database.

[TBUFOVFLW] The option to be returned in optbuf is larger then the size specified
in the optbuf–>maxlen field.

Return Value
Upon successfull completion, a value of 0 is returned.
Otherwise, a value of –1 is returned and t_errno is set to indicate an error.

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

Files
/etc/xtiopts

See also
t_optmgmt(), t_accept(), t_connect() and t_sndudata Subroutines.

5-11XTI Name Server Functions

t_getraddr Subroutine

Purpose
Get the address to access a given XTI Service on a remote host according to the Transport
Provider used.

Syntax
#include <xti_ns.h>

int t_getraddr (tp, endsys, tappl, addr)
struct xtitp *tp;
char *endsys;
char *tappl;
struct netbuf *addr;

Description

parameters before call after call

tp–>tp_query
tp –> tp_id
tp –> tp_name
tp–>tp_reserved
endsys
tappl
addr –> maxlen
addr –> len
addr –> buf

/
x
/
R
x
x
x
/
x

/
/
/
/
R
/
/
x

(x)

t_getraddr() returns in the netbuf structure referenced by addr, the remote address of the
XTI Service defined by:

tappl the Service Name (null-terminated C–string),
tp–>tp_id the Transport Provider,
endsys the Host to access (null-terminated C–string).

• If the Transport Provider specified is OSI (Connection Oriented or ConnectionLess) or
XX25, t_getraddr() looks for address in the XTI Database (/etc/xtiservices and
/etc/xtihosts files).

• If the Transport Provider specified is TCP or UDP, t_getraddr() looks for the address in
the INET Database (/etc/services and /etc/hosts files).

• If the Transport Provider specified is NetShare (RFC 1006), the Internet addressing
domain for Host declaration is used (/etc/hosts) and the OSI Transport SELectors for
Service definitions (/etc/xtiservices).

This remote address is then used by t_connect() to access a remote XTI Service.

Errors
On failure, t_errno is set to the following:

[TAPPLNOTFOUND]
The XTI Service specified by tappl is not defined in the database.

[TENDSYSNOTFOUND]
The Host specified by endsys is not in the database.

5-12 XTI/XX25 Administrator and User Guide

[TBADNAME] The XTI Service specified by the combination of tappl and endsys could not
be resolved.
[TBADNAME] = [TAPPLNOTFOUND] + [TENDSYSNOTFOUND]

[TBUFOVFLW] The address to be returned in addr is larger than the size specified in the
maxlen field of the addr netbuf structure.

[TNOTSUPPORT]
The tp parameter does not refer to a supported Transport Provider.

Return Value
Upon successfull completion, a value of 0 is returned.
Otherwise, a value of –1 is returned and t_errno is set to indicate an error.

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

Files
/etc/xtihosts

/etc/xtiservices

/etc/hosts

/etc/services

See also
t_connect(), t_getladdr() Subroutines.

5-13XTI Name Server Functions

t_getrname Subroutine

Purpose
Parse a remote address according to a Transport Provider and get the XTI Host and Service
name which are associated with this address.

Syntax
#include <xti_ns.h>

int t_getrname (tp, addr, endsys, tappl)
struct xtitp *tp;
struct netbuf *addr;
struct netbuf *endsys;
struct netbuf *tappl;

Description

parameters before call after call

tp–>tp_query
tp –> tp_id
tp –> tp_name
tp–>tp_reserved
addr –> maxlen
addr –> len
addr –> buf
endsys –> maxlen
endsys –> len
endsys –> buf
tappl –> maxlen
tappl –> len
tappl –> buf

/
x
/
R
/
x

(x)
x
/
x
x
/
x

/
/
/
R
/
/
/
/
x

(x)
/
x

(x)

t_getrname() parses the remote address specified in the netbuf structure referenced by
addr according to the Transport Provider specified by tp–>tp_id.

If it is correct, t_getrname() then looks up in the database the XTI Host and Service name
referenced by this address.

• If the Transport Provider specified is OSI (Connection Oriented or ConnectionLess) or
XX25, t_getrname() looks for address in the XTI Database (/etc/xtiservices and
/etc/xtihosts files).

• If the Transport Provider specified is TCP or UDP, t_getrname() looks for the address in
the INET Database (/etc/services and /etc/hosts files).

• If the Transport Provider specified is NetShare (RFC 1006), the Internet addressing
domain for Host declaration is used (/etc/hosts) and the OSI Transport SELectors for
Service definitions (/etc/xtiservices).

If either the Host (endsys) and/or the Service name (tappl) is not found in the database, a
string of the form ’a.b.c...’ is returned, where each element (a,b,c,...) is a hexadecimal
representation of one octet of the network Host (endsys) or Transport Service portions of
the address. In this case, –1 will be returned and t_errno set to ([TENDSYSNOTFOUND],
[TAPPLNOTFOUND] or [TBADNAME]).

When no error is returned the strings returned in endsys and tappl may be used by
t_getraddr().

5-14 XTI/XX25 Administrator and User Guide

Errors
On failure, t_errno is set to the following:

[TBADADDR] The remote address in addr is not in a recognizable format.

[TBUFOVFLW] The Host name to be returned in endsys or the Service name to be
returned in tappl is larger than the size specified in the maxlen field of the
netbuf structure.

[TAPPLNOTFOUND]
No XTI Service associated with the remote address addr is present in the
database.

[TENDSYSNOTFOUND]
The Host specified by endsys is not in the database.

[TBADNAME] The XTI Service specified by the combination of tappl and endsys could not
be resolved.
[TBADNAME] = [TAPPLNOTFOUND] + [TENDSYSNOTFOUND]

[TNOTSUPPORT]
The tp parameter does not refer to a supported Transport Provider.

Return Value
Upon successfull completion, a value of 0 is returned.
Otherwise, a value of –1 is returned and t_errno is set to indicate an error.

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

Files
/etc/xtihosts

/etc/xtiservices

/etc/hosts

/etc/services

See also
t_getladdr(), t_getlname(), t_getraddr() Subroutines.

5-15XTI Name Server Functions

t_gettp Subroutine

Purpose
Get the Transport Provider identifier (device name) associated with a specified Transport
Provider or a Transport Provider selected automatically.

Syntax
#include <xti_ns.h>

int t_gettp (tp)
struct xtitp *tp;

Description

parameters before call after call

tp–>tp_query
tp–>tp_id
tp–>tp_name
tp–>tp_reserved

x
x or /

/
R

/
/

(x)
R

t_gettp() returns in tp–>tp_name the Transport Provider identifier (device name)
associated:

• with the Transport Provider specified in tp–>tp_id, if tp–>tp_query is equal to 0,

• with a Transport Provider selected automatically in a list if tp–>tp_query is not null.
tp–>tp_query is an OR-combination of

– TPID_ANY_COTS to query the automatic selection of any connection-oriented
Transport Provider (tpid_osi_cots, tpid_tcp, tpid_rfc1006, npid_x25_cons),

– TPID_ANY_COTS_ORD to query the automatic selection of any connection-oriented
with orderly-release Transport Provider (tpid_tcp),

– TPID_ANY_CLTS to query the automatic selection of any connection-less Transport
Provider (tpid_osi_clts, tpid_udp),

– TPID_ANY = TPID_ANY_COTS + TPID_ANY_COTS_ORD +TPID_ANY_CLTS

– XTINETPATH to indicate that the automatic selection restarts at the beginning of the
list. This flag is reset after execution of the function.

The list used for the automatic selection is

– the environment variable XTINETPATH if it exists. Example
XTINETPATH=tpid_osi_cots:tpid_tcp:tpid_rfc1006

– the XTI Protocols data base /etc/xtiprotocols if the environment variable
XTINETPATH does not exist.

The Transport Provider identifier returned by t_gettp() is then used by t_open() in order to
establish a transport endpoint.

Errors
On failure, t_errno is set to the following:

[TNOTSUPPORT]
Two different meanings for specified and automatic selection of a Transport
Provider.

 The tp–>tp_id parameter does not refer to a supported Transport Provider.
There is no Transport Provider defined in the list and corresponding to the
type given in tp–>tp_query.

5-16 XTI/XX25 Administrator and User Guide

Return Value
Upon successfull completion, a value of 0 is returned.
Otherwise, a value of –1 is returned and t_errno is set to indicate an error.

Implementation Specifics
This subroutine is part of xti_api Software. It is not defined in X/Open Transport Interface
XPG4 CAE Specification Version 2, but is part of Bull enhancements.

Files
/etc/xtiprotocols

See also
chxti Command.

XTI Environments Configurator on page 3-37.

t_open(), t_getisotp() Subroutines.

6-1XTI Commands

Chapter 6. – XTI Commands

xtihost Manages OSI and XX25 Hosts in the XTI database, on page 6-2,

xtiserv Manages OSI and XX25 Services in the XTI database, on page 6-5,

xtitracelevel Reads and modifies the XTI trace levels, on page 6-8,

xtiopt Manages Option Profiles in the XTI database, on page 6-10,

chxti Changes the current XTI attributes, on page 6-12,

lsxti Displays the current XTI attributes, on page 6-14.

The XTI commands can be :

• called using SMIT,

• entered manually or used in shell scripts.

Note: The best way to manage the XTI database is to use SMIT, for its look and feel,
coherency controls, and help on line. However, when a good knowledge of XTI is
acquired and a large number of objects are to be managed, XTI commands may be
used directly.

6-2 XTI/XX25 Administrator and User Guide

xtihost Command

Purpose
Manages OSI and XX25 Hosts in the XTI database.
• An OSI Host object defines a path within the transport to access a remote host.

• An XX25 Host object defines a path within the network to access a remote host.

Both have to be defined only by client-applications.

Syntax
Add a Host entry (OSI or XX25)
xtihost –a [–p ProviderName] –h HostName –n NetworkType [–ls lsap]
 –l LocalAddress –r RemoteAddress [–u Aliases]

Change a Host entry (OSI or XX25)
xtihost –c [–p ProviderName] –h HostName [–H NewHostName]
 [–n NewNetworkType] [–ls lsap]
 [–l NewLocalAddress] [–r NewRemoteAddress]

Remove a Host entry (OSI or XX25)
xtihost –d [–p ProviderName] –h HostName

Display all Host entries (OSI or XX25)
xtihost –s [–p ProviderName]

Description
The xtihost administrative command adds, changes, deletes and displays OSI and XX25
Host entries in the XTI database. These Hosts entries are accessed by any XTI (or XX25)
client-application running onto OSI (or XX25) and using the XTI Name Server.

Flags
–a Adds a Host (OSI or XX25).
–c Changes a Host (OSI or XX25).
–d Deletes a Host (OSI or XX25).
–s Displays all Hosts (OSI or XX25).

–p ProviderName
Specifies the Transport Provider name (tpid_osi_cots, tpid_osi_clts or
npid_x25_cons).
The default value is ”tpid_osi_cots”, that is OSI with Connection-Oriented
mode of service.

–h HostName Specifies the remote Host name.
It is a string of 40 digits maximum.

–H NewHostName
Specifies the new Host name (used with –c flag).
It is a string of 40 digits maximum.

6-3XTI Commands

–n NetworkType [or NewNetworkType]

For OSI, it specifies the network type used to communicate. It may be:
CONS/WAN/PVC (COTS over CONS on Permanent Virtual Circuit)
CONS/WAN/SVC (COTS over CONS on Switched Virtual Circuit)
I_CLNS/LAN (COTS over Inactive CLNS)
CLNS (COTS over CLNS on LAN and WAN – Full OSI conformance)
SPEE (COTS over CONS on WAN or COTS over CLNS on LAN)

For XX25, it specifies the circuit type used to communicate. It may be:
PVC (Permanent Virtual Circuit)
SVC (Switched Virtual Circuit)

–ls lsap: Significant only on OSI Transport for I_CLNS/LAN network type, it specifies
the Link Service Access Point and may be:
OSI (Full OSI conformance) default value
DSA (Non Full OSI conformance)

–l LocalAddress [or NewLocalAddress]
Specifies the address through which the connection goes out to the remote
host. Depending on the NetworkType it is:

For OSI,
if CONS/WAN/PVC, the name of the local PVC to use (8 bytes max)
if CONS/WAN/SVC, the X.121 address (15 decimal digits max)
if I_CLNS/LAN, the MAC address (6 bytes max)
if CLNS, a Network Service Access Point (NSAP, 20 bytes max)
if SPEE, a Network Service Access Point (NSAP, 20 bytes max)
if CLNS or SPEE, the local address is optional.

An NSAP is built according to the following syntax:
– A string of alpha-numerical digits, enclosed in double quotes, is converted
into the ASCII value of the string.
For example ”MYNSAP” will result to the NSAP 0x4d594e534150.
– A string representing hexadecimal digits, is converted into the
hexadecimal value of the string.
For example 1234ab will result to the NSAP 0x010203040a0b.
– A string of hexadecimal digits preceded by a ’0x’ remains unchanged.
For example 0x1234ab will result to the NSAP 0x1234ab.

For XX25,
if PVC, the name of the local PVC to use (8 bytes max)
if SVC, the X.121 address (15 decimal digits max)

–r RemoteAddress[or NewRemoteAddress]
Specifies the address used to access the remote transport or network.
Depending on the NetworkType it is:

For OSI,
if CONS/WAN/PVC, not significant and not to be specified,
if CONS/WAN/SVC, the X.121 address (15 decimal digits max)
if I_CLNS/LAN, the MAC address (6 bytes max)
if CLNS, a Network Service Access Point (NSAP)
if SPEE, a Network Service Access Point (NSAP)
The syntax of NSAP is the same as for LocalAddress.

For XX25,
if PVC, not significant and not to be specified,
if SVC, the X.121 address (15 decimal digits max)

6-4 XTI/XX25 Administrator and User Guide

–u Aliases Specifies the alternative names for HostName, two aliases maximum
separated by a blank.
Each alias is a character string containing no more than 40 characters.

Examples
1. To add a Host named myxtihost on an I_CLNS/LAN network accessed by the local

machine through the SNPA 0x026020000001 and by the remote machine through the
SNPA 0x026020000002 via the OSI lsap with alternative name MYXTIHOST:

xtihost –a –h ‘myxtihost’ –l ‘0x026020000001’

 –r ‘0x026020000002’ –n ‘I_CLNS/LAN’ –ls ‘OSI’ –u ‘MYXTIHOST’

2. To move this Host into an NSAP address 0x800011, accessed through CLNS network,
as myNEWxtihost:

xtihost –c –h ‘myxtihost’ –H ‘myNEWxtihost’ –n ‘CLNS’

 –r ‘0x800011’

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xtiprotocols XTI Protocols Data Base,

/etc/xtihosts XTI OSI and XX25 Hosts Data Base.

Prerequisite Information
 OSI Addressing in Appendix D.

 XX25 Addressing in Appendix E.

Related Information
How to Manage XTI OSI Hosts on page 3-11

How to Manage XX25 OSI Hosts on page 3-19

XTI Name Server library: t_getraddr() and t_getrname() Subroutines.

6-5XTI Commands

xtiserv Command

Purpose
Manages OSI and XX25 Services in the XTI database.

• An OSI Service defines an association between an Application Name (and aliases) and
the address (Transport SELector) to be used in order to access this application from the
network.

• An XX25 Service defines an association between an Application Name (and aliases) and
the address (XX25 Subsequent Application Identifier) to be used in order to access this
application from the network.

Both must be defined as well by the server which provides it as by the client which uses it.

Syntax
Adds a Service entry (OSI or XX25)

xtiserv –a –v ServiceName [–p ProviderName] –n ServiceAddress [– u Aliases]

Changes a Service entry (OSI or XX25)

xtiserv –c –v ServiceName [–p ProviderName] –V NewServiceName
 –P NewProviderName [–n NewServiceAddress]

Removes a Service entry (OSI or XX25)

xtiserv –d –v ServiceName [–p ProviderName]

Displays all Services entries (OSI or XX25)

xtiserv –s [–p ProviderName] [–v ServiceName] [–n ServiceAddress]

Description
The xtiserv administrative command adds, changes, deletes and displays OSI and XX25
Services entries in the XTI database. These Service entries are accessed by any XTI (or
XX25) application running onto OSI (or XX25) and using the XTI Name Server.

Flags
–a Adds a Service (OSI or XX25).

–c Changes a Service (OSI or XX25).

–d Deletes a Service (OSI or XX25).

–s Displays all Services (OSI or XX25).

–v ServiceName
Specifies the Service name.
It is a string of 40 digits maximum.

–V NewServiceName
Specifies the new Service name (used with –c flag).
It is a string of 40 digits maximum.

6-6 XTI/XX25 Administrator and User Guide

–p ProviderName
Specifies the Transport Provider name (tpid_osi_cots, tpid_osi_clts or
npid_x25_cons).
The default value is ”tpid_osi_cots”, that is OSI with Connection-Oriented
mode of service.

–P NewProviderName
Specifies the new Transport Provider name (used with –c flag).
The default value is ”tpid_osi_cots”, that is OSI with Connection-Oriented
mode of service.

–n ServiceAddress [or NewServiceAddress]
Specifies the address associated with the Service name, that is:
– for OSI, the OSI Transport SELector (TSEL) associated with the defined
Service,
– for XX25, the Subsequent Application Identifier (SAI) associated with
the defined Service.
The Service Address, TSEL or SAI, has a maximum length of 32 bytes and
is built according to the following format:
– A string of alpha-numerical digits, enclosed in double quotes, is converted
into the ASCII value of the string.
For example ”MYTSEL” will result to the Service Address 0x4d595453454c.
– A string representing hexadecimal digits, is converted into the
hexadecimal value of the string.
For example 1234ab will result to the Service Address 0x010203040a0b.
– A string of hexadecimal digits preceded by a ’0x’ remains unchanged.
For example 0x1234ab will result to the Service Address 0x1234ab.
– Specific initialization NULL if the null TSEL or SAI is associated with the
Service.

–u Aliases Specifies the alternative names for ServiceName, two aliases maximum
separated by a blank.
Each alias is a character string containing no more than 40 characters.

Example
1. To add a Service named myxtiappli with the Transport SELector 0x01ab onto OSI

connection oriented transport Provider: tpid_osi_cots with alias MYXTIAPPLI enter:

xtiserv –a –v ‘myxtiappli’ –n ‘0x01ab’ –p ‘tpid_osi_cots’

 –u ‘MYXTIAPPLI’

2. To change the Service name of myxtiappli to myNEWxtiappli and the Transport SELector
to 0x040404 enter:

xtiserv –c –v ‘myxtiappli’ –p ‘tpid_osi_cots’

 –V ‘myNEWxtiappli’ –n ‘444’

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xtiprotocols XTI Protocols Data Base,

/etc/xtiservices XTI OSI and XX25 Services Data Base.

Prerequisite Information
 OSI Addressing in Appendix D.

 XX25 Addressing in Appendix E.

6-7XTI Commands

Related Information
How to Manage XTI OSI Services on page 3-14

How to Manage XX25 Services on page 3-22

XTI Name Server library:

t_getladdr(), t_getraddr(), t_getlname(), t_getrname() Subroutines.

6-8 XTI/XX25 Administrator and User Guide

xtitracelevel Command

Purpose
Manages XTI Trace Levels.

Read and modify the XTI trace levels:

• XTI library trace levels in xtitrace file,

• XTI library and kernel trace levels in xticnxtrace file.

Syntax
xtitracelevel { –l | –k | –c } [–f file] { –r | –s (* | level) | –u (* | level) }

Description
The xtitracelevel command reads and modifies XTI trace levels, as well as in the user
space as in the kernel space.
These trace levels are set on:

• the libraries xti_api/libxti.a and xti_api/libxti_ns.a if the current toolkit is XTI_ENHANCED,

• the libraries xti_xx25/libxti.a and xti_xx25/libxti_ns.a if the current toolkit is XX25.

The trace levels may be defined by default for all the users (administrative trace levels) or
specifically for each user.

Flags
–l Select XTI libraries trace levels, that is 10, 11, 24, 27, 28, 29 and 30,

–k Select XTI kernel trace levels, that is 10, 11, 24, 26 and 27.
To modify these trace levels, the user must have root authority.

–c Select XTI libraries and kernel trace levels, that is 10, 11, 24, 26, 27, 28, 29
and 30.
To modify these trace levels, the user must have root authority.

Note: l, k and c are exclusive options, but one of them must be specified.

–f file Optional parameter, with default values corresponding to administrative
trace levels, that is
 /etc/xtitrace using –l flag,
 /etc/xticnxtrace using –k or –c flag.
An explicit value for this file, different from /etc/xtitrace and /etc/xticnxtrace
permits to access to user trace levels. The user has to save this file name
in the environment variable XTI_FILE_TRACE_LEVEL or
XTI_FILE_TRACE_LEVELCNX

–r Read trace levels and print them.

–s * | level Set all the trace levels (* option) or the trace level level.

–u * | level Unset all the trace levels (* option) or the trace level level.

level may be:
10 States transitions in automatas

11 Entry and return of external XTI lib. func.
Trace of XTI functions, significant only if at least one of these three levels is
set:
– 28 CONNECTION functionnalities

6-9XTI Commands

– 29 MANAGEMENT functionnalities
– 30 DATA TRANSFER functionnalities

24 Description of I/O parameters values
Significant only if level 11 (Entry and return of external XTI lib. func.) is set.
Trace input and output parameters values on the entry and exit of XTI
functions,

26 XTI kernel msg to (from) Provider Interface
Trace Provider Interface messages sent by the xti4mod streams module to
the lower layer and received by xti4mod from the lower layer.

27 Data part of messages (limit 4096 bytes)
Trace Data part of messages transmitted through XTI.

28 CONNECTION functionnalities
If level 11 is set, allows to trace the connection functions:
t_accept, t_bind, t_close, t_connect, t_listen, t_open, t_rcvconnect, t_rcvdis,
t_rcvrel, t_snddis, t_sndrel, t_unbind.

29 MANAGEMENT functionnalities
If level 11 is set, allows to trace the management functions:
t_alloc, t_error, t_free, t_getinfo, t_getstate, t_look, t_optmgmt, t_sync.

30 DATA TRANSFER functionnalities
If level 11 is set, trace the data transfer functions:
t_rcv, t_rcvudata, t_rcvuderr, t_snd, t_sndudata.

Note: If both –s and –u options appear in the same command line, setting is done before
unsetting.

Example
1. To read administrative XTI libraries and kernel trace levels (description file

/etc/xticnxtrace), enter:

xtitracelevel –c –r

2. To set the administrative libraries trace level 11 and 28 and to unset level 27, enter:

xtitracelevel –l –s 11 –s 28 –u 27

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xtitrace and /etc/xticnxtrace XTI Trace Levels Data Base.

Related Information
XTI Trace Configurator, on page 3-28.

6-10 XTI/XX25 Administrator and User Guide

xtiopt Command

Purpose
Manages Option Profiles in the XTI database.

An Option Profile object is a set of XTI options which are relevant to general XTI options or
to a specific Transport Provider options. It defines by default options.

Syntax
Add an Option Profile

xtiopt –a –p ProfileName [–o OptionLevel:OptionName:OptionValue[,OptionValue]]

Change an Option Profile

xtiopt –c –p ProfileName [–P NewProfileName] [–C –o OptionName
 –O NewOptionLevel:NewOptionName:NewOptionValue[,NewOptionValue]]

Delete an Option in a Profile

xtiopt –c –p ProfileName –D –o OptionName

Add an Option in a Profile

xtiopt –c –p ProfileName –A –o OptionLevel:OptionName:OptionValue[,OptionValue]

Delete an Option Profile

xtiopt –d –p ProfileName

Display all Option Profiles

xtiopt –s [–p ProfileName]

Description
The xtiopt administrative command adds, changes, deletes and displays Option Profiles
entries in the XTI database. These Option Profiles entries are accessed by any XTI
application using the XTI Name Server.

Flags
–a Adds a Profile

–c Changes a Profile

–d Deletes a Profile

–s Displays all Profiles

–p ProfileName Specifies the Profile name.
It is a string of 20 digits maximum.

–P NewProfileName
Specifies the new Profile name (used with –c flag).
It is a string of 20 digits maximum.

6-11XTI Commands

–A Adds an Option into a specified Profile (used with –c flag)

–D Deletes an Option from a specified Profile (used with –c flag)

–C Changes an Option in a specified Profile (used with –c flag)

–o OptionLevel:OptionName:OptionValue[,OptionValue]
Specifies an Option entity

–O NewOptionLevel:NewOptionName:NewOptionValue[,NewOptionValue]
Specifies the new Option (used with –c flag)

Refer to Options in Appendix C. for a complete list of the XTI Options which can be used.

Example
To add a Profile named Test1 with three XTI_GENERIC Options enter:

xtiopt –a –p Test1 –o XTI_GENERIC:XTI_DEBUG:NULL

xtiopt –c –p Test1 –A –o XTI_GENERIC:XTI_LINGER:T_YES,12

xtiopt –c –p Test1 –A –o XTI_GENERIC:XTI_SNDBUF:12

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xtiopts XTI Option Profiles Data Base.

Related Information
XTI Option Profile Configurator, on page 3-25.

XTI Name Server library: t_getopt() Subroutine.

6-12 XTI/XX25 Administrator and User Guide

chxti Command

Purpose
Changes the current XTI attributes.

Syntax
chxti Attribute=Value

Description
The chxti command changes the current XTI attributes:

adtfile is the application development toolkit configuration file. The /etc/xlC.cfg is
used by default, but any C compiler resource configuration file may be used
instead.

adtname is the application development toolkit name. Three possible values:

• XTI_BASE, the AIX-issued XTI library, embedded with the Operating System.

• XTI_ENHANCED, the Bull-enhanced XTI which includes:

– access to OSI Connection–Oriented Transport, OSI ConnectionLess Transport,
NetShare (RFC 1006), TCP, UDP,

– Name Server facilities for Hosts, Services and Option Profiles,

– Traces facilities,

– Troubleshooting tools.

• XX25, which includes XTI_ENHANCED and the XX25 library to access directly the X.25
network.

netpath is the list of Transport Providers used by the primitive t_gettp() for the
automatic selection of a Transport Provider. It is a list of Transport Provider
names (defined in /etc/xtiprotocols) separated by colon.
This list is saved in the environment variable XTINETPATH.

Note: Any user (other than root) can use chxti to define its own environment. In this case,
the specific value ’/’ can be used to inherit directly the attributes already defined by
root.

Flags
None

Example
To switch to the Bull-enhanced XTI libraries:

chxti adtname=XTI_ENHANCED

To be able to run XTI name service application first on OSI then on TCP:

chxti ’netpath=tpid_osi_cots:tpid_tcp’

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xlC.cfg Default Common C compiler configuration file

/etc/xtiprotocols

6-13XTI Commands

Related Information
XTI Environments Configurator on page 3-37.

lsxti Command.

t_gettp Function.

6-14 XTI/XX25 Administrator and User Guide

lsxti Command

Purpose
Displays the current XTI attributes.

Syntax
lsxti

Description
The lsxti command lists the current XTI attributes:

adtfile is the application development toolkit configuration file.

adtname is the application development toolkit name:
 XTI_BASED, XTI_ENHANCED or XX25.

netpath is the list of Transport Providers used by the primitive t_gettp() for the
automatic selection of a Transport Provider.

Flags
None

Example
lsxti

adtfile : Name of C compiler resource file: /etc/xlC.cfg

adtname : Name of XTI developement toolkit: XTI_ENHANCED

netpath : Transport provider path : NULL

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xlC.cfg Default Common C compiler configuration file

/etc/xtiprotocols

Related Information
XTI Environments Configurator on page 3-37

chxti Command.

t_gettp Function.

7-1CookBook

Chapter 7. – Cookbook

• How to prepare a Bull-enhanced XTI application on page 7-2,

• How to manage XTI options on page 7-4,

• How to use XTI Traces on page 7-5.

• Overview of an XTI Connection-oriented Mode Service, on page 7-8,

– Local Management, on page 7-10,

– Connection Establishment, on page 7-17,

– Data Transfer, on page 7-26,

– Connection Release, on page 7-31.

• Overview of an XTI Connectionless Mode Service, on page 7-34,

– Local Management, on page 7-36,

– Data Transfer, on page 7-38,

– Datagram Errors, on page 7-40.

• Example of a Read/Write Interface for XTI Applications on page 7-41.

• XTI Program Example using Threads on page 7-44.

Note: The examples described in this cookbook are provided with Bull-enhanced XTI and
may be run after the local Host has been configured using the XTI configurator.

7-2 XTI/XX25 Administrator and User Guide

How to Prepare a Bull-enhanced XTI Application
One of these two application development toolkits has to be chosen using the SMIT
configurator or the chxti command:

1. XTI_ENHANCED, to develop XTI applications onto TCP/IP, OSI Stack or NetShare (RFC
1006),

2. XX25, to develop XX25 applications as well as XTI applications onto TCP/IP, OSI Stack
or NetShare (RFC 1006).

Note: The XX25 toolkit allows to develop applications portable on any of the
communications providers: X.25, TCP/IP, OSI Stack and NetShare (RFC 1006).
However, if the application is designed to run only on TCP/IP, OSI Stack and
NetShare (RFC 1006), it is better to use the XTI_ENHANCED toolkit.

Using the XTI_ENHANCED Toolkit

List of Components

Libraries

Two shared libraries are provided:

/usr/lib/xti_api/libxti.a for the XTI functions
/usr/lib/xti_api/libxti_ns.a for the XTI Name Server functions

Two thread-safe libraries are provided:

/usr/lib/xti_api/libxti_r.a for the XTI functions
/usr/lib/xti_api/libxti_ns_r.a for the XTI Name Server functions

Include Files

/usr/include/xti_api/xti.h for definition of the structures and constants used by the
XTI functions

/usr/include/xti_api/xti_ns.h for definition of the structures and constants used by the
XTI Name Server functions.

Examples

Program examples (clts, cots, cots_r, poll and select) are provided in the directory
/usr/lpp/xti_api/examples/binop_c

Compilation and Link Options
The simplest way to compile and link an XTI application (file.c) using the Bull-enhanced
XTI library and XTI Name Server library is to use the standard C Compiler resource file
/etc/xlC.cfg and run the following commands:

• to use the shared libraries:
cc file.c –F:xticc

• to use the thread-safe libraries:
cc file.c –F:xticc_r

• to use the non-shared libraries:
cc file.c –F:xticc –bnso

7-3CookBook

Using the XX25 Toolkit

List of Components

Libraries

Two shared libraries are provided:

/usr/lib/xti_xx25/libxti.a for the XTI/XX25 functions
/usr/lib/xti_xx25/libxti_ns.a for the XTI Name Server functions

Two thread-safe libraries are provided:

/usr/lib/xti_xx25/libxti_r.a for the XTI/XX25 functions
/usr/lib/xti_xx25/libxti_ns_r.a for the XTI Name Server functions

Include Files

/usr/include/xti_xx25/xti.h for definition of the structures and constants used by the
XTI/XX25 functions

/usr/include/xti_xx25/xx25addr.h
for definition of the structures and constants used by the
XX25 addressing.

/usr/include/xti_xx25/xti_ns.h for definition of the structures and constants used by the
XTI Name Server functions.

Examples

Program examples (cons) are provided in the directory /usr/lpp/xti_api/examples/binop_c

Compilation and Link Options
The simplest way to compile and link an XTI/XX25 application (file.c) using the XX25
library and XTI Name Server library is to use the standard C Compiler resource file
/etc/xlC.cfg and run the following commands:

• to use the shared libraries:
cc file.c –F:xx25

• to use the thread-safe libraries:
cc file.c –F:xx25_r

• to use the non-shared libraries:
cc file.c –F:xx25 –bnso

7-4 XTI/XX25 Administrator and User Guide

How to Manage XTI Options

XTI Options are parameters defining the conditions of communications between two XTI
applications or transport users. All options have default values, but these values can be
negotiated by a transport user. An XTI Option is specified by:

• a level,

– XTI_GENERIC for options negotiated between XTI and Transport,

– ISO_TP for options on OSI and NetShare (RFC 1006),

– INET_TCP, INET_UDP, or INET_IP for options on TCP/IP and UDP/IP,

– X25_NP for options on XX25,

• a name, which identifies the option within the level,

• a value.

The XTI Options are negotiated using the following functions:

• t_optmgmt (), t_accept (), t_connect () and t_connect (),

• t_listen (), t_rcvconnect (), t_rcvudata () and t_rcvuderr (),

Refer to Appendix C. Options for a complete list of the XTI Options available and to
X/Open Transport Interface XPG4 CAE Specification Version 2 Chapter 5. The Use of
Options.

An Option Profile is a set of XTI options, which is configured using:

• XTI Option Profile Configurator, on page 3-25,

• or directly the xtiopt command, on page 6-10,

It defines default values.

The t_getopt () Name Server function initializes an option buffer according to an Option
Profile name and a Transport Provider (only the options relative to this Tranport Provider
are put in the option buffer). The option buffer may then be used as input parameter for the
functions t_optmgmt (), t_accept (), t_connect () and t_connect ().

Option Profile allows to develop applications using parameters which are open to
customization by the end-user:

• the application uses specified Option Profiles which are configurated by the user
according to his needs,

• the application may be multiprotocol-developped, the end-user defining the Transport
Provider to use.

7-5CookBook

How to Use XTI Traces
XTI Traces may be configured and used through XTI Trace Configurator.

How to Configure XTI Trace Levels
1. There is a default configuration of XTI Trace levels: Warning and protocol errors

2. Global XTI Trace levels may be configured by the administrator, they act as default trace
levels for any user.

Run the XTI Configurator using the command:

#smit xtitrace

Select the entry:

Change/Show Administrative Trace Levels

then one of the entry

 Change/Show XTI Libraries Trace Levels
 Change/Show XTI Libraries and Kernel Trace Levels
 Change/Show XTI Kernel Trace Levels

according to events and data to be traced (user-space and/or kernel-space)

3. User XTI Trace levels may be configured by any user, they act as default trace level for
any process run by this user.

Run the XTI Configurator using the command:

#smit xtitrace

Select the entry:

Change/Show User Trace Levels

then one of the entry

 Change/Show XTI Libraries Trace Levels
 Change/Show XTI Libraries and Kernel Trace Levels

according to events and data to be traced (user-space or kernel-space)

Note: These user trace levels are saved in user files whose full path name are defined in
shell environment variables XTI_FILE_TRACE_LEVEL and
XTI_FILE_TRACE_LEVELCNX.
If these Shell environment variables XTI_FILE_TRACE_LEVEL and
XTI_FILE_TRACE_LEVELCNX do not exist, the default trace levels defined by the
administrator are used.

4. Application-specific XTI Trace levels may be configured directly in a program using the
t_optmgmt() function, described on page 4-39. This is useful to trace a specific
connection after an event has been detected.

Warning: Any user can set his own trace levels, but when recording traces, user levels and
super-user levels are both taken into account.

Warning: When the application needs no longer to be traced, all the trace levels (user and
super-user) must be disabled in order to improve performances.

7-6 XTI/XX25 Administrator and User Guide

How to Run XTI Traces

5. Start recording trace events

To record only the XTI events, run the XTI Configurator using the command:

#smit xtitraceuse

Select the entry:

Start XTI Trace

XTI events may be recorded using Common Trace Utility and indicating the XTI
hook_id: 906.

6. Run the XTI application

7. Stop recording trace events

Run the XTI Configurator using the command:

#smit xtitraceuse

Select the entry:

Stop XTI Trace

8. Display of the trace report

Run the XTI Configurator using the command:

#smit xtitraceuse

Select the entry:

Generate an XTI Trace Report

Example of XTI traces
1. Configuration of XTI Trace levels

Run the XTI Configurator using the command:

#smit xtitrace
Change/Show Administrative Trace Levels
 Change/Show XTI Libraries Trace Levels

Select the following trace levels

 Warning and protocol errors: yes
 CONNECTION functionnalities: yes
 MANAGEMENT functionnalities: yes
 DATA TRANSFER functionnalities: yes
 Entry and return of external XTI lib. func.: yes
 Description of I/O parameters values: yes
 States transitions in automatas: no
 Data part of messages (limit 4096 bytes): yes

2. Start recording trace events

#smit xtitraceuse

Start XTI Trace

7-7CookBook

3. Run the command to be traced

#bench –x –o –hpean_x25

The server host name is such defined in /etc/xtihosts:

Remote Host Address Local Host Address Lsap Netser Host name

19119033344 19119033344 0xfe 0x0101 pean_x25

4. Stop recording trace events

#smit xtitraceuse
Stop XTI Trace

5. Display of the trace report

#smit xtitraceuse
Generate an XTI Trace Report

Trace report for the t_connect () function :

XTI–API Traces [764 usec] LIBXTI pid=6674 [3] ==> t_connect fd=3

sndcall=0x20004E28 rcvcall=0x20005708

 sndcall–>addr.maxlen=120

 sndcall–>addr.len=64

 sndcall–>addr.buf=

0000 00 00 00 01 00 00 00 04 01 02 03 04 00 00 00 04

0010 00 00 00 04 00 00 00 01 00 00 00 02 00 00 00 14

0020 FF 01 0B xx xx xx xx xx x0 00 00 0B yy yy yy yy 34@......3

0030 yy y0 00 00 00 00 00 03 00 00 00 01 FE 00 00 00 4@..............

 sndcall–>opt.maxlen=2000

 sndcall–>opt.len=0

 sndcall–>opt.buf=0x20004ED8

 sndcall–>udata.maxlen=64

 sndcall–>udata.len=0

 sndcall–>udata.buf=0x200056B8

 sndcall–>sequence=0

 rcvcall–>addr.maxlen=120

 rcvcall–>addr.len=0

 rcvcall–>addr.buf=0x20005738

 rcvcall–>opt.maxlen=2000

 rcvcall–>opt.len=0

 rcvcall–>opt.buf=0x200057B8

 rcvcall–>udata.maxlen=64

 rcvcall–>udata.len=0

 rcvcall–>udata.buf=0x20005F98

 rcvcall–>sequence=0

The dump of sndcall–>addr.buf can be decoded as follows :

00 00 00 01 : TTSEL type

00 00 00 04 : TSEL length

01 02 03 04 : TSEL value

00 00 00 04 : TNETSRV type

00 00 00 04 : TNETSRV length

00 00 00 01 : TNULLCLNP

00 00 00 02 : TNSAP type

00 00 00 14 : TNSAP length

FF 01 : WAN_SVC

0B xx xx xx xx xx x0 00 00 :

 length (in half byte) + value of calling X121 address

 (+ padding to 0)

0B yy yy yy yy yy y0 00 00 :

 length (in half byte) + value of called X121 address

 (+ padding to 0)

00 00 00 03 : TLSAP type

00 00 00 01 : TLSAP length

FE 00 00 00 : TLSAP value

7-8 XTI/XX25 Administrator and User Guide

Overview of an XTI Connection-oriented Mode Service

Connection-oriented Mode is circuit–oriented and enables data to be transmitted over an
established connection in a reliable, sequenced manner. This service:

• enables the negotiation of the parameters and options that govern the transfer of data,

• provides an identification mechanism that avoids the overhead of address resolution and
transmission during the data transfer phase,

• provides a context in which successive units of data, transferred between peer users, are
logically related.

This Connection-oriented Mode service is attractive for applications which require relatively
long–lived, datastream–oriented interactions.

In a Connection-oriented Mode service, the connection is based on a client–server
relationship between two transport users.

The example of Connection-oriented Mode service described in this state machine is not
meant to show all the functions that may be called, but rather to hightlight the main
functions that request a particular service request.

T_UNINIT

T_UNBND

T_IDLE

T_DATAXFER

T_OUTCONT_INCON

t_close

t_unbind

t_connect

t_rcvconnect

t_sndt_rcv

t_listen

t_accept

t_rcvdis t_snddis

t_bind

t_open

Active User

Passive User

Client
or

Server
or

7-9CookBook

Client Server

Local Management : Initialisation t_open()
t_bind()

t_open()
t_bind()

Connection Establishment
t_connect()

t_rcvconnect()

t_listen()

t_accept()

Data Transfer t_snd()
t_rcv()

t_rcv()
t_snd()

Connection Release t_snddis()
t_rcvdis()

Local Management : De–initialisation t_unbind()
t_close()

t_unbind()
t_close()

Figure 5. Sequence of XTI functions in Connection-oriented Mode

A Connection-oriented Mode transport service, consists of four phases of communication
described step by step for the Client and for the Server:

• Local Management, on page 7-10, to establish a communication channel with the
Transport Provider and establish its identity or address,

• Connection Establishment, on page 7-17, to open a logical connection, or virtual circuit,
with the remote user,

• Data Transfer, on page 7-26, to exchange data over the connection,
• Connection Release, on page 7-31, to end the connection.

The example is described using Name Server according to this scenario:

1. The Client issues a connection request to the Server.

2. The Server accepts the connection and sends a file to the Client.

3. The Client requests for disconnection.

By default, the connection is a loopback at Internet level (i.e. the connection request is not
sent over the network) because the called NSAP is a local NSAP (value 02).

This local NSAP is mapped by the entry localhost in /etc/xtihosts file.
The TSEL used, ’0x01020301’, is mapped by the entry cots_server in /etc/xtiservices.
Note that the NSAP (02) must be configured in the OSI stack.

The directory /usr/lpp/xti_api/examples/binop_c/cots contains the source files of the
complete programs:

cots_client.c Client-program of an XTI Connection-oriented Mode service using Name
Server

cots_server.c Server-program of an XTI Connection-oriented Mode service using Name
Server

cots_cnons.c Client-program of an XTI Connection-oriented Mode service without using
Name Server

cots_snons.c Server-program of an XTI Connection-oriented Mode service without using
Name Server

7-10 XTI/XX25 Administrator and User Guide

Local Management in an XTI Connection-oriented Mode
Service

The local management phase defines local operations between a transport user and a
transport provider. Here are described the operations relative to initialization of a
Connection-oriented Mode service.

Before establishing a connection, any transport user (client or server) must establish a
communication channel with the transport provider. Each channel between a transport user
and transport provider is a unique endpoint of communication, and is called the transport
endpoint. The t_open() routine enables a user to choose a particular transport provider
which supplies the Connection-oriented Mode services, and establishes a channel with the
transport endpoint, as shown in the figure.

transport
user

provider

XTI

transport

transport endpoint

Figure 6. Channel Between Transport User and Transport Provider

t_open() returns the default characteristics of the transport provider associated with the
transport endpoint:

addr maximum size of a transport address

options maximum bytes of protocol–specific options that may be passed between
the transport user and transport provider

tsdu maximum message size that may be transmitted

etsdu maximum expedited data message size that may be sent over a transport
connection

connect maximum number of bytes of user data that may be passed between users
during connection establishment

discon maximum bytes of user data that may be passed between users during the
abortive release of a connection

servtype the type of service supported by the transport provider, in this case
T_COTS (Connection-Oriented Transport Service without orderly release
facility) or T_COTS_ORD (Connection-Oriented Transport Service with
orderly release facility)

flags other info about the Transport Provider

7-11CookBook

Note: The characteristics associated with negotiated options may change after a transport
endpoint has been opened (Option negotiation is described in Connection
Establishment, on page 7-17).
t_getinfo() can be called at any moment to retrieve the current characteristics of a
transport endpoint.

Then the user has to communicate its identity to the transport provider, using t_bind()
routine.
t_bind() binds a transport address to the transport endpoint. In addition, for servers, it
informs the transport provider that the transport endpoint will be used to listen for incoming
connect requests, also called connect indications.

Note: Each transport provider uses its own mechanism for identifying users and defining
transport address.

During the local management phase, t_optmgmt() may be used to negotiate the values of
protocol options with the transport provider. Each transport provider defines its own set of
negotiable protocol options, which may include such information as Quality–of–Service
parameters. Because of the protocol–specific nature of options, only applications written for
a particular protocol environment are expected to use this facility.

The following table summarizes the XTI routines which support local operations.

Functions Description

t_alloc() Allocates XTI data structures

t_bind() Binds a transport address to a transport endpoint

t_close() Closes a transport endpoint

t_error() Produces an XTI error message

t_free() Frees structures allocated by t_alloc

t_getinfo() Returns a set of parameters associated with a particular transport
provider

t_getprotaddr() Returns the local and remote protocol addresses associated with
the transport endpoint

t_getstate() Returns the state of a transport endpoint

t_look() Returns the current event on a transport endpoint

t_open() Establishes a transport endpoint connected to a chosen transport
provider

t_optmgmt() Negotiates protocol–specific options with the transport provider

t_strerror() Produces an XTI error message string

t_sync() Synchronizes a transport endpoint with the transport provider

t_unbind() Unbinds a transport address from a transport endpoint

7-12 XTI/XX25 Administrator and User Guide

The Client

Example of a Client-Program for Local Management in an XTI Connection-oriented Mode

Service.

/*––––––––––––––––––––––––––––––––*/

/* –– LMGMT : LOCAL MANAGEMENT –– */

/*––––––––––––––––––––––––––––––––*/

if (iso == TRUE) {

tp.tp_id = TPID_OSI_COTS;

}

else {

if (rfc == TRUE) {

tp.tp_id = TPID_RFC1006;

}

else {

tp.tp_id = TPID_TCP;

}

}

if (t_gettp(&tp) < 0) {

t_error_ns(”t_gettp failed”);

exit(3);

}

if ((fd = t_open(tp.tp_name, O_RDWR, &info)) < 0) {

t_error(”t_open failed for fd”);

exit(4);

}

if (t_bind(fd, NULL, NULL) < 0) {

t_error(”t_bind failed for fd”);

exit(5);

}

In this example, the user can choose between three connection-oriented transport
protocols: TCP/IP, NetShare (RFC 1006) or OSI connection transport protocol classes
0,2,3,4.

The first argument of t_open() is the path name of a file system node that identifies the
transport provider. The corresponding path name is obtained by a call to the t_gettp()
function.

t_gettp() is a function of the XTI Name Server, added to the standard XTI library to
facilitate manipulation of protocol addresses. Refer to XTI Name Server Functions, on page
5-2, to have more details on these functions and the use of the associated xti_ns library.

In the tp_name field of its xtitp structure, t_gettp() returns the path name corresponding to
a transport protocol code chosen between the various transport protocol codes defined in
the include file <xti_ns.h>:

• The path name corresponding to TCP/IP is: /dev/xti/tcp.

• The path name corresponding to OSI is: /dev/xti/cotp.

• The path name corresponding to NetShare (RFC 1006) is: /dev/xti/tp1006.

The t_info structure, used as third parameter of t_open() function, returns the service
characteristics of the transport provider to the user. This information is necessary to write
protocol independent software. Basic rules for using this information are presented in
X/Open Transport Interface XPG4 CAE Specification Version 2, Appendix C.

7-13CookBook

• TCP/IP supports a T_COTS_ORD service (Connection Oriented transport Service with
orderly release).

• OSI supports a T_COTS service (Connection Oriented transport Service without orderly
release).

For simplicity the client and server in this example do not exchange user data during either
connection establishment or abortive release.

The return value of t_open() is an identifier for the transport endpoint which is used by all
subsequent XTI function calls.

After the transport endpoint is created, the client calls t_bind() to assign an address to the
endpoint. The first parameter (integer) identifies the transport endpoint. The second
parameter (t_bind structure) describes the address the user would like to bind to the
endpoint, and the third parameter (t_bind structure) is set on return from t_bind() to
specify the address that the provider bound.

The address associated with a server transport endpoint is important, because it is the
address used by all clients to access the server. Whereas the typical client does not care
what its own address is, because no other process should try to access it. That is the case
in this example, where the second and third parameters of t_bind() are set to NULL. A
NULL second parameter directs the transport provider to choose an address for the user. A
NULL third parameter indicates that the user does not care what address was assigned to
the endpoint. Furthermore, from XPG4 a successful call to t_bind() with the second
parameter returned not NULL implies that the endpoint has been bound to the requested
address.

If either t_open() or t_bind() fail, the program calls t_error() to print an appropriate error
message to stderr. If any XTI routine fails, the global integer t_errno is assigned to an
appropriate transport error value. A set of such error values has been defined (in <xti.h>)
for the X/OPEN Transport Interface, and t_error() prints an error message corresponding to
the value in t_errno. This routine is analogous to perror(), which prints an error message
based on the value of errno. If the error associated with a transport function is a system
error, t_errno is set to TSYSERR, and errno is set to the appropriate value.

7-14 XTI/XX25 Administrator and User Guide

The Server
Example of a Server-Program for Local Management in an XTI Connection-oriented Mode

Service.

/*––––––––––––––––––––––––––––––––*/

/* –– LMGMT : LOCAL MANAGEMENT –– */

/*––––––––––––––––––––––––––––––––*/

if (iso == TRUE) {

tp.tp_id = TPID_OSI_COTS;

}

else {

if (rfc == TRUE) {

tp.tp_id = TPID_RFC1006;

}

else {

tp.tp_id = TPID_TCP;

}

}

if (t_gettp(&tp) < 0) {

t_error_ns(”t_gettp failed”);

exit(3);

}

if ((listen_fd = t_open(tp.tp_name, O_RDWR, &info)) < 0) {

t_error(”t_open failed for listen_fd”);

exit(4);

}

if ((bind = (struct t_bind *)t_alloc(listen_fd, T_BIND, T_ALL))

 == NULL) {

t_error(”t_alloc failed for bind”);

exit(5);

}

if (t_getladdr(&tp, servername, &bind–>addr) < 0) {

t_error_ns(”t_getladdr failed”);

exit(6);

}

/* the server endpoint is used to listen for connect indication */

bind–>qlen = 1;

if ((bindret = (struct t_bind *)t_alloc(listen_fd, T_BIND, T_ALL))

 == NULL) {

t_error(”t_alloc failed for bindret”);

exit(7);

}

if (t_bind(listen_fd, bind, bindret) < 0) {

t_error(”t_bind failed for listen_fd”);

exit(8);

}

#ifndef XTI4

/* was the correct address bound ? */

if ((bindret–>addr.len != bind–>addr.len) ||

 (memcmp(bindret–>addr.buf, bind–>addr.buf, bind–>addr.len))) {

fprintf(stderr, ”t_bind bound wrong address\n”);

exit(9);

}

#endif

if (trace) {

fprintf(stdout,”server : ”);

for (i=0, pt=bindret–>addr.buf; i<bindret–>addr.len; i++, pt++)

fprintf(stdout, ”0x%x”, *pt);

fprintf(stdout,”\n”);

}

7-15CookBook

As for the client, the first step is to call t_open() to establish a transport endpoint with the
desired transport provider. This endpoint, listen_fd, will be used to listen for connect
indications. Next, the server must bind its well–known address to the endpoint. This
address is used by each client to access the server. The second parameter of t_bind()
function requests that a particular address be bound to the transport endpoint. This
parameter points to a t_bind structure with the following format:

struct t_bind {

struct netbuf addr;

unsigned qlen;

}

where :

• the addr field describes the address to be bound; it is specified using a netbuf structure
that contains the following members:

struct netbuf {

unsigned int maxlen;

unsigned int len;

char *buf;

}

– maxlen indicates the maximum bytes the buffer can hold (and need only to be set
when data is returned to the user by an X/OPEN Transport Interface routine)

– len specifies the bytes of data in the buffer,

– buf points to a buffer containing the data which identifies a transport address.

The structure of addresses is expected to vary among each protocol implementation
under the X/OPEN Transport Interface, but the netbuf structure is intended to support
any such structure.

• the qlen field indicates the maximum outstanding connect indications that may arrive at
this endpoint

If the value of qlen is greater than 0, the transport endpoint may be used to listen for
connect indications. In such cases, t_bind() directs the transport provider to immediately
begin queueing connect indications destined for the bound address. Furthermore, the value
of qlen indicates the maximum outstanding connect indications the server wishes to
process. The server must respond to each connect indication, either accepting or rejecting
the request for connection. An outstanding connect indication is one to which the server has
not yet responded. Often, a server fully processes a single connect indication and responds
to it before receiving the next indication. In this case, a value equal to 1 is appropriate for
qlen. However, some servers may wish to retrieve several connect indications before
responding to any of them. In such cases, qlen indicates the maximum number of such
outstanding indications the server can process.

t_alloc() is called to allocate the t_bind structure needed by t_bind() function call.
t_alloc() takes three parameters:

• The first parameter (integer) is a file descriptor which references a transport endpoint. It
is used to access the characteristics of the transport provider.

• The second parameter (integer) identifies the appropriate XTI structure to be allocated.

• The third parameter (integer) specifies which netbuf buffers, if any, should be allocated
for that structure.

In this example, T_ALL given as third parameter specifies that all netbuf buffers
associated with the structure should be allocated, and causes the addr buffer to be
allocated. The size of this buffer is determined from the transport provider characteristic that
defines the maximum address size. The maxlen field of this netbuf structure is set to the
size of the newly allocated buffer by t_alloc().

7-16 XTI/XX25 Administrator and User Guide

t_getladdr() is a function of the XTI Name Server, added to the standard XTI library to
facilitate manipulation of protocol addresses. Refer to XTI Name Server Functions, on page
5-2, to have more details on these functions and the use of the associated xti_ns library.

Given the specific transport provider as first parameter and a string identifying the current
application name as second parameter t_getladdr() returns the corresponding well
structured protocol address in a netbuf structure which can be used in a call to t_bind().

• For TCP/IP, the buf field of the t_bind addr field must correspond to a sockaddr_in
structure as defined for the socket interface in the <netinet/in.h> include file. The len
field must be set accordingly, i.e. sizeof (struct sockaddr_in).

• For OSI, the buf field of a t_bind addr field must correspond to an OSI transport
selector, i.e. an identifier of 31 bytes maximum.

The server in this example processes connect indications one at a time, so qlen is set to 1.
The address information is then assigned to the first newly allocated t_bind structure. This
t_bind structure is used to pass information to t_bind() in the second parameter. The
second allocated t_bind structure is used to return information to the user in the third
parameter.

On return, the t_bind structure contains the address which was bound to the transport
endpoint. If the provider cannot bind the requested address (perhaps because it had been
bound to another transport endpoint), it will choose another appropriate address.

Note: Each transport provider manages its address space differently. Some transport
providers allows a single transport address to be bound to several transport
endpoints, while others requires a unique address per endpoint. XTI supports either
choice. Based on its address management rules, a provider determines if it can bind
the requested address. If it cannot, the TADDRBUSY error is returned

If t_bind() succeeds, the provider begins queueing connect indications. The phase of
connection establishment is initiated.

7-17CookBook

Connection Establishment in an XTI Connection-oriented
Mode Service

The connection establishment phase enables two users to create a connection, or virtual
circuit, between each other as demonstrated in this illustration.

user 1

provider

XTI

transport

Transport

user 2

Connection

Figure 7. Transport Connection

The connection establishment procedures highlight the distinction between clients and
servers:

• The client initiates the connection establishment procedure by requesting a connection to
a particular server using t_connect().

• The server is notified of the client request by calling t_listen(). The server may either
accept or reject the client request. It calls t_accept() to establish the connection or calls
t_snddis() to reject the request.

• The client is notified of the server decision:

– with OSI, when t_connect() completes,

– with TCP, t_connect() completion is not a connect indication because it is generated
directly by the TCP provider itself. Only the rejection of the connection request by the
server through t_snddis() is significant.

Note: A t_snddis() called to reject a connect indication is analogous to a t_snddis() on an
established connection.

7-18 XTI/XX25 Administrator and User Guide

The following table summarizes the XTI routines which support connection establishment.

Functions Description

t_accept Accepts a connection request from a transport user.

t_connect Requests a connection with another transport user.

t_snddis Rejects a connection request.

t_listen Retrieves an indication of a connect request from a transport user.

t_rcvconnect Completes connection establishment if a t_connect() was called in
asynchronous mode (see note below).

XTI offers two facilities during connection establishment which may not be supported by all
transport providers:

1. the transfer of data between client and server when establishing the connection. The
client can send data to the server when it requests a connection. This data is passed to
the server by t_listen(). Similarly, the server can send data to the client when it accepts
or rejects the connection. The connect characteristic returned by t_open() determines
how much data, if any, two users may transfer during connection establishment.

2. the negotiation of protocol options. The client can specify protocol options that would be
provided by the transport provider and/or the remote user. XTI supports both local and
remote option negotiation.

Note: The option negotiation is inherently a protocol–specific function. This facility is not to
be used if protocol-independent software is a goal, except for the XTI_GENERIC
Level 0 option.

Warning: TCP/IP does not support sending of data during connection or release phases.

7-19CookBook

The Client

Example of a Client-Program for Connection Establishment in an XTI Connection-oriented

Mode Service.

/*–––––––––––––––––––––––––––––––––––––––*/

/* –– ESTB : CONNECTION ESTABLISHMENT –– */

/*–––––––––––––––––––––––––––––––––––––––*/

if ((sndcall = (struct t_call *)t_alloc(fd, T_CALL, T_ALL)) == NULL)

{

t_error(”t_alloc failed for sndcall”);

exit(6);

}

if (info.addr == –1)

/* –1 : no limit ==> field not allocated by t_alloc */

{

sndcall–>addr.buf = bufaddr;

sndcall–>addr.maxlen = LBUF;

}

if (info.options == –1)

/* –1 : no limit ==> field not allocated by t_alloc */

{

sndcall–>opt.buf = bufopt;

sndcall–>opt.maxlen = LBUF;

}

if (t_getraddr(&tp, hostname, servername, &sndcall–>addr) < 0) {

 /* t_error(”t_getraddr failed”); */

/* New function for Name Service’s error */

t_error_ns(”t_getraddr failed”);

exit(7);

}

if (trace) {

fprintf(stdout,”server is:”);

for (i=0, pt=sndcall–>addr.buf;

 i<sndcall–>addr.len;

 i++, pt++)

fprintf(stdout, ”0x%x,”, *pt);

fprintf(stdout,”\n”);

}

#ifdef XTI4

if ((ltpdu != FALSE) && ((iso == TRUE) || (rfc == TRUE))) {

if (t_getopt(&(tp),”example_ltpdu”, &sndcall–>opt) == –1)

{

t_error_ns (”tgetopt failed”);

exit (8);

}

pt_ltpdu = (unsigned long *)(sndcall–>opt.buf + sizeof(struct

t_opthdr));

*pt_ltpdu = ltpdu;

}

#else

if ((ltpdu != FALSE) && ((iso == TRUE) || (rfc == TRUE))) {

optiso = (struct isoco_options *)sndcall–>opt.buf;

initopt(optiso);

optiso–>mngmt.dflt = T_NO;

optiso–>mngmt.ltpdu = ltpdu;

sndcall–>opt.len = sizeof(struct isoco_options);

}

#endif

7-20 XTI/XX25 Administrator and User Guide

if (t_connect(fd, sndcall, NULL) < 0) {

t_error(”t_connect failed for fd”);

if (t_errno == TLOOK) {

if (t_rcvdis(fd, &discon) < 0) {

t_error(”t_rcvdis failed for fd”);

exit(9);

}

fprintf(stderr, ”T_DISCONNECT reason: %x\n”,

 discon.reason);

}

exit(9);

}

if (t_free((char *)sndcall, T_CALL) < 0) {

t_error(”t_free failed for sndcall”);

exit(10);

}

The t_connect() call establishes the connection with the server. The first parameter
(integer) of t_connect() identifies the transport endpoint through which the connection is
established. The second parameter identifies the destination server and the third parameter
 is used to return information to the user. Second and third parameters are specified as a
pointer to the t_call structure, which has the following format:

struct t_call {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

}

where:

• addr field identifies the address of the server,

• opt field can be used to specify protocol–specific options that the client would like to
associate with the connection,

• udata field identifies user data that may be sent with the connect request to the server.

• sequence field has no meaning for t_connect().

t_alloc() is called to allocate the second parameter t_call structure dynamically, before the
t_connect() call.

Here, the third parameter is set to NULL to indicate that the client does not matter with this
information.

The server address is assigned by using the t_getraddr() function. Given the specific
transport provider as first parameter, a string identifying the server’s host as second
parameter, a string identifying the server’s name application as third parameter,
t_getraddr() returns the server’s protocol address in a netbuf structure as fourth parameter.

The structure of a protocol address on a t_connect(), t_listen(), t_rcvconnect(),
t_getrname() or t_getraddr() depends on the used transport provider.

t_getladdr(), t_getraddr(), t_getlname(), t_getrname() are functions of the XTI Name
Server, added to the standard XTI library to facilitate manipulation of protocol addresses.
Refer to XTI Name Server Functions, on page 5-2, to have more details on these functions
and the use of the associated xti_ns library.

• For TCP/IP the XTI Name Service functions use INET Name Service.

• For OSI the XTI Name Service functions access the database files: /etc/xtihosts, for
the host addresses, and /etc/xtiservices for the application names and the selectors.

7-21CookBook

For more details about Bull OSI Connection Oriented transport addressing, see “Addressing
Concepts” in OSI Services Reference Manual.

Note: As the option negotiation is inherently a protocol–specific function, this facility is not
to be used if protocol-independent software is a goal, except for the XTI_GENERIC
Level 0 option.

Nevertheless, this client example shows how to negotiate options in an OSI Connection
case. t_getopt() is used to set the option buffer within the t_call structure.

In this example, no user data are associated with the t_connect() call.

The third parameter of t_connect() is used to return information on the newly established
connection to the user. It may contain any user data sent by the server with his connect
response. It is set to NULL by the client to indicate that this information doesn’t matter to
him.

The connection is established on successful return of t_connect(). If the server rejects the
connect request, t_connect() fails and sets t_errno to TLOOK. Refer to X/Open
Transport Interface XPG4 CAE Specification Version 2 for more details about TLOOK error.

7-22 XTI/XX25 Administrator and User Guide

The Server
When the client calls t_connect(), a connect indication is generated on the listening
transport endpoint of the server. For each client, the server accepts the connect request
and spawns a server process to manage the connection on the responding endpoint.

Endpoint management between the server and the transport provider is described in the
illustration.

client

provider

XTI

transport

transport

server

connection

responding
enpoint

listening
endpoint

Figure 8. Listening and Responding Transport Endpoints

Connection establishment is managed in two phases:

1. Management of client connection requests,

2. Management of request acceptance

Management of Client Connection Requests (1rst Phase)
Example of a Server-Program for Connection Establishment (1rst Phase) in an XTI

Connection-oriented Mode Service.

/*––*/

/* –– ESTB1 : CONNECTION ESTABLISHMENT first phase –– */

/*––*/

if ((call = (struct t_call *)t_alloc(listen_fd, T_CALL, T_ALL))

 == NULL)

{

t_error(”t_alloc failed for call”);

exit(10);

}

if (info.addr == T_INFINITE)

/* –1 : no limit ==> field not alocated by t_alloc */

{

call–>addr.buf = bufaddr;

call–>addr.maxlen = LBUF;

}

if (info.options == T_INFINITE)

/* –1 : no limit ==> field not alocated by t_alloc */

{

call–>opt.buf = bufopt;

call–>opt.maxlen = LBUF;

7-23CookBook

}

while (1) {

if (t_listen(listen_fd, call) < 0) {

t_error(”t_listen failed for listen_fd”);

exit(11);

}

if ((conn_fd = accept_call(listen_fd, call)) != DISCONNECT) {

run_server(listen_fd, infile);

}

/* t_free of bind and call structures be effectively */

/* realised when the server process will be killed */

/* (t_alloc use the general memory allocation function) */

}

The server allocates a t_call structure to be used by t_listen(). The third parameter of
t_alloc(), set to T_ALL, specifies that all necessary buffers should be allocated for
retrieving the caller address, options, and user data.

• As TCP/IP does not support the transfer of user data during connection establishment,
and does not support either any protocol options, t_alloc() does not allocate buffers for
the user data and options.

• With OSI t_alloc() allocates buffers for the user data and options, determining the size
of the buffers from the connect or disconnect (respectively the options) characteristics
returned by t_open().

Furthermore t_alloc() must allocate a buffer large enough to store the address of the
connection initiator. t_alloc() determines the buffer size from the addr characteristic
returned by t_open(). The maxlen field of each netbuf structure is set to the size of the
newly allocated buffer by t_alloc().

• For OSI

– maxlen = 64 for the user data buffer

– maxlen = 2000 for option buffers

• For TCP

– maxlen = 0 for user data and option buffers.

– maxlen = 512 for option buffers

The server loops forever, processing each connect indication. Using the t_call structure,
the server calls t_listen() to retrieve the next connect indication. If one is currently
available, it is returned to the server immediately. Otherwise, t_listen() blocks until a
connect indication arrives.

Note: For such routines, XTI supports an asynchronous mode which prevents a process
from blocking.

7-24 XTI/XX25 Administrator and User Guide

Management of Request Acceptance (2nd Phase)
When a connect indication arrives, the server calls accept_call to accept the client request.

Description of the accept_call function.

/*––*/

/* –– ESTB2 : CONNECTION ESTABLISHMENT : second phase ––––*/

/*––*/

accept_call(listen_fd, call)

int listen_fd;

struct t_call *call;

{

int resfd;

if ((resfd = t_open(tp.tp_name, O_RDWR, NULL)) < 0) {

t_error(”t_open for responding fd failed”);

exit(12);

}

#ifndef XTI4

if (iso == TRUE) {

 bindret–>qlen = 0;

 if (t_bind(resfd, bindret, NULL) < 0) {

t_error(”t_bind for responding fd failed”);

exit(13);

}

}

/* for TCP the address is not necessary */

else {

 if (t_bind(resfd, NULL, NULL) < 0) {

t_error(”t_bind for responding fd failed”);

exit(13);

}

}

#endif

/*call–>sequence is actually initialized */

/*because returned by t_listen*/

call–>addr.len = 0;

call–>opt.len = 0;

call–>udata.len = 0;

if (t_accept(listen_fd, resfd, call) < 0) {

if (t_errno == TLOOK) {

if (t_rcvdis(listen_fd , NULL) < 0) {

t_error(”t_rcvdis failed for listen_fd”);

exit(14);

}

if (t_close(resfd) < 0) {

t_error(”t_close failed for responding fd”);

exit(15);

}

return(DISCONNECT);

}

t_error(”t_accept failed”);

exit(16);

}

return(resfd);

}

7-25CookBook

accept_call accepts the connection on an alternate transport endpoint and returns the
value of that endpoint. conn_fd is a global variable that identifies the transport endpoint
where the connection is established. Because the connection is accepted on an alternate
endpoint, the server can continue listening for connect indications on the endpoint that was
bound for listening. If the call is accepted without error, run_server, described on page
7-27, spawns a process to manage the connection.

accept_call uses two parameters: listen_fd identifies the transport endpoint where the
connect indication arrived, and call is a pointer to a t_call structure that contains all
information associated with the connect indication. The server first establishes another
transport endpoint by opening and binding an address. The newly established transport
endpoint, resfd, is used to accept the client connect request.

The first two parameters of t_accept() function, listen_fd and resfd, specify the listening
transport endpoint where the connect indication arrives and the endpoint where the
connection may be accepted, respectively.

Note: A connection can be accepted on the listening endpoint. However, this would
prevent other clients from accessing the server for the duration of that connection.

The third parameter of t_accept() points to a t_call structure. This structure must contain
the sequence number identifying the connect indication, returned to by t_listen(). Also, the
t_call structure should identify protocol options the user would like to specify, and user data
that may be passed to the client.

To make the example easier, the server exits if either the t_open() or t_bind() call fails. The
exit() function closes the transport endpoint associated with listen_fd, causing the transport
provider to pass a disconnect indication to the client that requested the connection.

• On OSI, this disconnect indication notifies the client that the connection was not
established; t_connect() fails, setting t_errno to TLOOK.

• On TCP, a subsequent XTI routine will fail, setting t_errno to TLOOK.

t_accept() can fail if an asynchronous event has occurred on the listening transport
endpoint before the connection is accepted, and t_errno is set to TLOOK. The two events
which may cause t_accept() function to return with a TLOOK error are: T_DISCONNECT
and T_LISTEN. Because of qlen’s values on the previous t_bind() (i.e. qlen=1), the
T_LISTEN event can not occur in the example. So a disconnect indication should arrived.
This event may occur if the client decides to undo the connect request it had previously
initiated.

The server must retrieve the disconnect indication using t_rcvdis(). This routine takes a
pointer to a t_discon structure as second parameter, which is used to retrieve information
associated with a disconnect indication. In this example, however, the server does not care
to retrieve this information, so it sets the parameter to NULL. After receiving the disconnect
indication, accept_call closes the responding transport endpoint and returns DISCONNECT,
which informs the server that the connection was disconnected by the client. The server
then listens for further connect indications.

On successful return from t_accept(), the transport connection is established on the newly
created responding endpoint, and the listening endpoint is freed to retrieve further connect
indications.

7-26 XTI/XX25 Administrator and User Guide

Data Transfer in an XTI Connection-oriented Mode Service

Once the connection established, both client and server can begin transferring data over
the connection.

The following table summarizes the XTI routines which support data transfer operations.

Functions Description

t_rcv Retrieves data which has arrived over a transport connection

t_snd Sends data over an established transport connection

XTI does not differentiate the client from the server in data transfer. Either user can send
and receive data, or release the connection. XTI guarantees reliable, sequenced delivery of
data over an existing connection.

Two classes of data can be transferred over a transport connection:

• normal data,
• expedited data.

Expedited data is typically associated with information of an urgent nature. The exact
semantics of expedited data are subject to the interpretations of the transport provider.
Furthermore, all transport protocols do not support the concept of expedited data. See
t_open() for more details about the etsdu field of the t_info structure.

• TCP/IP supports the transfer of data in byte stream mode. Byte stream implies no
message boundaries on data which are transferred over a connection.

• OSI supports the preservation of message boundaries over a transport connection. The
messages, called Transport Service Data Units (TSDU), can be transferred between two
transport users as distinct units. The maximum size of a TSDU is a characteristic of the
underlying transport protocol. This information is available to the user from t_open() and
t_getinfo(). Because the maximum TSDU size can be large (possibly unlimited), XTI
enables a user to transmit a message in multiple units.

To send a message in smallest units over a transport connection, the user must set the
T_MORE flag on every t_snd() call except the last one:

– T_MORE set in a message indicates that the user will send more data associated with
the message in a subsequent call to t_snd(),

– T_MORE reset in the last t_snd() indicates that this is the end of the TSDU.

Similarly, a TSDU can be passed to the user on the receiving side in multiple units.
Again, if t_rcv() returns with the T_MORE flag set, the user should continue calling
t_rcv() to retrieve the remainder of the message.
The last unit in the message will be indicated by a call to t_rcv() that does not set
T_MORE.

Note: The T_MORE flag implies nothing about how the data may be packaged under the
X/OPEN Transport Interface. Furthermore, it implies nothing about how the data
may be delivered to the remote user. Each transport protocol, and each
implementation of that protocol, can package and deliver the data differently.
For example, if a user sends a complete message in a single call to t_snd(), there is
no guarantee that the transport provider will deliver the data in a single unit to the
remote transport user. Similarly, a TSDU transmitted in two message units may be
delivered in a single unit to the remote transport user. The message boundaries may
only be preserved by noting the value of the T_MORE flag on t_snd() and t_rcv().
This will guarantee that the receiving user will see a message with the same
contents and message boundaries as was sent by the remote user.

7-27CookBook

The Server
Example of a Server-Program for Data Transfer in an XTI Connection-oriented Mode

Service.

/*––––––––––––––––––––––––––––––––*/

/* –– XFER : DATA TRANSFER –– */

/*––––––––––––––––––––––––––––––––*/

run_server(listen_fd, infile)

int listen_fd;

char *infile;

{

int nbytes;

FILE *infp;

char buf[LBUF_MAX];

char lgth_file[LSIZE];

switch (fork()) {

case –1:

perror(”fork failed”);

exit(20);

default: /* parent */

if (t_close(conn_fd) < 0) {

t_error(”t_close failed for conn_fd”);

exit(21);

}

break;

case 0: /* child */

if (t_close(listen_fd) < 0) {

t_error(”t_close failed for listen_fd”);

exit(22);

}

if ((infp = fopen(infile, ”r”)) == NULL) {

perror(”cannot open input file”);

exit(23);

}

sprintf(lgth_file,”%d”,filesize(infp));

fprintf(stdout,

 ”server : %d bytes in input file \”%s\” to send\n”,

 filesize(infp), infile);

if (t_snd(conn_fd, lgth_file, LSIZE, 0) < 0) {

if (t_errno == TLOOK) {

fprintf(stderr,

 ”t_snd : connection aborted\n”);

exit(25);

}

t_error(”t_snd failed for conn_fd”);

exit(26);

}

while ((nbytes = fread(buf, 1 , lbuf, infp)) > 0) {

if (t_snd(conn_fd, buf, nbytes, 0) < 0) {

if (t_errno == TLOOK) {

fprintf(stderr,

 ”t_snd : connection aborted\n”);

exit(27);

}

t_error(”t_snd failed for conn_fd”);

exit(28);

}

}

/* wait release or disconnection indication */

connrelease();

} /*end switch fork*/

}

7-28 XTI/XX25 Administrator and User Guide

After the fork() call, the main process returns to the infinite processing loop and listen for
further connect indications. Meanwhile, the secondary process manages the newly
established transport connection. If the fork() call fails, exit() closes the transport endpoint
associated with listen_fd. This action will cause a disconnect indication to be passed to the
client.

The server first sends over the connection in a fixed number of bytes LSIZE, the size of the
input file it will transfer later.

The server process then reads a number of bytes= lbuf of the input file at a time and sends
these data to the client using t_snd(). buf points to the start of the data buffer, and nbytes
specifies the number of bytes to be transmitted. The fourth parameter flags is used to
specify options. It can be set to T_EXPEDITED or T_MORE, or both. Neither flag is set by
the server in this example.

If the user begins to flood the transport provider with data, the XTI library provides flow
control. In such cases, t_snd() fails and t_errno is set to TFLOW. To resume the data
transfer operation, the user must scan the flow state, waiting for a T_GODATA or
T_GOEXDATA return value of t_look(), and then call the t_snd() function again.

7-29CookBook

The Client

Example of a Client-Program for Data Transfer in an XTI Connection-oriented Mode

Service.

The client receives the data transfered by the server over the transport connection, then
writes this data to its standard output file.

/*–––––––––––––––––––––––––––––––––––––––*/

/* –– XFER : DATA TRANSFER –––––––––––––– */

/*–––––––––––––––––––––––––––––––––––––––*/

if ((outfp = fopen(outfile, ”w”)) == NULL) {

perror(”cannot open output file”);

exit(11);

}

/* first data received is the size of transferred file */

if ((nbytes = t_rcv(fd, buf, LSIZE, &flags)) < 0) {

if (t_errno == TLOOK) {

if ((evt = t_look(fd)) < 0) {

t_error(”t_look failed for fd”);

exit(12);

}

fprintf(stderr, ”t_rcv evt: %x\n”, evt);

exit(13);

}

t_error(”t_rcv failed for fd”);

exit(14);

}

sscanf(buf, ”%d”, &lgth_file);

fprintf(stdout, ”client : %d bytes in file to receive\n”,

 lgth_file);

while (rcv_bytes < lgth_file) {

if ((nbytes = t_rcv(fd, buf, LBUF_MAX, &flags)) < 0) {

if (t_errno == TLOOK) {

if ((evt = t_look(fd)) < 0) {

t_error(”t_look failed for fd”);

exit(15);

}

fprintf(stderr, ”t_rcv evt: %x\n”, evt);

exit(16);

}

t_error(”t_rcv failed for fd”);

exit(17);

}

if (fwrite(buf, 1, nbytes, outfp) < 0) {

fprintf(stderr, ”fwrite failed\n”);

exit(18);

}

rcv_bytes = rcv_bytes + nbytes;

}

fprintf(stdout,

 ”client : %d bytes received in output file \”%s\”\n”,

 rcv_bytes,outfile);

7-30 XTI/XX25 Administrator and User Guide

The client continuously calls t_rcv() to process incoming data. If no data is currently
available, t_rcv() blocks until data arrives. t_rcv() retrieves the available data up to
LBUF_MAX bytes, which is the size of the client’s input buffer, and returns the number of
received bytes. Then, the client writes these data to standard output and continues. The
data transfer phase is completed when the length of the sent file is reached or when t_rcv()
fails. t_rcv() may fail if an orderly release indication or disconnect indication arrives, as
discussed in Connection Release, on page 7-31. If the fwrite() call fails for any reason, the
client will exit, thereby closing the transport endpoint. If the transport endpoint is closed
(either by exit() or t_close()) when it is in the data transfer phase, the connection will be
aborted and the remote user will receive a disconnect indication.

7-31CookBook

Connection Release in an XTI Connection-oriented Mode
Service

At any point during data transfer, any user can release the transport connection and end the
conversation. Two forms of connection release are supported by XTI:

1. Abortive release, which breaks a connection immediately and can result in the loss of
any data that has not yet reached the destination user. An abortive release may be
generated by any user using the t_snddis() function or directly by the transport provider
if a problem occurs below XTI.
All transport providers support the abortive release.

t_snddis() function enables a user to send data to the remote user when aborting a
connection. This facility is not supported by all transport providers.

When the remote user is notified of the aborted connection, the t_rcvdis() function must
be called to retrieve the disconnect indication. t_rcvdis() returns a code that indicates
why the connection was aborted, and returns any user data that may have accompanied
the disconnect indication (if the abortive release was initiated by the remote user).

Note: As the errror code is specific to the underlying transport protocol, it must not be
interpreted by protocol–independent software.

2. Orderly release, which terminates a connection without loss of data, using the t_sndrel()
 and t_rcvrel() functions.
Orderly release is an optional facility that is not supported by all transport protocols. For
example, OSI does not support it.

To avoid loss of the end of file data during an abortive release, the connection release
cannot be initiated by the server. Therefore, it is the client’s responsibility to initiate the
connection release when all the data from the transferred file has been received. Many
other mechanisms are possible for preventing data loss.

The following table summarizes the XTI routines which support connection release.

Function Description

t_rcvdis Returns an indication of an abortive connection release, including
reason code and user data.

t_rcvrel Returns an indication of an orderly connection release requested by
the remote user.

t_snddis Aborts a connection (or rejects a connection request).

t_sndrel Requests the orderly release of a connection.

7-32 XTI/XX25 Administrator and User Guide

The Client
The two forms of connection release are described in this example:

• abortive release with OSI,

• orderly release with TCP/IP.

/*–––––––––––––––––––––––––––––––––––––––*/

/* –– REL : CONNECTION RELEASE */

/*–––––––––––––––––––––––––––––––––––––––*/

if (info.servtype == T_COTS_ORD) {

if (t_sndrel(fd) < 0) {

t_error(”t_sndrel failed for fd”);

exit(19);

}

fprintf(stdout,

 ”client : orderly release initiated\n”);

while (t_rcvrel(fd) < 0) {

/* If the event is TNOREL : it’s OK , we must wait for

 the orderly release . Else , it’s an error */

if (t_errno != TNOREL) {

if ((evt = t_look(fd)) < 0) {

t_error(”t_look failed for fd”);

exit(20);

}

fprintf(stderr,

 ”t_rcvrel evt: %x\n”, evt);

}

if (t_errno != TNOREL) {

 t_error(”t_rcvrel failed for fd”);

exit(21);

}

}

fprintf(stdout,

 ”client : orderly release completed ok\n”);

}

else {

if (t_snddis(fd, NULL) < 0) {

t_error(”t_snddis failed for fd”);

exit(22);

}

fprintf(stdout,

 ”client : abortive disconnection requested ok\n”);

}

exit(0);

The abortive release procedure is initiated by calling the t_snddis() function.

The orderly release procedure consists of two steps performed by each user. One user may
initiate a release using t_sndrel(). This routine informs the other user that no more data will
be sent. When this other user receives the orderly release indication, he can go on sending
data, if desired. When he has no more data to send, it’s his turn to call t_sndrel() to
indicate that he is ready to release the connection. The connection is released only after
both users have requested an orderly release and received the corresponding indication
from the other user.

7-33CookBook

The Server
The two forms of connection release are described in this example:

/*––––––––––––––––––––––––––––––––*/

/* –– REL : CONNECTION RELEASE –– */

/*––––––––––––––––––––––––––––––––*/

void connrelease()

{

int evt;

/* until release or disconnection indication arrives */

while ((evt = t_look(conn_fd)) == 0) {

sleep(1);

}

if (evt < 0) {

t_error(”t_look failed for conn_fd”);

exit(30);

}

switch (evt) {

case T_DISCONNECT:

if (t_rcvdis(conn_fd, NULL) < 0){

 t_error(”t_rcvdis failed”);

 exit(31);

}

fprintf(stdout,

 ”server : abortive disconnection received ok\n”);

 exit(0);

case T_ORDREL:

if (t_rcvrel(conn_fd) < 0){

 t_error(”t_rcvrel failed”);

 exit(31);

}

fprintf(stdout, ”server : orderly release received\n”);

if (t_sndrel(conn_fd) < 0){

 t_error(”t_sndrel failed”);

 exit(32);

}

fprintf(stdout,

 ”server : orderly release acknowledged ok\n”);

 exit(0);

default:

fprintf(stderr, ”server : error evt: %x\n”, evt);

exit(31);

}

}

The server calls connrelease() when it has finished sending the input file.
connrelease() manages the connection release phase. The server waits incoming events
with t_look(). A T_ORDREL indication (for TCP) or a T_DISCONNECT indication (for ISO)
is received after the client has initiated the release.

If a T_ORDREL indication is received, the server calls t_rcvrel() to process this indication
and calls t_sndrel(). The connection is released.

If a T_DISCONNECT indication is received, the server may call t_rcvdis() to process this
indication.

The exit call in connrelease() closes the transport endpoint. If a user process wants to
close a transport endpoint without existing it may call t_close().

7-34 XTI/XX25 Administrator and User Guide

Overview of an XTI Connectionless Mode Service

Connectionless Mode is message-oriented and supports data transfer in self-contained
units with no logical relationship required among multiple units. These units are also known
as datagrams. This service:

• requires a pre-existing association between the peer users involved, which determines
the characteristics of the data to be transmitted,

• does not enable the dynamic negotiation of parameters and options.

All the information required to deliver a unit of data (for example, the destination address) is
presented to the transport provider, together with the data to be transmitted, in one service
access. Each unit of data transmitted is entirely self-contained and can be independently
routed by the transport provider.

This Connectionless Mode service is attractive for applications which:

• involve short-term request/response interactions,

• exhibit a high level of redundancy,

• can be dynamically reconfigured,

• do not require guaranteed, in-sequence delivery of data.

The example of Connectionless Mode service described in this state machine is not meant
to show all the functions that may be called, but rather to hightlight the main functions that
requests a particular service request

T_UNINIT

T_UNBND

T_IDLE

t_close

t_unbind

t_sndudatat_rcvudata

t_bind

t_open

User A User B

Local Management : Initialisation t_open()
 t_bind()

 t_open()
 t_bind()

Data Transfer t_sndudata()
 t_rcvudata()

 t_rcvudata()
 t_sndudata()

Local Management : De-initialisation t_unbind()
 t_close()

 t_unbind()
 t_close()

Figure 9. Sequence of XTI functions in Connectionless Mode

7-35CookBook

The Connectionless Mode is well adapted to transaction processing applications. So a
Connectionless Mode service is described using a transaction server as example. This
server waits for incoming transaction queries, and processes and responds to each query.

A Connectionless Mode server is described step by step:

• Local Management, on page 7-36, to establish a communication channel with the
Transport Provider.

• Data Transfer, on page 7-38, to exchange datagrams over the Transport Provider
endpoint,

• Datagram Errors, on page 7-40, returned by the Transport Provider.

The example is described using Name Server.

The directory /usr/lpp/xti_api/examples/binop_c/clts contains the source files of the
complete programs:

clts_client.c client-program of an XTI Connectionless Mode service using Name Server

clts_server.c server-program of an XTI Connectionless Mode service using Name Server

7-36 XTI/XX25 Administrator and User Guide

Local Management in an XTI Connectionless Mode Service

The local management phase uses the same local operations as those described in
Connection-oriented Mode Local Management, on page 7-10.

The user must choose the appropriate connectionless transport provider using t_open()
and establish its identity using t_bind().

Example of a Server-Program for Local Management in an XTI Connectionless Mode

Service.

/*––––––––––––––––––––––––––––––––*/

/* –– LMGMT : LOCAL MANAGEMENT –– */

/*––––––––––––––––––––––––––––––––*/

if (osi_cltp)

tp.tp_id = TPID_OSI_CLTS;

else

tp.tp_id = TPID_UDP;

if (t_gettp(&tp) < 0) {

/* New function for Name Service’s errors */

t_error_ns(”t_gettp failed”);

exit(2);

}

if ((fd = t_open(tp.tp_name, O_RDWR, NULL)) < 0) {

t_error(”t_open failed”);

exit(3);

}

if ((bind = (struct t_bind *)(t_alloc(fd, T_BIND, T_ALL)))

 == NULL) {

t_error(”t_alloc failed for bind”);

exit(4);

}

if (t_getladdr(&tp, servername, &bind–>addr) < 0) {

/* New function for Name Service’s errors */

t_error_ns(”t_getladdr failed”);

exit(5);

}

/* bind–>qlen = 0; */

if ((bindret = (struct t_bind *)(t_alloc(fd, T_BIND, T_ALL)))

 == NULL) {

t_error(”t_alloc failed for bindret”);

exit(6);

}

if (t_bind(fd, bind, bindret) < 0) {

t_error(”t_bind failed”);

exit(7);

}

The server establishes a transport endpoint with the desired transport provider using
t_open(). Each provider has an associated service type, so the user may choose a
particular service by opening the appropriate transport provider file. The path name
corresponding to UDP is: /dev/xti/udp. The path name corresponding to OSI CLTS is:

7-37CookBook

/dev/xti/cltp. This connectionless–mode server ignores the characteristics of the provider
returned by t_open() in the same way as the users setting the third argument to NULL in
the connection–mode example. For simplicity, the transaction server assumes the transport
provider has the following characteristics:

• The transport provider supports the T_CLTS service type (connectionless transport
service, or datagram).

• The transport provider does not support any protocol–specific options.

The connectionless server binds a transport address to the endpoint, so that potential
clients may identify and access the server. A t_bind structure is allocated using t_alloc,
and the buf and len fields of the address are set accordingly using t_getladdr().

The qlen field of the t_bind structure is insignificant for connectionless–mode service,
because all users can receive datagrams once they have been bound to an address. XTI
defines an inherent client–server relationship between two users while establishing a
transport connection in the connection–mode service. However, no such relationship exists
in the connectionless–mode service. It is the context of this example, and not the X/OPEN
Transport Interface rules, which defines one user as a server and another as a client.

Because the address of the server is known by all potential clients, the server checks the
bound address returned by t_bind() to ensure it is correct.

7-38 XTI/XX25 Administrator and User Guide

Data Transfer in an XTI Connectionless Mode Service

Once a user has been bound to an address to the transport endpoint, datagrams may be
sent or received over that endpoint using the t_sndudata() and t_rcvudata() routines.
Each outgoing message is accompanied by the transport address of the destination user. In
addition, XTI enables a user to specify protocol options that should be associated with the
transfer of the data unit (for example, transit delay). As discussed in Local Management,
each transport provider defines the set of options which may be possibly associated to a
datagram. When the datagram is passed to the destination user, the associated protocol
options may be returned as well. UDP does not support options.

Example of a Server-Program for Data Transfer including Datagrams Errors management in

an XTI Connectionless Mode Service.

/*–––––––––––––––––––––––––––––––––––––––*/

/* –– XFER : DATA TRANSFER –– */

/*–––––––––––––––––––––––––––––––––––––––*/

if ((ud = (struct t_unitdata *)(t_alloc(fd, T_UNITDATA, T_ALL)))

 == NULL) {

t_error(”t_alloc failed for t_unitdata structure”);

exit(8);

}

if ((uderr = (struct t_uderr *)(t_alloc(fd, T_UDERROR, T_ALL)))

 == NULL) {

t_error(”t_alloc failed for t_uderr structure”);

exit(9);

}

for (i=0; ; i++) {

if (t_rcvudata(fd, ud, &flags) < 0) {

if (t_errno == TLOOK) {

/* error on previously sent datagram */

if (t_rcvuderr(fd, uderr) < 0) {

t_error(”t_rcvuderr failed”);

exit (10);

}

fprintf(stderr,”bad datagram : error = %d\n”,

uderr–>error);

continue;

}

t_error(”t_rcvudata failed”);

fprintf(stdout,”server: %d datagrams processed\n”);

exit (11);

}

if (trace) {

fprintf(stdout,”R”);

fflush(stdout);

}

alarm(ALRM_DELAY);

/*

 * query() processes the request and places the

 * response in ud–>udata.buf, setting ud–>udata.len

 */

query(ud);

if (t_sndudata(fd, ud) < 0) {

t_error(”t_sndudata failed”);

exit (12);

}

7-39CookBook

if (trace) {

fprintf(stdout,”S”);

fflush(stdout);

}

}

}

To store datagrams, the server must first allocate a t_unitdata structure:

struct t_unitdata {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

}

• the addr field holds the source address of incoming datagrams and the destination
address of outgoing datagrams,

• the opt field identifies any protocol options associated with the transfer of the datagram,
• the udata field holds the data itself.

The addr, opt, and udata fields must all be allocated with buffers which are large enough to
hold any possible incoming values. As described in Connection Establishment in an XTI
Connection-oriented Mode Service, on page 7-17, this will be ensured by the T_ALL value,
given to t_alloc() as third parameter. The maxlen field of each netbuf structure is set
accordingly.

Because UDP provider does not support protocol options in this example, no options buffer
is allocated, and maxlen is set to zero in the netbuf structure for options. A t_uderr
structure is also allocated by the server for processing any datagram errors, as discussed
in Datagram errors, on page 7-40.

The transaction server loops forever, receiving queries, processing the queries, and
responding to the clients. It first calls t_rcvudata() to receive the next query. t_rcvudata()
then retrieves the next available incoming datagram. If none is currently available,
t_rcvudata() blocks, waiting for a datagram to arrive. The second argument of t_rcvudata()
identifies the t_unitdata structure where the datagram should be stored.

The third parameter of t_rcvudata() , flags, must point to an integer variable and may be
set to T_MORE on return from t_rcvudata() to indicate that the user’s udata buffer was not
large enough to store the full datagram. In this case, subsequent calls to t_rcvudata() will
retrieve the remainder of the datagram. Because t_alloc() allocates a udata buffer large
enough to store the maximum datagram size, the transaction server does not have to check
the value of flags.

If a datagram is received successfully, the transaction server calls the query() routine to
process the request. This routine stores the response in the structure pointed to by ud, and
sets ud–>udata.len to indicate the number of bytes in the response. The source address
returned by t_rcvudata() in ud–>addr is used as destination address by t_sndudata().

When the response is ready, t_sndudata() is called to return the response to the client. XTI
prevents a user from flooding the transport provider with datagrams using the same flow
control mechanism as the one described for the Data Transfer in a Connection-oriented
Mode Service, on page 7-28. In such cases, to resume the data transfer operation, the user
must scan the flow state, waiting for the flow control to be relieved, and then call the
t_sndudata() function again.

7-40 XTI/XX25 Administrator and User Guide

Datagram Errors in an XTI Connectionless Mode Service

If the transport provider cannot process a datagram that was passed to it by t_sndudata(),
it will return a unit data error event, T_UDERR, to the user. This event includes the
destination address and options associated with the datagram, plus a protocol–specific
error value which describes what may be wrong with the datagram. The reason a datagram
could not be processed is protocol–specific. One reason may be that the transport provider
could not interpret the destination address or options. Each transport protocol is expected to
specify all reasons for which it is unable to process a datagram.

Note: The unit data error indication is not necessarily intended to indicate success or
failure in delivering the datagram to the specified destination. The transport protocol
decides how the indication will be used. Remember, the connectionless service does
not guarantee reliable delivery of data.

The transaction server will be notified of this error event when it attempts to receive another
datagram. In this case, t_rcvudata() will fail, setting t_errno to TLOOK. If TLOOK is set,
the only possible event is T_UDERR, so the server calls t_rcvuderr() to retrieve the event.
The second parameter of t_rcvuderr() is the t_uderr structure, allocated at the beginning
of Data Transfer example, on page 7-38. This structure, filled in by t_rcvuderr(), has the
following format define in <xti.h>:

struct t_uderr {

struct netbuf addr;

struct netbuf opt;

long error;

}

• the addr field identifies the destination address,
• the opt field identifies the protocol options as specified in the bad datagram,
• the error field is a protocol–specific error code that indicates why the provider could not

process the datagram.

The transaction server prints the error code and then continues by entering the processing
loop again.

7-41CookBook

Example of Read/Write Interface for XTI Applications

Purpose

A user may wish to establish a transport connection and then exec() an existing program
such as cat() to process the data as it arrives over the connection. These existing
programs use read() and write() for their input/output needs.

XTI does not directly support a read/write interface to a transport provider, but such an
interface, the tirdwr module, is provided with the Operating System. This interface enables
a user to issue read and write calls over a transport connection that is in the data transfer
phase.

This example describes how to use this read/write interface in an XTI Connection-oriented
Mode service. (This interface is not available in Connectionless Mode.

The read/write interface is presented using the client-example of a Connection-oriented
Mode service, described on page 7-8, with some minor modifications. The program is
identical until the data transfer phase is reached. At that point, this client uses the
read/write interface and cat() to process incoming data. cat() can be run without change
over the transport connection.

Only the differences are described:

The directory /usr/lpp/xti_api/examples/binop_c/cots contains the source file of the
complete program cots_crdwr.c.

/*

* .

* . Same include and define

* .

*/

#include <stropts.h>

/*

* .

* . Same local management and connection

* . establishment steps.

* .

*/

/* –– XFER : DATA TRANSFER –– */

if (ioctl(fd, I_PUSH, ”tirdwr”) < 0) {

perror(”I_PUSH of tirdwr failed”);

exit (10);

}

close(0);

dup(fd);

execl(”/bin/cat”,”/bin/cat”,0);

perror(”execl of /bin/cat failed”);

exit(11);

/* –– END –– */

7-42 XTI/XX25 Administrator and User Guide

The client invokes the read/write interface by pushing the tirdwr module onto the Stream
associated with the transport endpoint where the connection was established. For more
details, see I_PUSH in streamio() function, in STREAMS Programmer’s Guide. This
module converts the X/OPEN Transport Interface above the transport provider into a pure
read/write interface. With the module in place, the client calls close() and dup() to
establish the transport endpoint as its standard input file, and uses /bin/cat to process the
input. Because the transport endpoint identifier is a file descriptor, the facility for duping the
endpoint is available to users.

Because the X/OPEN Transport Interface has been implemented using STREAMS, the
facilities of this character input/output mechanism can be used to provide enhanced user
services. By pushing the tirdwr module above the transport provider, the user’s interface is
effectively changed. The semantics of read and write must be followed, and message
boundaries will not be preserved.

CAUTION:
 The tirdwr module must only be pushed onto a Stream when the transport endpoint is in
the data transfer phase. Once the module is pushed, the user must not call any XTI
routines. If a XTI routine is invoked, tirdwr generates the fatal protocol error EPROTO on
the Stream, making it unusable. Furthermore, if the user pops the tirdwr module off the
Stream, the transport connection will be aborted. For more details about processing tirdwr
module, see I_POP in streamio(7) manual pages of STREAMS Programmer’s Guide.

The exact semantics of write(), read(), and close() using tirdwr are described below. To
summarize, tirdwr enables a user to send and receive data over a transport connection
using read() and write(). This module translates all X/OPEN Transport Interface indications
into the appropriate actions. The connection can be released with the close system call.

Write
The user can transmit data over the transport connection using write(). The tirdwr module
transfers data through to the transport provider. However, if a user attempts to send a
zero–length data packet, which the STREAMS mechanism allows, tirdwr discards the
message. If for some reason the transport connection is aborted (for example the remote
user aborts the connection using t_snddis(), a STREAMS hangup condition is generated
on that Stream, and further write() calls fail and set errno to ENXIO. However, the user can
still retrieve any available data after hang-up.

Read
read() must be used to retrieve data that has arrived over the transport connection. The
tirdwr module transfers data through to the user from the transport provider. However, any
other event or indication passed to the user from the provider are processed by tirdwr as
follows:

• read() cannot process expedited data because it cannot distinguish expedited data from
normal data for the user. If an expedited data indication is received, tirdwr generates a
fatal protocol error, EPROTO, on that Stream. This error causes further system calls to
fail. Therefore, the user must be aware that he must not communicate with a process
which is sending expedited data.

• If an abortive disconnect indication is received, tirdwr discards the indication and
generates a STREAMS hang–up condition on that Stream. Subsequent read() calls
retrieves any remaining data, and then read() returns zero for all further calls (indicating
end–of–file).

• If an orderly release indication is received, tirdwr discards the indication and delivers a
zero–length STREAMS message to the user. As described in read(), this notifies the
user of end–of–file by returning 0 to the user.

7-43CookBook

• If any other XTI indication is received, tirdwr generates a fatal protocol error, EPROTO,
on that Stream. This causes further system calls to fail. If a user pushes tirdwr onto a
Stream after the connection has been established, such indications is not generated.

Close
With tirdwr on a Stream, the user can send and receive data over a transport connection
for the duration of that connection. Either user can terminate the connection by closing the
file descriptor associated with the transport endpoint or by popping the tirdwr module off
the Stream. In each case, tirdwr processes the following actions:

• If an orderly release indication has been previously received by tirdwr, an orderly release
is requested to the transport provider to complete the orderly release of the connection.
The remote user, who initiated the orderly release procedure, will receive the expected
indication when data transfer completes.

• If a disconnect indication had previously been received by tirdwr, no special action is
processed.

• If neither an orderly release indication nor disconnect indication has been previously
received by tirdwr, a disconnect is requested to the transport provider to abortively
release the connection.

• If an error had previously occurred on the Stream and a disconnect indication has not
been received by tirdwr, a disconnect is requested to the transport provider.

A process cannot initiate an orderly release after tirdwr is pushed onto a Stream, but
tirdwr properly handles an orderly release if it is initiated by the user on the other side of a
transport connection. With TCP, if the client, like the one described in this chapter,
communicates with a server program as described in the example in “Data Transfer in an
XTI Connection-oriented Mode Service”, on page 7-26, that server should terminate the
transfer of data with an orderly release request. The server then waits for the corresponding
indication from the client. At that point, the client exits and the transport endpoint is closed.
As explained in the first bullet item above, when the file descriptor is closed tirdwr initiates
the orderly release request from the client’s side of the connection. This request generates
the indication expected by the server, and the connection is be released properly.

7-44 XTI/XX25 Administrator and User Guide

XTI Program Example using Threads

The following programs represent the same programs as the Connection-oriented Mode
Service examples, but using Threads. The thread-specific code is printed in bold.

• Client-example

• Server-example

The Client

/*

* @BULL_COPYRIGHT@

*

*/

#include <pthread.h>
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <xti3to4.h>

#include <xti.h>

#include <xti_ns.h>

#include <macros.h>

#define LSIZE 20

#define LTPDU_MIN T_LTPDUDFLT

#define LTPDU_MAX 8192

#define LBUF_MAX 8192

#define MAX_THREAD 100
#define DEFAULT_THREAD 1
#define OUTFILE_DFLT ”outfile”

#define SERVERHOST_DFLT ”localhost”

#define SERVERNAME_DFLT ”cots_server”

#define CHECK(status,string) if (status == –1) perror (string)

pthread_mutex_t cond_mutex; /* mutex used for ensuring integrity */
pthread_cond_t cond_var; /* condition variable for thread synchro */
pthread_attr_t pthr_attr_std; /* thread attribute */
int thread_hold = 1; /* number associated with condition state */
struct th_hand {
 pthread_t thread_handler;
 int status;
 int num_th;
} ;
struct th_hand tab_handler[MAX_THREAD]; /* array of client threads */
char *outfile = OUTFILE_DFLT;

char *hostname = SERVERHOST_DFLT;

int iso = FALSE;

int rfc = FALSE;

char *servername = SERVERNAME_DFLT;

int ltpdu = FALSE;

int trace = FALSE;

struct xtitp tp;

int max_thread = DEFAULT_THREAD;

extern char *optarg;

extern int getopt();

7-45CookBook

usage(type, proc, value)

int type;

char *proc;

char *value;

{

 switch (type) {

 case 1:

 fprintf(stderr, ”error on length of TPDU : %s\n”, value);

 break;

 case 2:

 fprintf(stderr, ”length of TPDU requested ”);

 fprintf(stderr, ”on non ISO transport provider\n”);

 break;

 default:

 break;

 }

fprintf(stderr,

 ”usage: %s [–fF] [–hH] [–i|r] [–nN] [–sS] [–tT] [–v]\n”, proc);

 fprintf(stderr,

 ” –fF set output file name to F ”);

 fprintf(stderr,”(default is \”%s\”)\n”, OUTFILE_DFLT);

 fprintf(stderr,

 ” –hH set server host name to H ”);

 fprintf(stderr,”(default is \”%s\”)\n”, SERVERHOST_DFLT);

fprintf(stderr,

 ” –i set transport provider to ISO ”);

 fprintf(stderr,

 ”or –r set transport provider to RFC1006 ”);

 fprintf(stderr,”(default is TCP)\n”);

fprintf(stderr,

” –nN set number of thread to N (default is 1, max is 100)\n”);

 fprintf(stderr,

 ” –sS set server name to S ”);

 fprintf(stderr,”(default is \”%s\”)\n”, SERVERNAME_DFLT);

 fprintf(stderr,

 ” –tT set length of ISO TPDU to T ”);

 fprintf(stderr,”(default is %d, min is %d, max is %d)\n”,

 T_LTPDUDFLT, LTPDU_MIN, LTPDU_MAX);

 fprintf(stderr,

 ” –v set on verbose mode (default is OFF)\n”);

}

thread_client(void *arg)
{

int fd;

 struct t_info info;

 struct t_call *sndcall;

struct t_opthdr *optiso;

 unsigned long *pt_ltpdu;

 struct t_discon discon;

int evt;

int nbytes;

FILE *outfp;

char buf[LBUF_MAX];

int rcv_bytes = 0;

int lgth_file = 0;

int flags = 0;

int i;

char *pt;

char *outfile_prefix = OUTFILE_DFLT;

char local_outfile[10];

int status;

struct th_hand *pt_handler;
int my_number = *((int *)arg);

7-46 XTI/XX25 Administrator and User Guide

#define LBUF 250

char bufopt[LBUF];

 char bufaddr[LBUF];

if (trace) {

fprintf(stdout,”client %d : thread client input\n”, my_number);

}

fflush(stdout);

if ((my_number < 0) || (my_number >= MAX_THREAD)) {

fprintf(stdout,”client %d : my_number not in range\n”,

my_number);

 fflush(stdout);

 pthread_exit(NULL);

 }

 pt_handler = &(tab_handler[my_number]);

 pt_handler–>status = my_number;

/* synchronise threads */
status = pthread_mutex_lock(&cond_mutex);
CHECK(status,”mutex lock bad status\n”);
while (thread_hold) {

status = pthread_cond_wait(&cond_var,&cond_mutex);
CHECK(status,”cond_wait bad status\n”);

}
status = pthread_mutex_unlock(&cond_mutex);
CHECK(status,”mutex unlock bad status\n”);

if (t_gettp(&tp) < 0) {

 /* t_error(”t_gettp failed”); */

 /* New function for Name Service’s error */

if (t_error_ns(”client : t_gettp failed”) < 0)

fprintf(stderr,

”client %d : t_error_ns failed\n”, my_number);

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

 }

if ((fd = t_open(tp.tp_name, O_RDWR, &info)) < 0) {

fprintf(stderr,

”client %d : t_open failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

if (t_bind(fd, NULL, NULL) < 0) {

fprintf(stderr,

”client %d : t_bind failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

/* –– ESTB : CONNECTION ESTABLISHMENT –– */

if ((sndcall = (struct t_call *)t_alloc(fd, T_CALL_STR, T_ALL))

 == NULL) {

fprintf(stderr,

”client %d : t_alloc failed for sndcall, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

if (info.addr == –1)

 /* –1 : no limit ==> field not allocated by t_alloc */

7-47CookBook

 {

 sndcall–>addr.buf = bufaddr;

 sndcall–>addr.maxlen = LBUF;

 }

 if (info.options == –1)

 /* –1 : no limit ==> field not allocated by t_alloc */

 {

 sndcall–>opt.buf = bufopt;

 sndcall–>opt.maxlen = LBUF;

 }

if (t_getraddr(&tp, hostname, servername, &sndcall–>addr) < 0) {

 /* t_error(”t_getraddr failed”); */

/* New function for Name Service’s error */

if (t_error_ns(”client : t_getraddr failed”) < 0)

fprintf(stderr,

”client %d : t_error_ns failed\n”, my_number);

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

if (trace) {

fprintf(stdout,”client %d : server is:”, my_number);

for (i=0, pt=sndcall–>addr.buf;

 i<sndcall–>addr.len;

 i++, pt++)

fprintf(stdout, ”0x%x,”, *pt);

fprintf(stdout,”\n”);

}

if ((ltpdu != FALSE) && ((iso == TRUE) || (rfc == TRUE))) {

 if (t_getopt(&(tp),”example_ltpdu”, &sndcall–>opt) == –1) {

if (t_error_ns(”client : t_getopt failed”) < 0)

fprintf(stderr,

”client %d : t_error_ns failed\n”, my_number);

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

 }

 pt_ltpdu = (unsigned long *)(sndcall–>opt.buf +

sizeof(struct t_opthdr));

 *pt_ltpdu = ltpdu;

 }

if (t_connect(fd, sndcall, NULL) < 0) {

fprintf(stderr,

”client %d : t_connect failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

if (t_errno == TLOOK) {

if (t_rcvdis(fd, &discon) < 0) {

fprintf(stderr,

”client %d : t_rcvdis failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

fprintf(stderr, ”client %d : T_DISCONNECT reason: %x\n”,

my_number, discon.reason);

}

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

if (t_free((char *)sndcall, T_CALL_STR) < 0) {

fprintf(stderr,

 ”client %d : t_free failed for sndcall, error : %s\n”,

 my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

7-48 XTI/XX25 Administrator and User Guide

}

/* –– XFER : DATA TRANSFER –– */

 sprintf(local_outfile,”%s_%d”,outfile_prefix,my_number);

if ((outfp = fopen(local_outfile, ”w”)) == NULL) {

perror(”cannot open output file”);

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

/* first data received is the size of transferred file */

if ((nbytes = t_rcv(fd, buf, LSIZE, &flags)) < 0) {

if (t_errno == TLOOK) {

if ((evt = t_look(fd)) < 0) {

fprintf(stderr,

 ”client %d : t_look failed for fd, error : %s\n”,

 my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

fprintf(stderr, ”client %d : t_rcv size evt: %x\n”,

 my_number, evt);

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

fprintf(stderr,

 ”client %d : t_rcv failed for fd, error : %s\n”,

 my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

sscanf(buf, ”%d”, &lgth_file);

fprintf(stdout, ”client %d : %d bytes in file to receive\n”,

 my_number,lgth_file);

while (rcv_bytes < lgth_file) {

if ((nbytes = t_rcv(fd, buf, LBUF_MAX, &flags)) < 0) {

if (t_errno == TLOOK) {

if ((evt = t_look(fd)) < 0) {

fprintf(stderr,

”client %d : t_look failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit(

(void *)&(pt_handler–>status));
}

fprintf(stderr, ”client %d : t_rcv evt: %x\n”,

 my_number, evt);

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

fprintf(stderr,

 ”client %d : t_rcv failed for fd, error : %s\n”,

 my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

if (fwrite(buf, 1, nbytes, outfp) < 0) {

fprintf(stderr, ”client %d : fwrite failed\n”,

 my_number);

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

rcv_bytes = rcv_bytes + nbytes;

}

7-49CookBook

if (fclose(outfp) < 0)

fprintf(stderr, ”client %d : fclose failed\n”, my_number);

fprintf(stdout,

 ”client %d : %d bytes received in output file \”%s\”\n”,

 my_number,rcv_bytes,local_outfile);

/* –– REL : CONNECTION RELEASE */

if (info.servtype == T_COTS_ORD) {

if (t_sndrel(fd) < 0) {

fprintf(stderr,

 ”client %d : t_sndrel failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

fprintf(stdout,

 ”client %d : orderly release initiated\n”,my_number);

while (t_rcvrel(fd) < 0) {

/* If the event is TNOREL : it’s OK , we must wait for

 the orderly release . Else , it’s an error */

if (t_errno != TNOREL) {

if ((evt = t_look(fd)) < 0) {

fprintf(stderr,

 ”client %d : t_look failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit(

(void *)&(pt_handler–>status));
}

fprintf(stderr,

”client %d : t_rcvrel evt: %x\n”,

my_number, evt);

}

if (t_errno != TNOREL) {

fprintf(stderr,

”client %d : t_rcvrel failed for fd, error : %s\n”,

my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

}

fprintf(stdout,

 ”client %d : orderly release completed ok\n”,my_number);

}

else {

if (t_snddis(fd, NULL) < 0) {

fprintf(stderr,

 ”client %d : t_snddis failed for fd, error : %s\n”,

 my_number, t_strerror(t_errno));

pt_handler–>status = –1;
pthread_exit((void *)&(pt_handler–>status));

}

fprintf(stdout,

 ”client %d : abortive disconnection requested ok\n”,

my_number);

}

if (trace) {

fprintf(stdout, ”client %d : thread output \n”,my_number);

 }

pthread_exit((void *)&(pt_handler–>status));
}

7-50 XTI/XX25 Administrator and User Guide

/***/

/* COTS_CLIENT_R */

/***/

main(argc,argv)

int argc;

char *argv[];

{

 int c;

int receiver_num;

int exit_value;

int status;

int pt_status;

while ((c = getopt(argc,argv,”f:h:irs:t:vn:”))

 != –1) {

 switch (c) {

 case ’f’:

 outfile = optarg;

 break;

 case ’h’:

 hostname = optarg;

 break;

case ’i’:

 if (rfc==FALSE)

 iso = TRUE;

 else {

 usage(–1, argv[0], NULL);

pthread_exit((void *) NULL);
 }

 break;

 case ’r’:

 if (iso==FALSE)

 rfc = TRUE;

 else {

 usage(–1, argv[0], NULL);

pthread_exit((void *) NULL);
 }

 break;

case ’n’:

max_thread = max(DEFAULT_THREAD,

 min(atoi(optarg),MAX_THREAD));

break;

 case ’s’:

 servername = optarg;

 break;

 case ’t’:

 ltpdu = atoi(optarg);

 if (ltpdu < LTPDU_MIN || ltpdu > LTPDU_MAX) {

 usage(1, argv[0], optarg);

pthread_exit((void *) NULL);
 }

 break;

 case ’v’:

 trace = TRUE;

 break;

 case ’n’:

 default:

 usage(–1, argv[0], NULL);

pthread_exit((void *) NULL);
 }

 }

if ((ltpdu != FALSE) && ((iso != TRUE) && (rfc != TRUE))) {

 usage(2, argv[0], NULL);

7-51CookBook

pthread_exit((void *) NULL);
 }

 if (iso == TRUE) {

 tp.tp_id = TPID_OSI_COTS;

 }

 else {

if (rfc == TRUE) {

 tp.tp_id = TPID_RFC1006;

 }

 else {

 tp.tp_id = TPID_TCP;

 }

}

/* create mutexe */

status = pthread_mutex_init(&cond_mutex, NULL);
 CHECK(status,”mutex_init bad status\n”);

/* create condition variable */

status = pthread_cond_init(&cond_var, NULL);
 CHECK(status,”cond_init bad status\n”);

/* thread attribute initialisation */
 status = pthread_attr_init(&pthr_attr_std);
 CHECK(status,”attr_init bad status\n”);
 status = pthread_attr_setdetachstate(&pthr_attr_std,

PTHREAD_CREATE_UNDETACHED);
 CHECK(status,”attr_setdetachstate bad status\n”);

/* create the clients threads */
for (receiver_num = 0; receiver_num < max_thread; receiver_num++) {

tab_handler[receiver_num].num_th = receiver_num;
status =
 pthread_create(&(tab_handler[receiver_num].thread_handler),

&pthr_attr_std,
 (void *)thread_client,

(void *)&tab_handler[receiver_num].num_th);
CHECK(status,”pthread_create bad status\n”);

}

/*
* set the predicate thread_hold to zero, and broadcast on the
* condition variable that the ’thread_client’ may proceed.
*/
status = pthread_mutex_lock(&cond_mutex);
CHECK(status,”mutex_lock bad status\n”);
thread_hold = 0;
status = pthread_cond_broadcast(&cond_var);
CHECK(status,”broadcast on cond_var bad status\n”);
status = pthread_mutex_unlock(&cond_mutex);
CHECK(status,”mutex_unlock bad status\n”);

/* join each of the client threads */
for (receiver_num = 0; receiver_num < max_thread; receiver_num++) {

status =
 pthread_join(tab_handler[receiver_num].thread_handler,

(void **)&pt_status);
CHECK(status, ”pthread_join bad status\n”);
if ((*((int *)pt_status) == receiver_num) && (trace))

fprintf(stdout, ”thread %d terminated normally\n”,

receiver_num);
status =
 pthread_detach(tab_handler[receiver_num].thread_handler);
CHECK(status,”pthread_detach bad status\n”);

}

7-52 XTI/XX25 Administrator and User Guide

status = pthread_mutex_destroy(&cond_mutex);
CHECK(status,”pthread_mutex_destroy bad status\n”);
status = pthread_cond_destroy(&cond_var);
CHECK(status,”pthread_cond_destroy bad status\n”);

pthread_exit((void *) NULL);
}

7-53CookBook

The Server

/*

 *@BULL_COPYRIGHT@

*/

#include <pthread.h>
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <stropts.h>

#include <fcntl.h>

#include <signal.h>

#include <xti3to4.h>

#include <xti.h>

#include <xti_ns.h>

#define LSIZE 20

#define INFILE_DFLT ”infile”

#define SERVERNAME_DFLT ”cots_server”

#define LBUF_DFLT 1024

#define LBUF_MAX 8192

#define DISCONNECT –1

#define MAX_THREAD 100

char *infile = INFILE_DFLT;

char *servername = SERVERNAME_DFLT;

int iso = FALSE;

int rfc = FALSE;

int lbuf = LBUF_DFLT;

int trace = FALSE;

int sender_num;

int status;

struct th_hand {
 pthread_t thread_handler;
 int num_th;
} ;
struct th_hand tab_handler[MAX_THREAD];
int listen_fd;

struct xtitp tp;

struct t_bind *bindret;

int conn_fd[MAX_THREAD];

extern char *optarg;

extern int getopt();

void connrelease(my_number) /* –– REL : CONNECTION RELEASE –– */

int my_number;

{

int evt;

/* until release or disconnection indication arrives */

while ((evt = t_look(conn_fd[my_number])) == 0) {

sleep(1);

}

if (evt < 0) {

fprintf(stderr,

 ”server %d : t_look failed for conn_fd, error : %s\n”,

 my_number, t_strerror(t_errno));

 }

 else {

switch (evt) {

7-54 XTI/XX25 Administrator and User Guide

case T_DISCONNECT:

if (t_rcvdis(conn_fd[my_number], NULL) < 0){

fprintf(stderr,

 ”server %d : t_rcvdis failed, error : %s\n”,

 my_number, t_strerror(t_errno));

 break;

}

fprintf(stdout,

 ”server %d : abortive disconnection received ok\n”,

 my_number);

break;

case T_ORDREL:

if (t_rcvrel(conn_fd[my_number]) < 0){

fprintf(stderr,

 ”server %d : t_rcvrel failed, error : %s\n”,

 my_number, t_strerror(t_errno));

 break;

}

fprintf(stdout, ”server %d : orderly release received\n”,

 my_number);

if (t_sndrel(conn_fd[my_number]) < 0){

fprintf(stderr,

 ”server %d : t_sndrel failed, error : %s\n”,

 my_number, t_strerror(t_errno));

 break;

}

fprintf(stdout,

 ”server %d : orderly release acknowledged ok\n”,

 my_number);

break;

default:

fprintf(stderr, ”server %d : error evt: %x\n”, my_number, evt);

break;

}

}

}

send_message(void *arg) /* –– XFER : DATA TRANSFER –– */

{

 int nbytes;

 FILE *infp;

 char buf[LBUF_MAX];

 char lgth_file[LSIZE];

int my_number = *((int *)arg);
 if (trace) {

fprintf(stdout, ”server %d : thread server input \n”,

 my_number);

 }

if (my_number < 0) {
 fprintf(stdout,”server %d : my_number not in range\n”,
 my_number);
 pthread_exit(NULL);
 }

 fflush(stdout);

 if ((infp = fopen(infile, ”r”)) == NULL) {

 perror(”cannot open input file”);

pthread_exit(NULL);
 }

 sprintf(lgth_file,”%d”,filesize(infp));

 fprintf(stdout,

 ”server %d : %d bytes in input file \”%s\” to send\n”,

 my_number, filesize(infp), infile);

 if (t_snd(conn_fd[my_number], lgth_file, LSIZE, 0) < 0) {

7-55CookBook

 if (t_errno == TLOOK) {

fprintf(stderr,

 ”server %d : t_snd : connection aborted\n”,

 my_number);

pthread_exit(NULL);
 }

fprintf(stderr,

 ”server %d : t_snd failed for conn_fd, error : %s\n”,

 my_number, t_strerror(t_errno));

pthread_exit(NULL);
 }

 while ((nbytes = fread(buf, 1 , lbuf, infp)) > 0) {

 if (t_snd(conn_fd[my_number], buf, nbytes, 0) < 0) {

 if (t_errno == TLOOK) {

fprintf(stderr,

 ”server %d : t_snd : connection aborted\n”,

 my_number);

pthread_exit(NULL);
 }

fprintf(stderr,

 ”server %d : t_snd failed for conn_fd, error : %s\n”,

 my_number, t_strerror(t_errno));

pthread_exit(NULL);
 }

 }

if (fclose(infp) < 0)

fprintf(stderr, ”server %d : fclose failed\n”, my_number);

 /* wait release or disconnection indication */

 connrelease(my_number);

t_close(conn_fd[my_number]);

 if (trace) {

fprintf(stdout, ”server %d : thread output \n” ,my_number);

 }

pthread_exit(NULL);
}

int filesize(fd)

FILE *fd;

{

struct stat file_state;

if (fstat(fileno(fd), &file_state)) return –1;

return file_state.st_size;

}

accept_call(listen_fd, call)

int listen_fd;

struct t_call *call;

{

int resfd;

 if ((resfd = t_open(tp.tp_name, O_RDWR, NULL)) < 0) {

 t_error(”t_open for responding fd failed”);

pthread_exit((void *)NULL);
 }

 if (iso == TRUE) {

 bindret–>qlen = 0;

 if (t_bind(resfd, bindret, NULL) < 0) {

 t_error(”t_bind for responding fd failed”);

pthread_exit((void *)NULL);
 }

 }

 /* for TCP the address is not necessary */

 else {

 if (t_bind(resfd, NULL, NULL) < 0) {

7-56 XTI/XX25 Administrator and User Guide

 t_error(”t_bind for responding fd failed”);

pthread_exit((void *)NULL);
 }

 }

 /*call–>sequence is actually initialized */

 /*because returned by t_listen*/

 call–>addr.len = 0;

 call–>opt.len = 0;

 call–>udata.len = 0;

 if (t_accept(listen_fd, resfd, call) < 0) {

 if (t_errno == TLOOK) {

 if (t_rcvdis(listen_fd , NULL) < 0) {

 t_error(”t_rcvdis failed for listen_fd”);

pthread_exit((void *)NULL);
 }

 if (t_close(resfd) < 0) {

 t_error(”t_close failed for responding fd”);

pthread_exit((void *)NULL);
 }

 return(DISCONNECT);

 }

 t_error(”t_accept failed”);

pthread_exit((void *)NULL);
 }

 return(resfd);

}

usage(type, proc, value)

int type;

char *proc;

char *value;

{

 switch (type) {

 case 1:

 fprintf(stderr, ”error on length of buffer %s\n”,

 value);

 break;

 default:

 break;

 }

 fprintf(stderr,

 ”usage: %s [–bB] [–fF] [–i|r] [–sS] [–v]\n”, proc);

 fprintf(stderr,

 ” –bB set length of sending buffer to B ”);

 fprintf(stderr,”(default is %d, max is %d)\n”, LBUF_DFLT, LBUF_MAX);

 fprintf(stderr,

 ” –fF set input file name to F ”);

 fprintf(stderr,”(default is \”%s\”)\n”, INFILE_DFLT);

 fprintf(stderr,

 ” –i set transport provider to ISO ”);

 fprintf(stderr,

 ”or –r set transport provider to RFC1006 ”);

 fprintf(stderr,”(default is TCP)\n”);

 fprintf(stderr,

 ” –sS set server name to S ”);

 fprintf(stderr,”(default is \”%s\”)\n”, SERVERNAME_DFLT);

 fprintf(stderr,

 ” –v set on verbose mode (default is OFF)\n”);

}

7-57CookBook

/**/

/* COTS_SERVER : [–blbuf] [–finfile] [–i] [–sservername] [–v] */

/**/

main(argc,argv)

int argc;

char *argv[];

{

#define LBUF 250

 int c;

 struct t_bind *bind;

 struct t_call *call;

 int i;

 char *pt;

 char bufopt[LBUF];

 char bufaddr[LBUF];

 struct t_info info;

 while ((c = getopt(argc,argv,”b:f:irs:v”)) != –1) {

 switch (c) {

 case ’b’:

 lbuf = atoi(optarg);

 if (lbuf < 1 || lbuf > LBUF_MAX) {

 usage(1, argv[0], optarg);

pthread_exit((void *)NULL);
 }

 break;

 case ’f’:

 infile = optarg;

 break;

 case ’i’:

 if (rfc==FALSE)

 iso = TRUE;

 else {

 usage(–1, argv[0], NULL);

pthread_exit((void *)NULL);
 }

 break;

 case ’r’:

 if (iso == FALSE)

 rfc = TRUE;

 else {

 usage(–1, argv[0], NULL);

pthread_exit((void *)NULL);
 }

 break;

 case ’s’:

 servername = optarg;

 break;

 case ’v’:

 trace = TRUE;

 break;

 default :

 usage(–1, argv[0], NULL);

pthread_exit((void *)NULL);
 }

 }

 if (iso == TRUE) {

 tp.tp_id = TPID_OSI_COTS;

 }

 else {

 if (rfc == TRUE) {

 tp.tp_id = TPID_RFC1006;

 }

7-58 XTI/XX25 Administrator and User Guide

 else {

 tp.tp_id = TPID_TCP;

 }

 }

if (t_gettp(&tp) < 0) {

if (t_error_ns(”server : t_gettp failed”) < 0)

fprintf(stderr,

”server : t_error_ns failed\n”);

pthread_exit((void *)NULL);
 }

 if ((listen_fd = t_open(tp.tp_name, O_RDWR, NULL)) < 0) {

 t_error(”t_open failed for listen_fd”);

pthread_exit((void *)NULL);
 }

 if ((bind = (struct t_bind *)t_alloc(listen_fd, T_BIND_STR, T_ALL))

 == NULL) {

 t_error(”t_alloc failed for bind”);

pthread_exit((void *)NULL);
 }

 if (t_getladdr(&tp, servername, &bind–>addr) < 0) {

if (t_error_ns(”server : t_getladdr failed”) < 0)

fprintf(stderr,

”server : t_error_ns failed\n”);

pthread_exit((void *)NULL);
 }

 /* the server endpoint is used to listen for connect indication */

 bind–>qlen = 50;

 if ((bindret = (struct t_bind *)t_alloc(listen_fd, T_BIND_STR, T_ALL))

 == NULL) {

 t_error(”t_alloc failed for bindret”);

pthread_exit((void *)NULL);
 }

 if (t_bind(listen_fd, bind, bindret) < 0) {

 t_error(”t_bind failed for listen_fd”);

pthread_exit((void *)NULL);
 }

if (trace) {

 fprintf(stdout,”server : ”);

 for (i=0, pt=bindret–>addr.buf; i<bindret–>addr.len; i++, pt++)

 fprintf(stdout, ”0x%x”, *pt);

fprintf(stdout,”\n(qlen=%d)\n”,bindret–>qlen);

 }

 /* –– ESTB1 : CONNECTION ESTABLISHMENT first phase –– */

 if ((call = (struct t_call *)t_alloc(listen_fd, T_CALL_STR, T_ALL))

 == NULL)

 {

 t_error(”t_alloc failed for call”);

pthread_exit((void *)NULL);
 }

 if (info.addr == –1)

 /* –1 : no limit ==> field not alocated by t_alloc */

 {

 call–>addr.buf = bufaddr;

 call–>addr.maxlen = LBUF;

 }

 if (info.options == –1)

 /* –1 : no limit ==> field not alocated by t_alloc */

 {

 call–>opt.buf = bufopt;

 call–>opt.maxlen = LBUF;

 }

 sender_num = 1;

7-59CookBook

 while (1) {

 if (trace) {

 fprintf(stdout, ”server is waitting on t_listen\n”);

 }

 while (t_listen(listen_fd, call) < 0) {

 if (t_errno != TNODATA) {

 t_error(”t_listen failed for listen_fd”);

pthread_exit((void *)NULL);
 }

 } /* active wait */

 if ((conn_fd[sender_num] = accept_call(listen_fd, call))

 != DISCONNECT) {

 tab_handler[sender_num].num_th = sender_num;
 status = pthread_create(

&tab_handler[sender_num].thread_handler,
 &pthread_attr_default,
 (void *)send_message,
 (void *)&tab_handler[sender_num].num_th);

if (status == –1)
 perror (”pthread_create bad status\n”);

if (sender_num == 99)

 sender_num = 0;

 sender_num ++;

 }

 /* t_free of bind and call structures be effectively */

 /* realised when the server process will be killed */

 /* (t_alloc use the general memory allocation function) */

}

pthread_exit((void *)NULL);

 /* –– END ESTB1 ––*/

} /* end main server */

7-60 XTI/XX25 Administrator and User Guide

A-1Test Tools

Appendix A. XTI Test Tools

Three test tools are provided with Bull-enhanced XTI:

• bench Tool, on page A-2, tests the Bull-enhanced XTI performance through one or
several connections,

• tconnect Tool, on page A-8, checks that a user-defined number of parallel connections
is acceptable over a Transport Provider,

• xtistat Tool, on page A-13, provides global statistics of the XTI activity or the XTI activity
of each Transport Endpoint.

A-2 XTI/XX25 Administrator and User Guide

bench Tool

The bench tool calculates the throughput and the number of messages sent per second
over a Transport Provider through one connection or several connections in parallel.

The bench tool is composed of two components:

• the benchd daemon which simulates a server-application, on page A-3,

• the bench command which simulates a client-application, on page A-5.

benchd must be run before bench.

The client bench sends messages to the server benchd. In interactive mode, these
messages are sent back by the server benchd to the client bench.

Several clients (bench) can communicate with the server (benchd) at the same time or
sequentially:

• the main process of the client forks for every connection and the child manages this
connection. So, the number of client processes is C+1 if C is the number of connections
requests (in connectionless mode, the main process manages the data transfer). All the
connections are opened before any data transfer occurs.

• the main process of the server receives connections indications from the client, it forks for
every accepted connection and the child manages this connection. So, the number of
server processes is C+1 if C is the number of connections indications received (in
connectionless mode, the main process manages the data transfer).

bench can stop by itself after having sent all its messages or can be killed by the user.

benchd must be killed by the user at the end of the test.

The throughput and the number of messages sent per second are reported periodically and
at the end of the test.

The bench tool tests the Bull-enhanced XTI performance using the XTI library over:

• OSI Connection-Oriented,

• OSI ConnectionLess,

• TCP/IP,

• UDP/IP,

• NetShare (RFC 1006),

• X.25.

It can test as well TCP/IP or UDP/IP using the sockets.

A-3Test Tools

benchd Daemon

Purpose
Calculate the throughput and the number of messages sent per second over a Transport
Protocol through one connection or several connections in parallel.

(Server-component of the bench tool).

Syntax
benchd [–x] [–t | –u | –o | –ol | –r | –x25] [–i] [–e E | –p P | –T t] [–mM]

Description
At first, benchd prints on the standard output:

• the Transport Provider,

• the use of the interactive mode (eventually),

• the local address of the Server and the Server name,

• the trace period.

Then for each connection:

• a line report displays periodically (see the –mM option) the throughput in bytes and
number of messages received by benchd per second.

• a line report displays at the end of the connection the minimum, average and maximum
throughput in bytes and the average of number of messages received per second.

benchd reports on the standard error, all errors (syntax errors in the command line,
initialization errors, data exchange errors, ...).

Flags
–x Tests the Bull-enhanced XTI performance using the XTI library.

By default, tests TCP/IP using the sockets.

–t|–u|–o|–ol|–r|–x25
Sets the Transport Provider:
–t means TCP
–u means UDP
–o means OSI_COTP
–ol means OSI_CLTP
–r means NetShare (RFC 1006)
–x25 means X.25
The default Transport Provider is TCP.
This parameter must be the same for benchd and bench (except for –u
option which must be used by benchd if –b option is used by bench).

–i Sets the interactive mode. In this mode all the messages received by
benchd are sent back to bench.
This option is valid only for a connection-oriented Transport Provider (TCP,
OSI_COTP, NetShare (RFC 1006) and X.25).

–e E Sets the Server name. The server name must be present in the services
data base (/etc/services or /etc/xtiservices).
By default, the server is benchd.
The –p, –e and –T parameters are mutually exclusive.

–p P Sets the Port number. This parameter is valid for test of TCP or UDP, if the
user does not want to use the name server.
The –p, –e and –T parameters are mutually exclusive.

A-4 XTI/XX25 Administrator and User Guide

–T t Sets the TSEL if the Transport Provider is OSI_COTP (–o) or NetShare
(RFC 1006) (–r)
Sets the SAI if it is X.25 (–x25)

–m M Sets the delay in seconds between throughput reports displays.
Each connection uses this delay to trace a throughput report. So each M
seconds, as many lines reported as number of existing connections are
displayed.
The default value is 10 seconds.

Examples
1. To test Bull-enhanced XTI performance using OSI_COTP Transport Provider and the

benchd server:

benchd –x –o

2. To test TCP/IP using socket interface with the port 9999:

benchd –p9999

3. To test XX25 performance:

benchd –x –x25

4. To test Bull-enhanced XTI performance using OSI_CLTP Transport Provider and the
benchd server:

benchd –x –ol

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xtihosts
/etc/xtiservices
/etc/hosts
/etc/services

Suggested Reading

Prerequisite Information
bench Tool

Related Information
bench Command

A-5Test Tools

bench Command

Purpose
Calculate the throughput and the number of messages sent per second over a Transport
Protocol through one connection or several connections in parallel.

(Client-component of the bench tool).

Syntax
bench [–x] [–t | –u | –o | –ol | –r | –x25 | –b] [–i] [–h H] [–e E | –p P | –T t]

[–n N] [–l L] [–s S] [–k K] [–c C] [–d D] [–m M]

Description
At first, bench prints on the standard output:

• the Transport Provider,

• the use of the interactive mode (eventually),

• the Host, the remote address of the Server and the Server name (or the Port number),

• the length and the number of the messages to be sent, the TPDU size,

• the number of connections to be opened and the delay between connections requests,

• the trace period.

On each opened connection bench sends messages to the server benchd. For each
connection:

• a line report displays periodically (see the –mM option) the throughput in bytes and
number of messages sent by bench (and received in the interactive mode) per second.

• a line report displays at the end of the connection (last message sent or break from user)
the minimum, average and maximum throughput in bytes and the average of messages
sent (and received in the interactive mode) per second.

bench reports on the standard error, all errors (syntax errors in the command line,
initialization errors, data exchange errors, invalid tpdu size, invalid transport size ...).

Flags
–x Tests the Bull-enhanced XTI performance using the XTI library.

By default, tests TCP/IP using the sockets.

–t|–u|–o|–ol|–r|–x25
Sets the Transport Provider:
–t means TCP,
–u means UDP,
–o means OSI_COTP,
–ol means OSI_CLTP,
–r means NetShare (RFC 1006)
–x25 means X.25
–b means UDP in broadcast mode (this option may be used only for test
with socket interface).
The default Transport Provider is TCP.
This parameter must be the same for bench and benchd, except for –b
option which may be used with –u option on benchd.

A-6 XTI/XX25 Administrator and User Guide

–i Sets the interactive mode. In this mode all the messages sent by bench are
sent back by benchd.
This option is valid only for a connection-oriented Transport Provider (TCP,
OSI_COTP, NetShare (RFC 1006) and X.25.

–h H Sets the server Host name. The server host must be present in the host
data base (/etc/hosts or /etc/xtihosts).
By default, the server host name is “localhost”.

–eE Sets the Server name. The server name must be present in the services
data base (/etc/services or /etc/xtiservices).
By default, the server is benchd.
The –p, –e and –T parameters are mutually exclusive.

–pP Sets the Port number. This parameter is valid for test of TCP or UDP, if the
user does not want to use the name server.
The –p, –e and –T parameters are mutually exclusive.

–T t Sets the TSEL if the Transport Provider is OSI_COTP (–o), OSI_CLTP
(–ol) or NetShare (RFC 1006) (–r).
Sets the SAI if it is X.25 (–x25)

–nN Sets the number of messages to be sent.
The default value is infinite. In this case, the user must kill bench to stop it.

–lL Sets the length of the messages to be sent.
For CLTS, the length must be less than the Network Provider NSDU (no
segmentation provided on CLTS).
The default length is 4096 bytes for all Transport Providers, except for
NetShare (RFC 1006) whose default length is 4000.

–sS Sets the size of TPDUs. This parameter is valid for test of Bull-enhanced
XTI over the Transport Provider OSI_COTP or NetShare (RFC 1006)
The default TPDU size is 4096 bytes.

–kK Sets the transport class. This parameter is valid for test of Bull-enhanced
XTI over the Transport Provider OSI_COTP.
K may be equal to class 0, 2, 3 or 4.

–cC Sets the number of connections to be opened. This option is valid with
connection-oriented Transport Provider only (TCP, OSI_COTP and
NetShare (RFC 1006).
The default number of connections to open is 1.

–dD Sets the delay in seconds between connections requests.
The default value is no delay.

–m M Sets the delay in seconds between throughput reports displays.
Each connection uses this delay to trace a throughput report. So each M
seconds, as many lines reported as number of existing connections are
displayed.
The default value is 10 seconds.

Examples
1. To test Bull-enhanced XTI performance using OSI_COTP Transport Provider, the

benchd server on the “host_server” and sending messages of 128 bytes:

bench –x –o –l128 –hhost_server

2. To test TCP/IP using socket interface with the port 9999 on the “localhost” and sending
500 messages of 4096 bytes:

bench –p9999 –n500

A-7Test Tools

3. To test XX25 performance sending messages of 1024 bytes:

bench –x –x25 –l1024

4. To test Bull-enhanced XTI performance using OSI_CLTP Transport Provider, the
benchd server on the “host_server” and sending messages of 1024 bytes :

bench –x –ol –l1024 –hhost_server

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xtihosts
/etc/xtiservices
/etc/hosts
/etc/services

Suggested Reading

Prerequisite Information
bench Tool

Related Information
benchd Daemon

A-8 XTI/XX25 Administrator and User Guide

tconnect Tool

The tconnect tool checks that a user-defined number of parallel connections is acceptable
over a Transport Provider. The connections may be opened connections (without data
exchange) or active connections (with data exchange).

The tconnect tool is composed of two components:

• the tconnectd daemon which simulates a server-application, on page A-9,

• the tconnect command which simulates a client-application, on page A-11.

tconnectd must be run before tconnect.

First, the two components try to open all the connections and generate reports if an open
error occurs. Then a data exchange is established on each connection, if required.

Several clients can exchange with the server:

• the main process of the client forks and every child manages F connections. So, the
number of client processes is 1+C/F (+1 if C modulo F is not 0) if C is the number of
connections requests and F the number of connections per process.

• the main server process forks and the child receives connections indications from the
client. When it cannot accept any more connection, it sends a signal to its father which
forks again to manage the following connections. So, the number of server processes is
1+C/N (+1 if C modulo N is not 0) if C is the number of connections indications and N the
number of connections allowed per process.

tconnect can stop by itself after having sent all its messages or can be killed by the user.

tconnectd must be killed by the user at the end of the test.

The tconnect tool tests the Bull-enhanced XTI performance using the XTI library over:

• OSI Connection-Oriented,

• TCP/IP,

• NetShare (RFC 1006),

• X.25.

It can test as well TCP/IP or UDP/IP using directly the sockets.

CAUTION:
To determine the maximum number of connections over a Transport Provider, do not
forget to take in account that other transport applications may also have opened
connections.
This tool is not dedicated to CLTS users.

A-9Test Tools

tconnectd Daemon

Purpose
Check that a user-defined number of parallel connections is acceptable over a Transport
Provider. The connections may be opened connections (without data exchange) or active
connections (with data exchange).

(Client-component of the tconnect tool).

Syntax
tconnectd [–x] [–t | –o | –r | –x25] [–eE | –pP]

Description
tconnectd prints on the standard output:

• the Transport Provider,

• the Server name or the Port number.

tconnectd reports on the standard error, all errors (syntax errors in the command line,
initialization errors, data exchange errors, ...).

Flags
–x Tests the Bull-enhanced XTI performance using the XTI library.

By default, tests TCP/IP using the sockets.

–t|–o|–r|–x25 Sets the Transport Provider:
–t means TCP, –o OSI_COTP, –r NetShare (RFC 1006) and –x25 X.25.
The default Transport Provider is TCP.
This parameter must be the same for tconnectd and tconnect.

–eE Sets the Server name. The server name must be present in the services
data base (/etc/services or /etc/xtiservices).
By default, the server is tconnectd.
The –p and –e parameters are mutually exclusive.

–pP Sets the Port number. This parameter is valid for test of TCP or UDP using
directly the sockets, if the user does not want to use the name server.
The –p and –e parameters are mutually exclusive.

Examples
1. To test Bull-enhanced XTI performance using OSI_COTP Transport Provider and the

tconnectd server:

tconnectd –x –o

2. To test TCP/IP using directly socket interface with the port 9999:

tconnectd –p9999

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

A-10 XTI/XX25 Administrator and User Guide

Files
/etc/xtihosts
/etc/xtiservices
/etc/hosts
/etc/services

Suggested Reading

Prerequisite Information
tconnect Tool

Related Information
tconnect Command

A-11Test Tools

tconnect Command

Purpose
Check that a user-defined number of parallel connections is acceptable over a Transport
Provider. The connections may be opened connections (without data exchange) or active
connections (with data exchange).

(Client-component of the tconnect tool).

Syntax
tconnect [–x] [–t | –o | –r | –x25] [–hH] [–eE | –pP]

[–nN] [–lL] [–cC [,F]] [–dD]

Description
tconnect prints on the standard output:

• the Transport Provider,

• the Host, the remote address of the Server and the Server name (or the Port number),

• the length and the number of the messages to be sent,

• the total number of connections to be opened, the number of connections to be opened
per process and the delay between connections requests.

tconnect reports on the standard error all errors (syntax errors in the command line,
initialization errors, data exchange errors, ...).

Flags
–x Tests the Bull-enhanced XTI performance using the XTI library.

By default, tests TCP/IP using the sockets.

–t|–o|–r|–x25 Sets the Transport Provider:
–t means TCP
–o means OSI_COTP
–r means NetShare (RFC 1006)
–x25 means X.25
The default Transport Provider is TCP.
This parameter must be the same for tconnect and tconnectd.

–h H Sets the server Host name. The server host must be present in the host
data base (/etc/hosts or /etc/xtihosts).
By default, the server host name is “localhost”.

–eE Sets the Server name. The server name must be present in the services
data base (/etc/services or /etc/xtiservices).
By default, the server is tconnectd.
The –p and –e parameters are exclusive.

–pP Sets the Port number. This parameter is valid for test of TCP using directly
the sockets, if the user does not want to use the name server.
The –p and –e parameters are exclusive.

–cC,F Sets the total number of connections to open to C and the number of
connections per forked process to F.
The default values are 1 for C and 32 for F.

–dD Sets the delay in seconds between connections requests.
The default value is no delay.

A-12 XTI/XX25 Administrator and User Guide

–nN Sets the number of messages to be sent.
The default value is 128.

–lL Sets the length of the messages to be sent.
The default length is 1024 bytes.

Examples
1. To check whether one connection over OSI_COTP Transport Provider may be used to

communicate with the tconnectd server on the “localhost” without sending any data:

tconnect –x –o –n0

2. To check whether 256 connections (each process managing 64 connections) over
TCP/IP using directly socket interface with the port 9999 may be used to communicate
with the tconnectd server on the “localhost” and to send 128 messages of 512 bytes:

tconnect –p9999 –c256,64 –l512

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files
/etc/xtihosts
/etc/xtiservices
/etc/hosts
/etc/services

Suggested Reading

Prerequisite Information
tconnect Tool

Related Information
tconnectd Daemon

A-13Test Tools

xtistat Command

Purpose
Display global statistics of the XTI activity or the XTI activity of each XTI Transport Endpoint.

Syntax
xtistat [–s] [–p protocol] [–n] [–d [CTSQEIWplderiaf]] [–a] [–A]
 [–i sec] [–c addr] [–b] [core]

Flags
–s Display global statistics

–p protocol Select a Transport Provider (osi_cots, osi_clts, tcp, udp, rfc1006, x25).

–n Disable the interpretation (via the libxti_ns library) of protocol addresses.

–d [CTSQEIWplderiaf]
Select information to be displayed.
C context address
T trace level
S XTI state
Q queue length
E event
I connect indication count
W high and low water mark
p protocol
l local address
d remote address
e stream errors count
r request count
i indication count
a acknowledge count
f stream flow

–a equivalent to –d Spfld

–A Display all information

–i sec Select continuous display mode. The screen is refreshed each sec
seconds.

–c addr Select the address (in C format) of a defined context block.

–b Dump context block.

core Read in a specified core instead of /dev/kmem.

Examples
1. To display global statistics:

xtistat –s

0 Connection Oriented Transport Provider.

0 Connectionless Transport Provider.

1 RFC1006 Transport Provider.

1 TCP Transport Provider.

0 UDP Transport Provider.

0 X.25 Network Provider

0 Other Transport Provider.

A-14 XTI/XX25 Administrator and User Guide

54070 Open.

54068 Close.

27171 Connect requests.

26873 Connect indications.

26873 Connect accepts.

2074208 User send messages.

1875730 TPI send messages.

2124232 User received messages.

1825407 TPI received messages.

0 Memory alloc failures.

0 Bind failures.

54065 Bind success.

27177 Bad state errors.

54040 Error acks.

80906 Ok acks.

2. To display TCP connections:

xtistat –p tcp

Protocol M_rcv M_snd Loc AddrRem Addr State

tcp88cots_server/00.0 noneTS_IDLE

3. To display Context, State and Addresses of each connections:

xtistat –d CSld

Ctx blk: 0x5550030

Loc Addr: 00.00.00.00/cots_server

Rem Addr: none

State: TS_IDLE

4. To display all information:

xtistat –A

Ctx blk: 0x5550030

Protocol: tcp

FLOW rcv_Q snd_Q Usr Rcv Usr Snd Prov Snd Prov Rcv

008866

Loc Addr: 00.00.00.00/cots_server

Rem Addr: none

State: TS_IDLE

Trace lev.: 0x38000000

Qlen: 1

Event: none

ConInd cnt: 0

LoWat: 0/0

ERR alloc state tpisz errak opt. bind

 ...00000 ...0

REQ data expdt conrq conrs ordrl ioctl

 ...0....00008

IND data conn. disc. ordrl uderr

 ...0 ...0000

ACK bind addr error ok concf

 ...1 ...0 ...00 .0

A-15Test Tools

5. To display Context Dump:

xtistat –b –c 0x5b71c2c

Context DUMP:

05b71c2c: 00000000 38000000 00000004 000000018...........

05b71c3c: 00000000 00000000 00000000 00000000

05b71c4c: 00000000 00000000 00000000 00000000

05b71c5c: 00000000 00000000 00000000 00000000

05b71c6c: 00000000 00000000 00000000 00000000

05b71c7c: 00000000 636f7470 00000000 00000000cotp........

05b71c8c: 00000021 00000001 00000005 78636f74 ...!........xcot

05b71c9c: 73000000 00000002 00000000 00000003 s...............

05b71cac: 00000001 ff000000 00000000 00000000

05b71cbc: 00000000 00000000 00000000 00000000

05b71ccc: 00000000 00000000 00000000 00000000

05b71cdc: 00000000 00000000 00000000 00000000

05b71cec: 00000000 00000000 00000000 00000000

05b71cfc: 00000000 00000000 00000000 00000000

05b71d0c: 00000000 00000000 00000000 00000000

05b71d1c: 00000000 00000000 00000000 00000000

05b71d2c: 00000000 00000000 00000000 00000000

05b71d3c: 00000000 00000000 00000000 00000000

05b71d4c: 00000000 00000000 00000000 00000000

05b71d5c: 00000000 00000000 00000000 00000000

05b71d6c: 00000000 00000000 00000000 00000000

05b71d7c: 00000000 00000000 00000000 00000000

05b71d8c: 00000000 00000000 00000000 00000000

05b71d9c: 00000000 00000000 00000000 00000000

05b71dac: 00000000 00000000 00000000 00000000

05b71dbc: 00000000 00000000 00000000 00000000

05b71dcc: 00000000 00000000 00000000 00000000

05b71ddc: 00000000 00000000 00000008 00000000

05b71dec: 00000000 00000001 00000001 00000000

05b71dfc: 00000000 00000000 00000000 00000004

05b71e0c: 00000000 00000000 00000000 00000000

05b71e1c: 00000008 00000008 00000006 00000006

05b71e2c: 00000000 00000000 00000001 05b74418D.

05b71e3c: 05b7408c 05b74500 05be002c 00000000 ..@...E....,....

Implementation Specifics
This command is part of xti_api software, but is not part of the XTI standard.

Files

Suggested Reading

Related Information

A-16 XTI/XX25 Administrator and User Guide

B-1File Formats

Appendix B. File Formats

This appendix provides description of the XTI Data Base files:

• xtihosts file on page B-2

• xtiprotocols file on page B-5

• xtiservices file on page B-7

• xtiopts file on page B-9

• xtitrace and xticnxtrace files on page B-12

B-2 XTI/XX25 Administrator and User Guide

xtihosts File

Purpose
XTI OSI and XX25 Hosts Data Base

• An OSI Host object defines a path within the transport to access a remote host.
• An XX25 Host object defines a path within the network to access a remote host.

Description
For each host a single line should be present with the following format:

<remote_addr> <local_addr> <lsap> <network_type> <name> <aliases>

where:

<remote_addr>
Address used to access the remote transport. Depending on
<network_type>

• For XTI OSI

Network type Address Description

0x0101 SNPA = X.121 address (15 decimal digits max)

0x0102 not significant = NULL

0x0103 SNPA = MAC address (6 bytes max)
For example: Ethernet, Token Ring MAC address or
FDDI address

0x0306
0x0506

NSAP = Network Service Access Point
 (20 bytes max)

• For XX25

Virtual Circuit type Address Description

0x2501 SVC = X.121 address (15 decimal digits max)

0x2502 not significant = NULL

<local_addr>

Address through which the connection goes out to the remote host.
Depending on <network_type>

• For XTI OSI

Network type Address Description

0x0101 SNPA = X.121 address (15 decimal digits max)

0x0102 local PVC name (8 bytes max)

0x0103 SNPA = MAC address (6 bytes max)
For example: Ethernet, Token Ring MAC address or
FDDI address

0x0306
0x0506

NSAP = Network Service Access Point
 (20 bytes max)

B-3File Formats

• For XX25

Virtual Circuit type Address Description

0x2501 SVC = X.121 address (15 decimal digits max)

0x2502 local PVC name (8 bytes max)

<lsap> 0x20 for DSA
0xfe for ISO
lsap is not significant for XX25

<network_type>

Numeric identifier of the network used to communicate.

• For XTI OSI

Network
type

Network Description

0x0101 CONS/WAN/SVC = COTS over CONS on S VC
 For example: X25

0x0102 CONS/WAN/PVC = COTS over CONS on PVC
 For example: X25

0x0103
LSAP=20

I_CLNS/LAN = COTS over inactive CLNS
 (Non–full OSI conformance)
with Data Link Service Access Point = DSA
 For example Ethernet, Token Ring, FDDI

0x0103
LSAP=fe

I_CLNS/LAN = COTS over inactive CLNS
 (Full OSI conformance)
with Data Link Service Access Point = OSI

0x0306 CLNS = COTS and CLNS over LAN and WAN
 (Full OSI conformance)

0x0506 SPEE = COTS over CLNS (on LAN)
 or COTS over CONS (on WAN)

• For XX25

Virtual
Circuit

type
Description

0x2501 X.25 SVC = Switched Virtual Circuit

0x2502 X.25 PVC = Permanent Virtual Circuit

<name> Host name,
(character string containing no more than 40 characters)

<aliases> Aliases for Host name,
(maximum two aliases separated by a blank. Each alias is a character
string containing no more than 40 characters)

B-4 XTI/XX25 Administrator and User Guide

Items are separated by any number of blanks and/or tab characters.

Host names may contain any printable character other than a field delimiter, newline or
comment character.

Example

/etc/xtihosts: xti hosts database

###

#

#Remote Host Addrss Local Host Address Lsap Netser Host name

and aliases

0x02 NULL 0xfe 0x0306 localhost/tpid_osi_cots

138000000000002 138000000000001 0xfe 0x0101 h_x25_svc/tpid_osi_cots

old_nt_1 ex_1

0x003001020304 0x003001020304 0x20 0x0103 h_nullip_dsa/tpid_osi_cots

old_nt_2 ex_2

0x0a0b0c0d NULL 0xfe 0x0306 h_fullip/tpid_osi_cots

old_nt_3 ex_3

0x00300102030b 0x00300102030a 0xfe 0x0103 h_nullip_osi/tpid_osi_cots

old_nt_4 ex_4

0xabef NULL 0xfe 0x0506 h_spee/tpid_osi_cots

old_nt_5 ex_5

NULL ”PVCone” 0xfe 0x0102 h_x25_pvc/tpid_osi_cots

new_type ex_6

138002 138001 0xfe 0x2501 h_xx25_svc/npid_x25_cons

NULL 138003 0xfe 0x2502 h_xx25_pvc/npid_x25_cons

0x12 NULL 0xfe 0x0306 localhost/tpid_osi_clts

Implementation Specifics
This file is used by XTI Name Server, part of xti_api software.

Files
/etc/xtihosts

Suggested Reading

Related Information
How to Manage XTI OSI Hosts, on page 3-11.

xtihost Command.

B-5File Formats

xtiprotocols File

Purpose
XTI and XX25 Protocols Data Base.

Description
The xtiprotocols file lists the XTI Transport Providers and XX25 Network Provider
implemented in Bull-enhanced XTI in the following format:

<provider_name> <provider_id> <device_name> <service_type> <provider_alias>

where:

<provider_name>
Name of the transport provider (for instance, tpid_osi_cots, tpid_osi_clts,
tpid_tcp, tpid_osi_rfc1006, npid_x25_cons).

<provider_id>
Provider identifier as defined in xti_api/xti_ns.h include file.

<device_name>
Name of the special file to be used to get a transport endpoint opened on
the transport provider.
The value ’none’ indicates that no access is currently allowed on this
transport provider.

<service_type>
is the type of service offered:
cots, connection-oriented transport protocol
cots_ord, connection-oriented transport protocol with orderly release
clts, connection-less transport protocol
cons, connection-oriented network protocol.

<provider_alias>
List of maximum two alternative names for the transport provider.

Items are separated by any number of blanks and/or tab characters.

Transport provider names may contain any printable character other than a field delimiter,
newline or comment character.

Examples
XTI Transport Provider (TP) file

#################################

#

Name Id. Device Type Alias

#

Do not remove or change the following lines

tpid_osi_cots 0 /dev/xti/cotp cots TPID_OSI_COTS

tpid_osi_clts 1 /dev/xti/cltp clts TPID_OSI_CLTS

tpid_tcp 2 /dev/xti/tcp cots_ord TPID_TCP

tpid_udp 3 /dev/xti/udp clts TPID_UDP

tpid_rfc1006 4 /dev/xti/tp1006 cots TPID_RFC1006

npid_x25_cons 5 /dev/dat/xpi_xd cons NPID_X25_CONS

Implementation Specifics
This file is used by XTI Name Server, part of xti_api software.

B-6 XTI/XX25 Administrator and User Guide

Files
/etc/xtiprotocols

Suggested Reading

Related Information
xtiservices File.

B-7File Formats

xtiservices File

Purpose
XTI and XX25 Services Data Base.

Description
The xtiservices file lists the services available in the network and identified:

by a TSEL (Transport SELector) for an XTI service,

by an SAI (Subsequent Application Identifier) for an XX25 service.

For each service a single line is present with the following format:

<name> <tsel–sai>/<provider_name> <aliases>

<name> the name of the defined service,
(character string containing no more than 40 characters).

<tsel–sai> the OSI Transport SELector or XX25 Subsequent Application Identifier
associated to the defined service.
The maximum length of the value is 32 bytes and the format is one of the
following :

Format Syntax description for TSEL–SAI

a list of numerals separated by commas, for initialization (for ex-
ample 9,8,7). Each digit for the attribute in a
database is set to a digit with the correspond-
ing decimal value (9,8,7 is 0x09,0x08,0x07)

a initializing string (for example 13829) the resulting value of the
attribute in a database is the ascii value of the
string (13829 is 0x31,0x33,0x38,0x32,0x39),

a list of hexadecimals separated by commas, for initialization (for
example 0xab,0x02).

<provider_name>

the provider name as defined in the XTI Protocols Data Base:
/etc/xtiprotocols (string max 20).

<aliases> the aliases for name
(maximum two aliases separated by a blank; each alias is a character string
containing no more than 40 characters).

Items are separated by any number of blanks and/or tab characters.

Service names may contain any printable character other than a field delimiter, newline or
comment character.

Note: As NetShare (RFC 1006) is equivalent to an OSI Class 0 Connection-oriented
Transport Provider, the provider name to be specified is tpid_osi_cots for any
service accessed by NetShare (RFC 1006).

B-8 XTI/XX25 Administrator and User Guide

Example
#

/etc/xtiservices: xti services database

#

XTI services file

###

#

Service TSEL–SAI/Protocol Aliases

#

cots_server 0x01020301/tpid_osi_cots COTS_SERVER

COTS_server

select_server 0x01020302/tpid_osi_cots SELECT_SERVER

SELECT_server

poll_server 0x01020303/tpid_osi_cots POLL_SERVER

POLL_server

benchd 0x01020304/tpid_osi_cots BENCHD xtibenchd

tconnectd 0x01020305/tpid_osi_cots TCONNECTD

xtitconnectd

cons_server 0xC4020301/npid_x25_cons CONS_SERVER

CONS_server

benchd 0xC4020304/npid_x25_cons BENCHD xtibenchd

tconnectd 0xC4020305/npid_x25_cons TCONNECTD

xtitconnectd

benchd 0x01020306/tpid_osi_clts BENCHD xtibenchd

Implementation Specifics
This file is used by XTI Name Server, part of xti_api software.

Files
/etc/xtiservices

Suggested Reading

Related Information
xtiprotocols File.

How to Manage XTI OSI Services, on page 3-14.

xtiserv Command.

B-9File Formats

xtiopts File

Purpose
XTI OSI Option Profiles Data Base.

Description
The xtiopts file contains sets of XTI options, with the following format:

option <set_option_name> [

 <{option_level, option_name, <NULL|option_value>*} [,]>*

]

where:

• <set_option_name> is a string of char (40 max).

• <option_level>, <option_name> and <option_value> are strings of char (40
max) or decimal values.

A set of options or Option Profile is identified by a <set_option_name> and each option
within the profile is defined by:

option_level

Level accessed by the option within the transport stack:
XTI_GENERIC, ISO_TP, INET_UDP, INET_TCP, INET_IP or X25_NP.

option_name the option name within the level.
Examples of option name are TCO_EXPD within the level ISO_TP or
TCP_NODELAY within the level INET_TCP.

option_value

Optional and represents the value for the option.

The options implemented in Bull-enhanced XTI are listed in Bull-enhanced XTI Option
Profiles in Appendix C.

Examples

#–––

#

example_ltpdu: Used by the example programs

#

#–––

option example_ltpdu [

{ISO_TP, TCO_LTPDU, T_UNSPEC}

]

B-10 XTI/XX25 Administrator and User Guide

#––

#

connect_opt:

An example with option from different providers mixed.

This profile can be used with either

a TCP,UDP or OSI transport

at connection time (t_connect()).

#

#––

option connect_opt [

{XTI_GENERIC, XTI_DEBUG, 1,31},

{XTI_GENERIC, XTI_LINGER, T_YES, 32},

{ISO_TP, TCO_EXPD, T_YES},

{ISO_TP, TCO_PREFCLASS, T_CLASS4},

{ISO_TP, TCO_ALTCLASS1, T_CLASS2},

{XTI_GENERIC, XTI_SNDBUF, 3003},

{XTI_GENERIC, XTI_RCVBUF, 3004},

{INET_TCP, TCP_KEEPALIVE, T_YES, 1},

{XTI_GENERIC, XTI_SNDLOWAT, 35},

{XTI_GENERIC, XTI_RCVLOWAT, 36},

{INET_UDP, UDP_CHECKSUM, T_YES},

{INET_IP, IP_TTL, 30}

]

#––

Option of same level XTI_GENERIC to be used with t_optmgmt()

#––

option xti_level [

{XTI_GENERIC, XTI_DEBUG, NULL},

{XTI_GENERIC, XTI_LINGER, T_YES, 12},

{XTI_GENERIC, XTI_SNDBUF, 12},

{XTI_GENERIC, XTI_SNDBUF, 12}

]

option T_ALLOPT_alone [

{XTI_GENERIC, T_ALLOPT, NULL}

]

#––

Numerical value can be used as well

#––

option xti_level_num [

{XTI_GENERIC, 0x0001, NULL},

{0xffff, XTI_LINGER, T_YES},

{0xffff, 0x1001, 12},

{XTI_GENERIC, XTI_SNDBUF, 12}

]

#––

Example for XX25 options

#––

option ex_xx25_opt [

{X25_NP, T_X25_CONN_DBIT, T_YES},

{X25_NP, T_X25_PKTSIZE, 128, 128}

]

B-11File Formats

Implementation Specifics
This file is used by XTI Name Server, part of xti_api software.

Files
/etc/xtiopts

Suggested Reading

Related Information
XTI Option Profiles Configurator, on page 3-25,

xtiopt Command, on page 6-10,

t_optmgmt() Subroutine, on page 4-39,

Bull-enhanced XTI Options in Appendix C.

B-12 XTI/XX25 Administrator and User Guide

xtitrace and xticnxtrace Files

Purpose
XTI Trace Levels Data Base.

Default Trace Levels defined by the administrator and concerning:

• XTI library trace levels in xtitrace file.

• XTI library and kernel trace levels in xticnxtrace file.

Description
In xtitrace and xticnxtrace files, the trace levels value is made of 4 bytes set with the
OR-combination of the defined values for each XTI trace level (XTI_LEVELxx), that is:

0xXXXXXXXX

where X is an hexadecimal digit.

It enables generation of trace in the XTI library for the xtitrace file and in both XTI library
and kernel (XTI4MOD module) for the xticnxtrace file, if the user has not set other trace
levels defining other trace files defined by the XTI_TRACE_LEVEL and
XTI_TRACE_LEVELCNX

Example
To trace DATA TRANSFER functionnalities (XTI_LEVEL30) with Description of Entry and
Return of external XTI Library Functions (XTI_LEVEL11) and of I/O parameters values
(XTI_LEVEL24) the value set in xtitrace or xticnxtrace must be:

20800400

Implementation Specifics
This file is used by XTI Name Server, part of xti_api software.

Files
/etc/xtitrace
/etc/xticnxtrace

Suggested Reading

Related Information
How to Set XTI Administrative Trace Levels, on page 3-29.

How to Set XTI User Trace Levels, on page 3-33.

xtitracelevel Command, on page 6-8.

C-1Options

Appendix C. Options

List of Bull-enhanced XTI Options

• XTI_GENERIC-level Options, on page C-1,

• ISO_TP-level Options, on page C-2,

• INET_TCP, INET_UDP and INET_IP-level Options, on page C-3,

• X25_NP-level Options, on page C-4.

XTI_GENERIC-level Options: Options for any Transport Provider

Option Name Option Type Legal Option Value Meaning

XTI_DEBUG struct t_deblevel see
Setting Trace Levels
on page 4-45

set XTI Trace Levels

XTI_LINGER struct linger see
on page 4-43

linger on close
 if data is present

XTI_RCVBUF unsigned long size in octets receive buffer size

XTI_RCVLOWAT unsigned long size in octets receive
low-water mark

XTI_SNDBUF unsigned long size in octets send buffer size

XTI_SNDLOWAT unsigned long size in octets send low-water mark

The XTI_GENERIC-level options are fully described in t_optmgmt () subroutine, on page
4-39.

C-2 XTI/XX25 Administrator and User Guide

ISO_TP-level Options: Options for OSI COTS and NetShare (RFC 1006)

Supported Options for OSI

Option Name Default Value Allowed
Values

Option
Type

Option Meaning

TCO_LTPDU 2048 if preferred class is
0, else 8192

128 256 512
1024 2048
4096 or 8192

unsigned
long

Maximum length of
TPDU

TCO_PREFCLASS Class 4 by default,
Class 2 for TNULLCLNP
network service on WAN

T_CLASS0
T_CLASS2
T_CLASS3
T_CLASS4

unsigned
long

Preferred class

TCO_ALTCLASS1 T_UNSPEC T_CLASS0
T_CLASS2
T_CLASS3
T_CLASS4

unsigned
long

First alternate class

TCO_EXTFORM T_NO T_YES
T_NO

unsigned
long

Extended format

TCO_FLOWCTRL T_NO is preferred class 0,
else T_YES

T_YES
T_NO

unsigned
long

Flow control

TCO_CHECKSUM T_NO T_YES
T_NO

unsigned
long

Checksum

TCO_PRIORITY T_PRIDFLT T_PRIDFLT
T_PRILOW
T_PRIMID
T_PRIHIGH
T_PRITOP

unsigned
long

Priority

TCO_EXPD T_NO if preferred class 0,
else T_YES

T_YES
T_NO

unsigned
long

Expedited data

TCO_RCV_CRDT 15 1 to 15 unsigned
long

Maximum receive credit

TCO_NETSRV TFULLCLNP TNULLCLNP
TFULLCLNP
TSPEE

unsigned
long

Network service used

TCO_DEBUG No level set ERRTRACE
CONTRACE
XFERTRACE
FCONTRACE
FXFERTRACE
ICBTRACE

unsigned
long

Debug level

TCO_X25FAC None refer to
ISO8208

unsigned
char[]

X25 facilities

TCO_X25CALLDT None refer to
ISO8208

unsigned
char[]

X25 call data

The ISO_TP-level options are fully described in Appendix A. ISO Transport Protocol
Information in X/Open Transport Interface XPG4 CAE Specification Version 2, except for
the options TCO_RCV_CRDT, TCO_NETSRV, TCO_DEBUG, TCO_X25FAC and
TCO_X25CALLDT which are part of Bull implementation specifics.

C-3Options

Supported Options for NetShare (RFC 1006)

Option Name Default Value Allowed
Values

Option
Type

Option Meaning

TCO_LTPDU 64 K – 4 unsigned
long

Maximum length of
TPDU

TCO_EXPD T_YES T_YES
T_NO

unsigned
long

Expedited data

INET_TCP, INET_UDP and INET_IP-level: Options for TCP/IP and UDP

TCP/IP Communication Stack Supported Options

Option
 Level

Option Name Default Value Allowed
Values

Option
Type

Option Meaning

INET_TCP TCP_KEEPALIVE (1)
tcp_keepidle

(3) struct
t_kpalive

Checks if connections are
alive

INET_TCP TCP_MAXSEG (1)
tcp_mssdflt

(3) unsigned
long

Get TCP maximum
segment size

INET_TCP TCP_NODELAY T_NO (3) unsigned
long

Don’t delay send
to coalesce packets

INET_UDP UDP_CHECKSUM (1)
udpchsum

(3) unsigned
long

Checksum computation.

INET_IP IP_BROADCAST T_NO
(2)

(3) unsigned
int

Permit sending of
broadcast messages

INET_IP IP_DONTROUTE (1)
ipforwarding

(3) unsigned
int

Bypass the standard
routing information

INET_IP IP_OPTIONS No option set (3) array of un-
signed char

IP per-packet options

INET_IP IP_REUSEADDR T_NO (3) unsigned
int

Allow local address reuse

INET_IP IP_TOS No service set (3) unsigned
char

IP per-packet type
of service

INET_IP IP_TTL (1)
maxttl

(3) unsigned
char

IP per-packet time to live

Notes:

1. To obtain the default value, run the command no –a and read the corresponding
variable, for instance tcp_keepidle.

2. For further information run the command ifconfig xxx, where xxx is the used
interface.

3. The allowed values are listed in AIX Performance Tuning Guide.

The INET-level options are fully described in Appendix B. Internet Protocol-specific
Information in X/Open Transport Interface XPG4 CAE Specification Version 2.

C-4 XTI/XX25 Administrator and User Guide

X25_NP-level Options: Options for XX25

Supported Options for XX25

Option Name Default
Value

Allowed
Values

Option
Type

Option Meaning

T_X25_USER_DACK T_NO T_YES/T_NO unsigned
long

Explicit Acknowledge-
ment of data with
delivery bit

T_X25_USER_EACK T_NO T_YES/T_NO unsigned
long

Explicit Acknowledge-
ment of expedited
data

T_X25_RST_OPT T_NO T_YES/T_NO unsigned
long

Support of resets by
user

T_X25_VERSION (implementa-
tion defined)

T_X25_yyyy with ”yyyy”
representing the year of
the X.25 recommenda-
tion Read–only option

unsigned
long

Version of ITU–T
Recommendation
X.25 or ISO/IEC 8208
(X.25)

T_X25_DISCON_REASON 0xf1 Reason specified in ISO/
IEC 8208 (X.25)

unsigned
long

Reason (cause and
diagnostic) of a
Connection release

T_X25_DISCON_ ADD Read–only option struct
x25facaddr

Address of the user
that released
the connection

T_X25_D_OPT (implementa-
tion defined)

T_YES/T_NO

Read–only option
unsigned
long

Support of the D bit

T_X25_CONN_DBIT T_NO T_YES/T_NO unsigned
long

Setting of the D–bit
during the connection
phase in order to
negotiate the support
of the D_bit during
data transfer

T_X25_PKTSIZE 128 size in bytes from 16 to
4096, T_UNSPEC

struct
x25facval

Packet Size

T_X25_WINDOWSIZE 2 size from 1 to 7 or from 1
to 127 (in extended for-
mat), T_UNSPEC

struct
x25facval

Window Size

T_X25_TCN 9600 Throughput in bits/s from
75 to 192000, T_UNSPEC

struct
x25facval

Througput Class
Negotiation

T_X25_CUG 0 index from 0 to 9999,
T_UNSPEC

unsigned
long

CUG
(Closed User Group)

T_X25_CUGOUT 0 index from 0 to 9999,
T_UNSPEC

unsigned
long

CUG with Outgoing
Access

T_X25_BCUG 0 index from 0 to 9999,
T_UNSPEC

unsigned
long

Bilateral CUG

T_X25_FASTSELECT T_NO T_X25_FASTSEL_NOREST/
T_X25_FASTSEL_REST/
T_NO

unsigned
long

 Fast Select

T_X25_REVCHG T_NO T_YES/T_NO unsigned
long

Reverse Charging

T_X25_NUI format determined by the
network administration

string NUI – Network User
Identification

T_X25_CHGINFO_REQ T_NO T_YES/T_NO unsigned
long

Charging Information
Service Request

C-5Options

Supported Options for XX25

Option Name Default
 Value

Allowed
Values

Option
Type

Option Meaning

T_X25_CHGINFO_MU Read–Only Option string Charging Information:
Monetary Unit

T_X25_CHGINFO_SC Read–Only Option. One
structure per tariff period

struct
x25facval

Charging Information:
Segment Count

T_X25_CHGINFO_CD Read–Only Option. One
structure per tariff period

struct
x25facin-
focd

Charging Information:
Call Duration

T_X25_RPOA Index of each RPOA
from 0 to 9999

Arrray of
unsigned
longs

RPOA–Recognised
Private Operating
Agency

T_X25_CALLDEF value of the reason code
(’code’ field):
–T_X25_CLDEF1

–T_X25_CLDEF2

–T_X25_CLDEF3

–T_X25_CLDEF4

struct
x25facaddr

Call Deflection
Selection

T_X25_CALLRED Read–Only Option value
of the reason code
(’code’ field):
–T_X25_CLDEF1

–T_X25_CLDEF2

–T_X25_CLDEF3

–T_X25_CLDEF4

–T_X25_CLRED1

–T_X25_CLRED2

–T_X25_CLRED3

–T_X25_CLRED4

struct
x25facaddr

Call Redirection or
Deflection Notification

T_X25_CALLADDMOD value of the reason code
–T_X25_CLDEF1

–T_X25_CLDEF2

–T_X25_CLDEF3

–T_X25_CLDEF4

–T_X25_CLRED1

–T_X25_CLRED2

–T_X25_CLRED3

–T_X25_CLRED4

unsigned
long

Called Line Address
Modified Notification

T_X25_TDSAI Transit delay in millisec-
onds from 0 to 65534,
T_UNSPEC

unsigned
long

Transit Delay Selec-
tion and Indication

T_X25_CALLING_ADDEXT Value for the address
type (’addr_type’ field):
–T_X25_NSAPADDR

–T_X25_OTHERADDR

struct
x25addext

Calling Address
Extension

T_X25_CALLED_ADDEXT Value for the address
type (’addr_type’
field):
–T_X25_NSAPADDR

–T_X25_OTHERADDR

struct
x25addext

Called Address
Extension

T_X25_MTCN 9600 Minimum Throughput in
bits/s from 75 to 192000,
T_UNSPEC

struct
x25facval

Minimum Throughput
Class Negotiation

T_X25_EETDN Transit Delay in millisec-
onds from 0 to 65534,
T_UNSPEC

struct
x25eetdn

End–to–End Transit
Delay Negotiation

C-6 XTI/XX25 Administrator and User Guide

Supported Options for XX25

Option Name Default
 Value

Allowed
Values

Option
Type

Option Meaning

T_X25_PRIORITY Value of the priority type
(’typeval’ field):
–T_X25_PRIDATA

–T_X25_PRIGAIN

–T_X25_PRIKEEP

Values of priority :
(’targetval’ and
’lowval’ fields):
–T_PRITOP

–T_PRIHIGH

–T_PRIMID

–T_PRILOW

–T_PRIDFLT

–T_UNSPEC

struct
x25facpr

Priority

T_X25_PROTECTION Value of the protection
type (’typeval’ field):
–T_X25_SRCPROTECT

–T_X25_DESTPROTECT

–T_X25_GLBPROTECT

Values of protection
(’targetval’ and ’lowval’
fields):
–T_NOPROTECT

–T_PASSIVEPROTECT

–T_ACTIVEPROTECT

struct
x25facpr

Protection

T_X25_EDN T_NO T_YES/T_NO/T_UNSPEC unsigned
long

Expedited Data
Negotiation

T_X25_LOC_NONX25 buffer in raw form as en-
coded in the local
non–X25 facilities part of
the facilities field of the
X.25 packet

string Non–X25 local
facilities

T_X25_REM_NONX25 buffer in raw form as en-
coded in the remote
non–X25 facilities part of
the facilities field
of the X.25 packet

string Non–X25 remote
facilities

T_X25_REM_EQUILISTEN T_NO T_YES/T_NO unsigned
long

Support of equal dis-
tribution of incoming
calls between listen-
ers with the same cri-
teria on the same ad-
dress

Note: The T_X25_EQUILISTEN option allows to select the service of an equal distribtuion
on the same address.
To be taken into account, this option has to be selected before the t_bind() call done
for a listener. By selecting this option, the t_bind() function never returns the
T_ADDRBUSY error.
This option allows to distribute incoming calls in an equal way between listeners
having the matching criteria.
The distribution depends on the number of connections that have been already
attributed to each listener having the matching criteria.

D-1OSI Addressing

Appendix D. OSI Addressing

Bull-enhanced XTI and OSI Addressing
Note: Full description of OSI addressing and profiles is available in OSI Services

Reference Manual: OSI Addressing Chapter and OSI Profiles Appendix.

XTI Functions and OSI Addressing

Addresses have to be used as parameters of these XTI functions:

t_bind Bind an address to a transport endpoint.

t_connect Establish a connection with another transport user.

t_listen Listen for a connect indication.

t_rcvconnect Receive the confirmation from a connect request.

t_bind needs a local address only, whereas t_connect, t_rcvconnect and t_listen need a
remote and eventually part of a local address.

Note: In order to conform to X/Open Transport Interface XPG4 CAE Specification
Version 2 an address may be defined as input parameter for the t_accept function
(Accept a connect request), but is not significant in this implementation.

A complete address is made of up to five address components defined by these types:

TNETSRV Network Service for t_connect, t_rcvconnect and t_listen.

TLSAP Local LSAP for t_bind.
Remote LSAP for t_connect, t_rcvconnect and t_listen.

TTSEL Local Transport SELector for t_bind.
Remote Transport SELector for t_connect, t_rcvconnect and t_listen.

TNSAP Local NSAP for t_bind.
Remote NSAP or local and remote SNPA for t_connect, t_rcvconnect and
t_listen depending on the network service.

TLNSAP Local NSAP for t_connect, t_rcvconnect and t_listen depending on the
network service.

XTI functions Network
Service

Local
LSAP

Local
TSEL

Local NSAP Remote
LSAP

Remote
TSEL

Remote
NSAP1

t_bind() TLSAP TTSEL TNSAP

t_connect()
t_listen()
t_rcvconnect()

TNSERV
TNSERV
TNSERV

TLNSAP2

TLNSAP2

TLNSAP2

TLSAP
TLSAP
TLSAP

TTSEL
TTSEL
TTSEL

TNSAP
TNSAP
TNSAP

Figure 10. XTI Functions and OSI Addresses Components

Notes:

1. Or local and remote SNPA.

2. Optionally specified to overwrite the local NSAP given during the t_bind call.

D-2 XTI/XX25 Administrator and User Guide

Addresses Format
Up to five address components may be concatenated in the address buffer.

AddrType � �
� �
� �

AddrLength

TTSEL 3 010203

�
�
�

� �
� �
� �

� �
� �
� �

AddrType AddrLength AddrType AddrLength

TNSAP 5 0504030201 TLSAP 1 fe

ADDR_length

padding

long word boundary start

Figure 11. OSI Stack Address Structure Example

The addresses are specified in TLV format (Type–Length–Value).

Each component is specified by a header (type and length) possibly followed by a value.

typedef struct t_tladdr{

unsigned long AddrType;

/*type of address component */

unsigned long AddrLength;

/*length of address component in bytes */

}TLAddr_t;

Each address component must start at a long-word boundary.
The macro T_ALIGN defined in the include file xti_api/xti.h may be used to align TLV items
within the address buffer.

The structure type t_tladdr and the other definitions necessary for definition of an OSI
address are provided in the include file sys/osi/osi1to4.h.

OSI Addresses Components

NETSRV: Network Service
• Network Service for t_connect, t_rcvconnect and t_listen

NETSERV is optional in a t_connect address (if not specified, TFULLCLNP is the
default value)

• Length: 4 bytes

• Values:

– TFULLCLNP, ISO Internet

– TNULLCLNP, Null ISO Internet on LAN or CONS on WAN

– TSPEE, ISO Internet on LAN, CONS on WAN

D-3OSI Addressing

TLSAP: Link Service Access Point
• Local LSAP for t_bind

Remote LSAP for t_connect, t_rcvconnect and t_listen.

• On incoming connection, TLSAP is not significant (no check is done by the OSI transport
between the bounded LSAP and the LSAP on which the incoming connection arrives).

• On an outgoing connection request t_connect, the LSAP is meaningful only when
TNETSERV equals to TNULLCLNP.

TLSAP t_bind t_connect, t_listen, t_rcvconnect

OSI_LSAP_DSA DSA : Non–full OSI conformance DSA : Non–full OSI conformance

OSI_LSAP_OSI OSI : Full OSI conformance OSI : Full OSI conformance

OSI_LSAP_ANY On incoming connections: meaningless Not allowed

On outgoing connections,
 if Null Internet is selected on LAN, the
remote LSAP will be used as local LSAP,
 else OSI_LSAP_OSI will be used

Figure 12. TLSAP Meaning

TTSEL: Transport SELector
• Local Transport SELector for t_bind

Remote Transport SELector for t_connect, t_rcvconnect and t_listen

• Length: 32 bytes max

• A wildcard value is defined: OSI_TSEL_ANY

TTSEL
 Wildcard Value

t_bind t_connect, t_listen, t_rcvconnect

OSI_TSEL_ANY On incoming connections:
a listening endpoint bound with
OSI_TSEL_ANY will receive all the con-
nect indications for which no exact
TTSEL match exists

Used as any other remote TTSEL

No exact match occurs on t_listen

On outgoing connections:
used as any other calling TTSEL

Figure 13. TTSEL Wildcard Value Meaning

TNSAP
• Local NSAP (Network Service Access Point) for t_bind

Remote NSAP or local and remote SNPA for t_connect, t_rcvconnect and t_listen
depending on the network service:

– if TFULLCLNP or TSPEE, remote NSAP (Network Service Access Point)

– if TNULLCLNP, local and remote SNPA (Sub-network Point of Attachment)

• Length: 20 bytes max

D-4 XTI/XX25 Administrator and User Guide

0xff LAN_LLC1 Length Local mac @ Length Remote mac @

1 byte 1 byte 1 byte 1 byte6 bytes 6 bytes

0xff WAN_SVC Length in Local x121 @ Length in Remote x121 @

1 byte 1 byte 1 byte 1 byte8 bytes 8 bytes

0xff WAN_PVC Length in

1 byte 1 byte 1 byte

or:

or:

Local

8 bytes

half bytes half bytes

half bytes

in bytes in bytes

PVC name

Figure 14. TNSAP for t_connect, t_listen and t_rcvconnect on TNULLCLNP
 (Sub-network Point of Attachment)

• A wildcard value is defined: OSI_NSAP_ANY

TNSAP
Wildcard Value t_bind t_connect, t_listen, t_rcvconnect

OSI_NSAP_ANY On incoming connections:
a listening endpoint bound with
OSI_NSAP_ANY will receive all the con-
nect indications for which no exact
TNSAP match exists

 Not allowed

On outgoing connections:
the default local NSAP will be used as
calling NSAP

Figure 15. TNSAP Wildcard Value Meaning

TLNSAP
• Local NSAP for t_connect, t_rcvconnect and t_listen, used only when TNETSRV

equals to TFULLCLNP, in order to:

– indicate the local address an incoming connection has been passed on (t_listen). This
enables the transport user to know the real NSAP the connect indication comes on
when a wildcard address has been used in t_bind,

– indicate to overwrite the local address previously given in t_bind for outgoing
connection request (t_connect). This is useful especially when OSI_NSAP_ANY has
been used at t_bind() to overwrite the local NSAP automatically generated, which may
be not correct (according to route configuration) to access the remote NSAP given in
TNSAP.

• Length: 20 bytes max

D-5OSI Addressing

Wildcarding
Wildcard value is defined for each address component. Its behaviour is described with the
address component.

The following rules solve the competition cases occurring when several listening endpoints
use wildcard addresses:

• first, equality has priority over wildcarding,

• secondly, TSEL equality has priority over wildcarding.

Which may be summarized on the following example:

If an incoming connection arrives, calling TSEL XX and NSAP YY, at most the following four
listening endpoints, listed in descendant order, may be bound to addresses matching the
called address:

listening endpoint 1: bounded address: tsel value = XX, nsap value = YY

listening endpoint 2: bounded address: tsel value = XX, nsap value = OSI_NSAP_ANY

listening endpoint 3: bounded address: tsel value = OSI_TSEL_ANY, nsap value = YY

listening endpoint 4: bounded address: tsel value = OSI_TSEL_ANY,

nsap value = OSI_NSAP_ANY

Network Type and OSI Addressing

This table makes out the correspondence between:

• the Network Type, parameter of an OSI Host as defined by the XTI Name Server.
(Refer to xtihost command, on page 6-2)

• the OSI address

Network Type TNETSRV TLSAP TNSAP

CONS/WAN/SVC:COTS over CONS on S VC TNULLCLNP 0xff, WAN_SVC,
local and remote
X121 addresses

CONS/WAN/PVC:COTS over CONS on PVC TNULLCLNP 0xff, WAN_PVC,
PVC name

I_CLNS/LAN:COTS over inactive CLNS
 (Non–full OSI conformance)
with Data Link Service Access Point = DSA
 For example Ethernet, Token Ring, FDDI

TNULLCLNP OSI_LSAP_DSA 0xff, LAN_LCC1,
local and remote
 MAC addresses

I_CLNS/LAN:COTS over inactive CLNS
 (Full OSI conformance)
with Data Link Service Access Point = OSI

TNULLCLNP OSI_LSAP_OSI 0xff, LAN_LCC1,
local and remote
 MAC addresses

CLNS:COTS and CLNS over LAN and WAN
 (Full OSI conformance)

TFULLCLNP OSI_LSAP_OSI Remote NSAP

SPEE:COTS over CLNS (on LAN)
 or COTS over CONS (on WAN)

TSPEE OSI_LSAP_OSI Remote NSAP

D-6 XTI/XX25 Administrator and User Guide

E-1XX25 Addressing

Appendix E. X.25 Addressing

XTI/XX25 Functions and X.25 Addressing

Addresses have to be used as parameters of these XTI/XX25 functions:

t_bind Bind an address to an X.25 endpoint.

t_connect Establish a connection with another X.25 user.

t_listen Listen for a connect indication.

t_rcvconnect Receive the confirmation from a connect request.

Note: In order to conform to X/Open Transport Interface XPG4 CAE Specification
Version 2 an address may be defined as input parameter for the t_accept function
(Accept a connect request), but is not significant in this implementation.

Note: Wildcard mechanism is not supported in this implementation.

An XX25 address is made up of several address components defined by these types:

X25CLDADDR X.25 Called Address.
Local X.121 for t_bind and t_listen.
Remote X.121 for t_connect.

X25CLGADDR X.25 Calling Address.
Local X.121 for t_connect.
Remote X.121 for t_bind and t_listen.

X25RSPADDR X.25 Responding Address.
Remote X.121 for t_rcvconnect.

X25UDATA Subsequent Application Identifier (SAI) for t_bind, t_listen and t_connect.

X25PVC X.25 PVC number for t_bind and t_connect.

XTI/XX25
 functions

Local
X.121 @

Remote
X.121 @

SAI PVC
Number

t_bind() X25CLDADDR X25CLGADDR X25UDATA X25PVC

t_connect()
t_listen()
t_rcvconnect()

X25CLGADDR1

X25CLDADDR
X25CLDADDR
X25CLGADDR
X25RSPADDR

X25UDATA
X25UDATA

X25PVC

Figure 16. XTI/XX25 Functions and XX25 Addresses Components

Notes:

1. Optionally specified to overwrite the local address given during the t_bind call.

E-2 XTI/XX25 Administrator and User Guide

Addresses Format

AddrLengthAddrType � �
� �
� �

X25
5 12345

� �
� �
� �

AddrType AddrLength AddrType AddrLength

X25PVC 4

padding

long word boundary start

CLGADDR
X25UDATA 3 3

ADDR_length

04 01 02

Figure 17. XX25 Address Structure Example

The addresses are specified in TLV format (Type–Length–Value).

Each component is specified by a header (type and length) followed by a value.

typedef struct X25Addr{

unsigned long AddrType;

/*type of XX25 address component */

unsigned long AddrLength;

/*length of XX25 address component */

}X25Addr_t;

Each address component must start at a long-word boundary.
The macro T_ALIGN defined in the include file xti_api/xti.h may be used to align TLV items
within the address buffer.

The structure type X25Addr and the other definitions necessary for definition of an XX25
address are provided in the include file xti_xx25/xx25addr.h

XX25 Adresses Components

AddrType AddrLength Maximum Length Type

X25CLDADDR in half-bytes X25MAXADDRLEN X.121 address

X25CLGADDR in half-bytes X25MAXADDRLEN X.121 address

X25RSPADDR in half-bytes X25MAXADDRLEN X.121 address

X25UDATA in bytes X25MAXUDATALEN set of bytes

X25PVC in bytes:
size of (unsigned long)

size of (unsigned long) unsigned long

Gl–1Glossary

Glossary

Definitions
The following terms apply to the X/Open Transport Interface:

Abortive release
An abrupt termination of a transport connection,
which may result in the loss of data.

Asynchronous execution
The mode of execution in which XTI routines will
never block while waiting for specific asynchronous

events to occur, but instead will return immediately
if the event is not pending.

Client
The transport user in connection–mode who
initiates the establishment of a transport
connection.

Connection establishment
The phase in connection–mode that enables two
transport users to create a transport connection
between each other.

Connection–mode
A circuit–oriented mode of transfer in which data
are passed from one user to another through an
established connection in a reliable, sequenced
manner.

Connectionless–mode
A mode of transfer in which data are passed from
one user to another in self–contained units with no
logical relationship required among multiple units.

Connection release
The phase in connection–mode that terminates a

previously established transport connection
between two users.

Datagram
A unit of data transferred between two users of the
connectionless–mode service.

Data transfer
The phase in connection–mode or
connectionless–mode that supports the transfer of
data between two transport users.

Expedited data
Data considered to be urgent. The specific

semantics of expedited data are defined by the
transport protocol that provides the transport
service.

Expedited transport service data unit
Amount of expedited user data which preserves
the user’s identity from one end of a transport
connection to the other (that is, an expedited
message).

Local management
The phase in either connection–mode or
connectionless–mode in which a transport user
establishes a transport endpoint and binds a
transport address to the endpoint. Functions in this
phase perform local operations, and require no
transport layer traffic over the network.

MAC Address
Medium Access Control Address

Orderly release
A procedure for gracefully terminating a transport

connection with no loss of data.

Peer user
The user with whom a given user is communicating
above the X/Open Transport Interface.

Server
The transport user in connection–mode that offers
services to other users (clients) and enables these
clients to establish a transport connection with it.

Service indication
The notification of a pending event generated by
the provider of a particular service to the user.

Service primitive
A unit of information passed through a service
interface that contains either a service request or
service indication.

Service request
A request for action generated by a user of a
particular service to the provider.

Socket.
(1) A unique host identifier created by the
concatenation of a port identifier with a TCP/IP
address. (2) A port identifier. (3) A 16-bit port

number. (4) In NCS, a port on a specific host; a
communications end point that is accessible
through a protocol family’s addressing mechanism.
A socket is identified by a socket address. See
also socket address.

Gl–2 XTI/XX25 Administrator and User Guide

STREAMS.
A kernel mechanism that supports development of
network services and data communication drivers.
It defines interface standards for character input
and output within the kernel, and between the

kernel and user level. The STREAMS mechanism
comprises integral functions, utility routines, kernel
facilities, and a set of structures.

Synchronous execution
The mode of execution in which XTI routines may
block while waiting for specific asynchronous
events to occur.

Transport address
The identifier used to differentiate and locate
specific transport endpoints in a network.

Transport connection
The communication circuit established between
two transport users in connection–mode.

Transport endpoint
The local communication channel between a
transport user and a transport provider.

Transport Interface
The library routines and state transition rules
supporting the services of a transport protocol.

Transport provider
The transport protocol that provides to XTI the
services of the transport layer.

Transport service data unit
The amount of user data whose boundaries are
preserved from one end of a transport connection

to the other (that is, a message).

Transport user
The user–level application or protocol that
accesses the services of XTI.

Virtual circuit
A transport connection established in
connection–mode.

X.25
A recommendation of the CCITT which defines the
interface between a Data Terminal Equipment
(DTE) and a Data Circuit terminating Equipment

(DCE) for terminals operating in the packet mode
and connected to public data networks by
dedicated circuits (ISO 8208).

Gl–3Glossary

Acronyms
The following acronyms are used throughout this guide:

API Application Program Interface

BSD Berkeley Software Distribution

CLNS Connection-less Network Service

CLTS Connection-less Transport Service

CONS Connection-oriented Network Service

COTP Connection-oriented Transport Protocol

COTS Connection-oriented Transport Service

DSA Distributed System Architecture

ETSDU Expedited Transport Service Data Unit

LSAP Link Service Access Point

MAC Medium Access Control

NSAP Network Service Access Point

PVC Permanent Virtual Circuit

SAI Subsequent Application Identifier

SMIT System Management Interface Tool.

SNPA Sub-Network Point of Attachment

SVC Switched Virtual Circuit

TCP Transmission Control Protocol

TSAP Transport Service Access Point

TSEL Transport SELector

TSDU Transport Service Data Unit

UDP User Data Protocol

XTI X/OPEN Transport Interface

XX25 X.25 Programming Interface using XTI

Gl–4 XTI/XX25 Administrator and User Guide

X-1Index

Index

/etc/xlC.cfg, 3-37

A
Abortive Release, 7-31
Address Components

NETSRV, D-2
TLNSAP, D-4
TLSAP, D-3
TNSAP, D-3
TTSEL, D-3
Wildcarding, D-5

Addressing, D-1, E-1
Architecture, Bull–enhanced XTI, 1-1

B
bench Tool, A-2

bench Command, A-5
benchd Daemon, A-3

Bull-enhanced XTI
Architecture (Figure), 1-2
Configurator, 3-1
Enhancements, 1-4
Name Server, 1-4
Option Profiles, 1-5
Options, C-1
OSI Addressing, D-1
Other Transport Interfaces, 1-3
Overview, 1-1
XTI Hosts, 1-5
XTI Services, 1-4
XTI Tools, 1-6
XTI Trace, 1-5

C
chxti, Command, 6-12
close(), 7-43
Commands, 6-1
Configuration, 2-3

Application Development, 2-3
Application Execution, 2-3
Options, 2-4
XTI Hosts, 2-4
XTI Services, 2-3

Configurator, 3-1
Bull-enhanced XTI, 3-1
Option Profile, 3-25
XTI onto NetShare, 3-17
XTI onto OSI, 3-10
XTI onto TCP/IP, 3-3
XTI onto XX25, 3-18
XTI Trace, 3-28

Connection–oriented Mode
Connection Establishment, 7-17
Connection Establishment, Client, 7-19
Connection Establishment, Request

Acceptance, 7-24
Connection Establishment, Server, 7-22
Connection Release, 7-31
Connection Release, Client, 7-32
Connection Release, Server, 7-33
Data Transfer, 7-26
Data Transfer, Client, 7-29
Data Transfer, Server, 7-27
Local Management, 7-10
Local Management, Client, 7-12
Local Management, Server, 7-14
Overview, 7-8

Connectionless Mode
Data Transfer, 7-38
Datagram Errors, 7-40
Local Management, 7-36
Overview, 7-34

Cookbook, 7-1

D
Development Environment, Configuration, 3-37

E
Environments, Configuration with XTI, 3-37
Example

Read/Write Interface for XTI, 7-41
Threads XTI Program, 7-44
Threads XTI Program, Client, 7-44
Threads XTI Program, Server, 7-53

Example, XTI Traces, 7-6
Expedited data, 7-26

F
File Formats, B-1

xticnxtrace, B-12
xtihosts, B-2
xtiopts, B-9
xtiprotocols, B-5
xtiservices, B-7
xtitrace, B-12

Flow Control, 7-28

H
How to Configure XTI Trace Levels, 7-5
How to Manage Options, 7-4
How to prepare an Application, 7-2
How to Run XTI Traces, 7-6
How to Use Traces, 7-5

X-2 XTI/XX25 Administrator and User Guide

I
Installation, 2-1

License, 2-2
Package Contents, 2-1
Prerequisites, 2-2

L
Licensing, 2-2
LSAP, D-3
lsxti, Command, 6-14

M
Managing

XTI OSI Hosts, 3-11
XTI OSI Services, 3-14
XTI TCP/IP Hosts, 3-4
XTI TCP/IP Services, 3-7
XTI XX25 Hosts, 3-19
XTI XX25 Services, 3-22

N
Name Server, 1-4
Name Server Commands

chxti, 6-12
Isxti, 6-14
xtihost, 6-2
xtiopt, 6-10
xtiserv, 6-5
xtitracelevel, 6-8

Name Server Functions
Commonalities, 5-1
List of, 5-2
t_error_ns (), 5-3
t_getisotp (), 5-4
t_getladdr (), 5-6
t_getlname (), 5-8
t_getopt (), 5-10
t_getraddr (), 5-11
t_getrname (), 5-13
t_gettp (), 5-15

NetShare, Configuration with XTI, 3-17
Network Service, D-2
Network Type, B-3
NSAP, D-3

O
Option Profile, Configuration with XTI, 3-25
Option Profiles, 1-5
Options

Default Values, C-1
How to Manage, 7-4
INET_IP, C-3
INET_TCP, C-3
INET_UDP, C-3
ISO_TP-level, C-2
List of, C-1
NetShare (RFC 1006), C-2
OSI, C-2
X25_NP-level, C-4
XTI_GENERIC-level, C-1
XX25, C-4

Orderly Release, 7-31

OSI, Configuration with XTI, 3-10
OSI Addressing, D-1

Address Components, D-2
Address Format, D-2
Network Type, D-5

Outstanding Connect Indication, 7-15

P
Prepare an Application, How to, 7-2

R
read(), 7-42

T
t_accept (), 4-3, 7-18
t_alloc (), 4-7, 7-11
t_bind (), 4-9, 7-11
t_close (), 4-13, 7-11
t_connect (), 4-14, 7-18
t_error (), 4-19, 7-11
t_error_ns (), 5-3
t_free (), 4-20, 7-11
t_getinfo (), 4-22, 7-11
t_getisotp (), 5-4
t_getladdr (), 5-6
t_getlname (), 5-8
t_getopt (), 5-10
t_getprotaddr (), 4-26, 7-11
t_getraddr (), 5-11
t_getrname (), 5-13
t_getstate (), 4-28, 7-11
t_gettp (), 5-15
t_listen (), 4-29, 7-18
t_look (), 4-32, 7-11
t_open (), 4-34, 7-10, 7-11
t_optmgmt (), 4-39, 7-11
t_rcv (), 4-47, 7-26
t_rcvconnect (), 4-50, 7-18
t_rcvdis (), 4-53, 7-31
t_rcvrel (), 4-56, 7-31
t_rcvudata (), 4-57
t_rcvuderr (), 4-59
t_snd (), 4-61, 7-26
t_snddis (), 4-65, 7-18, 7-31
t_sndrel (), 4-67, 7-31
t_sndudata (), 4-68
t_strerror (), 4-70, 7-11
t_sync (), 4-71, 7-11
t_unbind (), 4-73, 7-11
tconnect Tool, A-8

tconnect Command, A-11
tconnectd Daemon, A-9

TCP/IP, Configuration with XTI, 3-3
Test Tools, A-1

bench, A-2
bench Command, A-5
benchd Daemon, A-3
tconnect, A-8
tconnect Command, A-11
tconnectd Daemon, A-9
xtistat, A-13

Threads, 7-44
tirdwr module, 7-42

X-3Index

TLI, XTI and Bull-enhanced XTI, 1-3
Tool, 1-6
Trace, 1-5

Configuration, 3-28
Kernel, Administrative Configuration, 3-31
Libraries

Administrative Configuration, 3-30
User Configuration, 3-34

Libraries and Kernel
Administrative Configuration, 3-32
User Configuration, 3-35

Set Administrative Levels, 3-29
Set Kernel Levels, 3-31
Set Libraries & Kernel Levels, 3-32
Set Libraries Levels, 3-30
Use, 3-36
User Configuration, 3-33
User, Set Libraries & Kernel Levels, 3-35
User, Set Libraries Levels, 3-34

Traces
Configure XTI Trace Levels, 7-5
Example, XTI Traces, 7-6
How to Use, 7-5
Run XTI Traces, 7-6

Transport Endpoint, 7-10
Transport Provider, Automatic Selection, 3-37
TSEL, D-3

U
Using, XTI Trace Utilities, 3-36

W
Wildcarding, OSI Addressing, D-5
write(), 7-42

X
XTI Configurator

Menu, 3-2
Using, 3-1

XTI Functions
Commonalities, 4-1
List of, 4-2
t_accept (), 4-3
t_alloc (), 4-7
t_bind (), 4-9
t_close (), 4-13
t_connect (), 4-14
t_error (), 4-19
t_free (), 4-20
t_getinfo (), 4-22
t_getprotaddr (), 4-26
t_getstate (), 4-28
t_listen (), 4-29
t_look (), 4-32
t_open (), 4-34
t_optmgmt (), 4-39
t_rcv (), 4-47
t_rcvconnect (), 4-50
t_rcvdis (), 4-53
t_rcvrel (), 4-56
t_rcvudata (), 4-57
t_rcvuderr (), 4-59
t_snd (), 4-61

t_snddis (), 4-65
t_sndrel (), 4-67
t_sndudata (), 4-68
t_strerror (), 4-70
t_sync (), 4-71
t_unbind (), 4-73

XTI Host, 1-5
NetShare, Configuration, 3-17
OSI, Configuration, 3-11
TCP/IP, Configuration, 3-4
XX25, Configuration, 3-19

XTI Option Profile
Add, 3-26
Change Characteristics, 3-27
File, B-9
List, 3-26
Remove, 3-27

XTI OSI Hosts
Add, 3-13
Change/Show Characteristics, 3-13
File, B-2
List, 3-12
Managing, 3-11
Remove, 3-13

XTI OSI Services
Add, 3-15
Change/Show Characteristics, 3-16
File, B-7
List, 3-15
Managing, 3-14
Remove, 3-16

XTI Service, 1-4
NetShare, Configuration, 3-17

XTI Services
OSI, Configuration, 3-14
TCP/IP, Configuration, 3-7
XX25, Configuration, 3-22

XTI TCP/IP Hosts
Add, 3-5
Change/Show Characteristics, 3-6
List, 3-5
Managing, 3-4
Remove, 3-6

XTI TCP/IP Services
Add, 3-8
Change/Show Characteristics, 3-9
List, 3-8
Managing, 3-7
Remove, 3-9

XTI Trace Utilities, Using, 3-36
XTI XX25 Hosts

Add, 3-20
Change/Show Characteristics, 3-21
List, 3-20
Managing, 3-19
Remove, 3-21

XTI XX25 Services
Add, 3-23
Change/Show Characteristics, 3-24
List, 3-23
Managing, 3-22
Remove, 3-24

XTI–BASED (Library), 3-37

X-4 XTI/XX25 Administrator and User Guide

XTI–ENHANCED (Library), 3-37
XTI_ENHANCED Toolkit, Using, 7-2
xticnxtrace, File Format, B-12
xtihost, Command, 6-2
xtihosts, File Format, B-2
xtiopt, Command, 6-10
xtiopts, File Format, B-9
xtiprotocols, File Format, B-5
xtiserv, Command, 6-5
xtiservices, File Format, B-7

xtistat, Command, A-13
xtitrace, File Format, B-12
xtitracelevel, Command, 6-8
XX25, Configuration with XTI, 3-18
XX25 (Library), 3-37
XX25 Addressing, E-1

Addresses Format, E-2
X.25 Addressing, E-1
XTI/XX25 Functions, E-1

XX25 Toolkit, Using, 7-3

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull DPX/20 XTI/XX25 Administrator & User Guide

Nº Reférence / Reference Nº : 86 A2 04AP 02 Daté / Dated : June 1996

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

Bull Electronics Angers S.A.

CEDOC

Atelier de Reprographie

331 Avenue Patton

49004 ANGERS CEDEX 01

FRANCE

Bull Electronics Angers S.A.

CEDOC

Atelier de Reprographie

331 Avenue Patton

49004 ANGERS CEDEX 01

FRANCE

86 A2 04AP 02

ORDER REFERENCE

P
L
A

C
E

 B
A

R
 C

O
D

E
 I

N
 L

O
W

E
R

L
E

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.

AIX

86 A2 04AP 02

XTI/XX25
Administrator &

User Guide

DPX/20

AIX

86 A2 04AP 02

XTI/XX25
Administrator &

User Guide

DPX/20

AIX

86 A2 04AP 02

XTI/XX25
Administrator &

User Guide

DPX/20

